summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp')
-rw-r--r--gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp1942
1 files changed, 0 insertions, 1942 deletions
diff --git a/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
deleted file mode 100644
index 226ee715e18..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
+++ /dev/null
@@ -1,1942 +0,0 @@
-//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Implementation of ELF support for the MC-JIT runtime dynamic linker.
-//
-//===----------------------------------------------------------------------===//
-
-#include "RuntimeDyldELF.h"
-#include "RuntimeDyldCheckerImpl.h"
-#include "Targets/RuntimeDyldELFMips.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/BinaryFormat/ELF.h"
-#include "llvm/Object/ELFObjectFile.h"
-#include "llvm/Object/ObjectFile.h"
-#include "llvm/Support/Endian.h"
-#include "llvm/Support/MemoryBuffer.h"
-
-using namespace llvm;
-using namespace llvm::object;
-using namespace llvm::support::endian;
-
-#define DEBUG_TYPE "dyld"
-
-static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
-
-static void or32AArch64Imm(void *L, uint64_t Imm) {
- or32le(L, (Imm & 0xFFF) << 10);
-}
-
-template <class T> static void write(bool isBE, void *P, T V) {
- isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
-}
-
-static void write32AArch64Addr(void *L, uint64_t Imm) {
- uint32_t ImmLo = (Imm & 0x3) << 29;
- uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
- uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
- write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
-}
-
-// Return the bits [Start, End] from Val shifted Start bits.
-// For instance, getBits(0xF0, 4, 8) returns 0xF.
-static uint64_t getBits(uint64_t Val, int Start, int End) {
- uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
- return (Val >> Start) & Mask;
-}
-
-namespace {
-
-template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
- LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
-
- typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
- typedef Elf_Sym_Impl<ELFT> Elf_Sym;
- typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
- typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
-
- typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
-
- typedef typename ELFT::uint addr_type;
-
- DyldELFObject(ELFObjectFile<ELFT> &&Obj);
-
-public:
- static Expected<std::unique_ptr<DyldELFObject>>
- create(MemoryBufferRef Wrapper);
-
- void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
-
- void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
-
- // Methods for type inquiry through isa, cast and dyn_cast
- static bool classof(const Binary *v) {
- return (isa<ELFObjectFile<ELFT>>(v) &&
- classof(cast<ELFObjectFile<ELFT>>(v)));
- }
- static bool classof(const ELFObjectFile<ELFT> *v) {
- return v->isDyldType();
- }
-};
-
-
-
-// The MemoryBuffer passed into this constructor is just a wrapper around the
-// actual memory. Ultimately, the Binary parent class will take ownership of
-// this MemoryBuffer object but not the underlying memory.
-template <class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
- : ELFObjectFile<ELFT>(std::move(Obj)) {
- this->isDyldELFObject = true;
-}
-
-template <class ELFT>
-Expected<std::unique_ptr<DyldELFObject<ELFT>>>
-DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
- auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
- if (auto E = Obj.takeError())
- return std::move(E);
- std::unique_ptr<DyldELFObject<ELFT>> Ret(
- new DyldELFObject<ELFT>(std::move(*Obj)));
- return std::move(Ret);
-}
-
-template <class ELFT>
-void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
- uint64_t Addr) {
- DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
- Elf_Shdr *shdr =
- const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
-
- // This assumes the address passed in matches the target address bitness
- // The template-based type cast handles everything else.
- shdr->sh_addr = static_cast<addr_type>(Addr);
-}
-
-template <class ELFT>
-void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
- uint64_t Addr) {
-
- Elf_Sym *sym = const_cast<Elf_Sym *>(
- ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
-
- // This assumes the address passed in matches the target address bitness
- // The template-based type cast handles everything else.
- sym->st_value = static_cast<addr_type>(Addr);
-}
-
-class LoadedELFObjectInfo final
- : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
- RuntimeDyld::LoadedObjectInfo> {
-public:
- LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
- : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
-
- OwningBinary<ObjectFile>
- getObjectForDebug(const ObjectFile &Obj) const override;
-};
-
-template <typename ELFT>
-static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
-createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
- const LoadedELFObjectInfo &L) {
- typedef typename ELFT::Shdr Elf_Shdr;
- typedef typename ELFT::uint addr_type;
-
- Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
- DyldELFObject<ELFT>::create(Buffer);
- if (Error E = ObjOrErr.takeError())
- return std::move(E);
-
- std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
-
- // Iterate over all sections in the object.
- auto SI = SourceObject.section_begin();
- for (const auto &Sec : Obj->sections()) {
- StringRef SectionName;
- Sec.getName(SectionName);
- if (SectionName != "") {
- DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
- Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
- reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
-
- if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
- // This assumes that the address passed in matches the target address
- // bitness. The template-based type cast handles everything else.
- shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
- }
- }
- ++SI;
- }
-
- return std::move(Obj);
-}
-
-static OwningBinary<ObjectFile>
-createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
- assert(Obj.isELF() && "Not an ELF object file.");
-
- std::unique_ptr<MemoryBuffer> Buffer =
- MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
-
- Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
- handleAllErrors(DebugObj.takeError());
- if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
- DebugObj =
- createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
- else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
- DebugObj =
- createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
- else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
- DebugObj =
- createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
- else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
- DebugObj =
- createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
- else
- llvm_unreachable("Unexpected ELF format");
-
- handleAllErrors(DebugObj.takeError());
- return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
-}
-
-OwningBinary<ObjectFile>
-LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
- return createELFDebugObject(Obj, *this);
-}
-
-} // anonymous namespace
-
-namespace llvm {
-
-RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
- JITSymbolResolver &Resolver)
- : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
-RuntimeDyldELF::~RuntimeDyldELF() {}
-
-void RuntimeDyldELF::registerEHFrames() {
- for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
- SID EHFrameSID = UnregisteredEHFrameSections[i];
- uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
- uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
- size_t EHFrameSize = Sections[EHFrameSID].getSize();
- MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
- }
- UnregisteredEHFrameSections.clear();
-}
-
-std::unique_ptr<RuntimeDyldELF>
-llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
- RuntimeDyld::MemoryManager &MemMgr,
- JITSymbolResolver &Resolver) {
- switch (Arch) {
- default:
- return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
- case Triple::mips:
- case Triple::mipsel:
- case Triple::mips64:
- case Triple::mips64el:
- return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
- }
-}
-
-std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
-RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
- if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
- return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
- else {
- HasError = true;
- raw_string_ostream ErrStream(ErrorStr);
- logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
- return nullptr;
- }
-}
-
-void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend,
- uint64_t SymOffset) {
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_X86_64_NONE:
- break;
- case ELF::R_X86_64_64: {
- support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
- Value + Addend;
- LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
- << format("%p\n", Section.getAddressWithOffset(Offset)));
- break;
- }
- case ELF::R_X86_64_32:
- case ELF::R_X86_64_32S: {
- Value += Addend;
- assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
- (Type == ELF::R_X86_64_32S &&
- ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
- uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
- support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
- TruncatedAddr;
- LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
- << format("%p\n", Section.getAddressWithOffset(Offset)));
- break;
- }
- case ELF::R_X86_64_PC8: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- int64_t RealOffset = Value + Addend - FinalAddress;
- assert(isInt<8>(RealOffset));
- int8_t TruncOffset = (RealOffset & 0xFF);
- Section.getAddress()[Offset] = TruncOffset;
- break;
- }
- case ELF::R_X86_64_PC32: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- int64_t RealOffset = Value + Addend - FinalAddress;
- assert(isInt<32>(RealOffset));
- int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
- support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
- TruncOffset;
- break;
- }
- case ELF::R_X86_64_PC64: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- int64_t RealOffset = Value + Addend - FinalAddress;
- support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
- RealOffset;
- LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
- << format("%p\n", FinalAddress));
- break;
- }
- case ELF::R_X86_64_GOTOFF64: {
- // Compute Value - GOTBase.
- uint64_t GOTBase = 0;
- for (const auto &Section : Sections) {
- if (Section.getName() == ".got") {
- GOTBase = Section.getLoadAddressWithOffset(0);
- break;
- }
- }
- assert(GOTBase != 0 && "missing GOT");
- int64_t GOTOffset = Value - GOTBase + Addend;
- support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
- break;
- }
- }
-}
-
-void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
- uint64_t Offset, uint32_t Value,
- uint32_t Type, int32_t Addend) {
- switch (Type) {
- case ELF::R_386_32: {
- support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
- Value + Addend;
- break;
- }
- // Handle R_386_PLT32 like R_386_PC32 since it should be able to
- // reach any 32 bit address.
- case ELF::R_386_PLT32:
- case ELF::R_386_PC32: {
- uint32_t FinalAddress =
- Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
- uint32_t RealOffset = Value + Addend - FinalAddress;
- support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
- RealOffset;
- break;
- }
- default:
- // There are other relocation types, but it appears these are the
- // only ones currently used by the LLVM ELF object writer
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- }
-}
-
-void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend) {
- uint32_t *TargetPtr =
- reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- // Data should use target endian. Code should always use little endian.
- bool isBE = Arch == Triple::aarch64_be;
-
- LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
- << format("%llx", Section.getAddressWithOffset(Offset))
- << " FinalAddress: 0x" << format("%llx", FinalAddress)
- << " Value: 0x" << format("%llx", Value) << " Type: 0x"
- << format("%x", Type) << " Addend: 0x"
- << format("%llx", Addend) << "\n");
-
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_AARCH64_ABS16: {
- uint64_t Result = Value + Addend;
- assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
- write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
- break;
- }
- case ELF::R_AARCH64_ABS32: {
- uint64_t Result = Value + Addend;
- assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
- write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
- break;
- }
- case ELF::R_AARCH64_ABS64:
- write(isBE, TargetPtr, Value + Addend);
- break;
- case ELF::R_AARCH64_PREL32: {
- uint64_t Result = Value + Addend - FinalAddress;
- assert(static_cast<int64_t>(Result) >= INT32_MIN &&
- static_cast<int64_t>(Result) <= UINT32_MAX);
- write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
- break;
- }
- case ELF::R_AARCH64_PREL64:
- write(isBE, TargetPtr, Value + Addend - FinalAddress);
- break;
- case ELF::R_AARCH64_CALL26: // fallthrough
- case ELF::R_AARCH64_JUMP26: {
- // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
- // calculation.
- uint64_t BranchImm = Value + Addend - FinalAddress;
-
- // "Check that -2^27 <= result < 2^27".
- assert(isInt<28>(BranchImm));
- or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
- break;
- }
- case ELF::R_AARCH64_MOVW_UABS_G3:
- or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
- break;
- case ELF::R_AARCH64_MOVW_UABS_G2_NC:
- or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
- break;
- case ELF::R_AARCH64_MOVW_UABS_G1_NC:
- or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
- break;
- case ELF::R_AARCH64_MOVW_UABS_G0_NC:
- or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
- break;
- case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
- // Operation: Page(S+A) - Page(P)
- uint64_t Result =
- ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
-
- // Check that -2^32 <= X < 2^32
- assert(isInt<33>(Result) && "overflow check failed for relocation");
-
- // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
- // from bits 32:12 of X.
- write32AArch64Addr(TargetPtr, Result >> 12);
- break;
- }
- case ELF::R_AARCH64_ADD_ABS_LO12_NC:
- // Operation: S + A
- // Immediate goes in bits 21:10 of LD/ST instruction, taken
- // from bits 11:0 of X
- or32AArch64Imm(TargetPtr, Value + Addend);
- break;
- case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
- // Operation: S + A
- // Immediate goes in bits 21:10 of LD/ST instruction, taken
- // from bits 11:0 of X
- or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
- break;
- case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
- // Operation: S + A
- // Immediate goes in bits 21:10 of LD/ST instruction, taken
- // from bits 11:1 of X
- or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
- break;
- case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
- // Operation: S + A
- // Immediate goes in bits 21:10 of LD/ST instruction, taken
- // from bits 11:2 of X
- or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
- break;
- case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
- // Operation: S + A
- // Immediate goes in bits 21:10 of LD/ST instruction, taken
- // from bits 11:3 of X
- or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
- break;
- case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
- // Operation: S + A
- // Immediate goes in bits 21:10 of LD/ST instruction, taken
- // from bits 11:4 of X
- or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
- break;
- }
-}
-
-void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
- uint64_t Offset, uint32_t Value,
- uint32_t Type, int32_t Addend) {
- // TODO: Add Thumb relocations.
- uint32_t *TargetPtr =
- reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
- uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
- Value += Addend;
-
- LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
- << Section.getAddressWithOffset(Offset)
- << " FinalAddress: " << format("%p", FinalAddress)
- << " Value: " << format("%x", Value)
- << " Type: " << format("%x", Type)
- << " Addend: " << format("%x", Addend) << "\n");
-
- switch (Type) {
- default:
- llvm_unreachable("Not implemented relocation type!");
-
- case ELF::R_ARM_NONE:
- break;
- // Write a 31bit signed offset
- case ELF::R_ARM_PREL31:
- support::ulittle32_t::ref{TargetPtr} =
- (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
- ((Value - FinalAddress) & ~0x80000000);
- break;
- case ELF::R_ARM_TARGET1:
- case ELF::R_ARM_ABS32:
- support::ulittle32_t::ref{TargetPtr} = Value;
- break;
- // Write first 16 bit of 32 bit value to the mov instruction.
- // Last 4 bit should be shifted.
- case ELF::R_ARM_MOVW_ABS_NC:
- case ELF::R_ARM_MOVT_ABS:
- if (Type == ELF::R_ARM_MOVW_ABS_NC)
- Value = Value & 0xFFFF;
- else if (Type == ELF::R_ARM_MOVT_ABS)
- Value = (Value >> 16) & 0xFFFF;
- support::ulittle32_t::ref{TargetPtr} =
- (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
- (((Value >> 12) & 0xF) << 16);
- break;
- // Write 24 bit relative value to the branch instruction.
- case ELF::R_ARM_PC24: // Fall through.
- case ELF::R_ARM_CALL: // Fall through.
- case ELF::R_ARM_JUMP24:
- int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
- RelValue = (RelValue & 0x03FFFFFC) >> 2;
- assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
- support::ulittle32_t::ref{TargetPtr} =
- (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
- break;
- }
-}
-
-void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
- if (Arch == Triple::UnknownArch ||
- !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
- IsMipsO32ABI = false;
- IsMipsN32ABI = false;
- IsMipsN64ABI = false;
- return;
- }
- if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
- unsigned AbiVariant = E->getPlatformFlags();
- IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
- IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
- }
- IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
-}
-
-// Return the .TOC. section and offset.
-Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
- ObjSectionToIDMap &LocalSections,
- RelocationValueRef &Rel) {
- // Set a default SectionID in case we do not find a TOC section below.
- // This may happen for references to TOC base base (sym@toc, .odp
- // relocation) without a .toc directive. In this case just use the
- // first section (which is usually the .odp) since the code won't
- // reference the .toc base directly.
- Rel.SymbolName = nullptr;
- Rel.SectionID = 0;
-
- // The TOC consists of sections .got, .toc, .tocbss, .plt in that
- // order. The TOC starts where the first of these sections starts.
- for (auto &Section: Obj.sections()) {
- StringRef SectionName;
- if (auto EC = Section.getName(SectionName))
- return errorCodeToError(EC);
-
- if (SectionName == ".got"
- || SectionName == ".toc"
- || SectionName == ".tocbss"
- || SectionName == ".plt") {
- if (auto SectionIDOrErr =
- findOrEmitSection(Obj, Section, false, LocalSections))
- Rel.SectionID = *SectionIDOrErr;
- else
- return SectionIDOrErr.takeError();
- break;
- }
- }
-
- // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
- // thus permitting a full 64 Kbytes segment.
- Rel.Addend = 0x8000;
-
- return Error::success();
-}
-
-// Returns the sections and offset associated with the ODP entry referenced
-// by Symbol.
-Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
- ObjSectionToIDMap &LocalSections,
- RelocationValueRef &Rel) {
- // Get the ELF symbol value (st_value) to compare with Relocation offset in
- // .opd entries
- for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
- si != se; ++si) {
- section_iterator RelSecI = si->getRelocatedSection();
- if (RelSecI == Obj.section_end())
- continue;
-
- StringRef RelSectionName;
- if (auto EC = RelSecI->getName(RelSectionName))
- return errorCodeToError(EC);
-
- if (RelSectionName != ".opd")
- continue;
-
- for (elf_relocation_iterator i = si->relocation_begin(),
- e = si->relocation_end();
- i != e;) {
- // The R_PPC64_ADDR64 relocation indicates the first field
- // of a .opd entry
- uint64_t TypeFunc = i->getType();
- if (TypeFunc != ELF::R_PPC64_ADDR64) {
- ++i;
- continue;
- }
-
- uint64_t TargetSymbolOffset = i->getOffset();
- symbol_iterator TargetSymbol = i->getSymbol();
- int64_t Addend;
- if (auto AddendOrErr = i->getAddend())
- Addend = *AddendOrErr;
- else
- return AddendOrErr.takeError();
-
- ++i;
- if (i == e)
- break;
-
- // Just check if following relocation is a R_PPC64_TOC
- uint64_t TypeTOC = i->getType();
- if (TypeTOC != ELF::R_PPC64_TOC)
- continue;
-
- // Finally compares the Symbol value and the target symbol offset
- // to check if this .opd entry refers to the symbol the relocation
- // points to.
- if (Rel.Addend != (int64_t)TargetSymbolOffset)
- continue;
-
- section_iterator TSI = Obj.section_end();
- if (auto TSIOrErr = TargetSymbol->getSection())
- TSI = *TSIOrErr;
- else
- return TSIOrErr.takeError();
- assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
-
- bool IsCode = TSI->isText();
- if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
- LocalSections))
- Rel.SectionID = *SectionIDOrErr;
- else
- return SectionIDOrErr.takeError();
- Rel.Addend = (intptr_t)Addend;
- return Error::success();
- }
- }
- llvm_unreachable("Attempting to get address of ODP entry!");
-}
-
-// Relocation masks following the #lo(value), #hi(value), #ha(value),
-// #higher(value), #highera(value), #highest(value), and #highesta(value)
-// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
-// document.
-
-static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
-
-static inline uint16_t applyPPChi(uint64_t value) {
- return (value >> 16) & 0xffff;
-}
-
-static inline uint16_t applyPPCha (uint64_t value) {
- return ((value + 0x8000) >> 16) & 0xffff;
-}
-
-static inline uint16_t applyPPChigher(uint64_t value) {
- return (value >> 32) & 0xffff;
-}
-
-static inline uint16_t applyPPChighera (uint64_t value) {
- return ((value + 0x8000) >> 32) & 0xffff;
-}
-
-static inline uint16_t applyPPChighest(uint64_t value) {
- return (value >> 48) & 0xffff;
-}
-
-static inline uint16_t applyPPChighesta (uint64_t value) {
- return ((value + 0x8000) >> 48) & 0xffff;
-}
-
-void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend) {
- uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_PPC_ADDR16_LO:
- writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
- break;
- case ELF::R_PPC_ADDR16_HI:
- writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
- break;
- case ELF::R_PPC_ADDR16_HA:
- writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
- break;
- }
-}
-
-void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend) {
- uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_PPC64_ADDR16:
- writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_DS:
- writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
- break;
- case ELF::R_PPC64_ADDR16_LO:
- writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_LO_DS:
- writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
- break;
- case ELF::R_PPC64_ADDR16_HI:
- case ELF::R_PPC64_ADDR16_HIGH:
- writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_HA:
- case ELF::R_PPC64_ADDR16_HIGHA:
- writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_HIGHER:
- writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_HIGHERA:
- writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_HIGHEST:
- writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR16_HIGHESTA:
- writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
- break;
- case ELF::R_PPC64_ADDR14: {
- assert(((Value + Addend) & 3) == 0);
- // Preserve the AA/LK bits in the branch instruction
- uint8_t aalk = *(LocalAddress + 3);
- writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
- } break;
- case ELF::R_PPC64_REL16_LO: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- uint64_t Delta = Value - FinalAddress + Addend;
- writeInt16BE(LocalAddress, applyPPClo(Delta));
- } break;
- case ELF::R_PPC64_REL16_HI: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- uint64_t Delta = Value - FinalAddress + Addend;
- writeInt16BE(LocalAddress, applyPPChi(Delta));
- } break;
- case ELF::R_PPC64_REL16_HA: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- uint64_t Delta = Value - FinalAddress + Addend;
- writeInt16BE(LocalAddress, applyPPCha(Delta));
- } break;
- case ELF::R_PPC64_ADDR32: {
- int64_t Result = static_cast<int64_t>(Value + Addend);
- if (SignExtend64<32>(Result) != Result)
- llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
- writeInt32BE(LocalAddress, Result);
- } break;
- case ELF::R_PPC64_REL24: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
- if (SignExtend64<26>(delta) != delta)
- llvm_unreachable("Relocation R_PPC64_REL24 overflow");
- // We preserve bits other than LI field, i.e. PO and AA/LK fields.
- uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
- writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
- } break;
- case ELF::R_PPC64_REL32: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
- if (SignExtend64<32>(delta) != delta)
- llvm_unreachable("Relocation R_PPC64_REL32 overflow");
- writeInt32BE(LocalAddress, delta);
- } break;
- case ELF::R_PPC64_REL64: {
- uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
- uint64_t Delta = Value - FinalAddress + Addend;
- writeInt64BE(LocalAddress, Delta);
- } break;
- case ELF::R_PPC64_ADDR64:
- writeInt64BE(LocalAddress, Value + Addend);
- break;
- }
-}
-
-void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend) {
- uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_390_PC16DBL:
- case ELF::R_390_PLT16DBL: {
- int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
- assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
- writeInt16BE(LocalAddress, Delta / 2);
- break;
- }
- case ELF::R_390_PC32DBL:
- case ELF::R_390_PLT32DBL: {
- int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
- assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
- writeInt32BE(LocalAddress, Delta / 2);
- break;
- }
- case ELF::R_390_PC16: {
- int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
- assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
- writeInt16BE(LocalAddress, Delta);
- break;
- }
- case ELF::R_390_PC32: {
- int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
- assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
- writeInt32BE(LocalAddress, Delta);
- break;
- }
- case ELF::R_390_PC64: {
- int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
- writeInt64BE(LocalAddress, Delta);
- break;
- }
- case ELF::R_390_8:
- *LocalAddress = (uint8_t)(Value + Addend);
- break;
- case ELF::R_390_16:
- writeInt16BE(LocalAddress, Value + Addend);
- break;
- case ELF::R_390_32:
- writeInt32BE(LocalAddress, Value + Addend);
- break;
- case ELF::R_390_64:
- writeInt64BE(LocalAddress, Value + Addend);
- break;
- }
-}
-
-void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend) {
- bool isBE = Arch == Triple::bpfeb;
-
- switch (Type) {
- default:
- llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_BPF_NONE:
- break;
- case ELF::R_BPF_64_64: {
- write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
- LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
- << format("%p\n", Section.getAddressWithOffset(Offset)));
- break;
- }
- case ELF::R_BPF_64_32: {
- Value += Addend;
- assert(Value <= UINT32_MAX);
- write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
- LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
- << format("%p\n", Section.getAddressWithOffset(Offset)));
- break;
- }
- }
-}
-
-// The target location for the relocation is described by RE.SectionID and
-// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
-// SectionEntry has three members describing its location.
-// SectionEntry::Address is the address at which the section has been loaded
-// into memory in the current (host) process. SectionEntry::LoadAddress is the
-// address that the section will have in the target process.
-// SectionEntry::ObjAddress is the address of the bits for this section in the
-// original emitted object image (also in the current address space).
-//
-// Relocations will be applied as if the section were loaded at
-// SectionEntry::LoadAddress, but they will be applied at an address based
-// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
-// Target memory contents if they are required for value calculations.
-//
-// The Value parameter here is the load address of the symbol for the
-// relocation to be applied. For relocations which refer to symbols in the
-// current object Value will be the LoadAddress of the section in which
-// the symbol resides (RE.Addend provides additional information about the
-// symbol location). For external symbols, Value will be the address of the
-// symbol in the target address space.
-void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
- uint64_t Value) {
- const SectionEntry &Section = Sections[RE.SectionID];
- return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
- RE.SymOffset, RE.SectionID);
-}
-
-void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
- uint64_t Offset, uint64_t Value,
- uint32_t Type, int64_t Addend,
- uint64_t SymOffset, SID SectionID) {
- switch (Arch) {
- case Triple::x86_64:
- resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
- break;
- case Triple::x86:
- resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
- (uint32_t)(Addend & 0xffffffffL));
- break;
- case Triple::aarch64:
- case Triple::aarch64_be:
- resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
- break;
- case Triple::arm: // Fall through.
- case Triple::armeb:
- case Triple::thumb:
- case Triple::thumbeb:
- resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
- (uint32_t)(Addend & 0xffffffffL));
- break;
- case Triple::ppc:
- resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
- break;
- case Triple::ppc64: // Fall through.
- case Triple::ppc64le:
- resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
- break;
- case Triple::systemz:
- resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
- break;
- case Triple::bpfel:
- case Triple::bpfeb:
- resolveBPFRelocation(Section, Offset, Value, Type, Addend);
- break;
- default:
- llvm_unreachable("Unsupported CPU type!");
- }
-}
-
-void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
- return (void *)(Sections[SectionID].getObjAddress() + Offset);
-}
-
-void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
- RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
-}
-
-uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
- bool IsLocal) const {
- switch (RelType) {
- case ELF::R_MICROMIPS_GOT16:
- if (IsLocal)
- return ELF::R_MICROMIPS_LO16;
- break;
- case ELF::R_MICROMIPS_HI16:
- return ELF::R_MICROMIPS_LO16;
- case ELF::R_MIPS_GOT16:
- if (IsLocal)
- return ELF::R_MIPS_LO16;
- break;
- case ELF::R_MIPS_HI16:
- return ELF::R_MIPS_LO16;
- case ELF::R_MIPS_PCHI16:
- return ELF::R_MIPS_PCLO16;
- default:
- break;
- }
- return ELF::R_MIPS_NONE;
-}
-
-// Sometimes we don't need to create thunk for a branch.
-// This typically happens when branch target is located
-// in the same object file. In such case target is either
-// a weak symbol or symbol in a different executable section.
-// This function checks if branch target is located in the
-// same object file and if distance between source and target
-// fits R_AARCH64_CALL26 relocation. If both conditions are
-// met, it emits direct jump to the target and returns true.
-// Otherwise false is returned and thunk is created.
-bool RuntimeDyldELF::resolveAArch64ShortBranch(
- unsigned SectionID, relocation_iterator RelI,
- const RelocationValueRef &Value) {
- uint64_t Address;
- if (Value.SymbolName) {
- auto Loc = GlobalSymbolTable.find(Value.SymbolName);
-
- // Don't create direct branch for external symbols.
- if (Loc == GlobalSymbolTable.end())
- return false;
-
- const auto &SymInfo = Loc->second;
- Address =
- uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
- SymInfo.getOffset()));
- } else {
- Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
- }
- uint64_t Offset = RelI->getOffset();
- uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
-
- // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
- // If distance between source and target is out of range then we should
- // create thunk.
- if (!isInt<28>(Address + Value.Addend - SourceAddress))
- return false;
-
- resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
- Value.Addend);
-
- return true;
-}
-
-void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
- const RelocationValueRef &Value,
- relocation_iterator RelI,
- StubMap &Stubs) {
-
- LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
- SectionEntry &Section = Sections[SectionID];
-
- uint64_t Offset = RelI->getOffset();
- unsigned RelType = RelI->getType();
- // Look for an existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end()) {
- resolveRelocation(Section, Offset,
- (uint64_t)Section.getAddressWithOffset(i->second),
- RelType, 0);
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
- // Create a new stub function.
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
- Stubs[Value] = Section.getStubOffset();
- uint8_t *StubTargetAddr = createStubFunction(
- Section.getAddressWithOffset(Section.getStubOffset()));
-
- RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
- ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
- RelocationEntry REmovk_g2(SectionID,
- StubTargetAddr - Section.getAddress() + 4,
- ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
- RelocationEntry REmovk_g1(SectionID,
- StubTargetAddr - Section.getAddress() + 8,
- ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
- RelocationEntry REmovk_g0(SectionID,
- StubTargetAddr - Section.getAddress() + 12,
- ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
-
- if (Value.SymbolName) {
- addRelocationForSymbol(REmovz_g3, Value.SymbolName);
- addRelocationForSymbol(REmovk_g2, Value.SymbolName);
- addRelocationForSymbol(REmovk_g1, Value.SymbolName);
- addRelocationForSymbol(REmovk_g0, Value.SymbolName);
- } else {
- addRelocationForSection(REmovz_g3, Value.SectionID);
- addRelocationForSection(REmovk_g2, Value.SectionID);
- addRelocationForSection(REmovk_g1, Value.SectionID);
- addRelocationForSection(REmovk_g0, Value.SectionID);
- }
- resolveRelocation(Section, Offset,
- reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
- Section.getStubOffset())),
- RelType, 0);
- Section.advanceStubOffset(getMaxStubSize());
- }
-}
-
-Expected<relocation_iterator>
-RuntimeDyldELF::processRelocationRef(
- unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
- ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
- const auto &Obj = cast<ELFObjectFileBase>(O);
- uint64_t RelType = RelI->getType();
- int64_t Addend = 0;
- if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
- Addend = *AddendOrErr;
- else
- consumeError(AddendOrErr.takeError());
- elf_symbol_iterator Symbol = RelI->getSymbol();
-
- // Obtain the symbol name which is referenced in the relocation
- StringRef TargetName;
- if (Symbol != Obj.symbol_end()) {
- if (auto TargetNameOrErr = Symbol->getName())
- TargetName = *TargetNameOrErr;
- else
- return TargetNameOrErr.takeError();
- }
- LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
- << " TargetName: " << TargetName << "\n");
- RelocationValueRef Value;
- // First search for the symbol in the local symbol table
- SymbolRef::Type SymType = SymbolRef::ST_Unknown;
-
- // Search for the symbol in the global symbol table
- RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
- if (Symbol != Obj.symbol_end()) {
- gsi = GlobalSymbolTable.find(TargetName.data());
- Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
- if (!SymTypeOrErr) {
- std::string Buf;
- raw_string_ostream OS(Buf);
- logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
- OS.flush();
- report_fatal_error(Buf);
- }
- SymType = *SymTypeOrErr;
- }
- if (gsi != GlobalSymbolTable.end()) {
- const auto &SymInfo = gsi->second;
- Value.SectionID = SymInfo.getSectionID();
- Value.Offset = SymInfo.getOffset();
- Value.Addend = SymInfo.getOffset() + Addend;
- } else {
- switch (SymType) {
- case SymbolRef::ST_Debug: {
- // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
- // and can be changed by another developers. Maybe best way is add
- // a new symbol type ST_Section to SymbolRef and use it.
- auto SectionOrErr = Symbol->getSection();
- if (!SectionOrErr) {
- std::string Buf;
- raw_string_ostream OS(Buf);
- logAllUnhandledErrors(SectionOrErr.takeError(), OS);
- OS.flush();
- report_fatal_error(Buf);
- }
- section_iterator si = *SectionOrErr;
- if (si == Obj.section_end())
- llvm_unreachable("Symbol section not found, bad object file format!");
- LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
- bool isCode = si->isText();
- if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
- ObjSectionToID))
- Value.SectionID = *SectionIDOrErr;
- else
- return SectionIDOrErr.takeError();
- Value.Addend = Addend;
- break;
- }
- case SymbolRef::ST_Data:
- case SymbolRef::ST_Function:
- case SymbolRef::ST_Unknown: {
- Value.SymbolName = TargetName.data();
- Value.Addend = Addend;
-
- // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
- // will manifest here as a NULL symbol name.
- // We can set this as a valid (but empty) symbol name, and rely
- // on addRelocationForSymbol to handle this.
- if (!Value.SymbolName)
- Value.SymbolName = "";
- break;
- }
- default:
- llvm_unreachable("Unresolved symbol type!");
- break;
- }
- }
-
- uint64_t Offset = RelI->getOffset();
-
- LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
- << "\n");
- if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
- if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
- resolveAArch64Branch(SectionID, Value, RelI, Stubs);
- } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
- // Craete new GOT entry or find existing one. If GOT entry is
- // to be created, then we also emit ABS64 relocation for it.
- uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
- resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
- ELF::R_AARCH64_ADR_PREL_PG_HI21);
-
- } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
- uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
- resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
- ELF::R_AARCH64_LDST64_ABS_LO12_NC);
- } else {
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- }
- } else if (Arch == Triple::arm) {
- if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
- RelType == ELF::R_ARM_JUMP24) {
- // This is an ARM branch relocation, need to use a stub function.
- LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
- SectionEntry &Section = Sections[SectionID];
-
- // Look for an existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end()) {
- resolveRelocation(
- Section, Offset,
- reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
- RelType, 0);
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function.
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
- Stubs[Value] = Section.getStubOffset();
- uint8_t *StubTargetAddr = createStubFunction(
- Section.getAddressWithOffset(Section.getStubOffset()));
- RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
- ELF::R_ARM_ABS32, Value.Addend);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
-
- resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
- Section.getAddressWithOffset(
- Section.getStubOffset())),
- RelType, 0);
- Section.advanceStubOffset(getMaxStubSize());
- }
- } else {
- uint32_t *Placeholder =
- reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
- if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
- RelType == ELF::R_ARM_ABS32) {
- Value.Addend += *Placeholder;
- } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
- // See ELF for ARM documentation
- Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
- }
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- }
- } else if (IsMipsO32ABI) {
- uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
- computePlaceholderAddress(SectionID, Offset));
- uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
- if (RelType == ELF::R_MIPS_26) {
- // This is an Mips branch relocation, need to use a stub function.
- LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
- SectionEntry &Section = Sections[SectionID];
-
- // Extract the addend from the instruction.
- // We shift up by two since the Value will be down shifted again
- // when applying the relocation.
- uint32_t Addend = (Opcode & 0x03ffffff) << 2;
-
- Value.Addend += Addend;
-
- // Look up for existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end()) {
- RelocationEntry RE(SectionID, Offset, RelType, i->second);
- addRelocationForSection(RE, SectionID);
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function.
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
- Stubs[Value] = Section.getStubOffset();
-
- unsigned AbiVariant = Obj.getPlatformFlags();
-
- uint8_t *StubTargetAddr = createStubFunction(
- Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
-
- // Creating Hi and Lo relocations for the filled stub instructions.
- RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
- ELF::R_MIPS_HI16, Value.Addend);
- RelocationEntry RELo(SectionID,
- StubTargetAddr - Section.getAddress() + 4,
- ELF::R_MIPS_LO16, Value.Addend);
-
- if (Value.SymbolName) {
- addRelocationForSymbol(REHi, Value.SymbolName);
- addRelocationForSymbol(RELo, Value.SymbolName);
- } else {
- addRelocationForSection(REHi, Value.SectionID);
- addRelocationForSection(RELo, Value.SectionID);
- }
-
- RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
- addRelocationForSection(RE, SectionID);
- Section.advanceStubOffset(getMaxStubSize());
- }
- } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
- int64_t Addend = (Opcode & 0x0000ffff) << 16;
- RelocationEntry RE(SectionID, Offset, RelType, Addend);
- PendingRelocs.push_back(std::make_pair(Value, RE));
- } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
- int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
- for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
- const RelocationValueRef &MatchingValue = I->first;
- RelocationEntry &Reloc = I->second;
- if (MatchingValue == Value &&
- RelType == getMatchingLoRelocation(Reloc.RelType) &&
- SectionID == Reloc.SectionID) {
- Reloc.Addend += Addend;
- if (Value.SymbolName)
- addRelocationForSymbol(Reloc, Value.SymbolName);
- else
- addRelocationForSection(Reloc, Value.SectionID);
- I = PendingRelocs.erase(I);
- } else
- ++I;
- }
- RelocationEntry RE(SectionID, Offset, RelType, Addend);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
- } else {
- if (RelType == ELF::R_MIPS_32)
- Value.Addend += Opcode;
- else if (RelType == ELF::R_MIPS_PC16)
- Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
- else if (RelType == ELF::R_MIPS_PC19_S2)
- Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
- else if (RelType == ELF::R_MIPS_PC21_S2)
- Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
- else if (RelType == ELF::R_MIPS_PC26_S2)
- Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- }
- } else if (IsMipsN32ABI || IsMipsN64ABI) {
- uint32_t r_type = RelType & 0xff;
- RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
- if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
- || r_type == ELF::R_MIPS_GOT_DISP) {
- StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
- if (i != GOTSymbolOffsets.end())
- RE.SymOffset = i->second;
- else {
- RE.SymOffset = allocateGOTEntries(1);
- GOTSymbolOffsets[TargetName] = RE.SymOffset;
- }
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
- } else if (RelType == ELF::R_MIPS_26) {
- // This is an Mips branch relocation, need to use a stub function.
- LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
- SectionEntry &Section = Sections[SectionID];
-
- // Look up for existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end()) {
- RelocationEntry RE(SectionID, Offset, RelType, i->second);
- addRelocationForSection(RE, SectionID);
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function.
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
- Stubs[Value] = Section.getStubOffset();
-
- unsigned AbiVariant = Obj.getPlatformFlags();
-
- uint8_t *StubTargetAddr = createStubFunction(
- Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
-
- if (IsMipsN32ABI) {
- // Creating Hi and Lo relocations for the filled stub instructions.
- RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
- ELF::R_MIPS_HI16, Value.Addend);
- RelocationEntry RELo(SectionID,
- StubTargetAddr - Section.getAddress() + 4,
- ELF::R_MIPS_LO16, Value.Addend);
- if (Value.SymbolName) {
- addRelocationForSymbol(REHi, Value.SymbolName);
- addRelocationForSymbol(RELo, Value.SymbolName);
- } else {
- addRelocationForSection(REHi, Value.SectionID);
- addRelocationForSection(RELo, Value.SectionID);
- }
- } else {
- // Creating Highest, Higher, Hi and Lo relocations for the filled stub
- // instructions.
- RelocationEntry REHighest(SectionID,
- StubTargetAddr - Section.getAddress(),
- ELF::R_MIPS_HIGHEST, Value.Addend);
- RelocationEntry REHigher(SectionID,
- StubTargetAddr - Section.getAddress() + 4,
- ELF::R_MIPS_HIGHER, Value.Addend);
- RelocationEntry REHi(SectionID,
- StubTargetAddr - Section.getAddress() + 12,
- ELF::R_MIPS_HI16, Value.Addend);
- RelocationEntry RELo(SectionID,
- StubTargetAddr - Section.getAddress() + 20,
- ELF::R_MIPS_LO16, Value.Addend);
- if (Value.SymbolName) {
- addRelocationForSymbol(REHighest, Value.SymbolName);
- addRelocationForSymbol(REHigher, Value.SymbolName);
- addRelocationForSymbol(REHi, Value.SymbolName);
- addRelocationForSymbol(RELo, Value.SymbolName);
- } else {
- addRelocationForSection(REHighest, Value.SectionID);
- addRelocationForSection(REHigher, Value.SectionID);
- addRelocationForSection(REHi, Value.SectionID);
- addRelocationForSection(RELo, Value.SectionID);
- }
- }
- RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
- addRelocationForSection(RE, SectionID);
- Section.advanceStubOffset(getMaxStubSize());
- }
- } else {
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- }
-
- } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
- if (RelType == ELF::R_PPC64_REL24) {
- // Determine ABI variant in use for this object.
- unsigned AbiVariant = Obj.getPlatformFlags();
- AbiVariant &= ELF::EF_PPC64_ABI;
- // A PPC branch relocation will need a stub function if the target is
- // an external symbol (either Value.SymbolName is set, or SymType is
- // Symbol::ST_Unknown) or if the target address is not within the
- // signed 24-bits branch address.
- SectionEntry &Section = Sections[SectionID];
- uint8_t *Target = Section.getAddressWithOffset(Offset);
- bool RangeOverflow = false;
- bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
- if (!IsExtern) {
- if (AbiVariant != 2) {
- // In the ELFv1 ABI, a function call may point to the .opd entry,
- // so the final symbol value is calculated based on the relocation
- // values in the .opd section.
- if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
- return std::move(Err);
- } else {
- // In the ELFv2 ABI, a function symbol may provide a local entry
- // point, which must be used for direct calls.
- if (Value.SectionID == SectionID){
- uint8_t SymOther = Symbol->getOther();
- Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
- }
- }
- uint8_t *RelocTarget =
- Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
- int64_t delta = static_cast<int64_t>(Target - RelocTarget);
- // If it is within 26-bits branch range, just set the branch target
- if (SignExtend64<26>(delta) != delta) {
- RangeOverflow = true;
- } else if ((AbiVariant != 2) ||
- (AbiVariant == 2 && Value.SectionID == SectionID)) {
- RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
- addRelocationForSection(RE, Value.SectionID);
- }
- }
- if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
- RangeOverflow) {
- // It is an external symbol (either Value.SymbolName is set, or
- // SymType is SymbolRef::ST_Unknown) or out of range.
- StubMap::const_iterator i = Stubs.find(Value);
- if (i != Stubs.end()) {
- // Symbol function stub already created, just relocate to it
- resolveRelocation(Section, Offset,
- reinterpret_cast<uint64_t>(
- Section.getAddressWithOffset(i->second)),
- RelType, 0);
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function.
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
- Stubs[Value] = Section.getStubOffset();
- uint8_t *StubTargetAddr = createStubFunction(
- Section.getAddressWithOffset(Section.getStubOffset()),
- AbiVariant);
- RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
- ELF::R_PPC64_ADDR64, Value.Addend);
-
- // Generates the 64-bits address loads as exemplified in section
- // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
- // apply to the low part of the instructions, so we have to update
- // the offset according to the target endianness.
- uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
- if (!IsTargetLittleEndian)
- StubRelocOffset += 2;
-
- RelocationEntry REhst(SectionID, StubRelocOffset + 0,
- ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
- RelocationEntry REhr(SectionID, StubRelocOffset + 4,
- ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
- RelocationEntry REh(SectionID, StubRelocOffset + 12,
- ELF::R_PPC64_ADDR16_HI, Value.Addend);
- RelocationEntry REl(SectionID, StubRelocOffset + 16,
- ELF::R_PPC64_ADDR16_LO, Value.Addend);
-
- if (Value.SymbolName) {
- addRelocationForSymbol(REhst, Value.SymbolName);
- addRelocationForSymbol(REhr, Value.SymbolName);
- addRelocationForSymbol(REh, Value.SymbolName);
- addRelocationForSymbol(REl, Value.SymbolName);
- } else {
- addRelocationForSection(REhst, Value.SectionID);
- addRelocationForSection(REhr, Value.SectionID);
- addRelocationForSection(REh, Value.SectionID);
- addRelocationForSection(REl, Value.SectionID);
- }
-
- resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
- Section.getAddressWithOffset(
- Section.getStubOffset())),
- RelType, 0);
- Section.advanceStubOffset(getMaxStubSize());
- }
- if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
- // Restore the TOC for external calls
- if (AbiVariant == 2)
- writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
- else
- writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
- }
- }
- } else if (RelType == ELF::R_PPC64_TOC16 ||
- RelType == ELF::R_PPC64_TOC16_DS ||
- RelType == ELF::R_PPC64_TOC16_LO ||
- RelType == ELF::R_PPC64_TOC16_LO_DS ||
- RelType == ELF::R_PPC64_TOC16_HI ||
- RelType == ELF::R_PPC64_TOC16_HA) {
- // These relocations are supposed to subtract the TOC address from
- // the final value. This does not fit cleanly into the RuntimeDyld
- // scheme, since there may be *two* sections involved in determining
- // the relocation value (the section of the symbol referred to by the
- // relocation, and the TOC section associated with the current module).
- //
- // Fortunately, these relocations are currently only ever generated
- // referring to symbols that themselves reside in the TOC, which means
- // that the two sections are actually the same. Thus they cancel out
- // and we can immediately resolve the relocation right now.
- switch (RelType) {
- case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
- case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
- case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
- case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
- case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
- case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
- default: llvm_unreachable("Wrong relocation type.");
- }
-
- RelocationValueRef TOCValue;
- if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
- return std::move(Err);
- if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
- llvm_unreachable("Unsupported TOC relocation.");
- Value.Addend -= TOCValue.Addend;
- resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
- } else {
- // There are two ways to refer to the TOC address directly: either
- // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
- // ignored), or via any relocation that refers to the magic ".TOC."
- // symbols (in which case the addend is respected).
- if (RelType == ELF::R_PPC64_TOC) {
- RelType = ELF::R_PPC64_ADDR64;
- if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
- return std::move(Err);
- } else if (TargetName == ".TOC.") {
- if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
- return std::move(Err);
- Value.Addend += Addend;
- }
-
- RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
-
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
- }
- } else if (Arch == Triple::systemz &&
- (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
- // Create function stubs for both PLT and GOT references, regardless of
- // whether the GOT reference is to data or code. The stub contains the
- // full address of the symbol, as needed by GOT references, and the
- // executable part only adds an overhead of 8 bytes.
- //
- // We could try to conserve space by allocating the code and data
- // parts of the stub separately. However, as things stand, we allocate
- // a stub for every relocation, so using a GOT in JIT code should be
- // no less space efficient than using an explicit constant pool.
- LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
- SectionEntry &Section = Sections[SectionID];
-
- // Look for an existing stub.
- StubMap::const_iterator i = Stubs.find(Value);
- uintptr_t StubAddress;
- if (i != Stubs.end()) {
- StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function.
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
-
- uintptr_t BaseAddress = uintptr_t(Section.getAddress());
- uintptr_t StubAlignment = getStubAlignment();
- StubAddress =
- (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
- -StubAlignment;
- unsigned StubOffset = StubAddress - BaseAddress;
-
- Stubs[Value] = StubOffset;
- createStubFunction((uint8_t *)StubAddress);
- RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
- Value.Offset);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
- Section.advanceStubOffset(getMaxStubSize());
- }
-
- if (RelType == ELF::R_390_GOTENT)
- resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
- Addend);
- else
- resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
- } else if (Arch == Triple::x86_64) {
- if (RelType == ELF::R_X86_64_PLT32) {
- // The way the PLT relocations normally work is that the linker allocates
- // the
- // PLT and this relocation makes a PC-relative call into the PLT. The PLT
- // entry will then jump to an address provided by the GOT. On first call,
- // the
- // GOT address will point back into PLT code that resolves the symbol. After
- // the first call, the GOT entry points to the actual function.
- //
- // For local functions we're ignoring all of that here and just replacing
- // the PLT32 relocation type with PC32, which will translate the relocation
- // into a PC-relative call directly to the function. For external symbols we
- // can't be sure the function will be within 2^32 bytes of the call site, so
- // we need to create a stub, which calls into the GOT. This case is
- // equivalent to the usual PLT implementation except that we use the stub
- // mechanism in RuntimeDyld (which puts stubs at the end of the section)
- // rather than allocating a PLT section.
- if (Value.SymbolName) {
- // This is a call to an external function.
- // Look for an existing stub.
- SectionEntry &Section = Sections[SectionID];
- StubMap::const_iterator i = Stubs.find(Value);
- uintptr_t StubAddress;
- if (i != Stubs.end()) {
- StubAddress = uintptr_t(Section.getAddress()) + i->second;
- LLVM_DEBUG(dbgs() << " Stub function found\n");
- } else {
- // Create a new stub function (equivalent to a PLT entry).
- LLVM_DEBUG(dbgs() << " Create a new stub function\n");
-
- uintptr_t BaseAddress = uintptr_t(Section.getAddress());
- uintptr_t StubAlignment = getStubAlignment();
- StubAddress =
- (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
- -StubAlignment;
- unsigned StubOffset = StubAddress - BaseAddress;
- Stubs[Value] = StubOffset;
- createStubFunction((uint8_t *)StubAddress);
-
- // Bump our stub offset counter
- Section.advanceStubOffset(getMaxStubSize());
-
- // Allocate a GOT Entry
- uint64_t GOTOffset = allocateGOTEntries(1);
-
- // The load of the GOT address has an addend of -4
- resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
- ELF::R_X86_64_PC32);
-
- // Fill in the value of the symbol we're targeting into the GOT
- addRelocationForSymbol(
- computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
- Value.SymbolName);
- }
-
- // Make the target call a call into the stub table.
- resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
- Addend);
- } else {
- RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
- Value.Offset);
- addRelocationForSection(RE, Value.SectionID);
- }
- } else if (RelType == ELF::R_X86_64_GOTPCREL ||
- RelType == ELF::R_X86_64_GOTPCRELX ||
- RelType == ELF::R_X86_64_REX_GOTPCRELX) {
- uint64_t GOTOffset = allocateGOTEntries(1);
- resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
- ELF::R_X86_64_PC32);
-
- // Fill in the value of the symbol we're targeting into the GOT
- RelocationEntry RE =
- computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
- } else if (RelType == ELF::R_X86_64_GOT64) {
- // Fill in a 64-bit GOT offset.
- uint64_t GOTOffset = allocateGOTEntries(1);
- resolveRelocation(Sections[SectionID], Offset, GOTOffset,
- ELF::R_X86_64_64, 0);
-
- // Fill in the value of the symbol we're targeting into the GOT
- RelocationEntry RE =
- computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
- } else if (RelType == ELF::R_X86_64_GOTPC64) {
- // Materialize the address of the base of the GOT relative to the PC.
- // This doesn't create a GOT entry, but it does mean we need a GOT
- // section.
- (void)allocateGOTEntries(0);
- resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
- } else if (RelType == ELF::R_X86_64_GOTOFF64) {
- // GOTOFF relocations ultimately require a section difference relocation.
- (void)allocateGOTEntries(0);
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- } else if (RelType == ELF::R_X86_64_PC32) {
- Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- } else if (RelType == ELF::R_X86_64_PC64) {
- Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- } else {
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- }
- } else {
- if (Arch == Triple::x86) {
- Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
- }
- processSimpleRelocation(SectionID, Offset, RelType, Value);
- }
- return ++RelI;
-}
-
-size_t RuntimeDyldELF::getGOTEntrySize() {
- // We don't use the GOT in all of these cases, but it's essentially free
- // to put them all here.
- size_t Result = 0;
- switch (Arch) {
- case Triple::x86_64:
- case Triple::aarch64:
- case Triple::aarch64_be:
- case Triple::ppc64:
- case Triple::ppc64le:
- case Triple::systemz:
- Result = sizeof(uint64_t);
- break;
- case Triple::x86:
- case Triple::arm:
- case Triple::thumb:
- Result = sizeof(uint32_t);
- break;
- case Triple::mips:
- case Triple::mipsel:
- case Triple::mips64:
- case Triple::mips64el:
- if (IsMipsO32ABI || IsMipsN32ABI)
- Result = sizeof(uint32_t);
- else if (IsMipsN64ABI)
- Result = sizeof(uint64_t);
- else
- llvm_unreachable("Mips ABI not handled");
- break;
- default:
- llvm_unreachable("Unsupported CPU type!");
- }
- return Result;
-}
-
-uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
- if (GOTSectionID == 0) {
- GOTSectionID = Sections.size();
- // Reserve a section id. We'll allocate the section later
- // once we know the total size
- Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
- }
- uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
- CurrentGOTIndex += no;
- return StartOffset;
-}
-
-uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
- unsigned GOTRelType) {
- auto E = GOTOffsetMap.insert({Value, 0});
- if (E.second) {
- uint64_t GOTOffset = allocateGOTEntries(1);
-
- // Create relocation for newly created GOT entry
- RelocationEntry RE =
- computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
- if (Value.SymbolName)
- addRelocationForSymbol(RE, Value.SymbolName);
- else
- addRelocationForSection(RE, Value.SectionID);
-
- E.first->second = GOTOffset;
- }
-
- return E.first->second;
-}
-
-void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
- uint64_t Offset,
- uint64_t GOTOffset,
- uint32_t Type) {
- // Fill in the relative address of the GOT Entry into the stub
- RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
- addRelocationForSection(GOTRE, GOTSectionID);
-}
-
-RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
- uint64_t SymbolOffset,
- uint32_t Type) {
- return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
-}
-
-Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
- ObjSectionToIDMap &SectionMap) {
- if (IsMipsO32ABI)
- if (!PendingRelocs.empty())
- return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
-
- // If necessary, allocate the global offset table
- if (GOTSectionID != 0) {
- // Allocate memory for the section
- size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
- uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
- GOTSectionID, ".got", false);
- if (!Addr)
- return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
-
- Sections[GOTSectionID] =
- SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
-
- if (Checker)
- Checker->registerSection(Obj.getFileName(), GOTSectionID);
-
- // For now, initialize all GOT entries to zero. We'll fill them in as
- // needed when GOT-based relocations are applied.
- memset(Addr, 0, TotalSize);
- if (IsMipsN32ABI || IsMipsN64ABI) {
- // To correctly resolve Mips GOT relocations, we need a mapping from
- // object's sections to GOTs.
- for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
- SI != SE; ++SI) {
- if (SI->relocation_begin() != SI->relocation_end()) {
- section_iterator RelocatedSection = SI->getRelocatedSection();
- ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
- assert (i != SectionMap.end());
- SectionToGOTMap[i->second] = GOTSectionID;
- }
- }
- GOTSymbolOffsets.clear();
- }
- }
-
- // Look for and record the EH frame section.
- ObjSectionToIDMap::iterator i, e;
- for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
- const SectionRef &Section = i->first;
- StringRef Name;
- Section.getName(Name);
- if (Name == ".eh_frame") {
- UnregisteredEHFrameSections.push_back(i->second);
- break;
- }
- }
-
- GOTSectionID = 0;
- CurrentGOTIndex = 0;
-
- return Error::success();
-}
-
-bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
- return Obj.isELF();
-}
-
-bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
- unsigned RelTy = R.getType();
- if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
- return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
- RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
-
- if (Arch == Triple::x86_64)
- return RelTy == ELF::R_X86_64_GOTPCREL ||
- RelTy == ELF::R_X86_64_GOTPCRELX ||
- RelTy == ELF::R_X86_64_GOT64 ||
- RelTy == ELF::R_X86_64_REX_GOTPCRELX;
- return false;
-}
-
-bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
- if (Arch != Triple::x86_64)
- return true; // Conservative answer
-
- switch (R.getType()) {
- default:
- return true; // Conservative answer
-
-
- case ELF::R_X86_64_GOTPCREL:
- case ELF::R_X86_64_GOTPCRELX:
- case ELF::R_X86_64_REX_GOTPCRELX:
- case ELF::R_X86_64_GOTPC64:
- case ELF::R_X86_64_GOT64:
- case ELF::R_X86_64_GOTOFF64:
- case ELF::R_X86_64_PC32:
- case ELF::R_X86_64_PC64:
- case ELF::R_X86_64_64:
- // We know that these reloation types won't need a stub function. This list
- // can be extended as needed.
- return false;
- }
-}
-
-} // namespace llvm