diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/IR/ConstantFold.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/IR/ConstantFold.cpp')
| -rw-r--r-- | gnu/llvm/lib/IR/ConstantFold.cpp | 2373 |
1 files changed, 0 insertions, 2373 deletions
diff --git a/gnu/llvm/lib/IR/ConstantFold.cpp b/gnu/llvm/lib/IR/ConstantFold.cpp deleted file mode 100644 index 57de6b04230..00000000000 --- a/gnu/llvm/lib/IR/ConstantFold.cpp +++ /dev/null @@ -1,2373 +0,0 @@ -//===- ConstantFold.cpp - LLVM constant folder ----------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements folding of constants for LLVM. This implements the -// (internal) ConstantFold.h interface, which is used by the -// ConstantExpr::get* methods to automatically fold constants when possible. -// -// The current constant folding implementation is implemented in two pieces: the -// pieces that don't need DataLayout, and the pieces that do. This is to avoid -// a dependence in IR on Target. -// -//===----------------------------------------------------------------------===// - -#include "ConstantFold.h" -#include "llvm/ADT/APSInt.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/ManagedStatic.h" -#include "llvm/Support/MathExtras.h" -using namespace llvm; -using namespace llvm::PatternMatch; - -//===----------------------------------------------------------------------===// -// ConstantFold*Instruction Implementations -//===----------------------------------------------------------------------===// - -/// Convert the specified vector Constant node to the specified vector type. -/// At this point, we know that the elements of the input vector constant are -/// all simple integer or FP values. -static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { - - if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); - if (CV->isNullValue()) return Constant::getNullValue(DstTy); - - // If this cast changes element count then we can't handle it here: - // doing so requires endianness information. This should be handled by - // Analysis/ConstantFolding.cpp - unsigned NumElts = DstTy->getNumElements(); - if (NumElts != CV->getType()->getVectorNumElements()) - return nullptr; - - Type *DstEltTy = DstTy->getElementType(); - - SmallVector<Constant*, 16> Result; - Type *Ty = IntegerType::get(CV->getContext(), 32); - for (unsigned i = 0; i != NumElts; ++i) { - Constant *C = - ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); - C = ConstantExpr::getBitCast(C, DstEltTy); - Result.push_back(C); - } - - return ConstantVector::get(Result); -} - -/// This function determines which opcode to use to fold two constant cast -/// expressions together. It uses CastInst::isEliminableCastPair to determine -/// the opcode. Consequently its just a wrapper around that function. -/// Determine if it is valid to fold a cast of a cast -static unsigned -foldConstantCastPair( - unsigned opc, ///< opcode of the second cast constant expression - ConstantExpr *Op, ///< the first cast constant expression - Type *DstTy ///< destination type of the first cast -) { - assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); - assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); - assert(CastInst::isCast(opc) && "Invalid cast opcode"); - - // The types and opcodes for the two Cast constant expressions - Type *SrcTy = Op->getOperand(0)->getType(); - Type *MidTy = Op->getType(); - Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); - Instruction::CastOps secondOp = Instruction::CastOps(opc); - - // Assume that pointers are never more than 64 bits wide, and only use this - // for the middle type. Otherwise we could end up folding away illegal - // bitcasts between address spaces with different sizes. - IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); - - // Let CastInst::isEliminableCastPair do the heavy lifting. - return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, - nullptr, FakeIntPtrTy, nullptr); -} - -static Constant *FoldBitCast(Constant *V, Type *DestTy) { - Type *SrcTy = V->getType(); - if (SrcTy == DestTy) - return V; // no-op cast - - // Check to see if we are casting a pointer to an aggregate to a pointer to - // the first element. If so, return the appropriate GEP instruction. - if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) - if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) - if (PTy->getAddressSpace() == DPTy->getAddressSpace() - && PTy->getElementType()->isSized()) { - SmallVector<Value*, 8> IdxList; - Value *Zero = - Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); - IdxList.push_back(Zero); - Type *ElTy = PTy->getElementType(); - while (ElTy != DPTy->getElementType()) { - if (StructType *STy = dyn_cast<StructType>(ElTy)) { - if (STy->getNumElements() == 0) break; - ElTy = STy->getElementType(0); - IdxList.push_back(Zero); - } else if (SequentialType *STy = - dyn_cast<SequentialType>(ElTy)) { - ElTy = STy->getElementType(); - IdxList.push_back(Zero); - } else { - break; - } - } - - if (ElTy == DPTy->getElementType()) - // This GEP is inbounds because all indices are zero. - return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), - V, IdxList); - } - - // Handle casts from one vector constant to another. We know that the src - // and dest type have the same size (otherwise its an illegal cast). - if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { - if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { - assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && - "Not cast between same sized vectors!"); - SrcTy = nullptr; - // First, check for null. Undef is already handled. - if (isa<ConstantAggregateZero>(V)) - return Constant::getNullValue(DestTy); - - // Handle ConstantVector and ConstantAggregateVector. - return BitCastConstantVector(V, DestPTy); - } - - // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts - // This allows for other simplifications (although some of them - // can only be handled by Analysis/ConstantFolding.cpp). - if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) - return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); - } - - // Finally, implement bitcast folding now. The code below doesn't handle - // bitcast right. - if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. - return ConstantPointerNull::get(cast<PointerType>(DestTy)); - - // Handle integral constant input. - if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - if (DestTy->isIntegerTy()) - // Integral -> Integral. This is a no-op because the bit widths must - // be the same. Consequently, we just fold to V. - return V; - - // See note below regarding the PPC_FP128 restriction. - if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) - return ConstantFP::get(DestTy->getContext(), - APFloat(DestTy->getFltSemantics(), - CI->getValue())); - - // Otherwise, can't fold this (vector?) - return nullptr; - } - - // Handle ConstantFP input: FP -> Integral. - if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { - // PPC_FP128 is really the sum of two consecutive doubles, where the first - // double is always stored first in memory, regardless of the target - // endianness. The memory layout of i128, however, depends on the target - // endianness, and so we can't fold this without target endianness - // information. This should instead be handled by - // Analysis/ConstantFolding.cpp - if (FP->getType()->isPPC_FP128Ty()) - return nullptr; - - // Make sure dest type is compatible with the folded integer constant. - if (!DestTy->isIntegerTy()) - return nullptr; - - return ConstantInt::get(FP->getContext(), - FP->getValueAPF().bitcastToAPInt()); - } - - return nullptr; -} - - -/// V is an integer constant which only has a subset of its bytes used. -/// The bytes used are indicated by ByteStart (which is the first byte used, -/// counting from the least significant byte) and ByteSize, which is the number -/// of bytes used. -/// -/// This function analyzes the specified constant to see if the specified byte -/// range can be returned as a simplified constant. If so, the constant is -/// returned, otherwise null is returned. -static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, - unsigned ByteSize) { - assert(C->getType()->isIntegerTy() && - (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && - "Non-byte sized integer input"); - unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; - assert(ByteSize && "Must be accessing some piece"); - assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); - assert(ByteSize != CSize && "Should not extract everything"); - - // Constant Integers are simple. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { - APInt V = CI->getValue(); - if (ByteStart) - V.lshrInPlace(ByteStart*8); - V = V.trunc(ByteSize*8); - return ConstantInt::get(CI->getContext(), V); - } - - // In the input is a constant expr, we might be able to recursively simplify. - // If not, we definitely can't do anything. - ConstantExpr *CE = dyn_cast<ConstantExpr>(C); - if (!CE) return nullptr; - - switch (CE->getOpcode()) { - default: return nullptr; - case Instruction::Or: { - Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); - if (!RHS) - return nullptr; - - // X | -1 -> -1. - if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) - if (RHSC->isMinusOne()) - return RHSC; - - Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); - if (!LHS) - return nullptr; - return ConstantExpr::getOr(LHS, RHS); - } - case Instruction::And: { - Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); - if (!RHS) - return nullptr; - - // X & 0 -> 0. - if (RHS->isNullValue()) - return RHS; - - Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); - if (!LHS) - return nullptr; - return ConstantExpr::getAnd(LHS, RHS); - } - case Instruction::LShr: { - ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); - if (!Amt) - return nullptr; - unsigned ShAmt = Amt->getZExtValue(); - // Cannot analyze non-byte shifts. - if ((ShAmt & 7) != 0) - return nullptr; - ShAmt >>= 3; - - // If the extract is known to be all zeros, return zero. - if (ByteStart >= CSize-ShAmt) - return Constant::getNullValue(IntegerType::get(CE->getContext(), - ByteSize*8)); - // If the extract is known to be fully in the input, extract it. - if (ByteStart+ByteSize+ShAmt <= CSize) - return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize); - - // TODO: Handle the 'partially zero' case. - return nullptr; - } - - case Instruction::Shl: { - ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); - if (!Amt) - return nullptr; - unsigned ShAmt = Amt->getZExtValue(); - // Cannot analyze non-byte shifts. - if ((ShAmt & 7) != 0) - return nullptr; - ShAmt >>= 3; - - // If the extract is known to be all zeros, return zero. - if (ByteStart+ByteSize <= ShAmt) - return Constant::getNullValue(IntegerType::get(CE->getContext(), - ByteSize*8)); - // If the extract is known to be fully in the input, extract it. - if (ByteStart >= ShAmt) - return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize); - - // TODO: Handle the 'partially zero' case. - return nullptr; - } - - case Instruction::ZExt: { - unsigned SrcBitSize = - cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); - - // If extracting something that is completely zero, return 0. - if (ByteStart*8 >= SrcBitSize) - return Constant::getNullValue(IntegerType::get(CE->getContext(), - ByteSize*8)); - - // If exactly extracting the input, return it. - if (ByteStart == 0 && ByteSize*8 == SrcBitSize) - return CE->getOperand(0); - - // If extracting something completely in the input, if the input is a - // multiple of 8 bits, recurse. - if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) - return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); - - // Otherwise, if extracting a subset of the input, which is not multiple of - // 8 bits, do a shift and trunc to get the bits. - if ((ByteStart+ByteSize)*8 < SrcBitSize) { - assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); - Constant *Res = CE->getOperand(0); - if (ByteStart) - Res = ConstantExpr::getLShr(Res, - ConstantInt::get(Res->getType(), ByteStart*8)); - return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), - ByteSize*8)); - } - - // TODO: Handle the 'partially zero' case. - return nullptr; - } - } -} - -/// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known -/// factors factored out. If Folded is false, return null if no factoring was -/// possible, to avoid endlessly bouncing an unfoldable expression back into the -/// top-level folder. -static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { - if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); - Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); - return ConstantExpr::getNUWMul(E, N); - } - - if (StructType *STy = dyn_cast<StructType>(Ty)) - if (!STy->isPacked()) { - unsigned NumElems = STy->getNumElements(); - // An empty struct has size zero. - if (NumElems == 0) - return ConstantExpr::getNullValue(DestTy); - // Check for a struct with all members having the same size. - Constant *MemberSize = - getFoldedSizeOf(STy->getElementType(0), DestTy, true); - bool AllSame = true; - for (unsigned i = 1; i != NumElems; ++i) - if (MemberSize != - getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { - AllSame = false; - break; - } - if (AllSame) { - Constant *N = ConstantInt::get(DestTy, NumElems); - return ConstantExpr::getNUWMul(MemberSize, N); - } - } - - // Pointer size doesn't depend on the pointee type, so canonicalize them - // to an arbitrary pointee. - if (PointerType *PTy = dyn_cast<PointerType>(Ty)) - if (!PTy->getElementType()->isIntegerTy(1)) - return - getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), - PTy->getAddressSpace()), - DestTy, true); - - // If there's no interesting folding happening, bail so that we don't create - // a constant that looks like it needs folding but really doesn't. - if (!Folded) - return nullptr; - - // Base case: Get a regular sizeof expression. - Constant *C = ConstantExpr::getSizeOf(Ty); - C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, - DestTy, false), - C, DestTy); - return C; -} - -/// Return a ConstantExpr with type DestTy for alignof on Ty, with any known -/// factors factored out. If Folded is false, return null if no factoring was -/// possible, to avoid endlessly bouncing an unfoldable expression back into the -/// top-level folder. -static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { - // The alignment of an array is equal to the alignment of the - // array element. Note that this is not always true for vectors. - if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); - C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, - DestTy, - false), - C, DestTy); - return C; - } - - if (StructType *STy = dyn_cast<StructType>(Ty)) { - // Packed structs always have an alignment of 1. - if (STy->isPacked()) - return ConstantInt::get(DestTy, 1); - - // Otherwise, struct alignment is the maximum alignment of any member. - // Without target data, we can't compare much, but we can check to see - // if all the members have the same alignment. - unsigned NumElems = STy->getNumElements(); - // An empty struct has minimal alignment. - if (NumElems == 0) - return ConstantInt::get(DestTy, 1); - // Check for a struct with all members having the same alignment. - Constant *MemberAlign = - getFoldedAlignOf(STy->getElementType(0), DestTy, true); - bool AllSame = true; - for (unsigned i = 1; i != NumElems; ++i) - if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { - AllSame = false; - break; - } - if (AllSame) - return MemberAlign; - } - - // Pointer alignment doesn't depend on the pointee type, so canonicalize them - // to an arbitrary pointee. - if (PointerType *PTy = dyn_cast<PointerType>(Ty)) - if (!PTy->getElementType()->isIntegerTy(1)) - return - getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), - 1), - PTy->getAddressSpace()), - DestTy, true); - - // If there's no interesting folding happening, bail so that we don't create - // a constant that looks like it needs folding but really doesn't. - if (!Folded) - return nullptr; - - // Base case: Get a regular alignof expression. - Constant *C = ConstantExpr::getAlignOf(Ty); - C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, - DestTy, false), - C, DestTy); - return C; -} - -/// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with -/// any known factors factored out. If Folded is false, return null if no -/// factoring was possible, to avoid endlessly bouncing an unfoldable expression -/// back into the top-level folder. -static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, - bool Folded) { - if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, - DestTy, false), - FieldNo, DestTy); - Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); - return ConstantExpr::getNUWMul(E, N); - } - - if (StructType *STy = dyn_cast<StructType>(Ty)) - if (!STy->isPacked()) { - unsigned NumElems = STy->getNumElements(); - // An empty struct has no members. - if (NumElems == 0) - return nullptr; - // Check for a struct with all members having the same size. - Constant *MemberSize = - getFoldedSizeOf(STy->getElementType(0), DestTy, true); - bool AllSame = true; - for (unsigned i = 1; i != NumElems; ++i) - if (MemberSize != - getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { - AllSame = false; - break; - } - if (AllSame) { - Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, - false, - DestTy, - false), - FieldNo, DestTy); - return ConstantExpr::getNUWMul(MemberSize, N); - } - } - - // If there's no interesting folding happening, bail so that we don't create - // a constant that looks like it needs folding but really doesn't. - if (!Folded) - return nullptr; - - // Base case: Get a regular offsetof expression. - Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); - C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, - DestTy, false), - C, DestTy); - return C; -} - -Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, - Type *DestTy) { - if (isa<UndefValue>(V)) { - // zext(undef) = 0, because the top bits will be zero. - // sext(undef) = 0, because the top bits will all be the same. - // [us]itofp(undef) = 0, because the result value is bounded. - if (opc == Instruction::ZExt || opc == Instruction::SExt || - opc == Instruction::UIToFP || opc == Instruction::SIToFP) - return Constant::getNullValue(DestTy); - return UndefValue::get(DestTy); - } - - if (V->isNullValue() && !DestTy->isX86_MMXTy() && - opc != Instruction::AddrSpaceCast) - return Constant::getNullValue(DestTy); - - // If the cast operand is a constant expression, there's a few things we can - // do to try to simplify it. - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { - if (CE->isCast()) { - // Try hard to fold cast of cast because they are often eliminable. - if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) - return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); - } else if (CE->getOpcode() == Instruction::GetElementPtr && - // Do not fold addrspacecast (gep 0, .., 0). It might make the - // addrspacecast uncanonicalized. - opc != Instruction::AddrSpaceCast && - // Do not fold bitcast (gep) with inrange index, as this loses - // information. - !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && - // Do not fold if the gep type is a vector, as bitcasting - // operand 0 of a vector gep will result in a bitcast between - // different sizes. - !CE->getType()->isVectorTy()) { - // If all of the indexes in the GEP are null values, there is no pointer - // adjustment going on. We might as well cast the source pointer. - bool isAllNull = true; - for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) - if (!CE->getOperand(i)->isNullValue()) { - isAllNull = false; - break; - } - if (isAllNull) - // This is casting one pointer type to another, always BitCast - return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); - } - } - - // If the cast operand is a constant vector, perform the cast by - // operating on each element. In the cast of bitcasts, the element - // count may be mismatched; don't attempt to handle that here. - if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && - DestTy->isVectorTy() && - DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) { - SmallVector<Constant*, 16> res; - VectorType *DestVecTy = cast<VectorType>(DestTy); - Type *DstEltTy = DestVecTy->getElementType(); - Type *Ty = IntegerType::get(V->getContext(), 32); - for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) { - Constant *C = - ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); - res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); - } - return ConstantVector::get(res); - } - - // We actually have to do a cast now. Perform the cast according to the - // opcode specified. - switch (opc) { - default: - llvm_unreachable("Failed to cast constant expression"); - case Instruction::FPTrunc: - case Instruction::FPExt: - if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { - bool ignored; - APFloat Val = FPC->getValueAPF(); - Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : - DestTy->isFloatTy() ? APFloat::IEEEsingle() : - DestTy->isDoubleTy() ? APFloat::IEEEdouble() : - DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : - DestTy->isFP128Ty() ? APFloat::IEEEquad() : - DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : - APFloat::Bogus(), - APFloat::rmNearestTiesToEven, &ignored); - return ConstantFP::get(V->getContext(), Val); - } - return nullptr; // Can't fold. - case Instruction::FPToUI: - case Instruction::FPToSI: - if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { - const APFloat &V = FPC->getValueAPF(); - bool ignored; - uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); - APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); - if (APFloat::opInvalidOp == - V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { - // Undefined behavior invoked - the destination type can't represent - // the input constant. - return UndefValue::get(DestTy); - } - return ConstantInt::get(FPC->getContext(), IntVal); - } - return nullptr; // Can't fold. - case Instruction::IntToPtr: //always treated as unsigned - if (V->isNullValue()) // Is it an integral null value? - return ConstantPointerNull::get(cast<PointerType>(DestTy)); - return nullptr; // Other pointer types cannot be casted - case Instruction::PtrToInt: // always treated as unsigned - // Is it a null pointer value? - if (V->isNullValue()) - return ConstantInt::get(DestTy, 0); - // If this is a sizeof-like expression, pull out multiplications by - // known factors to expose them to subsequent folding. If it's an - // alignof-like expression, factor out known factors. - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) - if (CE->getOpcode() == Instruction::GetElementPtr && - CE->getOperand(0)->isNullValue()) { - // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and - // getFoldedAlignOf() don't handle the case when DestTy is a vector of - // pointers yet. We end up in asserts in CastInst::getCastOpcode (see - // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this - // happen in one "real" C-code test case, so it does not seem to be an - // important optimization to handle vectors here. For now, simply bail - // out. - if (DestTy->isVectorTy()) - return nullptr; - GEPOperator *GEPO = cast<GEPOperator>(CE); - Type *Ty = GEPO->getSourceElementType(); - if (CE->getNumOperands() == 2) { - // Handle a sizeof-like expression. - Constant *Idx = CE->getOperand(1); - bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); - if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { - Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, - DestTy, false), - Idx, DestTy); - return ConstantExpr::getMul(C, Idx); - } - } else if (CE->getNumOperands() == 3 && - CE->getOperand(1)->isNullValue()) { - // Handle an alignof-like expression. - if (StructType *STy = dyn_cast<StructType>(Ty)) - if (!STy->isPacked()) { - ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); - if (CI->isOne() && - STy->getNumElements() == 2 && - STy->getElementType(0)->isIntegerTy(1)) { - return getFoldedAlignOf(STy->getElementType(1), DestTy, false); - } - } - // Handle an offsetof-like expression. - if (Ty->isStructTy() || Ty->isArrayTy()) { - if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), - DestTy, false)) - return C; - } - } - } - // Other pointer types cannot be casted - return nullptr; - case Instruction::UIToFP: - case Instruction::SIToFP: - if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - const APInt &api = CI->getValue(); - APFloat apf(DestTy->getFltSemantics(), - APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); - apf.convertFromAPInt(api, opc==Instruction::SIToFP, - APFloat::rmNearestTiesToEven); - return ConstantFP::get(V->getContext(), apf); - } - return nullptr; - case Instruction::ZExt: - if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); - return ConstantInt::get(V->getContext(), - CI->getValue().zext(BitWidth)); - } - return nullptr; - case Instruction::SExt: - if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); - return ConstantInt::get(V->getContext(), - CI->getValue().sext(BitWidth)); - } - return nullptr; - case Instruction::Trunc: { - if (V->getType()->isVectorTy()) - return nullptr; - - uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); - if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - return ConstantInt::get(V->getContext(), - CI->getValue().trunc(DestBitWidth)); - } - - // The input must be a constantexpr. See if we can simplify this based on - // the bytes we are demanding. Only do this if the source and dest are an - // even multiple of a byte. - if ((DestBitWidth & 7) == 0 && - (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) - if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) - return Res; - - return nullptr; - } - case Instruction::BitCast: - return FoldBitCast(V, DestTy); - case Instruction::AddrSpaceCast: - return nullptr; - } -} - -Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, - Constant *V1, Constant *V2) { - // Check for i1 and vector true/false conditions. - if (Cond->isNullValue()) return V2; - if (Cond->isAllOnesValue()) return V1; - - // If the condition is a vector constant, fold the result elementwise. - if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { - SmallVector<Constant*, 16> Result; - Type *Ty = IntegerType::get(CondV->getContext(), 32); - for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){ - Constant *V; - Constant *V1Element = ConstantExpr::getExtractElement(V1, - ConstantInt::get(Ty, i)); - Constant *V2Element = ConstantExpr::getExtractElement(V2, - ConstantInt::get(Ty, i)); - Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i)); - if (V1Element == V2Element) { - V = V1Element; - } else if (isa<UndefValue>(Cond)) { - V = isa<UndefValue>(V1Element) ? V1Element : V2Element; - } else { - if (!isa<ConstantInt>(Cond)) break; - V = Cond->isNullValue() ? V2Element : V1Element; - } - Result.push_back(V); - } - - // If we were able to build the vector, return it. - if (Result.size() == V1->getType()->getVectorNumElements()) - return ConstantVector::get(Result); - } - - if (isa<UndefValue>(Cond)) { - if (isa<UndefValue>(V1)) return V1; - return V2; - } - if (isa<UndefValue>(V1)) return V2; - if (isa<UndefValue>(V2)) return V1; - if (V1 == V2) return V1; - - if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { - if (TrueVal->getOpcode() == Instruction::Select) - if (TrueVal->getOperand(0) == Cond) - return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); - } - if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { - if (FalseVal->getOpcode() == Instruction::Select) - if (FalseVal->getOperand(0) == Cond) - return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); - } - - return nullptr; -} - -Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, - Constant *Idx) { - if (isa<UndefValue>(Val)) // ee(undef, x) -> undef - return UndefValue::get(Val->getType()->getVectorElementType()); - if (Val->isNullValue()) // ee(zero, x) -> zero - return Constant::getNullValue(Val->getType()->getVectorElementType()); - // ee({w,x,y,z}, undef) -> undef - if (isa<UndefValue>(Idx)) - return UndefValue::get(Val->getType()->getVectorElementType()); - - if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { - // ee({w,x,y,z}, wrong_value) -> undef - if (CIdx->uge(Val->getType()->getVectorNumElements())) - return UndefValue::get(Val->getType()->getVectorElementType()); - return Val->getAggregateElement(CIdx->getZExtValue()); - } - return nullptr; -} - -Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, - Constant *Elt, - Constant *Idx) { - if (isa<UndefValue>(Idx)) - return UndefValue::get(Val->getType()); - - ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); - if (!CIdx) return nullptr; - - unsigned NumElts = Val->getType()->getVectorNumElements(); - if (CIdx->uge(NumElts)) - return UndefValue::get(Val->getType()); - - SmallVector<Constant*, 16> Result; - Result.reserve(NumElts); - auto *Ty = Type::getInt32Ty(Val->getContext()); - uint64_t IdxVal = CIdx->getZExtValue(); - for (unsigned i = 0; i != NumElts; ++i) { - if (i == IdxVal) { - Result.push_back(Elt); - continue; - } - - Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); - Result.push_back(C); - } - - return ConstantVector::get(Result); -} - -Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, - Constant *V2, - Constant *Mask) { - unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); - Type *EltTy = V1->getType()->getVectorElementType(); - - // Undefined shuffle mask -> undefined value. - if (isa<UndefValue>(Mask)) - return UndefValue::get(VectorType::get(EltTy, MaskNumElts)); - - // Don't break the bitcode reader hack. - if (isa<ConstantExpr>(Mask)) return nullptr; - - unsigned SrcNumElts = V1->getType()->getVectorNumElements(); - - // Loop over the shuffle mask, evaluating each element. - SmallVector<Constant*, 32> Result; - for (unsigned i = 0; i != MaskNumElts; ++i) { - int Elt = ShuffleVectorInst::getMaskValue(Mask, i); - if (Elt == -1) { - Result.push_back(UndefValue::get(EltTy)); - continue; - } - Constant *InElt; - if (unsigned(Elt) >= SrcNumElts*2) - InElt = UndefValue::get(EltTy); - else if (unsigned(Elt) >= SrcNumElts) { - Type *Ty = IntegerType::get(V2->getContext(), 32); - InElt = - ConstantExpr::getExtractElement(V2, - ConstantInt::get(Ty, Elt - SrcNumElts)); - } else { - Type *Ty = IntegerType::get(V1->getContext(), 32); - InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); - } - Result.push_back(InElt); - } - - return ConstantVector::get(Result); -} - -Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, - ArrayRef<unsigned> Idxs) { - // Base case: no indices, so return the entire value. - if (Idxs.empty()) - return Agg; - - if (Constant *C = Agg->getAggregateElement(Idxs[0])) - return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); - - return nullptr; -} - -Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, - Constant *Val, - ArrayRef<unsigned> Idxs) { - // Base case: no indices, so replace the entire value. - if (Idxs.empty()) - return Val; - - unsigned NumElts; - if (StructType *ST = dyn_cast<StructType>(Agg->getType())) - NumElts = ST->getNumElements(); - else - NumElts = cast<SequentialType>(Agg->getType())->getNumElements(); - - SmallVector<Constant*, 32> Result; - for (unsigned i = 0; i != NumElts; ++i) { - Constant *C = Agg->getAggregateElement(i); - if (!C) return nullptr; - - if (Idxs[0] == i) - C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); - - Result.push_back(C); - } - - if (StructType *ST = dyn_cast<StructType>(Agg->getType())) - return ConstantStruct::get(ST, Result); - if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) - return ConstantArray::get(AT, Result); - return ConstantVector::get(Result); -} - -Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, - Constant *C2) { - assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); - - // Handle scalar UndefValue. Vectors are always evaluated per element. - bool HasScalarUndef = !C1->getType()->isVectorTy() && - (isa<UndefValue>(C1) || isa<UndefValue>(C2)); - if (HasScalarUndef) { - switch (static_cast<Instruction::BinaryOps>(Opcode)) { - case Instruction::Xor: - if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) - // Handle undef ^ undef -> 0 special case. This is a common - // idiom (misuse). - return Constant::getNullValue(C1->getType()); - LLVM_FALLTHROUGH; - case Instruction::Add: - case Instruction::Sub: - return UndefValue::get(C1->getType()); - case Instruction::And: - if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef - return C1; - return Constant::getNullValue(C1->getType()); // undef & X -> 0 - case Instruction::Mul: { - // undef * undef -> undef - if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) - return C1; - const APInt *CV; - // X * undef -> undef if X is odd - if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) - if ((*CV)[0]) - return UndefValue::get(C1->getType()); - - // X * undef -> 0 otherwise - return Constant::getNullValue(C1->getType()); - } - case Instruction::SDiv: - case Instruction::UDiv: - // X / undef -> undef - if (isa<UndefValue>(C2)) - return C2; - // undef / 0 -> undef - // undef / 1 -> undef - if (match(C2, m_Zero()) || match(C2, m_One())) - return C1; - // undef / X -> 0 otherwise - return Constant::getNullValue(C1->getType()); - case Instruction::URem: - case Instruction::SRem: - // X % undef -> undef - if (match(C2, m_Undef())) - return C2; - // undef % 0 -> undef - if (match(C2, m_Zero())) - return C1; - // undef % X -> 0 otherwise - return Constant::getNullValue(C1->getType()); - case Instruction::Or: // X | undef -> -1 - if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef - return C1; - return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 - case Instruction::LShr: - // X >>l undef -> undef - if (isa<UndefValue>(C2)) - return C2; - // undef >>l 0 -> undef - if (match(C2, m_Zero())) - return C1; - // undef >>l X -> 0 - return Constant::getNullValue(C1->getType()); - case Instruction::AShr: - // X >>a undef -> undef - if (isa<UndefValue>(C2)) - return C2; - // undef >>a 0 -> undef - if (match(C2, m_Zero())) - return C1; - // TODO: undef >>a X -> undef if the shift is exact - // undef >>a X -> 0 - return Constant::getNullValue(C1->getType()); - case Instruction::Shl: - // X << undef -> undef - if (isa<UndefValue>(C2)) - return C2; - // undef << 0 -> undef - if (match(C2, m_Zero())) - return C1; - // undef << X -> 0 - return Constant::getNullValue(C1->getType()); - case Instruction::FAdd: - case Instruction::FSub: - case Instruction::FMul: - case Instruction::FDiv: - case Instruction::FRem: - // [any flop] undef, undef -> undef - if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) - return C1; - // [any flop] C, undef -> NaN - // [any flop] undef, C -> NaN - // We could potentially specialize NaN/Inf constants vs. 'normal' - // constants (possibly differently depending on opcode and operand). This - // would allow returning undef sometimes. But it is always safe to fold to - // NaN because we can choose the undef operand as NaN, and any FP opcode - // with a NaN operand will propagate NaN. - return ConstantFP::getNaN(C1->getType()); - case Instruction::BinaryOpsEnd: - llvm_unreachable("Invalid BinaryOp"); - } - } - - // Neither constant should be UndefValue, unless these are vector constants. - assert(!HasScalarUndef && "Unexpected UndefValue"); - - // Handle simplifications when the RHS is a constant int. - if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { - switch (Opcode) { - case Instruction::Add: - if (CI2->isZero()) return C1; // X + 0 == X - break; - case Instruction::Sub: - if (CI2->isZero()) return C1; // X - 0 == X - break; - case Instruction::Mul: - if (CI2->isZero()) return C2; // X * 0 == 0 - if (CI2->isOne()) - return C1; // X * 1 == X - break; - case Instruction::UDiv: - case Instruction::SDiv: - if (CI2->isOne()) - return C1; // X / 1 == X - if (CI2->isZero()) - return UndefValue::get(CI2->getType()); // X / 0 == undef - break; - case Instruction::URem: - case Instruction::SRem: - if (CI2->isOne()) - return Constant::getNullValue(CI2->getType()); // X % 1 == 0 - if (CI2->isZero()) - return UndefValue::get(CI2->getType()); // X % 0 == undef - break; - case Instruction::And: - if (CI2->isZero()) return C2; // X & 0 == 0 - if (CI2->isMinusOne()) - return C1; // X & -1 == X - - if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { - // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) - if (CE1->getOpcode() == Instruction::ZExt) { - unsigned DstWidth = CI2->getType()->getBitWidth(); - unsigned SrcWidth = - CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); - APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); - if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) - return C1; - } - - // If and'ing the address of a global with a constant, fold it. - if (CE1->getOpcode() == Instruction::PtrToInt && - isa<GlobalValue>(CE1->getOperand(0))) { - GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); - - // Functions are at least 4-byte aligned. - unsigned GVAlign = GV->getAlignment(); - if (isa<Function>(GV)) - GVAlign = std::max(GVAlign, 4U); - - if (GVAlign > 1) { - unsigned DstWidth = CI2->getType()->getBitWidth(); - unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign)); - APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); - - // If checking bits we know are clear, return zero. - if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) - return Constant::getNullValue(CI2->getType()); - } - } - } - break; - case Instruction::Or: - if (CI2->isZero()) return C1; // X | 0 == X - if (CI2->isMinusOne()) - return C2; // X | -1 == -1 - break; - case Instruction::Xor: - if (CI2->isZero()) return C1; // X ^ 0 == X - - if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { - switch (CE1->getOpcode()) { - default: break; - case Instruction::ICmp: - case Instruction::FCmp: - // cmp pred ^ true -> cmp !pred - assert(CI2->isOne()); - CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); - pred = CmpInst::getInversePredicate(pred); - return ConstantExpr::getCompare(pred, CE1->getOperand(0), - CE1->getOperand(1)); - } - } - break; - case Instruction::AShr: - // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 - if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) - if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. - return ConstantExpr::getLShr(C1, C2); - break; - } - } else if (isa<ConstantInt>(C1)) { - // If C1 is a ConstantInt and C2 is not, swap the operands. - if (Instruction::isCommutative(Opcode)) - return ConstantExpr::get(Opcode, C2, C1); - } - - if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { - if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { - const APInt &C1V = CI1->getValue(); - const APInt &C2V = CI2->getValue(); - switch (Opcode) { - default: - break; - case Instruction::Add: - return ConstantInt::get(CI1->getContext(), C1V + C2V); - case Instruction::Sub: - return ConstantInt::get(CI1->getContext(), C1V - C2V); - case Instruction::Mul: - return ConstantInt::get(CI1->getContext(), C1V * C2V); - case Instruction::UDiv: - assert(!CI2->isZero() && "Div by zero handled above"); - return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); - case Instruction::SDiv: - assert(!CI2->isZero() && "Div by zero handled above"); - if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) - return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef - return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); - case Instruction::URem: - assert(!CI2->isZero() && "Div by zero handled above"); - return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); - case Instruction::SRem: - assert(!CI2->isZero() && "Div by zero handled above"); - if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) - return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef - return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); - case Instruction::And: - return ConstantInt::get(CI1->getContext(), C1V & C2V); - case Instruction::Or: - return ConstantInt::get(CI1->getContext(), C1V | C2V); - case Instruction::Xor: - return ConstantInt::get(CI1->getContext(), C1V ^ C2V); - case Instruction::Shl: - if (C2V.ult(C1V.getBitWidth())) - return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); - return UndefValue::get(C1->getType()); // too big shift is undef - case Instruction::LShr: - if (C2V.ult(C1V.getBitWidth())) - return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); - return UndefValue::get(C1->getType()); // too big shift is undef - case Instruction::AShr: - if (C2V.ult(C1V.getBitWidth())) - return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); - return UndefValue::get(C1->getType()); // too big shift is undef - } - } - - switch (Opcode) { - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::Shl: - if (CI1->isZero()) return C1; - break; - default: - break; - } - } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { - if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { - const APFloat &C1V = CFP1->getValueAPF(); - const APFloat &C2V = CFP2->getValueAPF(); - APFloat C3V = C1V; // copy for modification - switch (Opcode) { - default: - break; - case Instruction::FAdd: - (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); - return ConstantFP::get(C1->getContext(), C3V); - case Instruction::FSub: - (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); - return ConstantFP::get(C1->getContext(), C3V); - case Instruction::FMul: - (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); - return ConstantFP::get(C1->getContext(), C3V); - case Instruction::FDiv: - (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); - return ConstantFP::get(C1->getContext(), C3V); - case Instruction::FRem: - (void)C3V.mod(C2V); - return ConstantFP::get(C1->getContext(), C3V); - } - } - } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { - // Fold each element and create a vector constant from those constants. - SmallVector<Constant*, 16> Result; - Type *Ty = IntegerType::get(VTy->getContext(), 32); - for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { - Constant *ExtractIdx = ConstantInt::get(Ty, i); - Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); - Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); - - // If any element of a divisor vector is zero, the whole op is undef. - if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) - return UndefValue::get(VTy); - - Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); - } - - return ConstantVector::get(Result); - } - - if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { - // There are many possible foldings we could do here. We should probably - // at least fold add of a pointer with an integer into the appropriate - // getelementptr. This will improve alias analysis a bit. - - // Given ((a + b) + c), if (b + c) folds to something interesting, return - // (a + (b + c)). - if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { - Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); - if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) - return ConstantExpr::get(Opcode, CE1->getOperand(0), T); - } - } else if (isa<ConstantExpr>(C2)) { - // If C2 is a constant expr and C1 isn't, flop them around and fold the - // other way if possible. - if (Instruction::isCommutative(Opcode)) - return ConstantFoldBinaryInstruction(Opcode, C2, C1); - } - - // i1 can be simplified in many cases. - if (C1->getType()->isIntegerTy(1)) { - switch (Opcode) { - case Instruction::Add: - case Instruction::Sub: - return ConstantExpr::getXor(C1, C2); - case Instruction::Mul: - return ConstantExpr::getAnd(C1, C2); - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - // We can assume that C2 == 0. If it were one the result would be - // undefined because the shift value is as large as the bitwidth. - return C1; - case Instruction::SDiv: - case Instruction::UDiv: - // We can assume that C2 == 1. If it were zero the result would be - // undefined through division by zero. - return C1; - case Instruction::URem: - case Instruction::SRem: - // We can assume that C2 == 1. If it were zero the result would be - // undefined through division by zero. - return ConstantInt::getFalse(C1->getContext()); - default: - break; - } - } - - // We don't know how to fold this. - return nullptr; -} - -/// This type is zero-sized if it's an array or structure of zero-sized types. -/// The only leaf zero-sized type is an empty structure. -static bool isMaybeZeroSizedType(Type *Ty) { - if (StructType *STy = dyn_cast<StructType>(Ty)) { - if (STy->isOpaque()) return true; // Can't say. - - // If all of elements have zero size, this does too. - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; - return true; - - } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - return isMaybeZeroSizedType(ATy->getElementType()); - } - return false; -} - -/// Compare the two constants as though they were getelementptr indices. -/// This allows coercion of the types to be the same thing. -/// -/// If the two constants are the "same" (after coercion), return 0. If the -/// first is less than the second, return -1, if the second is less than the -/// first, return 1. If the constants are not integral, return -2. -/// -static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { - if (C1 == C2) return 0; - - // Ok, we found a different index. If they are not ConstantInt, we can't do - // anything with them. - if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) - return -2; // don't know! - - // We cannot compare the indices if they don't fit in an int64_t. - if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || - cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) - return -2; // don't know! - - // Ok, we have two differing integer indices. Sign extend them to be the same - // type. - int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); - int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); - - if (C1Val == C2Val) return 0; // They are equal - - // If the type being indexed over is really just a zero sized type, there is - // no pointer difference being made here. - if (isMaybeZeroSizedType(ElTy)) - return -2; // dunno. - - // If they are really different, now that they are the same type, then we - // found a difference! - if (C1Val < C2Val) - return -1; - else - return 1; -} - -/// This function determines if there is anything we can decide about the two -/// constants provided. This doesn't need to handle simple things like -/// ConstantFP comparisons, but should instead handle ConstantExprs. -/// If we can determine that the two constants have a particular relation to -/// each other, we should return the corresponding FCmpInst predicate, -/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in -/// ConstantFoldCompareInstruction. -/// -/// To simplify this code we canonicalize the relation so that the first -/// operand is always the most "complex" of the two. We consider ConstantFP -/// to be the simplest, and ConstantExprs to be the most complex. -static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { - assert(V1->getType() == V2->getType() && - "Cannot compare values of different types!"); - - // Handle degenerate case quickly - if (V1 == V2) return FCmpInst::FCMP_OEQ; - - if (!isa<ConstantExpr>(V1)) { - if (!isa<ConstantExpr>(V2)) { - // Simple case, use the standard constant folder. - ConstantInt *R = nullptr; - R = dyn_cast<ConstantInt>( - ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); - if (R && !R->isZero()) - return FCmpInst::FCMP_OEQ; - R = dyn_cast<ConstantInt>( - ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); - if (R && !R->isZero()) - return FCmpInst::FCMP_OLT; - R = dyn_cast<ConstantInt>( - ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); - if (R && !R->isZero()) - return FCmpInst::FCMP_OGT; - - // Nothing more we can do - return FCmpInst::BAD_FCMP_PREDICATE; - } - - // If the first operand is simple and second is ConstantExpr, swap operands. - FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); - if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) - return FCmpInst::getSwappedPredicate(SwappedRelation); - } else { - // Ok, the LHS is known to be a constantexpr. The RHS can be any of a - // constantexpr or a simple constant. - ConstantExpr *CE1 = cast<ConstantExpr>(V1); - switch (CE1->getOpcode()) { - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - // We might be able to do something with these but we don't right now. - break; - default: - break; - } - } - // There are MANY other foldings that we could perform here. They will - // probably be added on demand, as they seem needed. - return FCmpInst::BAD_FCMP_PREDICATE; -} - -static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, - const GlobalValue *GV2) { - auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { - if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) - return true; - if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { - Type *Ty = GVar->getValueType(); - // A global with opaque type might end up being zero sized. - if (!Ty->isSized()) - return true; - // A global with an empty type might lie at the address of any other - // global. - if (Ty->isEmptyTy()) - return true; - } - return false; - }; - // Don't try to decide equality of aliases. - if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) - if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) - return ICmpInst::ICMP_NE; - return ICmpInst::BAD_ICMP_PREDICATE; -} - -/// This function determines if there is anything we can decide about the two -/// constants provided. This doesn't need to handle simple things like integer -/// comparisons, but should instead handle ConstantExprs and GlobalValues. -/// If we can determine that the two constants have a particular relation to -/// each other, we should return the corresponding ICmp predicate, otherwise -/// return ICmpInst::BAD_ICMP_PREDICATE. -/// -/// To simplify this code we canonicalize the relation so that the first -/// operand is always the most "complex" of the two. We consider simple -/// constants (like ConstantInt) to be the simplest, followed by -/// GlobalValues, followed by ConstantExpr's (the most complex). -/// -static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, - bool isSigned) { - assert(V1->getType() == V2->getType() && - "Cannot compare different types of values!"); - if (V1 == V2) return ICmpInst::ICMP_EQ; - - if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && - !isa<BlockAddress>(V1)) { - if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && - !isa<BlockAddress>(V2)) { - // We distilled this down to a simple case, use the standard constant - // folder. - ConstantInt *R = nullptr; - ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; - R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); - if (R && !R->isZero()) - return pred; - pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; - R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); - if (R && !R->isZero()) - return pred; - pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; - R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); - if (R && !R->isZero()) - return pred; - - // If we couldn't figure it out, bail. - return ICmpInst::BAD_ICMP_PREDICATE; - } - - // If the first operand is simple, swap operands. - ICmpInst::Predicate SwappedRelation = - evaluateICmpRelation(V2, V1, isSigned); - if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) - return ICmpInst::getSwappedPredicate(SwappedRelation); - - } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { - if (isa<ConstantExpr>(V2)) { // Swap as necessary. - ICmpInst::Predicate SwappedRelation = - evaluateICmpRelation(V2, V1, isSigned); - if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) - return ICmpInst::getSwappedPredicate(SwappedRelation); - return ICmpInst::BAD_ICMP_PREDICATE; - } - - // Now we know that the RHS is a GlobalValue, BlockAddress or simple - // constant (which, since the types must match, means that it's a - // ConstantPointerNull). - if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { - return areGlobalsPotentiallyEqual(GV, GV2); - } else if (isa<BlockAddress>(V2)) { - return ICmpInst::ICMP_NE; // Globals never equal labels. - } else { - assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); - // GlobalVals can never be null unless they have external weak linkage. - // We don't try to evaluate aliases here. - // NOTE: We should not be doing this constant folding if null pointer - // is considered valid for the function. But currently there is no way to - // query it from the Constant type. - if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && - !NullPointerIsDefined(nullptr /* F */, - GV->getType()->getAddressSpace())) - return ICmpInst::ICMP_NE; - } - } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { - if (isa<ConstantExpr>(V2)) { // Swap as necessary. - ICmpInst::Predicate SwappedRelation = - evaluateICmpRelation(V2, V1, isSigned); - if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) - return ICmpInst::getSwappedPredicate(SwappedRelation); - return ICmpInst::BAD_ICMP_PREDICATE; - } - - // Now we know that the RHS is a GlobalValue, BlockAddress or simple - // constant (which, since the types must match, means that it is a - // ConstantPointerNull). - if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { - // Block address in another function can't equal this one, but block - // addresses in the current function might be the same if blocks are - // empty. - if (BA2->getFunction() != BA->getFunction()) - return ICmpInst::ICMP_NE; - } else { - // Block addresses aren't null, don't equal the address of globals. - assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && - "Canonicalization guarantee!"); - return ICmpInst::ICMP_NE; - } - } else { - // Ok, the LHS is known to be a constantexpr. The RHS can be any of a - // constantexpr, a global, block address, or a simple constant. - ConstantExpr *CE1 = cast<ConstantExpr>(V1); - Constant *CE1Op0 = CE1->getOperand(0); - - switch (CE1->getOpcode()) { - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - break; // We can't evaluate floating point casts or truncations. - - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::BitCast: - case Instruction::ZExt: - case Instruction::SExt: - // We can't evaluate floating point casts or truncations. - if (CE1Op0->getType()->isFloatingPointTy()) - break; - - // If the cast is not actually changing bits, and the second operand is a - // null pointer, do the comparison with the pre-casted value. - if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { - if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; - if (CE1->getOpcode() == Instruction::SExt) isSigned = true; - return evaluateICmpRelation(CE1Op0, - Constant::getNullValue(CE1Op0->getType()), - isSigned); - } - break; - - case Instruction::GetElementPtr: { - GEPOperator *CE1GEP = cast<GEPOperator>(CE1); - // Ok, since this is a getelementptr, we know that the constant has a - // pointer type. Check the various cases. - if (isa<ConstantPointerNull>(V2)) { - // If we are comparing a GEP to a null pointer, check to see if the base - // of the GEP equals the null pointer. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { - if (GV->hasExternalWeakLinkage()) - // Weak linkage GVals could be zero or not. We're comparing that - // to null pointer so its greater-or-equal - return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; - else - // If its not weak linkage, the GVal must have a non-zero address - // so the result is greater-than - return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; - } else if (isa<ConstantPointerNull>(CE1Op0)) { - // If we are indexing from a null pointer, check to see if we have any - // non-zero indices. - for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) - if (!CE1->getOperand(i)->isNullValue()) - // Offsetting from null, must not be equal. - return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; - // Only zero indexes from null, must still be zero. - return ICmpInst::ICMP_EQ; - } - // Otherwise, we can't really say if the first operand is null or not. - } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { - if (isa<ConstantPointerNull>(CE1Op0)) { - if (GV2->hasExternalWeakLinkage()) - // Weak linkage GVals could be zero or not. We're comparing it to - // a null pointer, so its less-or-equal - return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; - else - // If its not weak linkage, the GVal must have a non-zero address - // so the result is less-than - return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; - } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { - if (GV == GV2) { - // If this is a getelementptr of the same global, then it must be - // different. Because the types must match, the getelementptr could - // only have at most one index, and because we fold getelementptr's - // with a single zero index, it must be nonzero. - assert(CE1->getNumOperands() == 2 && - !CE1->getOperand(1)->isNullValue() && - "Surprising getelementptr!"); - return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; - } else { - if (CE1GEP->hasAllZeroIndices()) - return areGlobalsPotentiallyEqual(GV, GV2); - return ICmpInst::BAD_ICMP_PREDICATE; - } - } - } else { - ConstantExpr *CE2 = cast<ConstantExpr>(V2); - Constant *CE2Op0 = CE2->getOperand(0); - - // There are MANY other foldings that we could perform here. They will - // probably be added on demand, as they seem needed. - switch (CE2->getOpcode()) { - default: break; - case Instruction::GetElementPtr: - // By far the most common case to handle is when the base pointers are - // obviously to the same global. - if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { - // Don't know relative ordering, but check for inequality. - if (CE1Op0 != CE2Op0) { - GEPOperator *CE2GEP = cast<GEPOperator>(CE2); - if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) - return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), - cast<GlobalValue>(CE2Op0)); - return ICmpInst::BAD_ICMP_PREDICATE; - } - // Ok, we know that both getelementptr instructions are based on the - // same global. From this, we can precisely determine the relative - // ordering of the resultant pointers. - unsigned i = 1; - - // The logic below assumes that the result of the comparison - // can be determined by finding the first index that differs. - // This doesn't work if there is over-indexing in any - // subsequent indices, so check for that case first. - if (!CE1->isGEPWithNoNotionalOverIndexing() || - !CE2->isGEPWithNoNotionalOverIndexing()) - return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. - - // Compare all of the operands the GEP's have in common. - gep_type_iterator GTI = gep_type_begin(CE1); - for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); - ++i, ++GTI) - switch (IdxCompare(CE1->getOperand(i), - CE2->getOperand(i), GTI.getIndexedType())) { - case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; - case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; - case -2: return ICmpInst::BAD_ICMP_PREDICATE; - } - - // Ok, we ran out of things they have in common. If any leftovers - // are non-zero then we have a difference, otherwise we are equal. - for (; i < CE1->getNumOperands(); ++i) - if (!CE1->getOperand(i)->isNullValue()) { - if (isa<ConstantInt>(CE1->getOperand(i))) - return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; - else - return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. - } - - for (; i < CE2->getNumOperands(); ++i) - if (!CE2->getOperand(i)->isNullValue()) { - if (isa<ConstantInt>(CE2->getOperand(i))) - return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; - else - return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. - } - return ICmpInst::ICMP_EQ; - } - } - } - break; - } - default: - break; - } - } - - return ICmpInst::BAD_ICMP_PREDICATE; -} - -Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, - Constant *C1, Constant *C2) { - Type *ResultTy; - if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) - ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), - VT->getNumElements()); - else - ResultTy = Type::getInt1Ty(C1->getContext()); - - // Fold FCMP_FALSE/FCMP_TRUE unconditionally. - if (pred == FCmpInst::FCMP_FALSE) - return Constant::getNullValue(ResultTy); - - if (pred == FCmpInst::FCMP_TRUE) - return Constant::getAllOnesValue(ResultTy); - - // Handle some degenerate cases first - if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { - CmpInst::Predicate Predicate = CmpInst::Predicate(pred); - bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); - // For EQ and NE, we can always pick a value for the undef to make the - // predicate pass or fail, so we can return undef. - // Also, if both operands are undef, we can return undef for int comparison. - if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) - return UndefValue::get(ResultTy); - - // Otherwise, for integer compare, pick the same value as the non-undef - // operand, and fold it to true or false. - if (isIntegerPredicate) - return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); - - // Choosing NaN for the undef will always make unordered comparison succeed - // and ordered comparison fails. - return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); - } - - // icmp eq/ne(null,GV) -> false/true - if (C1->isNullValue()) { - if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) - // Don't try to evaluate aliases. External weak GV can be null. - if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && - !NullPointerIsDefined(nullptr /* F */, - GV->getType()->getAddressSpace())) { - if (pred == ICmpInst::ICMP_EQ) - return ConstantInt::getFalse(C1->getContext()); - else if (pred == ICmpInst::ICMP_NE) - return ConstantInt::getTrue(C1->getContext()); - } - // icmp eq/ne(GV,null) -> false/true - } else if (C2->isNullValue()) { - if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) - // Don't try to evaluate aliases. External weak GV can be null. - if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && - !NullPointerIsDefined(nullptr /* F */, - GV->getType()->getAddressSpace())) { - if (pred == ICmpInst::ICMP_EQ) - return ConstantInt::getFalse(C1->getContext()); - else if (pred == ICmpInst::ICMP_NE) - return ConstantInt::getTrue(C1->getContext()); - } - } - - // If the comparison is a comparison between two i1's, simplify it. - if (C1->getType()->isIntegerTy(1)) { - switch(pred) { - case ICmpInst::ICMP_EQ: - if (isa<ConstantInt>(C2)) - return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); - return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); - case ICmpInst::ICMP_NE: - return ConstantExpr::getXor(C1, C2); - default: - break; - } - } - - if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { - const APInt &V1 = cast<ConstantInt>(C1)->getValue(); - const APInt &V2 = cast<ConstantInt>(C2)->getValue(); - switch (pred) { - default: llvm_unreachable("Invalid ICmp Predicate"); - case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); - case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); - case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); - case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); - case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); - case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); - case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); - case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); - case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); - case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); - } - } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { - const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); - const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); - APFloat::cmpResult R = C1V.compare(C2V); - switch (pred) { - default: llvm_unreachable("Invalid FCmp Predicate"); - case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); - case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); - case FCmpInst::FCMP_UNO: - return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); - case FCmpInst::FCMP_ORD: - return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); - case FCmpInst::FCMP_UEQ: - return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || - R==APFloat::cmpEqual); - case FCmpInst::FCMP_OEQ: - return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); - case FCmpInst::FCMP_UNE: - return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); - case FCmpInst::FCMP_ONE: - return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || - R==APFloat::cmpGreaterThan); - case FCmpInst::FCMP_ULT: - return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || - R==APFloat::cmpLessThan); - case FCmpInst::FCMP_OLT: - return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); - case FCmpInst::FCMP_UGT: - return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || - R==APFloat::cmpGreaterThan); - case FCmpInst::FCMP_OGT: - return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); - case FCmpInst::FCMP_ULE: - return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); - case FCmpInst::FCMP_OLE: - return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || - R==APFloat::cmpEqual); - case FCmpInst::FCMP_UGE: - return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); - case FCmpInst::FCMP_OGE: - return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || - R==APFloat::cmpEqual); - } - } else if (C1->getType()->isVectorTy()) { - // If we can constant fold the comparison of each element, constant fold - // the whole vector comparison. - SmallVector<Constant*, 4> ResElts; - Type *Ty = IntegerType::get(C1->getContext(), 32); - // Compare the elements, producing an i1 result or constant expr. - for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){ - Constant *C1E = - ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); - Constant *C2E = - ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); - - ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); - } - - return ConstantVector::get(ResElts); - } - - if (C1->getType()->isFloatingPointTy() && - // Only call evaluateFCmpRelation if we have a constant expr to avoid - // infinite recursive loop - (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { - int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. - switch (evaluateFCmpRelation(C1, C2)) { - default: llvm_unreachable("Unknown relation!"); - case FCmpInst::FCMP_UNO: - case FCmpInst::FCMP_ORD: - case FCmpInst::FCMP_UEQ: - case FCmpInst::FCMP_UNE: - case FCmpInst::FCMP_ULT: - case FCmpInst::FCMP_UGT: - case FCmpInst::FCMP_ULE: - case FCmpInst::FCMP_UGE: - case FCmpInst::FCMP_TRUE: - case FCmpInst::FCMP_FALSE: - case FCmpInst::BAD_FCMP_PREDICATE: - break; // Couldn't determine anything about these constants. - case FCmpInst::FCMP_OEQ: // We know that C1 == C2 - Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || - pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || - pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); - break; - case FCmpInst::FCMP_OLT: // We know that C1 < C2 - Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || - pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || - pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); - break; - case FCmpInst::FCMP_OGT: // We know that C1 > C2 - Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || - pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || - pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); - break; - case FCmpInst::FCMP_OLE: // We know that C1 <= C2 - // We can only partially decide this relation. - if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) - Result = 0; - else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) - Result = 1; - break; - case FCmpInst::FCMP_OGE: // We known that C1 >= C2 - // We can only partially decide this relation. - if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) - Result = 0; - else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) - Result = 1; - break; - case FCmpInst::FCMP_ONE: // We know that C1 != C2 - // We can only partially decide this relation. - if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) - Result = 0; - else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) - Result = 1; - break; - } - - // If we evaluated the result, return it now. - if (Result != -1) - return ConstantInt::get(ResultTy, Result); - - } else { - // Evaluate the relation between the two constants, per the predicate. - int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. - switch (evaluateICmpRelation(C1, C2, - CmpInst::isSigned((CmpInst::Predicate)pred))) { - default: llvm_unreachable("Unknown relational!"); - case ICmpInst::BAD_ICMP_PREDICATE: - break; // Couldn't determine anything about these constants. - case ICmpInst::ICMP_EQ: // We know the constants are equal! - // If we know the constants are equal, we can decide the result of this - // computation precisely. - Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); - break; - case ICmpInst::ICMP_ULT: - switch (pred) { - case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: - Result = 1; break; - case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: - Result = 0; break; - } - break; - case ICmpInst::ICMP_SLT: - switch (pred) { - case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: - Result = 1; break; - case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: - Result = 0; break; - } - break; - case ICmpInst::ICMP_UGT: - switch (pred) { - case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: - Result = 1; break; - case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: - Result = 0; break; - } - break; - case ICmpInst::ICMP_SGT: - switch (pred) { - case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: - Result = 1; break; - case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: - Result = 0; break; - } - break; - case ICmpInst::ICMP_ULE: - if (pred == ICmpInst::ICMP_UGT) Result = 0; - if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; - break; - case ICmpInst::ICMP_SLE: - if (pred == ICmpInst::ICMP_SGT) Result = 0; - if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; - break; - case ICmpInst::ICMP_UGE: - if (pred == ICmpInst::ICMP_ULT) Result = 0; - if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; - break; - case ICmpInst::ICMP_SGE: - if (pred == ICmpInst::ICMP_SLT) Result = 0; - if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; - break; - case ICmpInst::ICMP_NE: - if (pred == ICmpInst::ICMP_EQ) Result = 0; - if (pred == ICmpInst::ICMP_NE) Result = 1; - break; - } - - // If we evaluated the result, return it now. - if (Result != -1) - return ConstantInt::get(ResultTy, Result); - - // If the right hand side is a bitcast, try using its inverse to simplify - // it by moving it to the left hand side. We can't do this if it would turn - // a vector compare into a scalar compare or visa versa. - if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { - Constant *CE2Op0 = CE2->getOperand(0); - if (CE2->getOpcode() == Instruction::BitCast && - CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) { - Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); - return ConstantExpr::getICmp(pred, Inverse, CE2Op0); - } - } - - // If the left hand side is an extension, try eliminating it. - if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { - if ((CE1->getOpcode() == Instruction::SExt && - ICmpInst::isSigned((ICmpInst::Predicate)pred)) || - (CE1->getOpcode() == Instruction::ZExt && - !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ - Constant *CE1Op0 = CE1->getOperand(0); - Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); - if (CE1Inverse == CE1Op0) { - // Check whether we can safely truncate the right hand side. - Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); - if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, - C2->getType()) == C2) - return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); - } - } - } - - if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || - (C1->isNullValue() && !C2->isNullValue())) { - // If C2 is a constant expr and C1 isn't, flip them around and fold the - // other way if possible. - // Also, if C1 is null and C2 isn't, flip them around. - pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); - return ConstantExpr::getICmp(pred, C2, C1); - } - } - return nullptr; -} - -/// Test whether the given sequence of *normalized* indices is "inbounds". -template<typename IndexTy> -static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { - // No indices means nothing that could be out of bounds. - if (Idxs.empty()) return true; - - // If the first index is zero, it's in bounds. - if (cast<Constant>(Idxs[0])->isNullValue()) return true; - - // If the first index is one and all the rest are zero, it's in bounds, - // by the one-past-the-end rule. - if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { - if (!CI->isOne()) - return false; - } else { - auto *CV = cast<ConstantDataVector>(Idxs[0]); - CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); - if (!CI || !CI->isOne()) - return false; - } - - for (unsigned i = 1, e = Idxs.size(); i != e; ++i) - if (!cast<Constant>(Idxs[i])->isNullValue()) - return false; - return true; -} - -/// Test whether a given ConstantInt is in-range for a SequentialType. -static bool isIndexInRangeOfArrayType(uint64_t NumElements, - const ConstantInt *CI) { - // We cannot bounds check the index if it doesn't fit in an int64_t. - if (CI->getValue().getMinSignedBits() > 64) - return false; - - // A negative index or an index past the end of our sequential type is - // considered out-of-range. - int64_t IndexVal = CI->getSExtValue(); - if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) - return false; - - // Otherwise, it is in-range. - return true; -} - -Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, - bool InBounds, - Optional<unsigned> InRangeIndex, - ArrayRef<Value *> Idxs) { - if (Idxs.empty()) return C; - - Type *GEPTy = GetElementPtrInst::getGEPReturnType( - C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); - - if (isa<UndefValue>(C)) - return UndefValue::get(GEPTy); - - Constant *Idx0 = cast<Constant>(Idxs[0]); - if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) - return GEPTy->isVectorTy() && !C->getType()->isVectorTy() - ? ConstantVector::getSplat( - cast<VectorType>(GEPTy)->getNumElements(), C) - : C; - - if (C->isNullValue()) { - bool isNull = true; - for (unsigned i = 0, e = Idxs.size(); i != e; ++i) - if (!isa<UndefValue>(Idxs[i]) && - !cast<Constant>(Idxs[i])->isNullValue()) { - isNull = false; - break; - } - if (isNull) { - PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); - Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); - - assert(Ty && "Invalid indices for GEP!"); - Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); - Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); - if (VectorType *VT = dyn_cast<VectorType>(C->getType())) - GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); - - // The GEP returns a vector of pointers when one of more of - // its arguments is a vector. - for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { - if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { - GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); - break; - } - } - - return Constant::getNullValue(GEPTy); - } - } - - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - // Combine Indices - If the source pointer to this getelementptr instruction - // is a getelementptr instruction, combine the indices of the two - // getelementptr instructions into a single instruction. - // - if (CE->getOpcode() == Instruction::GetElementPtr) { - gep_type_iterator LastI = gep_type_end(CE); - for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); - I != E; ++I) - LastI = I; - - // We cannot combine indices if doing so would take us outside of an - // array or vector. Doing otherwise could trick us if we evaluated such a - // GEP as part of a load. - // - // e.g. Consider if the original GEP was: - // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, - // i32 0, i32 0, i64 0) - // - // If we then tried to offset it by '8' to get to the third element, - // an i8, we should *not* get: - // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, - // i32 0, i32 0, i64 8) - // - // This GEP tries to index array element '8 which runs out-of-bounds. - // Subsequent evaluation would get confused and produce erroneous results. - // - // The following prohibits such a GEP from being formed by checking to see - // if the index is in-range with respect to an array. - // TODO: This code may be extended to handle vectors as well. - bool PerformFold = false; - if (Idx0->isNullValue()) - PerformFold = true; - else if (LastI.isSequential()) - if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) - PerformFold = (!LastI.isBoundedSequential() || - isIndexInRangeOfArrayType( - LastI.getSequentialNumElements(), CI)) && - !CE->getOperand(CE->getNumOperands() - 1) - ->getType() - ->isVectorTy(); - - if (PerformFold) { - SmallVector<Value*, 16> NewIndices; - NewIndices.reserve(Idxs.size() + CE->getNumOperands()); - NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); - - // Add the last index of the source with the first index of the new GEP. - // Make sure to handle the case when they are actually different types. - Constant *Combined = CE->getOperand(CE->getNumOperands()-1); - // Otherwise it must be an array. - if (!Idx0->isNullValue()) { - Type *IdxTy = Combined->getType(); - if (IdxTy != Idx0->getType()) { - unsigned CommonExtendedWidth = - std::max(IdxTy->getIntegerBitWidth(), - Idx0->getType()->getIntegerBitWidth()); - CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); - - Type *CommonTy = - Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); - Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); - Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); - Combined = ConstantExpr::get(Instruction::Add, C1, C2); - } else { - Combined = - ConstantExpr::get(Instruction::Add, Idx0, Combined); - } - } - - NewIndices.push_back(Combined); - NewIndices.append(Idxs.begin() + 1, Idxs.end()); - - // The combined GEP normally inherits its index inrange attribute from - // the inner GEP, but if the inner GEP's last index was adjusted by the - // outer GEP, any inbounds attribute on that index is invalidated. - Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); - if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) - IRIndex = None; - - return ConstantExpr::getGetElementPtr( - cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), - NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), - IRIndex); - } - } - - // Attempt to fold casts to the same type away. For example, folding: - // - // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), - // i64 0, i64 0) - // into: - // - // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) - // - // Don't fold if the cast is changing address spaces. - if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { - PointerType *SrcPtrTy = - dyn_cast<PointerType>(CE->getOperand(0)->getType()); - PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); - if (SrcPtrTy && DstPtrTy) { - ArrayType *SrcArrayTy = - dyn_cast<ArrayType>(SrcPtrTy->getElementType()); - ArrayType *DstArrayTy = - dyn_cast<ArrayType>(DstPtrTy->getElementType()); - if (SrcArrayTy && DstArrayTy - && SrcArrayTy->getElementType() == DstArrayTy->getElementType() - && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) - return ConstantExpr::getGetElementPtr(SrcArrayTy, - (Constant *)CE->getOperand(0), - Idxs, InBounds, InRangeIndex); - } - } - } - - // Check to see if any array indices are not within the corresponding - // notional array or vector bounds. If so, try to determine if they can be - // factored out into preceding dimensions. - SmallVector<Constant *, 8> NewIdxs; - Type *Ty = PointeeTy; - Type *Prev = C->getType(); - bool Unknown = - !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); - for (unsigned i = 1, e = Idxs.size(); i != e; - Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { - if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { - // We don't know if it's in range or not. - Unknown = true; - continue; - } - if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) - // Skip if the type of the previous index is not supported. - continue; - if (InRangeIndex && i == *InRangeIndex + 1) { - // If an index is marked inrange, we cannot apply this canonicalization to - // the following index, as that will cause the inrange index to point to - // the wrong element. - continue; - } - if (isa<StructType>(Ty)) { - // The verify makes sure that GEPs into a struct are in range. - continue; - } - auto *STy = cast<SequentialType>(Ty); - if (isa<VectorType>(STy)) { - // There can be awkward padding in after a non-power of two vector. - Unknown = true; - continue; - } - if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { - if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) - // It's in range, skip to the next index. - continue; - if (CI->getSExtValue() < 0) { - // It's out of range and negative, don't try to factor it. - Unknown = true; - continue; - } - } else { - auto *CV = cast<ConstantDataVector>(Idxs[i]); - bool InRange = true; - for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { - auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); - InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); - if (CI->getSExtValue() < 0) { - Unknown = true; - break; - } - } - if (InRange || Unknown) - // It's in range, skip to the next index. - // It's out of range and negative, don't try to factor it. - continue; - } - if (isa<StructType>(Prev)) { - // It's out of range, but the prior dimension is a struct - // so we can't do anything about it. - Unknown = true; - continue; - } - // It's out of range, but we can factor it into the prior - // dimension. - NewIdxs.resize(Idxs.size()); - // Determine the number of elements in our sequential type. - uint64_t NumElements = STy->getArrayNumElements(); - - // Expand the current index or the previous index to a vector from a scalar - // if necessary. - Constant *CurrIdx = cast<Constant>(Idxs[i]); - auto *PrevIdx = - NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); - bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); - bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); - bool UseVector = IsCurrIdxVector || IsPrevIdxVector; - - if (!IsCurrIdxVector && IsPrevIdxVector) - CurrIdx = ConstantDataVector::getSplat( - PrevIdx->getType()->getVectorNumElements(), CurrIdx); - - if (!IsPrevIdxVector && IsCurrIdxVector) - PrevIdx = ConstantDataVector::getSplat( - CurrIdx->getType()->getVectorNumElements(), PrevIdx); - - Constant *Factor = - ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); - if (UseVector) - Factor = ConstantDataVector::getSplat( - IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements() - : CurrIdx->getType()->getVectorNumElements(), - Factor); - - NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); - - Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); - - unsigned CommonExtendedWidth = - std::max(PrevIdx->getType()->getScalarSizeInBits(), - Div->getType()->getScalarSizeInBits()); - CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); - - // Before adding, extend both operands to i64 to avoid - // overflow trouble. - Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); - if (UseVector) - ExtendedTy = VectorType::get( - ExtendedTy, IsPrevIdxVector - ? PrevIdx->getType()->getVectorNumElements() - : CurrIdx->getType()->getVectorNumElements()); - - if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) - PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); - - if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) - Div = ConstantExpr::getSExt(Div, ExtendedTy); - - NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); - } - - // If we did any factoring, start over with the adjusted indices. - if (!NewIdxs.empty()) { - for (unsigned i = 0, e = Idxs.size(); i != e; ++i) - if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); - return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, - InRangeIndex); - } - - // If all indices are known integers and normalized, we can do a simple - // check for the "inbounds" property. - if (!Unknown && !InBounds) - if (auto *GV = dyn_cast<GlobalVariable>(C)) - if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) - return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, - /*InBounds=*/true, InRangeIndex); - - return nullptr; -} |
