summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/IR/ConstantRange.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/IR/ConstantRange.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/IR/ConstantRange.cpp')
-rw-r--r--gnu/llvm/lib/IR/ConstantRange.cpp1105
1 files changed, 0 insertions, 1105 deletions
diff --git a/gnu/llvm/lib/IR/ConstantRange.cpp b/gnu/llvm/lib/IR/ConstantRange.cpp
deleted file mode 100644
index 39a0b13c4e0..00000000000
--- a/gnu/llvm/lib/IR/ConstantRange.cpp
+++ /dev/null
@@ -1,1105 +0,0 @@
-//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Represent a range of possible values that may occur when the program is run
-// for an integral value. This keeps track of a lower and upper bound for the
-// constant, which MAY wrap around the end of the numeric range. To do this, it
-// keeps track of a [lower, upper) bound, which specifies an interval just like
-// STL iterators. When used with boolean values, the following are important
-// ranges (other integral ranges use min/max values for special range values):
-//
-// [F, F) = {} = Empty set
-// [T, F) = {T}
-// [F, T) = {F}
-// [T, T) = {F, T} = Full set
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/APInt.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-
-using namespace llvm;
-
-ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
- : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
- Upper(Lower) {}
-
-ConstantRange::ConstantRange(APInt V)
- : Lower(std::move(V)), Upper(Lower + 1) {}
-
-ConstantRange::ConstantRange(APInt L, APInt U)
- : Lower(std::move(L)), Upper(std::move(U)) {
- assert(Lower.getBitWidth() == Upper.getBitWidth() &&
- "ConstantRange with unequal bit widths");
- assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
- "Lower == Upper, but they aren't min or max value!");
-}
-
-ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
- const ConstantRange &CR) {
- if (CR.isEmptySet())
- return CR;
-
- uint32_t W = CR.getBitWidth();
- switch (Pred) {
- default:
- llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
- case CmpInst::ICMP_EQ:
- return CR;
- case CmpInst::ICMP_NE:
- if (CR.isSingleElement())
- return ConstantRange(CR.getUpper(), CR.getLower());
- return ConstantRange(W);
- case CmpInst::ICMP_ULT: {
- APInt UMax(CR.getUnsignedMax());
- if (UMax.isMinValue())
- return ConstantRange(W, /* empty */ false);
- return ConstantRange(APInt::getMinValue(W), std::move(UMax));
- }
- case CmpInst::ICMP_SLT: {
- APInt SMax(CR.getSignedMax());
- if (SMax.isMinSignedValue())
- return ConstantRange(W, /* empty */ false);
- return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
- }
- case CmpInst::ICMP_ULE: {
- APInt UMax(CR.getUnsignedMax());
- if (UMax.isMaxValue())
- return ConstantRange(W);
- return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1);
- }
- case CmpInst::ICMP_SLE: {
- APInt SMax(CR.getSignedMax());
- if (SMax.isMaxSignedValue())
- return ConstantRange(W);
- return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1);
- }
- case CmpInst::ICMP_UGT: {
- APInt UMin(CR.getUnsignedMin());
- if (UMin.isMaxValue())
- return ConstantRange(W, /* empty */ false);
- return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
- }
- case CmpInst::ICMP_SGT: {
- APInt SMin(CR.getSignedMin());
- if (SMin.isMaxSignedValue())
- return ConstantRange(W, /* empty */ false);
- return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
- }
- case CmpInst::ICMP_UGE: {
- APInt UMin(CR.getUnsignedMin());
- if (UMin.isMinValue())
- return ConstantRange(W);
- return ConstantRange(std::move(UMin), APInt::getNullValue(W));
- }
- case CmpInst::ICMP_SGE: {
- APInt SMin(CR.getSignedMin());
- if (SMin.isMinSignedValue())
- return ConstantRange(W);
- return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W));
- }
- }
-}
-
-ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
- const ConstantRange &CR) {
- // Follows from De-Morgan's laws:
- //
- // ~(~A union ~B) == A intersect B.
- //
- return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
- .inverse();
-}
-
-ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
- const APInt &C) {
- // Computes the exact range that is equal to both the constant ranges returned
- // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
- // when RHS is a singleton such as an APInt and so the assert is valid.
- // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
- // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
- //
- assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
- return makeAllowedICmpRegion(Pred, C);
-}
-
-bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
- APInt &RHS) const {
- bool Success = false;
-
- if (isFullSet() || isEmptySet()) {
- Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
- RHS = APInt(getBitWidth(), 0);
- Success = true;
- } else if (auto *OnlyElt = getSingleElement()) {
- Pred = CmpInst::ICMP_EQ;
- RHS = *OnlyElt;
- Success = true;
- } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
- Pred = CmpInst::ICMP_NE;
- RHS = *OnlyMissingElt;
- Success = true;
- } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
- Pred =
- getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
- RHS = getUpper();
- Success = true;
- } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
- Pred =
- getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
- RHS = getLower();
- Success = true;
- }
-
- assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
- "Bad result!");
-
- return Success;
-}
-
-ConstantRange
-ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
- const ConstantRange &Other,
- unsigned NoWrapKind) {
- using OBO = OverflowingBinaryOperator;
-
- // Computes the intersection of CR0 and CR1. It is different from
- // intersectWith in that the ConstantRange returned will only contain elements
- // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
- // not, of both X and Y).
- auto SubsetIntersect =
- [](const ConstantRange &CR0, const ConstantRange &CR1) {
- return CR0.inverse().unionWith(CR1.inverse()).inverse();
- };
-
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
-
- assert((NoWrapKind == OBO::NoSignedWrap ||
- NoWrapKind == OBO::NoUnsignedWrap ||
- NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
- "NoWrapKind invalid!");
-
- unsigned BitWidth = Other.getBitWidth();
- ConstantRange Result(BitWidth);
-
- switch (BinOp) {
- default:
- // Conservative answer: empty set
- return ConstantRange(BitWidth, false);
-
- case Instruction::Add:
- if (auto *C = Other.getSingleElement())
- if (C->isNullValue())
- // Full set: nothing signed / unsigned wraps when added to 0.
- return ConstantRange(BitWidth);
- if (NoWrapKind & OBO::NoUnsignedWrap)
- Result =
- SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
- -Other.getUnsignedMax()));
- if (NoWrapKind & OBO::NoSignedWrap) {
- const APInt &SignedMin = Other.getSignedMin();
- const APInt &SignedMax = Other.getSignedMax();
- if (SignedMax.isStrictlyPositive())
- Result = SubsetIntersect(
- Result,
- ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt::getSignedMinValue(BitWidth) - SignedMax));
- if (SignedMin.isNegative())
- Result = SubsetIntersect(
- Result,
- ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
- APInt::getSignedMinValue(BitWidth)));
- }
- return Result;
-
- case Instruction::Sub:
- if (auto *C = Other.getSingleElement())
- if (C->isNullValue())
- // Full set: nothing signed / unsigned wraps when subtracting 0.
- return ConstantRange(BitWidth);
- if (NoWrapKind & OBO::NoUnsignedWrap)
- Result =
- SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(),
- APInt::getMinValue(BitWidth)));
- if (NoWrapKind & OBO::NoSignedWrap) {
- const APInt &SignedMin = Other.getSignedMin();
- const APInt &SignedMax = Other.getSignedMax();
- if (SignedMax.isStrictlyPositive())
- Result = SubsetIntersect(
- Result,
- ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax,
- APInt::getSignedMinValue(BitWidth)));
- if (SignedMin.isNegative())
- Result = SubsetIntersect(
- Result,
- ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt::getSignedMinValue(BitWidth) + SignedMin));
- }
- return Result;
- case Instruction::Mul: {
- if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) {
- return SubsetIntersect(
- makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap),
- makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap));
- }
-
- // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1).
- const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
- const auto makeSingleValueRegion = [Unsigned,
- BitWidth](APInt V) -> ConstantRange {
- // Handle special case for 0, -1 and 1. See the last for reason why we
- // specialize -1 and 1.
- if (V == 0 || V.isOneValue())
- return ConstantRange(BitWidth, true);
-
- APInt MinValue, MaxValue;
- if (Unsigned) {
- MinValue = APInt::getMinValue(BitWidth);
- MaxValue = APInt::getMaxValue(BitWidth);
- } else {
- MinValue = APInt::getSignedMinValue(BitWidth);
- MaxValue = APInt::getSignedMaxValue(BitWidth);
- }
- // e.g. Returning [-127, 127], represented as [-127, -128).
- if (!Unsigned && V.isAllOnesValue())
- return ConstantRange(-MaxValue, MinValue);
-
- APInt Lower, Upper;
- if (!Unsigned && V.isNegative()) {
- Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
- } else if (Unsigned) {
- Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN);
- } else {
- Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
- }
- if (Unsigned) {
- Lower = Lower.zextOrSelf(BitWidth);
- Upper = Upper.zextOrSelf(BitWidth);
- } else {
- Lower = Lower.sextOrSelf(BitWidth);
- Upper = Upper.sextOrSelf(BitWidth);
- }
- // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
- // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1,
- // and 1 are already handled as special cases.
- return ConstantRange(Lower, Upper + 1);
- };
-
- if (Unsigned)
- return makeSingleValueRegion(Other.getUnsignedMax());
-
- return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()),
- makeSingleValueRegion(Other.getSignedMax()));
- }
- }
-}
-
-bool ConstantRange::isFullSet() const {
- return Lower == Upper && Lower.isMaxValue();
-}
-
-bool ConstantRange::isEmptySet() const {
- return Lower == Upper && Lower.isMinValue();
-}
-
-bool ConstantRange::isWrappedSet() const {
- return Lower.ugt(Upper);
-}
-
-bool ConstantRange::isSignWrappedSet() const {
- return contains(APInt::getSignedMaxValue(getBitWidth())) &&
- contains(APInt::getSignedMinValue(getBitWidth()));
-}
-
-APInt ConstantRange::getSetSize() const {
- if (isFullSet())
- return APInt::getOneBitSet(getBitWidth()+1, getBitWidth());
-
- // This is also correct for wrapped sets.
- return (Upper - Lower).zext(getBitWidth()+1);
-}
-
-bool
-ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
- assert(getBitWidth() == Other.getBitWidth());
- if (isFullSet())
- return false;
- if (Other.isFullSet())
- return true;
- return (Upper - Lower).ult(Other.Upper - Other.Lower);
-}
-
-bool
-ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
- assert(MaxSize && "MaxSize can't be 0.");
- // If this a full set, we need special handling to avoid needing an extra bit
- // to represent the size.
- if (isFullSet())
- return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
-
- return (Upper - Lower).ugt(MaxSize);
-}
-
-APInt ConstantRange::getUnsignedMax() const {
- if (isFullSet() || isWrappedSet())
- return APInt::getMaxValue(getBitWidth());
- return getUpper() - 1;
-}
-
-APInt ConstantRange::getUnsignedMin() const {
- if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue()))
- return APInt::getMinValue(getBitWidth());
- return getLower();
-}
-
-APInt ConstantRange::getSignedMax() const {
- if (isFullSet() || Lower.sgt(Upper))
- return APInt::getSignedMaxValue(getBitWidth());
- return getUpper() - 1;
-}
-
-APInt ConstantRange::getSignedMin() const {
- if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue()))
- return APInt::getSignedMinValue(getBitWidth());
- return getLower();
-}
-
-bool ConstantRange::contains(const APInt &V) const {
- if (Lower == Upper)
- return isFullSet();
-
- if (!isWrappedSet())
- return Lower.ule(V) && V.ult(Upper);
- return Lower.ule(V) || V.ult(Upper);
-}
-
-bool ConstantRange::contains(const ConstantRange &Other) const {
- if (isFullSet() || Other.isEmptySet()) return true;
- if (isEmptySet() || Other.isFullSet()) return false;
-
- if (!isWrappedSet()) {
- if (Other.isWrappedSet())
- return false;
-
- return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
- }
-
- if (!Other.isWrappedSet())
- return Other.getUpper().ule(Upper) ||
- Lower.ule(Other.getLower());
-
- return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
-}
-
-ConstantRange ConstantRange::subtract(const APInt &Val) const {
- assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
- // If the set is empty or full, don't modify the endpoints.
- if (Lower == Upper)
- return *this;
- return ConstantRange(Lower - Val, Upper - Val);
-}
-
-ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
- return intersectWith(CR.inverse());
-}
-
-ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
-
- // Handle common cases.
- if ( isEmptySet() || CR.isFullSet()) return *this;
- if (CR.isEmptySet() || isFullSet()) return CR;
-
- if (!isWrappedSet() && CR.isWrappedSet())
- return CR.intersectWith(*this);
-
- if (!isWrappedSet() && !CR.isWrappedSet()) {
- if (Lower.ult(CR.Lower)) {
- if (Upper.ule(CR.Lower))
- return ConstantRange(getBitWidth(), false);
-
- if (Upper.ult(CR.Upper))
- return ConstantRange(CR.Lower, Upper);
-
- return CR;
- }
- if (Upper.ult(CR.Upper))
- return *this;
-
- if (Lower.ult(CR.Upper))
- return ConstantRange(Lower, CR.Upper);
-
- return ConstantRange(getBitWidth(), false);
- }
-
- if (isWrappedSet() && !CR.isWrappedSet()) {
- if (CR.Lower.ult(Upper)) {
- if (CR.Upper.ult(Upper))
- return CR;
-
- if (CR.Upper.ule(Lower))
- return ConstantRange(CR.Lower, Upper);
-
- if (isSizeStrictlySmallerThan(CR))
- return *this;
- return CR;
- }
- if (CR.Lower.ult(Lower)) {
- if (CR.Upper.ule(Lower))
- return ConstantRange(getBitWidth(), false);
-
- return ConstantRange(Lower, CR.Upper);
- }
- return CR;
- }
-
- if (CR.Upper.ult(Upper)) {
- if (CR.Lower.ult(Upper)) {
- if (isSizeStrictlySmallerThan(CR))
- return *this;
- return CR;
- }
-
- if (CR.Lower.ult(Lower))
- return ConstantRange(Lower, CR.Upper);
-
- return CR;
- }
- if (CR.Upper.ule(Lower)) {
- if (CR.Lower.ult(Lower))
- return *this;
-
- return ConstantRange(CR.Lower, Upper);
- }
- if (isSizeStrictlySmallerThan(CR))
- return *this;
- return CR;
-}
-
-ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
-
- if ( isFullSet() || CR.isEmptySet()) return *this;
- if (CR.isFullSet() || isEmptySet()) return CR;
-
- if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
-
- if (!isWrappedSet() && !CR.isWrappedSet()) {
- if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
- // If the two ranges are disjoint, find the smaller gap and bridge it.
- APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
- if (d1.ult(d2))
- return ConstantRange(Lower, CR.Upper);
- return ConstantRange(CR.Lower, Upper);
- }
-
- APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
- APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
-
- if (L.isNullValue() && U.isNullValue())
- return ConstantRange(getBitWidth());
-
- return ConstantRange(std::move(L), std::move(U));
- }
-
- if (!CR.isWrappedSet()) {
- // ------U L----- and ------U L----- : this
- // L--U L--U : CR
- if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
- return *this;
-
- // ------U L----- : this
- // L---------U : CR
- if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
- return ConstantRange(getBitWidth());
-
- // ----U L---- : this
- // L---U : CR
- // <d1> <d2>
- if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
- APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
- if (d1.ult(d2))
- return ConstantRange(Lower, CR.Upper);
- return ConstantRange(CR.Lower, Upper);
- }
-
- // ----U L----- : this
- // L----U : CR
- if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
- return ConstantRange(CR.Lower, Upper);
-
- // ------U L---- : this
- // L-----U : CR
- assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
- "ConstantRange::unionWith missed a case with one range wrapped");
- return ConstantRange(Lower, CR.Upper);
- }
-
- // ------U L---- and ------U L---- : this
- // -U L----------- and ------------U L : CR
- if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
- return ConstantRange(getBitWidth());
-
- APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
- APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
-
- return ConstantRange(std::move(L), std::move(U));
-}
-
-ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
- uint32_t ResultBitWidth) const {
- switch (CastOp) {
- default:
- llvm_unreachable("unsupported cast type");
- case Instruction::Trunc:
- return truncate(ResultBitWidth);
- case Instruction::SExt:
- return signExtend(ResultBitWidth);
- case Instruction::ZExt:
- return zeroExtend(ResultBitWidth);
- case Instruction::BitCast:
- return *this;
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- if (getBitWidth() == ResultBitWidth)
- return *this;
- else
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- case Instruction::UIToFP: {
- // TODO: use input range if available
- auto BW = getBitWidth();
- APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
- APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
- return ConstantRange(std::move(Min), std::move(Max));
- }
- case Instruction::SIToFP: {
- // TODO: use input range if available
- auto BW = getBitWidth();
- APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
- APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
- return ConstantRange(std::move(SMin), std::move(SMax));
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- case Instruction::AddrSpaceCast:
- // Conservatively return full set.
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- };
-}
-
-ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
- if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
-
- unsigned SrcTySize = getBitWidth();
- assert(SrcTySize < DstTySize && "Not a value extension");
- if (isFullSet() || isWrappedSet()) {
- // Change into [0, 1 << src bit width)
- APInt LowerExt(DstTySize, 0);
- if (!Upper) // special case: [X, 0) -- not really wrapping around
- LowerExt = Lower.zext(DstTySize);
- return ConstantRange(std::move(LowerExt),
- APInt::getOneBitSet(DstTySize, SrcTySize));
- }
-
- return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
-}
-
-ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
- if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
-
- unsigned SrcTySize = getBitWidth();
- assert(SrcTySize < DstTySize && "Not a value extension");
-
- // special case: [X, INT_MIN) -- not really wrapping around
- if (Upper.isMinSignedValue())
- return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
-
- if (isFullSet() || isSignWrappedSet()) {
- return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
- APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
- }
-
- return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
-}
-
-ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
- assert(getBitWidth() > DstTySize && "Not a value truncation");
- if (isEmptySet())
- return ConstantRange(DstTySize, /*isFullSet=*/false);
- if (isFullSet())
- return ConstantRange(DstTySize, /*isFullSet=*/true);
-
- APInt LowerDiv(Lower), UpperDiv(Upper);
- ConstantRange Union(DstTySize, /*isFullSet=*/false);
-
- // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
- // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
- // then we do the union with [MaxValue, Upper)
- if (isWrappedSet()) {
- // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
- // truncated range.
- if (Upper.getActiveBits() > DstTySize ||
- Upper.countTrailingOnes() == DstTySize)
- return ConstantRange(DstTySize, /*isFullSet=*/true);
-
- Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
- UpperDiv.setAllBits();
-
- // Union covers the MaxValue case, so return if the remaining range is just
- // MaxValue(DstTy).
- if (LowerDiv == UpperDiv)
- return Union;
- }
-
- // Chop off the most significant bits that are past the destination bitwidth.
- if (LowerDiv.getActiveBits() > DstTySize) {
- // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
- APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
- LowerDiv -= Adjust;
- UpperDiv -= Adjust;
- }
-
- unsigned UpperDivWidth = UpperDiv.getActiveBits();
- if (UpperDivWidth <= DstTySize)
- return ConstantRange(LowerDiv.trunc(DstTySize),
- UpperDiv.trunc(DstTySize)).unionWith(Union);
-
- // The truncated value wraps around. Check if we can do better than fullset.
- if (UpperDivWidth == DstTySize + 1) {
- // Clear the MSB so that UpperDiv wraps around.
- UpperDiv.clearBit(DstTySize);
- if (UpperDiv.ult(LowerDiv))
- return ConstantRange(LowerDiv.trunc(DstTySize),
- UpperDiv.trunc(DstTySize)).unionWith(Union);
- }
-
- return ConstantRange(DstTySize, /*isFullSet=*/true);
-}
-
-ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
- unsigned SrcTySize = getBitWidth();
- if (SrcTySize > DstTySize)
- return truncate(DstTySize);
- if (SrcTySize < DstTySize)
- return zeroExtend(DstTySize);
- return *this;
-}
-
-ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
- unsigned SrcTySize = getBitWidth();
- if (SrcTySize > DstTySize)
- return truncate(DstTySize);
- if (SrcTySize < DstTySize)
- return signExtend(DstTySize);
- return *this;
-}
-
-ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
- const ConstantRange &Other) const {
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
-
- switch (BinOp) {
- case Instruction::Add:
- return add(Other);
- case Instruction::Sub:
- return sub(Other);
- case Instruction::Mul:
- return multiply(Other);
- case Instruction::UDiv:
- return udiv(Other);
- case Instruction::Shl:
- return shl(Other);
- case Instruction::LShr:
- return lshr(Other);
- case Instruction::AShr:
- return ashr(Other);
- case Instruction::And:
- return binaryAnd(Other);
- case Instruction::Or:
- return binaryOr(Other);
- // Note: floating point operations applied to abstract ranges are just
- // ideal integer operations with a lossy representation
- case Instruction::FAdd:
- return add(Other);
- case Instruction::FSub:
- return sub(Other);
- case Instruction::FMul:
- return multiply(Other);
- default:
- // Conservatively return full set.
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- }
-}
-
-ConstantRange
-ConstantRange::add(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- if (isFullSet() || Other.isFullSet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- APInt NewLower = getLower() + Other.getLower();
- APInt NewUpper = getUpper() + Other.getUpper() - 1;
- if (NewLower == NewUpper)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
- if (X.isSizeStrictlySmallerThan(*this) ||
- X.isSizeStrictlySmallerThan(Other))
- // We've wrapped, therefore, full set.
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return X;
-}
-
-ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
- // Calculate the subset of this range such that "X + Other" is
- // guaranteed not to wrap (overflow) for all X in this subset.
- // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
- // passing a single element range.
- auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add,
- ConstantRange(Other),
- OverflowingBinaryOperator::NoSignedWrap);
- auto NSWConstrainedRange = intersectWith(NSWRange);
-
- return NSWConstrainedRange.add(ConstantRange(Other));
-}
-
-ConstantRange
-ConstantRange::sub(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- if (isFullSet() || Other.isFullSet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- APInt NewLower = getLower() - Other.getUpper() + 1;
- APInt NewUpper = getUpper() - Other.getLower();
- if (NewLower == NewUpper)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
- if (X.isSizeStrictlySmallerThan(*this) ||
- X.isSizeStrictlySmallerThan(Other))
- // We've wrapped, therefore, full set.
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return X;
-}
-
-ConstantRange
-ConstantRange::multiply(const ConstantRange &Other) const {
- // TODO: If either operand is a single element and the multiply is known to
- // be non-wrapping, round the result min and max value to the appropriate
- // multiple of that element. If wrapping is possible, at least adjust the
- // range according to the greatest power-of-two factor of the single element.
-
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
-
- // Multiplication is signedness-independent. However different ranges can be
- // obtained depending on how the input ranges are treated. These different
- // ranges are all conservatively correct, but one might be better than the
- // other. We calculate two ranges; one treating the inputs as unsigned
- // and the other signed, then return the smallest of these ranges.
-
- // Unsigned range first.
- APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
- APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
- APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
- APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
-
- ConstantRange Result_zext = ConstantRange(this_min * Other_min,
- this_max * Other_max + 1);
- ConstantRange UR = Result_zext.truncate(getBitWidth());
-
- // If the unsigned range doesn't wrap, and isn't negative then it's a range
- // from one positive number to another which is as good as we can generate.
- // In this case, skip the extra work of generating signed ranges which aren't
- // going to be better than this range.
- if (!UR.isWrappedSet() &&
- (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
- return UR;
-
- // Now the signed range. Because we could be dealing with negative numbers
- // here, the lower bound is the smallest of the cartesian product of the
- // lower and upper ranges; for example:
- // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
- // Similarly for the upper bound, swapping min for max.
-
- this_min = getSignedMin().sext(getBitWidth() * 2);
- this_max = getSignedMax().sext(getBitWidth() * 2);
- Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
- Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
-
- auto L = {this_min * Other_min, this_min * Other_max,
- this_max * Other_min, this_max * Other_max};
- auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
- ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
- ConstantRange SR = Result_sext.truncate(getBitWidth());
-
- return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
-}
-
-ConstantRange
-ConstantRange::smax(const ConstantRange &Other) const {
- // X smax Y is: range(smax(X_smin, Y_smin),
- // smax(X_smax, Y_smax))
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
- APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
- if (NewU == NewL)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(std::move(NewL), std::move(NewU));
-}
-
-ConstantRange
-ConstantRange::umax(const ConstantRange &Other) const {
- // X umax Y is: range(umax(X_umin, Y_umin),
- // umax(X_umax, Y_umax))
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
- APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
- if (NewU == NewL)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(std::move(NewL), std::move(NewU));
-}
-
-ConstantRange
-ConstantRange::smin(const ConstantRange &Other) const {
- // X smin Y is: range(smin(X_smin, Y_smin),
- // smin(X_smax, Y_smax))
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
- APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
- if (NewU == NewL)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(std::move(NewL), std::move(NewU));
-}
-
-ConstantRange
-ConstantRange::umin(const ConstantRange &Other) const {
- // X umin Y is: range(umin(X_umin, Y_umin),
- // umin(X_umax, Y_umax))
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
- APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
- if (NewU == NewL)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(std::move(NewL), std::move(NewU));
-}
-
-ConstantRange
-ConstantRange::udiv(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- if (RHS.isFullSet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
-
- APInt RHS_umin = RHS.getUnsignedMin();
- if (RHS_umin.isNullValue()) {
- // We want the lowest value in RHS excluding zero. Usually that would be 1
- // except for a range in the form of [X, 1) in which case it would be X.
- if (RHS.getUpper() == 1)
- RHS_umin = RHS.getLower();
- else
- RHS_umin = 1;
- }
-
- APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
-
- // If the LHS is Full and the RHS is a wrapped interval containing 1 then
- // this could occur.
- if (Lower == Upper)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- return ConstantRange(std::move(Lower), std::move(Upper));
-}
-
-ConstantRange
-ConstantRange::binaryAnd(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
-
- // TODO: replace this with something less conservative
-
- APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
- if (umin.isAllOnesValue())
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
-}
-
-ConstantRange
-ConstantRange::binaryOr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
-
- // TODO: replace this with something less conservative
-
- APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
- if (umax.isNullValue())
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth()));
-}
-
-ConstantRange
-ConstantRange::shl(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
-
- APInt max = getUnsignedMax();
- APInt Other_umax = Other.getUnsignedMax();
-
- // there's overflow!
- if (Other_umax.uge(max.countLeadingZeros()))
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- // FIXME: implement the other tricky cases
-
- APInt min = getUnsignedMin();
- min <<= Other.getUnsignedMin();
- max <<= Other_umax;
-
- return ConstantRange(std::move(min), std::move(max) + 1);
-}
-
-ConstantRange
-ConstantRange::lshr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
-
- APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
- APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
- if (min == max)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- return ConstantRange(std::move(min), std::move(max));
-}
-
-ConstantRange
-ConstantRange::ashr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
-
- // May straddle zero, so handle both positive and negative cases.
- // 'PosMax' is the upper bound of the result of the ashr
- // operation, when Upper of the LHS of ashr is a non-negative.
- // number. Since ashr of a non-negative number will result in a
- // smaller number, the Upper value of LHS is shifted right with
- // the minimum value of 'Other' instead of the maximum value.
- APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
-
- // 'PosMin' is the lower bound of the result of the ashr
- // operation, when Lower of the LHS is a non-negative number.
- // Since ashr of a non-negative number will result in a smaller
- // number, the Lower value of LHS is shifted right with the
- // maximum value of 'Other'.
- APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
-
- // 'NegMax' is the upper bound of the result of the ashr
- // operation, when Upper of the LHS of ashr is a negative number.
- // Since 'ashr' of a negative number will result in a bigger
- // number, the Upper value of LHS is shifted right with the
- // maximum value of 'Other'.
- APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
-
- // 'NegMin' is the lower bound of the result of the ashr
- // operation, when Lower of the LHS of ashr is a negative number.
- // Since 'ashr' of a negative number will result in a bigger
- // number, the Lower value of LHS is shifted right with the
- // minimum value of 'Other'.
- APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
-
- APInt max, min;
- if (getSignedMin().isNonNegative()) {
- // Upper and Lower of LHS are non-negative.
- min = PosMin;
- max = PosMax;
- } else if (getSignedMax().isNegative()) {
- // Upper and Lower of LHS are negative.
- min = NegMin;
- max = NegMax;
- } else {
- // Upper is non-negative and Lower is negative.
- min = NegMin;
- max = PosMax;
- }
- if (min == max)
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
-
- return ConstantRange(std::move(min), std::move(max));
-}
-
-ConstantRange ConstantRange::inverse() const {
- if (isFullSet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/false);
- if (isEmptySet())
- return ConstantRange(getBitWidth(), /*isFullSet=*/true);
- return ConstantRange(Upper, Lower);
-}
-
-void ConstantRange::print(raw_ostream &OS) const {
- if (isFullSet())
- OS << "full-set";
- else if (isEmptySet())
- OS << "empty-set";
- else
- OS << "[" << Lower << "," << Upper << ")";
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void ConstantRange::dump() const {
- print(dbgs());
-}
-#endif
-
-ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
- const unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1 && "Must have at least one range!");
- assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
-
- auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
- auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
-
- ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
-
- for (unsigned i = 1; i < NumRanges; ++i) {
- auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
-
- // Note: unionWith will potentially create a range that contains values not
- // contained in any of the original N ranges.
- CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
- }
-
- return CR;
-}