summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp')
-rw-r--r--gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp1764
1 files changed, 0 insertions, 1764 deletions
diff --git a/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp b/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
deleted file mode 100644
index 14e88004269..00000000000
--- a/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
+++ /dev/null
@@ -1,1764 +0,0 @@
-//===- AMDGPULibCalls.cpp -------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file
-/// This file does AMD library function optimizations.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "amdgpu-simplifylib"
-
-#include "AMDGPU.h"
-#include "AMDGPULibFunc.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/ADT/StringSet.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/ValueSymbolTable.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetOptions.h"
-#include <vector>
-#include <cmath>
-
-using namespace llvm;
-
-static cl::opt<bool> EnablePreLink("amdgpu-prelink",
- cl::desc("Enable pre-link mode optimizations"),
- cl::init(false),
- cl::Hidden);
-
-static cl::list<std::string> UseNative("amdgpu-use-native",
- cl::desc("Comma separated list of functions to replace with native, or all"),
- cl::CommaSeparated, cl::ValueOptional,
- cl::Hidden);
-
-#define MATH_PI 3.14159265358979323846264338327950288419716939937511
-#define MATH_E 2.71828182845904523536028747135266249775724709369996
-#define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695
-
-#define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859
-#define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665
-// Value of log2(10)
-#define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806
-// Value of 1 / log2(10)
-#define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085
-// Value of 1 / M_LOG2E_F = 1 / log2(e)
-#define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552
-
-namespace llvm {
-
-class AMDGPULibCalls {
-private:
-
- typedef llvm::AMDGPULibFunc FuncInfo;
-
- // -fuse-native.
- bool AllNative = false;
-
- bool useNativeFunc(const StringRef F) const;
-
- // Return a pointer (pointer expr) to the function if function defintion with
- // "FuncName" exists. It may create a new function prototype in pre-link mode.
- Constant *getFunction(Module *M, const FuncInfo& fInfo);
-
- // Replace a normal function with its native version.
- bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
-
- bool parseFunctionName(const StringRef& FMangledName,
- FuncInfo *FInfo=nullptr /*out*/);
-
- bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
-
- /* Specialized optimizations */
-
- // recip (half or native)
- bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // divide (half or native)
- bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // pow/powr/pown
- bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // rootn
- bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // fma/mad
- bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // -fuse-native for sincos
- bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
-
- // evaluate calls if calls' arguments are constants.
- bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
- double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
- bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
-
- // exp
- bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // exp2
- bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // exp10
- bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // log
- bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // log2
- bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // log10
- bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // sqrt
- bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
-
- // sin/cos
- bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
-
- // __read_pipe/__write_pipe
- bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
-
- // Get insertion point at entry.
- BasicBlock::iterator getEntryIns(CallInst * UI);
- // Insert an Alloc instruction.
- AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
- // Get a scalar native builtin signle argument FP function
- Constant* getNativeFunction(Module* M, const FuncInfo &FInfo);
-
-protected:
- CallInst *CI;
-
- bool isUnsafeMath(const CallInst *CI) const;
-
- void replaceCall(Value *With) {
- CI->replaceAllUsesWith(With);
- CI->eraseFromParent();
- }
-
-public:
- bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
-
- void initNativeFuncs();
-
- // Replace a normal math function call with that native version
- bool useNative(CallInst *CI);
-};
-
-} // end llvm namespace
-
-namespace {
-
- class AMDGPUSimplifyLibCalls : public FunctionPass {
-
- AMDGPULibCalls Simplifier;
-
- const TargetOptions Options;
-
- public:
- static char ID; // Pass identification
-
- AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions())
- : FunctionPass(ID), Options(Opt) {
- initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AAResultsWrapperPass>();
- }
-
- bool runOnFunction(Function &M) override;
- };
-
- class AMDGPUUseNativeCalls : public FunctionPass {
-
- AMDGPULibCalls Simplifier;
-
- public:
- static char ID; // Pass identification
-
- AMDGPUUseNativeCalls() : FunctionPass(ID) {
- initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
- Simplifier.initNativeFuncs();
- }
-
- bool runOnFunction(Function &F) override;
- };
-
-} // end anonymous namespace.
-
-char AMDGPUSimplifyLibCalls::ID = 0;
-char AMDGPUUseNativeCalls::ID = 0;
-
-INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
- "Simplify well-known AMD library calls", false, false)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
- "Simplify well-known AMD library calls", false, false)
-
-INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
- "Replace builtin math calls with that native versions.",
- false, false)
-
-template <typename IRB>
-static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg,
- const Twine &Name = "") {
- CallInst *R = B.CreateCall(Callee, Arg, Name);
- if (Function* F = dyn_cast<Function>(Callee))
- R->setCallingConv(F->getCallingConv());
- return R;
-}
-
-template <typename IRB>
-static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2,
- const Twine &Name = "") {
- CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
- if (Function* F = dyn_cast<Function>(Callee))
- R->setCallingConv(F->getCallingConv());
- return R;
-}
-
-// Data structures for table-driven optimizations.
-// FuncTbl works for both f32 and f64 functions with 1 input argument
-
-struct TableEntry {
- double result;
- double input;
-};
-
-/* a list of {result, input} */
-static const TableEntry tbl_acos[] = {
- {MATH_PI/2.0, 0.0},
- {MATH_PI/2.0, -0.0},
- {0.0, 1.0},
- {MATH_PI, -1.0}
-};
-static const TableEntry tbl_acosh[] = {
- {0.0, 1.0}
-};
-static const TableEntry tbl_acospi[] = {
- {0.5, 0.0},
- {0.5, -0.0},
- {0.0, 1.0},
- {1.0, -1.0}
-};
-static const TableEntry tbl_asin[] = {
- {0.0, 0.0},
- {-0.0, -0.0},
- {MATH_PI/2.0, 1.0},
- {-MATH_PI/2.0, -1.0}
-};
-static const TableEntry tbl_asinh[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_asinpi[] = {
- {0.0, 0.0},
- {-0.0, -0.0},
- {0.5, 1.0},
- {-0.5, -1.0}
-};
-static const TableEntry tbl_atan[] = {
- {0.0, 0.0},
- {-0.0, -0.0},
- {MATH_PI/4.0, 1.0},
- {-MATH_PI/4.0, -1.0}
-};
-static const TableEntry tbl_atanh[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_atanpi[] = {
- {0.0, 0.0},
- {-0.0, -0.0},
- {0.25, 1.0},
- {-0.25, -1.0}
-};
-static const TableEntry tbl_cbrt[] = {
- {0.0, 0.0},
- {-0.0, -0.0},
- {1.0, 1.0},
- {-1.0, -1.0},
-};
-static const TableEntry tbl_cos[] = {
- {1.0, 0.0},
- {1.0, -0.0}
-};
-static const TableEntry tbl_cosh[] = {
- {1.0, 0.0},
- {1.0, -0.0}
-};
-static const TableEntry tbl_cospi[] = {
- {1.0, 0.0},
- {1.0, -0.0}
-};
-static const TableEntry tbl_erfc[] = {
- {1.0, 0.0},
- {1.0, -0.0}
-};
-static const TableEntry tbl_erf[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_exp[] = {
- {1.0, 0.0},
- {1.0, -0.0},
- {MATH_E, 1.0}
-};
-static const TableEntry tbl_exp2[] = {
- {1.0, 0.0},
- {1.0, -0.0},
- {2.0, 1.0}
-};
-static const TableEntry tbl_exp10[] = {
- {1.0, 0.0},
- {1.0, -0.0},
- {10.0, 1.0}
-};
-static const TableEntry tbl_expm1[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_log[] = {
- {0.0, 1.0},
- {1.0, MATH_E}
-};
-static const TableEntry tbl_log2[] = {
- {0.0, 1.0},
- {1.0, 2.0}
-};
-static const TableEntry tbl_log10[] = {
- {0.0, 1.0},
- {1.0, 10.0}
-};
-static const TableEntry tbl_rsqrt[] = {
- {1.0, 1.0},
- {1.0/MATH_SQRT2, 2.0}
-};
-static const TableEntry tbl_sin[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_sinh[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_sinpi[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_sqrt[] = {
- {0.0, 0.0},
- {1.0, 1.0},
- {MATH_SQRT2, 2.0}
-};
-static const TableEntry tbl_tan[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_tanh[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_tanpi[] = {
- {0.0, 0.0},
- {-0.0, -0.0}
-};
-static const TableEntry tbl_tgamma[] = {
- {1.0, 1.0},
- {1.0, 2.0},
- {2.0, 3.0},
- {6.0, 4.0}
-};
-
-static bool HasNative(AMDGPULibFunc::EFuncId id) {
- switch(id) {
- case AMDGPULibFunc::EI_DIVIDE:
- case AMDGPULibFunc::EI_COS:
- case AMDGPULibFunc::EI_EXP:
- case AMDGPULibFunc::EI_EXP2:
- case AMDGPULibFunc::EI_EXP10:
- case AMDGPULibFunc::EI_LOG:
- case AMDGPULibFunc::EI_LOG2:
- case AMDGPULibFunc::EI_LOG10:
- case AMDGPULibFunc::EI_POWR:
- case AMDGPULibFunc::EI_RECIP:
- case AMDGPULibFunc::EI_RSQRT:
- case AMDGPULibFunc::EI_SIN:
- case AMDGPULibFunc::EI_SINCOS:
- case AMDGPULibFunc::EI_SQRT:
- case AMDGPULibFunc::EI_TAN:
- return true;
- default:;
- }
- return false;
-}
-
-struct TableRef {
- size_t size;
- const TableEntry *table; // variable size: from 0 to (size - 1)
-
- TableRef() : size(0), table(nullptr) {}
-
- template <size_t N>
- TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
-};
-
-static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
- switch(id) {
- case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
- case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
- case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
- case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
- case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
- case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
- case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
- case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
- case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
- case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
- case AMDGPULibFunc::EI_NCOS:
- case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
- case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
- case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
- case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
- case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
- case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
- case AMDGPULibFunc::EI_NEXP2:
- case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
- case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
- case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
- case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
- case AMDGPULibFunc::EI_NLOG2:
- case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
- case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
- case AMDGPULibFunc::EI_NRSQRT:
- case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
- case AMDGPULibFunc::EI_NSIN:
- case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
- case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
- case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
- case AMDGPULibFunc::EI_NSQRT:
- case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
- case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
- case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
- case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
- case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
- default:;
- }
- return TableRef();
-}
-
-static inline int getVecSize(const AMDGPULibFunc& FInfo) {
- return FInfo.getLeads()[0].VectorSize;
-}
-
-static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
- return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
-}
-
-Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) {
- // If we are doing PreLinkOpt, the function is external. So it is safe to
- // use getOrInsertFunction() at this stage.
-
- return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
- : AMDGPULibFunc::getFunction(M, fInfo);
-}
-
-bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
- FuncInfo *FInfo) {
- return AMDGPULibFunc::parse(FMangledName, *FInfo);
-}
-
-bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
- if (auto Op = dyn_cast<FPMathOperator>(CI))
- if (Op->isFast())
- return true;
- const Function *F = CI->getParent()->getParent();
- Attribute Attr = F->getFnAttribute("unsafe-fp-math");
- return Attr.getValueAsString() == "true";
-}
-
-bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
- return AllNative ||
- std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
-}
-
-void AMDGPULibCalls::initNativeFuncs() {
- AllNative = useNativeFunc("all") ||
- (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
- UseNative.begin()->empty());
-}
-
-bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
- bool native_sin = useNativeFunc("sin");
- bool native_cos = useNativeFunc("cos");
-
- if (native_sin && native_cos) {
- Module *M = aCI->getModule();
- Value *opr0 = aCI->getArgOperand(0);
-
- AMDGPULibFunc nf;
- nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
- nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
-
- nf.setPrefix(AMDGPULibFunc::NATIVE);
- nf.setId(AMDGPULibFunc::EI_SIN);
- Constant *sinExpr = getFunction(M, nf);
-
- nf.setPrefix(AMDGPULibFunc::NATIVE);
- nf.setId(AMDGPULibFunc::EI_COS);
- Constant *cosExpr = getFunction(M, nf);
- if (sinExpr && cosExpr) {
- Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
- Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
- new StoreInst(cosval, aCI->getArgOperand(1), aCI);
-
- DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
- << " with native version of sin/cos");
-
- replaceCall(sinval);
- return true;
- }
- }
- return false;
-}
-
-bool AMDGPULibCalls::useNative(CallInst *aCI) {
- CI = aCI;
- Function *Callee = aCI->getCalledFunction();
-
- FuncInfo FInfo;
- if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
- FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
- getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
- !(AllNative || useNativeFunc(FInfo.getName()))) {
- return false;
- }
-
- if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
- return sincosUseNative(aCI, FInfo);
-
- FInfo.setPrefix(AMDGPULibFunc::NATIVE);
- Constant *F = getFunction(aCI->getModule(), FInfo);
- if (!F)
- return false;
-
- aCI->setCalledFunction(F);
- DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
- << " with native version");
- return true;
-}
-
-// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
-// builtin, with appended type size and alignment arguments, where 2 or 4
-// indicates the original number of arguments. The library has optimized version
-// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
-// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
-// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
-// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
-bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
- FuncInfo &FInfo) {
- auto *Callee = CI->getCalledFunction();
- if (!Callee->isDeclaration())
- return false;
-
- assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
- auto *M = Callee->getParent();
- auto &Ctx = M->getContext();
- std::string Name = Callee->getName();
- auto NumArg = CI->getNumArgOperands();
- if (NumArg != 4 && NumArg != 6)
- return false;
- auto *PacketSize = CI->getArgOperand(NumArg - 2);
- auto *PacketAlign = CI->getArgOperand(NumArg - 1);
- if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
- return false;
- unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
- unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
- if (Size != Align || !isPowerOf2_32(Size))
- return false;
-
- Type *PtrElemTy;
- if (Size <= 8)
- PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
- else
- PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
- unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
- auto PtrArg = CI->getArgOperand(PtrArgLoc);
- unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
- auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
-
- SmallVector<llvm::Type *, 6> ArgTys;
- for (unsigned I = 0; I != PtrArgLoc; ++I)
- ArgTys.push_back(CI->getArgOperand(I)->getType());
- ArgTys.push_back(PtrTy);
-
- Name = Name + "_" + std::to_string(Size);
- auto *FTy = FunctionType::get(Callee->getReturnType(),
- ArrayRef<Type *>(ArgTys), false);
- AMDGPULibFunc NewLibFunc(Name, FTy);
- auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
- if (!F)
- return false;
-
- auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
- SmallVector<Value *, 6> Args;
- for (unsigned I = 0; I != PtrArgLoc; ++I)
- Args.push_back(CI->getArgOperand(I));
- Args.push_back(BCast);
-
- auto *NCI = B.CreateCall(F, Args);
- NCI->setAttributes(CI->getAttributes());
- CI->replaceAllUsesWith(NCI);
- CI->dropAllReferences();
- CI->eraseFromParent();
-
- return true;
-}
-
-// This function returns false if no change; return true otherwise.
-bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
- this->CI = CI;
- Function *Callee = CI->getCalledFunction();
-
- // Ignore indirect calls.
- if (Callee == 0) return false;
-
- FuncInfo FInfo;
- if (!parseFunctionName(Callee->getName(), &FInfo))
- return false;
-
- // Further check the number of arguments to see if they match.
- if (CI->getNumArgOperands() != FInfo.getNumArgs())
- return false;
-
- BasicBlock *BB = CI->getParent();
- LLVMContext &Context = CI->getParent()->getContext();
- IRBuilder<> B(Context);
-
- // Set the builder to the instruction after the call.
- B.SetInsertPoint(BB, CI->getIterator());
-
- // Copy fast flags from the original call.
- if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
- B.setFastMathFlags(FPOp->getFastMathFlags());
-
- if (TDOFold(CI, FInfo))
- return true;
-
- // Under unsafe-math, evaluate calls if possible.
- // According to Brian Sumner, we can do this for all f32 function calls
- // using host's double function calls.
- if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
- return true;
-
- // Specilized optimizations for each function call
- switch (FInfo.getId()) {
- case AMDGPULibFunc::EI_RECIP:
- // skip vector function
- assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
- FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
- "recip must be an either native or half function");
- return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
-
- case AMDGPULibFunc::EI_DIVIDE:
- // skip vector function
- assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
- FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
- "divide must be an either native or half function");
- return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
-
- case AMDGPULibFunc::EI_POW:
- case AMDGPULibFunc::EI_POWR:
- case AMDGPULibFunc::EI_POWN:
- return fold_pow(CI, B, FInfo);
-
- case AMDGPULibFunc::EI_ROOTN:
- // skip vector function
- return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
-
- case AMDGPULibFunc::EI_FMA:
- case AMDGPULibFunc::EI_MAD:
- case AMDGPULibFunc::EI_NFMA:
- // skip vector function
- return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
-
- case AMDGPULibFunc::EI_SQRT:
- return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
- case AMDGPULibFunc::EI_COS:
- case AMDGPULibFunc::EI_SIN:
- if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
- getArgType(FInfo) == AMDGPULibFunc::F64)
- && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
- return fold_sincos(CI, B, AA);
-
- break;
- case AMDGPULibFunc::EI_READ_PIPE_2:
- case AMDGPULibFunc::EI_READ_PIPE_4:
- case AMDGPULibFunc::EI_WRITE_PIPE_2:
- case AMDGPULibFunc::EI_WRITE_PIPE_4:
- return fold_read_write_pipe(CI, B, FInfo);
-
- default:
- break;
- }
-
- return false;
-}
-
-bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
- // Table-Driven optimization
- const TableRef tr = getOptTable(FInfo.getId());
- if (tr.size==0)
- return false;
-
- int const sz = (int)tr.size;
- const TableEntry * const ftbl = tr.table;
- Value *opr0 = CI->getArgOperand(0);
-
- if (getVecSize(FInfo) > 1) {
- if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
- SmallVector<double, 0> DVal;
- for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
- ConstantFP *eltval = dyn_cast<ConstantFP>(
- CV->getElementAsConstant((unsigned)eltNo));
- assert(eltval && "Non-FP arguments in math function!");
- bool found = false;
- for (int i=0; i < sz; ++i) {
- if (eltval->isExactlyValue(ftbl[i].input)) {
- DVal.push_back(ftbl[i].result);
- found = true;
- break;
- }
- }
- if (!found) {
- // This vector constants not handled yet.
- return false;
- }
- }
- LLVMContext &context = CI->getParent()->getParent()->getContext();
- Constant *nval;
- if (getArgType(FInfo) == AMDGPULibFunc::F32) {
- SmallVector<float, 0> FVal;
- for (unsigned i = 0; i < DVal.size(); ++i) {
- FVal.push_back((float)DVal[i]);
- }
- ArrayRef<float> tmp(FVal);
- nval = ConstantDataVector::get(context, tmp);
- } else { // F64
- ArrayRef<double> tmp(DVal);
- nval = ConstantDataVector::get(context, tmp);
- }
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
- replaceCall(nval);
- return true;
- }
- } else {
- // Scalar version
- if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
- for (int i = 0; i < sz; ++i) {
- if (CF->isExactlyValue(ftbl[i].input)) {
- Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
- replaceCall(nval);
- return true;
- }
- }
- }
- }
-
- return false;
-}
-
-bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
- Module *M = CI->getModule();
- if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
- FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
- !HasNative(FInfo.getId()))
- return false;
-
- AMDGPULibFunc nf = FInfo;
- nf.setPrefix(AMDGPULibFunc::NATIVE);
- if (Constant *FPExpr = getFunction(M, nf)) {
- LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
-
- CI->setCalledFunction(FPExpr);
-
- LLVM_DEBUG(dbgs() << *CI << '\n');
-
- return true;
- }
- return false;
-}
-
-// [native_]half_recip(c) ==> 1.0/c
-bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
- const FuncInfo &FInfo) {
- Value *opr0 = CI->getArgOperand(0);
- if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
- // Just create a normal div. Later, InstCombine will be able
- // to compute the divide into a constant (avoid check float infinity
- // or subnormal at this point).
- Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
- opr0,
- "recip2div");
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
- replaceCall(nval);
- return true;
- }
- return false;
-}
-
-// [native_]half_divide(x, c) ==> x/c
-bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
- const FuncInfo &FInfo) {
- Value *opr0 = CI->getArgOperand(0);
- Value *opr1 = CI->getArgOperand(1);
- ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
- ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
-
- if ((CF0 && CF1) || // both are constants
- (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
- // CF1 is constant && f32 divide
- {
- Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
- opr1, "__div2recip");
- Value *nval = B.CreateFMul(opr0, nval1, "__div2mul");
- replaceCall(nval);
- return true;
- }
- return false;
-}
-
-namespace llvm {
-static double log2(double V) {
-#if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
- return ::log2(V);
-#else
- return log(V) / 0.693147180559945309417;
-#endif
-}
-}
-
-bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
- const FuncInfo &FInfo) {
- assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
- FInfo.getId() == AMDGPULibFunc::EI_POWR ||
- FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
- "fold_pow: encounter a wrong function call");
-
- Value *opr0, *opr1;
- ConstantFP *CF;
- ConstantInt *CINT;
- ConstantAggregateZero *CZero;
- Type *eltType;
-
- opr0 = CI->getArgOperand(0);
- opr1 = CI->getArgOperand(1);
- CZero = dyn_cast<ConstantAggregateZero>(opr1);
- if (getVecSize(FInfo) == 1) {
- eltType = opr0->getType();
- CF = dyn_cast<ConstantFP>(opr1);
- CINT = dyn_cast<ConstantInt>(opr1);
- } else {
- VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
- assert(VTy && "Oprand of vector function should be of vectortype");
- eltType = VTy->getElementType();
- ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
-
- // Now, only Handle vector const whose elements have the same value.
- CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
- CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
- }
-
- // No unsafe math , no constant argument, do nothing
- if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
- return false;
-
- // 0x1111111 means that we don't do anything for this call.
- int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
-
- if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
- // pow/powr/pown(x, 0) == 1
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
- Constant *cnval = ConstantFP::get(eltType, 1.0);
- if (getVecSize(FInfo) > 1) {
- cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
- }
- replaceCall(cnval);
- return true;
- }
- if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
- // pow/powr/pown(x, 1.0) = x
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
- replaceCall(opr0);
- return true;
- }
- if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
- // pow/powr/pown(x, 2.0) = x*x
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
- << "\n");
- Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
- replaceCall(nval);
- return true;
- }
- if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
- // pow/powr/pown(x, -1.0) = 1.0/x
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
- Constant *cnval = ConstantFP::get(eltType, 1.0);
- if (getVecSize(FInfo) > 1) {
- cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
- }
- Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
- replaceCall(nval);
- return true;
- }
-
- Module *M = CI->getModule();
- if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
- // pow[r](x, [-]0.5) = sqrt(x)
- bool issqrt = CF->isExactlyValue(0.5);
- if (Constant *FPExpr = getFunction(M,
- AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
- : AMDGPULibFunc::EI_RSQRT, FInfo))) {
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
- << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
- Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
- : "__pow2rsqrt");
- replaceCall(nval);
- return true;
- }
- }
-
- if (!isUnsafeMath(CI))
- return false;
-
- // Unsafe Math optimization
-
- // Remember that ci_opr1 is set if opr1 is integral
- if (CF) {
- double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
- ? (double)CF->getValueAPF().convertToFloat()
- : CF->getValueAPF().convertToDouble();
- int ival = (int)dval;
- if ((double)ival == dval) {
- ci_opr1 = ival;
- } else
- ci_opr1 = 0x11111111;
- }
-
- // pow/powr/pown(x, c) = [1/](x*x*..x); where
- // trunc(c) == c && the number of x == c && |c| <= 12
- unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
- if (abs_opr1 <= 12) {
- Constant *cnval;
- Value *nval;
- if (abs_opr1 == 0) {
- cnval = ConstantFP::get(eltType, 1.0);
- if (getVecSize(FInfo) > 1) {
- cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
- }
- nval = cnval;
- } else {
- Value *valx2 = nullptr;
- nval = nullptr;
- while (abs_opr1 > 0) {
- valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
- if (abs_opr1 & 1) {
- nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
- }
- abs_opr1 >>= 1;
- }
- }
-
- if (ci_opr1 < 0) {
- cnval = ConstantFP::get(eltType, 1.0);
- if (getVecSize(FInfo) > 1) {
- cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
- }
- nval = B.CreateFDiv(cnval, nval, "__1powprod");
- }
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
- << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
- << ")\n");
- replaceCall(nval);
- return true;
- }
-
- // powr ---> exp2(y * log2(x))
- // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
- Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2,
- FInfo));
- if (!ExpExpr)
- return false;
-
- bool needlog = false;
- bool needabs = false;
- bool needcopysign = false;
- Constant *cnval = nullptr;
- if (getVecSize(FInfo) == 1) {
- CF = dyn_cast<ConstantFP>(opr0);
-
- if (CF) {
- double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
- ? (double)CF->getValueAPF().convertToFloat()
- : CF->getValueAPF().convertToDouble();
-
- V = log2(std::abs(V));
- cnval = ConstantFP::get(eltType, V);
- needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
- CF->isNegative();
- } else {
- needlog = true;
- needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
- (!CF || CF->isNegative());
- }
- } else {
- ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
-
- if (!CDV) {
- needlog = true;
- needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
- } else {
- assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
- "Wrong vector size detected");
-
- SmallVector<double, 0> DVal;
- for (int i=0; i < getVecSize(FInfo); ++i) {
- double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
- ? (double)CDV->getElementAsFloat(i)
- : CDV->getElementAsDouble(i);
- if (V < 0.0) needcopysign = true;
- V = log2(std::abs(V));
- DVal.push_back(V);
- }
- if (getArgType(FInfo) == AMDGPULibFunc::F32) {
- SmallVector<float, 0> FVal;
- for (unsigned i=0; i < DVal.size(); ++i) {
- FVal.push_back((float)DVal[i]);
- }
- ArrayRef<float> tmp(FVal);
- cnval = ConstantDataVector::get(M->getContext(), tmp);
- } else {
- ArrayRef<double> tmp(DVal);
- cnval = ConstantDataVector::get(M->getContext(), tmp);
- }
- }
- }
-
- if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
- // We cannot handle corner cases for a general pow() function, give up
- // unless y is a constant integral value. Then proceed as if it were pown.
- if (getVecSize(FInfo) == 1) {
- if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
- double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
- ? (double)CF->getValueAPF().convertToFloat()
- : CF->getValueAPF().convertToDouble();
- if (y != (double)(int64_t)y)
- return false;
- } else
- return false;
- } else {
- if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
- for (int i=0; i < getVecSize(FInfo); ++i) {
- double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
- ? (double)CDV->getElementAsFloat(i)
- : CDV->getElementAsDouble(i);
- if (y != (double)(int64_t)y)
- return false;
- }
- } else
- return false;
- }
- }
-
- Value *nval;
- if (needabs) {
- Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS,
- FInfo));
- if (!AbsExpr)
- return false;
- nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
- } else {
- nval = cnval ? cnval : opr0;
- }
- if (needlog) {
- Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2,
- FInfo));
- if (!LogExpr)
- return false;
- nval = CreateCallEx(B,LogExpr, nval, "__log2");
- }
-
- if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
- // convert int(32) to fp(f32 or f64)
- opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
- }
- nval = B.CreateFMul(opr1, nval, "__ylogx");
- nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
-
- if (needcopysign) {
- Value *opr_n;
- Type* rTy = opr0->getType();
- Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
- Type *nTy = nTyS;
- if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
- nTy = VectorType::get(nTyS, vTy->getNumElements());
- unsigned size = nTy->getScalarSizeInBits();
- opr_n = CI->getArgOperand(1);
- if (opr_n->getType()->isIntegerTy())
- opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
- else
- opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
-
- Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
- sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
- nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
- nval = B.CreateBitCast(nval, opr0->getType());
- }
-
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
- << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
- replaceCall(nval);
-
- return true;
-}
-
-bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
- const FuncInfo &FInfo) {
- Value *opr0 = CI->getArgOperand(0);
- Value *opr1 = CI->getArgOperand(1);
-
- ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
- if (!CINT) {
- return false;
- }
- int ci_opr1 = (int)CINT->getSExtValue();
- if (ci_opr1 == 1) { // rootn(x, 1) = x
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
- replaceCall(opr0);
- return true;
- }
- if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x)
- std::vector<const Type*> ParamsTys;
- ParamsTys.push_back(opr0->getType());
- Module *M = CI->getModule();
- if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT,
- FInfo))) {
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
- Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
- replaceCall(nval);
- return true;
- }
- } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
- Module *M = CI->getModule();
- if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT,
- FInfo))) {
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
- Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
- replaceCall(nval);
- return true;
- }
- } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
- Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
- opr0,
- "__rootn2div");
- replaceCall(nval);
- return true;
- } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x)
- std::vector<const Type*> ParamsTys;
- ParamsTys.push_back(opr0->getType());
- Module *M = CI->getModule();
- if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT,
- FInfo))) {
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
- << ")\n");
- Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
- replaceCall(nval);
- return true;
- }
- }
- return false;
-}
-
-bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
- const FuncInfo &FInfo) {
- Value *opr0 = CI->getArgOperand(0);
- Value *opr1 = CI->getArgOperand(1);
- Value *opr2 = CI->getArgOperand(2);
-
- ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
- ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
- if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
- // fma/mad(a, b, c) = c if a=0 || b=0
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
- replaceCall(opr2);
- return true;
- }
- if (CF0 && CF0->isExactlyValue(1.0f)) {
- // fma/mad(a, b, c) = b+c if a=1
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
- << "\n");
- Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
- replaceCall(nval);
- return true;
- }
- if (CF1 && CF1->isExactlyValue(1.0f)) {
- // fma/mad(a, b, c) = a+c if b=1
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
- << "\n");
- Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
- replaceCall(nval);
- return true;
- }
- if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
- if (CF->isZero()) {
- // fma/mad(a, b, c) = a*b if c=0
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
- << *opr1 << "\n");
- Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
- replaceCall(nval);
- return true;
- }
- }
-
- return false;
-}
-
-// Get a scalar native builtin signle argument FP function
-Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) {
- if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
- return nullptr;
- FuncInfo nf = FInfo;
- nf.setPrefix(AMDGPULibFunc::NATIVE);
- return getFunction(M, nf);
-}
-
-// fold sqrt -> native_sqrt (x)
-bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
- const FuncInfo &FInfo) {
- if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
- (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
- if (Constant *FPExpr = getNativeFunction(
- CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
- Value *opr0 = CI->getArgOperand(0);
- LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
- << "sqrt(" << *opr0 << ")\n");
- Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
- replaceCall(nval);
- return true;
- }
- }
- return false;
-}
-
-// fold sin, cos -> sincos.
-bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
- AliasAnalysis *AA) {
- AMDGPULibFunc fInfo;
- if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
- return false;
-
- assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
- fInfo.getId() == AMDGPULibFunc::EI_COS);
- bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
-
- Value *CArgVal = CI->getArgOperand(0);
- BasicBlock * const CBB = CI->getParent();
-
- int const MaxScan = 30;
-
- { // fold in load value.
- LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
- if (LI && LI->getParent() == CBB) {
- BasicBlock::iterator BBI = LI->getIterator();
- Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
- if (AvailableVal) {
- CArgVal->replaceAllUsesWith(AvailableVal);
- if (CArgVal->getNumUses() == 0)
- LI->eraseFromParent();
- CArgVal = CI->getArgOperand(0);
- }
- }
- }
-
- Module *M = CI->getModule();
- fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
- std::string const PairName = fInfo.mangle();
-
- CallInst *UI = nullptr;
- for (User* U : CArgVal->users()) {
- CallInst *XI = dyn_cast_or_null<CallInst>(U);
- if (!XI || XI == CI || XI->getParent() != CBB)
- continue;
-
- Function *UCallee = XI->getCalledFunction();
- if (!UCallee || !UCallee->getName().equals(PairName))
- continue;
-
- BasicBlock::iterator BBI = CI->getIterator();
- if (BBI == CI->getParent()->begin())
- break;
- --BBI;
- for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
- if (cast<Instruction>(BBI) == XI) {
- UI = XI;
- break;
- }
- }
- if (UI) break;
- }
-
- if (!UI) return false;
-
- // Merge the sin and cos.
-
- // for OpenCL 2.0 we have only generic implementation of sincos
- // function.
- AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
- nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
- Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf));
- if (!Fsincos) return false;
-
- BasicBlock::iterator ItOld = B.GetInsertPoint();
- AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
- B.SetInsertPoint(UI);
-
- Value *P = Alloc;
- Type *PTy = Fsincos->getFunctionType()->getParamType(1);
- // The allocaInst allocates the memory in private address space. This need
- // to be bitcasted to point to the address space of cos pointer type.
- // In OpenCL 2.0 this is generic, while in 1.2 that is private.
- if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
- P = B.CreateAddrSpaceCast(Alloc, PTy);
- CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
-
- LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
- << *Call << "\n");
-
- if (!isSin) { // CI->cos, UI->sin
- B.SetInsertPoint(&*ItOld);
- UI->replaceAllUsesWith(&*Call);
- Instruction *Reload = B.CreateLoad(Alloc);
- CI->replaceAllUsesWith(Reload);
- UI->eraseFromParent();
- CI->eraseFromParent();
- } else { // CI->sin, UI->cos
- Instruction *Reload = B.CreateLoad(Alloc);
- UI->replaceAllUsesWith(Reload);
- CI->replaceAllUsesWith(Call);
- UI->eraseFromParent();
- CI->eraseFromParent();
- }
- return true;
-}
-
-// Get insertion point at entry.
-BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
- Function * Func = UI->getParent()->getParent();
- BasicBlock * BB = &Func->getEntryBlock();
- assert(BB && "Entry block not found!");
- BasicBlock::iterator ItNew = BB->begin();
- return ItNew;
-}
-
-// Insert a AllocsInst at the beginning of function entry block.
-AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
- const char *prefix) {
- BasicBlock::iterator ItNew = getEntryIns(UI);
- Function *UCallee = UI->getCalledFunction();
- Type *RetType = UCallee->getReturnType();
- B.SetInsertPoint(&*ItNew);
- AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
- std::string(prefix) + UI->getName());
- Alloc->setAlignment(UCallee->getParent()->getDataLayout()
- .getTypeAllocSize(RetType));
- return Alloc;
-}
-
-bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
- double& Res0, double& Res1,
- Constant *copr0, Constant *copr1,
- Constant *copr2) {
- // By default, opr0/opr1/opr3 holds values of float/double type.
- // If they are not float/double, each function has to its
- // operand separately.
- double opr0=0.0, opr1=0.0, opr2=0.0;
- ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
- ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
- ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
- if (fpopr0) {
- opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
- ? fpopr0->getValueAPF().convertToDouble()
- : (double)fpopr0->getValueAPF().convertToFloat();
- }
-
- if (fpopr1) {
- opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
- ? fpopr1->getValueAPF().convertToDouble()
- : (double)fpopr1->getValueAPF().convertToFloat();
- }
-
- if (fpopr2) {
- opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
- ? fpopr2->getValueAPF().convertToDouble()
- : (double)fpopr2->getValueAPF().convertToFloat();
- }
-
- switch (FInfo.getId()) {
- default : return false;
-
- case AMDGPULibFunc::EI_ACOS:
- Res0 = acos(opr0);
- return true;
-
- case AMDGPULibFunc::EI_ACOSH:
- // acosh(x) == log(x + sqrt(x*x - 1))
- Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
- return true;
-
- case AMDGPULibFunc::EI_ACOSPI:
- Res0 = acos(opr0) / MATH_PI;
- return true;
-
- case AMDGPULibFunc::EI_ASIN:
- Res0 = asin(opr0);
- return true;
-
- case AMDGPULibFunc::EI_ASINH:
- // asinh(x) == log(x + sqrt(x*x + 1))
- Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
- return true;
-
- case AMDGPULibFunc::EI_ASINPI:
- Res0 = asin(opr0) / MATH_PI;
- return true;
-
- case AMDGPULibFunc::EI_ATAN:
- Res0 = atan(opr0);
- return true;
-
- case AMDGPULibFunc::EI_ATANH:
- // atanh(x) == (log(x+1) - log(x-1))/2;
- Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
- return true;
-
- case AMDGPULibFunc::EI_ATANPI:
- Res0 = atan(opr0) / MATH_PI;
- return true;
-
- case AMDGPULibFunc::EI_CBRT:
- Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
- return true;
-
- case AMDGPULibFunc::EI_COS:
- Res0 = cos(opr0);
- return true;
-
- case AMDGPULibFunc::EI_COSH:
- Res0 = cosh(opr0);
- return true;
-
- case AMDGPULibFunc::EI_COSPI:
- Res0 = cos(MATH_PI * opr0);
- return true;
-
- case AMDGPULibFunc::EI_EXP:
- Res0 = exp(opr0);
- return true;
-
- case AMDGPULibFunc::EI_EXP2:
- Res0 = pow(2.0, opr0);
- return true;
-
- case AMDGPULibFunc::EI_EXP10:
- Res0 = pow(10.0, opr0);
- return true;
-
- case AMDGPULibFunc::EI_EXPM1:
- Res0 = exp(opr0) - 1.0;
- return true;
-
- case AMDGPULibFunc::EI_LOG:
- Res0 = log(opr0);
- return true;
-
- case AMDGPULibFunc::EI_LOG2:
- Res0 = log(opr0) / log(2.0);
- return true;
-
- case AMDGPULibFunc::EI_LOG10:
- Res0 = log(opr0) / log(10.0);
- return true;
-
- case AMDGPULibFunc::EI_RSQRT:
- Res0 = 1.0 / sqrt(opr0);
- return true;
-
- case AMDGPULibFunc::EI_SIN:
- Res0 = sin(opr0);
- return true;
-
- case AMDGPULibFunc::EI_SINH:
- Res0 = sinh(opr0);
- return true;
-
- case AMDGPULibFunc::EI_SINPI:
- Res0 = sin(MATH_PI * opr0);
- return true;
-
- case AMDGPULibFunc::EI_SQRT:
- Res0 = sqrt(opr0);
- return true;
-
- case AMDGPULibFunc::EI_TAN:
- Res0 = tan(opr0);
- return true;
-
- case AMDGPULibFunc::EI_TANH:
- Res0 = tanh(opr0);
- return true;
-
- case AMDGPULibFunc::EI_TANPI:
- Res0 = tan(MATH_PI * opr0);
- return true;
-
- case AMDGPULibFunc::EI_RECIP:
- Res0 = 1.0 / opr0;
- return true;
-
- // two-arg functions
- case AMDGPULibFunc::EI_DIVIDE:
- Res0 = opr0 / opr1;
- return true;
-
- case AMDGPULibFunc::EI_POW:
- case AMDGPULibFunc::EI_POWR:
- Res0 = pow(opr0, opr1);
- return true;
-
- case AMDGPULibFunc::EI_POWN: {
- if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
- double val = (double)iopr1->getSExtValue();
- Res0 = pow(opr0, val);
- return true;
- }
- return false;
- }
-
- case AMDGPULibFunc::EI_ROOTN: {
- if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
- double val = (double)iopr1->getSExtValue();
- Res0 = pow(opr0, 1.0 / val);
- return true;
- }
- return false;
- }
-
- // with ptr arg
- case AMDGPULibFunc::EI_SINCOS:
- Res0 = sin(opr0);
- Res1 = cos(opr0);
- return true;
-
- // three-arg functions
- case AMDGPULibFunc::EI_FMA:
- case AMDGPULibFunc::EI_MAD:
- Res0 = opr0 * opr1 + opr2;
- return true;
- }
-
- return false;
-}
-
-bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
- int numArgs = (int)aCI->getNumArgOperands();
- if (numArgs > 3)
- return false;
-
- Constant *copr0 = nullptr;
- Constant *copr1 = nullptr;
- Constant *copr2 = nullptr;
- if (numArgs > 0) {
- if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
- return false;
- }
-
- if (numArgs > 1) {
- if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
- if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
- return false;
- }
- }
-
- if (numArgs > 2) {
- if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
- return false;
- }
-
- // At this point, all arguments to aCI are constants.
-
- // max vector size is 16, and sincos will generate two results.
- double DVal0[16], DVal1[16];
- bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
- if (getVecSize(FInfo) == 1) {
- if (!evaluateScalarMathFunc(FInfo, DVal0[0],
- DVal1[0], copr0, copr1, copr2)) {
- return false;
- }
- } else {
- ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
- ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
- ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
- for (int i=0; i < getVecSize(FInfo); ++i) {
- Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
- Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
- Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
- if (!evaluateScalarMathFunc(FInfo, DVal0[i],
- DVal1[i], celt0, celt1, celt2)) {
- return false;
- }
- }
- }
-
- LLVMContext &context = CI->getParent()->getParent()->getContext();
- Constant *nval0, *nval1;
- if (getVecSize(FInfo) == 1) {
- nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
- if (hasTwoResults)
- nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
- } else {
- if (getArgType(FInfo) == AMDGPULibFunc::F32) {
- SmallVector <float, 0> FVal0, FVal1;
- for (int i=0; i < getVecSize(FInfo); ++i)
- FVal0.push_back((float)DVal0[i]);
- ArrayRef<float> tmp0(FVal0);
- nval0 = ConstantDataVector::get(context, tmp0);
- if (hasTwoResults) {
- for (int i=0; i < getVecSize(FInfo); ++i)
- FVal1.push_back((float)DVal1[i]);
- ArrayRef<float> tmp1(FVal1);
- nval1 = ConstantDataVector::get(context, tmp1);
- }
- } else {
- ArrayRef<double> tmp0(DVal0);
- nval0 = ConstantDataVector::get(context, tmp0);
- if (hasTwoResults) {
- ArrayRef<double> tmp1(DVal1);
- nval1 = ConstantDataVector::get(context, tmp1);
- }
- }
- }
-
- if (hasTwoResults) {
- // sincos
- assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
- "math function with ptr arg not supported yet");
- new StoreInst(nval1, aCI->getArgOperand(1), aCI);
- }
-
- replaceCall(nval0);
- return true;
-}
-
-// Public interface to the Simplify LibCalls pass.
-FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) {
- return new AMDGPUSimplifyLibCalls(Opt);
-}
-
-FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
- return new AMDGPUUseNativeCalls();
-}
-
-static bool setFastFlags(Function &F, const TargetOptions &Options) {
- AttrBuilder B;
-
- if (Options.UnsafeFPMath || Options.NoInfsFPMath)
- B.addAttribute("no-infs-fp-math", "true");
- if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
- B.addAttribute("no-nans-fp-math", "true");
- if (Options.UnsafeFPMath) {
- B.addAttribute("less-precise-fpmad", "true");
- B.addAttribute("unsafe-fp-math", "true");
- }
-
- if (!B.hasAttributes())
- return false;
-
- F.addAttributes(AttributeList::FunctionIndex, B);
-
- return true;
-}
-
-bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
-
- bool Changed = false;
- auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
-
- LLVM_DEBUG(dbgs() << "AMDIC: process function ";
- F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
-
- if (!EnablePreLink)
- Changed |= setFastFlags(F, Options);
-
- for (auto &BB : F) {
- for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
- // Ignore non-calls.
- CallInst *CI = dyn_cast<CallInst>(I);
- ++I;
- if (!CI) continue;
-
- // Ignore indirect calls.
- Function *Callee = CI->getCalledFunction();
- if (Callee == 0) continue;
-
- LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
- dbgs().flush());
- if(Simplifier.fold(CI, AA))
- Changed = true;
- }
- }
- return Changed;
-}
-
-bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
- if (skipFunction(F) || UseNative.empty())
- return false;
-
- bool Changed = false;
- for (auto &BB : F) {
- for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
- // Ignore non-calls.
- CallInst *CI = dyn_cast<CallInst>(I);
- ++I;
- if (!CI) continue;
-
- // Ignore indirect calls.
- Function *Callee = CI->getCalledFunction();
- if (Callee == 0) continue;
-
- if(Simplifier.useNative(CI))
- Changed = true;
- }
- }
- return Changed;
-}