summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/Hexagon/BitTracker.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/Hexagon/BitTracker.cpp')
-rw-r--r--gnu/llvm/lib/Target/Hexagon/BitTracker.cpp1148
1 files changed, 0 insertions, 1148 deletions
diff --git a/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp b/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp
deleted file mode 100644
index 69529b0d116..00000000000
--- a/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp
+++ /dev/null
@@ -1,1148 +0,0 @@
-//===- BitTracker.cpp -----------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-// SSA-based bit propagation.
-//
-// The purpose of this code is, for a given virtual register, to provide
-// information about the value of each bit in the register. The values
-// of bits are represented by the class BitValue, and take one of four
-// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
-// "ref" value means that the bit is a copy of another bit (which itself
-// cannot be a copy of yet another bit---such chains are not allowed).
-// A "ref" value is associated with a BitRef structure, which indicates
-// which virtual register, and which bit in that register is the origin
-// of the value. For example, given an instruction
-// %2 = ASL %1, 1
-// assuming that nothing is known about bits of %1, bit 1 of %2
-// will be a "ref" to (%1, 0). If there is a subsequent instruction
-// %3 = ASL %2, 2
-// then bit 3 of %3 will be a "ref" to (%1, 0) as well.
-// The "bottom" case means that the bit's value cannot be determined,
-// and that this virtual register actually defines it. The "bottom" case
-// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
-// to self", so for the %1 above, the bit 0 of it will be a "ref" to
-// (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
-//
-// The tracker implements the Wegman-Zadeck algorithm, originally developed
-// for SSA-based constant propagation. Each register is represented as
-// a sequence of bits, with the convention that bit 0 is the least signi-
-// ficant bit. Each bit is propagated individually. The class RegisterCell
-// implements the register's representation, and is also the subject of
-// the lattice operations in the tracker.
-//
-// The intended usage of the bit tracker is to create a target-specific
-// machine instruction evaluator, pass the evaluator to the BitTracker
-// object, and run the tracker. The tracker will then collect the bit
-// value information for a given machine function. After that, it can be
-// queried for the cells for each virtual register.
-// Sample code:
-// const TargetSpecificEvaluator TSE(TRI, MRI);
-// BitTracker BT(TSE, MF);
-// BT.run();
-// ...
-// unsigned Reg = interestingRegister();
-// RegisterCell RC = BT.get(Reg);
-// if (RC[3].is(1))
-// Reg0bit3 = 1;
-//
-// The code below is intended to be fully target-independent.
-
-#include "BitTracker.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-
-using namespace llvm;
-
-using BT = BitTracker;
-
-namespace {
-
- // Local trickery to pretty print a register (without the whole "%number"
- // business).
- struct printv {
- printv(unsigned r) : R(r) {}
-
- unsigned R;
- };
-
- raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
- if (PV.R)
- OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
- else
- OS << 's';
- return OS;
- }
-
-} // end anonymous namespace
-
-namespace llvm {
-
- raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
- switch (BV.Type) {
- case BT::BitValue::Top:
- OS << 'T';
- break;
- case BT::BitValue::Zero:
- OS << '0';
- break;
- case BT::BitValue::One:
- OS << '1';
- break;
- case BT::BitValue::Ref:
- OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
- break;
- }
- return OS;
- }
-
- raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
- unsigned n = RC.Bits.size();
- OS << "{ w:" << n;
- // Instead of printing each bit value individually, try to group them
- // into logical segments, such as sequences of 0 or 1 bits or references
- // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
- // "Start" will be the index of the beginning of the most recent segment.
- unsigned Start = 0;
- bool SeqRef = false; // A sequence of refs to consecutive bits.
- bool ConstRef = false; // A sequence of refs to the same bit.
-
- for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
- const BT::BitValue &V = RC[i];
- const BT::BitValue &SV = RC[Start];
- bool IsRef = (V.Type == BT::BitValue::Ref);
- // If the current value is the same as Start, skip to the next one.
- if (!IsRef && V == SV)
- continue;
- if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
- if (Start+1 == i) {
- SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
- ConstRef = (V.RefI.Pos == SV.RefI.Pos);
- }
- if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
- continue;
- if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
- continue;
- }
-
- // The current value is different. Print the previous one and reset
- // the Start.
- OS << " [" << Start;
- unsigned Count = i - Start;
- if (Count == 1) {
- OS << "]:" << SV;
- } else {
- OS << '-' << i-1 << "]:";
- if (SV.Type == BT::BitValue::Ref && SeqRef)
- OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
- << SV.RefI.Pos+(Count-1) << ']';
- else
- OS << SV;
- }
- Start = i;
- SeqRef = ConstRef = false;
- }
-
- OS << " [" << Start;
- unsigned Count = n - Start;
- if (n-Start == 1) {
- OS << "]:" << RC[Start];
- } else {
- OS << '-' << n-1 << "]:";
- const BT::BitValue &SV = RC[Start];
- if (SV.Type == BT::BitValue::Ref && SeqRef)
- OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
- << SV.RefI.Pos+(Count-1) << ']';
- else
- OS << SV;
- }
- OS << " }";
-
- return OS;
- }
-
-} // end namespace llvm
-
-void BitTracker::print_cells(raw_ostream &OS) const {
- for (const std::pair<unsigned, RegisterCell> P : Map)
- dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
-}
-
-BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
- : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
-}
-
-BitTracker::~BitTracker() {
- delete &Map;
-}
-
-// If we were allowed to update a cell for a part of a register, the meet
-// operation would need to be parametrized by the register number and the
-// exact part of the register, so that the computer BitRefs correspond to
-// the actual bits of the "self" register.
-// While this cannot happen in the current implementation, I'm not sure
-// if this should be ruled out in the future.
-bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
- // An example when "meet" can be invoked with SelfR == 0 is a phi node
- // with a physical register as an operand.
- assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
- bool Changed = false;
- for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
- const BitValue &RCV = RC[i];
- Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
- }
- return Changed;
-}
-
-// Insert the entire cell RC into the current cell at position given by M.
-BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
- const BitMask &M) {
- uint16_t B = M.first(), E = M.last(), W = width();
- // Sanity: M must be a valid mask for *this.
- assert(B < W && E < W);
- // Sanity: the masked part of *this must have the same number of bits
- // as the source.
- assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|.
- assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|.
- if (B <= E) {
- for (uint16_t i = 0; i <= E-B; ++i)
- Bits[i+B] = RC[i];
- } else {
- for (uint16_t i = 0; i < W-B; ++i)
- Bits[i+B] = RC[i];
- for (uint16_t i = 0; i <= E; ++i)
- Bits[i] = RC[i+(W-B)];
- }
- return *this;
-}
-
-BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
- uint16_t B = M.first(), E = M.last(), W = width();
- assert(B < W && E < W);
- if (B <= E) {
- RegisterCell RC(E-B+1);
- for (uint16_t i = B; i <= E; ++i)
- RC.Bits[i-B] = Bits[i];
- return RC;
- }
-
- RegisterCell RC(E+(W-B)+1);
- for (uint16_t i = 0; i < W-B; ++i)
- RC.Bits[i] = Bits[i+B];
- for (uint16_t i = 0; i <= E; ++i)
- RC.Bits[i+(W-B)] = Bits[i];
- return RC;
-}
-
-BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
- // Rotate left (i.e. towards increasing bit indices).
- // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
- uint16_t W = width();
- Sh = Sh % W;
- if (Sh == 0)
- return *this;
-
- RegisterCell Tmp(W-Sh);
- // Tmp = [0..W-Sh-1].
- for (uint16_t i = 0; i < W-Sh; ++i)
- Tmp[i] = Bits[i];
- // Shift [W-Sh..W-1] to [0..Sh-1].
- for (uint16_t i = 0; i < Sh; ++i)
- Bits[i] = Bits[W-Sh+i];
- // Copy Tmp to [Sh..W-1].
- for (uint16_t i = 0; i < W-Sh; ++i)
- Bits[i+Sh] = Tmp.Bits[i];
- return *this;
-}
-
-BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
- const BitValue &V) {
- assert(B <= E);
- while (B < E)
- Bits[B++] = V;
- return *this;
-}
-
-BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
- // Append the cell given as the argument to the "this" cell.
- // Bit 0 of RC becomes bit W of the result, where W is this->width().
- uint16_t W = width(), WRC = RC.width();
- Bits.resize(W+WRC);
- for (uint16_t i = 0; i < WRC; ++i)
- Bits[i+W] = RC.Bits[i];
- return *this;
-}
-
-uint16_t BT::RegisterCell::ct(bool B) const {
- uint16_t W = width();
- uint16_t C = 0;
- BitValue V = B;
- while (C < W && Bits[C] == V)
- C++;
- return C;
-}
-
-uint16_t BT::RegisterCell::cl(bool B) const {
- uint16_t W = width();
- uint16_t C = 0;
- BitValue V = B;
- while (C < W && Bits[W-(C+1)] == V)
- C++;
- return C;
-}
-
-bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
- uint16_t W = Bits.size();
- if (RC.Bits.size() != W)
- return false;
- for (uint16_t i = 0; i < W; ++i)
- if (Bits[i] != RC[i])
- return false;
- return true;
-}
-
-BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
- for (unsigned i = 0, n = width(); i < n; ++i) {
- const BitValue &V = Bits[i];
- if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
- Bits[i].RefI = BitRef(R, i);
- }
- return *this;
-}
-
-uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
- // The general problem is with finding a register class that corresponds
- // to a given reference reg:sub. There can be several such classes, and
- // since we only care about the register size, it does not matter which
- // such class we would find.
- // The easiest way to accomplish what we want is to
- // 1. find a physical register PhysR from the same class as RR.Reg,
- // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
- // 3. find a register class that contains PhysS.
- if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
- const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
- return TRI.getRegSizeInBits(VC);
- }
- assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
- unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub);
- return getPhysRegBitWidth(PhysR);
-}
-
-BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
- const CellMapType &M) const {
- uint16_t BW = getRegBitWidth(RR);
-
- // Physical registers are assumed to be present in the map with an unknown
- // value. Don't actually insert anything in the map, just return the cell.
- if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
- return RegisterCell::self(0, BW);
-
- assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
- // For virtual registers that belong to a class that is not tracked,
- // generate an "unknown" value as well.
- const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
- if (!track(C))
- return RegisterCell::self(0, BW);
-
- CellMapType::const_iterator F = M.find(RR.Reg);
- if (F != M.end()) {
- if (!RR.Sub)
- return F->second;
- BitMask M = mask(RR.Reg, RR.Sub);
- return F->second.extract(M);
- }
- // If not found, create a "top" entry, but do not insert it in the map.
- return RegisterCell::top(BW);
-}
-
-void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
- CellMapType &M) const {
- // While updating the cell map can be done in a meaningful way for
- // a part of a register, it makes little sense to implement it as the
- // SSA representation would never contain such "partial definitions".
- if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
- return;
- assert(RR.Sub == 0 && "Unexpected sub-register in definition");
- // Eliminate all ref-to-reg-0 bit values: replace them with "self".
- M[RR.Reg] = RC.regify(RR.Reg);
-}
-
-// Check if the cell represents a compile-time integer value.
-bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
- uint16_t W = A.width();
- for (uint16_t i = 0; i < W; ++i)
- if (!A[i].is(0) && !A[i].is(1))
- return false;
- return true;
-}
-
-// Convert a cell to the integer value. The result must fit in uint64_t.
-uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
- assert(isInt(A));
- uint64_t Val = 0;
- uint16_t W = A.width();
- for (uint16_t i = 0; i < W; ++i) {
- Val <<= 1;
- Val |= A[i].is(1);
- }
- return Val;
-}
-
-// Evaluator helper functions. These implement some common operation on
-// register cells that can be used to implement target-specific instructions
-// in a target-specific evaluator.
-
-BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
- RegisterCell Res(W);
- // For bits beyond the 63rd, this will generate the sign bit of V.
- for (uint16_t i = 0; i < W; ++i) {
- Res[i] = BitValue(V & 1);
- V >>= 1;
- }
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
- const APInt &A = CI->getValue();
- uint16_t BW = A.getBitWidth();
- assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
- RegisterCell Res(BW);
- for (uint16_t i = 0; i < BW; ++i)
- Res[i] = A[i];
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width();
- assert(W == A2.width());
- RegisterCell Res(W);
- bool Carry = false;
- uint16_t I;
- for (I = 0; I < W; ++I) {
- const BitValue &V1 = A1[I];
- const BitValue &V2 = A2[I];
- if (!V1.num() || !V2.num())
- break;
- unsigned S = bool(V1) + bool(V2) + Carry;
- Res[I] = BitValue(S & 1);
- Carry = (S > 1);
- }
- for (; I < W; ++I) {
- const BitValue &V1 = A1[I];
- const BitValue &V2 = A2[I];
- // If the next bit is same as Carry, the result will be 0 plus the
- // other bit. The Carry bit will remain unchanged.
- if (V1.is(Carry))
- Res[I] = BitValue::ref(V2);
- else if (V2.is(Carry))
- Res[I] = BitValue::ref(V1);
- else
- break;
- }
- for (; I < W; ++I)
- Res[I] = BitValue::self();
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width();
- assert(W == A2.width());
- RegisterCell Res(W);
- bool Borrow = false;
- uint16_t I;
- for (I = 0; I < W; ++I) {
- const BitValue &V1 = A1[I];
- const BitValue &V2 = A2[I];
- if (!V1.num() || !V2.num())
- break;
- unsigned S = bool(V1) - bool(V2) - Borrow;
- Res[I] = BitValue(S & 1);
- Borrow = (S > 1);
- }
- for (; I < W; ++I) {
- const BitValue &V1 = A1[I];
- const BitValue &V2 = A2[I];
- if (V1.is(Borrow)) {
- Res[I] = BitValue::ref(V2);
- break;
- }
- if (V2.is(Borrow))
- Res[I] = BitValue::ref(V1);
- else
- break;
- }
- for (; I < W; ++I)
- Res[I] = BitValue::self();
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width() + A2.width();
- uint16_t Z = A1.ct(false) + A2.ct(false);
- RegisterCell Res(W);
- Res.fill(0, Z, BitValue::Zero);
- Res.fill(Z, W, BitValue::self());
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width() + A2.width();
- uint16_t Z = A1.ct(false) + A2.ct(false);
- RegisterCell Res(W);
- Res.fill(0, Z, BitValue::Zero);
- Res.fill(Z, W, BitValue::self());
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
- uint16_t Sh) const {
- assert(Sh <= A1.width());
- RegisterCell Res = RegisterCell::ref(A1);
- Res.rol(Sh);
- Res.fill(0, Sh, BitValue::Zero);
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
- uint16_t Sh) const {
- uint16_t W = A1.width();
- assert(Sh <= W);
- RegisterCell Res = RegisterCell::ref(A1);
- Res.rol(W-Sh);
- Res.fill(W-Sh, W, BitValue::Zero);
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
- uint16_t Sh) const {
- uint16_t W = A1.width();
- assert(Sh <= W);
- RegisterCell Res = RegisterCell::ref(A1);
- BitValue Sign = Res[W-1];
- Res.rol(W-Sh);
- Res.fill(W-Sh, W, Sign);
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width();
- assert(W == A2.width());
- RegisterCell Res(W);
- for (uint16_t i = 0; i < W; ++i) {
- const BitValue &V1 = A1[i];
- const BitValue &V2 = A2[i];
- if (V1.is(1))
- Res[i] = BitValue::ref(V2);
- else if (V2.is(1))
- Res[i] = BitValue::ref(V1);
- else if (V1.is(0) || V2.is(0))
- Res[i] = BitValue::Zero;
- else if (V1 == V2)
- Res[i] = V1;
- else
- Res[i] = BitValue::self();
- }
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width();
- assert(W == A2.width());
- RegisterCell Res(W);
- for (uint16_t i = 0; i < W; ++i) {
- const BitValue &V1 = A1[i];
- const BitValue &V2 = A2[i];
- if (V1.is(1) || V2.is(1))
- Res[i] = BitValue::One;
- else if (V1.is(0))
- Res[i] = BitValue::ref(V2);
- else if (V2.is(0))
- Res[i] = BitValue::ref(V1);
- else if (V1 == V2)
- Res[i] = V1;
- else
- Res[i] = BitValue::self();
- }
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
- const RegisterCell &A2) const {
- uint16_t W = A1.width();
- assert(W == A2.width());
- RegisterCell Res(W);
- for (uint16_t i = 0; i < W; ++i) {
- const BitValue &V1 = A1[i];
- const BitValue &V2 = A2[i];
- if (V1.is(0))
- Res[i] = BitValue::ref(V2);
- else if (V2.is(0))
- Res[i] = BitValue::ref(V1);
- else if (V1 == V2)
- Res[i] = BitValue::Zero;
- else
- Res[i] = BitValue::self();
- }
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
- uint16_t W = A1.width();
- RegisterCell Res(W);
- for (uint16_t i = 0; i < W; ++i) {
- const BitValue &V = A1[i];
- if (V.is(0))
- Res[i] = BitValue::One;
- else if (V.is(1))
- Res[i] = BitValue::Zero;
- else
- Res[i] = BitValue::self();
- }
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
- uint16_t BitN) const {
- assert(BitN < A1.width());
- RegisterCell Res = RegisterCell::ref(A1);
- Res[BitN] = BitValue::One;
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
- uint16_t BitN) const {
- assert(BitN < A1.width());
- RegisterCell Res = RegisterCell::ref(A1);
- Res[BitN] = BitValue::Zero;
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
- uint16_t W) const {
- uint16_t C = A1.cl(B), AW = A1.width();
- // If the last leading non-B bit is not a constant, then we don't know
- // the real count.
- if ((C < AW && A1[AW-1-C].num()) || C == AW)
- return eIMM(C, W);
- return RegisterCell::self(0, W);
-}
-
-BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
- uint16_t W) const {
- uint16_t C = A1.ct(B), AW = A1.width();
- // If the last trailing non-B bit is not a constant, then we don't know
- // the real count.
- if ((C < AW && A1[C].num()) || C == AW)
- return eIMM(C, W);
- return RegisterCell::self(0, W);
-}
-
-BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
- uint16_t FromN) const {
- uint16_t W = A1.width();
- assert(FromN <= W);
- RegisterCell Res = RegisterCell::ref(A1);
- BitValue Sign = Res[FromN-1];
- // Sign-extend "inreg".
- Res.fill(FromN, W, Sign);
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
- uint16_t FromN) const {
- uint16_t W = A1.width();
- assert(FromN <= W);
- RegisterCell Res = RegisterCell::ref(A1);
- Res.fill(FromN, W, BitValue::Zero);
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
- uint16_t B, uint16_t E) const {
- uint16_t W = A1.width();
- assert(B < W && E <= W);
- if (B == E)
- return RegisterCell(0);
- uint16_t Last = (E > 0) ? E-1 : W-1;
- RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
- // Return shorter cell.
- return Res;
-}
-
-BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
- const RegisterCell &A2, uint16_t AtN) const {
- uint16_t W1 = A1.width(), W2 = A2.width();
- (void)W1;
- assert(AtN < W1 && AtN+W2 <= W1);
- // Copy bits from A1, insert A2 at position AtN.
- RegisterCell Res = RegisterCell::ref(A1);
- if (W2 > 0)
- Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
- return Res;
-}
-
-BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
- assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
- uint16_t W = getRegBitWidth(Reg);
- assert(W > 0 && "Cannot generate mask for empty register");
- return BitMask(0, W-1);
-}
-
-uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
- assert(TargetRegisterInfo::isPhysicalRegister(Reg));
- const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
- return TRI.getRegSizeInBits(PC);
-}
-
-bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
- const CellMapType &Inputs,
- CellMapType &Outputs) const {
- unsigned Opc = MI.getOpcode();
- switch (Opc) {
- case TargetOpcode::REG_SEQUENCE: {
- RegisterRef RD = MI.getOperand(0);
- assert(RD.Sub == 0);
- RegisterRef RS = MI.getOperand(1);
- unsigned SS = MI.getOperand(2).getImm();
- RegisterRef RT = MI.getOperand(3);
- unsigned ST = MI.getOperand(4).getImm();
- assert(SS != ST);
-
- uint16_t W = getRegBitWidth(RD);
- RegisterCell Res(W);
- Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
- Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
- putCell(RD, Res, Outputs);
- break;
- }
-
- case TargetOpcode::COPY: {
- // COPY can transfer a smaller register into a wider one.
- // If that is the case, fill the remaining high bits with 0.
- RegisterRef RD = MI.getOperand(0);
- RegisterRef RS = MI.getOperand(1);
- assert(RD.Sub == 0);
- uint16_t WD = getRegBitWidth(RD);
- uint16_t WS = getRegBitWidth(RS);
- assert(WD >= WS);
- RegisterCell Src = getCell(RS, Inputs);
- RegisterCell Res(WD);
- Res.insert(Src, BitMask(0, WS-1));
- Res.fill(WS, WD, BitValue::Zero);
- putCell(RD, Res, Outputs);
- break;
- }
-
- default:
- return false;
- }
-
- return true;
-}
-
-bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
- const MachineInstr *InstB) const {
- // This is a comparison function for a priority queue: give higher priority
- // to earlier instructions.
- // This operator is used as "less", so returning "true" gives InstB higher
- // priority (because then InstA < InstB).
- if (InstA == InstB)
- return false;
- const MachineBasicBlock *BA = InstA->getParent();
- const MachineBasicBlock *BB = InstB->getParent();
- if (BA != BB) {
- // If the blocks are different, ideally the dominating block would
- // have a higher priority, but it may be too expensive to check.
- return BA->getNumber() > BB->getNumber();
- }
-
- auto getDist = [this] (const MachineInstr *MI) {
- auto F = Dist.find(MI);
- if (F != Dist.end())
- return F->second;
- MachineBasicBlock::const_iterator I = MI->getParent()->begin();
- MachineBasicBlock::const_iterator E = MI->getIterator();
- unsigned D = std::distance(I, E);
- Dist.insert(std::make_pair(MI, D));
- return D;
- };
-
- return getDist(InstA) > getDist(InstB);
-}
-
-// Main W-Z implementation.
-
-void BT::visitPHI(const MachineInstr &PI) {
- int ThisN = PI.getParent()->getNumber();
- if (Trace)
- dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;
-
- const MachineOperand &MD = PI.getOperand(0);
- assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
- RegisterRef DefRR(MD);
- uint16_t DefBW = ME.getRegBitWidth(DefRR);
-
- RegisterCell DefC = ME.getCell(DefRR, Map);
- if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow
- return;
-
- bool Changed = false;
-
- for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
- const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
- int PredN = PB->getNumber();
- if (Trace)
- dbgs() << " edge " << printMBBReference(*PB) << "->"
- << printMBBReference(*PI.getParent());
- if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
- if (Trace)
- dbgs() << " not executable\n";
- continue;
- }
-
- RegisterRef RU = PI.getOperand(i);
- RegisterCell ResC = ME.getCell(RU, Map);
- if (Trace)
- dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
- << " cell: " << ResC << "\n";
- Changed |= DefC.meet(ResC, DefRR.Reg);
- }
-
- if (Changed) {
- if (Trace)
- dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
- << " cell: " << DefC << "\n";
- ME.putCell(DefRR, DefC, Map);
- visitUsesOf(DefRR.Reg);
- }
-}
-
-void BT::visitNonBranch(const MachineInstr &MI) {
- if (Trace)
- dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
- if (MI.isDebugInstr())
- return;
- assert(!MI.isBranch() && "Unexpected branch instruction");
-
- CellMapType ResMap;
- bool Eval = ME.evaluate(MI, Map, ResMap);
-
- if (Trace && Eval) {
- for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || !MO.isUse())
- continue;
- RegisterRef RU(MO);
- dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
- << " cell: " << ME.getCell(RU, Map) << "\n";
- }
- dbgs() << "Outputs:\n";
- for (const std::pair<unsigned, RegisterCell> &P : ResMap) {
- RegisterRef RD(P.first);
- dbgs() << " " << printReg(P.first, &ME.TRI) << " cell: "
- << ME.getCell(RD, ResMap) << "\n";
- }
- }
-
- // Iterate over all definitions of the instruction, and update the
- // cells accordingly.
- for (const MachineOperand &MO : MI.operands()) {
- // Visit register defs only.
- if (!MO.isReg() || !MO.isDef())
- continue;
- RegisterRef RD(MO);
- assert(RD.Sub == 0 && "Unexpected sub-register in definition");
- if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
- continue;
-
- bool Changed = false;
- if (!Eval || ResMap.count(RD.Reg) == 0) {
- // Set to "ref" (aka "bottom").
- uint16_t DefBW = ME.getRegBitWidth(RD);
- RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
- if (RefC != ME.getCell(RD, Map)) {
- ME.putCell(RD, RefC, Map);
- Changed = true;
- }
- } else {
- RegisterCell DefC = ME.getCell(RD, Map);
- RegisterCell ResC = ME.getCell(RD, ResMap);
- // This is a non-phi instruction, so the values of the inputs come
- // from the same registers each time this instruction is evaluated.
- // During the propagation, the values of the inputs can become lowered
- // in the sense of the lattice operation, which may cause different
- // results to be calculated in subsequent evaluations. This should
- // not cause the bottoming of the result in the map, since the new
- // result is already reflecting the lowered inputs.
- for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
- BitValue &V = DefC[i];
- // Bits that are already "bottom" should not be updated.
- if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
- continue;
- // Same for those that are identical in DefC and ResC.
- if (V == ResC[i])
- continue;
- V = ResC[i];
- Changed = true;
- }
- if (Changed)
- ME.putCell(RD, DefC, Map);
- }
- if (Changed)
- visitUsesOf(RD.Reg);
- }
-}
-
-void BT::visitBranchesFrom(const MachineInstr &BI) {
- const MachineBasicBlock &B = *BI.getParent();
- MachineBasicBlock::const_iterator It = BI, End = B.end();
- BranchTargetList Targets, BTs;
- bool FallsThrough = true, DefaultToAll = false;
- int ThisN = B.getNumber();
-
- do {
- BTs.clear();
- const MachineInstr &MI = *It;
- if (Trace)
- dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
- assert(MI.isBranch() && "Expecting branch instruction");
- InstrExec.insert(&MI);
- bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
- if (!Eval) {
- // If the evaluation failed, we will add all targets. Keep going in
- // the loop to mark all executable branches as such.
- DefaultToAll = true;
- FallsThrough = true;
- if (Trace)
- dbgs() << " failed to evaluate: will add all CFG successors\n";
- } else if (!DefaultToAll) {
- // If evaluated successfully add the targets to the cumulative list.
- if (Trace) {
- dbgs() << " adding targets:";
- for (unsigned i = 0, n = BTs.size(); i < n; ++i)
- dbgs() << " " << printMBBReference(*BTs[i]);
- if (FallsThrough)
- dbgs() << "\n falls through\n";
- else
- dbgs() << "\n does not fall through\n";
- }
- Targets.insert(BTs.begin(), BTs.end());
- }
- ++It;
- } while (FallsThrough && It != End);
-
- if (!DefaultToAll) {
- // Need to add all CFG successors that lead to EH landing pads.
- // There won't be explicit branches to these blocks, but they must
- // be processed.
- for (const MachineBasicBlock *SB : B.successors()) {
- if (SB->isEHPad())
- Targets.insert(SB);
- }
- if (FallsThrough) {
- MachineFunction::const_iterator BIt = B.getIterator();
- MachineFunction::const_iterator Next = std::next(BIt);
- if (Next != MF.end())
- Targets.insert(&*Next);
- }
- } else {
- for (const MachineBasicBlock *SB : B.successors())
- Targets.insert(SB);
- }
-
- for (const MachineBasicBlock *TB : Targets)
- FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
-}
-
-void BT::visitUsesOf(unsigned Reg) {
- if (Trace)
- dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
- << " cell: " << ME.getCell(Reg, Map) << '\n';
-
- for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
- UseQ.push(&UseI);
-}
-
-BT::RegisterCell BT::get(RegisterRef RR) const {
- return ME.getCell(RR, Map);
-}
-
-void BT::put(RegisterRef RR, const RegisterCell &RC) {
- ME.putCell(RR, RC, Map);
-}
-
-// Replace all references to bits from OldRR with the corresponding bits
-// in NewRR.
-void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
- assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
- BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
- BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
- uint16_t OMB = OM.first(), OME = OM.last();
- uint16_t NMB = NM.first(), NME = NM.last();
- (void)NME;
- assert((OME-OMB == NME-NMB) &&
- "Substituting registers of different lengths");
- for (std::pair<const unsigned, RegisterCell> &P : Map) {
- RegisterCell &RC = P.second;
- for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
- BitValue &V = RC[i];
- if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
- continue;
- if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
- continue;
- V.RefI.Reg = NewRR.Reg;
- V.RefI.Pos += NMB-OMB;
- }
- }
-}
-
-// Check if the block has been "executed" during propagation. (If not, the
-// block is dead, but it may still appear to be reachable.)
-bool BT::reached(const MachineBasicBlock *B) const {
- int BN = B->getNumber();
- assert(BN >= 0);
- return ReachedBB.count(BN);
-}
-
-// Visit an individual instruction. This could be a newly added instruction,
-// or one that has been modified by an optimization.
-void BT::visit(const MachineInstr &MI) {
- assert(!MI.isBranch() && "Only non-branches are allowed");
- InstrExec.insert(&MI);
- visitNonBranch(MI);
- // Make sure to flush all the pending use updates.
- runUseQueue();
- // The call to visitNonBranch could propagate the changes until a branch
- // is actually visited. This could result in adding CFG edges to the flow
- // queue. Since the queue won't be processed, clear it.
- while (!FlowQ.empty())
- FlowQ.pop();
-}
-
-void BT::reset() {
- EdgeExec.clear();
- InstrExec.clear();
- Map.clear();
- ReachedBB.clear();
- ReachedBB.reserve(MF.size());
-}
-
-void BT::runEdgeQueue(BitVector &BlockScanned) {
- while (!FlowQ.empty()) {
- CFGEdge Edge = FlowQ.front();
- FlowQ.pop();
-
- if (EdgeExec.count(Edge))
- return;
- EdgeExec.insert(Edge);
- ReachedBB.insert(Edge.second);
-
- const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
- MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
- // Visit PHI nodes first.
- while (It != End && It->isPHI()) {
- const MachineInstr &PI = *It++;
- InstrExec.insert(&PI);
- visitPHI(PI);
- }
-
- // If this block has already been visited through a flow graph edge,
- // then the instructions have already been processed. Any updates to
- // the cells would now only happen through visitUsesOf...
- if (BlockScanned[Edge.second])
- return;
- BlockScanned[Edge.second] = true;
-
- // Visit non-branch instructions.
- while (It != End && !It->isBranch()) {
- const MachineInstr &MI = *It++;
- InstrExec.insert(&MI);
- visitNonBranch(MI);
- }
- // If block end has been reached, add the fall-through edge to the queue.
- if (It == End) {
- MachineFunction::const_iterator BIt = B.getIterator();
- MachineFunction::const_iterator Next = std::next(BIt);
- if (Next != MF.end() && B.isSuccessor(&*Next)) {
- int ThisN = B.getNumber();
- int NextN = Next->getNumber();
- FlowQ.push(CFGEdge(ThisN, NextN));
- }
- } else {
- // Handle the remaining sequence of branches. This function will update
- // the work queue.
- visitBranchesFrom(*It);
- }
- } // while (!FlowQ->empty())
-}
-
-void BT::runUseQueue() {
- while (!UseQ.empty()) {
- MachineInstr &UseI = *UseQ.front();
- UseQ.pop();
-
- if (!InstrExec.count(&UseI))
- continue;
- if (UseI.isPHI())
- visitPHI(UseI);
- else if (!UseI.isBranch())
- visitNonBranch(UseI);
- else
- visitBranchesFrom(UseI);
- }
-}
-
-void BT::run() {
- reset();
- assert(FlowQ.empty());
-
- using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
- const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
-
- unsigned MaxBN = 0;
- for (const MachineBasicBlock &B : MF) {
- assert(B.getNumber() >= 0 && "Disconnected block");
- unsigned BN = B.getNumber();
- if (BN > MaxBN)
- MaxBN = BN;
- }
-
- // Keep track of visited blocks.
- BitVector BlockScanned(MaxBN+1);
-
- int EntryN = Entry->getNumber();
- // Generate a fake edge to get something to start with.
- FlowQ.push(CFGEdge(-1, EntryN));
-
- while (!FlowQ.empty() || !UseQ.empty()) {
- runEdgeQueue(BlockScanned);
- runUseQueue();
- }
- UseQ.reset();
-
- if (Trace)
- print_cells(dbgs() << "Cells after propagation:\n");
-}