diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/Hexagon/BitTracker.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/Hexagon/BitTracker.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/Hexagon/BitTracker.cpp | 1148 |
1 files changed, 0 insertions, 1148 deletions
diff --git a/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp b/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp deleted file mode 100644 index 69529b0d116..00000000000 --- a/gnu/llvm/lib/Target/Hexagon/BitTracker.cpp +++ /dev/null @@ -1,1148 +0,0 @@ -//===- BitTracker.cpp -----------------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -// SSA-based bit propagation. -// -// The purpose of this code is, for a given virtual register, to provide -// information about the value of each bit in the register. The values -// of bits are represented by the class BitValue, and take one of four -// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the -// "ref" value means that the bit is a copy of another bit (which itself -// cannot be a copy of yet another bit---such chains are not allowed). -// A "ref" value is associated with a BitRef structure, which indicates -// which virtual register, and which bit in that register is the origin -// of the value. For example, given an instruction -// %2 = ASL %1, 1 -// assuming that nothing is known about bits of %1, bit 1 of %2 -// will be a "ref" to (%1, 0). If there is a subsequent instruction -// %3 = ASL %2, 2 -// then bit 3 of %3 will be a "ref" to (%1, 0) as well. -// The "bottom" case means that the bit's value cannot be determined, -// and that this virtual register actually defines it. The "bottom" case -// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref -// to self", so for the %1 above, the bit 0 of it will be a "ref" to -// (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. -// -// The tracker implements the Wegman-Zadeck algorithm, originally developed -// for SSA-based constant propagation. Each register is represented as -// a sequence of bits, with the convention that bit 0 is the least signi- -// ficant bit. Each bit is propagated individually. The class RegisterCell -// implements the register's representation, and is also the subject of -// the lattice operations in the tracker. -// -// The intended usage of the bit tracker is to create a target-specific -// machine instruction evaluator, pass the evaluator to the BitTracker -// object, and run the tracker. The tracker will then collect the bit -// value information for a given machine function. After that, it can be -// queried for the cells for each virtual register. -// Sample code: -// const TargetSpecificEvaluator TSE(TRI, MRI); -// BitTracker BT(TSE, MF); -// BT.run(); -// ... -// unsigned Reg = interestingRegister(); -// RegisterCell RC = BT.get(Reg); -// if (RC[3].is(1)) -// Reg0bit3 = 1; -// -// The code below is intended to be fully target-independent. - -#include "BitTracker.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/IR/Constants.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <cassert> -#include <cstdint> -#include <iterator> - -using namespace llvm; - -using BT = BitTracker; - -namespace { - - // Local trickery to pretty print a register (without the whole "%number" - // business). - struct printv { - printv(unsigned r) : R(r) {} - - unsigned R; - }; - - raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { - if (PV.R) - OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); - else - OS << 's'; - return OS; - } - -} // end anonymous namespace - -namespace llvm { - - raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { - switch (BV.Type) { - case BT::BitValue::Top: - OS << 'T'; - break; - case BT::BitValue::Zero: - OS << '0'; - break; - case BT::BitValue::One: - OS << '1'; - break; - case BT::BitValue::Ref: - OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; - break; - } - return OS; - } - - raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { - unsigned n = RC.Bits.size(); - OS << "{ w:" << n; - // Instead of printing each bit value individually, try to group them - // into logical segments, such as sequences of 0 or 1 bits or references - // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). - // "Start" will be the index of the beginning of the most recent segment. - unsigned Start = 0; - bool SeqRef = false; // A sequence of refs to consecutive bits. - bool ConstRef = false; // A sequence of refs to the same bit. - - for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { - const BT::BitValue &V = RC[i]; - const BT::BitValue &SV = RC[Start]; - bool IsRef = (V.Type == BT::BitValue::Ref); - // If the current value is the same as Start, skip to the next one. - if (!IsRef && V == SV) - continue; - if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { - if (Start+1 == i) { - SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); - ConstRef = (V.RefI.Pos == SV.RefI.Pos); - } - if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) - continue; - if (ConstRef && V.RefI.Pos == SV.RefI.Pos) - continue; - } - - // The current value is different. Print the previous one and reset - // the Start. - OS << " [" << Start; - unsigned Count = i - Start; - if (Count == 1) { - OS << "]:" << SV; - } else { - OS << '-' << i-1 << "]:"; - if (SV.Type == BT::BitValue::Ref && SeqRef) - OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' - << SV.RefI.Pos+(Count-1) << ']'; - else - OS << SV; - } - Start = i; - SeqRef = ConstRef = false; - } - - OS << " [" << Start; - unsigned Count = n - Start; - if (n-Start == 1) { - OS << "]:" << RC[Start]; - } else { - OS << '-' << n-1 << "]:"; - const BT::BitValue &SV = RC[Start]; - if (SV.Type == BT::BitValue::Ref && SeqRef) - OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' - << SV.RefI.Pos+(Count-1) << ']'; - else - OS << SV; - } - OS << " }"; - - return OS; - } - -} // end namespace llvm - -void BitTracker::print_cells(raw_ostream &OS) const { - for (const std::pair<unsigned, RegisterCell> P : Map) - dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n"; -} - -BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) - : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { -} - -BitTracker::~BitTracker() { - delete ⤅ -} - -// If we were allowed to update a cell for a part of a register, the meet -// operation would need to be parametrized by the register number and the -// exact part of the register, so that the computer BitRefs correspond to -// the actual bits of the "self" register. -// While this cannot happen in the current implementation, I'm not sure -// if this should be ruled out in the future. -bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { - // An example when "meet" can be invoked with SelfR == 0 is a phi node - // with a physical register as an operand. - assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); - bool Changed = false; - for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { - const BitValue &RCV = RC[i]; - Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); - } - return Changed; -} - -// Insert the entire cell RC into the current cell at position given by M. -BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, - const BitMask &M) { - uint16_t B = M.first(), E = M.last(), W = width(); - // Sanity: M must be a valid mask for *this. - assert(B < W && E < W); - // Sanity: the masked part of *this must have the same number of bits - // as the source. - assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. - assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. - if (B <= E) { - for (uint16_t i = 0; i <= E-B; ++i) - Bits[i+B] = RC[i]; - } else { - for (uint16_t i = 0; i < W-B; ++i) - Bits[i+B] = RC[i]; - for (uint16_t i = 0; i <= E; ++i) - Bits[i] = RC[i+(W-B)]; - } - return *this; -} - -BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { - uint16_t B = M.first(), E = M.last(), W = width(); - assert(B < W && E < W); - if (B <= E) { - RegisterCell RC(E-B+1); - for (uint16_t i = B; i <= E; ++i) - RC.Bits[i-B] = Bits[i]; - return RC; - } - - RegisterCell RC(E+(W-B)+1); - for (uint16_t i = 0; i < W-B; ++i) - RC.Bits[i] = Bits[i+B]; - for (uint16_t i = 0; i <= E; ++i) - RC.Bits[i+(W-B)] = Bits[i]; - return RC; -} - -BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { - // Rotate left (i.e. towards increasing bit indices). - // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] - uint16_t W = width(); - Sh = Sh % W; - if (Sh == 0) - return *this; - - RegisterCell Tmp(W-Sh); - // Tmp = [0..W-Sh-1]. - for (uint16_t i = 0; i < W-Sh; ++i) - Tmp[i] = Bits[i]; - // Shift [W-Sh..W-1] to [0..Sh-1]. - for (uint16_t i = 0; i < Sh; ++i) - Bits[i] = Bits[W-Sh+i]; - // Copy Tmp to [Sh..W-1]. - for (uint16_t i = 0; i < W-Sh; ++i) - Bits[i+Sh] = Tmp.Bits[i]; - return *this; -} - -BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, - const BitValue &V) { - assert(B <= E); - while (B < E) - Bits[B++] = V; - return *this; -} - -BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { - // Append the cell given as the argument to the "this" cell. - // Bit 0 of RC becomes bit W of the result, where W is this->width(). - uint16_t W = width(), WRC = RC.width(); - Bits.resize(W+WRC); - for (uint16_t i = 0; i < WRC; ++i) - Bits[i+W] = RC.Bits[i]; - return *this; -} - -uint16_t BT::RegisterCell::ct(bool B) const { - uint16_t W = width(); - uint16_t C = 0; - BitValue V = B; - while (C < W && Bits[C] == V) - C++; - return C; -} - -uint16_t BT::RegisterCell::cl(bool B) const { - uint16_t W = width(); - uint16_t C = 0; - BitValue V = B; - while (C < W && Bits[W-(C+1)] == V) - C++; - return C; -} - -bool BT::RegisterCell::operator== (const RegisterCell &RC) const { - uint16_t W = Bits.size(); - if (RC.Bits.size() != W) - return false; - for (uint16_t i = 0; i < W; ++i) - if (Bits[i] != RC[i]) - return false; - return true; -} - -BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { - for (unsigned i = 0, n = width(); i < n; ++i) { - const BitValue &V = Bits[i]; - if (V.Type == BitValue::Ref && V.RefI.Reg == 0) - Bits[i].RefI = BitRef(R, i); - } - return *this; -} - -uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { - // The general problem is with finding a register class that corresponds - // to a given reference reg:sub. There can be several such classes, and - // since we only care about the register size, it does not matter which - // such class we would find. - // The easiest way to accomplish what we want is to - // 1. find a physical register PhysR from the same class as RR.Reg, - // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, - // 3. find a register class that contains PhysS. - if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { - const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub); - return TRI.getRegSizeInBits(VC); - } - assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); - unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub); - return getPhysRegBitWidth(PhysR); -} - -BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, - const CellMapType &M) const { - uint16_t BW = getRegBitWidth(RR); - - // Physical registers are assumed to be present in the map with an unknown - // value. Don't actually insert anything in the map, just return the cell. - if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) - return RegisterCell::self(0, BW); - - assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); - // For virtual registers that belong to a class that is not tracked, - // generate an "unknown" value as well. - const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); - if (!track(C)) - return RegisterCell::self(0, BW); - - CellMapType::const_iterator F = M.find(RR.Reg); - if (F != M.end()) { - if (!RR.Sub) - return F->second; - BitMask M = mask(RR.Reg, RR.Sub); - return F->second.extract(M); - } - // If not found, create a "top" entry, but do not insert it in the map. - return RegisterCell::top(BW); -} - -void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, - CellMapType &M) const { - // While updating the cell map can be done in a meaningful way for - // a part of a register, it makes little sense to implement it as the - // SSA representation would never contain such "partial definitions". - if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) - return; - assert(RR.Sub == 0 && "Unexpected sub-register in definition"); - // Eliminate all ref-to-reg-0 bit values: replace them with "self". - M[RR.Reg] = RC.regify(RR.Reg); -} - -// Check if the cell represents a compile-time integer value. -bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { - uint16_t W = A.width(); - for (uint16_t i = 0; i < W; ++i) - if (!A[i].is(0) && !A[i].is(1)) - return false; - return true; -} - -// Convert a cell to the integer value. The result must fit in uint64_t. -uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { - assert(isInt(A)); - uint64_t Val = 0; - uint16_t W = A.width(); - for (uint16_t i = 0; i < W; ++i) { - Val <<= 1; - Val |= A[i].is(1); - } - return Val; -} - -// Evaluator helper functions. These implement some common operation on -// register cells that can be used to implement target-specific instructions -// in a target-specific evaluator. - -BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { - RegisterCell Res(W); - // For bits beyond the 63rd, this will generate the sign bit of V. - for (uint16_t i = 0; i < W; ++i) { - Res[i] = BitValue(V & 1); - V >>= 1; - } - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { - const APInt &A = CI->getValue(); - uint16_t BW = A.getBitWidth(); - assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); - RegisterCell Res(BW); - for (uint16_t i = 0; i < BW; ++i) - Res[i] = A[i]; - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width(); - assert(W == A2.width()); - RegisterCell Res(W); - bool Carry = false; - uint16_t I; - for (I = 0; I < W; ++I) { - const BitValue &V1 = A1[I]; - const BitValue &V2 = A2[I]; - if (!V1.num() || !V2.num()) - break; - unsigned S = bool(V1) + bool(V2) + Carry; - Res[I] = BitValue(S & 1); - Carry = (S > 1); - } - for (; I < W; ++I) { - const BitValue &V1 = A1[I]; - const BitValue &V2 = A2[I]; - // If the next bit is same as Carry, the result will be 0 plus the - // other bit. The Carry bit will remain unchanged. - if (V1.is(Carry)) - Res[I] = BitValue::ref(V2); - else if (V2.is(Carry)) - Res[I] = BitValue::ref(V1); - else - break; - } - for (; I < W; ++I) - Res[I] = BitValue::self(); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width(); - assert(W == A2.width()); - RegisterCell Res(W); - bool Borrow = false; - uint16_t I; - for (I = 0; I < W; ++I) { - const BitValue &V1 = A1[I]; - const BitValue &V2 = A2[I]; - if (!V1.num() || !V2.num()) - break; - unsigned S = bool(V1) - bool(V2) - Borrow; - Res[I] = BitValue(S & 1); - Borrow = (S > 1); - } - for (; I < W; ++I) { - const BitValue &V1 = A1[I]; - const BitValue &V2 = A2[I]; - if (V1.is(Borrow)) { - Res[I] = BitValue::ref(V2); - break; - } - if (V2.is(Borrow)) - Res[I] = BitValue::ref(V1); - else - break; - } - for (; I < W; ++I) - Res[I] = BitValue::self(); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width() + A2.width(); - uint16_t Z = A1.ct(false) + A2.ct(false); - RegisterCell Res(W); - Res.fill(0, Z, BitValue::Zero); - Res.fill(Z, W, BitValue::self()); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width() + A2.width(); - uint16_t Z = A1.ct(false) + A2.ct(false); - RegisterCell Res(W); - Res.fill(0, Z, BitValue::Zero); - Res.fill(Z, W, BitValue::self()); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, - uint16_t Sh) const { - assert(Sh <= A1.width()); - RegisterCell Res = RegisterCell::ref(A1); - Res.rol(Sh); - Res.fill(0, Sh, BitValue::Zero); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, - uint16_t Sh) const { - uint16_t W = A1.width(); - assert(Sh <= W); - RegisterCell Res = RegisterCell::ref(A1); - Res.rol(W-Sh); - Res.fill(W-Sh, W, BitValue::Zero); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, - uint16_t Sh) const { - uint16_t W = A1.width(); - assert(Sh <= W); - RegisterCell Res = RegisterCell::ref(A1); - BitValue Sign = Res[W-1]; - Res.rol(W-Sh); - Res.fill(W-Sh, W, Sign); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width(); - assert(W == A2.width()); - RegisterCell Res(W); - for (uint16_t i = 0; i < W; ++i) { - const BitValue &V1 = A1[i]; - const BitValue &V2 = A2[i]; - if (V1.is(1)) - Res[i] = BitValue::ref(V2); - else if (V2.is(1)) - Res[i] = BitValue::ref(V1); - else if (V1.is(0) || V2.is(0)) - Res[i] = BitValue::Zero; - else if (V1 == V2) - Res[i] = V1; - else - Res[i] = BitValue::self(); - } - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width(); - assert(W == A2.width()); - RegisterCell Res(W); - for (uint16_t i = 0; i < W; ++i) { - const BitValue &V1 = A1[i]; - const BitValue &V2 = A2[i]; - if (V1.is(1) || V2.is(1)) - Res[i] = BitValue::One; - else if (V1.is(0)) - Res[i] = BitValue::ref(V2); - else if (V2.is(0)) - Res[i] = BitValue::ref(V1); - else if (V1 == V2) - Res[i] = V1; - else - Res[i] = BitValue::self(); - } - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, - const RegisterCell &A2) const { - uint16_t W = A1.width(); - assert(W == A2.width()); - RegisterCell Res(W); - for (uint16_t i = 0; i < W; ++i) { - const BitValue &V1 = A1[i]; - const BitValue &V2 = A2[i]; - if (V1.is(0)) - Res[i] = BitValue::ref(V2); - else if (V2.is(0)) - Res[i] = BitValue::ref(V1); - else if (V1 == V2) - Res[i] = BitValue::Zero; - else - Res[i] = BitValue::self(); - } - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { - uint16_t W = A1.width(); - RegisterCell Res(W); - for (uint16_t i = 0; i < W; ++i) { - const BitValue &V = A1[i]; - if (V.is(0)) - Res[i] = BitValue::One; - else if (V.is(1)) - Res[i] = BitValue::Zero; - else - Res[i] = BitValue::self(); - } - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, - uint16_t BitN) const { - assert(BitN < A1.width()); - RegisterCell Res = RegisterCell::ref(A1); - Res[BitN] = BitValue::One; - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, - uint16_t BitN) const { - assert(BitN < A1.width()); - RegisterCell Res = RegisterCell::ref(A1); - Res[BitN] = BitValue::Zero; - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, - uint16_t W) const { - uint16_t C = A1.cl(B), AW = A1.width(); - // If the last leading non-B bit is not a constant, then we don't know - // the real count. - if ((C < AW && A1[AW-1-C].num()) || C == AW) - return eIMM(C, W); - return RegisterCell::self(0, W); -} - -BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, - uint16_t W) const { - uint16_t C = A1.ct(B), AW = A1.width(); - // If the last trailing non-B bit is not a constant, then we don't know - // the real count. - if ((C < AW && A1[C].num()) || C == AW) - return eIMM(C, W); - return RegisterCell::self(0, W); -} - -BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, - uint16_t FromN) const { - uint16_t W = A1.width(); - assert(FromN <= W); - RegisterCell Res = RegisterCell::ref(A1); - BitValue Sign = Res[FromN-1]; - // Sign-extend "inreg". - Res.fill(FromN, W, Sign); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, - uint16_t FromN) const { - uint16_t W = A1.width(); - assert(FromN <= W); - RegisterCell Res = RegisterCell::ref(A1); - Res.fill(FromN, W, BitValue::Zero); - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, - uint16_t B, uint16_t E) const { - uint16_t W = A1.width(); - assert(B < W && E <= W); - if (B == E) - return RegisterCell(0); - uint16_t Last = (E > 0) ? E-1 : W-1; - RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); - // Return shorter cell. - return Res; -} - -BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, - const RegisterCell &A2, uint16_t AtN) const { - uint16_t W1 = A1.width(), W2 = A2.width(); - (void)W1; - assert(AtN < W1 && AtN+W2 <= W1); - // Copy bits from A1, insert A2 at position AtN. - RegisterCell Res = RegisterCell::ref(A1); - if (W2 > 0) - Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); - return Res; -} - -BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { - assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); - uint16_t W = getRegBitWidth(Reg); - assert(W > 0 && "Cannot generate mask for empty register"); - return BitMask(0, W-1); -} - -uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const { - assert(TargetRegisterInfo::isPhysicalRegister(Reg)); - const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); - return TRI.getRegSizeInBits(PC); -} - -bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, - const CellMapType &Inputs, - CellMapType &Outputs) const { - unsigned Opc = MI.getOpcode(); - switch (Opc) { - case TargetOpcode::REG_SEQUENCE: { - RegisterRef RD = MI.getOperand(0); - assert(RD.Sub == 0); - RegisterRef RS = MI.getOperand(1); - unsigned SS = MI.getOperand(2).getImm(); - RegisterRef RT = MI.getOperand(3); - unsigned ST = MI.getOperand(4).getImm(); - assert(SS != ST); - - uint16_t W = getRegBitWidth(RD); - RegisterCell Res(W); - Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); - Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); - putCell(RD, Res, Outputs); - break; - } - - case TargetOpcode::COPY: { - // COPY can transfer a smaller register into a wider one. - // If that is the case, fill the remaining high bits with 0. - RegisterRef RD = MI.getOperand(0); - RegisterRef RS = MI.getOperand(1); - assert(RD.Sub == 0); - uint16_t WD = getRegBitWidth(RD); - uint16_t WS = getRegBitWidth(RS); - assert(WD >= WS); - RegisterCell Src = getCell(RS, Inputs); - RegisterCell Res(WD); - Res.insert(Src, BitMask(0, WS-1)); - Res.fill(WS, WD, BitValue::Zero); - putCell(RD, Res, Outputs); - break; - } - - default: - return false; - } - - return true; -} - -bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, - const MachineInstr *InstB) const { - // This is a comparison function for a priority queue: give higher priority - // to earlier instructions. - // This operator is used as "less", so returning "true" gives InstB higher - // priority (because then InstA < InstB). - if (InstA == InstB) - return false; - const MachineBasicBlock *BA = InstA->getParent(); - const MachineBasicBlock *BB = InstB->getParent(); - if (BA != BB) { - // If the blocks are different, ideally the dominating block would - // have a higher priority, but it may be too expensive to check. - return BA->getNumber() > BB->getNumber(); - } - - auto getDist = [this] (const MachineInstr *MI) { - auto F = Dist.find(MI); - if (F != Dist.end()) - return F->second; - MachineBasicBlock::const_iterator I = MI->getParent()->begin(); - MachineBasicBlock::const_iterator E = MI->getIterator(); - unsigned D = std::distance(I, E); - Dist.insert(std::make_pair(MI, D)); - return D; - }; - - return getDist(InstA) > getDist(InstB); -} - -// Main W-Z implementation. - -void BT::visitPHI(const MachineInstr &PI) { - int ThisN = PI.getParent()->getNumber(); - if (Trace) - dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI; - - const MachineOperand &MD = PI.getOperand(0); - assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); - RegisterRef DefRR(MD); - uint16_t DefBW = ME.getRegBitWidth(DefRR); - - RegisterCell DefC = ME.getCell(DefRR, Map); - if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow - return; - - bool Changed = false; - - for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { - const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); - int PredN = PB->getNumber(); - if (Trace) - dbgs() << " edge " << printMBBReference(*PB) << "->" - << printMBBReference(*PI.getParent()); - if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { - if (Trace) - dbgs() << " not executable\n"; - continue; - } - - RegisterRef RU = PI.getOperand(i); - RegisterCell ResC = ME.getCell(RU, Map); - if (Trace) - dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) - << " cell: " << ResC << "\n"; - Changed |= DefC.meet(ResC, DefRR.Reg); - } - - if (Changed) { - if (Trace) - dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub) - << " cell: " << DefC << "\n"; - ME.putCell(DefRR, DefC, Map); - visitUsesOf(DefRR.Reg); - } -} - -void BT::visitNonBranch(const MachineInstr &MI) { - if (Trace) - dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI; - if (MI.isDebugInstr()) - return; - assert(!MI.isBranch() && "Unexpected branch instruction"); - - CellMapType ResMap; - bool Eval = ME.evaluate(MI, Map, ResMap); - - if (Trace && Eval) { - for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { - const MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.isUse()) - continue; - RegisterRef RU(MO); - dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) - << " cell: " << ME.getCell(RU, Map) << "\n"; - } - dbgs() << "Outputs:\n"; - for (const std::pair<unsigned, RegisterCell> &P : ResMap) { - RegisterRef RD(P.first); - dbgs() << " " << printReg(P.first, &ME.TRI) << " cell: " - << ME.getCell(RD, ResMap) << "\n"; - } - } - - // Iterate over all definitions of the instruction, and update the - // cells accordingly. - for (const MachineOperand &MO : MI.operands()) { - // Visit register defs only. - if (!MO.isReg() || !MO.isDef()) - continue; - RegisterRef RD(MO); - assert(RD.Sub == 0 && "Unexpected sub-register in definition"); - if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) - continue; - - bool Changed = false; - if (!Eval || ResMap.count(RD.Reg) == 0) { - // Set to "ref" (aka "bottom"). - uint16_t DefBW = ME.getRegBitWidth(RD); - RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); - if (RefC != ME.getCell(RD, Map)) { - ME.putCell(RD, RefC, Map); - Changed = true; - } - } else { - RegisterCell DefC = ME.getCell(RD, Map); - RegisterCell ResC = ME.getCell(RD, ResMap); - // This is a non-phi instruction, so the values of the inputs come - // from the same registers each time this instruction is evaluated. - // During the propagation, the values of the inputs can become lowered - // in the sense of the lattice operation, which may cause different - // results to be calculated in subsequent evaluations. This should - // not cause the bottoming of the result in the map, since the new - // result is already reflecting the lowered inputs. - for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { - BitValue &V = DefC[i]; - // Bits that are already "bottom" should not be updated. - if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) - continue; - // Same for those that are identical in DefC and ResC. - if (V == ResC[i]) - continue; - V = ResC[i]; - Changed = true; - } - if (Changed) - ME.putCell(RD, DefC, Map); - } - if (Changed) - visitUsesOf(RD.Reg); - } -} - -void BT::visitBranchesFrom(const MachineInstr &BI) { - const MachineBasicBlock &B = *BI.getParent(); - MachineBasicBlock::const_iterator It = BI, End = B.end(); - BranchTargetList Targets, BTs; - bool FallsThrough = true, DefaultToAll = false; - int ThisN = B.getNumber(); - - do { - BTs.clear(); - const MachineInstr &MI = *It; - if (Trace) - dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI; - assert(MI.isBranch() && "Expecting branch instruction"); - InstrExec.insert(&MI); - bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); - if (!Eval) { - // If the evaluation failed, we will add all targets. Keep going in - // the loop to mark all executable branches as such. - DefaultToAll = true; - FallsThrough = true; - if (Trace) - dbgs() << " failed to evaluate: will add all CFG successors\n"; - } else if (!DefaultToAll) { - // If evaluated successfully add the targets to the cumulative list. - if (Trace) { - dbgs() << " adding targets:"; - for (unsigned i = 0, n = BTs.size(); i < n; ++i) - dbgs() << " " << printMBBReference(*BTs[i]); - if (FallsThrough) - dbgs() << "\n falls through\n"; - else - dbgs() << "\n does not fall through\n"; - } - Targets.insert(BTs.begin(), BTs.end()); - } - ++It; - } while (FallsThrough && It != End); - - if (!DefaultToAll) { - // Need to add all CFG successors that lead to EH landing pads. - // There won't be explicit branches to these blocks, but they must - // be processed. - for (const MachineBasicBlock *SB : B.successors()) { - if (SB->isEHPad()) - Targets.insert(SB); - } - if (FallsThrough) { - MachineFunction::const_iterator BIt = B.getIterator(); - MachineFunction::const_iterator Next = std::next(BIt); - if (Next != MF.end()) - Targets.insert(&*Next); - } - } else { - for (const MachineBasicBlock *SB : B.successors()) - Targets.insert(SB); - } - - for (const MachineBasicBlock *TB : Targets) - FlowQ.push(CFGEdge(ThisN, TB->getNumber())); -} - -void BT::visitUsesOf(unsigned Reg) { - if (Trace) - dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI) - << " cell: " << ME.getCell(Reg, Map) << '\n'; - - for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) - UseQ.push(&UseI); -} - -BT::RegisterCell BT::get(RegisterRef RR) const { - return ME.getCell(RR, Map); -} - -void BT::put(RegisterRef RR, const RegisterCell &RC) { - ME.putCell(RR, RC, Map); -} - -// Replace all references to bits from OldRR with the corresponding bits -// in NewRR. -void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { - assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); - BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); - BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); - uint16_t OMB = OM.first(), OME = OM.last(); - uint16_t NMB = NM.first(), NME = NM.last(); - (void)NME; - assert((OME-OMB == NME-NMB) && - "Substituting registers of different lengths"); - for (std::pair<const unsigned, RegisterCell> &P : Map) { - RegisterCell &RC = P.second; - for (uint16_t i = 0, w = RC.width(); i < w; ++i) { - BitValue &V = RC[i]; - if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) - continue; - if (V.RefI.Pos < OMB || V.RefI.Pos > OME) - continue; - V.RefI.Reg = NewRR.Reg; - V.RefI.Pos += NMB-OMB; - } - } -} - -// Check if the block has been "executed" during propagation. (If not, the -// block is dead, but it may still appear to be reachable.) -bool BT::reached(const MachineBasicBlock *B) const { - int BN = B->getNumber(); - assert(BN >= 0); - return ReachedBB.count(BN); -} - -// Visit an individual instruction. This could be a newly added instruction, -// or one that has been modified by an optimization. -void BT::visit(const MachineInstr &MI) { - assert(!MI.isBranch() && "Only non-branches are allowed"); - InstrExec.insert(&MI); - visitNonBranch(MI); - // Make sure to flush all the pending use updates. - runUseQueue(); - // The call to visitNonBranch could propagate the changes until a branch - // is actually visited. This could result in adding CFG edges to the flow - // queue. Since the queue won't be processed, clear it. - while (!FlowQ.empty()) - FlowQ.pop(); -} - -void BT::reset() { - EdgeExec.clear(); - InstrExec.clear(); - Map.clear(); - ReachedBB.clear(); - ReachedBB.reserve(MF.size()); -} - -void BT::runEdgeQueue(BitVector &BlockScanned) { - while (!FlowQ.empty()) { - CFGEdge Edge = FlowQ.front(); - FlowQ.pop(); - - if (EdgeExec.count(Edge)) - return; - EdgeExec.insert(Edge); - ReachedBB.insert(Edge.second); - - const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); - MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); - // Visit PHI nodes first. - while (It != End && It->isPHI()) { - const MachineInstr &PI = *It++; - InstrExec.insert(&PI); - visitPHI(PI); - } - - // If this block has already been visited through a flow graph edge, - // then the instructions have already been processed. Any updates to - // the cells would now only happen through visitUsesOf... - if (BlockScanned[Edge.second]) - return; - BlockScanned[Edge.second] = true; - - // Visit non-branch instructions. - while (It != End && !It->isBranch()) { - const MachineInstr &MI = *It++; - InstrExec.insert(&MI); - visitNonBranch(MI); - } - // If block end has been reached, add the fall-through edge to the queue. - if (It == End) { - MachineFunction::const_iterator BIt = B.getIterator(); - MachineFunction::const_iterator Next = std::next(BIt); - if (Next != MF.end() && B.isSuccessor(&*Next)) { - int ThisN = B.getNumber(); - int NextN = Next->getNumber(); - FlowQ.push(CFGEdge(ThisN, NextN)); - } - } else { - // Handle the remaining sequence of branches. This function will update - // the work queue. - visitBranchesFrom(*It); - } - } // while (!FlowQ->empty()) -} - -void BT::runUseQueue() { - while (!UseQ.empty()) { - MachineInstr &UseI = *UseQ.front(); - UseQ.pop(); - - if (!InstrExec.count(&UseI)) - continue; - if (UseI.isPHI()) - visitPHI(UseI); - else if (!UseI.isBranch()) - visitNonBranch(UseI); - else - visitBranchesFrom(UseI); - } -} - -void BT::run() { - reset(); - assert(FlowQ.empty()); - - using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; - const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); - - unsigned MaxBN = 0; - for (const MachineBasicBlock &B : MF) { - assert(B.getNumber() >= 0 && "Disconnected block"); - unsigned BN = B.getNumber(); - if (BN > MaxBN) - MaxBN = BN; - } - - // Keep track of visited blocks. - BitVector BlockScanned(MaxBN+1); - - int EntryN = Entry->getNumber(); - // Generate a fake edge to get something to start with. - FlowQ.push(CFGEdge(-1, EntryN)); - - while (!FlowQ.empty() || !UseQ.empty()) { - runEdgeQueue(BlockScanned); - runUseQueue(); - } - UseQ.reset(); - - if (Trace) - print_cells(dbgs() << "Cells after propagation:\n"); -} |
