summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp')
-rw-r--r--gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp1292
1 files changed, 0 insertions, 1292 deletions
diff --git a/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp b/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
deleted file mode 100644
index 92b6da871a4..00000000000
--- a/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
+++ /dev/null
@@ -1,1292 +0,0 @@
-//===- HexagonBitTracker.cpp ----------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "HexagonBitTracker.h"
-#include "Hexagon.h"
-#include "HexagonInstrInfo.h"
-#include "HexagonRegisterInfo.h"
-#include "HexagonSubtarget.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <cstdlib>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-using BT = BitTracker;
-
-HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
- MachineRegisterInfo &mri,
- const HexagonInstrInfo &tii,
- MachineFunction &mf)
- : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
- // Populate the VRX map (VR to extension-type).
- // Go over all the formal parameters of the function. If a given parameter
- // P is sign- or zero-extended, locate the virtual register holding that
- // parameter and create an entry in the VRX map indicating the type of ex-
- // tension (and the source type).
- // This is a bit complicated to do accurately, since the memory layout in-
- // formation is necessary to precisely determine whether an aggregate para-
- // meter will be passed in a register or in memory. What is given in MRI
- // is the association between the physical register that is live-in (i.e.
- // holds an argument), and the virtual register that this value will be
- // copied into. This, by itself, is not sufficient to map back the virtual
- // register to a formal parameter from Function (since consecutive live-ins
- // from MRI may not correspond to consecutive formal parameters from Func-
- // tion). To avoid the complications with in-memory arguments, only consi-
- // der the initial sequence of formal parameters that are known to be
- // passed via registers.
- unsigned InVirtReg, InPhysReg = 0;
-
- for (const Argument &Arg : MF.getFunction().args()) {
- Type *ATy = Arg.getType();
- unsigned Width = 0;
- if (ATy->isIntegerTy())
- Width = ATy->getIntegerBitWidth();
- else if (ATy->isPointerTy())
- Width = 32;
- // If pointer size is not set through target data, it will default to
- // Module::AnyPointerSize.
- if (Width == 0 || Width > 64)
- break;
- if (Arg.hasAttribute(Attribute::ByVal))
- continue;
- InPhysReg = getNextPhysReg(InPhysReg, Width);
- if (!InPhysReg)
- break;
- InVirtReg = getVirtRegFor(InPhysReg);
- if (!InVirtReg)
- continue;
- if (Arg.hasAttribute(Attribute::SExt))
- VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
- else if (Arg.hasAttribute(Attribute::ZExt))
- VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
- }
-}
-
-BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
- if (Sub == 0)
- return MachineEvaluator::mask(Reg, 0);
- const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
- unsigned ID = RC.getID();
- uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
- const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
- bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
- switch (ID) {
- case Hexagon::DoubleRegsRegClassID:
- case Hexagon::HvxWRRegClassID:
- case Hexagon::HvxVQRRegClassID:
- return IsSubLo ? BT::BitMask(0, RW-1)
- : BT::BitMask(RW, 2*RW-1);
- default:
- break;
- }
-#ifndef NDEBUG
- dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
- << TRI.getRegClassName(&RC) << '\n';
-#endif
- llvm_unreachable("Unexpected register/subregister");
-}
-
-uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
- assert(TargetRegisterInfo::isPhysicalRegister(Reg));
-
- using namespace Hexagon;
- const auto &HST = MF.getSubtarget<HexagonSubtarget>();
- if (HST.useHVXOps()) {
- for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
- HvxVQRRegClass})
- if (RC.contains(Reg))
- return TRI.getRegSizeInBits(RC);
- }
- // Default treatment for other physical registers.
- if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
- return TRI.getRegSizeInBits(*RC);
-
- llvm_unreachable(
- (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
-}
-
-const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
- const TargetRegisterClass &RC, unsigned Idx) const {
- if (Idx == 0)
- return RC;
-
-#ifndef NDEBUG
- const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
- bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
- bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
- assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
-#endif
-
- switch (RC.getID()) {
- case Hexagon::DoubleRegsRegClassID:
- return Hexagon::IntRegsRegClass;
- case Hexagon::HvxWRRegClassID:
- return Hexagon::HvxVRRegClass;
- case Hexagon::HvxVQRRegClassID:
- return Hexagon::HvxWRRegClass;
- default:
- break;
- }
-#ifndef NDEBUG
- dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
-#endif
- llvm_unreachable("Unimplemented combination of reg class/subreg idx");
-}
-
-namespace {
-
-class RegisterRefs {
- std::vector<BT::RegisterRef> Vector;
-
-public:
- RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
- for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
- if (MO.isReg())
- Vector[i] = BT::RegisterRef(MO);
- // For indices that don't correspond to registers, the entry will
- // remain constructed via the default constructor.
- }
- }
-
- size_t size() const { return Vector.size(); }
-
- const BT::RegisterRef &operator[](unsigned n) const {
- // The main purpose of this operator is to assert with bad argument.
- assert(n < Vector.size());
- return Vector[n];
- }
-};
-
-} // end anonymous namespace
-
-bool HexagonEvaluator::evaluate(const MachineInstr &MI,
- const CellMapType &Inputs,
- CellMapType &Outputs) const {
- using namespace Hexagon;
-
- unsigned NumDefs = 0;
-
- // Sanity verification: there should not be any defs with subregisters.
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isReg() || !MO.isDef())
- continue;
- NumDefs++;
- assert(MO.getSubReg() == 0);
- }
-
- if (NumDefs == 0)
- return false;
-
- unsigned Opc = MI.getOpcode();
-
- if (MI.mayLoad()) {
- switch (Opc) {
- // These instructions may be marked as mayLoad, but they are generating
- // immediate values, so skip them.
- case CONST32:
- case CONST64:
- break;
- default:
- return evaluateLoad(MI, Inputs, Outputs);
- }
- }
-
- // Check COPY instructions that copy formal parameters into virtual
- // registers. Such parameters can be sign- or zero-extended at the
- // call site, and we should take advantage of this knowledge. The MRI
- // keeps a list of pairs of live-in physical and virtual registers,
- // which provides information about which virtual registers will hold
- // the argument values. The function will still contain instructions
- // defining those virtual registers, and in practice those are COPY
- // instructions from a physical to a virtual register. In such cases,
- // applying the argument extension to the virtual register can be seen
- // as simply mirroring the extension that had already been applied to
- // the physical register at the call site. If the defining instruction
- // was not a COPY, it would not be clear how to mirror that extension
- // on the callee's side. For that reason, only check COPY instructions
- // for potential extensions.
- if (MI.isCopy()) {
- if (evaluateFormalCopy(MI, Inputs, Outputs))
- return true;
- }
-
- // Beyond this point, if any operand is a global, skip that instruction.
- // The reason is that certain instructions that can take an immediate
- // operand can also have a global symbol in that operand. To avoid
- // checking what kind of operand a given instruction has individually
- // for each instruction, do it here. Global symbols as operands gene-
- // rally do not provide any useful information.
- for (const MachineOperand &MO : MI.operands()) {
- if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
- MO.isCPI())
- return false;
- }
-
- RegisterRefs Reg(MI);
-#define op(i) MI.getOperand(i)
-#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
-#define im(i) MI.getOperand(i).getImm()
-
- // If the instruction has no register operands, skip it.
- if (Reg.size() == 0)
- return false;
-
- // Record result for register in operand 0.
- auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
- -> bool {
- putCell(Reg[0], Val, Outputs);
- return true;
- };
- // Get the cell corresponding to the N-th operand.
- auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
- uint16_t W) -> BT::RegisterCell {
- const MachineOperand &Op = MI.getOperand(N);
- if (Op.isImm())
- return eIMM(Op.getImm(), W);
- if (!Op.isReg())
- return RegisterCell::self(0, W);
- assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
- return rc(N);
- };
- // Extract RW low bits of the cell.
- auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
- -> BT::RegisterCell {
- assert(RW <= RC.width());
- return eXTR(RC, 0, RW);
- };
- // Extract RW high bits of the cell.
- auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
- -> BT::RegisterCell {
- uint16_t W = RC.width();
- assert(RW <= W);
- return eXTR(RC, W-RW, W);
- };
- // Extract N-th halfword (counting from the least significant position).
- auto half = [this] (const BT::RegisterCell &RC, unsigned N)
- -> BT::RegisterCell {
- assert(N*16+16 <= RC.width());
- return eXTR(RC, N*16, N*16+16);
- };
- // Shuffle bits (pick even/odd from cells and merge into result).
- auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
- uint16_t BW, bool Odd) -> BT::RegisterCell {
- uint16_t I = Odd, Ws = Rs.width();
- assert(Ws == Rt.width());
- RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
- I += 2;
- while (I*BW < Ws) {
- RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
- I += 2;
- }
- return RC;
- };
-
- // The bitwidth of the 0th operand. In most (if not all) of the
- // instructions below, the 0th operand is the defined register.
- // Pre-compute the bitwidth here, because it is needed in many cases
- // cases below.
- uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
-
- // Register id of the 0th operand. It can be 0.
- unsigned Reg0 = Reg[0].Reg;
-
- switch (Opc) {
- // Transfer immediate:
-
- case A2_tfrsi:
- case A2_tfrpi:
- case CONST32:
- case CONST64:
- return rr0(eIMM(im(1), W0), Outputs);
- case PS_false:
- return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
- case PS_true:
- return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
- case PS_fi: {
- int FI = op(1).getIndex();
- int Off = op(2).getImm();
- unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
- unsigned L = countTrailingZeros(A);
- RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
- RC.fill(0, L, BT::BitValue::Zero);
- return rr0(RC, Outputs);
- }
-
- // Transfer register:
-
- case A2_tfr:
- case A2_tfrp:
- case C2_pxfer_map:
- return rr0(rc(1), Outputs);
- case C2_tfrpr: {
- uint16_t RW = W0;
- uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
- assert(PW <= RW);
- RegisterCell PC = eXTR(rc(1), 0, PW);
- RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
- RC.fill(PW, RW, BT::BitValue::Zero);
- return rr0(RC, Outputs);
- }
- case C2_tfrrp: {
- uint16_t RW = W0;
- uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
- RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
- RC.fill(PW, RW, BT::BitValue::Zero);
- return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
- }
-
- // Arithmetic:
-
- case A2_abs:
- case A2_absp:
- // TODO
- break;
-
- case A2_addsp: {
- uint16_t W1 = getRegBitWidth(Reg[1]);
- assert(W0 == 64 && W1 == 32);
- RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
- RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
- return rr0(RC, Outputs);
- }
- case A2_add:
- case A2_addp:
- return rr0(eADD(rc(1), rc(2)), Outputs);
- case A2_addi:
- return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
- case S4_addi_asl_ri: {
- RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case S4_addi_lsr_ri: {
- RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case S4_addaddi: {
- RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
- return rr0(RC, Outputs);
- }
- case M4_mpyri_addi: {
- RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
- RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M4_mpyrr_addi: {
- RegisterCell M = eMLS(rc(2), rc(3));
- RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M4_mpyri_addr_u2: {
- RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
- RegisterCell RC = eADD(rc(1), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M4_mpyri_addr: {
- RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
- RegisterCell RC = eADD(rc(1), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M4_mpyrr_addr: {
- RegisterCell M = eMLS(rc(2), rc(3));
- RegisterCell RC = eADD(rc(1), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case S4_subaddi: {
- RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
- return rr0(RC, Outputs);
- }
- case M2_accii: {
- RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
- return rr0(RC, Outputs);
- }
- case M2_acci: {
- RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
- return rr0(RC, Outputs);
- }
- case M2_subacc: {
- RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
- return rr0(RC, Outputs);
- }
- case S2_addasl_rrri: {
- RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case C4_addipc: {
- RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
- RPC.fill(0, 2, BT::BitValue::Zero);
- return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
- }
- case A2_sub:
- case A2_subp:
- return rr0(eSUB(rc(1), rc(2)), Outputs);
- case A2_subri:
- return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
- case S4_subi_asl_ri: {
- RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case S4_subi_lsr_ri: {
- RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case M2_naccii: {
- RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
- return rr0(RC, Outputs);
- }
- case M2_nacci: {
- RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
- return rr0(RC, Outputs);
- }
- // 32-bit negation is done by "Rd = A2_subri 0, Rs"
- case A2_negp:
- return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
-
- case M2_mpy_up: {
- RegisterCell M = eMLS(rc(1), rc(2));
- return rr0(hi(M, W0), Outputs);
- }
- case M2_dpmpyss_s0:
- return rr0(eMLS(rc(1), rc(2)), Outputs);
- case M2_dpmpyss_acc_s0:
- return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
- case M2_dpmpyss_nac_s0:
- return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
- case M2_mpyi: {
- RegisterCell M = eMLS(rc(1), rc(2));
- return rr0(lo(M, W0), Outputs);
- }
- case M2_macsip: {
- RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
- RegisterCell RC = eADD(rc(1), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M2_macsin: {
- RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
- RegisterCell RC = eSUB(rc(1), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M2_maci: {
- RegisterCell M = eMLS(rc(2), rc(3));
- RegisterCell RC = eADD(rc(1), lo(M, W0));
- return rr0(RC, Outputs);
- }
- case M2_mpysmi: {
- RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
- return rr0(lo(M, 32), Outputs);
- }
- case M2_mpysin: {
- RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
- return rr0(lo(M, 32), Outputs);
- }
- case M2_mpysip: {
- RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
- return rr0(lo(M, 32), Outputs);
- }
- case M2_mpyu_up: {
- RegisterCell M = eMLU(rc(1), rc(2));
- return rr0(hi(M, W0), Outputs);
- }
- case M2_dpmpyuu_s0:
- return rr0(eMLU(rc(1), rc(2)), Outputs);
- case M2_dpmpyuu_acc_s0:
- return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
- case M2_dpmpyuu_nac_s0:
- return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
- //case M2_mpysu_up:
-
- // Logical/bitwise:
-
- case A2_andir:
- return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
- case A2_and:
- case A2_andp:
- return rr0(eAND(rc(1), rc(2)), Outputs);
- case A4_andn:
- case A4_andnp:
- return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
- case S4_andi_asl_ri: {
- RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case S4_andi_lsr_ri: {
- RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case M4_and_and:
- return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
- case M4_and_andn:
- return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
- case M4_and_or:
- return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
- case M4_and_xor:
- return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
- case A2_orir:
- return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
- case A2_or:
- case A2_orp:
- return rr0(eORL(rc(1), rc(2)), Outputs);
- case A4_orn:
- case A4_ornp:
- return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
- case S4_ori_asl_ri: {
- RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case S4_ori_lsr_ri: {
- RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
- return rr0(RC, Outputs);
- }
- case M4_or_and:
- return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
- case M4_or_andn:
- return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
- case S4_or_andi:
- case S4_or_andix: {
- RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
- return rr0(RC, Outputs);
- }
- case S4_or_ori: {
- RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
- return rr0(RC, Outputs);
- }
- case M4_or_or:
- return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
- case M4_or_xor:
- return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
- case A2_xor:
- case A2_xorp:
- return rr0(eXOR(rc(1), rc(2)), Outputs);
- case M4_xor_and:
- return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
- case M4_xor_andn:
- return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
- case M4_xor_or:
- return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
- case M4_xor_xacc:
- return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
- case A2_not:
- case A2_notp:
- return rr0(eNOT(rc(1)), Outputs);
-
- case S2_asl_i_r:
- case S2_asl_i_p:
- return rr0(eASL(rc(1), im(2)), Outputs);
- case A2_aslh:
- return rr0(eASL(rc(1), 16), Outputs);
- case S2_asl_i_r_acc:
- case S2_asl_i_p_acc:
- return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
- case S2_asl_i_r_nac:
- case S2_asl_i_p_nac:
- return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
- case S2_asl_i_r_and:
- case S2_asl_i_p_and:
- return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
- case S2_asl_i_r_or:
- case S2_asl_i_p_or:
- return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
- case S2_asl_i_r_xacc:
- case S2_asl_i_p_xacc:
- return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
- case S2_asl_i_vh:
- case S2_asl_i_vw:
- // TODO
- break;
-
- case S2_asr_i_r:
- case S2_asr_i_p:
- return rr0(eASR(rc(1), im(2)), Outputs);
- case A2_asrh:
- return rr0(eASR(rc(1), 16), Outputs);
- case S2_asr_i_r_acc:
- case S2_asr_i_p_acc:
- return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
- case S2_asr_i_r_nac:
- case S2_asr_i_p_nac:
- return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
- case S2_asr_i_r_and:
- case S2_asr_i_p_and:
- return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
- case S2_asr_i_r_or:
- case S2_asr_i_p_or:
- return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
- case S2_asr_i_r_rnd: {
- // The input is first sign-extended to 64 bits, then the output
- // is truncated back to 32 bits.
- assert(W0 == 32);
- RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
- RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
- return rr0(eXTR(RC, 0, W0), Outputs);
- }
- case S2_asr_i_r_rnd_goodsyntax: {
- int64_t S = im(2);
- if (S == 0)
- return rr0(rc(1), Outputs);
- // Result: S2_asr_i_r_rnd Rs, u5-1
- RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
- RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
- return rr0(eXTR(RC, 0, W0), Outputs);
- }
- case S2_asr_r_vh:
- case S2_asr_i_vw:
- case S2_asr_i_svw_trun:
- // TODO
- break;
-
- case S2_lsr_i_r:
- case S2_lsr_i_p:
- return rr0(eLSR(rc(1), im(2)), Outputs);
- case S2_lsr_i_r_acc:
- case S2_lsr_i_p_acc:
- return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
- case S2_lsr_i_r_nac:
- case S2_lsr_i_p_nac:
- return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
- case S2_lsr_i_r_and:
- case S2_lsr_i_p_and:
- return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
- case S2_lsr_i_r_or:
- case S2_lsr_i_p_or:
- return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
- case S2_lsr_i_r_xacc:
- case S2_lsr_i_p_xacc:
- return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
-
- case S2_clrbit_i: {
- RegisterCell RC = rc(1);
- RC[im(2)] = BT::BitValue::Zero;
- return rr0(RC, Outputs);
- }
- case S2_setbit_i: {
- RegisterCell RC = rc(1);
- RC[im(2)] = BT::BitValue::One;
- return rr0(RC, Outputs);
- }
- case S2_togglebit_i: {
- RegisterCell RC = rc(1);
- uint16_t BX = im(2);
- RC[BX] = RC[BX].is(0) ? BT::BitValue::One
- : RC[BX].is(1) ? BT::BitValue::Zero
- : BT::BitValue::self();
- return rr0(RC, Outputs);
- }
-
- case A4_bitspliti: {
- uint16_t W1 = getRegBitWidth(Reg[1]);
- uint16_t BX = im(2);
- // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
- const BT::BitValue Zero = BT::BitValue::Zero;
- RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
- .fill(W1+(W1-BX), W0, Zero);
- RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
- RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
- return rr0(RC, Outputs);
- }
- case S4_extract:
- case S4_extractp:
- case S2_extractu:
- case S2_extractup: {
- uint16_t Wd = im(2), Of = im(3);
- assert(Wd <= W0);
- if (Wd == 0)
- return rr0(eIMM(0, W0), Outputs);
- // If the width extends beyond the register size, pad the register
- // with 0 bits.
- RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
- RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
- // Ext is short, need to extend it with 0s or sign bit.
- RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
- if (Opc == S2_extractu || Opc == S2_extractup)
- return rr0(eZXT(RC, Wd), Outputs);
- return rr0(eSXT(RC, Wd), Outputs);
- }
- case S2_insert:
- case S2_insertp: {
- uint16_t Wd = im(3), Of = im(4);
- assert(Wd < W0 && Of < W0);
- // If Wd+Of exceeds W0, the inserted bits are truncated.
- if (Wd+Of > W0)
- Wd = W0-Of;
- if (Wd == 0)
- return rr0(rc(1), Outputs);
- return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
- }
-
- // Bit permutations:
-
- case A2_combineii:
- case A4_combineii:
- case A4_combineir:
- case A4_combineri:
- case A2_combinew:
- case V6_vcombine:
- assert(W0 % 2 == 0);
- return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
- case A2_combine_ll:
- case A2_combine_lh:
- case A2_combine_hl:
- case A2_combine_hh: {
- assert(W0 == 32);
- assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
- // Low half in the output is 0 for _ll and _hl, 1 otherwise:
- unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
- // High half in the output is 0 for _ll and _lh, 1 otherwise:
- unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
- RegisterCell R1 = rc(1);
- RegisterCell R2 = rc(2);
- RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
- return rr0(RC, Outputs);
- }
- case S2_packhl: {
- assert(W0 == 64);
- assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
- RegisterCell R1 = rc(1);
- RegisterCell R2 = rc(2);
- RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
- .cat(half(R1, 1));
- return rr0(RC, Outputs);
- }
- case S2_shuffeb: {
- RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
- return rr0(RC, Outputs);
- }
- case S2_shuffeh: {
- RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
- return rr0(RC, Outputs);
- }
- case S2_shuffob: {
- RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
- return rr0(RC, Outputs);
- }
- case S2_shuffoh: {
- RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
- return rr0(RC, Outputs);
- }
- case C2_mask: {
- uint16_t WR = W0;
- uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
- assert(WR == 64 && WP == 8);
- RegisterCell R1 = rc(1);
- RegisterCell RC(WR);
- for (uint16_t i = 0; i < WP; ++i) {
- const BT::BitValue &V = R1[i];
- BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
- RC.fill(i*8, i*8+8, F);
- }
- return rr0(RC, Outputs);
- }
-
- // Mux:
-
- case C2_muxii:
- case C2_muxir:
- case C2_muxri:
- case C2_mux: {
- BT::BitValue PC0 = rc(1)[0];
- RegisterCell R2 = cop(2, W0);
- RegisterCell R3 = cop(3, W0);
- if (PC0.is(0) || PC0.is(1))
- return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
- R2.meet(R3, Reg[0].Reg);
- return rr0(R2, Outputs);
- }
- case C2_vmux:
- // TODO
- break;
-
- // Sign- and zero-extension:
-
- case A2_sxtb:
- return rr0(eSXT(rc(1), 8), Outputs);
- case A2_sxth:
- return rr0(eSXT(rc(1), 16), Outputs);
- case A2_sxtw: {
- uint16_t W1 = getRegBitWidth(Reg[1]);
- assert(W0 == 64 && W1 == 32);
- RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
- return rr0(RC, Outputs);
- }
- case A2_zxtb:
- return rr0(eZXT(rc(1), 8), Outputs);
- case A2_zxth:
- return rr0(eZXT(rc(1), 16), Outputs);
-
- // Saturations
-
- case A2_satb:
- return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
- case A2_sath:
- return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
- case A2_satub:
- return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
- case A2_satuh:
- return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
-
- // Bit count:
-
- case S2_cl0:
- case S2_cl0p:
- // Always produce a 32-bit result.
- return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
- case S2_cl1:
- case S2_cl1p:
- return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
- case S2_clb:
- case S2_clbp: {
- uint16_t W1 = getRegBitWidth(Reg[1]);
- RegisterCell R1 = rc(1);
- BT::BitValue TV = R1[W1-1];
- if (TV.is(0) || TV.is(1))
- return rr0(eCLB(R1, TV, 32), Outputs);
- break;
- }
- case S2_ct0:
- case S2_ct0p:
- return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
- case S2_ct1:
- case S2_ct1p:
- return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
- case S5_popcountp:
- // TODO
- break;
-
- case C2_all8: {
- RegisterCell P1 = rc(1);
- bool Has0 = false, All1 = true;
- for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
- if (!P1[i].is(1))
- All1 = false;
- if (!P1[i].is(0))
- continue;
- Has0 = true;
- break;
- }
- if (!Has0 && !All1)
- break;
- RegisterCell RC(W0);
- RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
- return rr0(RC, Outputs);
- }
- case C2_any8: {
- RegisterCell P1 = rc(1);
- bool Has1 = false, All0 = true;
- for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
- if (!P1[i].is(0))
- All0 = false;
- if (!P1[i].is(1))
- continue;
- Has1 = true;
- break;
- }
- if (!Has1 && !All0)
- break;
- RegisterCell RC(W0);
- RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
- return rr0(RC, Outputs);
- }
- case C2_and:
- return rr0(eAND(rc(1), rc(2)), Outputs);
- case C2_andn:
- return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
- case C2_not:
- return rr0(eNOT(rc(1)), Outputs);
- case C2_or:
- return rr0(eORL(rc(1), rc(2)), Outputs);
- case C2_orn:
- return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
- case C2_xor:
- return rr0(eXOR(rc(1), rc(2)), Outputs);
- case C4_and_and:
- return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
- case C4_and_andn:
- return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
- case C4_and_or:
- return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
- case C4_and_orn:
- return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
- case C4_or_and:
- return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
- case C4_or_andn:
- return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
- case C4_or_or:
- return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
- case C4_or_orn:
- return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
- case C2_bitsclr:
- case C2_bitsclri:
- case C2_bitsset:
- case C4_nbitsclr:
- case C4_nbitsclri:
- case C4_nbitsset:
- // TODO
- break;
- case S2_tstbit_i:
- case S4_ntstbit_i: {
- BT::BitValue V = rc(1)[im(2)];
- if (V.is(0) || V.is(1)) {
- // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
- bool TV = (Opc == S2_tstbit_i);
- BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
- return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
- }
- break;
- }
-
- default:
- // For instructions that define a single predicate registers, store
- // the low 8 bits of the register only.
- if (unsigned DefR = getUniqueDefVReg(MI)) {
- if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
- BT::RegisterRef PD(DefR, 0);
- uint16_t RW = getRegBitWidth(PD);
- uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
- RegisterCell RC = RegisterCell::self(DefR, RW);
- RC.fill(PW, RW, BT::BitValue::Zero);
- putCell(PD, RC, Outputs);
- return true;
- }
- }
- return MachineEvaluator::evaluate(MI, Inputs, Outputs);
- }
- #undef im
- #undef rc
- #undef op
- return false;
-}
-
-bool HexagonEvaluator::evaluate(const MachineInstr &BI,
- const CellMapType &Inputs,
- BranchTargetList &Targets,
- bool &FallsThru) const {
- // We need to evaluate one branch at a time. TII::analyzeBranch checks
- // all the branches in a basic block at once, so we cannot use it.
- unsigned Opc = BI.getOpcode();
- bool SimpleBranch = false;
- bool Negated = false;
- switch (Opc) {
- case Hexagon::J2_jumpf:
- case Hexagon::J2_jumpfpt:
- case Hexagon::J2_jumpfnew:
- case Hexagon::J2_jumpfnewpt:
- Negated = true;
- LLVM_FALLTHROUGH;
- case Hexagon::J2_jumpt:
- case Hexagon::J2_jumptpt:
- case Hexagon::J2_jumptnew:
- case Hexagon::J2_jumptnewpt:
- // Simple branch: if([!]Pn) jump ...
- // i.e. Op0 = predicate, Op1 = branch target.
- SimpleBranch = true;
- break;
- case Hexagon::J2_jump:
- Targets.insert(BI.getOperand(0).getMBB());
- FallsThru = false;
- return true;
- default:
- // If the branch is of unknown type, assume that all successors are
- // executable.
- return false;
- }
-
- if (!SimpleBranch)
- return false;
-
- // BI is a conditional branch if we got here.
- RegisterRef PR = BI.getOperand(0);
- RegisterCell PC = getCell(PR, Inputs);
- const BT::BitValue &Test = PC[0];
-
- // If the condition is neither true nor false, then it's unknown.
- if (!Test.is(0) && !Test.is(1))
- return false;
-
- // "Test.is(!Negated)" means "branch condition is true".
- if (!Test.is(!Negated)) {
- // Condition known to be false.
- FallsThru = true;
- return true;
- }
-
- Targets.insert(BI.getOperand(1).getMBB());
- FallsThru = false;
- return true;
-}
-
-unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
- unsigned DefReg = 0;
- for (const MachineOperand &Op : MI.operands()) {
- if (!Op.isReg() || !Op.isDef())
- continue;
- unsigned R = Op.getReg();
- if (!TargetRegisterInfo::isVirtualRegister(R))
- continue;
- if (DefReg != 0)
- return 0;
- DefReg = R;
- }
- return DefReg;
-}
-
-bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
- const CellMapType &Inputs,
- CellMapType &Outputs) const {
- using namespace Hexagon;
-
- if (TII.isPredicated(MI))
- return false;
- assert(MI.mayLoad() && "A load that mayn't?");
- unsigned Opc = MI.getOpcode();
-
- uint16_t BitNum;
- bool SignEx;
-
- switch (Opc) {
- default:
- return false;
-
-#if 0
- // memb_fifo
- case L2_loadalignb_pbr:
- case L2_loadalignb_pcr:
- case L2_loadalignb_pi:
- // memh_fifo
- case L2_loadalignh_pbr:
- case L2_loadalignh_pcr:
- case L2_loadalignh_pi:
- // membh
- case L2_loadbsw2_pbr:
- case L2_loadbsw2_pci:
- case L2_loadbsw2_pcr:
- case L2_loadbsw2_pi:
- case L2_loadbsw4_pbr:
- case L2_loadbsw4_pci:
- case L2_loadbsw4_pcr:
- case L2_loadbsw4_pi:
- // memubh
- case L2_loadbzw2_pbr:
- case L2_loadbzw2_pci:
- case L2_loadbzw2_pcr:
- case L2_loadbzw2_pi:
- case L2_loadbzw4_pbr:
- case L2_loadbzw4_pci:
- case L2_loadbzw4_pcr:
- case L2_loadbzw4_pi:
-#endif
-
- case L2_loadrbgp:
- case L2_loadrb_io:
- case L2_loadrb_pbr:
- case L2_loadrb_pci:
- case L2_loadrb_pcr:
- case L2_loadrb_pi:
- case PS_loadrbabs:
- case L4_loadrb_ap:
- case L4_loadrb_rr:
- case L4_loadrb_ur:
- BitNum = 8;
- SignEx = true;
- break;
-
- case L2_loadrubgp:
- case L2_loadrub_io:
- case L2_loadrub_pbr:
- case L2_loadrub_pci:
- case L2_loadrub_pcr:
- case L2_loadrub_pi:
- case PS_loadrubabs:
- case L4_loadrub_ap:
- case L4_loadrub_rr:
- case L4_loadrub_ur:
- BitNum = 8;
- SignEx = false;
- break;
-
- case L2_loadrhgp:
- case L2_loadrh_io:
- case L2_loadrh_pbr:
- case L2_loadrh_pci:
- case L2_loadrh_pcr:
- case L2_loadrh_pi:
- case PS_loadrhabs:
- case L4_loadrh_ap:
- case L4_loadrh_rr:
- case L4_loadrh_ur:
- BitNum = 16;
- SignEx = true;
- break;
-
- case L2_loadruhgp:
- case L2_loadruh_io:
- case L2_loadruh_pbr:
- case L2_loadruh_pci:
- case L2_loadruh_pcr:
- case L2_loadruh_pi:
- case L4_loadruh_rr:
- case PS_loadruhabs:
- case L4_loadruh_ap:
- case L4_loadruh_ur:
- BitNum = 16;
- SignEx = false;
- break;
-
- case L2_loadrigp:
- case L2_loadri_io:
- case L2_loadri_pbr:
- case L2_loadri_pci:
- case L2_loadri_pcr:
- case L2_loadri_pi:
- case L2_loadw_locked:
- case PS_loadriabs:
- case L4_loadri_ap:
- case L4_loadri_rr:
- case L4_loadri_ur:
- case LDriw_pred:
- BitNum = 32;
- SignEx = true;
- break;
-
- case L2_loadrdgp:
- case L2_loadrd_io:
- case L2_loadrd_pbr:
- case L2_loadrd_pci:
- case L2_loadrd_pcr:
- case L2_loadrd_pi:
- case L4_loadd_locked:
- case PS_loadrdabs:
- case L4_loadrd_ap:
- case L4_loadrd_rr:
- case L4_loadrd_ur:
- BitNum = 64;
- SignEx = true;
- break;
- }
-
- const MachineOperand &MD = MI.getOperand(0);
- assert(MD.isReg() && MD.isDef());
- RegisterRef RD = MD;
-
- uint16_t W = getRegBitWidth(RD);
- assert(W >= BitNum && BitNum > 0);
- RegisterCell Res(W);
-
- for (uint16_t i = 0; i < BitNum; ++i)
- Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
-
- if (SignEx) {
- const BT::BitValue &Sign = Res[BitNum-1];
- for (uint16_t i = BitNum; i < W; ++i)
- Res[i] = BT::BitValue::ref(Sign);
- } else {
- for (uint16_t i = BitNum; i < W; ++i)
- Res[i] = BT::BitValue::Zero;
- }
-
- putCell(RD, Res, Outputs);
- return true;
-}
-
-bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
- const CellMapType &Inputs,
- CellMapType &Outputs) const {
- // If MI defines a formal parameter, but is not a copy (loads are handled
- // in evaluateLoad), then it's not clear what to do.
- assert(MI.isCopy());
-
- RegisterRef RD = MI.getOperand(0);
- RegisterRef RS = MI.getOperand(1);
- assert(RD.Sub == 0);
- if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
- return false;
- RegExtMap::const_iterator F = VRX.find(RD.Reg);
- if (F == VRX.end())
- return false;
-
- uint16_t EW = F->second.Width;
- // Store RD's cell into the map. This will associate the cell with a virtual
- // register, and make zero-/sign-extends possible (otherwise we would be ex-
- // tending "self" bit values, which will have no effect, since "self" values
- // cannot be references to anything).
- putCell(RD, getCell(RS, Inputs), Outputs);
-
- RegisterCell Res;
- // Read RD's cell from the outputs instead of RS's cell from the inputs:
- if (F->second.Type == ExtType::SExt)
- Res = eSXT(getCell(RD, Outputs), EW);
- else if (F->second.Type == ExtType::ZExt)
- Res = eZXT(getCell(RD, Outputs), EW);
-
- putCell(RD, Res, Outputs);
- return true;
-}
-
-unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
- using namespace Hexagon;
-
- bool Is64 = DoubleRegsRegClass.contains(PReg);
- assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
-
- static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
- static const unsigned Phys64[] = { D0, D1, D2 };
- const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
- const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
-
- // Return the first parameter register of the required width.
- if (PReg == 0)
- return (Width <= 32) ? Phys32[0] : Phys64[0];
-
- // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
- // next register.
- unsigned Idx32 = 0, Idx64 = 0;
- if (!Is64) {
- while (Idx32 < Num32) {
- if (Phys32[Idx32] == PReg)
- break;
- Idx32++;
- }
- Idx64 = Idx32/2;
- } else {
- while (Idx64 < Num64) {
- if (Phys64[Idx64] == PReg)
- break;
- Idx64++;
- }
- Idx32 = Idx64*2+1;
- }
-
- if (Width <= 32)
- return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
- return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
-}
-
-unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
- for (std::pair<unsigned,unsigned> P : MRI.liveins())
- if (P.first == PReg)
- return P.second;
- return 0;
-}