diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp | 1292 |
1 files changed, 0 insertions, 1292 deletions
diff --git a/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp b/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp deleted file mode 100644 index 92b6da871a4..00000000000 --- a/gnu/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp +++ /dev/null @@ -1,1292 +0,0 @@ -//===- HexagonBitTracker.cpp ----------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#include "HexagonBitTracker.h" -#include "Hexagon.h" -#include "HexagonInstrInfo.h" -#include "HexagonRegisterInfo.h" -#include "HexagonSubtarget.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Type.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <cstdlib> -#include <utility> -#include <vector> - -using namespace llvm; - -using BT = BitTracker; - -HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri, - MachineRegisterInfo &mri, - const HexagonInstrInfo &tii, - MachineFunction &mf) - : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) { - // Populate the VRX map (VR to extension-type). - // Go over all the formal parameters of the function. If a given parameter - // P is sign- or zero-extended, locate the virtual register holding that - // parameter and create an entry in the VRX map indicating the type of ex- - // tension (and the source type). - // This is a bit complicated to do accurately, since the memory layout in- - // formation is necessary to precisely determine whether an aggregate para- - // meter will be passed in a register or in memory. What is given in MRI - // is the association between the physical register that is live-in (i.e. - // holds an argument), and the virtual register that this value will be - // copied into. This, by itself, is not sufficient to map back the virtual - // register to a formal parameter from Function (since consecutive live-ins - // from MRI may not correspond to consecutive formal parameters from Func- - // tion). To avoid the complications with in-memory arguments, only consi- - // der the initial sequence of formal parameters that are known to be - // passed via registers. - unsigned InVirtReg, InPhysReg = 0; - - for (const Argument &Arg : MF.getFunction().args()) { - Type *ATy = Arg.getType(); - unsigned Width = 0; - if (ATy->isIntegerTy()) - Width = ATy->getIntegerBitWidth(); - else if (ATy->isPointerTy()) - Width = 32; - // If pointer size is not set through target data, it will default to - // Module::AnyPointerSize. - if (Width == 0 || Width > 64) - break; - if (Arg.hasAttribute(Attribute::ByVal)) - continue; - InPhysReg = getNextPhysReg(InPhysReg, Width); - if (!InPhysReg) - break; - InVirtReg = getVirtRegFor(InPhysReg); - if (!InVirtReg) - continue; - if (Arg.hasAttribute(Attribute::SExt)) - VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width))); - else if (Arg.hasAttribute(Attribute::ZExt)) - VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width))); - } -} - -BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const { - if (Sub == 0) - return MachineEvaluator::mask(Reg, 0); - const TargetRegisterClass &RC = *MRI.getRegClass(Reg); - unsigned ID = RC.getID(); - uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub)); - const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI); - bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo)); - switch (ID) { - case Hexagon::DoubleRegsRegClassID: - case Hexagon::HvxWRRegClassID: - case Hexagon::HvxVQRRegClassID: - return IsSubLo ? BT::BitMask(0, RW-1) - : BT::BitMask(RW, 2*RW-1); - default: - break; - } -#ifndef NDEBUG - dbgs() << printReg(Reg, &TRI, Sub) << " in reg class " - << TRI.getRegClassName(&RC) << '\n'; -#endif - llvm_unreachable("Unexpected register/subregister"); -} - -uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const { - assert(TargetRegisterInfo::isPhysicalRegister(Reg)); - - using namespace Hexagon; - const auto &HST = MF.getSubtarget<HexagonSubtarget>(); - if (HST.useHVXOps()) { - for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass, - HvxVQRRegClass}) - if (RC.contains(Reg)) - return TRI.getRegSizeInBits(RC); - } - // Default treatment for other physical registers. - if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg)) - return TRI.getRegSizeInBits(*RC); - - llvm_unreachable( - (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str()); -} - -const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex( - const TargetRegisterClass &RC, unsigned Idx) const { - if (Idx == 0) - return RC; - -#ifndef NDEBUG - const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI); - bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo)); - bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi)); - assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg"); -#endif - - switch (RC.getID()) { - case Hexagon::DoubleRegsRegClassID: - return Hexagon::IntRegsRegClass; - case Hexagon::HvxWRRegClassID: - return Hexagon::HvxVRRegClass; - case Hexagon::HvxVQRRegClassID: - return Hexagon::HvxWRRegClass; - default: - break; - } -#ifndef NDEBUG - dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n'; -#endif - llvm_unreachable("Unimplemented combination of reg class/subreg idx"); -} - -namespace { - -class RegisterRefs { - std::vector<BT::RegisterRef> Vector; - -public: - RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) { - for (unsigned i = 0, n = Vector.size(); i < n; ++i) { - const MachineOperand &MO = MI.getOperand(i); - if (MO.isReg()) - Vector[i] = BT::RegisterRef(MO); - // For indices that don't correspond to registers, the entry will - // remain constructed via the default constructor. - } - } - - size_t size() const { return Vector.size(); } - - const BT::RegisterRef &operator[](unsigned n) const { - // The main purpose of this operator is to assert with bad argument. - assert(n < Vector.size()); - return Vector[n]; - } -}; - -} // end anonymous namespace - -bool HexagonEvaluator::evaluate(const MachineInstr &MI, - const CellMapType &Inputs, - CellMapType &Outputs) const { - using namespace Hexagon; - - unsigned NumDefs = 0; - - // Sanity verification: there should not be any defs with subregisters. - for (const MachineOperand &MO : MI.operands()) { - if (!MO.isReg() || !MO.isDef()) - continue; - NumDefs++; - assert(MO.getSubReg() == 0); - } - - if (NumDefs == 0) - return false; - - unsigned Opc = MI.getOpcode(); - - if (MI.mayLoad()) { - switch (Opc) { - // These instructions may be marked as mayLoad, but they are generating - // immediate values, so skip them. - case CONST32: - case CONST64: - break; - default: - return evaluateLoad(MI, Inputs, Outputs); - } - } - - // Check COPY instructions that copy formal parameters into virtual - // registers. Such parameters can be sign- or zero-extended at the - // call site, and we should take advantage of this knowledge. The MRI - // keeps a list of pairs of live-in physical and virtual registers, - // which provides information about which virtual registers will hold - // the argument values. The function will still contain instructions - // defining those virtual registers, and in practice those are COPY - // instructions from a physical to a virtual register. In such cases, - // applying the argument extension to the virtual register can be seen - // as simply mirroring the extension that had already been applied to - // the physical register at the call site. If the defining instruction - // was not a COPY, it would not be clear how to mirror that extension - // on the callee's side. For that reason, only check COPY instructions - // for potential extensions. - if (MI.isCopy()) { - if (evaluateFormalCopy(MI, Inputs, Outputs)) - return true; - } - - // Beyond this point, if any operand is a global, skip that instruction. - // The reason is that certain instructions that can take an immediate - // operand can also have a global symbol in that operand. To avoid - // checking what kind of operand a given instruction has individually - // for each instruction, do it here. Global symbols as operands gene- - // rally do not provide any useful information. - for (const MachineOperand &MO : MI.operands()) { - if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() || - MO.isCPI()) - return false; - } - - RegisterRefs Reg(MI); -#define op(i) MI.getOperand(i) -#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs)) -#define im(i) MI.getOperand(i).getImm() - - // If the instruction has no register operands, skip it. - if (Reg.size() == 0) - return false; - - // Record result for register in operand 0. - auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs) - -> bool { - putCell(Reg[0], Val, Outputs); - return true; - }; - // Get the cell corresponding to the N-th operand. - auto cop = [this, &Reg, &MI, &Inputs](unsigned N, - uint16_t W) -> BT::RegisterCell { - const MachineOperand &Op = MI.getOperand(N); - if (Op.isImm()) - return eIMM(Op.getImm(), W); - if (!Op.isReg()) - return RegisterCell::self(0, W); - assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch"); - return rc(N); - }; - // Extract RW low bits of the cell. - auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW) - -> BT::RegisterCell { - assert(RW <= RC.width()); - return eXTR(RC, 0, RW); - }; - // Extract RW high bits of the cell. - auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW) - -> BT::RegisterCell { - uint16_t W = RC.width(); - assert(RW <= W); - return eXTR(RC, W-RW, W); - }; - // Extract N-th halfword (counting from the least significant position). - auto half = [this] (const BT::RegisterCell &RC, unsigned N) - -> BT::RegisterCell { - assert(N*16+16 <= RC.width()); - return eXTR(RC, N*16, N*16+16); - }; - // Shuffle bits (pick even/odd from cells and merge into result). - auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt, - uint16_t BW, bool Odd) -> BT::RegisterCell { - uint16_t I = Odd, Ws = Rs.width(); - assert(Ws == Rt.width()); - RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW)); - I += 2; - while (I*BW < Ws) { - RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW)); - I += 2; - } - return RC; - }; - - // The bitwidth of the 0th operand. In most (if not all) of the - // instructions below, the 0th operand is the defined register. - // Pre-compute the bitwidth here, because it is needed in many cases - // cases below. - uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0; - - // Register id of the 0th operand. It can be 0. - unsigned Reg0 = Reg[0].Reg; - - switch (Opc) { - // Transfer immediate: - - case A2_tfrsi: - case A2_tfrpi: - case CONST32: - case CONST64: - return rr0(eIMM(im(1), W0), Outputs); - case PS_false: - return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs); - case PS_true: - return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs); - case PS_fi: { - int FI = op(1).getIndex(); - int Off = op(2).getImm(); - unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off); - unsigned L = countTrailingZeros(A); - RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); - RC.fill(0, L, BT::BitValue::Zero); - return rr0(RC, Outputs); - } - - // Transfer register: - - case A2_tfr: - case A2_tfrp: - case C2_pxfer_map: - return rr0(rc(1), Outputs); - case C2_tfrpr: { - uint16_t RW = W0; - uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); - assert(PW <= RW); - RegisterCell PC = eXTR(rc(1), 0, PW); - RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1)); - RC.fill(PW, RW, BT::BitValue::Zero); - return rr0(RC, Outputs); - } - case C2_tfrrp: { - uint16_t RW = W0; - uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); - RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW); - RC.fill(PW, RW, BT::BitValue::Zero); - return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs); - } - - // Arithmetic: - - case A2_abs: - case A2_absp: - // TODO - break; - - case A2_addsp: { - uint16_t W1 = getRegBitWidth(Reg[1]); - assert(W0 == 64 && W1 == 32); - RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1)); - RegisterCell RC = eADD(eSXT(CW, W1), rc(2)); - return rr0(RC, Outputs); - } - case A2_add: - case A2_addp: - return rr0(eADD(rc(1), rc(2)), Outputs); - case A2_addi: - return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs); - case S4_addi_asl_ri: { - RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3))); - return rr0(RC, Outputs); - } - case S4_addi_lsr_ri: { - RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3))); - return rr0(RC, Outputs); - } - case S4_addaddi: { - RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); - return rr0(RC, Outputs); - } - case M4_mpyri_addi: { - RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); - RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); - return rr0(RC, Outputs); - } - case M4_mpyrr_addi: { - RegisterCell M = eMLS(rc(2), rc(3)); - RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); - return rr0(RC, Outputs); - } - case M4_mpyri_addr_u2: { - RegisterCell M = eMLS(eIMM(im(2), W0), rc(3)); - RegisterCell RC = eADD(rc(1), lo(M, W0)); - return rr0(RC, Outputs); - } - case M4_mpyri_addr: { - RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); - RegisterCell RC = eADD(rc(1), lo(M, W0)); - return rr0(RC, Outputs); - } - case M4_mpyrr_addr: { - RegisterCell M = eMLS(rc(2), rc(3)); - RegisterCell RC = eADD(rc(1), lo(M, W0)); - return rr0(RC, Outputs); - } - case S4_subaddi: { - RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3))); - return rr0(RC, Outputs); - } - case M2_accii: { - RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); - return rr0(RC, Outputs); - } - case M2_acci: { - RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3))); - return rr0(RC, Outputs); - } - case M2_subacc: { - RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3))); - return rr0(RC, Outputs); - } - case S2_addasl_rrri: { - RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3))); - return rr0(RC, Outputs); - } - case C4_addipc: { - RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0); - RPC.fill(0, 2, BT::BitValue::Zero); - return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs); - } - case A2_sub: - case A2_subp: - return rr0(eSUB(rc(1), rc(2)), Outputs); - case A2_subri: - return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs); - case S4_subi_asl_ri: { - RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3))); - return rr0(RC, Outputs); - } - case S4_subi_lsr_ri: { - RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3))); - return rr0(RC, Outputs); - } - case M2_naccii: { - RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0))); - return rr0(RC, Outputs); - } - case M2_nacci: { - RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3))); - return rr0(RC, Outputs); - } - // 32-bit negation is done by "Rd = A2_subri 0, Rs" - case A2_negp: - return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs); - - case M2_mpy_up: { - RegisterCell M = eMLS(rc(1), rc(2)); - return rr0(hi(M, W0), Outputs); - } - case M2_dpmpyss_s0: - return rr0(eMLS(rc(1), rc(2)), Outputs); - case M2_dpmpyss_acc_s0: - return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs); - case M2_dpmpyss_nac_s0: - return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs); - case M2_mpyi: { - RegisterCell M = eMLS(rc(1), rc(2)); - return rr0(lo(M, W0), Outputs); - } - case M2_macsip: { - RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); - RegisterCell RC = eADD(rc(1), lo(M, W0)); - return rr0(RC, Outputs); - } - case M2_macsin: { - RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); - RegisterCell RC = eSUB(rc(1), lo(M, W0)); - return rr0(RC, Outputs); - } - case M2_maci: { - RegisterCell M = eMLS(rc(2), rc(3)); - RegisterCell RC = eADD(rc(1), lo(M, W0)); - return rr0(RC, Outputs); - } - case M2_mpysmi: { - RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); - return rr0(lo(M, 32), Outputs); - } - case M2_mpysin: { - RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0)); - return rr0(lo(M, 32), Outputs); - } - case M2_mpysip: { - RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); - return rr0(lo(M, 32), Outputs); - } - case M2_mpyu_up: { - RegisterCell M = eMLU(rc(1), rc(2)); - return rr0(hi(M, W0), Outputs); - } - case M2_dpmpyuu_s0: - return rr0(eMLU(rc(1), rc(2)), Outputs); - case M2_dpmpyuu_acc_s0: - return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs); - case M2_dpmpyuu_nac_s0: - return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs); - //case M2_mpysu_up: - - // Logical/bitwise: - - case A2_andir: - return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs); - case A2_and: - case A2_andp: - return rr0(eAND(rc(1), rc(2)), Outputs); - case A4_andn: - case A4_andnp: - return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); - case S4_andi_asl_ri: { - RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3))); - return rr0(RC, Outputs); - } - case S4_andi_lsr_ri: { - RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3))); - return rr0(RC, Outputs); - } - case M4_and_and: - return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); - case M4_and_andn: - return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); - case M4_and_or: - return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); - case M4_and_xor: - return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs); - case A2_orir: - return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs); - case A2_or: - case A2_orp: - return rr0(eORL(rc(1), rc(2)), Outputs); - case A4_orn: - case A4_ornp: - return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); - case S4_ori_asl_ri: { - RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3))); - return rr0(RC, Outputs); - } - case S4_ori_lsr_ri: { - RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3))); - return rr0(RC, Outputs); - } - case M4_or_and: - return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); - case M4_or_andn: - return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); - case S4_or_andi: - case S4_or_andix: { - RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0))); - return rr0(RC, Outputs); - } - case S4_or_ori: { - RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0))); - return rr0(RC, Outputs); - } - case M4_or_or: - return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); - case M4_or_xor: - return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs); - case A2_xor: - case A2_xorp: - return rr0(eXOR(rc(1), rc(2)), Outputs); - case M4_xor_and: - return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs); - case M4_xor_andn: - return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); - case M4_xor_or: - return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs); - case M4_xor_xacc: - return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs); - case A2_not: - case A2_notp: - return rr0(eNOT(rc(1)), Outputs); - - case S2_asl_i_r: - case S2_asl_i_p: - return rr0(eASL(rc(1), im(2)), Outputs); - case A2_aslh: - return rr0(eASL(rc(1), 16), Outputs); - case S2_asl_i_r_acc: - case S2_asl_i_p_acc: - return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs); - case S2_asl_i_r_nac: - case S2_asl_i_p_nac: - return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs); - case S2_asl_i_r_and: - case S2_asl_i_p_and: - return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs); - case S2_asl_i_r_or: - case S2_asl_i_p_or: - return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs); - case S2_asl_i_r_xacc: - case S2_asl_i_p_xacc: - return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs); - case S2_asl_i_vh: - case S2_asl_i_vw: - // TODO - break; - - case S2_asr_i_r: - case S2_asr_i_p: - return rr0(eASR(rc(1), im(2)), Outputs); - case A2_asrh: - return rr0(eASR(rc(1), 16), Outputs); - case S2_asr_i_r_acc: - case S2_asr_i_p_acc: - return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs); - case S2_asr_i_r_nac: - case S2_asr_i_p_nac: - return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs); - case S2_asr_i_r_and: - case S2_asr_i_p_and: - return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs); - case S2_asr_i_r_or: - case S2_asr_i_p_or: - return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs); - case S2_asr_i_r_rnd: { - // The input is first sign-extended to 64 bits, then the output - // is truncated back to 32 bits. - assert(W0 == 32); - RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); - RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1); - return rr0(eXTR(RC, 0, W0), Outputs); - } - case S2_asr_i_r_rnd_goodsyntax: { - int64_t S = im(2); - if (S == 0) - return rr0(rc(1), Outputs); - // Result: S2_asr_i_r_rnd Rs, u5-1 - RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); - RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1); - return rr0(eXTR(RC, 0, W0), Outputs); - } - case S2_asr_r_vh: - case S2_asr_i_vw: - case S2_asr_i_svw_trun: - // TODO - break; - - case S2_lsr_i_r: - case S2_lsr_i_p: - return rr0(eLSR(rc(1), im(2)), Outputs); - case S2_lsr_i_r_acc: - case S2_lsr_i_p_acc: - return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs); - case S2_lsr_i_r_nac: - case S2_lsr_i_p_nac: - return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs); - case S2_lsr_i_r_and: - case S2_lsr_i_p_and: - return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs); - case S2_lsr_i_r_or: - case S2_lsr_i_p_or: - return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs); - case S2_lsr_i_r_xacc: - case S2_lsr_i_p_xacc: - return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs); - - case S2_clrbit_i: { - RegisterCell RC = rc(1); - RC[im(2)] = BT::BitValue::Zero; - return rr0(RC, Outputs); - } - case S2_setbit_i: { - RegisterCell RC = rc(1); - RC[im(2)] = BT::BitValue::One; - return rr0(RC, Outputs); - } - case S2_togglebit_i: { - RegisterCell RC = rc(1); - uint16_t BX = im(2); - RC[BX] = RC[BX].is(0) ? BT::BitValue::One - : RC[BX].is(1) ? BT::BitValue::Zero - : BT::BitValue::self(); - return rr0(RC, Outputs); - } - - case A4_bitspliti: { - uint16_t W1 = getRegBitWidth(Reg[1]); - uint16_t BX = im(2); - // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx] - const BT::BitValue Zero = BT::BitValue::Zero; - RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero) - .fill(W1+(W1-BX), W0, Zero); - RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1); - RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1); - return rr0(RC, Outputs); - } - case S4_extract: - case S4_extractp: - case S2_extractu: - case S2_extractup: { - uint16_t Wd = im(2), Of = im(3); - assert(Wd <= W0); - if (Wd == 0) - return rr0(eIMM(0, W0), Outputs); - // If the width extends beyond the register size, pad the register - // with 0 bits. - RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1); - RegisterCell Ext = eXTR(Pad, Of, Wd+Of); - // Ext is short, need to extend it with 0s or sign bit. - RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1)); - if (Opc == S2_extractu || Opc == S2_extractup) - return rr0(eZXT(RC, Wd), Outputs); - return rr0(eSXT(RC, Wd), Outputs); - } - case S2_insert: - case S2_insertp: { - uint16_t Wd = im(3), Of = im(4); - assert(Wd < W0 && Of < W0); - // If Wd+Of exceeds W0, the inserted bits are truncated. - if (Wd+Of > W0) - Wd = W0-Of; - if (Wd == 0) - return rr0(rc(1), Outputs); - return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs); - } - - // Bit permutations: - - case A2_combineii: - case A4_combineii: - case A4_combineir: - case A4_combineri: - case A2_combinew: - case V6_vcombine: - assert(W0 % 2 == 0); - return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs); - case A2_combine_ll: - case A2_combine_lh: - case A2_combine_hl: - case A2_combine_hh: { - assert(W0 == 32); - assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); - // Low half in the output is 0 for _ll and _hl, 1 otherwise: - unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl); - // High half in the output is 0 for _ll and _lh, 1 otherwise: - unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh); - RegisterCell R1 = rc(1); - RegisterCell R2 = rc(2); - RegisterCell RC = half(R2, LoH).cat(half(R1, HiH)); - return rr0(RC, Outputs); - } - case S2_packhl: { - assert(W0 == 64); - assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); - RegisterCell R1 = rc(1); - RegisterCell R2 = rc(2); - RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1)) - .cat(half(R1, 1)); - return rr0(RC, Outputs); - } - case S2_shuffeb: { - RegisterCell RC = shuffle(rc(1), rc(2), 8, false); - return rr0(RC, Outputs); - } - case S2_shuffeh: { - RegisterCell RC = shuffle(rc(1), rc(2), 16, false); - return rr0(RC, Outputs); - } - case S2_shuffob: { - RegisterCell RC = shuffle(rc(1), rc(2), 8, true); - return rr0(RC, Outputs); - } - case S2_shuffoh: { - RegisterCell RC = shuffle(rc(1), rc(2), 16, true); - return rr0(RC, Outputs); - } - case C2_mask: { - uint16_t WR = W0; - uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]); - assert(WR == 64 && WP == 8); - RegisterCell R1 = rc(1); - RegisterCell RC(WR); - for (uint16_t i = 0; i < WP; ++i) { - const BT::BitValue &V = R1[i]; - BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self(); - RC.fill(i*8, i*8+8, F); - } - return rr0(RC, Outputs); - } - - // Mux: - - case C2_muxii: - case C2_muxir: - case C2_muxri: - case C2_mux: { - BT::BitValue PC0 = rc(1)[0]; - RegisterCell R2 = cop(2, W0); - RegisterCell R3 = cop(3, W0); - if (PC0.is(0) || PC0.is(1)) - return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs); - R2.meet(R3, Reg[0].Reg); - return rr0(R2, Outputs); - } - case C2_vmux: - // TODO - break; - - // Sign- and zero-extension: - - case A2_sxtb: - return rr0(eSXT(rc(1), 8), Outputs); - case A2_sxth: - return rr0(eSXT(rc(1), 16), Outputs); - case A2_sxtw: { - uint16_t W1 = getRegBitWidth(Reg[1]); - assert(W0 == 64 && W1 == 32); - RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1); - return rr0(RC, Outputs); - } - case A2_zxtb: - return rr0(eZXT(rc(1), 8), Outputs); - case A2_zxth: - return rr0(eZXT(rc(1), 16), Outputs); - - // Saturations - - case A2_satb: - return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs); - case A2_sath: - return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs); - case A2_satub: - return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs); - case A2_satuh: - return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs); - - // Bit count: - - case S2_cl0: - case S2_cl0p: - // Always produce a 32-bit result. - return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs); - case S2_cl1: - case S2_cl1p: - return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs); - case S2_clb: - case S2_clbp: { - uint16_t W1 = getRegBitWidth(Reg[1]); - RegisterCell R1 = rc(1); - BT::BitValue TV = R1[W1-1]; - if (TV.is(0) || TV.is(1)) - return rr0(eCLB(R1, TV, 32), Outputs); - break; - } - case S2_ct0: - case S2_ct0p: - return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs); - case S2_ct1: - case S2_ct1p: - return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs); - case S5_popcountp: - // TODO - break; - - case C2_all8: { - RegisterCell P1 = rc(1); - bool Has0 = false, All1 = true; - for (uint16_t i = 0; i < 8/*XXX*/; ++i) { - if (!P1[i].is(1)) - All1 = false; - if (!P1[i].is(0)) - continue; - Has0 = true; - break; - } - if (!Has0 && !All1) - break; - RegisterCell RC(W0); - RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero)); - return rr0(RC, Outputs); - } - case C2_any8: { - RegisterCell P1 = rc(1); - bool Has1 = false, All0 = true; - for (uint16_t i = 0; i < 8/*XXX*/; ++i) { - if (!P1[i].is(0)) - All0 = false; - if (!P1[i].is(1)) - continue; - Has1 = true; - break; - } - if (!Has1 && !All0) - break; - RegisterCell RC(W0); - RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero)); - return rr0(RC, Outputs); - } - case C2_and: - return rr0(eAND(rc(1), rc(2)), Outputs); - case C2_andn: - return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); - case C2_not: - return rr0(eNOT(rc(1)), Outputs); - case C2_or: - return rr0(eORL(rc(1), rc(2)), Outputs); - case C2_orn: - return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); - case C2_xor: - return rr0(eXOR(rc(1), rc(2)), Outputs); - case C4_and_and: - return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); - case C4_and_andn: - return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); - case C4_and_or: - return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); - case C4_and_orn: - return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); - case C4_or_and: - return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); - case C4_or_andn: - return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); - case C4_or_or: - return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); - case C4_or_orn: - return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); - case C2_bitsclr: - case C2_bitsclri: - case C2_bitsset: - case C4_nbitsclr: - case C4_nbitsclri: - case C4_nbitsset: - // TODO - break; - case S2_tstbit_i: - case S4_ntstbit_i: { - BT::BitValue V = rc(1)[im(2)]; - if (V.is(0) || V.is(1)) { - // If instruction is S2_tstbit_i, test for 1, otherwise test for 0. - bool TV = (Opc == S2_tstbit_i); - BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero; - return rr0(RegisterCell(W0).fill(0, W0, F), Outputs); - } - break; - } - - default: - // For instructions that define a single predicate registers, store - // the low 8 bits of the register only. - if (unsigned DefR = getUniqueDefVReg(MI)) { - if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) { - BT::RegisterRef PD(DefR, 0); - uint16_t RW = getRegBitWidth(PD); - uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); - RegisterCell RC = RegisterCell::self(DefR, RW); - RC.fill(PW, RW, BT::BitValue::Zero); - putCell(PD, RC, Outputs); - return true; - } - } - return MachineEvaluator::evaluate(MI, Inputs, Outputs); - } - #undef im - #undef rc - #undef op - return false; -} - -bool HexagonEvaluator::evaluate(const MachineInstr &BI, - const CellMapType &Inputs, - BranchTargetList &Targets, - bool &FallsThru) const { - // We need to evaluate one branch at a time. TII::analyzeBranch checks - // all the branches in a basic block at once, so we cannot use it. - unsigned Opc = BI.getOpcode(); - bool SimpleBranch = false; - bool Negated = false; - switch (Opc) { - case Hexagon::J2_jumpf: - case Hexagon::J2_jumpfpt: - case Hexagon::J2_jumpfnew: - case Hexagon::J2_jumpfnewpt: - Negated = true; - LLVM_FALLTHROUGH; - case Hexagon::J2_jumpt: - case Hexagon::J2_jumptpt: - case Hexagon::J2_jumptnew: - case Hexagon::J2_jumptnewpt: - // Simple branch: if([!]Pn) jump ... - // i.e. Op0 = predicate, Op1 = branch target. - SimpleBranch = true; - break; - case Hexagon::J2_jump: - Targets.insert(BI.getOperand(0).getMBB()); - FallsThru = false; - return true; - default: - // If the branch is of unknown type, assume that all successors are - // executable. - return false; - } - - if (!SimpleBranch) - return false; - - // BI is a conditional branch if we got here. - RegisterRef PR = BI.getOperand(0); - RegisterCell PC = getCell(PR, Inputs); - const BT::BitValue &Test = PC[0]; - - // If the condition is neither true nor false, then it's unknown. - if (!Test.is(0) && !Test.is(1)) - return false; - - // "Test.is(!Negated)" means "branch condition is true". - if (!Test.is(!Negated)) { - // Condition known to be false. - FallsThru = true; - return true; - } - - Targets.insert(BI.getOperand(1).getMBB()); - FallsThru = false; - return true; -} - -unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const { - unsigned DefReg = 0; - for (const MachineOperand &Op : MI.operands()) { - if (!Op.isReg() || !Op.isDef()) - continue; - unsigned R = Op.getReg(); - if (!TargetRegisterInfo::isVirtualRegister(R)) - continue; - if (DefReg != 0) - return 0; - DefReg = R; - } - return DefReg; -} - -bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI, - const CellMapType &Inputs, - CellMapType &Outputs) const { - using namespace Hexagon; - - if (TII.isPredicated(MI)) - return false; - assert(MI.mayLoad() && "A load that mayn't?"); - unsigned Opc = MI.getOpcode(); - - uint16_t BitNum; - bool SignEx; - - switch (Opc) { - default: - return false; - -#if 0 - // memb_fifo - case L2_loadalignb_pbr: - case L2_loadalignb_pcr: - case L2_loadalignb_pi: - // memh_fifo - case L2_loadalignh_pbr: - case L2_loadalignh_pcr: - case L2_loadalignh_pi: - // membh - case L2_loadbsw2_pbr: - case L2_loadbsw2_pci: - case L2_loadbsw2_pcr: - case L2_loadbsw2_pi: - case L2_loadbsw4_pbr: - case L2_loadbsw4_pci: - case L2_loadbsw4_pcr: - case L2_loadbsw4_pi: - // memubh - case L2_loadbzw2_pbr: - case L2_loadbzw2_pci: - case L2_loadbzw2_pcr: - case L2_loadbzw2_pi: - case L2_loadbzw4_pbr: - case L2_loadbzw4_pci: - case L2_loadbzw4_pcr: - case L2_loadbzw4_pi: -#endif - - case L2_loadrbgp: - case L2_loadrb_io: - case L2_loadrb_pbr: - case L2_loadrb_pci: - case L2_loadrb_pcr: - case L2_loadrb_pi: - case PS_loadrbabs: - case L4_loadrb_ap: - case L4_loadrb_rr: - case L4_loadrb_ur: - BitNum = 8; - SignEx = true; - break; - - case L2_loadrubgp: - case L2_loadrub_io: - case L2_loadrub_pbr: - case L2_loadrub_pci: - case L2_loadrub_pcr: - case L2_loadrub_pi: - case PS_loadrubabs: - case L4_loadrub_ap: - case L4_loadrub_rr: - case L4_loadrub_ur: - BitNum = 8; - SignEx = false; - break; - - case L2_loadrhgp: - case L2_loadrh_io: - case L2_loadrh_pbr: - case L2_loadrh_pci: - case L2_loadrh_pcr: - case L2_loadrh_pi: - case PS_loadrhabs: - case L4_loadrh_ap: - case L4_loadrh_rr: - case L4_loadrh_ur: - BitNum = 16; - SignEx = true; - break; - - case L2_loadruhgp: - case L2_loadruh_io: - case L2_loadruh_pbr: - case L2_loadruh_pci: - case L2_loadruh_pcr: - case L2_loadruh_pi: - case L4_loadruh_rr: - case PS_loadruhabs: - case L4_loadruh_ap: - case L4_loadruh_ur: - BitNum = 16; - SignEx = false; - break; - - case L2_loadrigp: - case L2_loadri_io: - case L2_loadri_pbr: - case L2_loadri_pci: - case L2_loadri_pcr: - case L2_loadri_pi: - case L2_loadw_locked: - case PS_loadriabs: - case L4_loadri_ap: - case L4_loadri_rr: - case L4_loadri_ur: - case LDriw_pred: - BitNum = 32; - SignEx = true; - break; - - case L2_loadrdgp: - case L2_loadrd_io: - case L2_loadrd_pbr: - case L2_loadrd_pci: - case L2_loadrd_pcr: - case L2_loadrd_pi: - case L4_loadd_locked: - case PS_loadrdabs: - case L4_loadrd_ap: - case L4_loadrd_rr: - case L4_loadrd_ur: - BitNum = 64; - SignEx = true; - break; - } - - const MachineOperand &MD = MI.getOperand(0); - assert(MD.isReg() && MD.isDef()); - RegisterRef RD = MD; - - uint16_t W = getRegBitWidth(RD); - assert(W >= BitNum && BitNum > 0); - RegisterCell Res(W); - - for (uint16_t i = 0; i < BitNum; ++i) - Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i)); - - if (SignEx) { - const BT::BitValue &Sign = Res[BitNum-1]; - for (uint16_t i = BitNum; i < W; ++i) - Res[i] = BT::BitValue::ref(Sign); - } else { - for (uint16_t i = BitNum; i < W; ++i) - Res[i] = BT::BitValue::Zero; - } - - putCell(RD, Res, Outputs); - return true; -} - -bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI, - const CellMapType &Inputs, - CellMapType &Outputs) const { - // If MI defines a formal parameter, but is not a copy (loads are handled - // in evaluateLoad), then it's not clear what to do. - assert(MI.isCopy()); - - RegisterRef RD = MI.getOperand(0); - RegisterRef RS = MI.getOperand(1); - assert(RD.Sub == 0); - if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg)) - return false; - RegExtMap::const_iterator F = VRX.find(RD.Reg); - if (F == VRX.end()) - return false; - - uint16_t EW = F->second.Width; - // Store RD's cell into the map. This will associate the cell with a virtual - // register, and make zero-/sign-extends possible (otherwise we would be ex- - // tending "self" bit values, which will have no effect, since "self" values - // cannot be references to anything). - putCell(RD, getCell(RS, Inputs), Outputs); - - RegisterCell Res; - // Read RD's cell from the outputs instead of RS's cell from the inputs: - if (F->second.Type == ExtType::SExt) - Res = eSXT(getCell(RD, Outputs), EW); - else if (F->second.Type == ExtType::ZExt) - Res = eZXT(getCell(RD, Outputs), EW); - - putCell(RD, Res, Outputs); - return true; -} - -unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const { - using namespace Hexagon; - - bool Is64 = DoubleRegsRegClass.contains(PReg); - assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg)); - - static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 }; - static const unsigned Phys64[] = { D0, D1, D2 }; - const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned); - const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned); - - // Return the first parameter register of the required width. - if (PReg == 0) - return (Width <= 32) ? Phys32[0] : Phys64[0]; - - // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the - // next register. - unsigned Idx32 = 0, Idx64 = 0; - if (!Is64) { - while (Idx32 < Num32) { - if (Phys32[Idx32] == PReg) - break; - Idx32++; - } - Idx64 = Idx32/2; - } else { - while (Idx64 < Num64) { - if (Phys64[Idx64] == PReg) - break; - Idx64++; - } - Idx32 = Idx64*2+1; - } - - if (Width <= 32) - return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0; - return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0; -} - -unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const { - for (std::pair<unsigned,unsigned> P : MRI.liveins()) - if (P.first == PReg) - return P.second; - return 0; -} |
