summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp')
-rw-r--r--gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp14764
1 files changed, 0 insertions, 14764 deletions
diff --git a/gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp b/gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
deleted file mode 100644
index 8fd8548b99d..00000000000
--- a/gnu/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
+++ /dev/null
@@ -1,14764 +0,0 @@
-//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the PPCISelLowering class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "PPCISelLowering.h"
-#include "MCTargetDesc/PPCPredicates.h"
-#include "PPC.h"
-#include "PPCCCState.h"
-#include "PPCCallingConv.h"
-#include "PPCFrameLowering.h"
-#include "PPCInstrInfo.h"
-#include "PPCMachineFunctionInfo.h"
-#include "PPCPerfectShuffle.h"
-#include "PPCRegisterInfo.h"
-#include "PPCSubtarget.h"
-#include "PPCTargetMachine.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm/CodeGen/CallingConvLower.h"
-#include "llvm/CodeGen/ISDOpcodes.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/RuntimeLibcalls.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/SelectionDAGNodes.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/Value.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/BranchProbability.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CodeGen.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Format.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MachineValueType.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <list>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "ppc-lowering"
-
-static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
-cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
-
-static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
-cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
-
-static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
-cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
-
-static cl::opt<bool> DisableSCO("disable-ppc-sco",
-cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
-
-static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
-cl::desc("enable quad precision float support on ppc"), cl::Hidden);
-
-STATISTIC(NumTailCalls, "Number of tail calls");
-STATISTIC(NumSiblingCalls, "Number of sibling calls");
-
-static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
-
-// FIXME: Remove this once the bug has been fixed!
-extern cl::opt<bool> ANDIGlueBug;
-
-PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
- const PPCSubtarget &STI)
- : TargetLowering(TM), Subtarget(STI) {
- // Use _setjmp/_longjmp instead of setjmp/longjmp.
- setUseUnderscoreSetJmp(true);
- setUseUnderscoreLongJmp(true);
-
- // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
- // arguments are at least 4/8 bytes aligned.
- bool isPPC64 = Subtarget.isPPC64();
- setMinStackArgumentAlignment(isPPC64 ? 8:4);
-
- // Set up the register classes.
- addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
- if (!useSoftFloat()) {
- if (hasSPE()) {
- addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
- addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
- } else {
- addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
- addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
- }
- }
-
- // Match BITREVERSE to customized fast code sequence in the td file.
- setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
- setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
-
- // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
- setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
-
- // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
- for (MVT VT : MVT::integer_valuetypes()) {
- setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
- setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
- }
-
- setTruncStoreAction(MVT::f64, MVT::f32, Expand);
-
- // PowerPC has pre-inc load and store's.
- setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
- setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
- setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
- setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
- setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
- if (!Subtarget.hasSPE()) {
- setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
- setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
- }
-
- // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
- const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
- for (MVT VT : ScalarIntVTs) {
- setOperationAction(ISD::ADDC, VT, Legal);
- setOperationAction(ISD::ADDE, VT, Legal);
- setOperationAction(ISD::SUBC, VT, Legal);
- setOperationAction(ISD::SUBE, VT, Legal);
- }
-
- if (Subtarget.useCRBits()) {
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
-
- if (isPPC64 || Subtarget.hasFPCVT()) {
- setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
- AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
- isPPC64 ? MVT::i64 : MVT::i32);
- setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
- AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
- isPPC64 ? MVT::i64 : MVT::i32);
- } else {
- setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
- }
-
- // PowerPC does not support direct load/store of condition registers.
- setOperationAction(ISD::LOAD, MVT::i1, Custom);
- setOperationAction(ISD::STORE, MVT::i1, Custom);
-
- // FIXME: Remove this once the ANDI glue bug is fixed:
- if (ANDIGlueBug)
- setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
-
- for (MVT VT : MVT::integer_valuetypes()) {
- setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
- setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
- setTruncStoreAction(VT, MVT::i1, Expand);
- }
-
- addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
- }
-
- // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
- // PPC (the libcall is not available).
- setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
-
- // We do not currently implement these libm ops for PowerPC.
- setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
- setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
- setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
- setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
- setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
-
- // PowerPC has no SREM/UREM instructions unless we are on P9
- // On P9 we may use a hardware instruction to compute the remainder.
- // The instructions are not legalized directly because in the cases where the
- // result of both the remainder and the division is required it is more
- // efficient to compute the remainder from the result of the division rather
- // than use the remainder instruction.
- if (Subtarget.isISA3_0()) {
- setOperationAction(ISD::SREM, MVT::i32, Custom);
- setOperationAction(ISD::UREM, MVT::i32, Custom);
- setOperationAction(ISD::SREM, MVT::i64, Custom);
- setOperationAction(ISD::UREM, MVT::i64, Custom);
- } else {
- setOperationAction(ISD::SREM, MVT::i32, Expand);
- setOperationAction(ISD::UREM, MVT::i32, Expand);
- setOperationAction(ISD::SREM, MVT::i64, Expand);
- setOperationAction(ISD::UREM, MVT::i64, Expand);
- }
-
- // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
- setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
- setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
- setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
- setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
- setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
- setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
- setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
- setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
-
- // We don't support sin/cos/sqrt/fmod/pow
- setOperationAction(ISD::FSIN , MVT::f64, Expand);
- setOperationAction(ISD::FCOS , MVT::f64, Expand);
- setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
- setOperationAction(ISD::FREM , MVT::f64, Expand);
- setOperationAction(ISD::FPOW , MVT::f64, Expand);
- setOperationAction(ISD::FSIN , MVT::f32, Expand);
- setOperationAction(ISD::FCOS , MVT::f32, Expand);
- setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
- setOperationAction(ISD::FREM , MVT::f32, Expand);
- setOperationAction(ISD::FPOW , MVT::f32, Expand);
- if (Subtarget.hasSPE()) {
- setOperationAction(ISD::FMA , MVT::f64, Expand);
- setOperationAction(ISD::FMA , MVT::f32, Expand);
- } else {
- setOperationAction(ISD::FMA , MVT::f64, Legal);
- setOperationAction(ISD::FMA , MVT::f32, Legal);
- }
-
- setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
-
- // If we're enabling GP optimizations, use hardware square root
- if (!Subtarget.hasFSQRT() &&
- !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
- Subtarget.hasFRE()))
- setOperationAction(ISD::FSQRT, MVT::f64, Expand);
-
- if (!Subtarget.hasFSQRT() &&
- !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
- Subtarget.hasFRES()))
- setOperationAction(ISD::FSQRT, MVT::f32, Expand);
-
- if (Subtarget.hasFCPSGN()) {
- setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
- setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
- } else {
- setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
- setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
- }
-
- if (Subtarget.hasFPRND()) {
- setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
- setOperationAction(ISD::FCEIL, MVT::f64, Legal);
- setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
- setOperationAction(ISD::FROUND, MVT::f64, Legal);
-
- setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
- setOperationAction(ISD::FCEIL, MVT::f32, Legal);
- setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
- setOperationAction(ISD::FROUND, MVT::f32, Legal);
- }
-
- // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
- // to speed up scalar BSWAP64.
- // CTPOP or CTTZ were introduced in P8/P9 respectively
- setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
- if (Subtarget.hasP9Vector())
- setOperationAction(ISD::BSWAP, MVT::i64 , Custom);
- else
- setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
- if (Subtarget.isISA3_0()) {
- setOperationAction(ISD::CTTZ , MVT::i32 , Legal);
- setOperationAction(ISD::CTTZ , MVT::i64 , Legal);
- } else {
- setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
- setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
- }
-
- if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
- setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
- setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
- } else {
- setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
- setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
- }
-
- // PowerPC does not have ROTR
- setOperationAction(ISD::ROTR, MVT::i32 , Expand);
- setOperationAction(ISD::ROTR, MVT::i64 , Expand);
-
- if (!Subtarget.useCRBits()) {
- // PowerPC does not have Select
- setOperationAction(ISD::SELECT, MVT::i32, Expand);
- setOperationAction(ISD::SELECT, MVT::i64, Expand);
- setOperationAction(ISD::SELECT, MVT::f32, Expand);
- setOperationAction(ISD::SELECT, MVT::f64, Expand);
- }
-
- // PowerPC wants to turn select_cc of FP into fsel when possible.
- setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
- setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
-
- // PowerPC wants to optimize integer setcc a bit
- if (!Subtarget.useCRBits())
- setOperationAction(ISD::SETCC, MVT::i32, Custom);
-
- // PowerPC does not have BRCOND which requires SetCC
- if (!Subtarget.useCRBits())
- setOperationAction(ISD::BRCOND, MVT::Other, Expand);
-
- setOperationAction(ISD::BR_JT, MVT::Other, Expand);
-
- if (Subtarget.hasSPE()) {
- // SPE has built-in conversions
- setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
- setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
- setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
- } else {
- // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
- setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
-
- // PowerPC does not have [U|S]INT_TO_FP
- setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
- setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
- }
-
- if (Subtarget.hasDirectMove() && isPPC64) {
- setOperationAction(ISD::BITCAST, MVT::f32, Legal);
- setOperationAction(ISD::BITCAST, MVT::i32, Legal);
- setOperationAction(ISD::BITCAST, MVT::i64, Legal);
- setOperationAction(ISD::BITCAST, MVT::f64, Legal);
- } else {
- setOperationAction(ISD::BITCAST, MVT::f32, Expand);
- setOperationAction(ISD::BITCAST, MVT::i32, Expand);
- setOperationAction(ISD::BITCAST, MVT::i64, Expand);
- setOperationAction(ISD::BITCAST, MVT::f64, Expand);
- }
-
- // We cannot sextinreg(i1). Expand to shifts.
- setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
-
- // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
- // SjLj exception handling but a light-weight setjmp/longjmp replacement to
- // support continuation, user-level threading, and etc.. As a result, no
- // other SjLj exception interfaces are implemented and please don't build
- // your own exception handling based on them.
- // LLVM/Clang supports zero-cost DWARF exception handling.
- setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
- setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
-
- // We want to legalize GlobalAddress and ConstantPool nodes into the
- // appropriate instructions to materialize the address.
- setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
- setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
- setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
- setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
- setOperationAction(ISD::JumpTable, MVT::i32, Custom);
- setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
- setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
- setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
- setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
- setOperationAction(ISD::JumpTable, MVT::i64, Custom);
-
- // TRAP is legal.
- setOperationAction(ISD::TRAP, MVT::Other, Legal);
-
- // TRAMPOLINE is custom lowered.
- setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
- setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
-
- // VASTART needs to be custom lowered to use the VarArgsFrameIndex
- setOperationAction(ISD::VASTART , MVT::Other, Custom);
-
- if (Subtarget.isSVR4ABI()) {
- if (isPPC64) {
- // VAARG always uses double-word chunks, so promote anything smaller.
- setOperationAction(ISD::VAARG, MVT::i1, Promote);
- AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
- setOperationAction(ISD::VAARG, MVT::i8, Promote);
- AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
- setOperationAction(ISD::VAARG, MVT::i16, Promote);
- AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
- setOperationAction(ISD::VAARG, MVT::i32, Promote);
- AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
- setOperationAction(ISD::VAARG, MVT::Other, Expand);
- } else {
- // VAARG is custom lowered with the 32-bit SVR4 ABI.
- setOperationAction(ISD::VAARG, MVT::Other, Custom);
- setOperationAction(ISD::VAARG, MVT::i64, Custom);
- }
- } else
- setOperationAction(ISD::VAARG, MVT::Other, Expand);
-
- if (Subtarget.isSVR4ABI() && !isPPC64)
- // VACOPY is custom lowered with the 32-bit SVR4 ABI.
- setOperationAction(ISD::VACOPY , MVT::Other, Custom);
- else
- setOperationAction(ISD::VACOPY , MVT::Other, Expand);
-
- // Use the default implementation.
- setOperationAction(ISD::VAEND , MVT::Other, Expand);
- setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
- setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
- setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
- setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
- setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
- setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
- setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
- setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
-
- // We want to custom lower some of our intrinsics.
- setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
-
- // To handle counter-based loop conditions.
- setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
-
- setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
- setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
- setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
- setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
-
- // Comparisons that require checking two conditions.
- if (Subtarget.hasSPE()) {
- setCondCodeAction(ISD::SETO, MVT::f32, Expand);
- setCondCodeAction(ISD::SETO, MVT::f64, Expand);
- setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
- setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
- }
- setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
- setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
- setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
- setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
- setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
- setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
- setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
- setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
- setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
- setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
-
- if (Subtarget.has64BitSupport()) {
- // They also have instructions for converting between i64 and fp.
- setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
- setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
- // This is just the low 32 bits of a (signed) fp->i64 conversion.
- // We cannot do this with Promote because i64 is not a legal type.
- setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
-
- if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
- setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
- } else {
- // PowerPC does not have FP_TO_UINT on 32-bit implementations.
- if (Subtarget.hasSPE())
- setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
- else
- setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
- }
-
- // With the instructions enabled under FPCVT, we can do everything.
- if (Subtarget.hasFPCVT()) {
- if (Subtarget.has64BitSupport()) {
- setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
- }
-
- setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
- setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
- }
-
- if (Subtarget.use64BitRegs()) {
- // 64-bit PowerPC implementations can support i64 types directly
- addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
- // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
- setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
- // 64-bit PowerPC wants to expand i128 shifts itself.
- setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
- setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
- setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
- } else {
- // 32-bit PowerPC wants to expand i64 shifts itself.
- setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
- setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
- setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
- }
-
- if (Subtarget.hasAltivec()) {
- // First set operation action for all vector types to expand. Then we
- // will selectively turn on ones that can be effectively codegen'd.
- for (MVT VT : MVT::vector_valuetypes()) {
- // add/sub are legal for all supported vector VT's.
- setOperationAction(ISD::ADD, VT, Legal);
- setOperationAction(ISD::SUB, VT, Legal);
- setOperationAction(ISD::ABS, VT, Custom);
-
- // Vector instructions introduced in P8
- if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
- setOperationAction(ISD::CTPOP, VT, Legal);
- setOperationAction(ISD::CTLZ, VT, Legal);
- }
- else {
- setOperationAction(ISD::CTPOP, VT, Expand);
- setOperationAction(ISD::CTLZ, VT, Expand);
- }
-
- // Vector instructions introduced in P9
- if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
- setOperationAction(ISD::CTTZ, VT, Legal);
- else
- setOperationAction(ISD::CTTZ, VT, Expand);
-
- // We promote all shuffles to v16i8.
- setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
- AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
-
- // We promote all non-typed operations to v4i32.
- setOperationAction(ISD::AND , VT, Promote);
- AddPromotedToType (ISD::AND , VT, MVT::v4i32);
- setOperationAction(ISD::OR , VT, Promote);
- AddPromotedToType (ISD::OR , VT, MVT::v4i32);
- setOperationAction(ISD::XOR , VT, Promote);
- AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
- setOperationAction(ISD::LOAD , VT, Promote);
- AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
- setOperationAction(ISD::SELECT, VT, Promote);
- AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
- setOperationAction(ISD::VSELECT, VT, Legal);
- setOperationAction(ISD::SELECT_CC, VT, Promote);
- AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
- setOperationAction(ISD::STORE, VT, Promote);
- AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
-
- // No other operations are legal.
- setOperationAction(ISD::MUL , VT, Expand);
- setOperationAction(ISD::SDIV, VT, Expand);
- setOperationAction(ISD::SREM, VT, Expand);
- setOperationAction(ISD::UDIV, VT, Expand);
- setOperationAction(ISD::UREM, VT, Expand);
- setOperationAction(ISD::FDIV, VT, Expand);
- setOperationAction(ISD::FREM, VT, Expand);
- setOperationAction(ISD::FNEG, VT, Expand);
- setOperationAction(ISD::FSQRT, VT, Expand);
- setOperationAction(ISD::FLOG, VT, Expand);
- setOperationAction(ISD::FLOG10, VT, Expand);
- setOperationAction(ISD::FLOG2, VT, Expand);
- setOperationAction(ISD::FEXP, VT, Expand);
- setOperationAction(ISD::FEXP2, VT, Expand);
- setOperationAction(ISD::FSIN, VT, Expand);
- setOperationAction(ISD::FCOS, VT, Expand);
- setOperationAction(ISD::FABS, VT, Expand);
- setOperationAction(ISD::FFLOOR, VT, Expand);
- setOperationAction(ISD::FCEIL, VT, Expand);
- setOperationAction(ISD::FTRUNC, VT, Expand);
- setOperationAction(ISD::FRINT, VT, Expand);
- setOperationAction(ISD::FNEARBYINT, VT, Expand);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
- setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
- setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
- setOperationAction(ISD::MULHU, VT, Expand);
- setOperationAction(ISD::MULHS, VT, Expand);
- setOperationAction(ISD::UMUL_LOHI, VT, Expand);
- setOperationAction(ISD::SMUL_LOHI, VT, Expand);
- setOperationAction(ISD::UDIVREM, VT, Expand);
- setOperationAction(ISD::SDIVREM, VT, Expand);
- setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
- setOperationAction(ISD::FPOW, VT, Expand);
- setOperationAction(ISD::BSWAP, VT, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
- setOperationAction(ISD::ROTL, VT, Expand);
- setOperationAction(ISD::ROTR, VT, Expand);
-
- for (MVT InnerVT : MVT::vector_valuetypes()) {
- setTruncStoreAction(VT, InnerVT, Expand);
- setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
- setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
- setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
- }
- }
-
- // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
- // with merges, splats, etc.
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
-
- setOperationAction(ISD::AND , MVT::v4i32, Legal);
- setOperationAction(ISD::OR , MVT::v4i32, Legal);
- setOperationAction(ISD::XOR , MVT::v4i32, Legal);
- setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
- setOperationAction(ISD::SELECT, MVT::v4i32,
- Subtarget.useCRBits() ? Legal : Expand);
- setOperationAction(ISD::STORE , MVT::v4i32, Legal);
- setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
- setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
- setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
- setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
-
- // Without hasP8Altivec set, v2i64 SMAX isn't available.
- // But ABS custom lowering requires SMAX support.
- if (!Subtarget.hasP8Altivec())
- setOperationAction(ISD::ABS, MVT::v2i64, Expand);
-
- addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
- addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
- addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
- addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
-
- setOperationAction(ISD::MUL, MVT::v4f32, Legal);
- setOperationAction(ISD::FMA, MVT::v4f32, Legal);
-
- if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
- setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
- setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
- }
-
- if (Subtarget.hasP8Altivec())
- setOperationAction(ISD::MUL, MVT::v4i32, Legal);
- else
- setOperationAction(ISD::MUL, MVT::v4i32, Custom);
-
- setOperationAction(ISD::MUL, MVT::v8i16, Custom);
- setOperationAction(ISD::MUL, MVT::v16i8, Custom);
-
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
-
- setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
-
- // Altivec does not contain unordered floating-point compare instructions
- setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
- setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
- setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
-
- if (Subtarget.hasVSX()) {
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
- if (Subtarget.hasP8Vector()) {
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
- }
- if (Subtarget.hasDirectMove() && isPPC64) {
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
- }
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
- setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
- setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
-
- setOperationAction(ISD::MUL, MVT::v2f64, Legal);
- setOperationAction(ISD::FMA, MVT::v2f64, Legal);
-
- setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
- setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
-
- // Share the Altivec comparison restrictions.
- setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
- setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
- setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
-
- setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
- setOperationAction(ISD::STORE, MVT::v2f64, Legal);
-
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
-
- if (Subtarget.hasP8Vector())
- addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
-
- addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
-
- addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
- addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
- addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
-
- if (Subtarget.hasP8Altivec()) {
- setOperationAction(ISD::SHL, MVT::v2i64, Legal);
- setOperationAction(ISD::SRA, MVT::v2i64, Legal);
- setOperationAction(ISD::SRL, MVT::v2i64, Legal);
-
- // 128 bit shifts can be accomplished via 3 instructions for SHL and
- // SRL, but not for SRA because of the instructions available:
- // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
- // doing
- setOperationAction(ISD::SHL, MVT::v1i128, Expand);
- setOperationAction(ISD::SRL, MVT::v1i128, Expand);
- setOperationAction(ISD::SRA, MVT::v1i128, Expand);
-
- setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
- }
- else {
- setOperationAction(ISD::SHL, MVT::v2i64, Expand);
- setOperationAction(ISD::SRA, MVT::v2i64, Expand);
- setOperationAction(ISD::SRL, MVT::v2i64, Expand);
-
- setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
-
- // VSX v2i64 only supports non-arithmetic operations.
- setOperationAction(ISD::ADD, MVT::v2i64, Expand);
- setOperationAction(ISD::SUB, MVT::v2i64, Expand);
- }
-
- setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
- AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
- setOperationAction(ISD::STORE, MVT::v2i64, Promote);
- AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
-
- setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
-
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
- setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
- setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
-
- // Custom handling for partial vectors of integers converted to
- // floating point. We already have optimal handling for v2i32 through
- // the DAG combine, so those aren't necessary.
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
-
- setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
- setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
- setOperationAction(ISD::FABS, MVT::v4f32, Legal);
- setOperationAction(ISD::FABS, MVT::v2f64, Legal);
-
- if (Subtarget.hasDirectMove())
- setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
-
- addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
- }
-
- if (Subtarget.hasP8Altivec()) {
- addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
- addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
- }
-
- if (Subtarget.hasP9Vector()) {
- setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
- setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
-
- // 128 bit shifts can be accomplished via 3 instructions for SHL and
- // SRL, but not for SRA because of the instructions available:
- // VS{RL} and VS{RL}O.
- setOperationAction(ISD::SHL, MVT::v1i128, Legal);
- setOperationAction(ISD::SRL, MVT::v1i128, Legal);
- setOperationAction(ISD::SRA, MVT::v1i128, Expand);
-
- if (EnableQuadPrecision) {
- addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
- setOperationAction(ISD::FADD, MVT::f128, Legal);
- setOperationAction(ISD::FSUB, MVT::f128, Legal);
- setOperationAction(ISD::FDIV, MVT::f128, Legal);
- setOperationAction(ISD::FMUL, MVT::f128, Legal);
- setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
- // No extending loads to f128 on PPC.
- for (MVT FPT : MVT::fp_valuetypes())
- setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
- setOperationAction(ISD::FMA, MVT::f128, Legal);
- setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
- setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
- setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
- setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
- setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
- setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
-
- setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
- setOperationAction(ISD::FRINT, MVT::f128, Legal);
- setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
- setOperationAction(ISD::FCEIL, MVT::f128, Legal);
- setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
- setOperationAction(ISD::FROUND, MVT::f128, Legal);
-
- setOperationAction(ISD::SELECT, MVT::f128, Expand);
- setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
- setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
- setTruncStoreAction(MVT::f128, MVT::f64, Expand);
- setTruncStoreAction(MVT::f128, MVT::f32, Expand);
- setOperationAction(ISD::BITCAST, MVT::i128, Custom);
- // No implementation for these ops for PowerPC.
- setOperationAction(ISD::FSIN , MVT::f128, Expand);
- setOperationAction(ISD::FCOS , MVT::f128, Expand);
- setOperationAction(ISD::FPOW, MVT::f128, Expand);
- setOperationAction(ISD::FPOWI, MVT::f128, Expand);
- setOperationAction(ISD::FREM, MVT::f128, Expand);
- }
-
- }
-
- if (Subtarget.hasP9Altivec()) {
- setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
- setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
- }
- }
-
- if (Subtarget.hasQPX()) {
- setOperationAction(ISD::FADD, MVT::v4f64, Legal);
- setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
- setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
- setOperationAction(ISD::FREM, MVT::v4f64, Expand);
-
- setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
- setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
-
- setOperationAction(ISD::LOAD , MVT::v4f64, Custom);
- setOperationAction(ISD::STORE , MVT::v4f64, Custom);
-
- setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
- setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
-
- if (!Subtarget.useCRBits())
- setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
- setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
-
- setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
- setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
- setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
- setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
- setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
-
- setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
- setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
-
- setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
- setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
- setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
-
- setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
- setOperationAction(ISD::FABS , MVT::v4f64, Legal);
- setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
- setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
- setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
- setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
- setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
- setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
- setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
- setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
-
- setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
- setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
-
- setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
-
- addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
-
- setOperationAction(ISD::FADD, MVT::v4f32, Legal);
- setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
- setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
- setOperationAction(ISD::FREM, MVT::v4f32, Expand);
-
- setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
- setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
-
- setOperationAction(ISD::LOAD , MVT::v4f32, Custom);
- setOperationAction(ISD::STORE , MVT::v4f32, Custom);
-
- if (!Subtarget.useCRBits())
- setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
- setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
-
- setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
- setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
- setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
- setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
- setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
-
- setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
- setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
-
- setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
- setOperationAction(ISD::FABS , MVT::v4f32, Legal);
- setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
- setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
- setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
- setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
- setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
- setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
- setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
- setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
-
- setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
- setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
-
- setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
- setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
-
- addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
-
- setOperationAction(ISD::AND , MVT::v4i1, Legal);
- setOperationAction(ISD::OR , MVT::v4i1, Legal);
- setOperationAction(ISD::XOR , MVT::v4i1, Legal);
-
- if (!Subtarget.useCRBits())
- setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
- setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
-
- setOperationAction(ISD::LOAD , MVT::v4i1, Custom);
- setOperationAction(ISD::STORE , MVT::v4i1, Custom);
-
- setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
- setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
- setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
- setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
- setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
- setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
- setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
-
- setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
- setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
-
- addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
-
- setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
- setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
- setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
-
- setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
- setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
- setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
- setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
-
- setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
-
- // These need to set FE_INEXACT, and so cannot be vectorized here.
- setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
- setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
-
- if (TM.Options.UnsafeFPMath) {
- setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
- setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
-
- setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
- setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
- } else {
- setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
- setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
-
- setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
- setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
- }
- }
-
- if (Subtarget.has64BitSupport())
- setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
-
- setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
-
- if (isPPC64)
- setMaxAtomicSizeInBitsSupported(64);
- else {
- setMaxAtomicSizeInBitsSupported(32);
- setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
- setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
- }
-
- setBooleanContents(ZeroOrOneBooleanContent);
-
- if (Subtarget.hasAltivec()) {
- // Altivec instructions set fields to all zeros or all ones.
- setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
- }
-
- if (!isPPC64) {
- // These libcalls are not available in 32-bit.
- setLibcallName(RTLIB::SHL_I128, nullptr);
- setLibcallName(RTLIB::SRL_I128, nullptr);
- setLibcallName(RTLIB::SRA_I128, nullptr);
- }
-
- setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
-
- // We have target-specific dag combine patterns for the following nodes:
- setTargetDAGCombine(ISD::ADD);
- setTargetDAGCombine(ISD::SHL);
- setTargetDAGCombine(ISD::SRA);
- setTargetDAGCombine(ISD::SRL);
- setTargetDAGCombine(ISD::SINT_TO_FP);
- setTargetDAGCombine(ISD::BUILD_VECTOR);
- if (Subtarget.hasFPCVT())
- setTargetDAGCombine(ISD::UINT_TO_FP);
- setTargetDAGCombine(ISD::LOAD);
- setTargetDAGCombine(ISD::STORE);
- setTargetDAGCombine(ISD::BR_CC);
- if (Subtarget.useCRBits())
- setTargetDAGCombine(ISD::BRCOND);
- setTargetDAGCombine(ISD::BSWAP);
- setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
- setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
- setTargetDAGCombine(ISD::INTRINSIC_VOID);
-
- setTargetDAGCombine(ISD::SIGN_EXTEND);
- setTargetDAGCombine(ISD::ZERO_EXTEND);
- setTargetDAGCombine(ISD::ANY_EXTEND);
-
- setTargetDAGCombine(ISD::TRUNCATE);
-
- if (Subtarget.useCRBits()) {
- setTargetDAGCombine(ISD::TRUNCATE);
- setTargetDAGCombine(ISD::SETCC);
- setTargetDAGCombine(ISD::SELECT_CC);
- }
-
- // Use reciprocal estimates.
- if (TM.Options.UnsafeFPMath) {
- setTargetDAGCombine(ISD::FDIV);
- setTargetDAGCombine(ISD::FSQRT);
- }
-
- if (Subtarget.hasP9Altivec()) {
- setTargetDAGCombine(ISD::ABS);
- setTargetDAGCombine(ISD::VSELECT);
- }
-
- // Darwin long double math library functions have $LDBL128 appended.
- if (Subtarget.isDarwin()) {
- setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
- setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
- setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
- setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
- setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
- setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
- setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
- setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
- setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
- setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
- }
-
- if (EnableQuadPrecision) {
- setLibcallName(RTLIB::LOG_F128, "logf128");
- setLibcallName(RTLIB::LOG2_F128, "log2f128");
- setLibcallName(RTLIB::LOG10_F128, "log10f128");
- setLibcallName(RTLIB::EXP_F128, "expf128");
- setLibcallName(RTLIB::EXP2_F128, "exp2f128");
- setLibcallName(RTLIB::SIN_F128, "sinf128");
- setLibcallName(RTLIB::COS_F128, "cosf128");
- setLibcallName(RTLIB::POW_F128, "powf128");
- setLibcallName(RTLIB::FMIN_F128, "fminf128");
- setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
- setLibcallName(RTLIB::POWI_F128, "__powikf2");
- setLibcallName(RTLIB::REM_F128, "fmodf128");
- }
-
- // With 32 condition bits, we don't need to sink (and duplicate) compares
- // aggressively in CodeGenPrep.
- if (Subtarget.useCRBits()) {
- setHasMultipleConditionRegisters();
- setJumpIsExpensive();
- }
-
- setMinFunctionAlignment(2);
- if (Subtarget.isDarwin())
- setPrefFunctionAlignment(4);
-
- switch (Subtarget.getDarwinDirective()) {
- default: break;
- case PPC::DIR_970:
- case PPC::DIR_A2:
- case PPC::DIR_E500:
- case PPC::DIR_E500mc:
- case PPC::DIR_E5500:
- case PPC::DIR_PWR4:
- case PPC::DIR_PWR5:
- case PPC::DIR_PWR5X:
- case PPC::DIR_PWR6:
- case PPC::DIR_PWR6X:
- case PPC::DIR_PWR7:
- case PPC::DIR_PWR8:
- case PPC::DIR_PWR9:
- setPrefFunctionAlignment(4);
- setPrefLoopAlignment(4);
- break;
- }
-
- if (Subtarget.enableMachineScheduler())
- setSchedulingPreference(Sched::Source);
- else
- setSchedulingPreference(Sched::Hybrid);
-
- computeRegisterProperties(STI.getRegisterInfo());
-
- // The Freescale cores do better with aggressive inlining of memcpy and
- // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
- if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
- Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
- MaxStoresPerMemset = 32;
- MaxStoresPerMemsetOptSize = 16;
- MaxStoresPerMemcpy = 32;
- MaxStoresPerMemcpyOptSize = 8;
- MaxStoresPerMemmove = 32;
- MaxStoresPerMemmoveOptSize = 8;
- } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
- // The A2 also benefits from (very) aggressive inlining of memcpy and
- // friends. The overhead of a the function call, even when warm, can be
- // over one hundred cycles.
- MaxStoresPerMemset = 128;
- MaxStoresPerMemcpy = 128;
- MaxStoresPerMemmove = 128;
- MaxLoadsPerMemcmp = 128;
- } else {
- MaxLoadsPerMemcmp = 8;
- MaxLoadsPerMemcmpOptSize = 4;
- }
-}
-
-/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
-/// the desired ByVal argument alignment.
-static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
- unsigned MaxMaxAlign) {
- if (MaxAlign == MaxMaxAlign)
- return;
- if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
- if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
- MaxAlign = 32;
- else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
- MaxAlign = 16;
- } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- unsigned EltAlign = 0;
- getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
- if (EltAlign > MaxAlign)
- MaxAlign = EltAlign;
- } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
- for (auto *EltTy : STy->elements()) {
- unsigned EltAlign = 0;
- getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
- if (EltAlign > MaxAlign)
- MaxAlign = EltAlign;
- if (MaxAlign == MaxMaxAlign)
- break;
- }
- }
-}
-
-/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
-/// function arguments in the caller parameter area.
-unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
- const DataLayout &DL) const {
- // Darwin passes everything on 4 byte boundary.
- if (Subtarget.isDarwin())
- return 4;
-
- // 16byte and wider vectors are passed on 16byte boundary.
- // The rest is 8 on PPC64 and 4 on PPC32 boundary.
- unsigned Align = Subtarget.isPPC64() ? 8 : 4;
- if (Subtarget.hasAltivec() || Subtarget.hasQPX())
- getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
- return Align;
-}
-
-unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
- CallingConv:: ID CC,
- EVT VT) const {
- if (Subtarget.hasSPE() && VT == MVT::f64)
- return 2;
- return PPCTargetLowering::getNumRegisters(Context, VT);
-}
-
-MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
- CallingConv:: ID CC,
- EVT VT) const {
- if (Subtarget.hasSPE() && VT == MVT::f64)
- return MVT::i32;
- return PPCTargetLowering::getRegisterType(Context, VT);
-}
-
-bool PPCTargetLowering::useSoftFloat() const {
- return Subtarget.useSoftFloat();
-}
-
-bool PPCTargetLowering::hasSPE() const {
- return Subtarget.hasSPE();
-}
-
-const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
- switch ((PPCISD::NodeType)Opcode) {
- case PPCISD::FIRST_NUMBER: break;
- case PPCISD::FSEL: return "PPCISD::FSEL";
- case PPCISD::FCFID: return "PPCISD::FCFID";
- case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
- case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
- case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
- case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
- case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
- case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
- case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
- case PPCISD::FP_TO_UINT_IN_VSR:
- return "PPCISD::FP_TO_UINT_IN_VSR,";
- case PPCISD::FP_TO_SINT_IN_VSR:
- return "PPCISD::FP_TO_SINT_IN_VSR";
- case PPCISD::FRE: return "PPCISD::FRE";
- case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
- case PPCISD::STFIWX: return "PPCISD::STFIWX";
- case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
- case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
- case PPCISD::VPERM: return "PPCISD::VPERM";
- case PPCISD::XXSPLT: return "PPCISD::XXSPLT";
- case PPCISD::VECINSERT: return "PPCISD::VECINSERT";
- case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE";
- case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI";
- case PPCISD::VECSHL: return "PPCISD::VECSHL";
- case PPCISD::CMPB: return "PPCISD::CMPB";
- case PPCISD::Hi: return "PPCISD::Hi";
- case PPCISD::Lo: return "PPCISD::Lo";
- case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
- case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
- case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
- case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
- case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET";
- case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
- case PPCISD::SRL: return "PPCISD::SRL";
- case PPCISD::SRA: return "PPCISD::SRA";
- case PPCISD::SHL: return "PPCISD::SHL";
- case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE";
- case PPCISD::CALL: return "PPCISD::CALL";
- case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
- case PPCISD::MTCTR: return "PPCISD::MTCTR";
- case PPCISD::BCTRL: return "PPCISD::BCTRL";
- case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
- case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
- case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
- case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
- case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
- case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
- case PPCISD::MFVSR: return "PPCISD::MFVSR";
- case PPCISD::MTVSRA: return "PPCISD::MTVSRA";
- case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ";
- case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP";
- case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP";
- case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT";
- case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT";
- case PPCISD::VCMP: return "PPCISD::VCMP";
- case PPCISD::VCMPo: return "PPCISD::VCMPo";
- case PPCISD::LBRX: return "PPCISD::LBRX";
- case PPCISD::STBRX: return "PPCISD::STBRX";
- case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
- case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
- case PPCISD::LXSIZX: return "PPCISD::LXSIZX";
- case PPCISD::STXSIX: return "PPCISD::STXSIX";
- case PPCISD::VEXTS: return "PPCISD::VEXTS";
- case PPCISD::SExtVElems: return "PPCISD::SExtVElems";
- case PPCISD::LXVD2X: return "PPCISD::LXVD2X";
- case PPCISD::STXVD2X: return "PPCISD::STXVD2X";
- case PPCISD::ST_VSR_SCAL_INT:
- return "PPCISD::ST_VSR_SCAL_INT";
- case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
- case PPCISD::BDNZ: return "PPCISD::BDNZ";
- case PPCISD::BDZ: return "PPCISD::BDZ";
- case PPCISD::MFFS: return "PPCISD::MFFS";
- case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
- case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
- case PPCISD::CR6SET: return "PPCISD::CR6SET";
- case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
- case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
- case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT";
- case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
- case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
- case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
- case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
- case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
- case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
- case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
- case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
- case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
- case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
- case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
- case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
- case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
- case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
- case PPCISD::SC: return "PPCISD::SC";
- case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB";
- case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE";
- case PPCISD::RFEBB: return "PPCISD::RFEBB";
- case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD";
- case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN";
- case PPCISD::VABSD: return "PPCISD::VABSD";
- case PPCISD::QVFPERM: return "PPCISD::QVFPERM";
- case PPCISD::QVGPCI: return "PPCISD::QVGPCI";
- case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI";
- case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI";
- case PPCISD::QBFLT: return "PPCISD::QBFLT";
- case PPCISD::QVLFSb: return "PPCISD::QVLFSb";
- case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128";
- case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI";
- }
- return nullptr;
-}
-
-EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
- EVT VT) const {
- if (!VT.isVector())
- return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
-
- if (Subtarget.hasQPX())
- return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
-
- return VT.changeVectorElementTypeToInteger();
-}
-
-bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
- assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// Node matching predicates, for use by the tblgen matching code.
-//===----------------------------------------------------------------------===//
-
-/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
-static bool isFloatingPointZero(SDValue Op) {
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
- return CFP->getValueAPF().isZero();
- else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
- // Maybe this has already been legalized into the constant pool?
- if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
- return CFP->getValueAPF().isZero();
- }
- return false;
-}
-
-/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
-/// true if Op is undef or if it matches the specified value.
-static bool isConstantOrUndef(int Op, int Val) {
- return Op < 0 || Op == Val;
-}
-
-/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
-/// VPKUHUM instruction.
-/// The ShuffleKind distinguishes between big-endian operations with
-/// two different inputs (0), either-endian operations with two identical
-/// inputs (1), and little-endian operations with two different inputs (2).
-/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
-bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
- SelectionDAG &DAG) {
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- if (ShuffleKind == 0) {
- if (IsLE)
- return false;
- for (unsigned i = 0; i != 16; ++i)
- if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
- return false;
- } else if (ShuffleKind == 2) {
- if (!IsLE)
- return false;
- for (unsigned i = 0; i != 16; ++i)
- if (!isConstantOrUndef(N->getMaskElt(i), i*2))
- return false;
- } else if (ShuffleKind == 1) {
- unsigned j = IsLE ? 0 : 1;
- for (unsigned i = 0; i != 8; ++i)
- if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
- !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
- return false;
- }
- return true;
-}
-
-/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
-/// VPKUWUM instruction.
-/// The ShuffleKind distinguishes between big-endian operations with
-/// two different inputs (0), either-endian operations with two identical
-/// inputs (1), and little-endian operations with two different inputs (2).
-/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
-bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
- SelectionDAG &DAG) {
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- if (ShuffleKind == 0) {
- if (IsLE)
- return false;
- for (unsigned i = 0; i != 16; i += 2)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
- return false;
- } else if (ShuffleKind == 2) {
- if (!IsLE)
- return false;
- for (unsigned i = 0; i != 16; i += 2)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
- return false;
- } else if (ShuffleKind == 1) {
- unsigned j = IsLE ? 0 : 2;
- for (unsigned i = 0; i != 8; i += 2)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
- !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
- !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
- return false;
- }
- return true;
-}
-
-/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
-/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
-/// current subtarget.
-///
-/// The ShuffleKind distinguishes between big-endian operations with
-/// two different inputs (0), either-endian operations with two identical
-/// inputs (1), and little-endian operations with two different inputs (2).
-/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
-bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
- SelectionDAG &DAG) {
- const PPCSubtarget& Subtarget =
- static_cast<const PPCSubtarget&>(DAG.getSubtarget());
- if (!Subtarget.hasP8Vector())
- return false;
-
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- if (ShuffleKind == 0) {
- if (IsLE)
- return false;
- for (unsigned i = 0; i != 16; i += 4)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) ||
- !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) ||
- !isConstantOrUndef(N->getMaskElt(i+3), i*2+7))
- return false;
- } else if (ShuffleKind == 2) {
- if (!IsLE)
- return false;
- for (unsigned i = 0; i != 16; i += 4)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) ||
- !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) ||
- !isConstantOrUndef(N->getMaskElt(i+3), i*2+3))
- return false;
- } else if (ShuffleKind == 1) {
- unsigned j = IsLE ? 0 : 4;
- for (unsigned i = 0; i != 8; i += 4)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
- !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) ||
- !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) ||
- !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
- !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) ||
- !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
- !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
- return false;
- }
- return true;
-}
-
-/// isVMerge - Common function, used to match vmrg* shuffles.
-///
-static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
- unsigned LHSStart, unsigned RHSStart) {
- if (N->getValueType(0) != MVT::v16i8)
- return false;
- assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
- "Unsupported merge size!");
-
- for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
- for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
- if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
- LHSStart+j+i*UnitSize) ||
- !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
- RHSStart+j+i*UnitSize))
- return false;
- }
- return true;
-}
-
-/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
-/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
-/// The ShuffleKind distinguishes between big-endian merges with two
-/// different inputs (0), either-endian merges with two identical inputs (1),
-/// and little-endian merges with two different inputs (2). For the latter,
-/// the input operands are swapped (see PPCInstrAltivec.td).
-bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
- unsigned ShuffleKind, SelectionDAG &DAG) {
- if (DAG.getDataLayout().isLittleEndian()) {
- if (ShuffleKind == 1) // unary
- return isVMerge(N, UnitSize, 0, 0);
- else if (ShuffleKind == 2) // swapped
- return isVMerge(N, UnitSize, 0, 16);
- else
- return false;
- } else {
- if (ShuffleKind == 1) // unary
- return isVMerge(N, UnitSize, 8, 8);
- else if (ShuffleKind == 0) // normal
- return isVMerge(N, UnitSize, 8, 24);
- else
- return false;
- }
-}
-
-/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
-/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
-/// The ShuffleKind distinguishes between big-endian merges with two
-/// different inputs (0), either-endian merges with two identical inputs (1),
-/// and little-endian merges with two different inputs (2). For the latter,
-/// the input operands are swapped (see PPCInstrAltivec.td).
-bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
- unsigned ShuffleKind, SelectionDAG &DAG) {
- if (DAG.getDataLayout().isLittleEndian()) {
- if (ShuffleKind == 1) // unary
- return isVMerge(N, UnitSize, 8, 8);
- else if (ShuffleKind == 2) // swapped
- return isVMerge(N, UnitSize, 8, 24);
- else
- return false;
- } else {
- if (ShuffleKind == 1) // unary
- return isVMerge(N, UnitSize, 0, 0);
- else if (ShuffleKind == 0) // normal
- return isVMerge(N, UnitSize, 0, 16);
- else
- return false;
- }
-}
-
-/**
- * Common function used to match vmrgew and vmrgow shuffles
- *
- * The indexOffset determines whether to look for even or odd words in
- * the shuffle mask. This is based on the of the endianness of the target
- * machine.
- * - Little Endian:
- * - Use offset of 0 to check for odd elements
- * - Use offset of 4 to check for even elements
- * - Big Endian:
- * - Use offset of 0 to check for even elements
- * - Use offset of 4 to check for odd elements
- * A detailed description of the vector element ordering for little endian and
- * big endian can be found at
- * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
- * Targeting your applications - what little endian and big endian IBM XL C/C++
- * compiler differences mean to you
- *
- * The mask to the shuffle vector instruction specifies the indices of the
- * elements from the two input vectors to place in the result. The elements are
- * numbered in array-access order, starting with the first vector. These vectors
- * are always of type v16i8, thus each vector will contain 16 elements of size
- * 8. More info on the shuffle vector can be found in the
- * http://llvm.org/docs/LangRef.html#shufflevector-instruction
- * Language Reference.
- *
- * The RHSStartValue indicates whether the same input vectors are used (unary)
- * or two different input vectors are used, based on the following:
- * - If the instruction uses the same vector for both inputs, the range of the
- * indices will be 0 to 15. In this case, the RHSStart value passed should
- * be 0.
- * - If the instruction has two different vectors then the range of the
- * indices will be 0 to 31. In this case, the RHSStart value passed should
- * be 16 (indices 0-15 specify elements in the first vector while indices 16
- * to 31 specify elements in the second vector).
- *
- * \param[in] N The shuffle vector SD Node to analyze
- * \param[in] IndexOffset Specifies whether to look for even or odd elements
- * \param[in] RHSStartValue Specifies the starting index for the righthand input
- * vector to the shuffle_vector instruction
- * \return true iff this shuffle vector represents an even or odd word merge
- */
-static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
- unsigned RHSStartValue) {
- if (N->getValueType(0) != MVT::v16i8)
- return false;
-
- for (unsigned i = 0; i < 2; ++i)
- for (unsigned j = 0; j < 4; ++j)
- if (!isConstantOrUndef(N->getMaskElt(i*4+j),
- i*RHSStartValue+j+IndexOffset) ||
- !isConstantOrUndef(N->getMaskElt(i*4+j+8),
- i*RHSStartValue+j+IndexOffset+8))
- return false;
- return true;
-}
-
-/**
- * Determine if the specified shuffle mask is suitable for the vmrgew or
- * vmrgow instructions.
- *
- * \param[in] N The shuffle vector SD Node to analyze
- * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
- * \param[in] ShuffleKind Identify the type of merge:
- * - 0 = big-endian merge with two different inputs;
- * - 1 = either-endian merge with two identical inputs;
- * - 2 = little-endian merge with two different inputs (inputs are swapped for
- * little-endian merges).
- * \param[in] DAG The current SelectionDAG
- * \return true iff this shuffle mask
- */
-bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
- unsigned ShuffleKind, SelectionDAG &DAG) {
- if (DAG.getDataLayout().isLittleEndian()) {
- unsigned indexOffset = CheckEven ? 4 : 0;
- if (ShuffleKind == 1) // Unary
- return isVMerge(N, indexOffset, 0);
- else if (ShuffleKind == 2) // swapped
- return isVMerge(N, indexOffset, 16);
- else
- return false;
- }
- else {
- unsigned indexOffset = CheckEven ? 0 : 4;
- if (ShuffleKind == 1) // Unary
- return isVMerge(N, indexOffset, 0);
- else if (ShuffleKind == 0) // Normal
- return isVMerge(N, indexOffset, 16);
- else
- return false;
- }
- return false;
-}
-
-/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
-/// amount, otherwise return -1.
-/// The ShuffleKind distinguishes between big-endian operations with two
-/// different inputs (0), either-endian operations with two identical inputs
-/// (1), and little-endian operations with two different inputs (2). For the
-/// latter, the input operands are swapped (see PPCInstrAltivec.td).
-int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
- SelectionDAG &DAG) {
- if (N->getValueType(0) != MVT::v16i8)
- return -1;
-
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
-
- // Find the first non-undef value in the shuffle mask.
- unsigned i;
- for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
- /*search*/;
-
- if (i == 16) return -1; // all undef.
-
- // Otherwise, check to see if the rest of the elements are consecutively
- // numbered from this value.
- unsigned ShiftAmt = SVOp->getMaskElt(i);
- if (ShiftAmt < i) return -1;
-
- ShiftAmt -= i;
- bool isLE = DAG.getDataLayout().isLittleEndian();
-
- if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
- // Check the rest of the elements to see if they are consecutive.
- for (++i; i != 16; ++i)
- if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
- return -1;
- } else if (ShuffleKind == 1) {
- // Check the rest of the elements to see if they are consecutive.
- for (++i; i != 16; ++i)
- if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
- return -1;
- } else
- return -1;
-
- if (isLE)
- ShiftAmt = 16 - ShiftAmt;
-
- return ShiftAmt;
-}
-
-/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
-/// specifies a splat of a single element that is suitable for input to
-/// VSPLTB/VSPLTH/VSPLTW.
-bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
- assert(N->getValueType(0) == MVT::v16i8 &&
- (EltSize == 1 || EltSize == 2 || EltSize == 4));
-
- // The consecutive indices need to specify an element, not part of two
- // different elements. So abandon ship early if this isn't the case.
- if (N->getMaskElt(0) % EltSize != 0)
- return false;
-
- // This is a splat operation if each element of the permute is the same, and
- // if the value doesn't reference the second vector.
- unsigned ElementBase = N->getMaskElt(0);
-
- // FIXME: Handle UNDEF elements too!
- if (ElementBase >= 16)
- return false;
-
- // Check that the indices are consecutive, in the case of a multi-byte element
- // splatted with a v16i8 mask.
- for (unsigned i = 1; i != EltSize; ++i)
- if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
- return false;
-
- for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
- if (N->getMaskElt(i) < 0) continue;
- for (unsigned j = 0; j != EltSize; ++j)
- if (N->getMaskElt(i+j) != N->getMaskElt(j))
- return false;
- }
- return true;
-}
-
-/// Check that the mask is shuffling N byte elements. Within each N byte
-/// element of the mask, the indices could be either in increasing or
-/// decreasing order as long as they are consecutive.
-/// \param[in] N the shuffle vector SD Node to analyze
-/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
-/// Word/DoubleWord/QuadWord).
-/// \param[in] StepLen the delta indices number among the N byte element, if
-/// the mask is in increasing/decreasing order then it is 1/-1.
-/// \return true iff the mask is shuffling N byte elements.
-static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
- int StepLen) {
- assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
- "Unexpected element width.");
- assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
-
- unsigned NumOfElem = 16 / Width;
- unsigned MaskVal[16]; // Width is never greater than 16
- for (unsigned i = 0; i < NumOfElem; ++i) {
- MaskVal[0] = N->getMaskElt(i * Width);
- if ((StepLen == 1) && (MaskVal[0] % Width)) {
- return false;
- } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
- return false;
- }
-
- for (unsigned int j = 1; j < Width; ++j) {
- MaskVal[j] = N->getMaskElt(i * Width + j);
- if (MaskVal[j] != MaskVal[j-1] + StepLen) {
- return false;
- }
- }
- }
-
- return true;
-}
-
-bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
- unsigned &InsertAtByte, bool &Swap, bool IsLE) {
- if (!isNByteElemShuffleMask(N, 4, 1))
- return false;
-
- // Now we look at mask elements 0,4,8,12
- unsigned M0 = N->getMaskElt(0) / 4;
- unsigned M1 = N->getMaskElt(4) / 4;
- unsigned M2 = N->getMaskElt(8) / 4;
- unsigned M3 = N->getMaskElt(12) / 4;
- unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
- unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
-
- // Below, let H and L be arbitrary elements of the shuffle mask
- // where H is in the range [4,7] and L is in the range [0,3].
- // H, 1, 2, 3 or L, 5, 6, 7
- if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
- (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
- ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
- InsertAtByte = IsLE ? 12 : 0;
- Swap = M0 < 4;
- return true;
- }
- // 0, H, 2, 3 or 4, L, 6, 7
- if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
- (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
- ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
- InsertAtByte = IsLE ? 8 : 4;
- Swap = M1 < 4;
- return true;
- }
- // 0, 1, H, 3 or 4, 5, L, 7
- if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
- (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
- ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
- InsertAtByte = IsLE ? 4 : 8;
- Swap = M2 < 4;
- return true;
- }
- // 0, 1, 2, H or 4, 5, 6, L
- if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
- (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
- ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
- InsertAtByte = IsLE ? 0 : 12;
- Swap = M3 < 4;
- return true;
- }
-
- // If both vector operands for the shuffle are the same vector, the mask will
- // contain only elements from the first one and the second one will be undef.
- if (N->getOperand(1).isUndef()) {
- ShiftElts = 0;
- Swap = true;
- unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
- if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
- InsertAtByte = IsLE ? 12 : 0;
- return true;
- }
- if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
- InsertAtByte = IsLE ? 8 : 4;
- return true;
- }
- if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
- InsertAtByte = IsLE ? 4 : 8;
- return true;
- }
- if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
- InsertAtByte = IsLE ? 0 : 12;
- return true;
- }
- }
-
- return false;
-}
-
-bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
- bool &Swap, bool IsLE) {
- assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
- // Ensure each byte index of the word is consecutive.
- if (!isNByteElemShuffleMask(N, 4, 1))
- return false;
-
- // Now we look at mask elements 0,4,8,12, which are the beginning of words.
- unsigned M0 = N->getMaskElt(0) / 4;
- unsigned M1 = N->getMaskElt(4) / 4;
- unsigned M2 = N->getMaskElt(8) / 4;
- unsigned M3 = N->getMaskElt(12) / 4;
-
- // If both vector operands for the shuffle are the same vector, the mask will
- // contain only elements from the first one and the second one will be undef.
- if (N->getOperand(1).isUndef()) {
- assert(M0 < 4 && "Indexing into an undef vector?");
- if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
- return false;
-
- ShiftElts = IsLE ? (4 - M0) % 4 : M0;
- Swap = false;
- return true;
- }
-
- // Ensure each word index of the ShuffleVector Mask is consecutive.
- if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
- return false;
-
- if (IsLE) {
- if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
- // Input vectors don't need to be swapped if the leading element
- // of the result is one of the 3 left elements of the second vector
- // (or if there is no shift to be done at all).
- Swap = false;
- ShiftElts = (8 - M0) % 8;
- } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
- // Input vectors need to be swapped if the leading element
- // of the result is one of the 3 left elements of the first vector
- // (or if we're shifting by 4 - thereby simply swapping the vectors).
- Swap = true;
- ShiftElts = (4 - M0) % 4;
- }
-
- return true;
- } else { // BE
- if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
- // Input vectors don't need to be swapped if the leading element
- // of the result is one of the 4 elements of the first vector.
- Swap = false;
- ShiftElts = M0;
- } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
- // Input vectors need to be swapped if the leading element
- // of the result is one of the 4 elements of the right vector.
- Swap = true;
- ShiftElts = M0 - 4;
- }
-
- return true;
- }
-}
-
-bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
- assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
-
- if (!isNByteElemShuffleMask(N, Width, -1))
- return false;
-
- for (int i = 0; i < 16; i += Width)
- if (N->getMaskElt(i) != i + Width - 1)
- return false;
-
- return true;
-}
-
-bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
- return isXXBRShuffleMaskHelper(N, 2);
-}
-
-bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
- return isXXBRShuffleMaskHelper(N, 4);
-}
-
-bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
- return isXXBRShuffleMaskHelper(N, 8);
-}
-
-bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
- return isXXBRShuffleMaskHelper(N, 16);
-}
-
-/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
-/// if the inputs to the instruction should be swapped and set \p DM to the
-/// value for the immediate.
-/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
-/// AND element 0 of the result comes from the first input (LE) or second input
-/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
-/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
-/// mask.
-bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
- bool &Swap, bool IsLE) {
- assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
-
- // Ensure each byte index of the double word is consecutive.
- if (!isNByteElemShuffleMask(N, 8, 1))
- return false;
-
- unsigned M0 = N->getMaskElt(0) / 8;
- unsigned M1 = N->getMaskElt(8) / 8;
- assert(((M0 | M1) < 4) && "A mask element out of bounds?");
-
- // If both vector operands for the shuffle are the same vector, the mask will
- // contain only elements from the first one and the second one will be undef.
- if (N->getOperand(1).isUndef()) {
- if ((M0 | M1) < 2) {
- DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
- Swap = false;
- return true;
- } else
- return false;
- }
-
- if (IsLE) {
- if (M0 > 1 && M1 < 2) {
- Swap = false;
- } else if (M0 < 2 && M1 > 1) {
- M0 = (M0 + 2) % 4;
- M1 = (M1 + 2) % 4;
- Swap = true;
- } else
- return false;
-
- // Note: if control flow comes here that means Swap is already set above
- DM = (((~M1) & 1) << 1) + ((~M0) & 1);
- return true;
- } else { // BE
- if (M0 < 2 && M1 > 1) {
- Swap = false;
- } else if (M0 > 1 && M1 < 2) {
- M0 = (M0 + 2) % 4;
- M1 = (M1 + 2) % 4;
- Swap = true;
- } else
- return false;
-
- // Note: if control flow comes here that means Swap is already set above
- DM = (M0 << 1) + (M1 & 1);
- return true;
- }
-}
-
-
-/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
-/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
-unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
- SelectionDAG &DAG) {
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- assert(isSplatShuffleMask(SVOp, EltSize));
- if (DAG.getDataLayout().isLittleEndian())
- return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
- else
- return SVOp->getMaskElt(0) / EltSize;
-}
-
-/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
-/// by using a vspltis[bhw] instruction of the specified element size, return
-/// the constant being splatted. The ByteSize field indicates the number of
-/// bytes of each element [124] -> [bhw].
-SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
- SDValue OpVal(nullptr, 0);
-
- // If ByteSize of the splat is bigger than the element size of the
- // build_vector, then we have a case where we are checking for a splat where
- // multiple elements of the buildvector are folded together into a single
- // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
- unsigned EltSize = 16/N->getNumOperands();
- if (EltSize < ByteSize) {
- unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
- SDValue UniquedVals[4];
- assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
-
- // See if all of the elements in the buildvector agree across.
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- if (N->getOperand(i).isUndef()) continue;
- // If the element isn't a constant, bail fully out.
- if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
-
- if (!UniquedVals[i&(Multiple-1)].getNode())
- UniquedVals[i&(Multiple-1)] = N->getOperand(i);
- else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
- return SDValue(); // no match.
- }
-
- // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
- // either constant or undef values that are identical for each chunk. See
- // if these chunks can form into a larger vspltis*.
-
- // Check to see if all of the leading entries are either 0 or -1. If
- // neither, then this won't fit into the immediate field.
- bool LeadingZero = true;
- bool LeadingOnes = true;
- for (unsigned i = 0; i != Multiple-1; ++i) {
- if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
-
- LeadingZero &= isNullConstant(UniquedVals[i]);
- LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
- }
- // Finally, check the least significant entry.
- if (LeadingZero) {
- if (!UniquedVals[Multiple-1].getNode())
- return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef
- int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
- if (Val < 16) // 0,0,0,4 -> vspltisw(4)
- return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
- }
- if (LeadingOnes) {
- if (!UniquedVals[Multiple-1].getNode())
- return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
- int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
- if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
- return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
- }
-
- return SDValue();
- }
-
- // Check to see if this buildvec has a single non-undef value in its elements.
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- if (N->getOperand(i).isUndef()) continue;
- if (!OpVal.getNode())
- OpVal = N->getOperand(i);
- else if (OpVal != N->getOperand(i))
- return SDValue();
- }
-
- if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
-
- unsigned ValSizeInBytes = EltSize;
- uint64_t Value = 0;
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
- Value = CN->getZExtValue();
- } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
- assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
- Value = FloatToBits(CN->getValueAPF().convertToFloat());
- }
-
- // If the splat value is larger than the element value, then we can never do
- // this splat. The only case that we could fit the replicated bits into our
- // immediate field for would be zero, and we prefer to use vxor for it.
- if (ValSizeInBytes < ByteSize) return SDValue();
-
- // If the element value is larger than the splat value, check if it consists
- // of a repeated bit pattern of size ByteSize.
- if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
- return SDValue();
-
- // Properly sign extend the value.
- int MaskVal = SignExtend32(Value, ByteSize * 8);
-
- // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
- if (MaskVal == 0) return SDValue();
-
- // Finally, if this value fits in a 5 bit sext field, return it
- if (SignExtend32<5>(MaskVal) == MaskVal)
- return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
- return SDValue();
-}
-
-/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
-/// amount, otherwise return -1.
-int PPC::isQVALIGNIShuffleMask(SDNode *N) {
- EVT VT = N->getValueType(0);
- if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
- return -1;
-
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
-
- // Find the first non-undef value in the shuffle mask.
- unsigned i;
- for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
- /*search*/;
-
- if (i == 4) return -1; // all undef.
-
- // Otherwise, check to see if the rest of the elements are consecutively
- // numbered from this value.
- unsigned ShiftAmt = SVOp->getMaskElt(i);
- if (ShiftAmt < i) return -1;
- ShiftAmt -= i;
-
- // Check the rest of the elements to see if they are consecutive.
- for (++i; i != 4; ++i)
- if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
- return -1;
-
- return ShiftAmt;
-}
-
-//===----------------------------------------------------------------------===//
-// Addressing Mode Selection
-//===----------------------------------------------------------------------===//
-
-/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
-/// or 64-bit immediate, and if the value can be accurately represented as a
-/// sign extension from a 16-bit value. If so, this returns true and the
-/// immediate.
-bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
- if (!isa<ConstantSDNode>(N))
- return false;
-
- Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
- if (N->getValueType(0) == MVT::i32)
- return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
- else
- return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
-}
-bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
- return isIntS16Immediate(Op.getNode(), Imm);
-}
-
-/// SelectAddressRegReg - Given the specified addressed, check to see if it
-/// can be represented as an indexed [r+r] operation. Returns false if it
-/// can be more efficiently represented with [r+imm].
-bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
- SDValue &Index,
- SelectionDAG &DAG) const {
- int16_t imm = 0;
- if (N.getOpcode() == ISD::ADD) {
- if (isIntS16Immediate(N.getOperand(1), imm))
- return false; // r+i
- if (N.getOperand(1).getOpcode() == PPCISD::Lo)
- return false; // r+i
-
- Base = N.getOperand(0);
- Index = N.getOperand(1);
- return true;
- } else if (N.getOpcode() == ISD::OR) {
- if (isIntS16Immediate(N.getOperand(1), imm))
- return false; // r+i can fold it if we can.
-
- // If this is an or of disjoint bitfields, we can codegen this as an add
- // (for better address arithmetic) if the LHS and RHS of the OR are provably
- // disjoint.
- KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
-
- if (LHSKnown.Zero.getBoolValue()) {
- KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
- // If all of the bits are known zero on the LHS or RHS, the add won't
- // carry.
- if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
- Base = N.getOperand(0);
- Index = N.getOperand(1);
- return true;
- }
- }
- }
-
- return false;
-}
-
-// If we happen to be doing an i64 load or store into a stack slot that has
-// less than a 4-byte alignment, then the frame-index elimination may need to
-// use an indexed load or store instruction (because the offset may not be a
-// multiple of 4). The extra register needed to hold the offset comes from the
-// register scavenger, and it is possible that the scavenger will need to use
-// an emergency spill slot. As a result, we need to make sure that a spill slot
-// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
-// stack slot.
-static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
- // FIXME: This does not handle the LWA case.
- if (VT != MVT::i64)
- return;
-
- // NOTE: We'll exclude negative FIs here, which come from argument
- // lowering, because there are no known test cases triggering this problem
- // using packed structures (or similar). We can remove this exclusion if
- // we find such a test case. The reason why this is so test-case driven is
- // because this entire 'fixup' is only to prevent crashes (from the
- // register scavenger) on not-really-valid inputs. For example, if we have:
- // %a = alloca i1
- // %b = bitcast i1* %a to i64*
- // store i64* a, i64 b
- // then the store should really be marked as 'align 1', but is not. If it
- // were marked as 'align 1' then the indexed form would have been
- // instruction-selected initially, and the problem this 'fixup' is preventing
- // won't happen regardless.
- if (FrameIdx < 0)
- return;
-
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
-
- unsigned Align = MFI.getObjectAlignment(FrameIdx);
- if (Align >= 4)
- return;
-
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
- FuncInfo->setHasNonRISpills();
-}
-
-/// Returns true if the address N can be represented by a base register plus
-/// a signed 16-bit displacement [r+imm], and if it is not better
-/// represented as reg+reg. If \p Alignment is non-zero, only accept
-/// displacements that are multiples of that value.
-bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
- SDValue &Base,
- SelectionDAG &DAG,
- unsigned Alignment) const {
- // FIXME dl should come from parent load or store, not from address
- SDLoc dl(N);
- // If this can be more profitably realized as r+r, fail.
- if (SelectAddressRegReg(N, Disp, Base, DAG))
- return false;
-
- if (N.getOpcode() == ISD::ADD) {
- int16_t imm = 0;
- if (isIntS16Immediate(N.getOperand(1), imm) &&
- (!Alignment || (imm % Alignment) == 0)) {
- Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
- Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
- fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
- } else {
- Base = N.getOperand(0);
- }
- return true; // [r+i]
- } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
- // Match LOAD (ADD (X, Lo(G))).
- assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
- && "Cannot handle constant offsets yet!");
- Disp = N.getOperand(1).getOperand(0); // The global address.
- assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
- Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
- Disp.getOpcode() == ISD::TargetConstantPool ||
- Disp.getOpcode() == ISD::TargetJumpTable);
- Base = N.getOperand(0);
- return true; // [&g+r]
- }
- } else if (N.getOpcode() == ISD::OR) {
- int16_t imm = 0;
- if (isIntS16Immediate(N.getOperand(1), imm) &&
- (!Alignment || (imm % Alignment) == 0)) {
- // If this is an or of disjoint bitfields, we can codegen this as an add
- // (for better address arithmetic) if the LHS and RHS of the OR are
- // provably disjoint.
- KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
-
- if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
- // If all of the bits are known zero on the LHS or RHS, the add won't
- // carry.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
- Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
- fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
- } else {
- Base = N.getOperand(0);
- }
- Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
- return true;
- }
- }
- } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
- // Loading from a constant address.
-
- // If this address fits entirely in a 16-bit sext immediate field, codegen
- // this as "d, 0"
- int16_t Imm;
- if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
- Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
- Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
- CN->getValueType(0));
- return true;
- }
-
- // Handle 32-bit sext immediates with LIS + addr mode.
- if ((CN->getValueType(0) == MVT::i32 ||
- (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
- (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
- int Addr = (int)CN->getZExtValue();
-
- // Otherwise, break this down into an LIS + disp.
- Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
-
- Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
- MVT::i32);
- unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
- Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
- return true;
- }
- }
-
- Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
- Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
- fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
- } else
- Base = N;
- return true; // [r+0]
-}
-
-/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
-/// represented as an indexed [r+r] operation.
-bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
- SDValue &Index,
- SelectionDAG &DAG) const {
- // Check to see if we can easily represent this as an [r+r] address. This
- // will fail if it thinks that the address is more profitably represented as
- // reg+imm, e.g. where imm = 0.
- if (SelectAddressRegReg(N, Base, Index, DAG))
- return true;
-
- // If the address is the result of an add, we will utilize the fact that the
- // address calculation includes an implicit add. However, we can reduce
- // register pressure if we do not materialize a constant just for use as the
- // index register. We only get rid of the add if it is not an add of a
- // value and a 16-bit signed constant and both have a single use.
- int16_t imm = 0;
- if (N.getOpcode() == ISD::ADD &&
- (!isIntS16Immediate(N.getOperand(1), imm) ||
- !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
- Base = N.getOperand(0);
- Index = N.getOperand(1);
- return true;
- }
-
- // Otherwise, do it the hard way, using R0 as the base register.
- Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
- N.getValueType());
- Index = N;
- return true;
-}
-
-/// Returns true if we should use a direct load into vector instruction
-/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
-static bool usePartialVectorLoads(SDNode *N) {
- if (!N->hasOneUse())
- return false;
-
- // If there are any other uses other than scalar to vector, then we should
- // keep it as a scalar load -> direct move pattern to prevent multiple
- // loads. Currently, only check for i64 since we have lxsd/lfd to do this
- // efficiently, but no update equivalent.
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- EVT MemVT = LD->getMemoryVT();
- if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
- SDNode *User = *(LD->use_begin());
- if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
- return true;
- }
- }
-
- return false;
-}
-
-/// getPreIndexedAddressParts - returns true by value, base pointer and
-/// offset pointer and addressing mode by reference if the node's address
-/// can be legally represented as pre-indexed load / store address.
-bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
- SDValue &Offset,
- ISD::MemIndexedMode &AM,
- SelectionDAG &DAG) const {
- if (DisablePPCPreinc) return false;
-
- bool isLoad = true;
- SDValue Ptr;
- EVT VT;
- unsigned Alignment;
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- Ptr = LD->getBasePtr();
- VT = LD->getMemoryVT();
- Alignment = LD->getAlignment();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- Ptr = ST->getBasePtr();
- VT = ST->getMemoryVT();
- Alignment = ST->getAlignment();
- isLoad = false;
- } else
- return false;
-
- // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
- // instructions because we can fold these into a more efficient instruction
- // instead, (such as LXSD).
- if (isLoad && usePartialVectorLoads(N)) {
- return false;
- }
-
- // PowerPC doesn't have preinc load/store instructions for vectors (except
- // for QPX, which does have preinc r+r forms).
- if (VT.isVector()) {
- if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
- return false;
- } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
- AM = ISD::PRE_INC;
- return true;
- }
- }
-
- if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
- // Common code will reject creating a pre-inc form if the base pointer
- // is a frame index, or if N is a store and the base pointer is either
- // the same as or a predecessor of the value being stored. Check for
- // those situations here, and try with swapped Base/Offset instead.
- bool Swap = false;
-
- if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
- Swap = true;
- else if (!isLoad) {
- SDValue Val = cast<StoreSDNode>(N)->getValue();
- if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
- Swap = true;
- }
-
- if (Swap)
- std::swap(Base, Offset);
-
- AM = ISD::PRE_INC;
- return true;
- }
-
- // LDU/STU can only handle immediates that are a multiple of 4.
- if (VT != MVT::i64) {
- if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
- return false;
- } else {
- // LDU/STU need an address with at least 4-byte alignment.
- if (Alignment < 4)
- return false;
-
- if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
- return false;
- }
-
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
- // sext i32 to i64 when addr mode is r+i.
- if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
- LD->getExtensionType() == ISD::SEXTLOAD &&
- isa<ConstantSDNode>(Offset))
- return false;
- }
-
- AM = ISD::PRE_INC;
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// LowerOperation implementation
-//===----------------------------------------------------------------------===//
-
-/// Return true if we should reference labels using a PICBase, set the HiOpFlags
-/// and LoOpFlags to the target MO flags.
-static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
- unsigned &HiOpFlags, unsigned &LoOpFlags,
- const GlobalValue *GV = nullptr) {
- HiOpFlags = PPCII::MO_HA;
- LoOpFlags = PPCII::MO_LO;
-
- // Don't use the pic base if not in PIC relocation model.
- if (IsPIC) {
- HiOpFlags |= PPCII::MO_PIC_FLAG;
- LoOpFlags |= PPCII::MO_PIC_FLAG;
- }
-
- // If this is a reference to a global value that requires a non-lazy-ptr, make
- // sure that instruction lowering adds it.
- if (GV && Subtarget.hasLazyResolverStub(GV)) {
- HiOpFlags |= PPCII::MO_NLP_FLAG;
- LoOpFlags |= PPCII::MO_NLP_FLAG;
-
- if (GV->hasHiddenVisibility()) {
- HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
- LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
- }
- }
-}
-
-static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
- SelectionDAG &DAG) {
- SDLoc DL(HiPart);
- EVT PtrVT = HiPart.getValueType();
- SDValue Zero = DAG.getConstant(0, DL, PtrVT);
-
- SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
- SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
-
- // With PIC, the first instruction is actually "GR+hi(&G)".
- if (isPIC)
- Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
- DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
-
- // Generate non-pic code that has direct accesses to the constant pool.
- // The address of the global is just (hi(&g)+lo(&g)).
- return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
-}
-
-static void setUsesTOCBasePtr(MachineFunction &MF) {
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
- FuncInfo->setUsesTOCBasePtr();
-}
-
-static void setUsesTOCBasePtr(SelectionDAG &DAG) {
- setUsesTOCBasePtr(DAG.getMachineFunction());
-}
-
-static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
- SDValue GA) {
- EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
- SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
- DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
-
- SDValue Ops[] = { GA, Reg };
- return DAG.getMemIntrinsicNode(
- PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
- MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
- MachineMemOperand::MOLoad);
-}
-
-SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
- SelectionDAG &DAG) const {
- EVT PtrVT = Op.getValueType();
- ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
- const Constant *C = CP->getConstVal();
-
- // 64-bit SVR4 ABI code is always position-independent.
- // The actual address of the GlobalValue is stored in the TOC.
- if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
- setUsesTOCBasePtr(DAG);
- SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
- return getTOCEntry(DAG, SDLoc(CP), true, GA);
- }
-
- unsigned MOHiFlag, MOLoFlag;
- bool IsPIC = isPositionIndependent();
- getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
-
- if (IsPIC && Subtarget.isSVR4ABI()) {
- SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
- PPCII::MO_PIC_FLAG);
- return getTOCEntry(DAG, SDLoc(CP), false, GA);
- }
-
- SDValue CPIHi =
- DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
- SDValue CPILo =
- DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
- return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
-}
-
-// For 64-bit PowerPC, prefer the more compact relative encodings.
-// This trades 32 bits per jump table entry for one or two instructions
-// on the jump site.
-unsigned PPCTargetLowering::getJumpTableEncoding() const {
- if (isJumpTableRelative())
- return MachineJumpTableInfo::EK_LabelDifference32;
-
- return TargetLowering::getJumpTableEncoding();
-}
-
-bool PPCTargetLowering::isJumpTableRelative() const {
- if (Subtarget.isPPC64())
- return true;
- return TargetLowering::isJumpTableRelative();
-}
-
-SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const {
- if (!Subtarget.isPPC64())
- return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
-
- switch (getTargetMachine().getCodeModel()) {
- case CodeModel::Small:
- case CodeModel::Medium:
- return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
- default:
- return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
- getPointerTy(DAG.getDataLayout()));
- }
-}
-
-const MCExpr *
-PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI,
- MCContext &Ctx) const {
- if (!Subtarget.isPPC64())
- return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
-
- switch (getTargetMachine().getCodeModel()) {
- case CodeModel::Small:
- case CodeModel::Medium:
- return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
- default:
- return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
- }
-}
-
-SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
- EVT PtrVT = Op.getValueType();
- JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
-
- // 64-bit SVR4 ABI code is always position-independent.
- // The actual address of the GlobalValue is stored in the TOC.
- if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
- setUsesTOCBasePtr(DAG);
- SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
- return getTOCEntry(DAG, SDLoc(JT), true, GA);
- }
-
- unsigned MOHiFlag, MOLoFlag;
- bool IsPIC = isPositionIndependent();
- getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
-
- if (IsPIC && Subtarget.isSVR4ABI()) {
- SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
- PPCII::MO_PIC_FLAG);
- return getTOCEntry(DAG, SDLoc(GA), false, GA);
- }
-
- SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
- SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
- return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
-}
-
-SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
- SelectionDAG &DAG) const {
- EVT PtrVT = Op.getValueType();
- BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
- const BlockAddress *BA = BASDN->getBlockAddress();
-
- // 64-bit SVR4 ABI code is always position-independent.
- // The actual BlockAddress is stored in the TOC.
- if (Subtarget.isSVR4ABI() &&
- (Subtarget.isPPC64() || isPositionIndependent())) {
- if (Subtarget.isPPC64())
- setUsesTOCBasePtr(DAG);
- SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
- return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
- }
-
- unsigned MOHiFlag, MOLoFlag;
- bool IsPIC = isPositionIndependent();
- getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
- SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
- SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
- return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
-}
-
-SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
- SelectionDAG &DAG) const {
- // FIXME: TLS addresses currently use medium model code sequences,
- // which is the most useful form. Eventually support for small and
- // large models could be added if users need it, at the cost of
- // additional complexity.
- GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
- if (DAG.getTarget().useEmulatedTLS())
- return LowerToTLSEmulatedModel(GA, DAG);
-
- SDLoc dl(GA);
- const GlobalValue *GV = GA->getGlobal();
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- bool is64bit = Subtarget.isPPC64();
- const Module *M = DAG.getMachineFunction().getFunction().getParent();
- PICLevel::Level picLevel = M->getPICLevel();
-
- TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
-
- if (Model == TLSModel::LocalExec) {
- SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
- PPCII::MO_TPREL_HA);
- SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
- PPCII::MO_TPREL_LO);
- SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
- : DAG.getRegister(PPC::R2, MVT::i32);
-
- SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
- return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
- }
-
- if (Model == TLSModel::InitialExec) {
- SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
- SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
- PPCII::MO_TLS);
- SDValue GOTPtr;
- if (is64bit) {
- setUsesTOCBasePtr(DAG);
- SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
- GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
- PtrVT, GOTReg, TGA);
- } else
- GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
- SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
- PtrVT, TGA, GOTPtr);
- return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
- }
-
- if (Model == TLSModel::GeneralDynamic) {
- SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
- SDValue GOTPtr;
- if (is64bit) {
- setUsesTOCBasePtr(DAG);
- SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
- GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
- GOTReg, TGA);
- } else {
- if (picLevel == PICLevel::SmallPIC)
- GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
- else
- GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
- }
- return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
- GOTPtr, TGA, TGA);
- }
-
- if (Model == TLSModel::LocalDynamic) {
- SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
- SDValue GOTPtr;
- if (is64bit) {
- setUsesTOCBasePtr(DAG);
- SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
- GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
- GOTReg, TGA);
- } else {
- if (picLevel == PICLevel::SmallPIC)
- GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
- else
- GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
- }
- SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
- PtrVT, GOTPtr, TGA, TGA);
- SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
- PtrVT, TLSAddr, TGA);
- return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
- }
-
- llvm_unreachable("Unknown TLS model!");
-}
-
-SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
- SelectionDAG &DAG) const {
- EVT PtrVT = Op.getValueType();
- GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
- SDLoc DL(GSDN);
- const GlobalValue *GV = GSDN->getGlobal();
-
- // 64-bit SVR4 ABI code is always position-independent.
- // The actual address of the GlobalValue is stored in the TOC.
- if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
- setUsesTOCBasePtr(DAG);
- SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
- return getTOCEntry(DAG, DL, true, GA);
- }
-
- unsigned MOHiFlag, MOLoFlag;
- bool IsPIC = isPositionIndependent();
- getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
-
- if (IsPIC && Subtarget.isSVR4ABI()) {
- SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
- GSDN->getOffset(),
- PPCII::MO_PIC_FLAG);
- return getTOCEntry(DAG, DL, false, GA);
- }
-
- SDValue GAHi =
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
- SDValue GALo =
- DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
-
- SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
-
- // If the global reference is actually to a non-lazy-pointer, we have to do an
- // extra load to get the address of the global.
- if (MOHiFlag & PPCII::MO_NLP_FLAG)
- Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
- return Ptr;
-}
-
-SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SDLoc dl(Op);
-
- if (Op.getValueType() == MVT::v2i64) {
- // When the operands themselves are v2i64 values, we need to do something
- // special because VSX has no underlying comparison operations for these.
- if (Op.getOperand(0).getValueType() == MVT::v2i64) {
- // Equality can be handled by casting to the legal type for Altivec
- // comparisons, everything else needs to be expanded.
- if (CC == ISD::SETEQ || CC == ISD::SETNE) {
- return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
- DAG.getSetCC(dl, MVT::v4i32,
- DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
- DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
- CC));
- }
-
- return SDValue();
- }
-
- // We handle most of these in the usual way.
- return Op;
- }
-
- // If we're comparing for equality to zero, expose the fact that this is
- // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
- // fold the new nodes.
- if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
- return V;
-
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- // Leave comparisons against 0 and -1 alone for now, since they're usually
- // optimized. FIXME: revisit this when we can custom lower all setcc
- // optimizations.
- if (C->isAllOnesValue() || C->isNullValue())
- return SDValue();
- }
-
- // If we have an integer seteq/setne, turn it into a compare against zero
- // by xor'ing the rhs with the lhs, which is faster than setting a
- // condition register, reading it back out, and masking the correct bit. The
- // normal approach here uses sub to do this instead of xor. Using xor exposes
- // the result to other bit-twiddling opportunities.
- EVT LHSVT = Op.getOperand(0).getValueType();
- if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
- EVT VT = Op.getValueType();
- SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
- Op.getOperand(1));
- return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
- }
- return SDValue();
-}
-
-SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
- SDNode *Node = Op.getNode();
- EVT VT = Node->getValueType(0);
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- SDValue InChain = Node->getOperand(0);
- SDValue VAListPtr = Node->getOperand(1);
- const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
- SDLoc dl(Node);
-
- assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
-
- // gpr_index
- SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
- VAListPtr, MachinePointerInfo(SV), MVT::i8);
- InChain = GprIndex.getValue(1);
-
- if (VT == MVT::i64) {
- // Check if GprIndex is even
- SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
- DAG.getConstant(1, dl, MVT::i32));
- SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
- DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
- SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
- DAG.getConstant(1, dl, MVT::i32));
- // Align GprIndex to be even if it isn't
- GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
- GprIndex);
- }
-
- // fpr index is 1 byte after gpr
- SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
- DAG.getConstant(1, dl, MVT::i32));
-
- // fpr
- SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
- FprPtr, MachinePointerInfo(SV), MVT::i8);
- InChain = FprIndex.getValue(1);
-
- SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
- DAG.getConstant(8, dl, MVT::i32));
-
- SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
- DAG.getConstant(4, dl, MVT::i32));
-
- // areas
- SDValue OverflowArea =
- DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
- InChain = OverflowArea.getValue(1);
-
- SDValue RegSaveArea =
- DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
- InChain = RegSaveArea.getValue(1);
-
- // select overflow_area if index > 8
- SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
- DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
-
- // adjustment constant gpr_index * 4/8
- SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
- VT.isInteger() ? GprIndex : FprIndex,
- DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
- MVT::i32));
-
- // OurReg = RegSaveArea + RegConstant
- SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
- RegConstant);
-
- // Floating types are 32 bytes into RegSaveArea
- if (VT.isFloatingPoint())
- OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
- DAG.getConstant(32, dl, MVT::i32));
-
- // increase {f,g}pr_index by 1 (or 2 if VT is i64)
- SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- VT.isInteger() ? GprIndex : FprIndex,
- DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
- MVT::i32));
-
- InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
- VT.isInteger() ? VAListPtr : FprPtr,
- MachinePointerInfo(SV), MVT::i8);
-
- // determine if we should load from reg_save_area or overflow_area
- SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
-
- // increase overflow_area by 4/8 if gpr/fpr > 8
- SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
- DAG.getConstant(VT.isInteger() ? 4 : 8,
- dl, MVT::i32));
-
- OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
- OverflowAreaPlusN);
-
- InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
- MachinePointerInfo(), MVT::i32);
-
- return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
-}
-
-SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
- assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
-
- // We have to copy the entire va_list struct:
- // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
- return DAG.getMemcpy(Op.getOperand(0), Op,
- Op.getOperand(1), Op.getOperand(2),
- DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
- false, MachinePointerInfo(), MachinePointerInfo());
-}
-
-SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
- SelectionDAG &DAG) const {
- return Op.getOperand(0);
-}
-
-SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
- SelectionDAG &DAG) const {
- SDValue Chain = Op.getOperand(0);
- SDValue Trmp = Op.getOperand(1); // trampoline
- SDValue FPtr = Op.getOperand(2); // nested function
- SDValue Nest = Op.getOperand(3); // 'nest' parameter value
- SDLoc dl(Op);
-
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- bool isPPC64 = (PtrVT == MVT::i64);
- Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
-
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
-
- Entry.Ty = IntPtrTy;
- Entry.Node = Trmp; Args.push_back(Entry);
-
- // TrampSize == (isPPC64 ? 48 : 40);
- Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
- isPPC64 ? MVT::i64 : MVT::i32);
- Args.push_back(Entry);
-
- Entry.Node = FPtr; Args.push_back(Entry);
- Entry.Node = Nest; Args.push_back(Entry);
-
- // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
- CallingConv::C, Type::getVoidTy(*DAG.getContext()),
- DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
-
- std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
- return CallResult.second;
-}
-
-SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
- EVT PtrVT = getPointerTy(MF.getDataLayout());
-
- SDLoc dl(Op);
-
- if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
- // vastart just stores the address of the VarArgsFrameIndex slot into the
- // memory location argument.
- SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
- const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
- MachinePointerInfo(SV));
- }
-
- // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
- // We suppose the given va_list is already allocated.
- //
- // typedef struct {
- // char gpr; /* index into the array of 8 GPRs
- // * stored in the register save area
- // * gpr=0 corresponds to r3,
- // * gpr=1 to r4, etc.
- // */
- // char fpr; /* index into the array of 8 FPRs
- // * stored in the register save area
- // * fpr=0 corresponds to f1,
- // * fpr=1 to f2, etc.
- // */
- // char *overflow_arg_area;
- // /* location on stack that holds
- // * the next overflow argument
- // */
- // char *reg_save_area;
- // /* where r3:r10 and f1:f8 (if saved)
- // * are stored
- // */
- // } va_list[1];
-
- SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
- SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
- SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
- PtrVT);
- SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
- PtrVT);
-
- uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
- SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
-
- uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
- SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
-
- uint64_t FPROffset = 1;
- SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
-
- const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
-
- // Store first byte : number of int regs
- SDValue firstStore =
- DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
- MachinePointerInfo(SV), MVT::i8);
- uint64_t nextOffset = FPROffset;
- SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
- ConstFPROffset);
-
- // Store second byte : number of float regs
- SDValue secondStore =
- DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
- MachinePointerInfo(SV, nextOffset), MVT::i8);
- nextOffset += StackOffset;
- nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
-
- // Store second word : arguments given on stack
- SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
- MachinePointerInfo(SV, nextOffset));
- nextOffset += FrameOffset;
- nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
-
- // Store third word : arguments given in registers
- return DAG.getStore(thirdStore, dl, FR, nextPtr,
- MachinePointerInfo(SV, nextOffset));
-}
-
-#include "PPCGenCallingConv.inc"
-
-// Function whose sole purpose is to kill compiler warnings
-// stemming from unused functions included from PPCGenCallingConv.inc.
-CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
- return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
-}
-
-bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- return true;
-}
-
-bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- static const MCPhysReg ArgRegs[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- const unsigned NumArgRegs = array_lengthof(ArgRegs);
-
- unsigned RegNum = State.getFirstUnallocated(ArgRegs);
-
- // Skip one register if the first unallocated register has an even register
- // number and there are still argument registers available which have not been
- // allocated yet. RegNum is actually an index into ArgRegs, which means we
- // need to skip a register if RegNum is odd.
- if (RegNum != NumArgRegs && RegNum % 2 == 1) {
- State.AllocateReg(ArgRegs[RegNum]);
- }
-
- // Always return false here, as this function only makes sure that the first
- // unallocated register has an odd register number and does not actually
- // allocate a register for the current argument.
- return false;
-}
-
-bool
-llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- static const MCPhysReg ArgRegs[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- const unsigned NumArgRegs = array_lengthof(ArgRegs);
-
- unsigned RegNum = State.getFirstUnallocated(ArgRegs);
- int RegsLeft = NumArgRegs - RegNum;
-
- // Skip if there is not enough registers left for long double type (4 gpr regs
- // in soft float mode) and put long double argument on the stack.
- if (RegNum != NumArgRegs && RegsLeft < 4) {
- for (int i = 0; i < RegsLeft; i++) {
- State.AllocateReg(ArgRegs[RegNum + i]);
- }
- }
-
- return false;
-}
-
-bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- static const MCPhysReg ArgRegs[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8
- };
-
- const unsigned NumArgRegs = array_lengthof(ArgRegs);
-
- unsigned RegNum = State.getFirstUnallocated(ArgRegs);
-
- // If there is only one Floating-point register left we need to put both f64
- // values of a split ppc_fp128 value on the stack.
- if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
- State.AllocateReg(ArgRegs[RegNum]);
- }
-
- // Always return false here, as this function only makes sure that the two f64
- // values a ppc_fp128 value is split into are both passed in registers or both
- // passed on the stack and does not actually allocate a register for the
- // current argument.
- return false;
-}
-
-/// FPR - The set of FP registers that should be allocated for arguments,
-/// on Darwin.
-static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
- PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
- PPC::F11, PPC::F12, PPC::F13};
-
-/// QFPR - The set of QPX registers that should be allocated for arguments.
-static const MCPhysReg QFPR[] = {
- PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7,
- PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
-
-/// CalculateStackSlotSize - Calculates the size reserved for this argument on
-/// the stack.
-static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
- unsigned PtrByteSize) {
- unsigned ArgSize = ArgVT.getStoreSize();
- if (Flags.isByVal())
- ArgSize = Flags.getByValSize();
-
- // Round up to multiples of the pointer size, except for array members,
- // which are always packed.
- if (!Flags.isInConsecutiveRegs())
- ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
-
- return ArgSize;
-}
-
-/// CalculateStackSlotAlignment - Calculates the alignment of this argument
-/// on the stack.
-static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
- ISD::ArgFlagsTy Flags,
- unsigned PtrByteSize) {
- unsigned Align = PtrByteSize;
-
- // Altivec parameters are padded to a 16 byte boundary.
- if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
- ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
- ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
- ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
- Align = 16;
- // QPX vector types stored in double-precision are padded to a 32 byte
- // boundary.
- else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
- Align = 32;
-
- // ByVal parameters are aligned as requested.
- if (Flags.isByVal()) {
- unsigned BVAlign = Flags.getByValAlign();
- if (BVAlign > PtrByteSize) {
- if (BVAlign % PtrByteSize != 0)
- llvm_unreachable(
- "ByVal alignment is not a multiple of the pointer size");
-
- Align = BVAlign;
- }
- }
-
- // Array members are always packed to their original alignment.
- if (Flags.isInConsecutiveRegs()) {
- // If the array member was split into multiple registers, the first
- // needs to be aligned to the size of the full type. (Except for
- // ppcf128, which is only aligned as its f64 components.)
- if (Flags.isSplit() && OrigVT != MVT::ppcf128)
- Align = OrigVT.getStoreSize();
- else
- Align = ArgVT.getStoreSize();
- }
-
- return Align;
-}
-
-/// CalculateStackSlotUsed - Return whether this argument will use its
-/// stack slot (instead of being passed in registers). ArgOffset,
-/// AvailableFPRs, and AvailableVRs must hold the current argument
-/// position, and will be updated to account for this argument.
-static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
- ISD::ArgFlagsTy Flags,
- unsigned PtrByteSize,
- unsigned LinkageSize,
- unsigned ParamAreaSize,
- unsigned &ArgOffset,
- unsigned &AvailableFPRs,
- unsigned &AvailableVRs, bool HasQPX) {
- bool UseMemory = false;
-
- // Respect alignment of argument on the stack.
- unsigned Align =
- CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
- ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
- // If there's no space left in the argument save area, we must
- // use memory (this check also catches zero-sized arguments).
- if (ArgOffset >= LinkageSize + ParamAreaSize)
- UseMemory = true;
-
- // Allocate argument on the stack.
- ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
- if (Flags.isInConsecutiveRegsLast())
- ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- // If we overran the argument save area, we must use memory
- // (this check catches arguments passed partially in memory)
- if (ArgOffset > LinkageSize + ParamAreaSize)
- UseMemory = true;
-
- // However, if the argument is actually passed in an FPR or a VR,
- // we don't use memory after all.
- if (!Flags.isByVal()) {
- if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
- // QPX registers overlap with the scalar FP registers.
- (HasQPX && (ArgVT == MVT::v4f32 ||
- ArgVT == MVT::v4f64 ||
- ArgVT == MVT::v4i1)))
- if (AvailableFPRs > 0) {
- --AvailableFPRs;
- return false;
- }
- if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
- ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
- ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
- ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
- if (AvailableVRs > 0) {
- --AvailableVRs;
- return false;
- }
- }
-
- return UseMemory;
-}
-
-/// EnsureStackAlignment - Round stack frame size up from NumBytes to
-/// ensure minimum alignment required for target.
-static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
- unsigned NumBytes) {
- unsigned TargetAlign = Lowering->getStackAlignment();
- unsigned AlignMask = TargetAlign - 1;
- NumBytes = (NumBytes + AlignMask) & ~AlignMask;
- return NumBytes;
-}
-
-SDValue PPCTargetLowering::LowerFormalArguments(
- SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
- if (Subtarget.isSVR4ABI()) {
- if (Subtarget.isPPC64())
- return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
- dl, DAG, InVals);
- else
- return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
- dl, DAG, InVals);
- } else {
- return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
- dl, DAG, InVals);
- }
-}
-
-SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
- SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
-
- // 32-bit SVR4 ABI Stack Frame Layout:
- // +-----------------------------------+
- // +--> | Back chain |
- // | +-----------------------------------+
- // | | Floating-point register save area |
- // | +-----------------------------------+
- // | | General register save area |
- // | +-----------------------------------+
- // | | CR save word |
- // | +-----------------------------------+
- // | | VRSAVE save word |
- // | +-----------------------------------+
- // | | Alignment padding |
- // | +-----------------------------------+
- // | | Vector register save area |
- // | +-----------------------------------+
- // | | Local variable space |
- // | +-----------------------------------+
- // | | Parameter list area |
- // | +-----------------------------------+
- // | | LR save word |
- // | +-----------------------------------+
- // SP--> +--- | Back chain |
- // +-----------------------------------+
- //
- // Specifications:
- // System V Application Binary Interface PowerPC Processor Supplement
- // AltiVec Technology Programming Interface Manual
-
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
-
- EVT PtrVT = getPointerTy(MF.getDataLayout());
- // Potential tail calls could cause overwriting of argument stack slots.
- bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
- (CallConv == CallingConv::Fast));
- unsigned PtrByteSize = 4;
-
- // Assign locations to all of the incoming arguments.
- SmallVector<CCValAssign, 16> ArgLocs;
- PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
- *DAG.getContext());
-
- // Reserve space for the linkage area on the stack.
- unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
- CCInfo.AllocateStack(LinkageSize, PtrByteSize);
- if (useSoftFloat() || hasSPE())
- CCInfo.PreAnalyzeFormalArguments(Ins);
-
- CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
- CCInfo.clearWasPPCF128();
-
- for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
- CCValAssign &VA = ArgLocs[i];
-
- // Arguments stored in registers.
- if (VA.isRegLoc()) {
- const TargetRegisterClass *RC;
- EVT ValVT = VA.getValVT();
-
- switch (ValVT.getSimpleVT().SimpleTy) {
- default:
- llvm_unreachable("ValVT not supported by formal arguments Lowering");
- case MVT::i1:
- case MVT::i32:
- RC = &PPC::GPRCRegClass;
- break;
- case MVT::f32:
- if (Subtarget.hasP8Vector())
- RC = &PPC::VSSRCRegClass;
- else if (Subtarget.hasSPE())
- RC = &PPC::SPE4RCRegClass;
- else
- RC = &PPC::F4RCRegClass;
- break;
- case MVT::f64:
- if (Subtarget.hasVSX())
- RC = &PPC::VSFRCRegClass;
- else if (Subtarget.hasSPE())
- RC = &PPC::SPERCRegClass;
- else
- RC = &PPC::F8RCRegClass;
- break;
- case MVT::v16i8:
- case MVT::v8i16:
- case MVT::v4i32:
- RC = &PPC::VRRCRegClass;
- break;
- case MVT::v4f32:
- RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
- break;
- case MVT::v2f64:
- case MVT::v2i64:
- RC = &PPC::VRRCRegClass;
- break;
- case MVT::v4f64:
- RC = &PPC::QFRCRegClass;
- break;
- case MVT::v4i1:
- RC = &PPC::QBRCRegClass;
- break;
- }
-
- // Transform the arguments stored in physical registers into virtual ones.
- unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
- SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
- ValVT == MVT::i1 ? MVT::i32 : ValVT);
-
- if (ValVT == MVT::i1)
- ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
-
- InVals.push_back(ArgValue);
- } else {
- // Argument stored in memory.
- assert(VA.isMemLoc());
-
- // Get the extended size of the argument type in stack
- unsigned ArgSize = VA.getLocVT().getStoreSize();
- // Get the actual size of the argument type
- unsigned ObjSize = VA.getValVT().getStoreSize();
- unsigned ArgOffset = VA.getLocMemOffset();
- // Stack objects in PPC32 are right justified.
- ArgOffset += ArgSize - ObjSize;
- int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
-
- // Create load nodes to retrieve arguments from the stack.
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- InVals.push_back(
- DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
- }
- }
-
- // Assign locations to all of the incoming aggregate by value arguments.
- // Aggregates passed by value are stored in the local variable space of the
- // caller's stack frame, right above the parameter list area.
- SmallVector<CCValAssign, 16> ByValArgLocs;
- CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
- ByValArgLocs, *DAG.getContext());
-
- // Reserve stack space for the allocations in CCInfo.
- CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
-
- CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
-
- // Area that is at least reserved in the caller of this function.
- unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
- MinReservedArea = std::max(MinReservedArea, LinkageSize);
-
- // Set the size that is at least reserved in caller of this function. Tail
- // call optimized function's reserved stack space needs to be aligned so that
- // taking the difference between two stack areas will result in an aligned
- // stack.
- MinReservedArea =
- EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
- FuncInfo->setMinReservedArea(MinReservedArea);
-
- SmallVector<SDValue, 8> MemOps;
-
- // If the function takes variable number of arguments, make a frame index for
- // the start of the first vararg value... for expansion of llvm.va_start.
- if (isVarArg) {
- static const MCPhysReg GPArgRegs[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
-
- static const MCPhysReg FPArgRegs[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8
- };
- unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
-
- if (useSoftFloat() || hasSPE())
- NumFPArgRegs = 0;
-
- FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
- FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
-
- // Make room for NumGPArgRegs and NumFPArgRegs.
- int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
- NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
-
- FuncInfo->setVarArgsStackOffset(
- MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
- CCInfo.getNextStackOffset(), true));
-
- FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
- SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
-
- // The fixed integer arguments of a variadic function are stored to the
- // VarArgsFrameIndex on the stack so that they may be loaded by
- // dereferencing the result of va_next.
- for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
- // Get an existing live-in vreg, or add a new one.
- unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
- if (!VReg)
- VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
-
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- SDValue Store =
- DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
- MemOps.push_back(Store);
- // Increment the address by four for the next argument to store
- SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
- FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
- }
-
- // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
- // is set.
- // The double arguments are stored to the VarArgsFrameIndex
- // on the stack.
- for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
- // Get an existing live-in vreg, or add a new one.
- unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
- if (!VReg)
- VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
-
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
- SDValue Store =
- DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
- MemOps.push_back(Store);
- // Increment the address by eight for the next argument to store
- SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
- PtrVT);
- FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
- }
- }
-
- if (!MemOps.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
-
- return Chain;
-}
-
-// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
-// value to MVT::i64 and then truncate to the correct register size.
-SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
- EVT ObjectVT, SelectionDAG &DAG,
- SDValue ArgVal,
- const SDLoc &dl) const {
- if (Flags.isSExt())
- ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
- DAG.getValueType(ObjectVT));
- else if (Flags.isZExt())
- ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
- DAG.getValueType(ObjectVT));
-
- return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
-}
-
-SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
- SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
- // TODO: add description of PPC stack frame format, or at least some docs.
- //
- bool isELFv2ABI = Subtarget.isELFv2ABI();
- bool isLittleEndian = Subtarget.isLittleEndian();
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
-
- assert(!(CallConv == CallingConv::Fast && isVarArg) &&
- "fastcc not supported on varargs functions");
-
- EVT PtrVT = getPointerTy(MF.getDataLayout());
- // Potential tail calls could cause overwriting of argument stack slots.
- bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
- (CallConv == CallingConv::Fast));
- unsigned PtrByteSize = 8;
- unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
-
- static const MCPhysReg GPR[] = {
- PPC::X3, PPC::X4, PPC::X5, PPC::X6,
- PPC::X7, PPC::X8, PPC::X9, PPC::X10,
- };
- static const MCPhysReg VR[] = {
- PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
- PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
- };
-
- const unsigned Num_GPR_Regs = array_lengthof(GPR);
- const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
- const unsigned Num_VR_Regs = array_lengthof(VR);
- const unsigned Num_QFPR_Regs = Num_FPR_Regs;
-
- // Do a first pass over the arguments to determine whether the ABI
- // guarantees that our caller has allocated the parameter save area
- // on its stack frame. In the ELFv1 ABI, this is always the case;
- // in the ELFv2 ABI, it is true if this is a vararg function or if
- // any parameter is located in a stack slot.
-
- bool HasParameterArea = !isELFv2ABI || isVarArg;
- unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
- unsigned NumBytes = LinkageSize;
- unsigned AvailableFPRs = Num_FPR_Regs;
- unsigned AvailableVRs = Num_VR_Regs;
- for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- if (Ins[i].Flags.isNest())
- continue;
-
- if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
- PtrByteSize, LinkageSize, ParamAreaSize,
- NumBytes, AvailableFPRs, AvailableVRs,
- Subtarget.hasQPX()))
- HasParameterArea = true;
- }
-
- // Add DAG nodes to load the arguments or copy them out of registers. On
- // entry to a function on PPC, the arguments start after the linkage area,
- // although the first ones are often in registers.
-
- unsigned ArgOffset = LinkageSize;
- unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
- unsigned &QFPR_idx = FPR_idx;
- SmallVector<SDValue, 8> MemOps;
- Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
- unsigned CurArgIdx = 0;
- for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
- SDValue ArgVal;
- bool needsLoad = false;
- EVT ObjectVT = Ins[ArgNo].VT;
- EVT OrigVT = Ins[ArgNo].ArgVT;
- unsigned ObjSize = ObjectVT.getStoreSize();
- unsigned ArgSize = ObjSize;
- ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
- if (Ins[ArgNo].isOrigArg()) {
- std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
- CurArgIdx = Ins[ArgNo].getOrigArgIndex();
- }
- // We re-align the argument offset for each argument, except when using the
- // fast calling convention, when we need to make sure we do that only when
- // we'll actually use a stack slot.
- unsigned CurArgOffset, Align;
- auto ComputeArgOffset = [&]() {
- /* Respect alignment of argument on the stack. */
- Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
- ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
- CurArgOffset = ArgOffset;
- };
-
- if (CallConv != CallingConv::Fast) {
- ComputeArgOffset();
-
- /* Compute GPR index associated with argument offset. */
- GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
- GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
- }
-
- // FIXME the codegen can be much improved in some cases.
- // We do not have to keep everything in memory.
- if (Flags.isByVal()) {
- assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
-
- if (CallConv == CallingConv::Fast)
- ComputeArgOffset();
-
- // ObjSize is the true size, ArgSize rounded up to multiple of registers.
- ObjSize = Flags.getByValSize();
- ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- // Empty aggregate parameters do not take up registers. Examples:
- // struct { } a;
- // union { } b;
- // int c[0];
- // etc. However, we have to provide a place-holder in InVals, so
- // pretend we have an 8-byte item at the current address for that
- // purpose.
- if (!ObjSize) {
- int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- InVals.push_back(FIN);
- continue;
- }
-
- // Create a stack object covering all stack doublewords occupied
- // by the argument. If the argument is (fully or partially) on
- // the stack, or if the argument is fully in registers but the
- // caller has allocated the parameter save anyway, we can refer
- // directly to the caller's stack frame. Otherwise, create a
- // local copy in our own frame.
- int FI;
- if (HasParameterArea ||
- ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
- FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
- else
- FI = MFI.CreateStackObject(ArgSize, Align, false);
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
-
- // Handle aggregates smaller than 8 bytes.
- if (ObjSize < PtrByteSize) {
- // The value of the object is its address, which differs from the
- // address of the enclosing doubleword on big-endian systems.
- SDValue Arg = FIN;
- if (!isLittleEndian) {
- SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
- Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
- }
- InVals.push_back(Arg);
-
- if (GPR_idx != Num_GPR_Regs) {
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
- FuncInfo->addLiveInAttr(VReg, Flags);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- SDValue Store;
-
- if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
- EVT ObjType = (ObjSize == 1 ? MVT::i8 :
- (ObjSize == 2 ? MVT::i16 : MVT::i32));
- Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
- MachinePointerInfo(&*FuncArg), ObjType);
- } else {
- // For sizes that don't fit a truncating store (3, 5, 6, 7),
- // store the whole register as-is to the parameter save area
- // slot.
- Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
- MachinePointerInfo(&*FuncArg));
- }
-
- MemOps.push_back(Store);
- }
- // Whether we copied from a register or not, advance the offset
- // into the parameter save area by a full doubleword.
- ArgOffset += PtrByteSize;
- continue;
- }
-
- // The value of the object is its address, which is the address of
- // its first stack doubleword.
- InVals.push_back(FIN);
-
- // Store whatever pieces of the object are in registers to memory.
- for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
- if (GPR_idx == Num_GPR_Regs)
- break;
-
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- FuncInfo->addLiveInAttr(VReg, Flags);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- SDValue Addr = FIN;
- if (j) {
- SDValue Off = DAG.getConstant(j, dl, PtrVT);
- Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
- }
- SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
- MachinePointerInfo(&*FuncArg, j));
- MemOps.push_back(Store);
- ++GPR_idx;
- }
- ArgOffset += ArgSize;
- continue;
- }
-
- switch (ObjectVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unhandled argument type!");
- case MVT::i1:
- case MVT::i32:
- case MVT::i64:
- if (Flags.isNest()) {
- // The 'nest' parameter, if any, is passed in R11.
- unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
-
- if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
- ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
-
- break;
- }
-
- // These can be scalar arguments or elements of an integer array type
- // passed directly. Clang may use those instead of "byval" aggregate
- // types to avoid forcing arguments to memory unnecessarily.
- if (GPR_idx != Num_GPR_Regs) {
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
- FuncInfo->addLiveInAttr(VReg, Flags);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
-
- if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
- // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
- // value to MVT::i64 and then truncate to the correct register size.
- ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
- } else {
- if (CallConv == CallingConv::Fast)
- ComputeArgOffset();
-
- needsLoad = true;
- ArgSize = PtrByteSize;
- }
- if (CallConv != CallingConv::Fast || needsLoad)
- ArgOffset += 8;
- break;
-
- case MVT::f32:
- case MVT::f64:
- // These can be scalar arguments or elements of a float array type
- // passed directly. The latter are used to implement ELFv2 homogenous
- // float aggregates.
- if (FPR_idx != Num_FPR_Regs) {
- unsigned VReg;
-
- if (ObjectVT == MVT::f32)
- VReg = MF.addLiveIn(FPR[FPR_idx],
- Subtarget.hasP8Vector()
- ? &PPC::VSSRCRegClass
- : &PPC::F4RCRegClass);
- else
- VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
- ? &PPC::VSFRCRegClass
- : &PPC::F8RCRegClass);
-
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
- ++FPR_idx;
- } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
- // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
- // once we support fp <-> gpr moves.
-
- // This can only ever happen in the presence of f32 array types,
- // since otherwise we never run out of FPRs before running out
- // of GPRs.
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
- FuncInfo->addLiveInAttr(VReg, Flags);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
-
- if (ObjectVT == MVT::f32) {
- if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
- ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
- DAG.getConstant(32, dl, MVT::i32));
- ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
- }
-
- ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
- } else {
- if (CallConv == CallingConv::Fast)
- ComputeArgOffset();
-
- needsLoad = true;
- }
-
- // When passing an array of floats, the array occupies consecutive
- // space in the argument area; only round up to the next doubleword
- // at the end of the array. Otherwise, each float takes 8 bytes.
- if (CallConv != CallingConv::Fast || needsLoad) {
- ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
- ArgOffset += ArgSize;
- if (Flags.isInConsecutiveRegsLast())
- ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- }
- break;
- case MVT::v4f32:
- case MVT::v4i32:
- case MVT::v8i16:
- case MVT::v16i8:
- case MVT::v2f64:
- case MVT::v2i64:
- case MVT::v1i128:
- case MVT::f128:
- if (!Subtarget.hasQPX()) {
- // These can be scalar arguments or elements of a vector array type
- // passed directly. The latter are used to implement ELFv2 homogenous
- // vector aggregates.
- if (VR_idx != Num_VR_Regs) {
- unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
- ++VR_idx;
- } else {
- if (CallConv == CallingConv::Fast)
- ComputeArgOffset();
- needsLoad = true;
- }
- if (CallConv != CallingConv::Fast || needsLoad)
- ArgOffset += 16;
- break;
- } // not QPX
-
- assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
- "Invalid QPX parameter type");
- LLVM_FALLTHROUGH;
-
- case MVT::v4f64:
- case MVT::v4i1:
- // QPX vectors are treated like their scalar floating-point subregisters
- // (except that they're larger).
- unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
- if (QFPR_idx != Num_QFPR_Regs) {
- const TargetRegisterClass *RC;
- switch (ObjectVT.getSimpleVT().SimpleTy) {
- case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
- case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
- default: RC = &PPC::QBRCRegClass; break;
- }
-
- unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
- ++QFPR_idx;
- } else {
- if (CallConv == CallingConv::Fast)
- ComputeArgOffset();
- needsLoad = true;
- }
- if (CallConv != CallingConv::Fast || needsLoad)
- ArgOffset += Sz;
- break;
- }
-
- // We need to load the argument to a virtual register if we determined
- // above that we ran out of physical registers of the appropriate type.
- if (needsLoad) {
- if (ObjSize < ArgSize && !isLittleEndian)
- CurArgOffset += ArgSize - ObjSize;
- int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
- }
-
- InVals.push_back(ArgVal);
- }
-
- // Area that is at least reserved in the caller of this function.
- unsigned MinReservedArea;
- if (HasParameterArea)
- MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
- else
- MinReservedArea = LinkageSize;
-
- // Set the size that is at least reserved in caller of this function. Tail
- // call optimized functions' reserved stack space needs to be aligned so that
- // taking the difference between two stack areas will result in an aligned
- // stack.
- MinReservedArea =
- EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
- FuncInfo->setMinReservedArea(MinReservedArea);
-
- // If the function takes variable number of arguments, make a frame index for
- // the start of the first vararg value... for expansion of llvm.va_start.
- if (isVarArg) {
- int Depth = ArgOffset;
-
- FuncInfo->setVarArgsFrameIndex(
- MFI.CreateFixedObject(PtrByteSize, Depth, true));
- SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
-
- // If this function is vararg, store any remaining integer argument regs
- // to their spots on the stack so that they may be loaded by dereferencing
- // the result of va_next.
- for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
- GPR_idx < Num_GPR_Regs; ++GPR_idx) {
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- SDValue Store =
- DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
- MemOps.push_back(Store);
- // Increment the address by four for the next argument to store
- SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
- FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
- }
- }
-
- if (!MemOps.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
-
- return Chain;
-}
-
-SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
- SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
- // TODO: add description of PPC stack frame format, or at least some docs.
- //
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
-
- EVT PtrVT = getPointerTy(MF.getDataLayout());
- bool isPPC64 = PtrVT == MVT::i64;
- // Potential tail calls could cause overwriting of argument stack slots.
- bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
- (CallConv == CallingConv::Fast));
- unsigned PtrByteSize = isPPC64 ? 8 : 4;
- unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
- unsigned ArgOffset = LinkageSize;
- // Area that is at least reserved in caller of this function.
- unsigned MinReservedArea = ArgOffset;
-
- static const MCPhysReg GPR_32[] = { // 32-bit registers.
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const MCPhysReg GPR_64[] = { // 64-bit registers.
- PPC::X3, PPC::X4, PPC::X5, PPC::X6,
- PPC::X7, PPC::X8, PPC::X9, PPC::X10,
- };
- static const MCPhysReg VR[] = {
- PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
- PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
- };
-
- const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
- const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
- const unsigned Num_VR_Regs = array_lengthof( VR);
-
- unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
-
- const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
-
- // In 32-bit non-varargs functions, the stack space for vectors is after the
- // stack space for non-vectors. We do not use this space unless we have
- // too many vectors to fit in registers, something that only occurs in
- // constructed examples:), but we have to walk the arglist to figure
- // that out...for the pathological case, compute VecArgOffset as the
- // start of the vector parameter area. Computing VecArgOffset is the
- // entire point of the following loop.
- unsigned VecArgOffset = ArgOffset;
- if (!isVarArg && !isPPC64) {
- for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
- ++ArgNo) {
- EVT ObjectVT = Ins[ArgNo].VT;
- ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
-
- if (Flags.isByVal()) {
- // ObjSize is the true size, ArgSize rounded up to multiple of regs.
- unsigned ObjSize = Flags.getByValSize();
- unsigned ArgSize =
- ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- VecArgOffset += ArgSize;
- continue;
- }
-
- switch(ObjectVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unhandled argument type!");
- case MVT::i1:
- case MVT::i32:
- case MVT::f32:
- VecArgOffset += 4;
- break;
- case MVT::i64: // PPC64
- case MVT::f64:
- // FIXME: We are guaranteed to be !isPPC64 at this point.
- // Does MVT::i64 apply?
- VecArgOffset += 8;
- break;
- case MVT::v4f32:
- case MVT::v4i32:
- case MVT::v8i16:
- case MVT::v16i8:
- // Nothing to do, we're only looking at Nonvector args here.
- break;
- }
- }
- }
- // We've found where the vector parameter area in memory is. Skip the
- // first 12 parameters; these don't use that memory.
- VecArgOffset = ((VecArgOffset+15)/16)*16;
- VecArgOffset += 12*16;
-
- // Add DAG nodes to load the arguments or copy them out of registers. On
- // entry to a function on PPC, the arguments start after the linkage area,
- // although the first ones are often in registers.
-
- SmallVector<SDValue, 8> MemOps;
- unsigned nAltivecParamsAtEnd = 0;
- Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
- unsigned CurArgIdx = 0;
- for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
- SDValue ArgVal;
- bool needsLoad = false;
- EVT ObjectVT = Ins[ArgNo].VT;
- unsigned ObjSize = ObjectVT.getSizeInBits()/8;
- unsigned ArgSize = ObjSize;
- ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
- if (Ins[ArgNo].isOrigArg()) {
- std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
- CurArgIdx = Ins[ArgNo].getOrigArgIndex();
- }
- unsigned CurArgOffset = ArgOffset;
-
- // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
- if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
- ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
- if (isVarArg || isPPC64) {
- MinReservedArea = ((MinReservedArea+15)/16)*16;
- MinReservedArea += CalculateStackSlotSize(ObjectVT,
- Flags,
- PtrByteSize);
- } else nAltivecParamsAtEnd++;
- } else
- // Calculate min reserved area.
- MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
- Flags,
- PtrByteSize);
-
- // FIXME the codegen can be much improved in some cases.
- // We do not have to keep everything in memory.
- if (Flags.isByVal()) {
- assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
-
- // ObjSize is the true size, ArgSize rounded up to multiple of registers.
- ObjSize = Flags.getByValSize();
- ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- // Objects of size 1 and 2 are right justified, everything else is
- // left justified. This means the memory address is adjusted forwards.
- if (ObjSize==1 || ObjSize==2) {
- CurArgOffset = CurArgOffset + (4 - ObjSize);
- }
- // The value of the object is its address.
- int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- InVals.push_back(FIN);
- if (ObjSize==1 || ObjSize==2) {
- if (GPR_idx != Num_GPR_Regs) {
- unsigned VReg;
- if (isPPC64)
- VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- else
- VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
- SDValue Store =
- DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
- MachinePointerInfo(&*FuncArg), ObjType);
- MemOps.push_back(Store);
- ++GPR_idx;
- }
-
- ArgOffset += PtrByteSize;
-
- continue;
- }
- for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
- // Store whatever pieces of the object are in registers
- // to memory. ArgOffset will be the address of the beginning
- // of the object.
- if (GPR_idx != Num_GPR_Regs) {
- unsigned VReg;
- if (isPPC64)
- VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- else
- VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
- int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
- MachinePointerInfo(&*FuncArg, j));
- MemOps.push_back(Store);
- ++GPR_idx;
- ArgOffset += PtrByteSize;
- } else {
- ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
- break;
- }
- }
- continue;
- }
-
- switch (ObjectVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unhandled argument type!");
- case MVT::i1:
- case MVT::i32:
- if (!isPPC64) {
- if (GPR_idx != Num_GPR_Regs) {
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
-
- if (ObjectVT == MVT::i1)
- ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
-
- ++GPR_idx;
- } else {
- needsLoad = true;
- ArgSize = PtrByteSize;
- }
- // All int arguments reserve stack space in the Darwin ABI.
- ArgOffset += PtrByteSize;
- break;
- }
- LLVM_FALLTHROUGH;
- case MVT::i64: // PPC64
- if (GPR_idx != Num_GPR_Regs) {
- unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
-
- if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
- // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
- // value to MVT::i64 and then truncate to the correct register size.
- ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
-
- ++GPR_idx;
- } else {
- needsLoad = true;
- ArgSize = PtrByteSize;
- }
- // All int arguments reserve stack space in the Darwin ABI.
- ArgOffset += 8;
- break;
-
- case MVT::f32:
- case MVT::f64:
- // Every 4 bytes of argument space consumes one of the GPRs available for
- // argument passing.
- if (GPR_idx != Num_GPR_Regs) {
- ++GPR_idx;
- if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
- ++GPR_idx;
- }
- if (FPR_idx != Num_FPR_Regs) {
- unsigned VReg;
-
- if (ObjectVT == MVT::f32)
- VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
- else
- VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
-
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
- ++FPR_idx;
- } else {
- needsLoad = true;
- }
-
- // All FP arguments reserve stack space in the Darwin ABI.
- ArgOffset += isPPC64 ? 8 : ObjSize;
- break;
- case MVT::v4f32:
- case MVT::v4i32:
- case MVT::v8i16:
- case MVT::v16i8:
- // Note that vector arguments in registers don't reserve stack space,
- // except in varargs functions.
- if (VR_idx != Num_VR_Regs) {
- unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
- ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
- if (isVarArg) {
- while ((ArgOffset % 16) != 0) {
- ArgOffset += PtrByteSize;
- if (GPR_idx != Num_GPR_Regs)
- GPR_idx++;
- }
- ArgOffset += 16;
- GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
- }
- ++VR_idx;
- } else {
- if (!isVarArg && !isPPC64) {
- // Vectors go after all the nonvectors.
- CurArgOffset = VecArgOffset;
- VecArgOffset += 16;
- } else {
- // Vectors are aligned.
- ArgOffset = ((ArgOffset+15)/16)*16;
- CurArgOffset = ArgOffset;
- ArgOffset += 16;
- }
- needsLoad = true;
- }
- break;
- }
-
- // We need to load the argument to a virtual register if we determined above
- // that we ran out of physical registers of the appropriate type.
- if (needsLoad) {
- int FI = MFI.CreateFixedObject(ObjSize,
- CurArgOffset + (ArgSize - ObjSize),
- isImmutable);
- SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
- }
-
- InVals.push_back(ArgVal);
- }
-
- // Allow for Altivec parameters at the end, if needed.
- if (nAltivecParamsAtEnd) {
- MinReservedArea = ((MinReservedArea+15)/16)*16;
- MinReservedArea += 16*nAltivecParamsAtEnd;
- }
-
- // Area that is at least reserved in the caller of this function.
- MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
-
- // Set the size that is at least reserved in caller of this function. Tail
- // call optimized functions' reserved stack space needs to be aligned so that
- // taking the difference between two stack areas will result in an aligned
- // stack.
- MinReservedArea =
- EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
- FuncInfo->setMinReservedArea(MinReservedArea);
-
- // If the function takes variable number of arguments, make a frame index for
- // the start of the first vararg value... for expansion of llvm.va_start.
- if (isVarArg) {
- int Depth = ArgOffset;
-
- FuncInfo->setVarArgsFrameIndex(
- MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
- Depth, true));
- SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
-
- // If this function is vararg, store any remaining integer argument regs
- // to their spots on the stack so that they may be loaded by dereferencing
- // the result of va_next.
- for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
- unsigned VReg;
-
- if (isPPC64)
- VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- else
- VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
-
- SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
- SDValue Store =
- DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
- MemOps.push_back(Store);
- // Increment the address by four for the next argument to store
- SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
- FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
- }
- }
-
- if (!MemOps.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
-
- return Chain;
-}
-
-/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
-/// adjusted to accommodate the arguments for the tailcall.
-static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
- unsigned ParamSize) {
-
- if (!isTailCall) return 0;
-
- PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
- unsigned CallerMinReservedArea = FI->getMinReservedArea();
- int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
- // Remember only if the new adjustment is bigger.
- if (SPDiff < FI->getTailCallSPDelta())
- FI->setTailCallSPDelta(SPDiff);
-
- return SPDiff;
-}
-
-static bool isFunctionGlobalAddress(SDValue Callee);
-
-static bool
-callsShareTOCBase(const Function *Caller, SDValue Callee,
- const TargetMachine &TM) {
- // If !G, Callee can be an external symbol.
- GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
- if (!G)
- return false;
-
- // The medium and large code models are expected to provide a sufficiently
- // large TOC to provide all data addressing needs of a module with a
- // single TOC. Since each module will be addressed with a single TOC then we
- // only need to check that caller and callee don't cross dso boundaries.
- if (CodeModel::Medium == TM.getCodeModel() ||
- CodeModel::Large == TM.getCodeModel())
- return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
-
- // Otherwise we need to ensure callee and caller are in the same section,
- // since the linker may allocate multiple TOCs, and we don't know which
- // sections will belong to the same TOC base.
-
- const GlobalValue *GV = G->getGlobal();
- if (!GV->isStrongDefinitionForLinker())
- return false;
-
- // Any explicitly-specified sections and section prefixes must also match.
- // Also, if we're using -ffunction-sections, then each function is always in
- // a different section (the same is true for COMDAT functions).
- if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
- GV->getSection() != Caller->getSection())
- return false;
- if (const auto *F = dyn_cast<Function>(GV)) {
- if (F->getSectionPrefix() != Caller->getSectionPrefix())
- return false;
- }
-
- // If the callee might be interposed, then we can't assume the ultimate call
- // target will be in the same section. Even in cases where we can assume that
- // interposition won't happen, in any case where the linker might insert a
- // stub to allow for interposition, we must generate code as though
- // interposition might occur. To understand why this matters, consider a
- // situation where: a -> b -> c where the arrows indicate calls. b and c are
- // in the same section, but a is in a different module (i.e. has a different
- // TOC base pointer). If the linker allows for interposition between b and c,
- // then it will generate a stub for the call edge between b and c which will
- // save the TOC pointer into the designated stack slot allocated by b. If we
- // return true here, and therefore allow a tail call between b and c, that
- // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
- // pointer into the stack slot allocated by a (where the a -> b stub saved
- // a's TOC base pointer). If we're not considering a tail call, but rather,
- // whether a nop is needed after the call instruction in b, because the linker
- // will insert a stub, it might complain about a missing nop if we omit it
- // (although many don't complain in this case).
- if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
- return false;
-
- return true;
-}
-
-static bool
-needStackSlotPassParameters(const PPCSubtarget &Subtarget,
- const SmallVectorImpl<ISD::OutputArg> &Outs) {
- assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
-
- const unsigned PtrByteSize = 8;
- const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
-
- static const MCPhysReg GPR[] = {
- PPC::X3, PPC::X4, PPC::X5, PPC::X6,
- PPC::X7, PPC::X8, PPC::X9, PPC::X10,
- };
- static const MCPhysReg VR[] = {
- PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
- PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
- };
-
- const unsigned NumGPRs = array_lengthof(GPR);
- const unsigned NumFPRs = 13;
- const unsigned NumVRs = array_lengthof(VR);
- const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
-
- unsigned NumBytes = LinkageSize;
- unsigned AvailableFPRs = NumFPRs;
- unsigned AvailableVRs = NumVRs;
-
- for (const ISD::OutputArg& Param : Outs) {
- if (Param.Flags.isNest()) continue;
-
- if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
- PtrByteSize, LinkageSize, ParamAreaSize,
- NumBytes, AvailableFPRs, AvailableVRs,
- Subtarget.hasQPX()))
- return true;
- }
- return false;
-}
-
-static bool
-hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
- if (CS.arg_size() != CallerFn->arg_size())
- return false;
-
- ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
- ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
- Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
-
- for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
- const Value* CalleeArg = *CalleeArgIter;
- const Value* CallerArg = &(*CallerArgIter);
- if (CalleeArg == CallerArg)
- continue;
-
- // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
- // tail call @callee([4 x i64] undef, [4 x i64] %b)
- // }
- // 1st argument of callee is undef and has the same type as caller.
- if (CalleeArg->getType() == CallerArg->getType() &&
- isa<UndefValue>(CalleeArg))
- continue;
-
- return false;
- }
-
- return true;
-}
-
-// Returns true if TCO is possible between the callers and callees
-// calling conventions.
-static bool
-areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
- CallingConv::ID CalleeCC) {
- // Tail calls are possible with fastcc and ccc.
- auto isTailCallableCC = [] (CallingConv::ID CC){
- return CC == CallingConv::C || CC == CallingConv::Fast;
- };
- if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
- return false;
-
- // We can safely tail call both fastcc and ccc callees from a c calling
- // convention caller. If the caller is fastcc, we may have less stack space
- // than a non-fastcc caller with the same signature so disable tail-calls in
- // that case.
- return CallerCC == CallingConv::C || CallerCC == CalleeCC;
-}
-
-bool
-PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
- SDValue Callee,
- CallingConv::ID CalleeCC,
- ImmutableCallSite CS,
- bool isVarArg,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<ISD::InputArg> &Ins,
- SelectionDAG& DAG) const {
- bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
-
- if (DisableSCO && !TailCallOpt) return false;
-
- // Variadic argument functions are not supported.
- if (isVarArg) return false;
-
- auto &Caller = DAG.getMachineFunction().getFunction();
- // Check that the calling conventions are compatible for tco.
- if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
- return false;
-
- // Caller contains any byval parameter is not supported.
- if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
- return false;
-
- // Callee contains any byval parameter is not supported, too.
- // Note: This is a quick work around, because in some cases, e.g.
- // caller's stack size > callee's stack size, we are still able to apply
- // sibling call optimization. For example, gcc is able to do SCO for caller1
- // in the following example, but not for caller2.
- // struct test {
- // long int a;
- // char ary[56];
- // } gTest;
- // __attribute__((noinline)) int callee(struct test v, struct test *b) {
- // b->a = v.a;
- // return 0;
- // }
- // void caller1(struct test a, struct test c, struct test *b) {
- // callee(gTest, b); }
- // void caller2(struct test *b) { callee(gTest, b); }
- if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
- return false;
-
- // If callee and caller use different calling conventions, we cannot pass
- // parameters on stack since offsets for the parameter area may be different.
- if (Caller.getCallingConv() != CalleeCC &&
- needStackSlotPassParameters(Subtarget, Outs))
- return false;
-
- // No TCO/SCO on indirect call because Caller have to restore its TOC
- if (!isFunctionGlobalAddress(Callee) &&
- !isa<ExternalSymbolSDNode>(Callee))
- return false;
-
- // If the caller and callee potentially have different TOC bases then we
- // cannot tail call since we need to restore the TOC pointer after the call.
- // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
- if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
- return false;
-
- // TCO allows altering callee ABI, so we don't have to check further.
- if (CalleeCC == CallingConv::Fast && TailCallOpt)
- return true;
-
- if (DisableSCO) return false;
-
- // If callee use the same argument list that caller is using, then we can
- // apply SCO on this case. If it is not, then we need to check if callee needs
- // stack for passing arguments.
- if (!hasSameArgumentList(&Caller, CS) &&
- needStackSlotPassParameters(Subtarget, Outs)) {
- return false;
- }
-
- return true;
-}
-
-/// IsEligibleForTailCallOptimization - Check whether the call is eligible
-/// for tail call optimization. Targets which want to do tail call
-/// optimization should implement this function.
-bool
-PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
- CallingConv::ID CalleeCC,
- bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins,
- SelectionDAG& DAG) const {
- if (!getTargetMachine().Options.GuaranteedTailCallOpt)
- return false;
-
- // Variable argument functions are not supported.
- if (isVarArg)
- return false;
-
- MachineFunction &MF = DAG.getMachineFunction();
- CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
- if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
- // Functions containing by val parameters are not supported.
- for (unsigned i = 0; i != Ins.size(); i++) {
- ISD::ArgFlagsTy Flags = Ins[i].Flags;
- if (Flags.isByVal()) return false;
- }
-
- // Non-PIC/GOT tail calls are supported.
- if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
- return true;
-
- // At the moment we can only do local tail calls (in same module, hidden
- // or protected) if we are generating PIC.
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
- return G->getGlobal()->hasHiddenVisibility()
- || G->getGlobal()->hasProtectedVisibility();
- }
-
- return false;
-}
-
-/// isCallCompatibleAddress - Return the immediate to use if the specified
-/// 32-bit value is representable in the immediate field of a BxA instruction.
-static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- if (!C) return nullptr;
-
- int Addr = C->getZExtValue();
- if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
- SignExtend32<26>(Addr) != Addr)
- return nullptr; // Top 6 bits have to be sext of immediate.
-
- return DAG
- .getConstant(
- (int)C->getZExtValue() >> 2, SDLoc(Op),
- DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
- .getNode();
-}
-
-namespace {
-
-struct TailCallArgumentInfo {
- SDValue Arg;
- SDValue FrameIdxOp;
- int FrameIdx = 0;
-
- TailCallArgumentInfo() = default;
-};
-
-} // end anonymous namespace
-
-/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
-static void StoreTailCallArgumentsToStackSlot(
- SelectionDAG &DAG, SDValue Chain,
- const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
- SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
- for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
- SDValue Arg = TailCallArgs[i].Arg;
- SDValue FIN = TailCallArgs[i].FrameIdxOp;
- int FI = TailCallArgs[i].FrameIdx;
- // Store relative to framepointer.
- MemOpChains.push_back(DAG.getStore(
- Chain, dl, Arg, FIN,
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
- }
-}
-
-/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
-/// the appropriate stack slot for the tail call optimized function call.
-static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
- SDValue OldRetAddr, SDValue OldFP,
- int SPDiff, const SDLoc &dl) {
- if (SPDiff) {
- // Calculate the new stack slot for the return address.
- MachineFunction &MF = DAG.getMachineFunction();
- const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
- const PPCFrameLowering *FL = Subtarget.getFrameLowering();
- bool isPPC64 = Subtarget.isPPC64();
- int SlotSize = isPPC64 ? 8 : 4;
- int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
- int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
- NewRetAddrLoc, true);
- EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
- SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
- Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
- MachinePointerInfo::getFixedStack(MF, NewRetAddr));
-
- // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
- // slot as the FP is never overwritten.
- if (Subtarget.isDarwinABI()) {
- int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
- int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
- true);
- SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
- Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
- MachinePointerInfo::getFixedStack(
- DAG.getMachineFunction(), NewFPIdx));
- }
- }
- return Chain;
-}
-
-/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
-/// the position of the argument.
-static void
-CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
- SDValue Arg, int SPDiff, unsigned ArgOffset,
- SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
- int Offset = ArgOffset + SPDiff;
- uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
- int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
- EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
- SDValue FIN = DAG.getFrameIndex(FI, VT);
- TailCallArgumentInfo Info;
- Info.Arg = Arg;
- Info.FrameIdxOp = FIN;
- Info.FrameIdx = FI;
- TailCallArguments.push_back(Info);
-}
-
-/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
-/// stack slot. Returns the chain as result and the loaded frame pointers in
-/// LROpOut/FPOpout. Used when tail calling.
-SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
- SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
- SDValue &FPOpOut, const SDLoc &dl) const {
- if (SPDiff) {
- // Load the LR and FP stack slot for later adjusting.
- EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
- LROpOut = getReturnAddrFrameIndex(DAG);
- LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
- Chain = SDValue(LROpOut.getNode(), 1);
-
- // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
- // slot as the FP is never overwritten.
- if (Subtarget.isDarwinABI()) {
- FPOpOut = getFramePointerFrameIndex(DAG);
- FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
- Chain = SDValue(FPOpOut.getNode(), 1);
- }
- }
- return Chain;
-}
-
-/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
-/// by "Src" to address "Dst" of size "Size". Alignment information is
-/// specified by the specific parameter attribute. The copy will be passed as
-/// a byval function parameter.
-/// Sometimes what we are copying is the end of a larger object, the part that
-/// does not fit in registers.
-static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
- SDValue Chain, ISD::ArgFlagsTy Flags,
- SelectionDAG &DAG, const SDLoc &dl) {
- SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
- return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
- false, false, false, MachinePointerInfo(),
- MachinePointerInfo());
-}
-
-/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
-/// tail calls.
-static void LowerMemOpCallTo(
- SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
- SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
- bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
- SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
- EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
- if (!isTailCall) {
- if (isVector) {
- SDValue StackPtr;
- if (isPPC64)
- StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
- else
- StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
- DAG.getConstant(ArgOffset, dl, PtrVT));
- }
- MemOpChains.push_back(
- DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
- // Calculate and remember argument location.
- } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
- TailCallArguments);
-}
-
-static void
-PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
- const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
- SDValue FPOp,
- SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
- // Emit a sequence of copyto/copyfrom virtual registers for arguments that
- // might overwrite each other in case of tail call optimization.
- SmallVector<SDValue, 8> MemOpChains2;
- // Do not flag preceding copytoreg stuff together with the following stuff.
- InFlag = SDValue();
- StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
- MemOpChains2, dl);
- if (!MemOpChains2.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
-
- // Store the return address to the appropriate stack slot.
- Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
-
- // Emit callseq_end just before tailcall node.
- Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
- DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
- InFlag = Chain.getValue(1);
-}
-
-// Is this global address that of a function that can be called by name? (as
-// opposed to something that must hold a descriptor for an indirect call).
-static bool isFunctionGlobalAddress(SDValue Callee) {
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
- if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
- Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
- return false;
-
- return G->getGlobal()->getValueType()->isFunctionTy();
- }
-
- return false;
-}
-
-static unsigned
-PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
- SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
- bool isPatchPoint, bool hasNest,
- SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
- SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
- ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
- bool isPPC64 = Subtarget.isPPC64();
- bool isSVR4ABI = Subtarget.isSVR4ABI();
- bool isELFv2ABI = Subtarget.isELFv2ABI();
-
- EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
- NodeTys.push_back(MVT::Other); // Returns a chain
- NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
-
- unsigned CallOpc = PPCISD::CALL;
-
- bool needIndirectCall = true;
- if (!isSVR4ABI || !isPPC64)
- if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
- // If this is an absolute destination address, use the munged value.
- Callee = SDValue(Dest, 0);
- needIndirectCall = false;
- }
-
- // PC-relative references to external symbols should go through $stub, unless
- // we're building with the leopard linker or later, which automatically
- // synthesizes these stubs.
- const TargetMachine &TM = DAG.getTarget();
- const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
- const GlobalValue *GV = nullptr;
- if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
- GV = G->getGlobal();
- bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
- bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
-
- if (isFunctionGlobalAddress(Callee)) {
- GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
- // A call to a TLS address is actually an indirect call to a
- // thread-specific pointer.
- unsigned OpFlags = 0;
- if (UsePlt)
- OpFlags = PPCII::MO_PLT;
-
- // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
- // every direct call is) turn it into a TargetGlobalAddress /
- // TargetExternalSymbol node so that legalize doesn't hack it.
- Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
- Callee.getValueType(), 0, OpFlags);
- needIndirectCall = false;
- }
-
- if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
- unsigned char OpFlags = 0;
-
- if (UsePlt)
- OpFlags = PPCII::MO_PLT;
-
- Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
- OpFlags);
- needIndirectCall = false;
- }
-
- if (isPatchPoint) {
- // We'll form an invalid direct call when lowering a patchpoint; the full
- // sequence for an indirect call is complicated, and many of the
- // instructions introduced might have side effects (and, thus, can't be
- // removed later). The call itself will be removed as soon as the
- // argument/return lowering is complete, so the fact that it has the wrong
- // kind of operands should not really matter.
- needIndirectCall = false;
- }
-
- if (needIndirectCall) {
- // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
- // to do the call, we can't use PPCISD::CALL.
- SDValue MTCTROps[] = {Chain, Callee, InFlag};
-
- if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
- // Function pointers in the 64-bit SVR4 ABI do not point to the function
- // entry point, but to the function descriptor (the function entry point
- // address is part of the function descriptor though).
- // The function descriptor is a three doubleword structure with the
- // following fields: function entry point, TOC base address and
- // environment pointer.
- // Thus for a call through a function pointer, the following actions need
- // to be performed:
- // 1. Save the TOC of the caller in the TOC save area of its stack
- // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
- // 2. Load the address of the function entry point from the function
- // descriptor.
- // 3. Load the TOC of the callee from the function descriptor into r2.
- // 4. Load the environment pointer from the function descriptor into
- // r11.
- // 5. Branch to the function entry point address.
- // 6. On return of the callee, the TOC of the caller needs to be
- // restored (this is done in FinishCall()).
- //
- // The loads are scheduled at the beginning of the call sequence, and the
- // register copies are flagged together to ensure that no other
- // operations can be scheduled in between. E.g. without flagging the
- // copies together, a TOC access in the caller could be scheduled between
- // the assignment of the callee TOC and the branch to the callee, which
- // results in the TOC access going through the TOC of the callee instead
- // of going through the TOC of the caller, which leads to incorrect code.
-
- // Load the address of the function entry point from the function
- // descriptor.
- SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
- if (LDChain.getValueType() == MVT::Glue)
- LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
-
- auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
- ? (MachineMemOperand::MODereferenceable |
- MachineMemOperand::MOInvariant)
- : MachineMemOperand::MONone;
-
- MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
- SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
- /* Alignment = */ 8, MMOFlags);
-
- // Load environment pointer into r11.
- SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
- SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
- SDValue LoadEnvPtr =
- DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
- /* Alignment = */ 8, MMOFlags);
-
- SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
- SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
- SDValue TOCPtr =
- DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
- /* Alignment = */ 8, MMOFlags);
-
- setUsesTOCBasePtr(DAG);
- SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
- InFlag);
- Chain = TOCVal.getValue(0);
- InFlag = TOCVal.getValue(1);
-
- // If the function call has an explicit 'nest' parameter, it takes the
- // place of the environment pointer.
- if (!hasNest) {
- SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
- InFlag);
-
- Chain = EnvVal.getValue(0);
- InFlag = EnvVal.getValue(1);
- }
-
- MTCTROps[0] = Chain;
- MTCTROps[1] = LoadFuncPtr;
- MTCTROps[2] = InFlag;
- }
-
- Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
- makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
- InFlag = Chain.getValue(1);
-
- NodeTys.clear();
- NodeTys.push_back(MVT::Other);
- NodeTys.push_back(MVT::Glue);
- Ops.push_back(Chain);
- CallOpc = PPCISD::BCTRL;
- Callee.setNode(nullptr);
- // Add use of X11 (holding environment pointer)
- if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
- Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
- // Add CTR register as callee so a bctr can be emitted later.
- if (isTailCall)
- Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
- }
-
- // If this is a direct call, pass the chain and the callee.
- if (Callee.getNode()) {
- Ops.push_back(Chain);
- Ops.push_back(Callee);
- }
- // If this is a tail call add stack pointer delta.
- if (isTailCall)
- Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
-
- // Add argument registers to the end of the list so that they are known live
- // into the call.
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
- Ops.push_back(DAG.getRegister(RegsToPass[i].first,
- RegsToPass[i].second.getValueType()));
-
- // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
- // into the call.
- // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
- if (isSVR4ABI && isPPC64) {
- setUsesTOCBasePtr(DAG);
-
- // We cannot add X2 as an operand here for PATCHPOINT, because there is no
- // way to mark dependencies as implicit here. We will add the X2 dependency
- // in EmitInstrWithCustomInserter.
- if (!isPatchPoint)
- Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
- }
-
- return CallOpc;
-}
-
-SDValue PPCTargetLowering::LowerCallResult(
- SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
- *DAG.getContext());
-
- CCRetInfo.AnalyzeCallResult(
- Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
- ? RetCC_PPC_Cold
- : RetCC_PPC);
-
- // Copy all of the result registers out of their specified physreg.
- for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
- CCValAssign &VA = RVLocs[i];
- assert(VA.isRegLoc() && "Can only return in registers!");
-
- SDValue Val = DAG.getCopyFromReg(Chain, dl,
- VA.getLocReg(), VA.getLocVT(), InFlag);
- Chain = Val.getValue(1);
- InFlag = Val.getValue(2);
-
- switch (VA.getLocInfo()) {
- default: llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full: break;
- case CCValAssign::AExt:
- Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
- break;
- case CCValAssign::ZExt:
- Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
- DAG.getValueType(VA.getValVT()));
- Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
- break;
- case CCValAssign::SExt:
- Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
- DAG.getValueType(VA.getValVT()));
- Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
- break;
- }
-
- InVals.push_back(Val);
- }
-
- return Chain;
-}
-
-SDValue PPCTargetLowering::FinishCall(
- CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
- bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
- SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
- SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
- unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
- SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
- std::vector<EVT> NodeTys;
- SmallVector<SDValue, 8> Ops;
- unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
- SPDiff, isTailCall, isPatchPoint, hasNest,
- RegsToPass, Ops, NodeTys, CS, Subtarget);
-
- // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
- if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
- Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
-
- // When performing tail call optimization the callee pops its arguments off
- // the stack. Account for this here so these bytes can be pushed back on in
- // PPCFrameLowering::eliminateCallFramePseudoInstr.
- int BytesCalleePops =
- (CallConv == CallingConv::Fast &&
- getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
-
- // Add a register mask operand representing the call-preserved registers.
- const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
- const uint32_t *Mask =
- TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
- assert(Mask && "Missing call preserved mask for calling convention");
- Ops.push_back(DAG.getRegisterMask(Mask));
-
- if (InFlag.getNode())
- Ops.push_back(InFlag);
-
- // Emit tail call.
- if (isTailCall) {
- assert(((Callee.getOpcode() == ISD::Register &&
- cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
- Callee.getOpcode() == ISD::TargetExternalSymbol ||
- Callee.getOpcode() == ISD::TargetGlobalAddress ||
- isa<ConstantSDNode>(Callee)) &&
- "Expecting an global address, external symbol, absolute value or register");
-
- DAG.getMachineFunction().getFrameInfo().setHasTailCall();
- return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
- }
-
- // Add a NOP immediately after the branch instruction when using the 64-bit
- // SVR4 ABI. At link time, if caller and callee are in a different module and
- // thus have a different TOC, the call will be replaced with a call to a stub
- // function which saves the current TOC, loads the TOC of the callee and
- // branches to the callee. The NOP will be replaced with a load instruction
- // which restores the TOC of the caller from the TOC save slot of the current
- // stack frame. If caller and callee belong to the same module (and have the
- // same TOC), the NOP will remain unchanged.
-
- MachineFunction &MF = DAG.getMachineFunction();
- if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
- !isPatchPoint) {
- if (CallOpc == PPCISD::BCTRL) {
- // This is a call through a function pointer.
- // Restore the caller TOC from the save area into R2.
- // See PrepareCall() for more information about calls through function
- // pointers in the 64-bit SVR4 ABI.
- // We are using a target-specific load with r2 hard coded, because the
- // result of a target-independent load would never go directly into r2,
- // since r2 is a reserved register (which prevents the register allocator
- // from allocating it), resulting in an additional register being
- // allocated and an unnecessary move instruction being generated.
- CallOpc = PPCISD::BCTRL_LOAD_TOC;
-
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
- unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
- SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
- SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
-
- // The address needs to go after the chain input but before the flag (or
- // any other variadic arguments).
- Ops.insert(std::next(Ops.begin()), AddTOC);
- } else if (CallOpc == PPCISD::CALL &&
- !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
- // Otherwise insert NOP for non-local calls.
- CallOpc = PPCISD::CALL_NOP;
- }
- }
-
- Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
- InFlag = Chain.getValue(1);
-
- Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
- DAG.getIntPtrConstant(BytesCalleePops, dl, true),
- InFlag, dl);
- if (!Ins.empty())
- InFlag = Chain.getValue(1);
-
- return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
- Ins, dl, DAG, InVals);
-}
-
-SDValue
-PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
- SmallVectorImpl<SDValue> &InVals) const {
- SelectionDAG &DAG = CLI.DAG;
- SDLoc &dl = CLI.DL;
- SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
- SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
- SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
- SDValue Chain = CLI.Chain;
- SDValue Callee = CLI.Callee;
- bool &isTailCall = CLI.IsTailCall;
- CallingConv::ID CallConv = CLI.CallConv;
- bool isVarArg = CLI.IsVarArg;
- bool isPatchPoint = CLI.IsPatchPoint;
- ImmutableCallSite CS = CLI.CS;
-
- if (isTailCall) {
- if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
- isTailCall = false;
- else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
- isTailCall =
- IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
- isVarArg, Outs, Ins, DAG);
- else
- isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
- Ins, DAG);
- if (isTailCall) {
- ++NumTailCalls;
- if (!getTargetMachine().Options.GuaranteedTailCallOpt)
- ++NumSiblingCalls;
-
- assert(isa<GlobalAddressSDNode>(Callee) &&
- "Callee should be an llvm::Function object.");
- LLVM_DEBUG(
- const GlobalValue *GV =
- cast<GlobalAddressSDNode>(Callee)->getGlobal();
- const unsigned Width =
- 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
- dbgs() << "TCO caller: "
- << left_justify(DAG.getMachineFunction().getName(), Width)
- << ", callee linkage: " << GV->getVisibility() << ", "
- << GV->getLinkage() << "\n");
- }
- }
-
- if (!isTailCall && CS && CS.isMustTailCall())
- report_fatal_error("failed to perform tail call elimination on a call "
- "site marked musttail");
-
- // When long calls (i.e. indirect calls) are always used, calls are always
- // made via function pointer. If we have a function name, first translate it
- // into a pointer.
- if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
- !isTailCall)
- Callee = LowerGlobalAddress(Callee, DAG);
-
- if (Subtarget.isSVR4ABI()) {
- if (Subtarget.isPPC64())
- return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
- isTailCall, isPatchPoint, Outs, OutVals, Ins,
- dl, DAG, InVals, CS);
- else
- return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
- isTailCall, isPatchPoint, Outs, OutVals, Ins,
- dl, DAG, InVals, CS);
- }
-
- return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
- isTailCall, isPatchPoint, Outs, OutVals, Ins,
- dl, DAG, InVals, CS);
-}
-
-SDValue PPCTargetLowering::LowerCall_32SVR4(
- SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
- bool isTailCall, bool isPatchPoint,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
- ImmutableCallSite CS) const {
- // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
- // of the 32-bit SVR4 ABI stack frame layout.
-
- assert((CallConv == CallingConv::C ||
- CallConv == CallingConv::Cold ||
- CallConv == CallingConv::Fast) && "Unknown calling convention!");
-
- unsigned PtrByteSize = 4;
-
- MachineFunction &MF = DAG.getMachineFunction();
-
- // Mark this function as potentially containing a function that contains a
- // tail call. As a consequence the frame pointer will be used for dynamicalloc
- // and restoring the callers stack pointer in this functions epilog. This is
- // done because by tail calling the called function might overwrite the value
- // in this function's (MF) stack pointer stack slot 0(SP).
- if (getTargetMachine().Options.GuaranteedTailCallOpt &&
- CallConv == CallingConv::Fast)
- MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
-
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, parameter list area and the part of the local variable space which
- // contains copies of aggregates which are passed by value.
-
- // Assign locations to all of the outgoing arguments.
- SmallVector<CCValAssign, 16> ArgLocs;
- PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
-
- // Reserve space for the linkage area on the stack.
- CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
- PtrByteSize);
- if (useSoftFloat())
- CCInfo.PreAnalyzeCallOperands(Outs);
-
- if (isVarArg) {
- // Handle fixed and variable vector arguments differently.
- // Fixed vector arguments go into registers as long as registers are
- // available. Variable vector arguments always go into memory.
- unsigned NumArgs = Outs.size();
-
- for (unsigned i = 0; i != NumArgs; ++i) {
- MVT ArgVT = Outs[i].VT;
- ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
- bool Result;
-
- if (Outs[i].IsFixed) {
- Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
- CCInfo);
- } else {
- Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
- ArgFlags, CCInfo);
- }
-
- if (Result) {
-#ifndef NDEBUG
- errs() << "Call operand #" << i << " has unhandled type "
- << EVT(ArgVT).getEVTString() << "\n";
-#endif
- llvm_unreachable(nullptr);
- }
- }
- } else {
- // All arguments are treated the same.
- CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
- }
- CCInfo.clearWasPPCF128();
-
- // Assign locations to all of the outgoing aggregate by value arguments.
- SmallVector<CCValAssign, 16> ByValArgLocs;
- CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
-
- // Reserve stack space for the allocations in CCInfo.
- CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
-
- CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
-
- // Size of the linkage area, parameter list area and the part of the local
- // space variable where copies of aggregates which are passed by value are
- // stored.
- unsigned NumBytes = CCByValInfo.getNextStackOffset();
-
- // Calculate by how many bytes the stack has to be adjusted in case of tail
- // call optimization.
- int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
-
- // Adjust the stack pointer for the new arguments...
- // These operations are automatically eliminated by the prolog/epilog pass
- Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
- SDValue CallSeqStart = Chain;
-
- // Load the return address and frame pointer so it can be moved somewhere else
- // later.
- SDValue LROp, FPOp;
- Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
-
- // Set up a copy of the stack pointer for use loading and storing any
- // arguments that may not fit in the registers available for argument
- // passing.
- SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
-
- SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
- SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
- SmallVector<SDValue, 8> MemOpChains;
-
- bool seenFloatArg = false;
- // Walk the register/memloc assignments, inserting copies/loads.
- for (unsigned i = 0, j = 0, e = ArgLocs.size();
- i != e;
- ++i) {
- CCValAssign &VA = ArgLocs[i];
- SDValue Arg = OutVals[i];
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
-
- if (Flags.isByVal()) {
- // Argument is an aggregate which is passed by value, thus we need to
- // create a copy of it in the local variable space of the current stack
- // frame (which is the stack frame of the caller) and pass the address of
- // this copy to the callee.
- assert((j < ByValArgLocs.size()) && "Index out of bounds!");
- CCValAssign &ByValVA = ByValArgLocs[j++];
- assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
-
- // Memory reserved in the local variable space of the callers stack frame.
- unsigned LocMemOffset = ByValVA.getLocMemOffset();
-
- SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
- PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
- StackPtr, PtrOff);
-
- // Create a copy of the argument in the local area of the current
- // stack frame.
- SDValue MemcpyCall =
- CreateCopyOfByValArgument(Arg, PtrOff,
- CallSeqStart.getNode()->getOperand(0),
- Flags, DAG, dl);
-
- // This must go outside the CALLSEQ_START..END.
- SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
- SDLoc(MemcpyCall));
- DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
- NewCallSeqStart.getNode());
- Chain = CallSeqStart = NewCallSeqStart;
-
- // Pass the address of the aggregate copy on the stack either in a
- // physical register or in the parameter list area of the current stack
- // frame to the callee.
- Arg = PtrOff;
- }
-
- // When useCRBits() is true, there can be i1 arguments.
- // It is because getRegisterType(MVT::i1) => MVT::i1,
- // and for other integer types getRegisterType() => MVT::i32.
- // Extend i1 and ensure callee will get i32.
- if (Arg.getValueType() == MVT::i1)
- Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
- dl, MVT::i32, Arg);
-
- if (VA.isRegLoc()) {
- seenFloatArg |= VA.getLocVT().isFloatingPoint();
- // Put argument in a physical register.
- RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
- } else {
- // Put argument in the parameter list area of the current stack frame.
- assert(VA.isMemLoc());
- unsigned LocMemOffset = VA.getLocMemOffset();
-
- if (!isTailCall) {
- SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
- PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
- StackPtr, PtrOff);
-
- MemOpChains.push_back(
- DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
- } else {
- // Calculate and remember argument location.
- CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
- TailCallArguments);
- }
- }
- }
-
- if (!MemOpChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
-
- // Build a sequence of copy-to-reg nodes chained together with token chain
- // and flag operands which copy the outgoing args into the appropriate regs.
- SDValue InFlag;
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
- RegsToPass[i].second, InFlag);
- InFlag = Chain.getValue(1);
- }
-
- // Set CR bit 6 to true if this is a vararg call with floating args passed in
- // registers.
- if (isVarArg) {
- SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue Ops[] = { Chain, InFlag };
-
- Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
- dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
-
- InFlag = Chain.getValue(1);
- }
-
- if (isTailCall)
- PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
- TailCallArguments);
-
- return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
- /* unused except on PPC64 ELFv1 */ false, DAG,
- RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
- NumBytes, Ins, InVals, CS);
-}
-
-// Copy an argument into memory, being careful to do this outside the
-// call sequence for the call to which the argument belongs.
-SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
- SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
- SelectionDAG &DAG, const SDLoc &dl) const {
- SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
- CallSeqStart.getNode()->getOperand(0),
- Flags, DAG, dl);
- // The MEMCPY must go outside the CALLSEQ_START..END.
- int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
- SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
- SDLoc(MemcpyCall));
- DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
- NewCallSeqStart.getNode());
- return NewCallSeqStart;
-}
-
-SDValue PPCTargetLowering::LowerCall_64SVR4(
- SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
- bool isTailCall, bool isPatchPoint,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
- ImmutableCallSite CS) const {
- bool isELFv2ABI = Subtarget.isELFv2ABI();
- bool isLittleEndian = Subtarget.isLittleEndian();
- unsigned NumOps = Outs.size();
- bool hasNest = false;
- bool IsSibCall = false;
-
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- unsigned PtrByteSize = 8;
-
- MachineFunction &MF = DAG.getMachineFunction();
-
- if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
- IsSibCall = true;
-
- // Mark this function as potentially containing a function that contains a
- // tail call. As a consequence the frame pointer will be used for dynamicalloc
- // and restoring the callers stack pointer in this functions epilog. This is
- // done because by tail calling the called function might overwrite the value
- // in this function's (MF) stack pointer stack slot 0(SP).
- if (getTargetMachine().Options.GuaranteedTailCallOpt &&
- CallConv == CallingConv::Fast)
- MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
-
- assert(!(CallConv == CallingConv::Fast && isVarArg) &&
- "fastcc not supported on varargs functions");
-
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
- // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
- // area is 32 bytes reserved space for [SP][CR][LR][TOC].
- unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
- unsigned NumBytes = LinkageSize;
- unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
- unsigned &QFPR_idx = FPR_idx;
-
- static const MCPhysReg GPR[] = {
- PPC::X3, PPC::X4, PPC::X5, PPC::X6,
- PPC::X7, PPC::X8, PPC::X9, PPC::X10,
- };
- static const MCPhysReg VR[] = {
- PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
- PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
- };
-
- const unsigned NumGPRs = array_lengthof(GPR);
- const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
- const unsigned NumVRs = array_lengthof(VR);
- const unsigned NumQFPRs = NumFPRs;
-
- // On ELFv2, we can avoid allocating the parameter area if all the arguments
- // can be passed to the callee in registers.
- // For the fast calling convention, there is another check below.
- // Note: We should keep consistent with LowerFormalArguments_64SVR4()
- bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
- if (!HasParameterArea) {
- unsigned ParamAreaSize = NumGPRs * PtrByteSize;
- unsigned AvailableFPRs = NumFPRs;
- unsigned AvailableVRs = NumVRs;
- unsigned NumBytesTmp = NumBytes;
- for (unsigned i = 0; i != NumOps; ++i) {
- if (Outs[i].Flags.isNest()) continue;
- if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
- PtrByteSize, LinkageSize, ParamAreaSize,
- NumBytesTmp, AvailableFPRs, AvailableVRs,
- Subtarget.hasQPX()))
- HasParameterArea = true;
- }
- }
-
- // When using the fast calling convention, we don't provide backing for
- // arguments that will be in registers.
- unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
-
- // Avoid allocating parameter area for fastcc functions if all the arguments
- // can be passed in the registers.
- if (CallConv == CallingConv::Fast)
- HasParameterArea = false;
-
- // Add up all the space actually used.
- for (unsigned i = 0; i != NumOps; ++i) {
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
- EVT ArgVT = Outs[i].VT;
- EVT OrigVT = Outs[i].ArgVT;
-
- if (Flags.isNest())
- continue;
-
- if (CallConv == CallingConv::Fast) {
- if (Flags.isByVal()) {
- NumGPRsUsed += (Flags.getByValSize()+7)/8;
- if (NumGPRsUsed > NumGPRs)
- HasParameterArea = true;
- } else {
- switch (ArgVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unexpected ValueType for argument!");
- case MVT::i1:
- case MVT::i32:
- case MVT::i64:
- if (++NumGPRsUsed <= NumGPRs)
- continue;
- break;
- case MVT::v4i32:
- case MVT::v8i16:
- case MVT::v16i8:
- case MVT::v2f64:
- case MVT::v2i64:
- case MVT::v1i128:
- case MVT::f128:
- if (++NumVRsUsed <= NumVRs)
- continue;
- break;
- case MVT::v4f32:
- // When using QPX, this is handled like a FP register, otherwise, it
- // is an Altivec register.
- if (Subtarget.hasQPX()) {
- if (++NumFPRsUsed <= NumFPRs)
- continue;
- } else {
- if (++NumVRsUsed <= NumVRs)
- continue;
- }
- break;
- case MVT::f32:
- case MVT::f64:
- case MVT::v4f64: // QPX
- case MVT::v4i1: // QPX
- if (++NumFPRsUsed <= NumFPRs)
- continue;
- break;
- }
- HasParameterArea = true;
- }
- }
-
- /* Respect alignment of argument on the stack. */
- unsigned Align =
- CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
- NumBytes = ((NumBytes + Align - 1) / Align) * Align;
-
- NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
- if (Flags.isInConsecutiveRegsLast())
- NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- }
-
- unsigned NumBytesActuallyUsed = NumBytes;
-
- // In the old ELFv1 ABI,
- // the prolog code of the callee may store up to 8 GPR argument registers to
- // the stack, allowing va_start to index over them in memory if its varargs.
- // Because we cannot tell if this is needed on the caller side, we have to
- // conservatively assume that it is needed. As such, make sure we have at
- // least enough stack space for the caller to store the 8 GPRs.
- // In the ELFv2 ABI, we allocate the parameter area iff a callee
- // really requires memory operands, e.g. a vararg function.
- if (HasParameterArea)
- NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
- else
- NumBytes = LinkageSize;
-
- // Tail call needs the stack to be aligned.
- if (getTargetMachine().Options.GuaranteedTailCallOpt &&
- CallConv == CallingConv::Fast)
- NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
-
- int SPDiff = 0;
-
- // Calculate by how many bytes the stack has to be adjusted in case of tail
- // call optimization.
- if (!IsSibCall)
- SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
-
- // To protect arguments on the stack from being clobbered in a tail call,
- // force all the loads to happen before doing any other lowering.
- if (isTailCall)
- Chain = DAG.getStackArgumentTokenFactor(Chain);
-
- // Adjust the stack pointer for the new arguments...
- // These operations are automatically eliminated by the prolog/epilog pass
- if (!IsSibCall)
- Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
- SDValue CallSeqStart = Chain;
-
- // Load the return address and frame pointer so it can be move somewhere else
- // later.
- SDValue LROp, FPOp;
- Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
-
- // Set up a copy of the stack pointer for use loading and storing any
- // arguments that may not fit in the registers available for argument
- // passing.
- SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
-
- // Figure out which arguments are going to go in registers, and which in
- // memory. Also, if this is a vararg function, floating point operations
- // must be stored to our stack, and loaded into integer regs as well, if
- // any integer regs are available for argument passing.
- unsigned ArgOffset = LinkageSize;
-
- SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
- SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
-
- SmallVector<SDValue, 8> MemOpChains;
- for (unsigned i = 0; i != NumOps; ++i) {
- SDValue Arg = OutVals[i];
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
- EVT ArgVT = Outs[i].VT;
- EVT OrigVT = Outs[i].ArgVT;
-
- // PtrOff will be used to store the current argument to the stack if a
- // register cannot be found for it.
- SDValue PtrOff;
-
- // We re-align the argument offset for each argument, except when using the
- // fast calling convention, when we need to make sure we do that only when
- // we'll actually use a stack slot.
- auto ComputePtrOff = [&]() {
- /* Respect alignment of argument on the stack. */
- unsigned Align =
- CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
- ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
-
- PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
-
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
- };
-
- if (CallConv != CallingConv::Fast) {
- ComputePtrOff();
-
- /* Compute GPR index associated with argument offset. */
- GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
- GPR_idx = std::min(GPR_idx, NumGPRs);
- }
-
- // Promote integers to 64-bit values.
- if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
- // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
- unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
- }
-
- // FIXME memcpy is used way more than necessary. Correctness first.
- // Note: "by value" is code for passing a structure by value, not
- // basic types.
- if (Flags.isByVal()) {
- // Note: Size includes alignment padding, so
- // struct x { short a; char b; }
- // will have Size = 4. With #pragma pack(1), it will have Size = 3.
- // These are the proper values we need for right-justifying the
- // aggregate in a parameter register.
- unsigned Size = Flags.getByValSize();
-
- // An empty aggregate parameter takes up no storage and no
- // registers.
- if (Size == 0)
- continue;
-
- if (CallConv == CallingConv::Fast)
- ComputePtrOff();
-
- // All aggregates smaller than 8 bytes must be passed right-justified.
- if (Size==1 || Size==2 || Size==4) {
- EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
- if (GPR_idx != NumGPRs) {
- SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
- MachinePointerInfo(), VT);
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
-
- ArgOffset += PtrByteSize;
- continue;
- }
- }
-
- if (GPR_idx == NumGPRs && Size < 8) {
- SDValue AddPtr = PtrOff;
- if (!isLittleEndian) {
- SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
- PtrOff.getValueType());
- AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
- }
- Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
- CallSeqStart,
- Flags, DAG, dl);
- ArgOffset += PtrByteSize;
- continue;
- }
- // Copy entire object into memory. There are cases where gcc-generated
- // code assumes it is there, even if it could be put entirely into
- // registers. (This is not what the doc says.)
-
- // FIXME: The above statement is likely due to a misunderstanding of the
- // documents. All arguments must be copied into the parameter area BY
- // THE CALLEE in the event that the callee takes the address of any
- // formal argument. That has not yet been implemented. However, it is
- // reasonable to use the stack area as a staging area for the register
- // load.
-
- // Skip this for small aggregates, as we will use the same slot for a
- // right-justified copy, below.
- if (Size >= 8)
- Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
- CallSeqStart,
- Flags, DAG, dl);
-
- // When a register is available, pass a small aggregate right-justified.
- if (Size < 8 && GPR_idx != NumGPRs) {
- // The easiest way to get this right-justified in a register
- // is to copy the structure into the rightmost portion of a
- // local variable slot, then load the whole slot into the
- // register.
- // FIXME: The memcpy seems to produce pretty awful code for
- // small aggregates, particularly for packed ones.
- // FIXME: It would be preferable to use the slot in the
- // parameter save area instead of a new local variable.
- SDValue AddPtr = PtrOff;
- if (!isLittleEndian) {
- SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
- AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
- }
- Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
- CallSeqStart,
- Flags, DAG, dl);
-
- // Load the slot into the register.
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
-
- // Done with this argument.
- ArgOffset += PtrByteSize;
- continue;
- }
-
- // For aggregates larger than PtrByteSize, copy the pieces of the
- // object that fit into registers from the parameter save area.
- for (unsigned j=0; j<Size; j+=PtrByteSize) {
- SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
- SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
- if (GPR_idx != NumGPRs) {
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- ArgOffset += PtrByteSize;
- } else {
- ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
- break;
- }
- }
- continue;
- }
-
- switch (Arg.getSimpleValueType().SimpleTy) {
- default: llvm_unreachable("Unexpected ValueType for argument!");
- case MVT::i1:
- case MVT::i32:
- case MVT::i64:
- if (Flags.isNest()) {
- // The 'nest' parameter, if any, is passed in R11.
- RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
- hasNest = true;
- break;
- }
-
- // These can be scalar arguments or elements of an integer array type
- // passed directly. Clang may use those instead of "byval" aggregate
- // types to avoid forcing arguments to memory unnecessarily.
- if (GPR_idx != NumGPRs) {
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
- } else {
- if (CallConv == CallingConv::Fast)
- ComputePtrOff();
-
- assert(HasParameterArea &&
- "Parameter area must exist to pass an argument in memory.");
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- true, isTailCall, false, MemOpChains,
- TailCallArguments, dl);
- if (CallConv == CallingConv::Fast)
- ArgOffset += PtrByteSize;
- }
- if (CallConv != CallingConv::Fast)
- ArgOffset += PtrByteSize;
- break;
- case MVT::f32:
- case MVT::f64: {
- // These can be scalar arguments or elements of a float array type
- // passed directly. The latter are used to implement ELFv2 homogenous
- // float aggregates.
-
- // Named arguments go into FPRs first, and once they overflow, the
- // remaining arguments go into GPRs and then the parameter save area.
- // Unnamed arguments for vararg functions always go to GPRs and
- // then the parameter save area. For now, put all arguments to vararg
- // routines always in both locations (FPR *and* GPR or stack slot).
- bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
- bool NeededLoad = false;
-
- // First load the argument into the next available FPR.
- if (FPR_idx != NumFPRs)
- RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
-
- // Next, load the argument into GPR or stack slot if needed.
- if (!NeedGPROrStack)
- ;
- else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
- // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
- // once we support fp <-> gpr moves.
-
- // In the non-vararg case, this can only ever happen in the
- // presence of f32 array types, since otherwise we never run
- // out of FPRs before running out of GPRs.
- SDValue ArgVal;
-
- // Double values are always passed in a single GPR.
- if (Arg.getValueType() != MVT::f32) {
- ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
-
- // Non-array float values are extended and passed in a GPR.
- } else if (!Flags.isInConsecutiveRegs()) {
- ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
- ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
-
- // If we have an array of floats, we collect every odd element
- // together with its predecessor into one GPR.
- } else if (ArgOffset % PtrByteSize != 0) {
- SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
- Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
- if (!isLittleEndian)
- std::swap(Lo, Hi);
- ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
-
- // The final element, if even, goes into the first half of a GPR.
- } else if (Flags.isInConsecutiveRegsLast()) {
- ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
- ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
- if (!isLittleEndian)
- ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
- DAG.getConstant(32, dl, MVT::i32));
-
- // Non-final even elements are skipped; they will be handled
- // together the with subsequent argument on the next go-around.
- } else
- ArgVal = SDValue();
-
- if (ArgVal.getNode())
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
- } else {
- if (CallConv == CallingConv::Fast)
- ComputePtrOff();
-
- // Single-precision floating-point values are mapped to the
- // second (rightmost) word of the stack doubleword.
- if (Arg.getValueType() == MVT::f32 &&
- !isLittleEndian && !Flags.isInConsecutiveRegs()) {
- SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
- }
-
- assert(HasParameterArea &&
- "Parameter area must exist to pass an argument in memory.");
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- true, isTailCall, false, MemOpChains,
- TailCallArguments, dl);
-
- NeededLoad = true;
- }
- // When passing an array of floats, the array occupies consecutive
- // space in the argument area; only round up to the next doubleword
- // at the end of the array. Otherwise, each float takes 8 bytes.
- if (CallConv != CallingConv::Fast || NeededLoad) {
- ArgOffset += (Arg.getValueType() == MVT::f32 &&
- Flags.isInConsecutiveRegs()) ? 4 : 8;
- if (Flags.isInConsecutiveRegsLast())
- ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
- }
- break;
- }
- case MVT::v4f32:
- case MVT::v4i32:
- case MVT::v8i16:
- case MVT::v16i8:
- case MVT::v2f64:
- case MVT::v2i64:
- case MVT::v1i128:
- case MVT::f128:
- if (!Subtarget.hasQPX()) {
- // These can be scalar arguments or elements of a vector array type
- // passed directly. The latter are used to implement ELFv2 homogenous
- // vector aggregates.
-
- // For a varargs call, named arguments go into VRs or on the stack as
- // usual; unnamed arguments always go to the stack or the corresponding
- // GPRs when within range. For now, we always put the value in both
- // locations (or even all three).
- if (isVarArg) {
- assert(HasParameterArea &&
- "Parameter area must exist if we have a varargs call.");
- // We could elide this store in the case where the object fits
- // entirely in R registers. Maybe later.
- SDValue Store =
- DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Store);
- if (VR_idx != NumVRs) {
- SDValue Load =
- DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
- }
- ArgOffset += 16;
- for (unsigned i=0; i<16; i+=PtrByteSize) {
- if (GPR_idx == NumGPRs)
- break;
- SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
- DAG.getConstant(i, dl, PtrVT));
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- }
- break;
- }
-
- // Non-varargs Altivec params go into VRs or on the stack.
- if (VR_idx != NumVRs) {
- RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
- } else {
- if (CallConv == CallingConv::Fast)
- ComputePtrOff();
-
- assert(HasParameterArea &&
- "Parameter area must exist to pass an argument in memory.");
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- true, isTailCall, true, MemOpChains,
- TailCallArguments, dl);
- if (CallConv == CallingConv::Fast)
- ArgOffset += 16;
- }
-
- if (CallConv != CallingConv::Fast)
- ArgOffset += 16;
- break;
- } // not QPX
-
- assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
- "Invalid QPX parameter type");
-
- LLVM_FALLTHROUGH;
- case MVT::v4f64:
- case MVT::v4i1: {
- bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
- if (isVarArg) {
- assert(HasParameterArea &&
- "Parameter area must exist if we have a varargs call.");
- // We could elide this store in the case where the object fits
- // entirely in R registers. Maybe later.
- SDValue Store =
- DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Store);
- if (QFPR_idx != NumQFPRs) {
- SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
- PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
- }
- ArgOffset += (IsF32 ? 16 : 32);
- for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
- if (GPR_idx == NumGPRs)
- break;
- SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
- DAG.getConstant(i, dl, PtrVT));
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- }
- break;
- }
-
- // Non-varargs QPX params go into registers or on the stack.
- if (QFPR_idx != NumQFPRs) {
- RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
- } else {
- if (CallConv == CallingConv::Fast)
- ComputePtrOff();
-
- assert(HasParameterArea &&
- "Parameter area must exist to pass an argument in memory.");
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- true, isTailCall, true, MemOpChains,
- TailCallArguments, dl);
- if (CallConv == CallingConv::Fast)
- ArgOffset += (IsF32 ? 16 : 32);
- }
-
- if (CallConv != CallingConv::Fast)
- ArgOffset += (IsF32 ? 16 : 32);
- break;
- }
- }
- }
-
- assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
- "mismatch in size of parameter area");
- (void)NumBytesActuallyUsed;
-
- if (!MemOpChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
-
- // Check if this is an indirect call (MTCTR/BCTRL).
- // See PrepareCall() for more information about calls through function
- // pointers in the 64-bit SVR4 ABI.
- if (!isTailCall && !isPatchPoint &&
- !isFunctionGlobalAddress(Callee) &&
- !isa<ExternalSymbolSDNode>(Callee)) {
- // Load r2 into a virtual register and store it to the TOC save area.
- setUsesTOCBasePtr(DAG);
- SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
- // TOC save area offset.
- unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
- SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
- SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
- Chain = DAG.getStore(
- Val.getValue(1), dl, Val, AddPtr,
- MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
- // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
- // This does not mean the MTCTR instruction must use R12; it's easier
- // to model this as an extra parameter, so do that.
- if (isELFv2ABI && !isPatchPoint)
- RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
- }
-
- // Build a sequence of copy-to-reg nodes chained together with token chain
- // and flag operands which copy the outgoing args into the appropriate regs.
- SDValue InFlag;
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
- RegsToPass[i].second, InFlag);
- InFlag = Chain.getValue(1);
- }
-
- if (isTailCall && !IsSibCall)
- PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
- TailCallArguments);
-
- return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
- DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
- SPDiff, NumBytes, Ins, InVals, CS);
-}
-
-SDValue PPCTargetLowering::LowerCall_Darwin(
- SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
- bool isTailCall, bool isPatchPoint,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
- SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
- ImmutableCallSite CS) const {
- unsigned NumOps = Outs.size();
-
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- bool isPPC64 = PtrVT == MVT::i64;
- unsigned PtrByteSize = isPPC64 ? 8 : 4;
-
- MachineFunction &MF = DAG.getMachineFunction();
-
- // Mark this function as potentially containing a function that contains a
- // tail call. As a consequence the frame pointer will be used for dynamicalloc
- // and restoring the callers stack pointer in this functions epilog. This is
- // done because by tail calling the called function might overwrite the value
- // in this function's (MF) stack pointer stack slot 0(SP).
- if (getTargetMachine().Options.GuaranteedTailCallOpt &&
- CallConv == CallingConv::Fast)
- MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
-
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, and parameter passing area. We start with 24/48 bytes, which is
- // prereserved space for [SP][CR][LR][3 x unused].
- unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
- unsigned NumBytes = LinkageSize;
-
- // Add up all the space actually used.
- // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
- // they all go in registers, but we must reserve stack space for them for
- // possible use by the caller. In varargs or 64-bit calls, parameters are
- // assigned stack space in order, with padding so Altivec parameters are
- // 16-byte aligned.
- unsigned nAltivecParamsAtEnd = 0;
- for (unsigned i = 0; i != NumOps; ++i) {
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
- EVT ArgVT = Outs[i].VT;
- // Varargs Altivec parameters are padded to a 16 byte boundary.
- if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
- ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
- ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
- if (!isVarArg && !isPPC64) {
- // Non-varargs Altivec parameters go after all the non-Altivec
- // parameters; handle those later so we know how much padding we need.
- nAltivecParamsAtEnd++;
- continue;
- }
- // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
- NumBytes = ((NumBytes+15)/16)*16;
- }
- NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
- }
-
- // Allow for Altivec parameters at the end, if needed.
- if (nAltivecParamsAtEnd) {
- NumBytes = ((NumBytes+15)/16)*16;
- NumBytes += 16*nAltivecParamsAtEnd;
- }
-
- // The prolog code of the callee may store up to 8 GPR argument registers to
- // the stack, allowing va_start to index over them in memory if its varargs.
- // Because we cannot tell if this is needed on the caller side, we have to
- // conservatively assume that it is needed. As such, make sure we have at
- // least enough stack space for the caller to store the 8 GPRs.
- NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
-
- // Tail call needs the stack to be aligned.
- if (getTargetMachine().Options.GuaranteedTailCallOpt &&
- CallConv == CallingConv::Fast)
- NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
-
- // Calculate by how many bytes the stack has to be adjusted in case of tail
- // call optimization.
- int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
-
- // To protect arguments on the stack from being clobbered in a tail call,
- // force all the loads to happen before doing any other lowering.
- if (isTailCall)
- Chain = DAG.getStackArgumentTokenFactor(Chain);
-
- // Adjust the stack pointer for the new arguments...
- // These operations are automatically eliminated by the prolog/epilog pass
- Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
- SDValue CallSeqStart = Chain;
-
- // Load the return address and frame pointer so it can be move somewhere else
- // later.
- SDValue LROp, FPOp;
- Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
-
- // Set up a copy of the stack pointer for use loading and storing any
- // arguments that may not fit in the registers available for argument
- // passing.
- SDValue StackPtr;
- if (isPPC64)
- StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
- else
- StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
-
- // Figure out which arguments are going to go in registers, and which in
- // memory. Also, if this is a vararg function, floating point operations
- // must be stored to our stack, and loaded into integer regs as well, if
- // any integer regs are available for argument passing.
- unsigned ArgOffset = LinkageSize;
- unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
-
- static const MCPhysReg GPR_32[] = { // 32-bit registers.
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const MCPhysReg GPR_64[] = { // 64-bit registers.
- PPC::X3, PPC::X4, PPC::X5, PPC::X6,
- PPC::X7, PPC::X8, PPC::X9, PPC::X10,
- };
- static const MCPhysReg VR[] = {
- PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
- PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
- };
- const unsigned NumGPRs = array_lengthof(GPR_32);
- const unsigned NumFPRs = 13;
- const unsigned NumVRs = array_lengthof(VR);
-
- const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
-
- SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
- SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
-
- SmallVector<SDValue, 8> MemOpChains;
- for (unsigned i = 0; i != NumOps; ++i) {
- SDValue Arg = OutVals[i];
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
-
- // PtrOff will be used to store the current argument to the stack if a
- // register cannot be found for it.
- SDValue PtrOff;
-
- PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
-
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
-
- // On PPC64, promote integers to 64-bit values.
- if (isPPC64 && Arg.getValueType() == MVT::i32) {
- // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
- unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
- }
-
- // FIXME memcpy is used way more than necessary. Correctness first.
- // Note: "by value" is code for passing a structure by value, not
- // basic types.
- if (Flags.isByVal()) {
- unsigned Size = Flags.getByValSize();
- // Very small objects are passed right-justified. Everything else is
- // passed left-justified.
- if (Size==1 || Size==2) {
- EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
- if (GPR_idx != NumGPRs) {
- SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
- MachinePointerInfo(), VT);
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
-
- ArgOffset += PtrByteSize;
- } else {
- SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
- PtrOff.getValueType());
- SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
- Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
- CallSeqStart,
- Flags, DAG, dl);
- ArgOffset += PtrByteSize;
- }
- continue;
- }
- // Copy entire object into memory. There are cases where gcc-generated
- // code assumes it is there, even if it could be put entirely into
- // registers. (This is not what the doc says.)
- Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
- CallSeqStart,
- Flags, DAG, dl);
-
- // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
- // copy the pieces of the object that fit into registers from the
- // parameter save area.
- for (unsigned j=0; j<Size; j+=PtrByteSize) {
- SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
- SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
- if (GPR_idx != NumGPRs) {
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- ArgOffset += PtrByteSize;
- } else {
- ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
- break;
- }
- }
- continue;
- }
-
- switch (Arg.getSimpleValueType().SimpleTy) {
- default: llvm_unreachable("Unexpected ValueType for argument!");
- case MVT::i1:
- case MVT::i32:
- case MVT::i64:
- if (GPR_idx != NumGPRs) {
- if (Arg.getValueType() == MVT::i1)
- Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
-
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
- } else {
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- isPPC64, isTailCall, false, MemOpChains,
- TailCallArguments, dl);
- }
- ArgOffset += PtrByteSize;
- break;
- case MVT::f32:
- case MVT::f64:
- if (FPR_idx != NumFPRs) {
- RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
-
- if (isVarArg) {
- SDValue Store =
- DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Store);
-
- // Float varargs are always shadowed in available integer registers
- if (GPR_idx != NumGPRs) {
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- }
- if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
- SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- }
- } else {
- // If we have any FPRs remaining, we may also have GPRs remaining.
- // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
- // GPRs.
- if (GPR_idx != NumGPRs)
- ++GPR_idx;
- if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
- !isPPC64) // PPC64 has 64-bit GPR's obviously :)
- ++GPR_idx;
- }
- } else
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- isPPC64, isTailCall, false, MemOpChains,
- TailCallArguments, dl);
- if (isPPC64)
- ArgOffset += 8;
- else
- ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
- break;
- case MVT::v4f32:
- case MVT::v4i32:
- case MVT::v8i16:
- case MVT::v16i8:
- if (isVarArg) {
- // These go aligned on the stack, or in the corresponding R registers
- // when within range. The Darwin PPC ABI doc claims they also go in
- // V registers; in fact gcc does this only for arguments that are
- // prototyped, not for those that match the ... We do it for all
- // arguments, seems to work.
- while (ArgOffset % 16 !=0) {
- ArgOffset += PtrByteSize;
- if (GPR_idx != NumGPRs)
- GPR_idx++;
- }
- // We could elide this store in the case where the object fits
- // entirely in R registers. Maybe later.
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
- DAG.getConstant(ArgOffset, dl, PtrVT));
- SDValue Store =
- DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Store);
- if (VR_idx != NumVRs) {
- SDValue Load =
- DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
- }
- ArgOffset += 16;
- for (unsigned i=0; i<16; i+=PtrByteSize) {
- if (GPR_idx == NumGPRs)
- break;
- SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
- DAG.getConstant(i, dl, PtrVT));
- SDValue Load =
- DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
- MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
- }
- break;
- }
-
- // Non-varargs Altivec params generally go in registers, but have
- // stack space allocated at the end.
- if (VR_idx != NumVRs) {
- // Doesn't have GPR space allocated.
- RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
- } else if (nAltivecParamsAtEnd==0) {
- // We are emitting Altivec params in order.
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- isPPC64, isTailCall, true, MemOpChains,
- TailCallArguments, dl);
- ArgOffset += 16;
- }
- break;
- }
- }
- // If all Altivec parameters fit in registers, as they usually do,
- // they get stack space following the non-Altivec parameters. We
- // don't track this here because nobody below needs it.
- // If there are more Altivec parameters than fit in registers emit
- // the stores here.
- if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
- unsigned j = 0;
- // Offset is aligned; skip 1st 12 params which go in V registers.
- ArgOffset = ((ArgOffset+15)/16)*16;
- ArgOffset += 12*16;
- for (unsigned i = 0; i != NumOps; ++i) {
- SDValue Arg = OutVals[i];
- EVT ArgType = Outs[i].VT;
- if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
- ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
- if (++j > NumVRs) {
- SDValue PtrOff;
- // We are emitting Altivec params in order.
- LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
- isPPC64, isTailCall, true, MemOpChains,
- TailCallArguments, dl);
- ArgOffset += 16;
- }
- }
- }
- }
-
- if (!MemOpChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
-
- // On Darwin, R12 must contain the address of an indirect callee. This does
- // not mean the MTCTR instruction must use R12; it's easier to model this as
- // an extra parameter, so do that.
- if (!isTailCall &&
- !isFunctionGlobalAddress(Callee) &&
- !isa<ExternalSymbolSDNode>(Callee) &&
- !isBLACompatibleAddress(Callee, DAG))
- RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
- PPC::R12), Callee));
-
- // Build a sequence of copy-to-reg nodes chained together with token chain
- // and flag operands which copy the outgoing args into the appropriate regs.
- SDValue InFlag;
- for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
- Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
- RegsToPass[i].second, InFlag);
- InFlag = Chain.getValue(1);
- }
-
- if (isTailCall)
- PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
- TailCallArguments);
-
- return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
- /* unused except on PPC64 ELFv1 */ false, DAG,
- RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
- NumBytes, Ins, InVals, CS);
-}
-
-bool
-PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
- MachineFunction &MF, bool isVarArg,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- LLVMContext &Context) const {
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
- return CCInfo.CheckReturn(
- Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
- ? RetCC_PPC_Cold
- : RetCC_PPC);
-}
-
-SDValue
-PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
- bool isVarArg,
- const SmallVectorImpl<ISD::OutputArg> &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- const SDLoc &dl, SelectionDAG &DAG) const {
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
- *DAG.getContext());
- CCInfo.AnalyzeReturn(Outs,
- (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
- ? RetCC_PPC_Cold
- : RetCC_PPC);
-
- SDValue Flag;
- SmallVector<SDValue, 4> RetOps(1, Chain);
-
- // Copy the result values into the output registers.
- for (unsigned i = 0; i != RVLocs.size(); ++i) {
- CCValAssign &VA = RVLocs[i];
- assert(VA.isRegLoc() && "Can only return in registers!");
-
- SDValue Arg = OutVals[i];
-
- switch (VA.getLocInfo()) {
- default: llvm_unreachable("Unknown loc info!");
- case CCValAssign::Full: break;
- case CCValAssign::AExt:
- Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
- break;
- case CCValAssign::ZExt:
- Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
- break;
- case CCValAssign::SExt:
- Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
- break;
- }
-
- Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
- Flag = Chain.getValue(1);
- RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
- }
-
- const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
- const MCPhysReg *I =
- TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
- if (I) {
- for (; *I; ++I) {
-
- if (PPC::G8RCRegClass.contains(*I))
- RetOps.push_back(DAG.getRegister(*I, MVT::i64));
- else if (PPC::F8RCRegClass.contains(*I))
- RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
- else if (PPC::CRRCRegClass.contains(*I))
- RetOps.push_back(DAG.getRegister(*I, MVT::i1));
- else if (PPC::VRRCRegClass.contains(*I))
- RetOps.push_back(DAG.getRegister(*I, MVT::Other));
- else
- llvm_unreachable("Unexpected register class in CSRsViaCopy!");
- }
- }
-
- RetOps[0] = Chain; // Update chain.
-
- // Add the flag if we have it.
- if (Flag.getNode())
- RetOps.push_back(Flag);
-
- return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
-}
-
-SDValue
-PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
-
- // Get the correct type for integers.
- EVT IntVT = Op.getValueType();
-
- // Get the inputs.
- SDValue Chain = Op.getOperand(0);
- SDValue FPSIdx = getFramePointerFrameIndex(DAG);
- // Build a DYNAREAOFFSET node.
- SDValue Ops[2] = {Chain, FPSIdx};
- SDVTList VTs = DAG.getVTList(IntVT);
- return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
-}
-
-SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
- SelectionDAG &DAG) const {
- // When we pop the dynamic allocation we need to restore the SP link.
- SDLoc dl(Op);
-
- // Get the correct type for pointers.
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
-
- // Construct the stack pointer operand.
- bool isPPC64 = Subtarget.isPPC64();
- unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
- SDValue StackPtr = DAG.getRegister(SP, PtrVT);
-
- // Get the operands for the STACKRESTORE.
- SDValue Chain = Op.getOperand(0);
- SDValue SaveSP = Op.getOperand(1);
-
- // Load the old link SP.
- SDValue LoadLinkSP =
- DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
-
- // Restore the stack pointer.
- Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
-
- // Store the old link SP.
- return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
-}
-
-SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- bool isPPC64 = Subtarget.isPPC64();
- EVT PtrVT = getPointerTy(MF.getDataLayout());
-
- // Get current frame pointer save index. The users of this index will be
- // primarily DYNALLOC instructions.
- PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
- int RASI = FI->getReturnAddrSaveIndex();
-
- // If the frame pointer save index hasn't been defined yet.
- if (!RASI) {
- // Find out what the fix offset of the frame pointer save area.
- int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
- // Allocate the frame index for frame pointer save area.
- RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
- // Save the result.
- FI->setReturnAddrSaveIndex(RASI);
- }
- return DAG.getFrameIndex(RASI, PtrVT);
-}
-
-SDValue
-PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- bool isPPC64 = Subtarget.isPPC64();
- EVT PtrVT = getPointerTy(MF.getDataLayout());
-
- // Get current frame pointer save index. The users of this index will be
- // primarily DYNALLOC instructions.
- PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
- int FPSI = FI->getFramePointerSaveIndex();
-
- // If the frame pointer save index hasn't been defined yet.
- if (!FPSI) {
- // Find out what the fix offset of the frame pointer save area.
- int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
- // Allocate the frame index for frame pointer save area.
- FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
- // Save the result.
- FI->setFramePointerSaveIndex(FPSI);
- }
- return DAG.getFrameIndex(FPSI, PtrVT);
-}
-
-SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
- SelectionDAG &DAG) const {
- // Get the inputs.
- SDValue Chain = Op.getOperand(0);
- SDValue Size = Op.getOperand(1);
- SDLoc dl(Op);
-
- // Get the correct type for pointers.
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- // Negate the size.
- SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
- DAG.getConstant(0, dl, PtrVT), Size);
- // Construct a node for the frame pointer save index.
- SDValue FPSIdx = getFramePointerFrameIndex(DAG);
- // Build a DYNALLOC node.
- SDValue Ops[3] = { Chain, NegSize, FPSIdx };
- SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
- return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
-}
-
-SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
- SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
-
- bool isPPC64 = Subtarget.isPPC64();
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
-
- int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
- return DAG.getFrameIndex(FI, PtrVT);
-}
-
-SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc DL(Op);
- return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
- DAG.getVTList(MVT::i32, MVT::Other),
- Op.getOperand(0), Op.getOperand(1));
-}
-
-SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc DL(Op);
- return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
- Op.getOperand(0), Op.getOperand(1));
-}
-
-SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
- if (Op.getValueType().isVector())
- return LowerVectorLoad(Op, DAG);
-
- assert(Op.getValueType() == MVT::i1 &&
- "Custom lowering only for i1 loads");
-
- // First, load 8 bits into 32 bits, then truncate to 1 bit.
-
- SDLoc dl(Op);
- LoadSDNode *LD = cast<LoadSDNode>(Op);
-
- SDValue Chain = LD->getChain();
- SDValue BasePtr = LD->getBasePtr();
- MachineMemOperand *MMO = LD->getMemOperand();
-
- SDValue NewLD =
- DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
- BasePtr, MVT::i8, MMO);
- SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
-
- SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
- return DAG.getMergeValues(Ops, dl);
-}
-
-SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
- if (Op.getOperand(1).getValueType().isVector())
- return LowerVectorStore(Op, DAG);
-
- assert(Op.getOperand(1).getValueType() == MVT::i1 &&
- "Custom lowering only for i1 stores");
-
- // First, zero extend to 32 bits, then use a truncating store to 8 bits.
-
- SDLoc dl(Op);
- StoreSDNode *ST = cast<StoreSDNode>(Op);
-
- SDValue Chain = ST->getChain();
- SDValue BasePtr = ST->getBasePtr();
- SDValue Value = ST->getValue();
- MachineMemOperand *MMO = ST->getMemOperand();
-
- Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
- Value);
- return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
-}
-
-// FIXME: Remove this once the ANDI glue bug is fixed:
-SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
- assert(Op.getValueType() == MVT::i1 &&
- "Custom lowering only for i1 results");
-
- SDLoc DL(Op);
- return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
- Op.getOperand(0));
-}
-
-/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
-/// possible.
-SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
- // Not FP? Not a fsel.
- if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
- !Op.getOperand(2).getValueType().isFloatingPoint())
- return Op;
-
- // We might be able to do better than this under some circumstances, but in
- // general, fsel-based lowering of select is a finite-math-only optimization.
- // For more information, see section F.3 of the 2.06 ISA specification.
- if (!DAG.getTarget().Options.NoInfsFPMath ||
- !DAG.getTarget().Options.NoNaNsFPMath)
- return Op;
- // TODO: Propagate flags from the select rather than global settings.
- SDNodeFlags Flags;
- Flags.setNoInfs(true);
- Flags.setNoNaNs(true);
-
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
-
- EVT ResVT = Op.getValueType();
- EVT CmpVT = Op.getOperand(0).getValueType();
- SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
- SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
- SDLoc dl(Op);
-
- // If the RHS of the comparison is a 0.0, we don't need to do the
- // subtraction at all.
- SDValue Sel1;
- if (isFloatingPointZero(RHS))
- switch (CC) {
- default: break; // SETUO etc aren't handled by fsel.
- case ISD::SETNE:
- std::swap(TV, FV);
- LLVM_FALLTHROUGH;
- case ISD::SETEQ:
- if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
- LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
- Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
- if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
- Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT,
- DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
- case ISD::SETULT:
- case ISD::SETLT:
- std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
- LLVM_FALLTHROUGH;
- case ISD::SETOGE:
- case ISD::SETGE:
- if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
- LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
- case ISD::SETUGT:
- case ISD::SETGT:
- std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
- LLVM_FALLTHROUGH;
- case ISD::SETOLE:
- case ISD::SETLE:
- if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
- LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT,
- DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
- }
-
- SDValue Cmp;
- switch (CC) {
- default: break; // SETUO etc aren't handled by fsel.
- case ISD::SETNE:
- std::swap(TV, FV);
- LLVM_FALLTHROUGH;
- case ISD::SETEQ:
- Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
- if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
- Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
- Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
- if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
- Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT,
- DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
- case ISD::SETULT:
- case ISD::SETLT:
- Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
- if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
- Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
- case ISD::SETOGE:
- case ISD::SETGE:
- Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
- if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
- Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
- case ISD::SETUGT:
- case ISD::SETGT:
- Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
- if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
- Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
- case ISD::SETOLE:
- case ISD::SETLE:
- Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
- if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
- Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
- return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
- }
- return Op;
-}
-
-void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
- SelectionDAG &DAG,
- const SDLoc &dl) const {
- assert(Op.getOperand(0).getValueType().isFloatingPoint());
- SDValue Src = Op.getOperand(0);
- if (Src.getValueType() == MVT::f32)
- Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
-
- SDValue Tmp;
- switch (Op.getSimpleValueType().SimpleTy) {
- default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
- case MVT::i32:
- Tmp = DAG.getNode(
- Op.getOpcode() == ISD::FP_TO_SINT
- ? PPCISD::FCTIWZ
- : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
- dl, MVT::f64, Src);
- break;
- case MVT::i64:
- assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
- "i64 FP_TO_UINT is supported only with FPCVT");
- Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
- PPCISD::FCTIDUZ,
- dl, MVT::f64, Src);
- break;
- }
-
- // Convert the FP value to an int value through memory.
- bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
- (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
- SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
- int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
- MachinePointerInfo MPI =
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
-
- // Emit a store to the stack slot.
- SDValue Chain;
- if (i32Stack) {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
- SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
- Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
- DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
- } else
- Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
-
- // Result is a load from the stack slot. If loading 4 bytes, make sure to
- // add in a bias on big endian.
- if (Op.getValueType() == MVT::i32 && !i32Stack) {
- FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
- DAG.getConstant(4, dl, FIPtr.getValueType()));
- MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
- }
-
- RLI.Chain = Chain;
- RLI.Ptr = FIPtr;
- RLI.MPI = MPI;
-}
-
-/// Custom lowers floating point to integer conversions to use
-/// the direct move instructions available in ISA 2.07 to avoid the
-/// need for load/store combinations.
-SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
- SelectionDAG &DAG,
- const SDLoc &dl) const {
- assert(Op.getOperand(0).getValueType().isFloatingPoint());
- SDValue Src = Op.getOperand(0);
-
- if (Src.getValueType() == MVT::f32)
- Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
-
- SDValue Tmp;
- switch (Op.getSimpleValueType().SimpleTy) {
- default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
- case MVT::i32:
- Tmp = DAG.getNode(
- Op.getOpcode() == ISD::FP_TO_SINT
- ? PPCISD::FCTIWZ
- : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
- dl, MVT::f64, Src);
- Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
- break;
- case MVT::i64:
- assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
- "i64 FP_TO_UINT is supported only with FPCVT");
- Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
- PPCISD::FCTIDUZ,
- dl, MVT::f64, Src);
- Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
- break;
- }
- return Tmp;
-}
-
-SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
- const SDLoc &dl) const {
-
- // FP to INT conversions are legal for f128.
- if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
- return Op;
-
- // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
- // PPC (the libcall is not available).
- if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
- if (Op.getValueType() == MVT::i32) {
- if (Op.getOpcode() == ISD::FP_TO_SINT) {
- SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
- MVT::f64, Op.getOperand(0),
- DAG.getIntPtrConstant(0, dl));
- SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
- MVT::f64, Op.getOperand(0),
- DAG.getIntPtrConstant(1, dl));
-
- // Add the two halves of the long double in round-to-zero mode.
- SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
-
- // Now use a smaller FP_TO_SINT.
- return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
- }
- if (Op.getOpcode() == ISD::FP_TO_UINT) {
- const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
- APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
- SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
- // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
- // FIXME: generated code sucks.
- // TODO: Are there fast-math-flags to propagate to this FSUB?
- SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
- Op.getOperand(0), Tmp);
- True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
- True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
- DAG.getConstant(0x80000000, dl, MVT::i32));
- SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
- Op.getOperand(0));
- return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
- ISD::SETGE);
- }
- }
-
- return SDValue();
- }
-
- if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
- return LowerFP_TO_INTDirectMove(Op, DAG, dl);
-
- ReuseLoadInfo RLI;
- LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
-
- return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
- RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
-}
-
-// We're trying to insert a regular store, S, and then a load, L. If the
-// incoming value, O, is a load, we might just be able to have our load use the
-// address used by O. However, we don't know if anything else will store to
-// that address before we can load from it. To prevent this situation, we need
-// to insert our load, L, into the chain as a peer of O. To do this, we give L
-// the same chain operand as O, we create a token factor from the chain results
-// of O and L, and we replace all uses of O's chain result with that token
-// factor (see spliceIntoChain below for this last part).
-bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
- ReuseLoadInfo &RLI,
- SelectionDAG &DAG,
- ISD::LoadExtType ET) const {
- SDLoc dl(Op);
- if (ET == ISD::NON_EXTLOAD &&
- (Op.getOpcode() == ISD::FP_TO_UINT ||
- Op.getOpcode() == ISD::FP_TO_SINT) &&
- isOperationLegalOrCustom(Op.getOpcode(),
- Op.getOperand(0).getValueType())) {
-
- LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
- return true;
- }
-
- LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
- if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
- LD->isNonTemporal())
- return false;
- if (LD->getMemoryVT() != MemVT)
- return false;
-
- RLI.Ptr = LD->getBasePtr();
- if (LD->isIndexed() && !LD->getOffset().isUndef()) {
- assert(LD->getAddressingMode() == ISD::PRE_INC &&
- "Non-pre-inc AM on PPC?");
- RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
- LD->getOffset());
- }
-
- RLI.Chain = LD->getChain();
- RLI.MPI = LD->getPointerInfo();
- RLI.IsDereferenceable = LD->isDereferenceable();
- RLI.IsInvariant = LD->isInvariant();
- RLI.Alignment = LD->getAlignment();
- RLI.AAInfo = LD->getAAInfo();
- RLI.Ranges = LD->getRanges();
-
- RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
- return true;
-}
-
-// Given the head of the old chain, ResChain, insert a token factor containing
-// it and NewResChain, and make users of ResChain now be users of that token
-// factor.
-// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
-void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
- SDValue NewResChain,
- SelectionDAG &DAG) const {
- if (!ResChain)
- return;
-
- SDLoc dl(NewResChain);
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- NewResChain, DAG.getUNDEF(MVT::Other));
- assert(TF.getNode() != NewResChain.getNode() &&
- "A new TF really is required here");
-
- DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
- DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
-}
-
-/// Analyze profitability of direct move
-/// prefer float load to int load plus direct move
-/// when there is no integer use of int load
-bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
- SDNode *Origin = Op.getOperand(0).getNode();
- if (Origin->getOpcode() != ISD::LOAD)
- return true;
-
- // If there is no LXSIBZX/LXSIHZX, like Power8,
- // prefer direct move if the memory size is 1 or 2 bytes.
- MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
- if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
- return true;
-
- for (SDNode::use_iterator UI = Origin->use_begin(),
- UE = Origin->use_end();
- UI != UE; ++UI) {
-
- // Only look at the users of the loaded value.
- if (UI.getUse().get().getResNo() != 0)
- continue;
-
- if (UI->getOpcode() != ISD::SINT_TO_FP &&
- UI->getOpcode() != ISD::UINT_TO_FP)
- return true;
- }
-
- return false;
-}
-
-/// Custom lowers integer to floating point conversions to use
-/// the direct move instructions available in ISA 2.07 to avoid the
-/// need for load/store combinations.
-SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
- SelectionDAG &DAG,
- const SDLoc &dl) const {
- assert((Op.getValueType() == MVT::f32 ||
- Op.getValueType() == MVT::f64) &&
- "Invalid floating point type as target of conversion");
- assert(Subtarget.hasFPCVT() &&
- "Int to FP conversions with direct moves require FPCVT");
- SDValue FP;
- SDValue Src = Op.getOperand(0);
- bool SinglePrec = Op.getValueType() == MVT::f32;
- bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
- bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
- unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
- (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
-
- if (WordInt) {
- FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
- dl, MVT::f64, Src);
- FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
- }
- else {
- FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
- FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
- }
-
- return FP;
-}
-
-static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
-
- EVT VecVT = Vec.getValueType();
- assert(VecVT.isVector() && "Expected a vector type.");
- assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
-
- EVT EltVT = VecVT.getVectorElementType();
- unsigned WideNumElts = 128 / EltVT.getSizeInBits();
- EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
-
- unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
- SmallVector<SDValue, 16> Ops(NumConcat);
- Ops[0] = Vec;
- SDValue UndefVec = DAG.getUNDEF(VecVT);
- for (unsigned i = 1; i < NumConcat; ++i)
- Ops[i] = UndefVec;
-
- return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
-}
-
-SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
- const SDLoc &dl) const {
-
- unsigned Opc = Op.getOpcode();
- assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
- "Unexpected conversion type");
- assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
- "Supports conversions to v2f64/v4f32 only.");
-
- bool SignedConv = Opc == ISD::SINT_TO_FP;
- bool FourEltRes = Op.getValueType() == MVT::v4f32;
-
- SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
- EVT WideVT = Wide.getValueType();
- unsigned WideNumElts = WideVT.getVectorNumElements();
- MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
-
- SmallVector<int, 16> ShuffV;
- for (unsigned i = 0; i < WideNumElts; ++i)
- ShuffV.push_back(i + WideNumElts);
-
- int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
- int SaveElts = FourEltRes ? 4 : 2;
- if (Subtarget.isLittleEndian())
- for (int i = 0; i < SaveElts; i++)
- ShuffV[i * Stride] = i;
- else
- for (int i = 1; i <= SaveElts; i++)
- ShuffV[i * Stride - 1] = i - 1;
-
- SDValue ShuffleSrc2 =
- SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
- SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
- unsigned ExtendOp =
- SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
-
- SDValue Extend;
- if (!Subtarget.hasP9Altivec() && SignedConv) {
- Arrange = DAG.getBitcast(IntermediateVT, Arrange);
- Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
- DAG.getValueType(Op.getOperand(0).getValueType()));
- } else
- Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
-
- return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
-}
-
-SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
-
- EVT InVT = Op.getOperand(0).getValueType();
- EVT OutVT = Op.getValueType();
- if (OutVT.isVector() && OutVT.isFloatingPoint() &&
- isOperationCustom(Op.getOpcode(), InVT))
- return LowerINT_TO_FPVector(Op, DAG, dl);
-
- // Conversions to f128 are legal.
- if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
- return Op;
-
- if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
- if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
- return SDValue();
-
- SDValue Value = Op.getOperand(0);
- // The values are now known to be -1 (false) or 1 (true). To convert this
- // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
- // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
- Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
-
- SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
-
- Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
-
- if (Op.getValueType() != MVT::v4f64)
- Value = DAG.getNode(ISD::FP_ROUND, dl,
- Op.getValueType(), Value,
- DAG.getIntPtrConstant(1, dl));
- return Value;
- }
-
- // Don't handle ppc_fp128 here; let it be lowered to a libcall.
- if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
- return SDValue();
-
- if (Op.getOperand(0).getValueType() == MVT::i1)
- return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
- DAG.getConstantFP(1.0, dl, Op.getValueType()),
- DAG.getConstantFP(0.0, dl, Op.getValueType()));
-
- // If we have direct moves, we can do all the conversion, skip the store/load
- // however, without FPCVT we can't do most conversions.
- if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
- Subtarget.isPPC64() && Subtarget.hasFPCVT())
- return LowerINT_TO_FPDirectMove(Op, DAG, dl);
-
- assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
- "UINT_TO_FP is supported only with FPCVT");
-
- // If we have FCFIDS, then use it when converting to single-precision.
- // Otherwise, convert to double-precision and then round.
- unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
- ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
- : PPCISD::FCFIDS)
- : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
- : PPCISD::FCFID);
- MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
- ? MVT::f32
- : MVT::f64;
-
- if (Op.getOperand(0).getValueType() == MVT::i64) {
- SDValue SINT = Op.getOperand(0);
- // When converting to single-precision, we actually need to convert
- // to double-precision first and then round to single-precision.
- // To avoid double-rounding effects during that operation, we have
- // to prepare the input operand. Bits that might be truncated when
- // converting to double-precision are replaced by a bit that won't
- // be lost at this stage, but is below the single-precision rounding
- // position.
- //
- // However, if -enable-unsafe-fp-math is in effect, accept double
- // rounding to avoid the extra overhead.
- if (Op.getValueType() == MVT::f32 &&
- !Subtarget.hasFPCVT() &&
- !DAG.getTarget().Options.UnsafeFPMath) {
-
- // Twiddle input to make sure the low 11 bits are zero. (If this
- // is the case, we are guaranteed the value will fit into the 53 bit
- // mantissa of an IEEE double-precision value without rounding.)
- // If any of those low 11 bits were not zero originally, make sure
- // bit 12 (value 2048) is set instead, so that the final rounding
- // to single-precision gets the correct result.
- SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
- SINT, DAG.getConstant(2047, dl, MVT::i64));
- Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
- Round, DAG.getConstant(2047, dl, MVT::i64));
- Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
- Round = DAG.getNode(ISD::AND, dl, MVT::i64,
- Round, DAG.getConstant(-2048, dl, MVT::i64));
-
- // However, we cannot use that value unconditionally: if the magnitude
- // of the input value is small, the bit-twiddling we did above might
- // end up visibly changing the output. Fortunately, in that case, we
- // don't need to twiddle bits since the original input will convert
- // exactly to double-precision floating-point already. Therefore,
- // construct a conditional to use the original value if the top 11
- // bits are all sign-bit copies, and use the rounded value computed
- // above otherwise.
- SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
- SINT, DAG.getConstant(53, dl, MVT::i32));
- Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
- Cond, DAG.getConstant(1, dl, MVT::i64));
- Cond = DAG.getSetCC(dl, MVT::i32,
- Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
-
- SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
- }
-
- ReuseLoadInfo RLI;
- SDValue Bits;
-
- MachineFunction &MF = DAG.getMachineFunction();
- if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
- Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
- RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
- spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
- } else if (Subtarget.hasLFIWAX() &&
- canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
- RLI.Alignment, RLI.AAInfo, RLI.Ranges);
- SDValue Ops[] = { RLI.Chain, RLI.Ptr };
- Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
- DAG.getVTList(MVT::f64, MVT::Other),
- Ops, MVT::i32, MMO);
- spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
- } else if (Subtarget.hasFPCVT() &&
- canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
- RLI.Alignment, RLI.AAInfo, RLI.Ranges);
- SDValue Ops[] = { RLI.Chain, RLI.Ptr };
- Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
- DAG.getVTList(MVT::f64, MVT::Other),
- Ops, MVT::i32, MMO);
- spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
- } else if (((Subtarget.hasLFIWAX() &&
- SINT.getOpcode() == ISD::SIGN_EXTEND) ||
- (Subtarget.hasFPCVT() &&
- SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
- SINT.getOperand(0).getValueType() == MVT::i32) {
- MachineFrameInfo &MFI = MF.getFrameInfo();
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
-
- int FrameIdx = MFI.CreateStackObject(4, 4, false);
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- SDValue Store =
- DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
- MachinePointerInfo::getFixedStack(
- DAG.getMachineFunction(), FrameIdx));
-
- assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
- "Expected an i32 store");
-
- RLI.Ptr = FIdx;
- RLI.Chain = Store;
- RLI.MPI =
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
- RLI.Alignment = 4;
-
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
- RLI.Alignment, RLI.AAInfo, RLI.Ranges);
- SDValue Ops[] = { RLI.Chain, RLI.Ptr };
- Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
- PPCISD::LFIWZX : PPCISD::LFIWAX,
- dl, DAG.getVTList(MVT::f64, MVT::Other),
- Ops, MVT::i32, MMO);
- } else
- Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
-
- SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
-
- if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
- FP = DAG.getNode(ISD::FP_ROUND, dl,
- MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
- return FP;
- }
-
- assert(Op.getOperand(0).getValueType() == MVT::i32 &&
- "Unhandled INT_TO_FP type in custom expander!");
- // Since we only generate this in 64-bit mode, we can take advantage of
- // 64-bit registers. In particular, sign extend the input value into the
- // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
- // then lfd it and fcfid it.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- EVT PtrVT = getPointerTy(MF.getDataLayout());
-
- SDValue Ld;
- if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
- ReuseLoadInfo RLI;
- bool ReusingLoad;
- if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
- DAG))) {
- int FrameIdx = MFI.CreateStackObject(4, 4, false);
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- SDValue Store =
- DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
- MachinePointerInfo::getFixedStack(
- DAG.getMachineFunction(), FrameIdx));
-
- assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
- "Expected an i32 store");
-
- RLI.Ptr = FIdx;
- RLI.Chain = Store;
- RLI.MPI =
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
- RLI.Alignment = 4;
- }
-
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
- RLI.Alignment, RLI.AAInfo, RLI.Ranges);
- SDValue Ops[] = { RLI.Chain, RLI.Ptr };
- Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
- PPCISD::LFIWZX : PPCISD::LFIWAX,
- dl, DAG.getVTList(MVT::f64, MVT::Other),
- Ops, MVT::i32, MMO);
- if (ReusingLoad)
- spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
- } else {
- assert(Subtarget.isPPC64() &&
- "i32->FP without LFIWAX supported only on PPC64");
-
- int FrameIdx = MFI.CreateStackObject(8, 8, false);
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
- Op.getOperand(0));
-
- // STD the extended value into the stack slot.
- SDValue Store = DAG.getStore(
- DAG.getEntryNode(), dl, Ext64, FIdx,
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
-
- // Load the value as a double.
- Ld = DAG.getLoad(
- MVT::f64, dl, Store, FIdx,
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
- }
-
- // FCFID it and return it.
- SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
- if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
- FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
- DAG.getIntPtrConstant(0, dl));
- return FP;
-}
-
-SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- /*
- The rounding mode is in bits 30:31 of FPSR, and has the following
- settings:
- 00 Round to nearest
- 01 Round to 0
- 10 Round to +inf
- 11 Round to -inf
-
- FLT_ROUNDS, on the other hand, expects the following:
- -1 Undefined
- 0 Round to 0
- 1 Round to nearest
- 2 Round to +inf
- 3 Round to -inf
-
- To perform the conversion, we do:
- ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
- */
-
- MachineFunction &MF = DAG.getMachineFunction();
- EVT VT = Op.getValueType();
- EVT PtrVT = getPointerTy(MF.getDataLayout());
-
- // Save FP Control Word to register
- EVT NodeTys[] = {
- MVT::f64, // return register
- MVT::Glue // unused in this context
- };
- SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
-
- // Save FP register to stack slot
- int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
- SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
- MachinePointerInfo());
-
- // Load FP Control Word from low 32 bits of stack slot.
- SDValue Four = DAG.getConstant(4, dl, PtrVT);
- SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
- SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
-
- // Transform as necessary
- SDValue CWD1 =
- DAG.getNode(ISD::AND, dl, MVT::i32,
- CWD, DAG.getConstant(3, dl, MVT::i32));
- SDValue CWD2 =
- DAG.getNode(ISD::SRL, dl, MVT::i32,
- DAG.getNode(ISD::AND, dl, MVT::i32,
- DAG.getNode(ISD::XOR, dl, MVT::i32,
- CWD, DAG.getConstant(3, dl, MVT::i32)),
- DAG.getConstant(3, dl, MVT::i32)),
- DAG.getConstant(1, dl, MVT::i32));
-
- SDValue RetVal =
- DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
-
- return DAG.getNode((VT.getSizeInBits() < 16 ?
- ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
-}
-
-SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
- EVT VT = Op.getValueType();
- unsigned BitWidth = VT.getSizeInBits();
- SDLoc dl(Op);
- assert(Op.getNumOperands() == 3 &&
- VT == Op.getOperand(1).getValueType() &&
- "Unexpected SHL!");
-
- // Expand into a bunch of logical ops. Note that these ops
- // depend on the PPC behavior for oversized shift amounts.
- SDValue Lo = Op.getOperand(0);
- SDValue Hi = Op.getOperand(1);
- SDValue Amt = Op.getOperand(2);
- EVT AmtVT = Amt.getValueType();
-
- SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
- DAG.getConstant(BitWidth, dl, AmtVT), Amt);
- SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
- SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
- SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
- SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
- DAG.getConstant(-BitWidth, dl, AmtVT));
- SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
- SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
- SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
- SDValue OutOps[] = { OutLo, OutHi };
- return DAG.getMergeValues(OutOps, dl);
-}
-
-SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
- EVT VT = Op.getValueType();
- SDLoc dl(Op);
- unsigned BitWidth = VT.getSizeInBits();
- assert(Op.getNumOperands() == 3 &&
- VT == Op.getOperand(1).getValueType() &&
- "Unexpected SRL!");
-
- // Expand into a bunch of logical ops. Note that these ops
- // depend on the PPC behavior for oversized shift amounts.
- SDValue Lo = Op.getOperand(0);
- SDValue Hi = Op.getOperand(1);
- SDValue Amt = Op.getOperand(2);
- EVT AmtVT = Amt.getValueType();
-
- SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
- DAG.getConstant(BitWidth, dl, AmtVT), Amt);
- SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
- SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
- SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
- SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
- DAG.getConstant(-BitWidth, dl, AmtVT));
- SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
- SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
- SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
- SDValue OutOps[] = { OutLo, OutHi };
- return DAG.getMergeValues(OutOps, dl);
-}
-
-SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- EVT VT = Op.getValueType();
- unsigned BitWidth = VT.getSizeInBits();
- assert(Op.getNumOperands() == 3 &&
- VT == Op.getOperand(1).getValueType() &&
- "Unexpected SRA!");
-
- // Expand into a bunch of logical ops, followed by a select_cc.
- SDValue Lo = Op.getOperand(0);
- SDValue Hi = Op.getOperand(1);
- SDValue Amt = Op.getOperand(2);
- EVT AmtVT = Amt.getValueType();
-
- SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
- DAG.getConstant(BitWidth, dl, AmtVT), Amt);
- SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
- SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
- SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
- SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
- DAG.getConstant(-BitWidth, dl, AmtVT));
- SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
- SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
- SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
- Tmp4, Tmp6, ISD::SETLE);
- SDValue OutOps[] = { OutLo, OutHi };
- return DAG.getMergeValues(OutOps, dl);
-}
-
-//===----------------------------------------------------------------------===//
-// Vector related lowering.
-//
-
-/// BuildSplatI - Build a canonical splati of Val with an element size of
-/// SplatSize. Cast the result to VT.
-static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
- SelectionDAG &DAG, const SDLoc &dl) {
- assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
-
- static const MVT VTys[] = { // canonical VT to use for each size.
- MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
- };
-
- EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
-
- // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
- if (Val == -1)
- SplatSize = 1;
-
- EVT CanonicalVT = VTys[SplatSize-1];
-
- // Build a canonical splat for this value.
- return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
-}
-
-/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
-/// specified intrinsic ID.
-static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
- const SDLoc &dl, EVT DestVT = MVT::Other) {
- if (DestVT == MVT::Other) DestVT = Op.getValueType();
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
- DAG.getConstant(IID, dl, MVT::i32), Op);
-}
-
-/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
-/// specified intrinsic ID.
-static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG, const SDLoc &dl,
- EVT DestVT = MVT::Other) {
- if (DestVT == MVT::Other) DestVT = LHS.getValueType();
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
- DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
-}
-
-/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
-/// specified intrinsic ID.
-static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
- SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
- EVT DestVT = MVT::Other) {
- if (DestVT == MVT::Other) DestVT = Op0.getValueType();
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
- DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
-}
-
-/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
-/// amount. The result has the specified value type.
-static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
- SelectionDAG &DAG, const SDLoc &dl) {
- // Force LHS/RHS to be the right type.
- LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
- RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
-
- int Ops[16];
- for (unsigned i = 0; i != 16; ++i)
- Ops[i] = i + Amt;
- SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
- return DAG.getNode(ISD::BITCAST, dl, VT, T);
-}
-
-/// Do we have an efficient pattern in a .td file for this node?
-///
-/// \param V - pointer to the BuildVectorSDNode being matched
-/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
-///
-/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
-/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
-/// the opposite is true (expansion is beneficial) are:
-/// - The node builds a vector out of integers that are not 32 or 64-bits
-/// - The node builds a vector out of constants
-/// - The node is a "load-and-splat"
-/// In all other cases, we will choose to keep the BUILD_VECTOR.
-static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
- bool HasDirectMove,
- bool HasP8Vector) {
- EVT VecVT = V->getValueType(0);
- bool RightType = VecVT == MVT::v2f64 ||
- (HasP8Vector && VecVT == MVT::v4f32) ||
- (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
- if (!RightType)
- return false;
-
- bool IsSplat = true;
- bool IsLoad = false;
- SDValue Op0 = V->getOperand(0);
-
- // This function is called in a block that confirms the node is not a constant
- // splat. So a constant BUILD_VECTOR here means the vector is built out of
- // different constants.
- if (V->isConstant())
- return false;
- for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
- if (V->getOperand(i).isUndef())
- return false;
- // We want to expand nodes that represent load-and-splat even if the
- // loaded value is a floating point truncation or conversion to int.
- if (V->getOperand(i).getOpcode() == ISD::LOAD ||
- (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
- V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
- (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
- V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
- (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
- V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
- IsLoad = true;
- // If the operands are different or the input is not a load and has more
- // uses than just this BV node, then it isn't a splat.
- if (V->getOperand(i) != Op0 ||
- (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
- IsSplat = false;
- }
- return !(IsSplat && IsLoad);
-}
-
-// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
-SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
-
- SDLoc dl(Op);
- SDValue Op0 = Op->getOperand(0);
-
- if (!EnableQuadPrecision ||
- (Op.getValueType() != MVT::f128 ) ||
- (Op0.getOpcode() != ISD::BUILD_PAIR) ||
- (Op0.getOperand(0).getValueType() != MVT::i64) ||
- (Op0.getOperand(1).getValueType() != MVT::i64))
- return SDValue();
-
- return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
- Op0.getOperand(1));
-}
-
-// If this is a case we can't handle, return null and let the default
-// expansion code take care of it. If we CAN select this case, and if it
-// selects to a single instruction, return Op. Otherwise, if we can codegen
-// this case more efficiently than a constant pool load, lower it to the
-// sequence of ops that should be used.
-SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
- assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
-
- if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
- // We first build an i32 vector, load it into a QPX register,
- // then convert it to a floating-point vector and compare it
- // to a zero vector to get the boolean result.
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- int FrameIdx = MFI.CreateStackObject(16, 16, false);
- MachinePointerInfo PtrInfo =
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- assert(BVN->getNumOperands() == 4 &&
- "BUILD_VECTOR for v4i1 does not have 4 operands");
-
- bool IsConst = true;
- for (unsigned i = 0; i < 4; ++i) {
- if (BVN->getOperand(i).isUndef()) continue;
- if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
- IsConst = false;
- break;
- }
- }
-
- if (IsConst) {
- Constant *One =
- ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
- Constant *NegOne =
- ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
-
- Constant *CV[4];
- for (unsigned i = 0; i < 4; ++i) {
- if (BVN->getOperand(i).isUndef())
- CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
- else if (isNullConstant(BVN->getOperand(i)))
- CV[i] = NegOne;
- else
- CV[i] = One;
- }
-
- Constant *CP = ConstantVector::get(CV);
- SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
- 16 /* alignment */);
-
- SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
- SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
- return DAG.getMemIntrinsicNode(
- PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
- MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
- }
-
- SmallVector<SDValue, 4> Stores;
- for (unsigned i = 0; i < 4; ++i) {
- if (BVN->getOperand(i).isUndef()) continue;
-
- unsigned Offset = 4*i;
- SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
- Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
-
- unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
- if (StoreSize > 4) {
- Stores.push_back(
- DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
- PtrInfo.getWithOffset(Offset), MVT::i32));
- } else {
- SDValue StoreValue = BVN->getOperand(i);
- if (StoreSize < 4)
- StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
-
- Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
- PtrInfo.getWithOffset(Offset)));
- }
- }
-
- SDValue StoreChain;
- if (!Stores.empty())
- StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- else
- StoreChain = DAG.getEntryNode();
-
- // Now load from v4i32 into the QPX register; this will extend it to
- // v4i64 but not yet convert it to a floating point. Nevertheless, this
- // is typed as v4f64 because the QPX register integer states are not
- // explicitly represented.
-
- SDValue Ops[] = {StoreChain,
- DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
- FIdx};
- SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
-
- SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
- dl, VTs, Ops, MVT::v4i32, PtrInfo);
- LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
- DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
- LoadedVect);
-
- SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
-
- return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
- }
-
- // All other QPX vectors are handled by generic code.
- if (Subtarget.hasQPX())
- return SDValue();
-
- // Check if this is a splat of a constant value.
- APInt APSplatBits, APSplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
- HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
- SplatBitSize > 32) {
- // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
- // lowered to VSX instructions under certain conditions.
- // Without VSX, there is no pattern more efficient than expanding the node.
- if (Subtarget.hasVSX() &&
- haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
- Subtarget.hasP8Vector()))
- return Op;
- return SDValue();
- }
-
- unsigned SplatBits = APSplatBits.getZExtValue();
- unsigned SplatUndef = APSplatUndef.getZExtValue();
- unsigned SplatSize = SplatBitSize / 8;
-
- // First, handle single instruction cases.
-
- // All zeros?
- if (SplatBits == 0) {
- // Canonicalize all zero vectors to be v4i32.
- if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
- SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
- Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
- }
- return Op;
- }
-
- // We have XXSPLTIB for constant splats one byte wide
- if (Subtarget.hasP9Vector() && SplatSize == 1) {
- // This is a splat of 1-byte elements with some elements potentially undef.
- // Rather than trying to match undef in the SDAG patterns, ensure that all
- // elements are the same constant.
- if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
- SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
- dl, MVT::i32));
- SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
- if (Op.getValueType() != MVT::v16i8)
- return DAG.getBitcast(Op.getValueType(), NewBV);
- return NewBV;
- }
-
- // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
- // detect that constant splats like v8i16: 0xABAB are really just splats
- // of a 1-byte constant. In this case, we need to convert the node to a
- // splat of v16i8 and a bitcast.
- if (Op.getValueType() != MVT::v16i8)
- return DAG.getBitcast(Op.getValueType(),
- DAG.getConstant(SplatBits, dl, MVT::v16i8));
-
- return Op;
- }
-
- // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
- int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
- (32-SplatBitSize));
- if (SextVal >= -16 && SextVal <= 15)
- return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
-
- // Two instruction sequences.
-
- // If this value is in the range [-32,30] and is even, use:
- // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
- // If this value is in the range [17,31] and is odd, use:
- // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
- // If this value is in the range [-31,-17] and is odd, use:
- // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
- // Note the last two are three-instruction sequences.
- if (SextVal >= -32 && SextVal <= 31) {
- // To avoid having these optimizations undone by constant folding,
- // we convert to a pseudo that will be expanded later into one of
- // the above forms.
- SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
- EVT VT = (SplatSize == 1 ? MVT::v16i8 :
- (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
- SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
- SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
- if (VT == Op.getValueType())
- return RetVal;
- else
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
- }
-
- // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
- // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
- // for fneg/fabs.
- if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
- // Make -1 and vspltisw -1:
- SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
-
- // Make the VSLW intrinsic, computing 0x8000_0000.
- SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
- OnesV, DAG, dl);
-
- // xor by OnesV to invert it.
- Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
- }
-
- // Check to see if this is a wide variety of vsplti*, binop self cases.
- static const signed char SplatCsts[] = {
- -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
- -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
- };
-
- for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
- // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
- // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
- int i = SplatCsts[idx];
-
- // Figure out what shift amount will be used by altivec if shifted by i in
- // this splat size.
- unsigned TypeShiftAmt = i & (SplatBitSize-1);
-
- // vsplti + shl self.
- if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
- SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
- static const unsigned IIDs[] = { // Intrinsic to use for each size.
- Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
- Intrinsic::ppc_altivec_vslw
- };
- Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
- }
-
- // vsplti + srl self.
- if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
- SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
- static const unsigned IIDs[] = { // Intrinsic to use for each size.
- Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
- Intrinsic::ppc_altivec_vsrw
- };
- Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
- }
-
- // vsplti + sra self.
- if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
- SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
- static const unsigned IIDs[] = { // Intrinsic to use for each size.
- Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
- Intrinsic::ppc_altivec_vsraw
- };
- Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
- }
-
- // vsplti + rol self.
- if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
- ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
- SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
- static const unsigned IIDs[] = { // Intrinsic to use for each size.
- Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
- Intrinsic::ppc_altivec_vrlw
- };
- Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
- }
-
- // t = vsplti c, result = vsldoi t, t, 1
- if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
- SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
- unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
- return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
- }
- // t = vsplti c, result = vsldoi t, t, 2
- if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
- SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
- unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
- return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
- }
- // t = vsplti c, result = vsldoi t, t, 3
- if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
- SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
- unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
- return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
- }
- }
-
- return SDValue();
-}
-
-/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
-/// the specified operations to build the shuffle.
-static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
- SDValue RHS, SelectionDAG &DAG,
- const SDLoc &dl) {
- unsigned OpNum = (PFEntry >> 26) & 0x0F;
- unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
- unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
-
- enum {
- OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
- OP_VMRGHW,
- OP_VMRGLW,
- OP_VSPLTISW0,
- OP_VSPLTISW1,
- OP_VSPLTISW2,
- OP_VSPLTISW3,
- OP_VSLDOI4,
- OP_VSLDOI8,
- OP_VSLDOI12
- };
-
- if (OpNum == OP_COPY) {
- if (LHSID == (1*9+2)*9+3) return LHS;
- assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
- return RHS;
- }
-
- SDValue OpLHS, OpRHS;
- OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
- OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
-
- int ShufIdxs[16];
- switch (OpNum) {
- default: llvm_unreachable("Unknown i32 permute!");
- case OP_VMRGHW:
- ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
- ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
- ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
- ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
- break;
- case OP_VMRGLW:
- ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
- ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
- ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
- ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
- break;
- case OP_VSPLTISW0:
- for (unsigned i = 0; i != 16; ++i)
- ShufIdxs[i] = (i&3)+0;
- break;
- case OP_VSPLTISW1:
- for (unsigned i = 0; i != 16; ++i)
- ShufIdxs[i] = (i&3)+4;
- break;
- case OP_VSPLTISW2:
- for (unsigned i = 0; i != 16; ++i)
- ShufIdxs[i] = (i&3)+8;
- break;
- case OP_VSPLTISW3:
- for (unsigned i = 0; i != 16; ++i)
- ShufIdxs[i] = (i&3)+12;
- break;
- case OP_VSLDOI4:
- return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
- case OP_VSLDOI8:
- return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
- case OP_VSLDOI12:
- return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
- }
- EVT VT = OpLHS.getValueType();
- OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
- OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
- SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
- return DAG.getNode(ISD::BITCAST, dl, VT, T);
-}
-
-/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
-/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
-/// SDValue.
-SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
- SelectionDAG &DAG) const {
- const unsigned BytesInVector = 16;
- bool IsLE = Subtarget.isLittleEndian();
- SDLoc dl(N);
- SDValue V1 = N->getOperand(0);
- SDValue V2 = N->getOperand(1);
- unsigned ShiftElts = 0, InsertAtByte = 0;
- bool Swap = false;
-
- // Shifts required to get the byte we want at element 7.
- unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1,
- 0, 15, 14, 13, 12, 11, 10, 9};
- unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
- 1, 2, 3, 4, 5, 6, 7, 8};
-
- ArrayRef<int> Mask = N->getMask();
- int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
-
- // For each mask element, find out if we're just inserting something
- // from V2 into V1 or vice versa.
- // Possible permutations inserting an element from V2 into V1:
- // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- // ...
- // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
- // Inserting from V1 into V2 will be similar, except mask range will be
- // [16,31].
-
- bool FoundCandidate = false;
- // If both vector operands for the shuffle are the same vector, the mask
- // will contain only elements from the first one and the second one will be
- // undef.
- unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
- // Go through the mask of half-words to find an element that's being moved
- // from one vector to the other.
- for (unsigned i = 0; i < BytesInVector; ++i) {
- unsigned CurrentElement = Mask[i];
- // If 2nd operand is undefined, we should only look for element 7 in the
- // Mask.
- if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
- continue;
-
- bool OtherElementsInOrder = true;
- // Examine the other elements in the Mask to see if they're in original
- // order.
- for (unsigned j = 0; j < BytesInVector; ++j) {
- if (j == i)
- continue;
- // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
- // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined,
- // in which we always assume we're always picking from the 1st operand.
- int MaskOffset =
- (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
- if (Mask[j] != OriginalOrder[j] + MaskOffset) {
- OtherElementsInOrder = false;
- break;
- }
- }
- // If other elements are in original order, we record the number of shifts
- // we need to get the element we want into element 7. Also record which byte
- // in the vector we should insert into.
- if (OtherElementsInOrder) {
- // If 2nd operand is undefined, we assume no shifts and no swapping.
- if (V2.isUndef()) {
- ShiftElts = 0;
- Swap = false;
- } else {
- // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
- ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
- : BigEndianShifts[CurrentElement & 0xF];
- Swap = CurrentElement < BytesInVector;
- }
- InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
- FoundCandidate = true;
- break;
- }
- }
-
- if (!FoundCandidate)
- return SDValue();
-
- // Candidate found, construct the proper SDAG sequence with VINSERTB,
- // optionally with VECSHL if shift is required.
- if (Swap)
- std::swap(V1, V2);
- if (V2.isUndef())
- V2 = V1;
- if (ShiftElts) {
- SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
- DAG.getConstant(ShiftElts, dl, MVT::i32));
- return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
- }
- return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
-}
-
-/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
-/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
-/// SDValue.
-SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
- SelectionDAG &DAG) const {
- const unsigned NumHalfWords = 8;
- const unsigned BytesInVector = NumHalfWords * 2;
- // Check that the shuffle is on half-words.
- if (!isNByteElemShuffleMask(N, 2, 1))
- return SDValue();
-
- bool IsLE = Subtarget.isLittleEndian();
- SDLoc dl(N);
- SDValue V1 = N->getOperand(0);
- SDValue V2 = N->getOperand(1);
- unsigned ShiftElts = 0, InsertAtByte = 0;
- bool Swap = false;
-
- // Shifts required to get the half-word we want at element 3.
- unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
- unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
-
- uint32_t Mask = 0;
- uint32_t OriginalOrderLow = 0x1234567;
- uint32_t OriginalOrderHigh = 0x89ABCDEF;
- // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a
- // 32-bit space, only need 4-bit nibbles per element.
- for (unsigned i = 0; i < NumHalfWords; ++i) {
- unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
- Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
- }
-
- // For each mask element, find out if we're just inserting something
- // from V2 into V1 or vice versa. Possible permutations inserting an element
- // from V2 into V1:
- // X, 1, 2, 3, 4, 5, 6, 7
- // 0, X, 2, 3, 4, 5, 6, 7
- // 0, 1, X, 3, 4, 5, 6, 7
- // 0, 1, 2, X, 4, 5, 6, 7
- // 0, 1, 2, 3, X, 5, 6, 7
- // 0, 1, 2, 3, 4, X, 6, 7
- // 0, 1, 2, 3, 4, 5, X, 7
- // 0, 1, 2, 3, 4, 5, 6, X
- // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
-
- bool FoundCandidate = false;
- // Go through the mask of half-words to find an element that's being moved
- // from one vector to the other.
- for (unsigned i = 0; i < NumHalfWords; ++i) {
- unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
- uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
- uint32_t MaskOtherElts = ~(0xF << MaskShift);
- uint32_t TargetOrder = 0x0;
-
- // If both vector operands for the shuffle are the same vector, the mask
- // will contain only elements from the first one and the second one will be
- // undef.
- if (V2.isUndef()) {
- ShiftElts = 0;
- unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
- TargetOrder = OriginalOrderLow;
- Swap = false;
- // Skip if not the correct element or mask of other elements don't equal
- // to our expected order.
- if (MaskOneElt == VINSERTHSrcElem &&
- (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
- InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
- FoundCandidate = true;
- break;
- }
- } else { // If both operands are defined.
- // Target order is [8,15] if the current mask is between [0,7].
- TargetOrder =
- (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
- // Skip if mask of other elements don't equal our expected order.
- if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
- // We only need the last 3 bits for the number of shifts.
- ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
- : BigEndianShifts[MaskOneElt & 0x7];
- InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
- Swap = MaskOneElt < NumHalfWords;
- FoundCandidate = true;
- break;
- }
- }
- }
-
- if (!FoundCandidate)
- return SDValue();
-
- // Candidate found, construct the proper SDAG sequence with VINSERTH,
- // optionally with VECSHL if shift is required.
- if (Swap)
- std::swap(V1, V2);
- if (V2.isUndef())
- V2 = V1;
- SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
- if (ShiftElts) {
- // Double ShiftElts because we're left shifting on v16i8 type.
- SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
- DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
- SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
- SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
- }
- SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
- SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
-}
-
-/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
-/// is a shuffle we can handle in a single instruction, return it. Otherwise,
-/// return the code it can be lowered into. Worst case, it can always be
-/// lowered into a vperm.
-SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDValue V1 = Op.getOperand(0);
- SDValue V2 = Op.getOperand(1);
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- EVT VT = Op.getValueType();
- bool isLittleEndian = Subtarget.isLittleEndian();
-
- unsigned ShiftElts, InsertAtByte;
- bool Swap = false;
- if (Subtarget.hasP9Vector() &&
- PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
- isLittleEndian)) {
- if (Swap)
- std::swap(V1, V2);
- SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
- SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
- if (ShiftElts) {
- SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
- DAG.getConstant(ShiftElts, dl, MVT::i32));
- SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
- }
- SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
- }
-
- if (Subtarget.hasP9Altivec()) {
- SDValue NewISDNode;
- if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
- return NewISDNode;
-
- if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
- return NewISDNode;
- }
-
- if (Subtarget.hasVSX() &&
- PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
- if (Swap)
- std::swap(V1, V2);
- SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
- SDValue Conv2 =
- DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
-
- SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
- DAG.getConstant(ShiftElts, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
- }
-
- if (Subtarget.hasVSX() &&
- PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
- if (Swap)
- std::swap(V1, V2);
- SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
- SDValue Conv2 =
- DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
-
- SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
- DAG.getConstant(ShiftElts, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
- }
-
- if (Subtarget.hasP9Vector()) {
- if (PPC::isXXBRHShuffleMask(SVOp)) {
- SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
- SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
- } else if (PPC::isXXBRWShuffleMask(SVOp)) {
- SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
- SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
- } else if (PPC::isXXBRDShuffleMask(SVOp)) {
- SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
- SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
- } else if (PPC::isXXBRQShuffleMask(SVOp)) {
- SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
- SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
- }
- }
-
- if (Subtarget.hasVSX()) {
- if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
- int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
-
- SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
- SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
- DAG.getConstant(SplatIdx, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
- }
-
- // Left shifts of 8 bytes are actually swaps. Convert accordingly.
- if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
- SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
- SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
- return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
- }
- }
-
- if (Subtarget.hasQPX()) {
- if (VT.getVectorNumElements() != 4)
- return SDValue();
-
- if (V2.isUndef()) V2 = V1;
-
- int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
- if (AlignIdx != -1) {
- return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
- DAG.getConstant(AlignIdx, dl, MVT::i32));
- } else if (SVOp->isSplat()) {
- int SplatIdx = SVOp->getSplatIndex();
- if (SplatIdx >= 4) {
- std::swap(V1, V2);
- SplatIdx -= 4;
- }
-
- return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
- DAG.getConstant(SplatIdx, dl, MVT::i32));
- }
-
- // Lower this into a qvgpci/qvfperm pair.
-
- // Compute the qvgpci literal
- unsigned idx = 0;
- for (unsigned i = 0; i < 4; ++i) {
- int m = SVOp->getMaskElt(i);
- unsigned mm = m >= 0 ? (unsigned) m : i;
- idx |= mm << (3-i)*3;
- }
-
- SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
- DAG.getConstant(idx, dl, MVT::i32));
- return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
- }
-
- // Cases that are handled by instructions that take permute immediates
- // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
- // selected by the instruction selector.
- if (V2.isUndef()) {
- if (PPC::isSplatShuffleMask(SVOp, 1) ||
- PPC::isSplatShuffleMask(SVOp, 2) ||
- PPC::isSplatShuffleMask(SVOp, 4) ||
- PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
- PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
- PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
- PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
- PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
- PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
- PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
- PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
- PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
- (Subtarget.hasP8Altivec() && (
- PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
- PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
- PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
- return Op;
- }
- }
-
- // Altivec has a variety of "shuffle immediates" that take two vector inputs
- // and produce a fixed permutation. If any of these match, do not lower to
- // VPERM.
- unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
- if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
- PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
- PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
- PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
- PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
- PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
- PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
- PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
- PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
- (Subtarget.hasP8Altivec() && (
- PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
- PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
- PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
- return Op;
-
- // Check to see if this is a shuffle of 4-byte values. If so, we can use our
- // perfect shuffle table to emit an optimal matching sequence.
- ArrayRef<int> PermMask = SVOp->getMask();
-
- unsigned PFIndexes[4];
- bool isFourElementShuffle = true;
- for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
- unsigned EltNo = 8; // Start out undef.
- for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
- if (PermMask[i*4+j] < 0)
- continue; // Undef, ignore it.
-
- unsigned ByteSource = PermMask[i*4+j];
- if ((ByteSource & 3) != j) {
- isFourElementShuffle = false;
- break;
- }
-
- if (EltNo == 8) {
- EltNo = ByteSource/4;
- } else if (EltNo != ByteSource/4) {
- isFourElementShuffle = false;
- break;
- }
- }
- PFIndexes[i] = EltNo;
- }
-
- // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
- // perfect shuffle vector to determine if it is cost effective to do this as
- // discrete instructions, or whether we should use a vperm.
- // For now, we skip this for little endian until such time as we have a
- // little-endian perfect shuffle table.
- if (isFourElementShuffle && !isLittleEndian) {
- // Compute the index in the perfect shuffle table.
- unsigned PFTableIndex =
- PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
-
- unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
- unsigned Cost = (PFEntry >> 30);
-
- // Determining when to avoid vperm is tricky. Many things affect the cost
- // of vperm, particularly how many times the perm mask needs to be computed.
- // For example, if the perm mask can be hoisted out of a loop or is already
- // used (perhaps because there are multiple permutes with the same shuffle
- // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
- // the loop requires an extra register.
- //
- // As a compromise, we only emit discrete instructions if the shuffle can be
- // generated in 3 or fewer operations. When we have loop information
- // available, if this block is within a loop, we should avoid using vperm
- // for 3-operation perms and use a constant pool load instead.
- if (Cost < 3)
- return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
- }
-
- // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
- // vector that will get spilled to the constant pool.
- if (V2.isUndef()) V2 = V1;
-
- // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
- // that it is in input element units, not in bytes. Convert now.
-
- // For little endian, the order of the input vectors is reversed, and
- // the permutation mask is complemented with respect to 31. This is
- // necessary to produce proper semantics with the big-endian-biased vperm
- // instruction.
- EVT EltVT = V1.getValueType().getVectorElementType();
- unsigned BytesPerElement = EltVT.getSizeInBits()/8;
-
- SmallVector<SDValue, 16> ResultMask;
- for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
- unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
-
- for (unsigned j = 0; j != BytesPerElement; ++j)
- if (isLittleEndian)
- ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
- dl, MVT::i32));
- else
- ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
- MVT::i32));
- }
-
- SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
- if (isLittleEndian)
- return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
- V2, V1, VPermMask);
- else
- return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
- V1, V2, VPermMask);
-}
-
-/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
-/// vector comparison. If it is, return true and fill in Opc/isDot with
-/// information about the intrinsic.
-static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
- bool &isDot, const PPCSubtarget &Subtarget) {
- unsigned IntrinsicID =
- cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
- CompareOpc = -1;
- isDot = false;
- switch (IntrinsicID) {
- default:
- return false;
- // Comparison predicates.
- case Intrinsic::ppc_altivec_vcmpbfp_p:
- CompareOpc = 966;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpeqfp_p:
- CompareOpc = 198;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpequb_p:
- CompareOpc = 6;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpequh_p:
- CompareOpc = 70;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpequw_p:
- CompareOpc = 134;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpequd_p:
- if (Subtarget.hasP8Altivec()) {
- CompareOpc = 199;
- isDot = true;
- } else
- return false;
- break;
- case Intrinsic::ppc_altivec_vcmpneb_p:
- case Intrinsic::ppc_altivec_vcmpneh_p:
- case Intrinsic::ppc_altivec_vcmpnew_p:
- case Intrinsic::ppc_altivec_vcmpnezb_p:
- case Intrinsic::ppc_altivec_vcmpnezh_p:
- case Intrinsic::ppc_altivec_vcmpnezw_p:
- if (Subtarget.hasP9Altivec()) {
- switch (IntrinsicID) {
- default:
- llvm_unreachable("Unknown comparison intrinsic.");
- case Intrinsic::ppc_altivec_vcmpneb_p:
- CompareOpc = 7;
- break;
- case Intrinsic::ppc_altivec_vcmpneh_p:
- CompareOpc = 71;
- break;
- case Intrinsic::ppc_altivec_vcmpnew_p:
- CompareOpc = 135;
- break;
- case Intrinsic::ppc_altivec_vcmpnezb_p:
- CompareOpc = 263;
- break;
- case Intrinsic::ppc_altivec_vcmpnezh_p:
- CompareOpc = 327;
- break;
- case Intrinsic::ppc_altivec_vcmpnezw_p:
- CompareOpc = 391;
- break;
- }
- isDot = true;
- } else
- return false;
- break;
- case Intrinsic::ppc_altivec_vcmpgefp_p:
- CompareOpc = 454;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtfp_p:
- CompareOpc = 710;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsb_p:
- CompareOpc = 774;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsh_p:
- CompareOpc = 838;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsw_p:
- CompareOpc = 902;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsd_p:
- if (Subtarget.hasP8Altivec()) {
- CompareOpc = 967;
- isDot = true;
- } else
- return false;
- break;
- case Intrinsic::ppc_altivec_vcmpgtub_p:
- CompareOpc = 518;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtuh_p:
- CompareOpc = 582;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtuw_p:
- CompareOpc = 646;
- isDot = true;
- break;
- case Intrinsic::ppc_altivec_vcmpgtud_p:
- if (Subtarget.hasP8Altivec()) {
- CompareOpc = 711;
- isDot = true;
- } else
- return false;
- break;
-
- // VSX predicate comparisons use the same infrastructure
- case Intrinsic::ppc_vsx_xvcmpeqdp_p:
- case Intrinsic::ppc_vsx_xvcmpgedp_p:
- case Intrinsic::ppc_vsx_xvcmpgtdp_p:
- case Intrinsic::ppc_vsx_xvcmpeqsp_p:
- case Intrinsic::ppc_vsx_xvcmpgesp_p:
- case Intrinsic::ppc_vsx_xvcmpgtsp_p:
- if (Subtarget.hasVSX()) {
- switch (IntrinsicID) {
- case Intrinsic::ppc_vsx_xvcmpeqdp_p:
- CompareOpc = 99;
- break;
- case Intrinsic::ppc_vsx_xvcmpgedp_p:
- CompareOpc = 115;
- break;
- case Intrinsic::ppc_vsx_xvcmpgtdp_p:
- CompareOpc = 107;
- break;
- case Intrinsic::ppc_vsx_xvcmpeqsp_p:
- CompareOpc = 67;
- break;
- case Intrinsic::ppc_vsx_xvcmpgesp_p:
- CompareOpc = 83;
- break;
- case Intrinsic::ppc_vsx_xvcmpgtsp_p:
- CompareOpc = 75;
- break;
- }
- isDot = true;
- } else
- return false;
- break;
-
- // Normal Comparisons.
- case Intrinsic::ppc_altivec_vcmpbfp:
- CompareOpc = 966;
- break;
- case Intrinsic::ppc_altivec_vcmpeqfp:
- CompareOpc = 198;
- break;
- case Intrinsic::ppc_altivec_vcmpequb:
- CompareOpc = 6;
- break;
- case Intrinsic::ppc_altivec_vcmpequh:
- CompareOpc = 70;
- break;
- case Intrinsic::ppc_altivec_vcmpequw:
- CompareOpc = 134;
- break;
- case Intrinsic::ppc_altivec_vcmpequd:
- if (Subtarget.hasP8Altivec())
- CompareOpc = 199;
- else
- return false;
- break;
- case Intrinsic::ppc_altivec_vcmpneb:
- case Intrinsic::ppc_altivec_vcmpneh:
- case Intrinsic::ppc_altivec_vcmpnew:
- case Intrinsic::ppc_altivec_vcmpnezb:
- case Intrinsic::ppc_altivec_vcmpnezh:
- case Intrinsic::ppc_altivec_vcmpnezw:
- if (Subtarget.hasP9Altivec())
- switch (IntrinsicID) {
- default:
- llvm_unreachable("Unknown comparison intrinsic.");
- case Intrinsic::ppc_altivec_vcmpneb:
- CompareOpc = 7;
- break;
- case Intrinsic::ppc_altivec_vcmpneh:
- CompareOpc = 71;
- break;
- case Intrinsic::ppc_altivec_vcmpnew:
- CompareOpc = 135;
- break;
- case Intrinsic::ppc_altivec_vcmpnezb:
- CompareOpc = 263;
- break;
- case Intrinsic::ppc_altivec_vcmpnezh:
- CompareOpc = 327;
- break;
- case Intrinsic::ppc_altivec_vcmpnezw:
- CompareOpc = 391;
- break;
- }
- else
- return false;
- break;
- case Intrinsic::ppc_altivec_vcmpgefp:
- CompareOpc = 454;
- break;
- case Intrinsic::ppc_altivec_vcmpgtfp:
- CompareOpc = 710;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsb:
- CompareOpc = 774;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsh:
- CompareOpc = 838;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsw:
- CompareOpc = 902;
- break;
- case Intrinsic::ppc_altivec_vcmpgtsd:
- if (Subtarget.hasP8Altivec())
- CompareOpc = 967;
- else
- return false;
- break;
- case Intrinsic::ppc_altivec_vcmpgtub:
- CompareOpc = 518;
- break;
- case Intrinsic::ppc_altivec_vcmpgtuh:
- CompareOpc = 582;
- break;
- case Intrinsic::ppc_altivec_vcmpgtuw:
- CompareOpc = 646;
- break;
- case Intrinsic::ppc_altivec_vcmpgtud:
- if (Subtarget.hasP8Altivec())
- CompareOpc = 711;
- else
- return false;
- break;
- }
- return true;
-}
-
-/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
-/// lower, do it, otherwise return null.
-SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
- SelectionDAG &DAG) const {
- unsigned IntrinsicID =
- cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-
- SDLoc dl(Op);
-
- if (IntrinsicID == Intrinsic::thread_pointer) {
- // Reads the thread pointer register, used for __builtin_thread_pointer.
- if (Subtarget.isPPC64())
- return DAG.getRegister(PPC::X13, MVT::i64);
- return DAG.getRegister(PPC::R2, MVT::i32);
- }
-
- // If this is a lowered altivec predicate compare, CompareOpc is set to the
- // opcode number of the comparison.
- int CompareOpc;
- bool isDot;
- if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
- return SDValue(); // Don't custom lower most intrinsics.
-
- // If this is a non-dot comparison, make the VCMP node and we are done.
- if (!isDot) {
- SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
- Op.getOperand(1), Op.getOperand(2),
- DAG.getConstant(CompareOpc, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
- }
-
- // Create the PPCISD altivec 'dot' comparison node.
- SDValue Ops[] = {
- Op.getOperand(2), // LHS
- Op.getOperand(3), // RHS
- DAG.getConstant(CompareOpc, dl, MVT::i32)
- };
- EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
- SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
-
- // Now that we have the comparison, emit a copy from the CR to a GPR.
- // This is flagged to the above dot comparison.
- SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
- DAG.getRegister(PPC::CR6, MVT::i32),
- CompNode.getValue(1));
-
- // Unpack the result based on how the target uses it.
- unsigned BitNo; // Bit # of CR6.
- bool InvertBit; // Invert result?
- switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
- default: // Can't happen, don't crash on invalid number though.
- case 0: // Return the value of the EQ bit of CR6.
- BitNo = 0; InvertBit = false;
- break;
- case 1: // Return the inverted value of the EQ bit of CR6.
- BitNo = 0; InvertBit = true;
- break;
- case 2: // Return the value of the LT bit of CR6.
- BitNo = 2; InvertBit = false;
- break;
- case 3: // Return the inverted value of the LT bit of CR6.
- BitNo = 2; InvertBit = true;
- break;
- }
-
- // Shift the bit into the low position.
- Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
- DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
- // Isolate the bit.
- Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
- DAG.getConstant(1, dl, MVT::i32));
-
- // If we are supposed to, toggle the bit.
- if (InvertBit)
- Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
- DAG.getConstant(1, dl, MVT::i32));
- return Flags;
-}
-
-SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
- SelectionDAG &DAG) const {
- // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
- // the beginning of the argument list.
- int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
- SDLoc DL(Op);
- switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
- case Intrinsic::ppc_cfence: {
- assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
- assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
- return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
- DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
- Op.getOperand(ArgStart + 1)),
- Op.getOperand(0)),
- 0);
- }
- default:
- break;
- }
- return SDValue();
-}
-
-SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
- // Check for a DIV with the same operands as this REM.
- for (auto UI : Op.getOperand(1)->uses()) {
- if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
- (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
- if (UI->getOperand(0) == Op.getOperand(0) &&
- UI->getOperand(1) == Op.getOperand(1))
- return SDValue();
- }
- return Op;
-}
-
-// Lower scalar BSWAP64 to xxbrd.
-SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- // MTVSRDD
- Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
- Op.getOperand(0));
- // XXBRD
- Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
- // MFVSRD
- int VectorIndex = 0;
- if (Subtarget.isLittleEndian())
- VectorIndex = 1;
- Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
- DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
- return Op;
-}
-
-// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
-// compared to a value that is atomically loaded (atomic loads zero-extend).
-SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
- "Expecting an atomic compare-and-swap here.");
- SDLoc dl(Op);
- auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
- EVT MemVT = AtomicNode->getMemoryVT();
- if (MemVT.getSizeInBits() >= 32)
- return Op;
-
- SDValue CmpOp = Op.getOperand(2);
- // If this is already correctly zero-extended, leave it alone.
- auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
- if (DAG.MaskedValueIsZero(CmpOp, HighBits))
- return Op;
-
- // Clear the high bits of the compare operand.
- unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
- SDValue NewCmpOp =
- DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
- DAG.getConstant(MaskVal, dl, MVT::i32));
-
- // Replace the existing compare operand with the properly zero-extended one.
- SmallVector<SDValue, 4> Ops;
- for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
- Ops.push_back(AtomicNode->getOperand(i));
- Ops[2] = NewCmpOp;
- MachineMemOperand *MMO = AtomicNode->getMemOperand();
- SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
- auto NodeTy =
- (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
- return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
-}
-
-SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- // Create a stack slot that is 16-byte aligned.
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- int FrameIdx = MFI.CreateStackObject(16, 16, false);
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- // Store the input value into Value#0 of the stack slot.
- SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
- MachinePointerInfo());
- // Load it out.
- return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
-}
-
-SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
- SelectionDAG &DAG) const {
- assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
- "Should only be called for ISD::INSERT_VECTOR_ELT");
-
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- // We have legal lowering for constant indices but not for variable ones.
- if (!C)
- return SDValue();
-
- EVT VT = Op.getValueType();
- SDLoc dl(Op);
- SDValue V1 = Op.getOperand(0);
- SDValue V2 = Op.getOperand(1);
- // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
- if (VT == MVT::v8i16 || VT == MVT::v16i8) {
- SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
- unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
- unsigned InsertAtElement = C->getZExtValue();
- unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
- if (Subtarget.isLittleEndian()) {
- InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
- }
- return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
- DAG.getConstant(InsertAtByte, dl, MVT::i32));
- }
- return Op;
-}
-
-SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- SDNode *N = Op.getNode();
-
- assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
- "Unknown extract_vector_elt type");
-
- SDValue Value = N->getOperand(0);
-
- // The first part of this is like the store lowering except that we don't
- // need to track the chain.
-
- // The values are now known to be -1 (false) or 1 (true). To convert this
- // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
- // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
- Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
-
- // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
- // understand how to form the extending load.
- SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
-
- Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
-
- // Now convert to an integer and store.
- Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
- DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
- Value);
-
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- int FrameIdx = MFI.CreateStackObject(16, 16, false);
- MachinePointerInfo PtrInfo =
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- SDValue StoreChain = DAG.getEntryNode();
- SDValue Ops[] = {StoreChain,
- DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
- Value, FIdx};
- SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
-
- StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
- dl, VTs, Ops, MVT::v4i32, PtrInfo);
-
- // Extract the value requested.
- unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
- SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
- Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
-
- SDValue IntVal =
- DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
-
- if (!Subtarget.useCRBits())
- return IntVal;
-
- return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
-}
-
-/// Lowering for QPX v4i1 loads
-SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
- SDValue LoadChain = LN->getChain();
- SDValue BasePtr = LN->getBasePtr();
-
- if (Op.getValueType() == MVT::v4f64 ||
- Op.getValueType() == MVT::v4f32) {
- EVT MemVT = LN->getMemoryVT();
- unsigned Alignment = LN->getAlignment();
-
- // If this load is properly aligned, then it is legal.
- if (Alignment >= MemVT.getStoreSize())
- return Op;
-
- EVT ScalarVT = Op.getValueType().getScalarType(),
- ScalarMemVT = MemVT.getScalarType();
- unsigned Stride = ScalarMemVT.getStoreSize();
-
- SDValue Vals[4], LoadChains[4];
- for (unsigned Idx = 0; Idx < 4; ++Idx) {
- SDValue Load;
- if (ScalarVT != ScalarMemVT)
- Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
- BasePtr,
- LN->getPointerInfo().getWithOffset(Idx * Stride),
- ScalarMemVT, MinAlign(Alignment, Idx * Stride),
- LN->getMemOperand()->getFlags(), LN->getAAInfo());
- else
- Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
- LN->getPointerInfo().getWithOffset(Idx * Stride),
- MinAlign(Alignment, Idx * Stride),
- LN->getMemOperand()->getFlags(), LN->getAAInfo());
-
- if (Idx == 0 && LN->isIndexed()) {
- assert(LN->getAddressingMode() == ISD::PRE_INC &&
- "Unknown addressing mode on vector load");
- Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
- LN->getAddressingMode());
- }
-
- Vals[Idx] = Load;
- LoadChains[Idx] = Load.getValue(1);
-
- BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
- DAG.getConstant(Stride, dl,
- BasePtr.getValueType()));
- }
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
- SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
-
- if (LN->isIndexed()) {
- SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
- return DAG.getMergeValues(RetOps, dl);
- }
-
- SDValue RetOps[] = { Value, TF };
- return DAG.getMergeValues(RetOps, dl);
- }
-
- assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
- assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
-
- // To lower v4i1 from a byte array, we load the byte elements of the
- // vector and then reuse the BUILD_VECTOR logic.
-
- SDValue VectElmts[4], VectElmtChains[4];
- for (unsigned i = 0; i < 4; ++i) {
- SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
- Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
-
- VectElmts[i] = DAG.getExtLoad(
- ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
- LN->getPointerInfo().getWithOffset(i), MVT::i8,
- /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
- VectElmtChains[i] = VectElmts[i].getValue(1);
- }
-
- LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
- SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
-
- SDValue RVals[] = { Value, LoadChain };
- return DAG.getMergeValues(RVals, dl);
-}
-
-/// Lowering for QPX v4i1 stores
-SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
- SDValue StoreChain = SN->getChain();
- SDValue BasePtr = SN->getBasePtr();
- SDValue Value = SN->getValue();
-
- if (Value.getValueType() == MVT::v4f64 ||
- Value.getValueType() == MVT::v4f32) {
- EVT MemVT = SN->getMemoryVT();
- unsigned Alignment = SN->getAlignment();
-
- // If this store is properly aligned, then it is legal.
- if (Alignment >= MemVT.getStoreSize())
- return Op;
-
- EVT ScalarVT = Value.getValueType().getScalarType(),
- ScalarMemVT = MemVT.getScalarType();
- unsigned Stride = ScalarMemVT.getStoreSize();
-
- SDValue Stores[4];
- for (unsigned Idx = 0; Idx < 4; ++Idx) {
- SDValue Ex = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
- DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
- SDValue Store;
- if (ScalarVT != ScalarMemVT)
- Store =
- DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
- SN->getPointerInfo().getWithOffset(Idx * Stride),
- ScalarMemVT, MinAlign(Alignment, Idx * Stride),
- SN->getMemOperand()->getFlags(), SN->getAAInfo());
- else
- Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
- SN->getPointerInfo().getWithOffset(Idx * Stride),
- MinAlign(Alignment, Idx * Stride),
- SN->getMemOperand()->getFlags(), SN->getAAInfo());
-
- if (Idx == 0 && SN->isIndexed()) {
- assert(SN->getAddressingMode() == ISD::PRE_INC &&
- "Unknown addressing mode on vector store");
- Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
- SN->getAddressingMode());
- }
-
- BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
- DAG.getConstant(Stride, dl,
- BasePtr.getValueType()));
- Stores[Idx] = Store;
- }
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
-
- if (SN->isIndexed()) {
- SDValue RetOps[] = { TF, Stores[0].getValue(1) };
- return DAG.getMergeValues(RetOps, dl);
- }
-
- return TF;
- }
-
- assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
- assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
-
- // The values are now known to be -1 (false) or 1 (true). To convert this
- // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
- // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
- Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
-
- // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
- // understand how to form the extending load.
- SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
-
- Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
-
- // Now convert to an integer and store.
- Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
- DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
- Value);
-
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- int FrameIdx = MFI.CreateStackObject(16, 16, false);
- MachinePointerInfo PtrInfo =
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
-
- SDValue Ops[] = {StoreChain,
- DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
- Value, FIdx};
- SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
-
- StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
- dl, VTs, Ops, MVT::v4i32, PtrInfo);
-
- // Move data into the byte array.
- SDValue Loads[4], LoadChains[4];
- for (unsigned i = 0; i < 4; ++i) {
- unsigned Offset = 4*i;
- SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
- Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
-
- Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
- PtrInfo.getWithOffset(Offset));
- LoadChains[i] = Loads[i].getValue(1);
- }
-
- StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
-
- SDValue Stores[4];
- for (unsigned i = 0; i < 4; ++i) {
- SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
- Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
-
- Stores[i] = DAG.getTruncStore(
- StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
- MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
- SN->getAAInfo());
- }
-
- StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
-
- return StoreChain;
-}
-
-SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
- SDLoc dl(Op);
- if (Op.getValueType() == MVT::v4i32) {
- SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
-
- SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
- SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
-
- SDValue RHSSwap = // = vrlw RHS, 16
- BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
-
- // Shrinkify inputs to v8i16.
- LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
- RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
- RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
-
- // Low parts multiplied together, generating 32-bit results (we ignore the
- // top parts).
- SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
- LHS, RHS, DAG, dl, MVT::v4i32);
-
- SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
- LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
- // Shift the high parts up 16 bits.
- HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
- Neg16, DAG, dl);
- return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
- } else if (Op.getValueType() == MVT::v8i16) {
- SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
-
- SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
-
- return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
- LHS, RHS, Zero, DAG, dl);
- } else if (Op.getValueType() == MVT::v16i8) {
- SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
- bool isLittleEndian = Subtarget.isLittleEndian();
-
- // Multiply the even 8-bit parts, producing 16-bit sums.
- SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
- LHS, RHS, DAG, dl, MVT::v8i16);
- EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
-
- // Multiply the odd 8-bit parts, producing 16-bit sums.
- SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
- LHS, RHS, DAG, dl, MVT::v8i16);
- OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
-
- // Merge the results together. Because vmuleub and vmuloub are
- // instructions with a big-endian bias, we must reverse the
- // element numbering and reverse the meaning of "odd" and "even"
- // when generating little endian code.
- int Ops[16];
- for (unsigned i = 0; i != 8; ++i) {
- if (isLittleEndian) {
- Ops[i*2 ] = 2*i;
- Ops[i*2+1] = 2*i+16;
- } else {
- Ops[i*2 ] = 2*i+1;
- Ops[i*2+1] = 2*i+1+16;
- }
- }
- if (isLittleEndian)
- return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
- else
- return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
- } else {
- llvm_unreachable("Unknown mul to lower!");
- }
-}
-
-SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
-
- assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
-
- EVT VT = Op.getValueType();
- assert(VT.isVector() &&
- "Only set vector abs as custom, scalar abs shouldn't reach here!");
- assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
- VT == MVT::v16i8) &&
- "Unexpected vector element type!");
- assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
- "Current subtarget doesn't support smax v2i64!");
-
- // For vector abs, it can be lowered to:
- // abs x
- // ==>
- // y = -x
- // smax(x, y)
-
- SDLoc dl(Op);
- SDValue X = Op.getOperand(0);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
-
- // SMAX patch https://reviews.llvm.org/D47332
- // hasn't landed yet, so use intrinsic first here.
- // TODO: Should use SMAX directly once SMAX patch landed
- Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
- if (VT == MVT::v2i64)
- BifID = Intrinsic::ppc_altivec_vmaxsd;
- else if (VT == MVT::v8i16)
- BifID = Intrinsic::ppc_altivec_vmaxsh;
- else if (VT == MVT::v16i8)
- BifID = Intrinsic::ppc_altivec_vmaxsb;
-
- return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
-}
-
-/// LowerOperation - Provide custom lowering hooks for some operations.
-///
-SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- switch (Op.getOpcode()) {
- default: llvm_unreachable("Wasn't expecting to be able to lower this!");
- case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
- case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
- case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
- case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
- case ISD::JumpTable: return LowerJumpTable(Op, DAG);
- case ISD::SETCC: return LowerSETCC(Op, DAG);
- case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
- case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
-
- // Variable argument lowering.
- case ISD::VASTART: return LowerVASTART(Op, DAG);
- case ISD::VAARG: return LowerVAARG(Op, DAG);
- case ISD::VACOPY: return LowerVACOPY(Op, DAG);
-
- case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG);
- case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
- case ISD::GET_DYNAMIC_AREA_OFFSET:
- return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
-
- // Exception handling lowering.
- case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG);
- case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
- case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
-
- case ISD::LOAD: return LowerLOAD(Op, DAG);
- case ISD::STORE: return LowerSTORE(Op, DAG);
- case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
- case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
- case ISD::FP_TO_UINT:
- case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
- case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
-
- // Lower 64-bit shifts.
- case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
- case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
- case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
-
- // Vector-related lowering.
- case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
- case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
- case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
- case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
- case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
- case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
- case ISD::MUL: return LowerMUL(Op, DAG);
- case ISD::ABS: return LowerABS(Op, DAG);
-
- // For counter-based loop handling.
- case ISD::INTRINSIC_W_CHAIN: return SDValue();
-
- case ISD::BITCAST: return LowerBITCAST(Op, DAG);
-
- // Frame & Return address.
- case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
- case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
-
- case ISD::INTRINSIC_VOID:
- return LowerINTRINSIC_VOID(Op, DAG);
- case ISD::SREM:
- case ISD::UREM:
- return LowerREM(Op, DAG);
- case ISD::BSWAP:
- return LowerBSWAP(Op, DAG);
- case ISD::ATOMIC_CMP_SWAP:
- return LowerATOMIC_CMP_SWAP(Op, DAG);
- }
-}
-
-void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
- SmallVectorImpl<SDValue>&Results,
- SelectionDAG &DAG) const {
- SDLoc dl(N);
- switch (N->getOpcode()) {
- default:
- llvm_unreachable("Do not know how to custom type legalize this operation!");
- case ISD::READCYCLECOUNTER: {
- SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
- SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
-
- Results.push_back(RTB);
- Results.push_back(RTB.getValue(1));
- Results.push_back(RTB.getValue(2));
- break;
- }
- case ISD::INTRINSIC_W_CHAIN: {
- if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
- Intrinsic::ppc_is_decremented_ctr_nonzero)
- break;
-
- assert(N->getValueType(0) == MVT::i1 &&
- "Unexpected result type for CTR decrement intrinsic");
- EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- N->getValueType(0));
- SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
- SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
- N->getOperand(1));
-
- Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
- Results.push_back(NewInt.getValue(1));
- break;
- }
- case ISD::VAARG: {
- if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
- return;
-
- EVT VT = N->getValueType(0);
-
- if (VT == MVT::i64) {
- SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
-
- Results.push_back(NewNode);
- Results.push_back(NewNode.getValue(1));
- }
- return;
- }
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- // LowerFP_TO_INT() can only handle f32 and f64.
- if (N->getOperand(0).getValueType() == MVT::ppcf128)
- return;
- Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
- return;
- case ISD::BITCAST:
- // Don't handle bitcast here.
- return;
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Other Lowering Code
-//===----------------------------------------------------------------------===//
-
-static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
- Module *M = Builder.GetInsertBlock()->getParent()->getParent();
- Function *Func = Intrinsic::getDeclaration(M, Id);
- return Builder.CreateCall(Func, {});
-}
-
-// The mappings for emitLeading/TrailingFence is taken from
-// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
-Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
- Instruction *Inst,
- AtomicOrdering Ord) const {
- if (Ord == AtomicOrdering::SequentiallyConsistent)
- return callIntrinsic(Builder, Intrinsic::ppc_sync);
- if (isReleaseOrStronger(Ord))
- return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
- return nullptr;
-}
-
-Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
- Instruction *Inst,
- AtomicOrdering Ord) const {
- if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
- // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
- // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
- // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
- if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
- return Builder.CreateCall(
- Intrinsic::getDeclaration(
- Builder.GetInsertBlock()->getParent()->getParent(),
- Intrinsic::ppc_cfence, {Inst->getType()}),
- {Inst});
- // FIXME: Can use isync for rmw operation.
- return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
- }
- return nullptr;
-}
-
-MachineBasicBlock *
-PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
- unsigned AtomicSize,
- unsigned BinOpcode,
- unsigned CmpOpcode,
- unsigned CmpPred) const {
- // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = Subtarget.getInstrInfo();
-
- auto LoadMnemonic = PPC::LDARX;
- auto StoreMnemonic = PPC::STDCX;
- switch (AtomicSize) {
- default:
- llvm_unreachable("Unexpected size of atomic entity");
- case 1:
- LoadMnemonic = PPC::LBARX;
- StoreMnemonic = PPC::STBCX;
- assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
- break;
- case 2:
- LoadMnemonic = PPC::LHARX;
- StoreMnemonic = PPC::STHCX;
- assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
- break;
- case 4:
- LoadMnemonic = PPC::LWARX;
- StoreMnemonic = PPC::STWCX;
- break;
- case 8:
- LoadMnemonic = PPC::LDARX;
- StoreMnemonic = PPC::STDCX;
- break;
- }
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *F = BB->getParent();
- MachineFunction::iterator It = ++BB->getIterator();
-
- unsigned dest = MI.getOperand(0).getReg();
- unsigned ptrA = MI.getOperand(1).getReg();
- unsigned ptrB = MI.getOperand(2).getReg();
- unsigned incr = MI.getOperand(3).getReg();
- DebugLoc dl = MI.getDebugLoc();
-
- MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *loop2MBB =
- CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
- MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
- F->insert(It, loopMBB);
- if (CmpOpcode)
- F->insert(It, loop2MBB);
- F->insert(It, exitMBB);
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- unsigned TmpReg = (!BinOpcode) ? incr :
- RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
- : &PPC::GPRCRegClass);
-
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loopMBB);
-
- // loopMBB:
- // l[wd]arx dest, ptr
- // add r0, dest, incr
- // st[wd]cx. r0, ptr
- // bne- loopMBB
- // fallthrough --> exitMBB
-
- // For max/min...
- // loopMBB:
- // l[wd]arx dest, ptr
- // cmpl?[wd] incr, dest
- // bgt exitMBB
- // loop2MBB:
- // st[wd]cx. dest, ptr
- // bne- loopMBB
- // fallthrough --> exitMBB
-
- BB = loopMBB;
- BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
- .addReg(ptrA).addReg(ptrB);
- if (BinOpcode)
- BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
- if (CmpOpcode) {
- // Signed comparisons of byte or halfword values must be sign-extended.
- if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
- unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
- BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
- ExtReg).addReg(dest);
- BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
- .addReg(incr).addReg(ExtReg);
- } else
- BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
- .addReg(incr).addReg(dest);
-
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
- BB->addSuccessor(loop2MBB);
- BB->addSuccessor(exitMBB);
- BB = loop2MBB;
- }
- BuildMI(BB, dl, TII->get(StoreMnemonic))
- .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
- BB->addSuccessor(loopMBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
- return BB;
-}
-
-MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
- MachineInstr &MI, MachineBasicBlock *BB,
- bool is8bit, // operation
- unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
- // If we support part-word atomic mnemonics, just use them
- if (Subtarget.hasPartwordAtomics())
- return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
- CmpPred);
-
- // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
- const TargetInstrInfo *TII = Subtarget.getInstrInfo();
- // In 64 bit mode we have to use 64 bits for addresses, even though the
- // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
- // registers without caring whether they're 32 or 64, but here we're
- // doing actual arithmetic on the addresses.
- bool is64bit = Subtarget.isPPC64();
- bool isLittleEndian = Subtarget.isLittleEndian();
- unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
-
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *F = BB->getParent();
- MachineFunction::iterator It = ++BB->getIterator();
-
- unsigned dest = MI.getOperand(0).getReg();
- unsigned ptrA = MI.getOperand(1).getReg();
- unsigned ptrB = MI.getOperand(2).getReg();
- unsigned incr = MI.getOperand(3).getReg();
- DebugLoc dl = MI.getDebugLoc();
-
- MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *loop2MBB =
- CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
- MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
- F->insert(It, loopMBB);
- if (CmpOpcode)
- F->insert(It, loop2MBB);
- F->insert(It, exitMBB);
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- const TargetRegisterClass *RC =
- is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
- const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
-
- unsigned PtrReg = RegInfo.createVirtualRegister(RC);
- unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned ShiftReg =
- isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
- unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
- unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
- unsigned Ptr1Reg;
- unsigned TmpReg =
- (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
-
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loopMBB);
-
- // The 4-byte load must be aligned, while a char or short may be
- // anywhere in the word. Hence all this nasty bookkeeping code.
- // add ptr1, ptrA, ptrB [copy if ptrA==0]
- // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
- // xori shift, shift1, 24 [16]
- // rlwinm ptr, ptr1, 0, 0, 29
- // slw incr2, incr, shift
- // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
- // slw mask, mask2, shift
- // loopMBB:
- // lwarx tmpDest, ptr
- // add tmp, tmpDest, incr2
- // andc tmp2, tmpDest, mask
- // and tmp3, tmp, mask
- // or tmp4, tmp3, tmp2
- // stwcx. tmp4, ptr
- // bne- loopMBB
- // fallthrough --> exitMBB
- // srw dest, tmpDest, shift
- if (ptrA != ZeroReg) {
- Ptr1Reg = RegInfo.createVirtualRegister(RC);
- BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
- .addReg(ptrA)
- .addReg(ptrB);
- } else {
- Ptr1Reg = ptrB;
- }
- // We need use 32-bit subregister to avoid mismatch register class in 64-bit
- // mode.
- BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
- .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
- .addImm(3)
- .addImm(27)
- .addImm(is8bit ? 28 : 27);
- if (!isLittleEndian)
- BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
- .addReg(Shift1Reg)
- .addImm(is8bit ? 24 : 16);
- if (is64bit)
- BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
- .addReg(Ptr1Reg)
- .addImm(0)
- .addImm(61);
- else
- BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
- .addReg(Ptr1Reg)
- .addImm(0)
- .addImm(0)
- .addImm(29);
- BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
- if (is8bit)
- BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
- else {
- BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
- BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
- .addReg(Mask3Reg)
- .addImm(65535);
- }
- BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
- .addReg(Mask2Reg)
- .addReg(ShiftReg);
-
- BB = loopMBB;
- BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
- .addReg(ZeroReg)
- .addReg(PtrReg);
- if (BinOpcode)
- BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
- .addReg(Incr2Reg)
- .addReg(TmpDestReg);
- BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
- .addReg(TmpDestReg)
- .addReg(MaskReg);
- BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
- if (CmpOpcode) {
- // For unsigned comparisons, we can directly compare the shifted values.
- // For signed comparisons we shift and sign extend.
- unsigned SReg = RegInfo.createVirtualRegister(GPRC);
- BuildMI(BB, dl, TII->get(PPC::AND), SReg)
- .addReg(TmpDestReg)
- .addReg(MaskReg);
- unsigned ValueReg = SReg;
- unsigned CmpReg = Incr2Reg;
- if (CmpOpcode == PPC::CMPW) {
- ValueReg = RegInfo.createVirtualRegister(GPRC);
- BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
- .addReg(SReg)
- .addReg(ShiftReg);
- unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
- BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
- .addReg(ValueReg);
- ValueReg = ValueSReg;
- CmpReg = incr;
- }
- BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
- .addReg(CmpReg)
- .addReg(ValueReg);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(CmpPred)
- .addReg(PPC::CR0)
- .addMBB(exitMBB);
- BB->addSuccessor(loop2MBB);
- BB->addSuccessor(exitMBB);
- BB = loop2MBB;
- }
- BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
- BuildMI(BB, dl, TII->get(PPC::STWCX))
- .addReg(Tmp4Reg)
- .addReg(ZeroReg)
- .addReg(PtrReg);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE)
- .addReg(PPC::CR0)
- .addMBB(loopMBB);
- BB->addSuccessor(loopMBB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
- BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
- .addReg(TmpDestReg)
- .addReg(ShiftReg);
- return BB;
-}
-
-llvm::MachineBasicBlock *
-PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
- MachineBasicBlock *MBB) const {
- DebugLoc DL = MI.getDebugLoc();
- const TargetInstrInfo *TII = Subtarget.getInstrInfo();
- const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
-
- MachineFunction *MF = MBB->getParent();
- MachineRegisterInfo &MRI = MF->getRegInfo();
-
- const BasicBlock *BB = MBB->getBasicBlock();
- MachineFunction::iterator I = ++MBB->getIterator();
-
- unsigned DstReg = MI.getOperand(0).getReg();
- const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
- assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
- unsigned mainDstReg = MRI.createVirtualRegister(RC);
- unsigned restoreDstReg = MRI.createVirtualRegister(RC);
-
- MVT PVT = getPointerTy(MF->getDataLayout());
- assert((PVT == MVT::i64 || PVT == MVT::i32) &&
- "Invalid Pointer Size!");
- // For v = setjmp(buf), we generate
- //
- // thisMBB:
- // SjLjSetup mainMBB
- // bl mainMBB
- // v_restore = 1
- // b sinkMBB
- //
- // mainMBB:
- // buf[LabelOffset] = LR
- // v_main = 0
- //
- // sinkMBB:
- // v = phi(main, restore)
- //
-
- MachineBasicBlock *thisMBB = MBB;
- MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
- MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
- MF->insert(I, mainMBB);
- MF->insert(I, sinkMBB);
-
- MachineInstrBuilder MIB;
-
- // Transfer the remainder of BB and its successor edges to sinkMBB.
- sinkMBB->splice(sinkMBB->begin(), MBB,
- std::next(MachineBasicBlock::iterator(MI)), MBB->end());
- sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
-
- // Note that the structure of the jmp_buf used here is not compatible
- // with that used by libc, and is not designed to be. Specifically, it
- // stores only those 'reserved' registers that LLVM does not otherwise
- // understand how to spill. Also, by convention, by the time this
- // intrinsic is called, Clang has already stored the frame address in the
- // first slot of the buffer and stack address in the third. Following the
- // X86 target code, we'll store the jump address in the second slot. We also
- // need to save the TOC pointer (R2) to handle jumps between shared
- // libraries, and that will be stored in the fourth slot. The thread
- // identifier (R13) is not affected.
-
- // thisMBB:
- const int64_t LabelOffset = 1 * PVT.getStoreSize();
- const int64_t TOCOffset = 3 * PVT.getStoreSize();
- const int64_t BPOffset = 4 * PVT.getStoreSize();
-
- // Prepare IP either in reg.
- const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
- unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
- unsigned BufReg = MI.getOperand(1).getReg();
-
- if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
- setUsesTOCBasePtr(*MBB->getParent());
- MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
- .addReg(PPC::X2)
- .addImm(TOCOffset)
- .addReg(BufReg)
- .cloneMemRefs(MI);
- }
-
- // Naked functions never have a base pointer, and so we use r1. For all
- // other functions, this decision must be delayed until during PEI.
- unsigned BaseReg;
- if (MF->getFunction().hasFnAttribute(Attribute::Naked))
- BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
- else
- BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
-
- MIB = BuildMI(*thisMBB, MI, DL,
- TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
- .addReg(BaseReg)
- .addImm(BPOffset)
- .addReg(BufReg)
- .cloneMemRefs(MI);
-
- // Setup
- MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
- MIB.addRegMask(TRI->getNoPreservedMask());
-
- BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
-
- MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
- .addMBB(mainMBB);
- MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
-
- thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
- thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
-
- // mainMBB:
- // mainDstReg = 0
- MIB =
- BuildMI(mainMBB, DL,
- TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
-
- // Store IP
- if (Subtarget.isPPC64()) {
- MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
- .addReg(LabelReg)
- .addImm(LabelOffset)
- .addReg(BufReg);
- } else {
- MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
- .addReg(LabelReg)
- .addImm(LabelOffset)
- .addReg(BufReg);
- }
- MIB.cloneMemRefs(MI);
-
- BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
- mainMBB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- BuildMI(*sinkMBB, sinkMBB->begin(), DL,
- TII->get(PPC::PHI), DstReg)
- .addReg(mainDstReg).addMBB(mainMBB)
- .addReg(restoreDstReg).addMBB(thisMBB);
-
- MI.eraseFromParent();
- return sinkMBB;
-}
-
-MachineBasicBlock *
-PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
- MachineBasicBlock *MBB) const {
- DebugLoc DL = MI.getDebugLoc();
- const TargetInstrInfo *TII = Subtarget.getInstrInfo();
-
- MachineFunction *MF = MBB->getParent();
- MachineRegisterInfo &MRI = MF->getRegInfo();
-
- MVT PVT = getPointerTy(MF->getDataLayout());
- assert((PVT == MVT::i64 || PVT == MVT::i32) &&
- "Invalid Pointer Size!");
-
- const TargetRegisterClass *RC =
- (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
- unsigned Tmp = MRI.createVirtualRegister(RC);
- // Since FP is only updated here but NOT referenced, it's treated as GPR.
- unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
- unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
- unsigned BP =
- (PVT == MVT::i64)
- ? PPC::X30
- : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
- : PPC::R30);
-
- MachineInstrBuilder MIB;
-
- const int64_t LabelOffset = 1 * PVT.getStoreSize();
- const int64_t SPOffset = 2 * PVT.getStoreSize();
- const int64_t TOCOffset = 3 * PVT.getStoreSize();
- const int64_t BPOffset = 4 * PVT.getStoreSize();
-
- unsigned BufReg = MI.getOperand(0).getReg();
-
- // Reload FP (the jumped-to function may not have had a
- // frame pointer, and if so, then its r31 will be restored
- // as necessary).
- if (PVT == MVT::i64) {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
- .addImm(0)
- .addReg(BufReg);
- } else {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
- .addImm(0)
- .addReg(BufReg);
- }
- MIB.cloneMemRefs(MI);
-
- // Reload IP
- if (PVT == MVT::i64) {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
- .addImm(LabelOffset)
- .addReg(BufReg);
- } else {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
- .addImm(LabelOffset)
- .addReg(BufReg);
- }
- MIB.cloneMemRefs(MI);
-
- // Reload SP
- if (PVT == MVT::i64) {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
- .addImm(SPOffset)
- .addReg(BufReg);
- } else {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
- .addImm(SPOffset)
- .addReg(BufReg);
- }
- MIB.cloneMemRefs(MI);
-
- // Reload BP
- if (PVT == MVT::i64) {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
- .addImm(BPOffset)
- .addReg(BufReg);
- } else {
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
- .addImm(BPOffset)
- .addReg(BufReg);
- }
- MIB.cloneMemRefs(MI);
-
- // Reload TOC
- if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
- setUsesTOCBasePtr(*MBB->getParent());
- MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
- .addImm(TOCOffset)
- .addReg(BufReg)
- .cloneMemRefs(MI);
- }
-
- // Jump
- BuildMI(*MBB, MI, DL,
- TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
- BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
-
- MI.eraseFromParent();
- return MBB;
-}
-
-MachineBasicBlock *
-PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
- MachineBasicBlock *BB) const {
- if (MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT) {
- if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
- MI.getOpcode() == TargetOpcode::PATCHPOINT) {
- // Call lowering should have added an r2 operand to indicate a dependence
- // on the TOC base pointer value. It can't however, because there is no
- // way to mark the dependence as implicit there, and so the stackmap code
- // will confuse it with a regular operand. Instead, add the dependence
- // here.
- MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
- }
-
- return emitPatchPoint(MI, BB);
- }
-
- if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
- MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
- return emitEHSjLjSetJmp(MI, BB);
- } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
- MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
- return emitEHSjLjLongJmp(MI, BB);
- }
-
- const TargetInstrInfo *TII = Subtarget.getInstrInfo();
-
- // To "insert" these instructions we actually have to insert their
- // control-flow patterns.
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction::iterator It = ++BB->getIterator();
-
- MachineFunction *F = BB->getParent();
-
- if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
- MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
- MI.getOpcode() == PPC::SELECT_I8) {
- SmallVector<MachineOperand, 2> Cond;
- if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
- MI.getOpcode() == PPC::SELECT_CC_I8)
- Cond.push_back(MI.getOperand(4));
- else
- Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
- Cond.push_back(MI.getOperand(1));
-
- DebugLoc dl = MI.getDebugLoc();
- TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
- MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
- } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
- MI.getOpcode() == PPC::SELECT_CC_I8 ||
- MI.getOpcode() == PPC::SELECT_CC_F4 ||
- MI.getOpcode() == PPC::SELECT_CC_F8 ||
- MI.getOpcode() == PPC::SELECT_CC_F16 ||
- MI.getOpcode() == PPC::SELECT_CC_QFRC ||
- MI.getOpcode() == PPC::SELECT_CC_QSRC ||
- MI.getOpcode() == PPC::SELECT_CC_QBRC ||
- MI.getOpcode() == PPC::SELECT_CC_VRRC ||
- MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
- MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
- MI.getOpcode() == PPC::SELECT_CC_VSRC ||
- MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
- MI.getOpcode() == PPC::SELECT_CC_SPE ||
- MI.getOpcode() == PPC::SELECT_I4 ||
- MI.getOpcode() == PPC::SELECT_I8 ||
- MI.getOpcode() == PPC::SELECT_F4 ||
- MI.getOpcode() == PPC::SELECT_F8 ||
- MI.getOpcode() == PPC::SELECT_F16 ||
- MI.getOpcode() == PPC::SELECT_QFRC ||
- MI.getOpcode() == PPC::SELECT_QSRC ||
- MI.getOpcode() == PPC::SELECT_QBRC ||
- MI.getOpcode() == PPC::SELECT_SPE ||
- MI.getOpcode() == PPC::SELECT_SPE4 ||
- MI.getOpcode() == PPC::SELECT_VRRC ||
- MI.getOpcode() == PPC::SELECT_VSFRC ||
- MI.getOpcode() == PPC::SELECT_VSSRC ||
- MI.getOpcode() == PPC::SELECT_VSRC) {
- // The incoming instruction knows the destination vreg to set, the
- // condition code register to branch on, the true/false values to
- // select between, and a branch opcode to use.
-
- // thisMBB:
- // ...
- // TrueVal = ...
- // cmpTY ccX, r1, r2
- // bCC copy1MBB
- // fallthrough --> copy0MBB
- MachineBasicBlock *thisMBB = BB;
- MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
- DebugLoc dl = MI.getDebugLoc();
- F->insert(It, copy0MBB);
- F->insert(It, sinkMBB);
-
- // Transfer the remainder of BB and its successor edges to sinkMBB.
- sinkMBB->splice(sinkMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- // Next, add the true and fallthrough blocks as its successors.
- BB->addSuccessor(copy0MBB);
- BB->addSuccessor(sinkMBB);
-
- if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
- MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
- MI.getOpcode() == PPC::SELECT_F16 ||
- MI.getOpcode() == PPC::SELECT_SPE4 ||
- MI.getOpcode() == PPC::SELECT_SPE ||
- MI.getOpcode() == PPC::SELECT_QFRC ||
- MI.getOpcode() == PPC::SELECT_QSRC ||
- MI.getOpcode() == PPC::SELECT_QBRC ||
- MI.getOpcode() == PPC::SELECT_VRRC ||
- MI.getOpcode() == PPC::SELECT_VSFRC ||
- MI.getOpcode() == PPC::SELECT_VSSRC ||
- MI.getOpcode() == PPC::SELECT_VSRC) {
- BuildMI(BB, dl, TII->get(PPC::BC))
- .addReg(MI.getOperand(1).getReg())
- .addMBB(sinkMBB);
- } else {
- unsigned SelectPred = MI.getOperand(4).getImm();
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(SelectPred)
- .addReg(MI.getOperand(1).getReg())
- .addMBB(sinkMBB);
- }
-
- // copy0MBB:
- // %FalseValue = ...
- // # fallthrough to sinkMBB
- BB = copy0MBB;
-
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
- // ...
- BB = sinkMBB;
- BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
- .addReg(MI.getOperand(3).getReg())
- .addMBB(copy0MBB)
- .addReg(MI.getOperand(2).getReg())
- .addMBB(thisMBB);
- } else if (MI.getOpcode() == PPC::ReadTB) {
- // To read the 64-bit time-base register on a 32-bit target, we read the
- // two halves. Should the counter have wrapped while it was being read, we
- // need to try again.
- // ...
- // readLoop:
- // mfspr Rx,TBU # load from TBU
- // mfspr Ry,TB # load from TB
- // mfspr Rz,TBU # load from TBU
- // cmpw crX,Rx,Rz # check if 'old'='new'
- // bne readLoop # branch if they're not equal
- // ...
-
- MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
- DebugLoc dl = MI.getDebugLoc();
- F->insert(It, readMBB);
- F->insert(It, sinkMBB);
-
- // Transfer the remainder of BB and its successor edges to sinkMBB.
- sinkMBB->splice(sinkMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- BB->addSuccessor(readMBB);
- BB = readMBB;
-
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
- unsigned LoReg = MI.getOperand(0).getReg();
- unsigned HiReg = MI.getOperand(1).getReg();
-
- BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
- BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
- BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
-
- unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
-
- BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
- .addReg(HiReg)
- .addReg(ReadAgainReg);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE)
- .addReg(CmpReg)
- .addMBB(readMBB);
-
- BB->addSuccessor(readMBB);
- BB->addSuccessor(sinkMBB);
- } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
- BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
- BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
- BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
- BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
- BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
- BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
- BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
- BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
- BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
- BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
- BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
- BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
- BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
- BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
- BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
- BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
- BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
- BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
-
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
- BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
- else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
- BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
-
- else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
- else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
- else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
- BB = EmitAtomicBinary(MI, BB, 4, 0);
- else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
- BB = EmitAtomicBinary(MI, BB, 8, 0);
- else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
- MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
- (Subtarget.hasPartwordAtomics() &&
- MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
- (Subtarget.hasPartwordAtomics() &&
- MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
- bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
-
- auto LoadMnemonic = PPC::LDARX;
- auto StoreMnemonic = PPC::STDCX;
- switch (MI.getOpcode()) {
- default:
- llvm_unreachable("Compare and swap of unknown size");
- case PPC::ATOMIC_CMP_SWAP_I8:
- LoadMnemonic = PPC::LBARX;
- StoreMnemonic = PPC::STBCX;
- assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
- break;
- case PPC::ATOMIC_CMP_SWAP_I16:
- LoadMnemonic = PPC::LHARX;
- StoreMnemonic = PPC::STHCX;
- assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
- break;
- case PPC::ATOMIC_CMP_SWAP_I32:
- LoadMnemonic = PPC::LWARX;
- StoreMnemonic = PPC::STWCX;
- break;
- case PPC::ATOMIC_CMP_SWAP_I64:
- LoadMnemonic = PPC::LDARX;
- StoreMnemonic = PPC::STDCX;
- break;
- }
- unsigned dest = MI.getOperand(0).getReg();
- unsigned ptrA = MI.getOperand(1).getReg();
- unsigned ptrB = MI.getOperand(2).getReg();
- unsigned oldval = MI.getOperand(3).getReg();
- unsigned newval = MI.getOperand(4).getReg();
- DebugLoc dl = MI.getDebugLoc();
-
- MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
- F->insert(It, loop1MBB);
- F->insert(It, loop2MBB);
- F->insert(It, midMBB);
- F->insert(It, exitMBB);
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loop1MBB);
-
- // loop1MBB:
- // l[bhwd]arx dest, ptr
- // cmp[wd] dest, oldval
- // bne- midMBB
- // loop2MBB:
- // st[bhwd]cx. newval, ptr
- // bne- loopMBB
- // b exitBB
- // midMBB:
- // st[bhwd]cx. dest, ptr
- // exitBB:
- BB = loop1MBB;
- BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
- BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
- .addReg(oldval)
- .addReg(dest);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE)
- .addReg(PPC::CR0)
- .addMBB(midMBB);
- BB->addSuccessor(loop2MBB);
- BB->addSuccessor(midMBB);
-
- BB = loop2MBB;
- BuildMI(BB, dl, TII->get(StoreMnemonic))
- .addReg(newval)
- .addReg(ptrA)
- .addReg(ptrB);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE)
- .addReg(PPC::CR0)
- .addMBB(loop1MBB);
- BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
- BB->addSuccessor(loop1MBB);
- BB->addSuccessor(exitMBB);
-
- BB = midMBB;
- BuildMI(BB, dl, TII->get(StoreMnemonic))
- .addReg(dest)
- .addReg(ptrA)
- .addReg(ptrB);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
- } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
- MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
- // We must use 64-bit registers for addresses when targeting 64-bit,
- // since we're actually doing arithmetic on them. Other registers
- // can be 32-bit.
- bool is64bit = Subtarget.isPPC64();
- bool isLittleEndian = Subtarget.isLittleEndian();
- bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
-
- unsigned dest = MI.getOperand(0).getReg();
- unsigned ptrA = MI.getOperand(1).getReg();
- unsigned ptrB = MI.getOperand(2).getReg();
- unsigned oldval = MI.getOperand(3).getReg();
- unsigned newval = MI.getOperand(4).getReg();
- DebugLoc dl = MI.getDebugLoc();
-
- MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
- F->insert(It, loop1MBB);
- F->insert(It, loop2MBB);
- F->insert(It, midMBB);
- F->insert(It, exitMBB);
- exitMBB->splice(exitMBB->begin(), BB,
- std::next(MachineBasicBlock::iterator(MI)), BB->end());
- exitMBB->transferSuccessorsAndUpdatePHIs(BB);
-
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- const TargetRegisterClass *RC =
- is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
- const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
-
- unsigned PtrReg = RegInfo.createVirtualRegister(RC);
- unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned ShiftReg =
- isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
- unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
- unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
- unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
- unsigned Ptr1Reg;
- unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
- unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
- // thisMBB:
- // ...
- // fallthrough --> loopMBB
- BB->addSuccessor(loop1MBB);
-
- // The 4-byte load must be aligned, while a char or short may be
- // anywhere in the word. Hence all this nasty bookkeeping code.
- // add ptr1, ptrA, ptrB [copy if ptrA==0]
- // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
- // xori shift, shift1, 24 [16]
- // rlwinm ptr, ptr1, 0, 0, 29
- // slw newval2, newval, shift
- // slw oldval2, oldval,shift
- // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
- // slw mask, mask2, shift
- // and newval3, newval2, mask
- // and oldval3, oldval2, mask
- // loop1MBB:
- // lwarx tmpDest, ptr
- // and tmp, tmpDest, mask
- // cmpw tmp, oldval3
- // bne- midMBB
- // loop2MBB:
- // andc tmp2, tmpDest, mask
- // or tmp4, tmp2, newval3
- // stwcx. tmp4, ptr
- // bne- loop1MBB
- // b exitBB
- // midMBB:
- // stwcx. tmpDest, ptr
- // exitBB:
- // srw dest, tmpDest, shift
- if (ptrA != ZeroReg) {
- Ptr1Reg = RegInfo.createVirtualRegister(RC);
- BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
- .addReg(ptrA)
- .addReg(ptrB);
- } else {
- Ptr1Reg = ptrB;
- }
-
- // We need use 32-bit subregister to avoid mismatch register class in 64-bit
- // mode.
- BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
- .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
- .addImm(3)
- .addImm(27)
- .addImm(is8bit ? 28 : 27);
- if (!isLittleEndian)
- BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
- .addReg(Shift1Reg)
- .addImm(is8bit ? 24 : 16);
- if (is64bit)
- BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
- .addReg(Ptr1Reg)
- .addImm(0)
- .addImm(61);
- else
- BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
- .addReg(Ptr1Reg)
- .addImm(0)
- .addImm(0)
- .addImm(29);
- BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
- .addReg(newval)
- .addReg(ShiftReg);
- BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
- .addReg(oldval)
- .addReg(ShiftReg);
- if (is8bit)
- BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
- else {
- BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
- BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
- .addReg(Mask3Reg)
- .addImm(65535);
- }
- BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
- .addReg(Mask2Reg)
- .addReg(ShiftReg);
- BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
- .addReg(NewVal2Reg)
- .addReg(MaskReg);
- BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
- .addReg(OldVal2Reg)
- .addReg(MaskReg);
-
- BB = loop1MBB;
- BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
- .addReg(ZeroReg)
- .addReg(PtrReg);
- BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
- .addReg(TmpDestReg)
- .addReg(MaskReg);
- BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
- .addReg(TmpReg)
- .addReg(OldVal3Reg);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE)
- .addReg(PPC::CR0)
- .addMBB(midMBB);
- BB->addSuccessor(loop2MBB);
- BB->addSuccessor(midMBB);
-
- BB = loop2MBB;
- BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
- .addReg(TmpDestReg)
- .addReg(MaskReg);
- BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
- .addReg(Tmp2Reg)
- .addReg(NewVal3Reg);
- BuildMI(BB, dl, TII->get(PPC::STWCX))
- .addReg(Tmp4Reg)
- .addReg(ZeroReg)
- .addReg(PtrReg);
- BuildMI(BB, dl, TII->get(PPC::BCC))
- .addImm(PPC::PRED_NE)
- .addReg(PPC::CR0)
- .addMBB(loop1MBB);
- BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
- BB->addSuccessor(loop1MBB);
- BB->addSuccessor(exitMBB);
-
- BB = midMBB;
- BuildMI(BB, dl, TII->get(PPC::STWCX))
- .addReg(TmpDestReg)
- .addReg(ZeroReg)
- .addReg(PtrReg);
- BB->addSuccessor(exitMBB);
-
- // exitMBB:
- // ...
- BB = exitMBB;
- BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
- .addReg(TmpReg)
- .addReg(ShiftReg);
- } else if (MI.getOpcode() == PPC::FADDrtz) {
- // This pseudo performs an FADD with rounding mode temporarily forced
- // to round-to-zero. We emit this via custom inserter since the FPSCR
- // is not modeled at the SelectionDAG level.
- unsigned Dest = MI.getOperand(0).getReg();
- unsigned Src1 = MI.getOperand(1).getReg();
- unsigned Src2 = MI.getOperand(2).getReg();
- DebugLoc dl = MI.getDebugLoc();
-
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
-
- // Save FPSCR value.
- BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
-
- // Set rounding mode to round-to-zero.
- BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
- BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
-
- // Perform addition.
- BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
-
- // Restore FPSCR value.
- BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
- } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
- MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
- MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
- MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
- unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
- MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
- ? PPC::ANDIo8
- : PPC::ANDIo;
- bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
- MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
-
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- unsigned Dest = RegInfo.createVirtualRegister(
- Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
-
- DebugLoc dl = MI.getDebugLoc();
- BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
- .addReg(MI.getOperand(1).getReg())
- .addImm(1);
- BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
- MI.getOperand(0).getReg())
- .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
- } else if (MI.getOpcode() == PPC::TCHECK_RET) {
- DebugLoc Dl = MI.getDebugLoc();
- MachineRegisterInfo &RegInfo = F->getRegInfo();
- unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
- BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
- return BB;
- } else {
- llvm_unreachable("Unexpected instr type to insert");
- }
-
- MI.eraseFromParent(); // The pseudo instruction is gone now.
- return BB;
-}
-
-//===----------------------------------------------------------------------===//
-// Target Optimization Hooks
-//===----------------------------------------------------------------------===//
-
-static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
- // For the estimates, convergence is quadratic, so we essentially double the
- // number of digits correct after every iteration. For both FRE and FRSQRTE,
- // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
- // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
- int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
- if (VT.getScalarType() == MVT::f64)
- RefinementSteps++;
- return RefinementSteps;
-}
-
-SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
- int Enabled, int &RefinementSteps,
- bool &UseOneConstNR,
- bool Reciprocal) const {
- EVT VT = Operand.getValueType();
- if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
- (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
- (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
- (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
- (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
- (VT == MVT::v4f64 && Subtarget.hasQPX())) {
- if (RefinementSteps == ReciprocalEstimate::Unspecified)
- RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
-
- UseOneConstNR = true;
- return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
- }
- return SDValue();
-}
-
-SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
- int Enabled,
- int &RefinementSteps) const {
- EVT VT = Operand.getValueType();
- if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
- (VT == MVT::f64 && Subtarget.hasFRE()) ||
- (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
- (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
- (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
- (VT == MVT::v4f64 && Subtarget.hasQPX())) {
- if (RefinementSteps == ReciprocalEstimate::Unspecified)
- RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
- return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
- }
- return SDValue();
-}
-
-unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
- // Note: This functionality is used only when unsafe-fp-math is enabled, and
- // on cores with reciprocal estimates (which are used when unsafe-fp-math is
- // enabled for division), this functionality is redundant with the default
- // combiner logic (once the division -> reciprocal/multiply transformation
- // has taken place). As a result, this matters more for older cores than for
- // newer ones.
-
- // Combine multiple FDIVs with the same divisor into multiple FMULs by the
- // reciprocal if there are two or more FDIVs (for embedded cores with only
- // one FP pipeline) for three or more FDIVs (for generic OOO cores).
- switch (Subtarget.getDarwinDirective()) {
- default:
- return 3;
- case PPC::DIR_440:
- case PPC::DIR_A2:
- case PPC::DIR_E500:
- case PPC::DIR_E500mc:
- case PPC::DIR_E5500:
- return 2;
- }
-}
-
-// isConsecutiveLSLoc needs to work even if all adds have not yet been
-// collapsed, and so we need to look through chains of them.
-static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
- int64_t& Offset, SelectionDAG &DAG) {
- if (DAG.isBaseWithConstantOffset(Loc)) {
- Base = Loc.getOperand(0);
- Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
-
- // The base might itself be a base plus an offset, and if so, accumulate
- // that as well.
- getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
- }
-}
-
-static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
- unsigned Bytes, int Dist,
- SelectionDAG &DAG) {
- if (VT.getSizeInBits() / 8 != Bytes)
- return false;
-
- SDValue BaseLoc = Base->getBasePtr();
- if (Loc.getOpcode() == ISD::FrameIndex) {
- if (BaseLoc.getOpcode() != ISD::FrameIndex)
- return false;
- const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
- int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
- int FS = MFI.getObjectSize(FI);
- int BFS = MFI.getObjectSize(BFI);
- if (FS != BFS || FS != (int)Bytes) return false;
- return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
- }
-
- SDValue Base1 = Loc, Base2 = BaseLoc;
- int64_t Offset1 = 0, Offset2 = 0;
- getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
- getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
- if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
- return true;
-
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const GlobalValue *GV1 = nullptr;
- const GlobalValue *GV2 = nullptr;
- Offset1 = 0;
- Offset2 = 0;
- bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
- bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
- if (isGA1 && isGA2 && GV1 == GV2)
- return Offset1 == (Offset2 + Dist*Bytes);
- return false;
-}
-
-// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
-// not enforce equality of the chain operands.
-static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
- unsigned Bytes, int Dist,
- SelectionDAG &DAG) {
- if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
- EVT VT = LS->getMemoryVT();
- SDValue Loc = LS->getBasePtr();
- return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
- }
-
- if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
- EVT VT;
- switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
- default: return false;
- case Intrinsic::ppc_qpx_qvlfd:
- case Intrinsic::ppc_qpx_qvlfda:
- VT = MVT::v4f64;
- break;
- case Intrinsic::ppc_qpx_qvlfs:
- case Intrinsic::ppc_qpx_qvlfsa:
- VT = MVT::v4f32;
- break;
- case Intrinsic::ppc_qpx_qvlfcd:
- case Intrinsic::ppc_qpx_qvlfcda:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvlfcs:
- case Intrinsic::ppc_qpx_qvlfcsa:
- VT = MVT::v2f32;
- break;
- case Intrinsic::ppc_qpx_qvlfiwa:
- case Intrinsic::ppc_qpx_qvlfiwz:
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- case Intrinsic::ppc_vsx_lxvw4x:
- case Intrinsic::ppc_vsx_lxvw4x_be:
- VT = MVT::v4i32;
- break;
- case Intrinsic::ppc_vsx_lxvd2x:
- case Intrinsic::ppc_vsx_lxvd2x_be:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_altivec_lvebx:
- VT = MVT::i8;
- break;
- case Intrinsic::ppc_altivec_lvehx:
- VT = MVT::i16;
- break;
- case Intrinsic::ppc_altivec_lvewx:
- VT = MVT::i32;
- break;
- }
-
- return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
- }
-
- if (N->getOpcode() == ISD::INTRINSIC_VOID) {
- EVT VT;
- switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
- default: return false;
- case Intrinsic::ppc_qpx_qvstfd:
- case Intrinsic::ppc_qpx_qvstfda:
- VT = MVT::v4f64;
- break;
- case Intrinsic::ppc_qpx_qvstfs:
- case Intrinsic::ppc_qpx_qvstfsa:
- VT = MVT::v4f32;
- break;
- case Intrinsic::ppc_qpx_qvstfcd:
- case Intrinsic::ppc_qpx_qvstfcda:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvstfcs:
- case Intrinsic::ppc_qpx_qvstfcsa:
- VT = MVT::v2f32;
- break;
- case Intrinsic::ppc_qpx_qvstfiw:
- case Intrinsic::ppc_qpx_qvstfiwa:
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- case Intrinsic::ppc_vsx_stxvw4x:
- VT = MVT::v4i32;
- break;
- case Intrinsic::ppc_vsx_stxvd2x:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_vsx_stxvw4x_be:
- VT = MVT::v4i32;
- break;
- case Intrinsic::ppc_vsx_stxvd2x_be:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_altivec_stvebx:
- VT = MVT::i8;
- break;
- case Intrinsic::ppc_altivec_stvehx:
- VT = MVT::i16;
- break;
- case Intrinsic::ppc_altivec_stvewx:
- VT = MVT::i32;
- break;
- }
-
- return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
- }
-
- return false;
-}
-
-// Return true is there is a nearyby consecutive load to the one provided
-// (regardless of alignment). We search up and down the chain, looking though
-// token factors and other loads (but nothing else). As a result, a true result
-// indicates that it is safe to create a new consecutive load adjacent to the
-// load provided.
-static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
- SDValue Chain = LD->getChain();
- EVT VT = LD->getMemoryVT();
-
- SmallSet<SDNode *, 16> LoadRoots;
- SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
- SmallSet<SDNode *, 16> Visited;
-
- // First, search up the chain, branching to follow all token-factor operands.
- // If we find a consecutive load, then we're done, otherwise, record all
- // nodes just above the top-level loads and token factors.
- while (!Queue.empty()) {
- SDNode *ChainNext = Queue.pop_back_val();
- if (!Visited.insert(ChainNext).second)
- continue;
-
- if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
- if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
- return true;
-
- if (!Visited.count(ChainLD->getChain().getNode()))
- Queue.push_back(ChainLD->getChain().getNode());
- } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
- for (const SDUse &O : ChainNext->ops())
- if (!Visited.count(O.getNode()))
- Queue.push_back(O.getNode());
- } else
- LoadRoots.insert(ChainNext);
- }
-
- // Second, search down the chain, starting from the top-level nodes recorded
- // in the first phase. These top-level nodes are the nodes just above all
- // loads and token factors. Starting with their uses, recursively look though
- // all loads (just the chain uses) and token factors to find a consecutive
- // load.
- Visited.clear();
- Queue.clear();
-
- for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
- IE = LoadRoots.end(); I != IE; ++I) {
- Queue.push_back(*I);
-
- while (!Queue.empty()) {
- SDNode *LoadRoot = Queue.pop_back_val();
- if (!Visited.insert(LoadRoot).second)
- continue;
-
- if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
- if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
- return true;
-
- for (SDNode::use_iterator UI = LoadRoot->use_begin(),
- UE = LoadRoot->use_end(); UI != UE; ++UI)
- if (((isa<MemSDNode>(*UI) &&
- cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
- UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
- Queue.push_back(*UI);
- }
- }
-
- return false;
-}
-
-/// This function is called when we have proved that a SETCC node can be replaced
-/// by subtraction (and other supporting instructions) so that the result of
-/// comparison is kept in a GPR instead of CR. This function is purely for
-/// codegen purposes and has some flags to guide the codegen process.
-static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
- bool Swap, SDLoc &DL, SelectionDAG &DAG) {
- assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
-
- // Zero extend the operands to the largest legal integer. Originally, they
- // must be of a strictly smaller size.
- auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
- DAG.getConstant(Size, DL, MVT::i32));
- auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
- DAG.getConstant(Size, DL, MVT::i32));
-
- // Swap if needed. Depends on the condition code.
- if (Swap)
- std::swap(Op0, Op1);
-
- // Subtract extended integers.
- auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
-
- // Move the sign bit to the least significant position and zero out the rest.
- // Now the least significant bit carries the result of original comparison.
- auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
- DAG.getConstant(Size - 1, DL, MVT::i32));
- auto Final = Shifted;
-
- // Complement the result if needed. Based on the condition code.
- if (Complement)
- Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
- DAG.getConstant(1, DL, MVT::i64));
-
- return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
-}
-
-SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
- DAGCombinerInfo &DCI) const {
- assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc DL(N);
-
- // Size of integers being compared has a critical role in the following
- // analysis, so we prefer to do this when all types are legal.
- if (!DCI.isAfterLegalizeDAG())
- return SDValue();
-
- // If all users of SETCC extend its value to a legal integer type
- // then we replace SETCC with a subtraction
- for (SDNode::use_iterator UI = N->use_begin(),
- UE = N->use_end(); UI != UE; ++UI) {
- if (UI->getOpcode() != ISD::ZERO_EXTEND)
- return SDValue();
- }
-
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
- auto OpSize = N->getOperand(0).getValueSizeInBits();
-
- unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
-
- if (OpSize < Size) {
- switch (CC) {
- default: break;
- case ISD::SETULT:
- return generateEquivalentSub(N, Size, false, false, DL, DAG);
- case ISD::SETULE:
- return generateEquivalentSub(N, Size, true, true, DL, DAG);
- case ISD::SETUGT:
- return generateEquivalentSub(N, Size, false, true, DL, DAG);
- case ISD::SETUGE:
- return generateEquivalentSub(N, Size, true, false, DL, DAG);
- }
- }
-
- return SDValue();
-}
-
-SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
-
- assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
- // If we're tracking CR bits, we need to be careful that we don't have:
- // trunc(binary-ops(zext(x), zext(y)))
- // or
- // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
- // such that we're unnecessarily moving things into GPRs when it would be
- // better to keep them in CR bits.
-
- // Note that trunc here can be an actual i1 trunc, or can be the effective
- // truncation that comes from a setcc or select_cc.
- if (N->getOpcode() == ISD::TRUNCATE &&
- N->getValueType(0) != MVT::i1)
- return SDValue();
-
- if (N->getOperand(0).getValueType() != MVT::i32 &&
- N->getOperand(0).getValueType() != MVT::i64)
- return SDValue();
-
- if (N->getOpcode() == ISD::SETCC ||
- N->getOpcode() == ISD::SELECT_CC) {
- // If we're looking at a comparison, then we need to make sure that the
- // high bits (all except for the first) don't matter the result.
- ISD::CondCode CC =
- cast<CondCodeSDNode>(N->getOperand(
- N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
- unsigned OpBits = N->getOperand(0).getValueSizeInBits();
-
- if (ISD::isSignedIntSetCC(CC)) {
- if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
- DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
- return SDValue();
- } else if (ISD::isUnsignedIntSetCC(CC)) {
- if (!DAG.MaskedValueIsZero(N->getOperand(0),
- APInt::getHighBitsSet(OpBits, OpBits-1)) ||
- !DAG.MaskedValueIsZero(N->getOperand(1),
- APInt::getHighBitsSet(OpBits, OpBits-1)))
- return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
- : SDValue());
- } else {
- // This is neither a signed nor an unsigned comparison, just make sure
- // that the high bits are equal.
- KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
- KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
-
- // We don't really care about what is known about the first bit (if
- // anything), so clear it in all masks prior to comparing them.
- Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
- Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
-
- if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
- return SDValue();
- }
- }
-
- // We now know that the higher-order bits are irrelevant, we just need to
- // make sure that all of the intermediate operations are bit operations, and
- // all inputs are extensions.
- if (N->getOperand(0).getOpcode() != ISD::AND &&
- N->getOperand(0).getOpcode() != ISD::OR &&
- N->getOperand(0).getOpcode() != ISD::XOR &&
- N->getOperand(0).getOpcode() != ISD::SELECT &&
- N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
- N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
- N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
- N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
- N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
- return SDValue();
-
- if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
- N->getOperand(1).getOpcode() != ISD::AND &&
- N->getOperand(1).getOpcode() != ISD::OR &&
- N->getOperand(1).getOpcode() != ISD::XOR &&
- N->getOperand(1).getOpcode() != ISD::SELECT &&
- N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
- N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
- N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
- N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
- N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
- return SDValue();
-
- SmallVector<SDValue, 4> Inputs;
- SmallVector<SDValue, 8> BinOps, PromOps;
- SmallPtrSet<SDNode *, 16> Visited;
-
- for (unsigned i = 0; i < 2; ++i) {
- if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
- N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
- N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
- N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
- isa<ConstantSDNode>(N->getOperand(i)))
- Inputs.push_back(N->getOperand(i));
- else
- BinOps.push_back(N->getOperand(i));
-
- if (N->getOpcode() == ISD::TRUNCATE)
- break;
- }
-
- // Visit all inputs, collect all binary operations (and, or, xor and
- // select) that are all fed by extensions.
- while (!BinOps.empty()) {
- SDValue BinOp = BinOps.back();
- BinOps.pop_back();
-
- if (!Visited.insert(BinOp.getNode()).second)
- continue;
-
- PromOps.push_back(BinOp);
-
- for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
- // The condition of the select is not promoted.
- if (BinOp.getOpcode() == ISD::SELECT && i == 0)
- continue;
- if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
- continue;
-
- if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
- BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
- BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
- BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
- isa<ConstantSDNode>(BinOp.getOperand(i))) {
- Inputs.push_back(BinOp.getOperand(i));
- } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
- BinOp.getOperand(i).getOpcode() == ISD::OR ||
- BinOp.getOperand(i).getOpcode() == ISD::XOR ||
- BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
- BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
- BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
- BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
- BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
- BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
- BinOps.push_back(BinOp.getOperand(i));
- } else {
- // We have an input that is not an extension or another binary
- // operation; we'll abort this transformation.
- return SDValue();
- }
- }
- }
-
- // Make sure that this is a self-contained cluster of operations (which
- // is not quite the same thing as saying that everything has only one
- // use).
- for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
- if (isa<ConstantSDNode>(Inputs[i]))
- continue;
-
- for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
- UE = Inputs[i].getNode()->use_end();
- UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User != N && !Visited.count(User))
- return SDValue();
-
- // Make sure that we're not going to promote the non-output-value
- // operand(s) or SELECT or SELECT_CC.
- // FIXME: Although we could sometimes handle this, and it does occur in
- // practice that one of the condition inputs to the select is also one of
- // the outputs, we currently can't deal with this.
- if (User->getOpcode() == ISD::SELECT) {
- if (User->getOperand(0) == Inputs[i])
- return SDValue();
- } else if (User->getOpcode() == ISD::SELECT_CC) {
- if (User->getOperand(0) == Inputs[i] ||
- User->getOperand(1) == Inputs[i])
- return SDValue();
- }
- }
- }
-
- for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
- for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
- UE = PromOps[i].getNode()->use_end();
- UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User != N && !Visited.count(User))
- return SDValue();
-
- // Make sure that we're not going to promote the non-output-value
- // operand(s) or SELECT or SELECT_CC.
- // FIXME: Although we could sometimes handle this, and it does occur in
- // practice that one of the condition inputs to the select is also one of
- // the outputs, we currently can't deal with this.
- if (User->getOpcode() == ISD::SELECT) {
- if (User->getOperand(0) == PromOps[i])
- return SDValue();
- } else if (User->getOpcode() == ISD::SELECT_CC) {
- if (User->getOperand(0) == PromOps[i] ||
- User->getOperand(1) == PromOps[i])
- return SDValue();
- }
- }
- }
-
- // Replace all inputs with the extension operand.
- for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
- // Constants may have users outside the cluster of to-be-promoted nodes,
- // and so we need to replace those as we do the promotions.
- if (isa<ConstantSDNode>(Inputs[i]))
- continue;
- else
- DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
- }
-
- std::list<HandleSDNode> PromOpHandles;
- for (auto &PromOp : PromOps)
- PromOpHandles.emplace_back(PromOp);
-
- // Replace all operations (these are all the same, but have a different
- // (i1) return type). DAG.getNode will validate that the types of
- // a binary operator match, so go through the list in reverse so that
- // we've likely promoted both operands first. Any intermediate truncations or
- // extensions disappear.
- while (!PromOpHandles.empty()) {
- SDValue PromOp = PromOpHandles.back().getValue();
- PromOpHandles.pop_back();
-
- if (PromOp.getOpcode() == ISD::TRUNCATE ||
- PromOp.getOpcode() == ISD::SIGN_EXTEND ||
- PromOp.getOpcode() == ISD::ZERO_EXTEND ||
- PromOp.getOpcode() == ISD::ANY_EXTEND) {
- if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
- PromOp.getOperand(0).getValueType() != MVT::i1) {
- // The operand is not yet ready (see comment below).
- PromOpHandles.emplace_front(PromOp);
- continue;
- }
-
- SDValue RepValue = PromOp.getOperand(0);
- if (isa<ConstantSDNode>(RepValue))
- RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
-
- DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
- continue;
- }
-
- unsigned C;
- switch (PromOp.getOpcode()) {
- default: C = 0; break;
- case ISD::SELECT: C = 1; break;
- case ISD::SELECT_CC: C = 2; break;
- }
-
- if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
- PromOp.getOperand(C).getValueType() != MVT::i1) ||
- (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
- PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
- // The to-be-promoted operands of this node have not yet been
- // promoted (this should be rare because we're going through the
- // list backward, but if one of the operands has several users in
- // this cluster of to-be-promoted nodes, it is possible).
- PromOpHandles.emplace_front(PromOp);
- continue;
- }
-
- SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
- PromOp.getNode()->op_end());
-
- // If there are any constant inputs, make sure they're replaced now.
- for (unsigned i = 0; i < 2; ++i)
- if (isa<ConstantSDNode>(Ops[C+i]))
- Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
-
- DAG.ReplaceAllUsesOfValueWith(PromOp,
- DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
- }
-
- // Now we're left with the initial truncation itself.
- if (N->getOpcode() == ISD::TRUNCATE)
- return N->getOperand(0);
-
- // Otherwise, this is a comparison. The operands to be compared have just
- // changed type (to i1), but everything else is the same.
- return SDValue(N, 0);
-}
-
-SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
-
- // If we're tracking CR bits, we need to be careful that we don't have:
- // zext(binary-ops(trunc(x), trunc(y)))
- // or
- // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
- // such that we're unnecessarily moving things into CR bits that can more
- // efficiently stay in GPRs. Note that if we're not certain that the high
- // bits are set as required by the final extension, we still may need to do
- // some masking to get the proper behavior.
-
- // This same functionality is important on PPC64 when dealing with
- // 32-to-64-bit extensions; these occur often when 32-bit values are used as
- // the return values of functions. Because it is so similar, it is handled
- // here as well.
-
- if (N->getValueType(0) != MVT::i32 &&
- N->getValueType(0) != MVT::i64)
- return SDValue();
-
- if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
- (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
- return SDValue();
-
- if (N->getOperand(0).getOpcode() != ISD::AND &&
- N->getOperand(0).getOpcode() != ISD::OR &&
- N->getOperand(0).getOpcode() != ISD::XOR &&
- N->getOperand(0).getOpcode() != ISD::SELECT &&
- N->getOperand(0).getOpcode() != ISD::SELECT_CC)
- return SDValue();
-
- SmallVector<SDValue, 4> Inputs;
- SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
- SmallPtrSet<SDNode *, 16> Visited;
-
- // Visit all inputs, collect all binary operations (and, or, xor and
- // select) that are all fed by truncations.
- while (!BinOps.empty()) {
- SDValue BinOp = BinOps.back();
- BinOps.pop_back();
-
- if (!Visited.insert(BinOp.getNode()).second)
- continue;
-
- PromOps.push_back(BinOp);
-
- for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
- // The condition of the select is not promoted.
- if (BinOp.getOpcode() == ISD::SELECT && i == 0)
- continue;
- if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
- continue;
-
- if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
- isa<ConstantSDNode>(BinOp.getOperand(i))) {
- Inputs.push_back(BinOp.getOperand(i));
- } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
- BinOp.getOperand(i).getOpcode() == ISD::OR ||
- BinOp.getOperand(i).getOpcode() == ISD::XOR ||
- BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
- BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
- BinOps.push_back(BinOp.getOperand(i));
- } else {
- // We have an input that is not a truncation or another binary
- // operation; we'll abort this transformation.
- return SDValue();
- }
- }
- }
-
- // The operands of a select that must be truncated when the select is
- // promoted because the operand is actually part of the to-be-promoted set.
- DenseMap<SDNode *, EVT> SelectTruncOp[2];
-
- // Make sure that this is a self-contained cluster of operations (which
- // is not quite the same thing as saying that everything has only one
- // use).
- for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
- if (isa<ConstantSDNode>(Inputs[i]))
- continue;
-
- for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
- UE = Inputs[i].getNode()->use_end();
- UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User != N && !Visited.count(User))
- return SDValue();
-
- // If we're going to promote the non-output-value operand(s) or SELECT or
- // SELECT_CC, record them for truncation.
- if (User->getOpcode() == ISD::SELECT) {
- if (User->getOperand(0) == Inputs[i])
- SelectTruncOp[0].insert(std::make_pair(User,
- User->getOperand(0).getValueType()));
- } else if (User->getOpcode() == ISD::SELECT_CC) {
- if (User->getOperand(0) == Inputs[i])
- SelectTruncOp[0].insert(std::make_pair(User,
- User->getOperand(0).getValueType()));
- if (User->getOperand(1) == Inputs[i])
- SelectTruncOp[1].insert(std::make_pair(User,
- User->getOperand(1).getValueType()));
- }
- }
- }
-
- for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
- for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
- UE = PromOps[i].getNode()->use_end();
- UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User != N && !Visited.count(User))
- return SDValue();
-
- // If we're going to promote the non-output-value operand(s) or SELECT or
- // SELECT_CC, record them for truncation.
- if (User->getOpcode() == ISD::SELECT) {
- if (User->getOperand(0) == PromOps[i])
- SelectTruncOp[0].insert(std::make_pair(User,
- User->getOperand(0).getValueType()));
- } else if (User->getOpcode() == ISD::SELECT_CC) {
- if (User->getOperand(0) == PromOps[i])
- SelectTruncOp[0].insert(std::make_pair(User,
- User->getOperand(0).getValueType()));
- if (User->getOperand(1) == PromOps[i])
- SelectTruncOp[1].insert(std::make_pair(User,
- User->getOperand(1).getValueType()));
- }
- }
- }
-
- unsigned PromBits = N->getOperand(0).getValueSizeInBits();
- bool ReallyNeedsExt = false;
- if (N->getOpcode() != ISD::ANY_EXTEND) {
- // If all of the inputs are not already sign/zero extended, then
- // we'll still need to do that at the end.
- for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
- if (isa<ConstantSDNode>(Inputs[i]))
- continue;
-
- unsigned OpBits =
- Inputs[i].getOperand(0).getValueSizeInBits();
- assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
-
- if ((N->getOpcode() == ISD::ZERO_EXTEND &&
- !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
- APInt::getHighBitsSet(OpBits,
- OpBits-PromBits))) ||
- (N->getOpcode() == ISD::SIGN_EXTEND &&
- DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
- (OpBits-(PromBits-1)))) {
- ReallyNeedsExt = true;
- break;
- }
- }
- }
-
- // Replace all inputs, either with the truncation operand, or a
- // truncation or extension to the final output type.
- for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
- // Constant inputs need to be replaced with the to-be-promoted nodes that
- // use them because they might have users outside of the cluster of
- // promoted nodes.
- if (isa<ConstantSDNode>(Inputs[i]))
- continue;
-
- SDValue InSrc = Inputs[i].getOperand(0);
- if (Inputs[i].getValueType() == N->getValueType(0))
- DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
- else if (N->getOpcode() == ISD::SIGN_EXTEND)
- DAG.ReplaceAllUsesOfValueWith(Inputs[i],
- DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
- else if (N->getOpcode() == ISD::ZERO_EXTEND)
- DAG.ReplaceAllUsesOfValueWith(Inputs[i],
- DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
- else
- DAG.ReplaceAllUsesOfValueWith(Inputs[i],
- DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
- }
-
- std::list<HandleSDNode> PromOpHandles;
- for (auto &PromOp : PromOps)
- PromOpHandles.emplace_back(PromOp);
-
- // Replace all operations (these are all the same, but have a different
- // (promoted) return type). DAG.getNode will validate that the types of
- // a binary operator match, so go through the list in reverse so that
- // we've likely promoted both operands first.
- while (!PromOpHandles.empty()) {
- SDValue PromOp = PromOpHandles.back().getValue();
- PromOpHandles.pop_back();
-
- unsigned C;
- switch (PromOp.getOpcode()) {
- default: C = 0; break;
- case ISD::SELECT: C = 1; break;
- case ISD::SELECT_CC: C = 2; break;
- }
-
- if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
- PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
- (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
- PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
- // The to-be-promoted operands of this node have not yet been
- // promoted (this should be rare because we're going through the
- // list backward, but if one of the operands has several users in
- // this cluster of to-be-promoted nodes, it is possible).
- PromOpHandles.emplace_front(PromOp);
- continue;
- }
-
- // For SELECT and SELECT_CC nodes, we do a similar check for any
- // to-be-promoted comparison inputs.
- if (PromOp.getOpcode() == ISD::SELECT ||
- PromOp.getOpcode() == ISD::SELECT_CC) {
- if ((SelectTruncOp[0].count(PromOp.getNode()) &&
- PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
- (SelectTruncOp[1].count(PromOp.getNode()) &&
- PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
- PromOpHandles.emplace_front(PromOp);
- continue;
- }
- }
-
- SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
- PromOp.getNode()->op_end());
-
- // If this node has constant inputs, then they'll need to be promoted here.
- for (unsigned i = 0; i < 2; ++i) {
- if (!isa<ConstantSDNode>(Ops[C+i]))
- continue;
- if (Ops[C+i].getValueType() == N->getValueType(0))
- continue;
-
- if (N->getOpcode() == ISD::SIGN_EXTEND)
- Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
- else if (N->getOpcode() == ISD::ZERO_EXTEND)
- Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
- else
- Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
- }
-
- // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
- // truncate them again to the original value type.
- if (PromOp.getOpcode() == ISD::SELECT ||
- PromOp.getOpcode() == ISD::SELECT_CC) {
- auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
- if (SI0 != SelectTruncOp[0].end())
- Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
- auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
- if (SI1 != SelectTruncOp[1].end())
- Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
- }
-
- DAG.ReplaceAllUsesOfValueWith(PromOp,
- DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
- }
-
- // Now we're left with the initial extension itself.
- if (!ReallyNeedsExt)
- return N->getOperand(0);
-
- // To zero extend, just mask off everything except for the first bit (in the
- // i1 case).
- if (N->getOpcode() == ISD::ZERO_EXTEND)
- return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
- DAG.getConstant(APInt::getLowBitsSet(
- N->getValueSizeInBits(0), PromBits),
- dl, N->getValueType(0)));
-
- assert(N->getOpcode() == ISD::SIGN_EXTEND &&
- "Invalid extension type");
- EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
- SDValue ShiftCst =
- DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
- return DAG.getNode(
- ISD::SRA, dl, N->getValueType(0),
- DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
- ShiftCst);
-}
-
-SDValue PPCTargetLowering::combineSetCC(SDNode *N,
- DAGCombinerInfo &DCI) const {
- assert(N->getOpcode() == ISD::SETCC &&
- "Should be called with a SETCC node");
-
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
- if (CC == ISD::SETNE || CC == ISD::SETEQ) {
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
-
- // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
- if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
- LHS.hasOneUse())
- std::swap(LHS, RHS);
-
- // x == 0-y --> x+y == 0
- // x != 0-y --> x+y != 0
- if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
- RHS.hasOneUse()) {
- SDLoc DL(N);
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = N->getValueType(0);
- EVT OpVT = LHS.getValueType();
- SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
- return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
- }
- }
-
- return DAGCombineTruncBoolExt(N, DCI);
-}
-
-// Is this an extending load from an f32 to an f64?
-static bool isFPExtLoad(SDValue Op) {
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
- return LD->getExtensionType() == ISD::EXTLOAD &&
- Op.getValueType() == MVT::f64;
- return false;
-}
-
-/// Reduces the number of fp-to-int conversion when building a vector.
-///
-/// If this vector is built out of floating to integer conversions,
-/// transform it to a vector built out of floating point values followed by a
-/// single floating to integer conversion of the vector.
-/// Namely (build_vector (fptosi $A), (fptosi $B), ...)
-/// becomes (fptosi (build_vector ($A, $B, ...)))
-SDValue PPCTargetLowering::
-combineElementTruncationToVectorTruncation(SDNode *N,
- DAGCombinerInfo &DCI) const {
- assert(N->getOpcode() == ISD::BUILD_VECTOR &&
- "Should be called with a BUILD_VECTOR node");
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
-
- SDValue FirstInput = N->getOperand(0);
- assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
- "The input operand must be an fp-to-int conversion.");
-
- // This combine happens after legalization so the fp_to_[su]i nodes are
- // already converted to PPCSISD nodes.
- unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
- if (FirstConversion == PPCISD::FCTIDZ ||
- FirstConversion == PPCISD::FCTIDUZ ||
- FirstConversion == PPCISD::FCTIWZ ||
- FirstConversion == PPCISD::FCTIWUZ) {
- bool IsSplat = true;
- bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
- FirstConversion == PPCISD::FCTIWUZ;
- EVT SrcVT = FirstInput.getOperand(0).getValueType();
- SmallVector<SDValue, 4> Ops;
- EVT TargetVT = N->getValueType(0);
- for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
- SDValue NextOp = N->getOperand(i);
- if (NextOp.getOpcode() != PPCISD::MFVSR)
- return SDValue();
- unsigned NextConversion = NextOp.getOperand(0).getOpcode();
- if (NextConversion != FirstConversion)
- return SDValue();
- // If we are converting to 32-bit integers, we need to add an FP_ROUND.
- // This is not valid if the input was originally double precision. It is
- // also not profitable to do unless this is an extending load in which
- // case doing this combine will allow us to combine consecutive loads.
- if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
- return SDValue();
- if (N->getOperand(i) != FirstInput)
- IsSplat = false;
- }
-
- // If this is a splat, we leave it as-is since there will be only a single
- // fp-to-int conversion followed by a splat of the integer. This is better
- // for 32-bit and smaller ints and neutral for 64-bit ints.
- if (IsSplat)
- return SDValue();
-
- // Now that we know we have the right type of node, get its operands
- for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
- SDValue In = N->getOperand(i).getOperand(0);
- if (Is32Bit) {
- // For 32-bit values, we need to add an FP_ROUND node (if we made it
- // here, we know that all inputs are extending loads so this is safe).
- if (In.isUndef())
- Ops.push_back(DAG.getUNDEF(SrcVT));
- else {
- SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
- MVT::f32, In.getOperand(0),
- DAG.getIntPtrConstant(1, dl));
- Ops.push_back(Trunc);
- }
- } else
- Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
- }
-
- unsigned Opcode;
- if (FirstConversion == PPCISD::FCTIDZ ||
- FirstConversion == PPCISD::FCTIWZ)
- Opcode = ISD::FP_TO_SINT;
- else
- Opcode = ISD::FP_TO_UINT;
-
- EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
- SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
- return DAG.getNode(Opcode, dl, TargetVT, BV);
- }
- return SDValue();
-}
-
-/// Reduce the number of loads when building a vector.
-///
-/// Building a vector out of multiple loads can be converted to a load
-/// of the vector type if the loads are consecutive. If the loads are
-/// consecutive but in descending order, a shuffle is added at the end
-/// to reorder the vector.
-static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
- assert(N->getOpcode() == ISD::BUILD_VECTOR &&
- "Should be called with a BUILD_VECTOR node");
-
- SDLoc dl(N);
- bool InputsAreConsecutiveLoads = true;
- bool InputsAreReverseConsecutive = true;
- unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
- SDValue FirstInput = N->getOperand(0);
- bool IsRoundOfExtLoad = false;
-
- if (FirstInput.getOpcode() == ISD::FP_ROUND &&
- FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
- LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
- IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
- }
- // Not a build vector of (possibly fp_rounded) loads.
- if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
- N->getNumOperands() == 1)
- return SDValue();
-
- for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
- // If any inputs are fp_round(extload), they all must be.
- if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
- return SDValue();
-
- SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
- N->getOperand(i);
- if (NextInput.getOpcode() != ISD::LOAD)
- return SDValue();
-
- SDValue PreviousInput =
- IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
- LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
- LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
-
- // If any inputs are fp_round(extload), they all must be.
- if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
- return SDValue();
-
- if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
- InputsAreConsecutiveLoads = false;
- if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
- InputsAreReverseConsecutive = false;
-
- // Exit early if the loads are neither consecutive nor reverse consecutive.
- if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
- return SDValue();
- }
-
- assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
- "The loads cannot be both consecutive and reverse consecutive.");
-
- SDValue FirstLoadOp =
- IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
- SDValue LastLoadOp =
- IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
- N->getOperand(N->getNumOperands()-1);
-
- LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
- LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
- if (InputsAreConsecutiveLoads) {
- assert(LD1 && "Input needs to be a LoadSDNode.");
- return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
- LD1->getBasePtr(), LD1->getPointerInfo(),
- LD1->getAlignment());
- }
- if (InputsAreReverseConsecutive) {
- assert(LDL && "Input needs to be a LoadSDNode.");
- SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
- LDL->getBasePtr(), LDL->getPointerInfo(),
- LDL->getAlignment());
- SmallVector<int, 16> Ops;
- for (int i = N->getNumOperands() - 1; i >= 0; i--)
- Ops.push_back(i);
-
- return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
- DAG.getUNDEF(N->getValueType(0)), Ops);
- }
- return SDValue();
-}
-
-// This function adds the required vector_shuffle needed to get
-// the elements of the vector extract in the correct position
-// as specified by the CorrectElems encoding.
-static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
- SDValue Input, uint64_t Elems,
- uint64_t CorrectElems) {
- SDLoc dl(N);
-
- unsigned NumElems = Input.getValueType().getVectorNumElements();
- SmallVector<int, 16> ShuffleMask(NumElems, -1);
-
- // Knowing the element indices being extracted from the original
- // vector and the order in which they're being inserted, just put
- // them at element indices required for the instruction.
- for (unsigned i = 0; i < N->getNumOperands(); i++) {
- if (DAG.getDataLayout().isLittleEndian())
- ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
- else
- ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
- CorrectElems = CorrectElems >> 8;
- Elems = Elems >> 8;
- }
-
- SDValue Shuffle =
- DAG.getVectorShuffle(Input.getValueType(), dl, Input,
- DAG.getUNDEF(Input.getValueType()), ShuffleMask);
-
- EVT Ty = N->getValueType(0);
- SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
- return BV;
-}
-
-// Look for build vector patterns where input operands come from sign
-// extended vector_extract elements of specific indices. If the correct indices
-// aren't used, add a vector shuffle to fix up the indices and create a new
-// PPCISD:SExtVElems node which selects the vector sign extend instructions
-// during instruction selection.
-static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
- // This array encodes the indices that the vector sign extend instructions
- // extract from when extending from one type to another for both BE and LE.
- // The right nibble of each byte corresponds to the LE incides.
- // and the left nibble of each byte corresponds to the BE incides.
- // For example: 0x3074B8FC byte->word
- // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
- // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
- // For example: 0x000070F8 byte->double word
- // For LE: the allowed indices are: 0x0,0x8
- // For BE: the allowed indices are: 0x7,0xF
- uint64_t TargetElems[] = {
- 0x3074B8FC, // b->w
- 0x000070F8, // b->d
- 0x10325476, // h->w
- 0x00003074, // h->d
- 0x00001032, // w->d
- };
-
- uint64_t Elems = 0;
- int Index;
- SDValue Input;
-
- auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
- if (!Op)
- return false;
- if (Op.getOpcode() != ISD::SIGN_EXTEND &&
- Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
- return false;
-
- // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
- // of the right width.
- SDValue Extract = Op.getOperand(0);
- if (Extract.getOpcode() == ISD::ANY_EXTEND)
- Extract = Extract.getOperand(0);
- if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
- return false;
-
- ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
- if (!ExtOp)
- return false;
-
- Index = ExtOp->getZExtValue();
- if (Input && Input != Extract.getOperand(0))
- return false;
-
- if (!Input)
- Input = Extract.getOperand(0);
-
- Elems = Elems << 8;
- Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
- Elems |= Index;
-
- return true;
- };
-
- // If the build vector operands aren't sign extended vector extracts,
- // of the same input vector, then return.
- for (unsigned i = 0; i < N->getNumOperands(); i++) {
- if (!isSExtOfVecExtract(N->getOperand(i))) {
- return SDValue();
- }
- }
-
- // If the vector extract indicies are not correct, add the appropriate
- // vector_shuffle.
- int TgtElemArrayIdx;
- int InputSize = Input.getValueType().getScalarSizeInBits();
- int OutputSize = N->getValueType(0).getScalarSizeInBits();
- if (InputSize + OutputSize == 40)
- TgtElemArrayIdx = 0;
- else if (InputSize + OutputSize == 72)
- TgtElemArrayIdx = 1;
- else if (InputSize + OutputSize == 48)
- TgtElemArrayIdx = 2;
- else if (InputSize + OutputSize == 80)
- TgtElemArrayIdx = 3;
- else if (InputSize + OutputSize == 96)
- TgtElemArrayIdx = 4;
- else
- return SDValue();
-
- uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
- CorrectElems = DAG.getDataLayout().isLittleEndian()
- ? CorrectElems & 0x0F0F0F0F0F0F0F0F
- : CorrectElems & 0xF0F0F0F0F0F0F0F0;
- if (Elems != CorrectElems) {
- return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
- }
-
- // Regular lowering will catch cases where a shuffle is not needed.
- return SDValue();
-}
-
-SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
- DAGCombinerInfo &DCI) const {
- assert(N->getOpcode() == ISD::BUILD_VECTOR &&
- "Should be called with a BUILD_VECTOR node");
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
-
- if (!Subtarget.hasVSX())
- return SDValue();
-
- // The target independent DAG combiner will leave a build_vector of
- // float-to-int conversions intact. We can generate MUCH better code for
- // a float-to-int conversion of a vector of floats.
- SDValue FirstInput = N->getOperand(0);
- if (FirstInput.getOpcode() == PPCISD::MFVSR) {
- SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
- if (Reduced)
- return Reduced;
- }
-
- // If we're building a vector out of consecutive loads, just load that
- // vector type.
- SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
- if (Reduced)
- return Reduced;
-
- // If we're building a vector out of extended elements from another vector
- // we have P9 vector integer extend instructions. The code assumes legal
- // input types (i.e. it can't handle things like v4i16) so do not run before
- // legalization.
- if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
- Reduced = combineBVOfVecSExt(N, DAG);
- if (Reduced)
- return Reduced;
- }
-
-
- if (N->getValueType(0) != MVT::v2f64)
- return SDValue();
-
- // Looking for:
- // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
- if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
- FirstInput.getOpcode() != ISD::UINT_TO_FP)
- return SDValue();
- if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
- N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
- return SDValue();
- if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
- return SDValue();
-
- SDValue Ext1 = FirstInput.getOperand(0);
- SDValue Ext2 = N->getOperand(1).getOperand(0);
- if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
- return SDValue();
-
- ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
- ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
- if (!Ext1Op || !Ext2Op)
- return SDValue();
- if (Ext1.getValueType() != MVT::i32 ||
- Ext2.getValueType() != MVT::i32)
- if (Ext1.getOperand(0) != Ext2.getOperand(0))
- return SDValue();
-
- int FirstElem = Ext1Op->getZExtValue();
- int SecondElem = Ext2Op->getZExtValue();
- int SubvecIdx;
- if (FirstElem == 0 && SecondElem == 1)
- SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
- else if (FirstElem == 2 && SecondElem == 3)
- SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
- else
- return SDValue();
-
- SDValue SrcVec = Ext1.getOperand(0);
- auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
- PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
- return DAG.getNode(NodeType, dl, MVT::v2f64,
- SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
-}
-
-SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
- DAGCombinerInfo &DCI) const {
- assert((N->getOpcode() == ISD::SINT_TO_FP ||
- N->getOpcode() == ISD::UINT_TO_FP) &&
- "Need an int -> FP conversion node here");
-
- if (useSoftFloat() || !Subtarget.has64BitSupport())
- return SDValue();
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- SDValue Op(N, 0);
-
- // Don't handle ppc_fp128 here or conversions that are out-of-range capable
- // from the hardware.
- if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
- return SDValue();
- if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
- Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
- return SDValue();
-
- SDValue FirstOperand(Op.getOperand(0));
- bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
- (FirstOperand.getValueType() == MVT::i8 ||
- FirstOperand.getValueType() == MVT::i16);
- if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
- bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
- bool DstDouble = Op.getValueType() == MVT::f64;
- unsigned ConvOp = Signed ?
- (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) :
- (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
- SDValue WidthConst =
- DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
- dl, false);
- LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
- SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
- SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
- DAG.getVTList(MVT::f64, MVT::Other),
- Ops, MVT::i8, LDN->getMemOperand());
-
- // For signed conversion, we need to sign-extend the value in the VSR
- if (Signed) {
- SDValue ExtOps[] = { Ld, WidthConst };
- SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
- return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
- } else
- return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
- }
-
-
- // For i32 intermediate values, unfortunately, the conversion functions
- // leave the upper 32 bits of the value are undefined. Within the set of
- // scalar instructions, we have no method for zero- or sign-extending the
- // value. Thus, we cannot handle i32 intermediate values here.
- if (Op.getOperand(0).getValueType() == MVT::i32)
- return SDValue();
-
- assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
- "UINT_TO_FP is supported only with FPCVT");
-
- // If we have FCFIDS, then use it when converting to single-precision.
- // Otherwise, convert to double-precision and then round.
- unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
- ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
- : PPCISD::FCFIDS)
- : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
- : PPCISD::FCFID);
- MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
- ? MVT::f32
- : MVT::f64;
-
- // If we're converting from a float, to an int, and back to a float again,
- // then we don't need the store/load pair at all.
- if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
- Subtarget.hasFPCVT()) ||
- (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
- SDValue Src = Op.getOperand(0).getOperand(0);
- if (Src.getValueType() == MVT::f32) {
- Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
- DCI.AddToWorklist(Src.getNode());
- } else if (Src.getValueType() != MVT::f64) {
- // Make sure that we don't pick up a ppc_fp128 source value.
- return SDValue();
- }
-
- unsigned FCTOp =
- Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
- PPCISD::FCTIDUZ;
-
- SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
- SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
-
- if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
- FP = DAG.getNode(ISD::FP_ROUND, dl,
- MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
- DCI.AddToWorklist(FP.getNode());
- }
-
- return FP;
- }
-
- return SDValue();
-}
-
-// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
-// builtins) into loads with swaps.
-SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- SDValue Chain;
- SDValue Base;
- MachineMemOperand *MMO;
-
- switch (N->getOpcode()) {
- default:
- llvm_unreachable("Unexpected opcode for little endian VSX load");
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- Chain = LD->getChain();
- Base = LD->getBasePtr();
- MMO = LD->getMemOperand();
- // If the MMO suggests this isn't a load of a full vector, leave
- // things alone. For a built-in, we have to make the change for
- // correctness, so if there is a size problem that will be a bug.
- if (MMO->getSize() < 16)
- return SDValue();
- break;
- }
- case ISD::INTRINSIC_W_CHAIN: {
- MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
- Chain = Intrin->getChain();
- // Similarly to the store case below, Intrin->getBasePtr() doesn't get
- // us what we want. Get operand 2 instead.
- Base = Intrin->getOperand(2);
- MMO = Intrin->getMemOperand();
- break;
- }
- }
-
- MVT VecTy = N->getValueType(0).getSimpleVT();
-
- // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
- // aligned and the type is a vector with elements up to 4 bytes
- if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
- && VecTy.getScalarSizeInBits() <= 32 ) {
- return SDValue();
- }
-
- SDValue LoadOps[] = { Chain, Base };
- SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
- DAG.getVTList(MVT::v2f64, MVT::Other),
- LoadOps, MVT::v2f64, MMO);
-
- DCI.AddToWorklist(Load.getNode());
- Chain = Load.getValue(1);
- SDValue Swap = DAG.getNode(
- PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
- DCI.AddToWorklist(Swap.getNode());
-
- // Add a bitcast if the resulting load type doesn't match v2f64.
- if (VecTy != MVT::v2f64) {
- SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
- DCI.AddToWorklist(N.getNode());
- // Package {bitcast value, swap's chain} to match Load's shape.
- return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
- N, Swap.getValue(1));
- }
-
- return Swap;
-}
-
-// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
-// builtins) into stores with swaps.
-SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- SDValue Chain;
- SDValue Base;
- unsigned SrcOpnd;
- MachineMemOperand *MMO;
-
- switch (N->getOpcode()) {
- default:
- llvm_unreachable("Unexpected opcode for little endian VSX store");
- case ISD::STORE: {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- Chain = ST->getChain();
- Base = ST->getBasePtr();
- MMO = ST->getMemOperand();
- SrcOpnd = 1;
- // If the MMO suggests this isn't a store of a full vector, leave
- // things alone. For a built-in, we have to make the change for
- // correctness, so if there is a size problem that will be a bug.
- if (MMO->getSize() < 16)
- return SDValue();
- break;
- }
- case ISD::INTRINSIC_VOID: {
- MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
- Chain = Intrin->getChain();
- // Intrin->getBasePtr() oddly does not get what we want.
- Base = Intrin->getOperand(3);
- MMO = Intrin->getMemOperand();
- SrcOpnd = 2;
- break;
- }
- }
-
- SDValue Src = N->getOperand(SrcOpnd);
- MVT VecTy = Src.getValueType().getSimpleVT();
-
- // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
- // aligned and the type is a vector with elements up to 4 bytes
- if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
- && VecTy.getScalarSizeInBits() <= 32 ) {
- return SDValue();
- }
-
- // All stores are done as v2f64 and possible bit cast.
- if (VecTy != MVT::v2f64) {
- Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
- DCI.AddToWorklist(Src.getNode());
- }
-
- SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
- DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
- DCI.AddToWorklist(Swap.getNode());
- Chain = Swap.getValue(1);
- SDValue StoreOps[] = { Chain, Swap, Base };
- SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
- DAG.getVTList(MVT::Other),
- StoreOps, VecTy, MMO);
- DCI.AddToWorklist(Store.getNode());
- return Store;
-}
-
-// Handle DAG combine for STORE (FP_TO_INT F).
-SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
- DAGCombinerInfo &DCI) const {
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- unsigned Opcode = N->getOperand(1).getOpcode();
-
- assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
- && "Not a FP_TO_INT Instruction!");
-
- SDValue Val = N->getOperand(1).getOperand(0);
- EVT Op1VT = N->getOperand(1).getValueType();
- EVT ResVT = Val.getValueType();
-
- // Floating point types smaller than 32 bits are not legal on Power.
- if (ResVT.getScalarSizeInBits() < 32)
- return SDValue();
-
- // Only perform combine for conversion to i64/i32 or power9 i16/i8.
- bool ValidTypeForStoreFltAsInt =
- (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
- (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
-
- if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
- cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
- return SDValue();
-
- // Extend f32 values to f64
- if (ResVT.getScalarSizeInBits() == 32) {
- Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
- DCI.AddToWorklist(Val.getNode());
- }
-
- // Set signed or unsigned conversion opcode.
- unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
- PPCISD::FP_TO_SINT_IN_VSR :
- PPCISD::FP_TO_UINT_IN_VSR;
-
- Val = DAG.getNode(ConvOpcode,
- dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
- DCI.AddToWorklist(Val.getNode());
-
- // Set number of bytes being converted.
- unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
- SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
- DAG.getIntPtrConstant(ByteSize, dl, false),
- DAG.getValueType(Op1VT) };
-
- Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
- DAG.getVTList(MVT::Other), Ops,
- cast<StoreSDNode>(N)->getMemoryVT(),
- cast<StoreSDNode>(N)->getMemOperand());
-
- DCI.AddToWorklist(Val.getNode());
- return Val;
-}
-
-SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- switch (N->getOpcode()) {
- default: break;
- case ISD::ADD:
- return combineADD(N, DCI);
- case ISD::SHL:
- return combineSHL(N, DCI);
- case ISD::SRA:
- return combineSRA(N, DCI);
- case ISD::SRL:
- return combineSRL(N, DCI);
- case PPCISD::SHL:
- if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
- return N->getOperand(0);
- break;
- case PPCISD::SRL:
- if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
- return N->getOperand(0);
- break;
- case PPCISD::SRA:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
- if (C->isNullValue() || // 0 >>s V -> 0.
- C->isAllOnesValue()) // -1 >>s V -> -1.
- return N->getOperand(0);
- }
- break;
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::ANY_EXTEND:
- return DAGCombineExtBoolTrunc(N, DCI);
- case ISD::TRUNCATE:
- return combineTRUNCATE(N, DCI);
- case ISD::SETCC:
- if (SDValue CSCC = combineSetCC(N, DCI))
- return CSCC;
- LLVM_FALLTHROUGH;
- case ISD::SELECT_CC:
- return DAGCombineTruncBoolExt(N, DCI);
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- return combineFPToIntToFP(N, DCI);
- case ISD::STORE: {
-
- EVT Op1VT = N->getOperand(1).getValueType();
- unsigned Opcode = N->getOperand(1).getOpcode();
-
- if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
- SDValue Val= combineStoreFPToInt(N, DCI);
- if (Val)
- return Val;
- }
-
- // Turn STORE (BSWAP) -> sthbrx/stwbrx.
- if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
- N->getOperand(1).getNode()->hasOneUse() &&
- (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
- (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
-
- // STBRX can only handle simple types and it makes no sense to store less
- // two bytes in byte-reversed order.
- EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
- if (mVT.isExtended() || mVT.getSizeInBits() < 16)
- break;
-
- SDValue BSwapOp = N->getOperand(1).getOperand(0);
- // Do an any-extend to 32-bits if this is a half-word input.
- if (BSwapOp.getValueType() == MVT::i16)
- BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
-
- // If the type of BSWAP operand is wider than stored memory width
- // it need to be shifted to the right side before STBRX.
- if (Op1VT.bitsGT(mVT)) {
- int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
- BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
- DAG.getConstant(Shift, dl, MVT::i32));
- // Need to truncate if this is a bswap of i64 stored as i32/i16.
- if (Op1VT == MVT::i64)
- BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
- }
-
- SDValue Ops[] = {
- N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
- };
- return
- DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
- Ops, cast<StoreSDNode>(N)->getMemoryVT(),
- cast<StoreSDNode>(N)->getMemOperand());
- }
-
- // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0>
- // So it can increase the chance of CSE constant construction.
- if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
- isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
- // Need to sign-extended to 64-bits to handle negative values.
- EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
- uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
- MemVT.getSizeInBits());
- SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
-
- // DAG.getTruncStore() can't be used here because it doesn't accept
- // the general (base + offset) addressing mode.
- // So we use UpdateNodeOperands and setTruncatingStore instead.
- DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
- N->getOperand(3));
- cast<StoreSDNode>(N)->setTruncatingStore(true);
- return SDValue(N, 0);
- }
-
- // For little endian, VSX stores require generating xxswapd/lxvd2x.
- // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
- if (Op1VT.isSimple()) {
- MVT StoreVT = Op1VT.getSimpleVT();
- if (Subtarget.needsSwapsForVSXMemOps() &&
- (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
- StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
- return expandVSXStoreForLE(N, DCI);
- }
- break;
- }
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- EVT VT = LD->getValueType(0);
-
- // For little endian, VSX loads require generating lxvd2x/xxswapd.
- // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
- if (VT.isSimple()) {
- MVT LoadVT = VT.getSimpleVT();
- if (Subtarget.needsSwapsForVSXMemOps() &&
- (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
- LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
- return expandVSXLoadForLE(N, DCI);
- }
-
- // We sometimes end up with a 64-bit integer load, from which we extract
- // two single-precision floating-point numbers. This happens with
- // std::complex<float>, and other similar structures, because of the way we
- // canonicalize structure copies. However, if we lack direct moves,
- // then the final bitcasts from the extracted integer values to the
- // floating-point numbers turn into store/load pairs. Even with direct moves,
- // just loading the two floating-point numbers is likely better.
- auto ReplaceTwoFloatLoad = [&]() {
- if (VT != MVT::i64)
- return false;
-
- if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
- LD->isVolatile())
- return false;
-
- // We're looking for a sequence like this:
- // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
- // t16: i64 = srl t13, Constant:i32<32>
- // t17: i32 = truncate t16
- // t18: f32 = bitcast t17
- // t19: i32 = truncate t13
- // t20: f32 = bitcast t19
-
- if (!LD->hasNUsesOfValue(2, 0))
- return false;
-
- auto UI = LD->use_begin();
- while (UI.getUse().getResNo() != 0) ++UI;
- SDNode *Trunc = *UI++;
- while (UI.getUse().getResNo() != 0) ++UI;
- SDNode *RightShift = *UI;
- if (Trunc->getOpcode() != ISD::TRUNCATE)
- std::swap(Trunc, RightShift);
-
- if (Trunc->getOpcode() != ISD::TRUNCATE ||
- Trunc->getValueType(0) != MVT::i32 ||
- !Trunc->hasOneUse())
- return false;
- if (RightShift->getOpcode() != ISD::SRL ||
- !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
- RightShift->getConstantOperandVal(1) != 32 ||
- !RightShift->hasOneUse())
- return false;
-
- SDNode *Trunc2 = *RightShift->use_begin();
- if (Trunc2->getOpcode() != ISD::TRUNCATE ||
- Trunc2->getValueType(0) != MVT::i32 ||
- !Trunc2->hasOneUse())
- return false;
-
- SDNode *Bitcast = *Trunc->use_begin();
- SDNode *Bitcast2 = *Trunc2->use_begin();
-
- if (Bitcast->getOpcode() != ISD::BITCAST ||
- Bitcast->getValueType(0) != MVT::f32)
- return false;
- if (Bitcast2->getOpcode() != ISD::BITCAST ||
- Bitcast2->getValueType(0) != MVT::f32)
- return false;
-
- if (Subtarget.isLittleEndian())
- std::swap(Bitcast, Bitcast2);
-
- // Bitcast has the second float (in memory-layout order) and Bitcast2
- // has the first one.
-
- SDValue BasePtr = LD->getBasePtr();
- if (LD->isIndexed()) {
- assert(LD->getAddressingMode() == ISD::PRE_INC &&
- "Non-pre-inc AM on PPC?");
- BasePtr =
- DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
- LD->getOffset());
- }
-
- auto MMOFlags =
- LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
- SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
- LD->getPointerInfo(), LD->getAlignment(),
- MMOFlags, LD->getAAInfo());
- SDValue AddPtr =
- DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
- BasePtr, DAG.getIntPtrConstant(4, dl));
- SDValue FloatLoad2 = DAG.getLoad(
- MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
- LD->getPointerInfo().getWithOffset(4),
- MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
-
- if (LD->isIndexed()) {
- // Note that DAGCombine should re-form any pre-increment load(s) from
- // what is produced here if that makes sense.
- DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
- }
-
- DCI.CombineTo(Bitcast2, FloatLoad);
- DCI.CombineTo(Bitcast, FloatLoad2);
-
- DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
- SDValue(FloatLoad2.getNode(), 1));
- return true;
- };
-
- if (ReplaceTwoFloatLoad())
- return SDValue(N, 0);
-
- EVT MemVT = LD->getMemoryVT();
- Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
- unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
- Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
- unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
- if (LD->isUnindexed() && VT.isVector() &&
- ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
- // P8 and later hardware should just use LOAD.
- !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
- VT == MVT::v4i32 || VT == MVT::v4f32)) ||
- (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
- LD->getAlignment() >= ScalarABIAlignment)) &&
- LD->getAlignment() < ABIAlignment) {
- // This is a type-legal unaligned Altivec or QPX load.
- SDValue Chain = LD->getChain();
- SDValue Ptr = LD->getBasePtr();
- bool isLittleEndian = Subtarget.isLittleEndian();
-
- // This implements the loading of unaligned vectors as described in
- // the venerable Apple Velocity Engine overview. Specifically:
- // https://developer.apple.com/hardwaredrivers/ve/alignment.html
- // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
- //
- // The general idea is to expand a sequence of one or more unaligned
- // loads into an alignment-based permutation-control instruction (lvsl
- // or lvsr), a series of regular vector loads (which always truncate
- // their input address to an aligned address), and a series of
- // permutations. The results of these permutations are the requested
- // loaded values. The trick is that the last "extra" load is not taken
- // from the address you might suspect (sizeof(vector) bytes after the
- // last requested load), but rather sizeof(vector) - 1 bytes after the
- // last requested vector. The point of this is to avoid a page fault if
- // the base address happened to be aligned. This works because if the
- // base address is aligned, then adding less than a full vector length
- // will cause the last vector in the sequence to be (re)loaded.
- // Otherwise, the next vector will be fetched as you might suspect was
- // necessary.
-
- // We might be able to reuse the permutation generation from
- // a different base address offset from this one by an aligned amount.
- // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
- // optimization later.
- Intrinsic::ID Intr, IntrLD, IntrPerm;
- MVT PermCntlTy, PermTy, LDTy;
- if (Subtarget.hasAltivec()) {
- Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr :
- Intrinsic::ppc_altivec_lvsl;
- IntrLD = Intrinsic::ppc_altivec_lvx;
- IntrPerm = Intrinsic::ppc_altivec_vperm;
- PermCntlTy = MVT::v16i8;
- PermTy = MVT::v4i32;
- LDTy = MVT::v4i32;
- } else {
- Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
- Intrinsic::ppc_qpx_qvlpcls;
- IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
- Intrinsic::ppc_qpx_qvlfs;
- IntrPerm = Intrinsic::ppc_qpx_qvfperm;
- PermCntlTy = MVT::v4f64;
- PermTy = MVT::v4f64;
- LDTy = MemVT.getSimpleVT();
- }
-
- SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
-
- // Create the new MMO for the new base load. It is like the original MMO,
- // but represents an area in memory almost twice the vector size centered
- // on the original address. If the address is unaligned, we might start
- // reading up to (sizeof(vector)-1) bytes below the address of the
- // original unaligned load.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *BaseMMO =
- MF.getMachineMemOperand(LD->getMemOperand(),
- -(long)MemVT.getStoreSize()+1,
- 2*MemVT.getStoreSize()-1);
-
- // Create the new base load.
- SDValue LDXIntID =
- DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
- SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
- SDValue BaseLoad =
- DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
- DAG.getVTList(PermTy, MVT::Other),
- BaseLoadOps, LDTy, BaseMMO);
-
- // Note that the value of IncOffset (which is provided to the next
- // load's pointer info offset value, and thus used to calculate the
- // alignment), and the value of IncValue (which is actually used to
- // increment the pointer value) are different! This is because we
- // require the next load to appear to be aligned, even though it
- // is actually offset from the base pointer by a lesser amount.
- int IncOffset = VT.getSizeInBits() / 8;
- int IncValue = IncOffset;
-
- // Walk (both up and down) the chain looking for another load at the real
- // (aligned) offset (the alignment of the other load does not matter in
- // this case). If found, then do not use the offset reduction trick, as
- // that will prevent the loads from being later combined (as they would
- // otherwise be duplicates).
- if (!findConsecutiveLoad(LD, DAG))
- --IncValue;
-
- SDValue Increment =
- DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
- Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
-
- MachineMemOperand *ExtraMMO =
- MF.getMachineMemOperand(LD->getMemOperand(),
- 1, 2*MemVT.getStoreSize()-1);
- SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
- SDValue ExtraLoad =
- DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
- DAG.getVTList(PermTy, MVT::Other),
- ExtraLoadOps, LDTy, ExtraMMO);
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- BaseLoad.getValue(1), ExtraLoad.getValue(1));
-
- // Because vperm has a big-endian bias, we must reverse the order
- // of the input vectors and complement the permute control vector
- // when generating little endian code. We have already handled the
- // latter by using lvsr instead of lvsl, so just reverse BaseLoad
- // and ExtraLoad here.
- SDValue Perm;
- if (isLittleEndian)
- Perm = BuildIntrinsicOp(IntrPerm,
- ExtraLoad, BaseLoad, PermCntl, DAG, dl);
- else
- Perm = BuildIntrinsicOp(IntrPerm,
- BaseLoad, ExtraLoad, PermCntl, DAG, dl);
-
- if (VT != PermTy)
- Perm = Subtarget.hasAltivec() ?
- DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
- DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
- DAG.getTargetConstant(1, dl, MVT::i64));
- // second argument is 1 because this rounding
- // is always exact.
-
- // The output of the permutation is our loaded result, the TokenFactor is
- // our new chain.
- DCI.CombineTo(N, Perm, TF);
- return SDValue(N, 0);
- }
- }
- break;
- case ISD::INTRINSIC_WO_CHAIN: {
- bool isLittleEndian = Subtarget.isLittleEndian();
- unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
- Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
- : Intrinsic::ppc_altivec_lvsl);
- if ((IID == Intr ||
- IID == Intrinsic::ppc_qpx_qvlpcld ||
- IID == Intrinsic::ppc_qpx_qvlpcls) &&
- N->getOperand(1)->getOpcode() == ISD::ADD) {
- SDValue Add = N->getOperand(1);
-
- int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
- 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
-
- if (DAG.MaskedValueIsZero(Add->getOperand(1),
- APInt::getAllOnesValue(Bits /* alignment */)
- .zext(Add.getScalarValueSizeInBits()))) {
- SDNode *BasePtr = Add->getOperand(0).getNode();
- for (SDNode::use_iterator UI = BasePtr->use_begin(),
- UE = BasePtr->use_end();
- UI != UE; ++UI) {
- if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
- cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
- // We've found another LVSL/LVSR, and this address is an aligned
- // multiple of that one. The results will be the same, so use the
- // one we've just found instead.
-
- return SDValue(*UI, 0);
- }
- }
- }
-
- if (isa<ConstantSDNode>(Add->getOperand(1))) {
- SDNode *BasePtr = Add->getOperand(0).getNode();
- for (SDNode::use_iterator UI = BasePtr->use_begin(),
- UE = BasePtr->use_end(); UI != UE; ++UI) {
- if (UI->getOpcode() == ISD::ADD &&
- isa<ConstantSDNode>(UI->getOperand(1)) &&
- (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
- cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
- (1ULL << Bits) == 0) {
- SDNode *OtherAdd = *UI;
- for (SDNode::use_iterator VI = OtherAdd->use_begin(),
- VE = OtherAdd->use_end(); VI != VE; ++VI) {
- if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
- cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
- return SDValue(*VI, 0);
- }
- }
- }
- }
- }
- }
-
- // Combine vmaxsw/h/b(a, a's negation) to abs(a)
- // Expose the vabsduw/h/b opportunity for down stream
- if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
- (IID == Intrinsic::ppc_altivec_vmaxsw ||
- IID == Intrinsic::ppc_altivec_vmaxsh ||
- IID == Intrinsic::ppc_altivec_vmaxsb)) {
- SDValue V1 = N->getOperand(1);
- SDValue V2 = N->getOperand(2);
- if ((V1.getSimpleValueType() == MVT::v4i32 ||
- V1.getSimpleValueType() == MVT::v8i16 ||
- V1.getSimpleValueType() == MVT::v16i8) &&
- V1.getSimpleValueType() == V2.getSimpleValueType()) {
- // (0-a, a)
- if (V1.getOpcode() == ISD::SUB &&
- ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
- V1.getOperand(1) == V2) {
- return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
- }
- // (a, 0-a)
- if (V2.getOpcode() == ISD::SUB &&
- ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
- V2.getOperand(1) == V1) {
- return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
- }
- // (x-y, y-x)
- if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
- V1.getOperand(0) == V2.getOperand(1) &&
- V1.getOperand(1) == V2.getOperand(0)) {
- return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
- }
- }
- }
- }
-
- break;
- case ISD::INTRINSIC_W_CHAIN:
- // For little endian, VSX loads require generating lxvd2x/xxswapd.
- // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
- if (Subtarget.needsSwapsForVSXMemOps()) {
- switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
- default:
- break;
- case Intrinsic::ppc_vsx_lxvw4x:
- case Intrinsic::ppc_vsx_lxvd2x:
- return expandVSXLoadForLE(N, DCI);
- }
- }
- break;
- case ISD::INTRINSIC_VOID:
- // For little endian, VSX stores require generating xxswapd/stxvd2x.
- // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
- if (Subtarget.needsSwapsForVSXMemOps()) {
- switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
- default:
- break;
- case Intrinsic::ppc_vsx_stxvw4x:
- case Intrinsic::ppc_vsx_stxvd2x:
- return expandVSXStoreForLE(N, DCI);
- }
- }
- break;
- case ISD::BSWAP:
- // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
- if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
- N->getOperand(0).hasOneUse() &&
- (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
- (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
- N->getValueType(0) == MVT::i64))) {
- SDValue Load = N->getOperand(0);
- LoadSDNode *LD = cast<LoadSDNode>(Load);
- // Create the byte-swapping load.
- SDValue Ops[] = {
- LD->getChain(), // Chain
- LD->getBasePtr(), // Ptr
- DAG.getValueType(N->getValueType(0)) // VT
- };
- SDValue BSLoad =
- DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
- DAG.getVTList(N->getValueType(0) == MVT::i64 ?
- MVT::i64 : MVT::i32, MVT::Other),
- Ops, LD->getMemoryVT(), LD->getMemOperand());
-
- // If this is an i16 load, insert the truncate.
- SDValue ResVal = BSLoad;
- if (N->getValueType(0) == MVT::i16)
- ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
-
- // First, combine the bswap away. This makes the value produced by the
- // load dead.
- DCI.CombineTo(N, ResVal);
-
- // Next, combine the load away, we give it a bogus result value but a real
- // chain result. The result value is dead because the bswap is dead.
- DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
-
- // Return N so it doesn't get rechecked!
- return SDValue(N, 0);
- }
- break;
- case PPCISD::VCMP:
- // If a VCMPo node already exists with exactly the same operands as this
- // node, use its result instead of this node (VCMPo computes both a CR6 and
- // a normal output).
- //
- if (!N->getOperand(0).hasOneUse() &&
- !N->getOperand(1).hasOneUse() &&
- !N->getOperand(2).hasOneUse()) {
-
- // Scan all of the users of the LHS, looking for VCMPo's that match.
- SDNode *VCMPoNode = nullptr;
-
- SDNode *LHSN = N->getOperand(0).getNode();
- for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
- UI != E; ++UI)
- if (UI->getOpcode() == PPCISD::VCMPo &&
- UI->getOperand(1) == N->getOperand(1) &&
- UI->getOperand(2) == N->getOperand(2) &&
- UI->getOperand(0) == N->getOperand(0)) {
- VCMPoNode = *UI;
- break;
- }
-
- // If there is no VCMPo node, or if the flag value has a single use, don't
- // transform this.
- if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
- break;
-
- // Look at the (necessarily single) use of the flag value. If it has a
- // chain, this transformation is more complex. Note that multiple things
- // could use the value result, which we should ignore.
- SDNode *FlagUser = nullptr;
- for (SDNode::use_iterator UI = VCMPoNode->use_begin();
- FlagUser == nullptr; ++UI) {
- assert(UI != VCMPoNode->use_end() && "Didn't find user!");
- SDNode *User = *UI;
- for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
- if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
- FlagUser = User;
- break;
- }
- }
- }
-
- // If the user is a MFOCRF instruction, we know this is safe.
- // Otherwise we give up for right now.
- if (FlagUser->getOpcode() == PPCISD::MFOCRF)
- return SDValue(VCMPoNode, 0);
- }
- break;
- case ISD::BRCOND: {
- SDValue Cond = N->getOperand(1);
- SDValue Target = N->getOperand(2);
-
- if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
- cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
- Intrinsic::ppc_is_decremented_ctr_nonzero) {
-
- // We now need to make the intrinsic dead (it cannot be instruction
- // selected).
- DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
- assert(Cond.getNode()->hasOneUse() &&
- "Counter decrement has more than one use");
-
- return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
- N->getOperand(0), Target);
- }
- }
- break;
- case ISD::BR_CC: {
- // If this is a branch on an altivec predicate comparison, lower this so
- // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
- // lowering is done pre-legalize, because the legalizer lowers the predicate
- // compare down to code that is difficult to reassemble.
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
- SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
-
- // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
- // value. If so, pass-through the AND to get to the intrinsic.
- if (LHS.getOpcode() == ISD::AND &&
- LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
- cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
- Intrinsic::ppc_is_decremented_ctr_nonzero &&
- isa<ConstantSDNode>(LHS.getOperand(1)) &&
- !isNullConstant(LHS.getOperand(1)))
- LHS = LHS.getOperand(0);
-
- if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
- cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
- Intrinsic::ppc_is_decremented_ctr_nonzero &&
- isa<ConstantSDNode>(RHS)) {
- assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
- "Counter decrement comparison is not EQ or NE");
-
- unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
- bool isBDNZ = (CC == ISD::SETEQ && Val) ||
- (CC == ISD::SETNE && !Val);
-
- // We now need to make the intrinsic dead (it cannot be instruction
- // selected).
- DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
- assert(LHS.getNode()->hasOneUse() &&
- "Counter decrement has more than one use");
-
- return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
- N->getOperand(0), N->getOperand(4));
- }
-
- int CompareOpc;
- bool isDot;
-
- if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
- isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
- getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
- assert(isDot && "Can't compare against a vector result!");
-
- // If this is a comparison against something other than 0/1, then we know
- // that the condition is never/always true.
- unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
- if (Val != 0 && Val != 1) {
- if (CC == ISD::SETEQ) // Cond never true, remove branch.
- return N->getOperand(0);
- // Always !=, turn it into an unconditional branch.
- return DAG.getNode(ISD::BR, dl, MVT::Other,
- N->getOperand(0), N->getOperand(4));
- }
-
- bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
-
- // Create the PPCISD altivec 'dot' comparison node.
- SDValue Ops[] = {
- LHS.getOperand(2), // LHS of compare
- LHS.getOperand(3), // RHS of compare
- DAG.getConstant(CompareOpc, dl, MVT::i32)
- };
- EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
- SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
-
- // Unpack the result based on how the target uses it.
- PPC::Predicate CompOpc;
- switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
- default: // Can't happen, don't crash on invalid number though.
- case 0: // Branch on the value of the EQ bit of CR6.
- CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
- break;
- case 1: // Branch on the inverted value of the EQ bit of CR6.
- CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
- break;
- case 2: // Branch on the value of the LT bit of CR6.
- CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
- break;
- case 3: // Branch on the inverted value of the LT bit of CR6.
- CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
- break;
- }
-
- return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
- DAG.getConstant(CompOpc, dl, MVT::i32),
- DAG.getRegister(PPC::CR6, MVT::i32),
- N->getOperand(4), CompNode.getValue(1));
- }
- break;
- }
- case ISD::BUILD_VECTOR:
- return DAGCombineBuildVector(N, DCI);
- case ISD::ABS:
- return combineABS(N, DCI);
- case ISD::VSELECT:
- return combineVSelect(N, DCI);
- }
-
- return SDValue();
-}
-
-SDValue
-PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const {
- // fold (sdiv X, pow2)
- EVT VT = N->getValueType(0);
- if (VT == MVT::i64 && !Subtarget.isPPC64())
- return SDValue();
- if ((VT != MVT::i32 && VT != MVT::i64) ||
- !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
- return SDValue();
-
- SDLoc DL(N);
- SDValue N0 = N->getOperand(0);
-
- bool IsNegPow2 = (-Divisor).isPowerOf2();
- unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
- SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
-
- SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
- Created.push_back(Op.getNode());
-
- if (IsNegPow2) {
- Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
- Created.push_back(Op.getNode());
- }
-
- return Op;
-}
-
-//===----------------------------------------------------------------------===//
-// Inline Assembly Support
-//===----------------------------------------------------------------------===//
-
-void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- Known.resetAll();
- switch (Op.getOpcode()) {
- default: break;
- case PPCISD::LBRX: {
- // lhbrx is known to have the top bits cleared out.
- if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
- Known.Zero = 0xFFFF0000;
- break;
- }
- case ISD::INTRINSIC_WO_CHAIN: {
- switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
- default: break;
- case Intrinsic::ppc_altivec_vcmpbfp_p:
- case Intrinsic::ppc_altivec_vcmpeqfp_p:
- case Intrinsic::ppc_altivec_vcmpequb_p:
- case Intrinsic::ppc_altivec_vcmpequh_p:
- case Intrinsic::ppc_altivec_vcmpequw_p:
- case Intrinsic::ppc_altivec_vcmpequd_p:
- case Intrinsic::ppc_altivec_vcmpgefp_p:
- case Intrinsic::ppc_altivec_vcmpgtfp_p:
- case Intrinsic::ppc_altivec_vcmpgtsb_p:
- case Intrinsic::ppc_altivec_vcmpgtsh_p:
- case Intrinsic::ppc_altivec_vcmpgtsw_p:
- case Intrinsic::ppc_altivec_vcmpgtsd_p:
- case Intrinsic::ppc_altivec_vcmpgtub_p:
- case Intrinsic::ppc_altivec_vcmpgtuh_p:
- case Intrinsic::ppc_altivec_vcmpgtuw_p:
- case Intrinsic::ppc_altivec_vcmpgtud_p:
- Known.Zero = ~1U; // All bits but the low one are known to be zero.
- break;
- }
- }
- }
-}
-
-unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
- switch (Subtarget.getDarwinDirective()) {
- default: break;
- case PPC::DIR_970:
- case PPC::DIR_PWR4:
- case PPC::DIR_PWR5:
- case PPC::DIR_PWR5X:
- case PPC::DIR_PWR6:
- case PPC::DIR_PWR6X:
- case PPC::DIR_PWR7:
- case PPC::DIR_PWR8:
- case PPC::DIR_PWR9: {
- if (!ML)
- break;
-
- const PPCInstrInfo *TII = Subtarget.getInstrInfo();
-
- // For small loops (between 5 and 8 instructions), align to a 32-byte
- // boundary so that the entire loop fits in one instruction-cache line.
- uint64_t LoopSize = 0;
- for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
- for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
- LoopSize += TII->getInstSizeInBytes(*J);
- if (LoopSize > 32)
- break;
- }
-
- if (LoopSize > 16 && LoopSize <= 32)
- return 5;
-
- break;
- }
- }
-
- return TargetLowering::getPrefLoopAlignment(ML);
-}
-
-/// getConstraintType - Given a constraint, return the type of
-/// constraint it is for this target.
-PPCTargetLowering::ConstraintType
-PPCTargetLowering::getConstraintType(StringRef Constraint) const {
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'b':
- case 'r':
- case 'f':
- case 'd':
- case 'v':
- case 'y':
- return C_RegisterClass;
- case 'Z':
- // FIXME: While Z does indicate a memory constraint, it specifically
- // indicates an r+r address (used in conjunction with the 'y' modifier
- // in the replacement string). Currently, we're forcing the base
- // register to be r0 in the asm printer (which is interpreted as zero)
- // and forming the complete address in the second register. This is
- // suboptimal.
- return C_Memory;
- }
- } else if (Constraint == "wc") { // individual CR bits.
- return C_RegisterClass;
- } else if (Constraint == "wa" || Constraint == "wd" ||
- Constraint == "wf" || Constraint == "ws" ||
- Constraint == "wi") {
- return C_RegisterClass; // VSX registers.
- }
- return TargetLowering::getConstraintType(Constraint);
-}
-
-/// Examine constraint type and operand type and determine a weight value.
-/// This object must already have been set up with the operand type
-/// and the current alternative constraint selected.
-TargetLowering::ConstraintWeight
-PPCTargetLowering::getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const {
- ConstraintWeight weight = CW_Invalid;
- Value *CallOperandVal = info.CallOperandVal;
- // If we don't have a value, we can't do a match,
- // but allow it at the lowest weight.
- if (!CallOperandVal)
- return CW_Default;
- Type *type = CallOperandVal->getType();
-
- // Look at the constraint type.
- if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
- return CW_Register; // an individual CR bit.
- else if ((StringRef(constraint) == "wa" ||
- StringRef(constraint) == "wd" ||
- StringRef(constraint) == "wf") &&
- type->isVectorTy())
- return CW_Register;
- else if (StringRef(constraint) == "ws" && type->isDoubleTy())
- return CW_Register;
- else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
- return CW_Register; // just hold 64-bit integers data.
-
- switch (*constraint) {
- default:
- weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
- break;
- case 'b':
- if (type->isIntegerTy())
- weight = CW_Register;
- break;
- case 'f':
- if (type->isFloatTy())
- weight = CW_Register;
- break;
- case 'd':
- if (type->isDoubleTy())
- weight = CW_Register;
- break;
- case 'v':
- if (type->isVectorTy())
- weight = CW_Register;
- break;
- case 'y':
- weight = CW_Register;
- break;
- case 'Z':
- weight = CW_Memory;
- break;
- }
- return weight;
-}
-
-std::pair<unsigned, const TargetRegisterClass *>
-PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
- StringRef Constraint,
- MVT VT) const {
- if (Constraint.size() == 1) {
- // GCC RS6000 Constraint Letters
- switch (Constraint[0]) {
- case 'b': // R1-R31
- if (VT == MVT::i64 && Subtarget.isPPC64())
- return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
- return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
- case 'r': // R0-R31
- if (VT == MVT::i64 && Subtarget.isPPC64())
- return std::make_pair(0U, &PPC::G8RCRegClass);
- return std::make_pair(0U, &PPC::GPRCRegClass);
- // 'd' and 'f' constraints are both defined to be "the floating point
- // registers", where one is for 32-bit and the other for 64-bit. We don't
- // really care overly much here so just give them all the same reg classes.
- case 'd':
- case 'f':
- if (Subtarget.hasSPE()) {
- if (VT == MVT::f32 || VT == MVT::i32)
- return std::make_pair(0U, &PPC::SPE4RCRegClass);
- if (VT == MVT::f64 || VT == MVT::i64)
- return std::make_pair(0U, &PPC::SPERCRegClass);
- } else {
- if (VT == MVT::f32 || VT == MVT::i32)
- return std::make_pair(0U, &PPC::F4RCRegClass);
- if (VT == MVT::f64 || VT == MVT::i64)
- return std::make_pair(0U, &PPC::F8RCRegClass);
- if (VT == MVT::v4f64 && Subtarget.hasQPX())
- return std::make_pair(0U, &PPC::QFRCRegClass);
- if (VT == MVT::v4f32 && Subtarget.hasQPX())
- return std::make_pair(0U, &PPC::QSRCRegClass);
- }
- break;
- case 'v':
- if (VT == MVT::v4f64 && Subtarget.hasQPX())
- return std::make_pair(0U, &PPC::QFRCRegClass);
- if (VT == MVT::v4f32 && Subtarget.hasQPX())
- return std::make_pair(0U, &PPC::QSRCRegClass);
- if (Subtarget.hasAltivec())
- return std::make_pair(0U, &PPC::VRRCRegClass);
- break;
- case 'y': // crrc
- return std::make_pair(0U, &PPC::CRRCRegClass);
- }
- } else if (Constraint == "wc" && Subtarget.useCRBits()) {
- // An individual CR bit.
- return std::make_pair(0U, &PPC::CRBITRCRegClass);
- } else if ((Constraint == "wa" || Constraint == "wd" ||
- Constraint == "wf" || Constraint == "wi") &&
- Subtarget.hasVSX()) {
- return std::make_pair(0U, &PPC::VSRCRegClass);
- } else if (Constraint == "ws" && Subtarget.hasVSX()) {
- if (VT == MVT::f32 && Subtarget.hasP8Vector())
- return std::make_pair(0U, &PPC::VSSRCRegClass);
- else
- return std::make_pair(0U, &PPC::VSFRCRegClass);
- }
-
- std::pair<unsigned, const TargetRegisterClass *> R =
- TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
-
- // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
- // (which we call X[0-9]+). If a 64-bit value has been requested, and a
- // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
- // register.
- // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
- // the AsmName field from *RegisterInfo.td, then this would not be necessary.
- if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
- PPC::GPRCRegClass.contains(R.first))
- return std::make_pair(TRI->getMatchingSuperReg(R.first,
- PPC::sub_32, &PPC::G8RCRegClass),
- &PPC::G8RCRegClass);
-
- // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
- if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
- R.first = PPC::CR0;
- R.second = &PPC::CRRCRegClass;
- }
-
- return R;
-}
-
-/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
-/// vector. If it is invalid, don't add anything to Ops.
-void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- std::string &Constraint,
- std::vector<SDValue>&Ops,
- SelectionDAG &DAG) const {
- SDValue Result;
-
- // Only support length 1 constraints.
- if (Constraint.length() > 1) return;
-
- char Letter = Constraint[0];
- switch (Letter) {
- default: break;
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P': {
- ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
- if (!CST) return; // Must be an immediate to match.
- SDLoc dl(Op);
- int64_t Value = CST->getSExtValue();
- EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
- // numbers are printed as such.
- switch (Letter) {
- default: llvm_unreachable("Unknown constraint letter!");
- case 'I': // "I" is a signed 16-bit constant.
- if (isInt<16>(Value))
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
- if (isShiftedUInt<16, 16>(Value))
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
- if (isShiftedInt<16, 16>(Value))
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
- if (isUInt<16>(Value))
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'M': // "M" is a constant that is greater than 31.
- if (Value > 31)
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'N': // "N" is a positive constant that is an exact power of two.
- if (Value > 0 && isPowerOf2_64(Value))
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'O': // "O" is the constant zero.
- if (Value == 0)
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
- if (isInt<16>(-Value))
- Result = DAG.getTargetConstant(Value, dl, TCVT);
- break;
- }
- break;
- }
- }
-
- if (Result.getNode()) {
- Ops.push_back(Result);
- return;
- }
-
- // Handle standard constraint letters.
- TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
-}
-
-// isLegalAddressingMode - Return true if the addressing mode represented
-// by AM is legal for this target, for a load/store of the specified type.
-bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
- const AddrMode &AM, Type *Ty,
- unsigned AS, Instruction *I) const {
- // PPC does not allow r+i addressing modes for vectors!
- if (Ty->isVectorTy() && AM.BaseOffs != 0)
- return false;
-
- // PPC allows a sign-extended 16-bit immediate field.
- if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
- return false;
-
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
-
- // PPC only support r+r,
- switch (AM.Scale) {
- case 0: // "r+i" or just "i", depending on HasBaseReg.
- break;
- case 1:
- if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
- return false;
- // Otherwise we have r+r or r+i.
- break;
- case 2:
- if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
- return false;
- // Allow 2*r as r+r.
- break;
- default:
- // No other scales are supported.
- return false;
- }
-
- return true;
-}
-
-SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
- SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- MFI.setReturnAddressIsTaken(true);
-
- if (verifyReturnAddressArgumentIsConstant(Op, DAG))
- return SDValue();
-
- SDLoc dl(Op);
- unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-
- // Make sure the function does not optimize away the store of the RA to
- // the stack.
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
- FuncInfo->setLRStoreRequired();
- bool isPPC64 = Subtarget.isPPC64();
- auto PtrVT = getPointerTy(MF.getDataLayout());
-
- if (Depth > 0) {
- SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
- SDValue Offset =
- DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
- isPPC64 ? MVT::i64 : MVT::i32);
- return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
- DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
- MachinePointerInfo());
- }
-
- // Just load the return address off the stack.
- SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
- return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
- MachinePointerInfo());
-}
-
-SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
- SelectionDAG &DAG) const {
- SDLoc dl(Op);
- unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
-
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- MFI.setFrameAddressIsTaken(true);
-
- EVT PtrVT = getPointerTy(MF.getDataLayout());
- bool isPPC64 = PtrVT == MVT::i64;
-
- // Naked functions never have a frame pointer, and so we use r1. For all
- // other functions, this decision must be delayed until during PEI.
- unsigned FrameReg;
- if (MF.getFunction().hasFnAttribute(Attribute::Naked))
- FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
- else
- FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
-
- SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
- PtrVT);
- while (Depth--)
- FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
- FrameAddr, MachinePointerInfo());
- return FrameAddr;
-}
-
-// FIXME? Maybe this could be a TableGen attribute on some registers and
-// this table could be generated automatically from RegInfo.
-unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
- SelectionDAG &DAG) const {
- bool isPPC64 = Subtarget.isPPC64();
- bool isDarwinABI = Subtarget.isDarwinABI();
-
- if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
- (!isPPC64 && VT != MVT::i32))
- report_fatal_error("Invalid register global variable type");
-
- bool is64Bit = isPPC64 && VT == MVT::i64;
- unsigned Reg = StringSwitch<unsigned>(RegName)
- .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
- .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
- .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
- (is64Bit ? PPC::X13 : PPC::R13))
- .Default(0);
-
- if (Reg)
- return Reg;
- report_fatal_error("Invalid register name global variable");
-}
-
-bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
- // 32-bit SVR4 ABI access everything as got-indirect.
- if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
- return true;
-
- CodeModel::Model CModel = getTargetMachine().getCodeModel();
- // If it is small or large code model, module locals are accessed
- // indirectly by loading their address from .toc/.got. The difference
- // is that for large code model we have ADDISTocHa + LDtocL and for
- // small code model we simply have LDtoc.
- if (CModel == CodeModel::Small || CModel == CodeModel::Large)
- return true;
-
- // JumpTable and BlockAddress are accessed as got-indirect.
- if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
- return true;
-
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
- const GlobalValue *GV = G->getGlobal();
- unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
- // The NLP flag indicates that a global access has to use an
- // extra indirection.
- if (GVFlags & PPCII::MO_NLP_FLAG)
- return true;
- }
-
- return false;
-}
-
-bool
-PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- // The PowerPC target isn't yet aware of offsets.
- return false;
-}
-
-bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
- const CallInst &I,
- MachineFunction &MF,
- unsigned Intrinsic) const {
- switch (Intrinsic) {
- case Intrinsic::ppc_qpx_qvlfd:
- case Intrinsic::ppc_qpx_qvlfs:
- case Intrinsic::ppc_qpx_qvlfcd:
- case Intrinsic::ppc_qpx_qvlfcs:
- case Intrinsic::ppc_qpx_qvlfiwa:
- case Intrinsic::ppc_qpx_qvlfiwz:
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- case Intrinsic::ppc_altivec_lvebx:
- case Intrinsic::ppc_altivec_lvehx:
- case Intrinsic::ppc_altivec_lvewx:
- case Intrinsic::ppc_vsx_lxvd2x:
- case Intrinsic::ppc_vsx_lxvw4x: {
- EVT VT;
- switch (Intrinsic) {
- case Intrinsic::ppc_altivec_lvebx:
- VT = MVT::i8;
- break;
- case Intrinsic::ppc_altivec_lvehx:
- VT = MVT::i16;
- break;
- case Intrinsic::ppc_altivec_lvewx:
- VT = MVT::i32;
- break;
- case Intrinsic::ppc_vsx_lxvd2x:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvlfd:
- VT = MVT::v4f64;
- break;
- case Intrinsic::ppc_qpx_qvlfs:
- VT = MVT::v4f32;
- break;
- case Intrinsic::ppc_qpx_qvlfcd:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvlfcs:
- VT = MVT::v2f32;
- break;
- default:
- VT = MVT::v4i32;
- break;
- }
-
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- Info.memVT = VT;
- Info.ptrVal = I.getArgOperand(0);
- Info.offset = -VT.getStoreSize()+1;
- Info.size = 2*VT.getStoreSize()-1;
- Info.align = 1;
- Info.flags = MachineMemOperand::MOLoad;
- return true;
- }
- case Intrinsic::ppc_qpx_qvlfda:
- case Intrinsic::ppc_qpx_qvlfsa:
- case Intrinsic::ppc_qpx_qvlfcda:
- case Intrinsic::ppc_qpx_qvlfcsa:
- case Intrinsic::ppc_qpx_qvlfiwaa:
- case Intrinsic::ppc_qpx_qvlfiwza: {
- EVT VT;
- switch (Intrinsic) {
- case Intrinsic::ppc_qpx_qvlfda:
- VT = MVT::v4f64;
- break;
- case Intrinsic::ppc_qpx_qvlfsa:
- VT = MVT::v4f32;
- break;
- case Intrinsic::ppc_qpx_qvlfcda:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvlfcsa:
- VT = MVT::v2f32;
- break;
- default:
- VT = MVT::v4i32;
- break;
- }
-
- Info.opc = ISD::INTRINSIC_W_CHAIN;
- Info.memVT = VT;
- Info.ptrVal = I.getArgOperand(0);
- Info.offset = 0;
- Info.size = VT.getStoreSize();
- Info.align = 1;
- Info.flags = MachineMemOperand::MOLoad;
- return true;
- }
- case Intrinsic::ppc_qpx_qvstfd:
- case Intrinsic::ppc_qpx_qvstfs:
- case Intrinsic::ppc_qpx_qvstfcd:
- case Intrinsic::ppc_qpx_qvstfcs:
- case Intrinsic::ppc_qpx_qvstfiw:
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- case Intrinsic::ppc_altivec_stvebx:
- case Intrinsic::ppc_altivec_stvehx:
- case Intrinsic::ppc_altivec_stvewx:
- case Intrinsic::ppc_vsx_stxvd2x:
- case Intrinsic::ppc_vsx_stxvw4x: {
- EVT VT;
- switch (Intrinsic) {
- case Intrinsic::ppc_altivec_stvebx:
- VT = MVT::i8;
- break;
- case Intrinsic::ppc_altivec_stvehx:
- VT = MVT::i16;
- break;
- case Intrinsic::ppc_altivec_stvewx:
- VT = MVT::i32;
- break;
- case Intrinsic::ppc_vsx_stxvd2x:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvstfd:
- VT = MVT::v4f64;
- break;
- case Intrinsic::ppc_qpx_qvstfs:
- VT = MVT::v4f32;
- break;
- case Intrinsic::ppc_qpx_qvstfcd:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvstfcs:
- VT = MVT::v2f32;
- break;
- default:
- VT = MVT::v4i32;
- break;
- }
-
- Info.opc = ISD::INTRINSIC_VOID;
- Info.memVT = VT;
- Info.ptrVal = I.getArgOperand(1);
- Info.offset = -VT.getStoreSize()+1;
- Info.size = 2*VT.getStoreSize()-1;
- Info.align = 1;
- Info.flags = MachineMemOperand::MOStore;
- return true;
- }
- case Intrinsic::ppc_qpx_qvstfda:
- case Intrinsic::ppc_qpx_qvstfsa:
- case Intrinsic::ppc_qpx_qvstfcda:
- case Intrinsic::ppc_qpx_qvstfcsa:
- case Intrinsic::ppc_qpx_qvstfiwa: {
- EVT VT;
- switch (Intrinsic) {
- case Intrinsic::ppc_qpx_qvstfda:
- VT = MVT::v4f64;
- break;
- case Intrinsic::ppc_qpx_qvstfsa:
- VT = MVT::v4f32;
- break;
- case Intrinsic::ppc_qpx_qvstfcda:
- VT = MVT::v2f64;
- break;
- case Intrinsic::ppc_qpx_qvstfcsa:
- VT = MVT::v2f32;
- break;
- default:
- VT = MVT::v4i32;
- break;
- }
-
- Info.opc = ISD::INTRINSIC_VOID;
- Info.memVT = VT;
- Info.ptrVal = I.getArgOperand(1);
- Info.offset = 0;
- Info.size = VT.getStoreSize();
- Info.align = 1;
- Info.flags = MachineMemOperand::MOStore;
- return true;
- }
- default:
- break;
- }
-
- return false;
-}
-
-/// getOptimalMemOpType - Returns the target specific optimal type for load
-/// and store operations as a result of memset, memcpy, and memmove
-/// lowering. If DstAlign is zero that means it's safe to destination
-/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
-/// means there isn't a need to check it against alignment requirement,
-/// probably because the source does not need to be loaded. If 'IsMemset' is
-/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
-/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
-/// source is constant so it does not need to be loaded.
-/// It returns EVT::Other if the type should be determined using generic
-/// target-independent logic.
-EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
- unsigned DstAlign, unsigned SrcAlign,
- bool IsMemset, bool ZeroMemset,
- bool MemcpyStrSrc,
- MachineFunction &MF) const {
- if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
- const Function &F = MF.getFunction();
- // When expanding a memset, require at least two QPX instructions to cover
- // the cost of loading the value to be stored from the constant pool.
- if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
- (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
- !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
- return MVT::v4f64;
- }
-
- // We should use Altivec/VSX loads and stores when available. For unaligned
- // addresses, unaligned VSX loads are only fast starting with the P8.
- if (Subtarget.hasAltivec() && Size >= 16 &&
- (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
- ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
- return MVT::v4i32;
- }
-
- if (Subtarget.isPPC64()) {
- return MVT::i64;
- }
-
- return MVT::i32;
-}
-
-/// Returns true if it is beneficial to convert a load of a constant
-/// to just the constant itself.
-bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
- Type *Ty) const {
- assert(Ty->isIntegerTy());
-
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- return !(BitSize == 0 || BitSize > 64);
-}
-
-bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
- if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
- return false;
- unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
- unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
- return NumBits1 == 64 && NumBits2 == 32;
-}
-
-bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
- if (!VT1.isInteger() || !VT2.isInteger())
- return false;
- unsigned NumBits1 = VT1.getSizeInBits();
- unsigned NumBits2 = VT2.getSizeInBits();
- return NumBits1 == 64 && NumBits2 == 32;
-}
-
-bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
- // Generally speaking, zexts are not free, but they are free when they can be
- // folded with other operations.
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
- EVT MemVT = LD->getMemoryVT();
- if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
- (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
- (LD->getExtensionType() == ISD::NON_EXTLOAD ||
- LD->getExtensionType() == ISD::ZEXTLOAD))
- return true;
- }
-
- // FIXME: Add other cases...
- // - 32-bit shifts with a zext to i64
- // - zext after ctlz, bswap, etc.
- // - zext after and by a constant mask
-
- return TargetLowering::isZExtFree(Val, VT2);
-}
-
-bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
- assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
- "invalid fpext types");
- // Extending to float128 is not free.
- if (DestVT == MVT::f128)
- return false;
- return true;
-}
-
-bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
- return isInt<16>(Imm) || isUInt<16>(Imm);
-}
-
-bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
- return isInt<16>(Imm) || isUInt<16>(Imm);
-}
-
-bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
- unsigned,
- unsigned,
- bool *Fast) const {
- if (DisablePPCUnaligned)
- return false;
-
- // PowerPC supports unaligned memory access for simple non-vector types.
- // Although accessing unaligned addresses is not as efficient as accessing
- // aligned addresses, it is generally more efficient than manual expansion,
- // and generally only traps for software emulation when crossing page
- // boundaries.
-
- if (!VT.isSimple())
- return false;
-
- if (VT.getSimpleVT().isVector()) {
- if (Subtarget.hasVSX()) {
- if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
- VT != MVT::v4f32 && VT != MVT::v4i32)
- return false;
- } else {
- return false;
- }
- }
-
- if (VT == MVT::ppcf128)
- return false;
-
- if (Subtarget.isTargetOpenBSD()) {
- // Traditional PowerPC does not support unaligned memory access
- // for floating-point and the OpenBSD kernel does not emulate
- // all possible floating-point load and store instructions.
- if (VT == MVT::f32 || VT == MVT::f64)
- return false;
- }
-
- if (Fast)
- *Fast = true;
-
- return true;
-}
-
-bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
- VT = VT.getScalarType();
-
- if (!VT.isSimple())
- return false;
-
- switch (VT.getSimpleVT().SimpleTy) {
- case MVT::f32:
- case MVT::f64:
- return true;
- case MVT::f128:
- return (EnableQuadPrecision && Subtarget.hasP9Vector());
- default:
- break;
- }
-
- return false;
-}
-
-const MCPhysReg *
-PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
- // LR is a callee-save register, but we must treat it as clobbered by any call
- // site. Hence we include LR in the scratch registers, which are in turn added
- // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
- // to CTR, which is used by any indirect call.
- static const MCPhysReg ScratchRegs[] = {
- PPC::X12, PPC::LR8, PPC::CTR8, 0
- };
-
- return ScratchRegs;
-}
-
-unsigned PPCTargetLowering::getExceptionPointerRegister(
- const Constant *PersonalityFn) const {
- return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
-}
-
-unsigned PPCTargetLowering::getExceptionSelectorRegister(
- const Constant *PersonalityFn) const {
- return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
-}
-
-bool
-PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
- EVT VT , unsigned DefinedValues) const {
- if (VT == MVT::v2i64)
- return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
-
- if (Subtarget.hasVSX() || Subtarget.hasQPX())
- return true;
-
- return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
-}
-
-Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
- if (DisableILPPref || Subtarget.enableMachineScheduler())
- return TargetLowering::getSchedulingPreference(N);
-
- return Sched::ILP;
-}
-
-// Create a fast isel object.
-FastISel *
-PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
- const TargetLibraryInfo *LibInfo) const {
- return PPC::createFastISel(FuncInfo, LibInfo);
-}
-
-void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
- if (Subtarget.isDarwinABI()) return;
- if (!Subtarget.isPPC64()) return;
-
- // Update IsSplitCSR in PPCFunctionInfo
- PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
- PFI->setIsSplitCSR(true);
-}
-
-void PPCTargetLowering::insertCopiesSplitCSR(
- MachineBasicBlock *Entry,
- const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
- const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
- const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
- if (!IStart)
- return;
-
- const TargetInstrInfo *TII = Subtarget.getInstrInfo();
- MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
- MachineBasicBlock::iterator MBBI = Entry->begin();
- for (const MCPhysReg *I = IStart; *I; ++I) {
- const TargetRegisterClass *RC = nullptr;
- if (PPC::G8RCRegClass.contains(*I))
- RC = &PPC::G8RCRegClass;
- else if (PPC::F8RCRegClass.contains(*I))
- RC = &PPC::F8RCRegClass;
- else if (PPC::CRRCRegClass.contains(*I))
- RC = &PPC::CRRCRegClass;
- else if (PPC::VRRCRegClass.contains(*I))
- RC = &PPC::VRRCRegClass;
- else
- llvm_unreachable("Unexpected register class in CSRsViaCopy!");
-
- unsigned NewVR = MRI->createVirtualRegister(RC);
- // Create copy from CSR to a virtual register.
- // FIXME: this currently does not emit CFI pseudo-instructions, it works
- // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
- // nounwind. If we want to generalize this later, we may need to emit
- // CFI pseudo-instructions.
- assert(Entry->getParent()->getFunction().hasFnAttribute(
- Attribute::NoUnwind) &&
- "Function should be nounwind in insertCopiesSplitCSR!");
- Entry->addLiveIn(*I);
- BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
- .addReg(*I);
-
- // Insert the copy-back instructions right before the terminator
- for (auto *Exit : Exits)
- BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
- TII->get(TargetOpcode::COPY), *I)
- .addReg(NewVR);
- }
-}
-
-// Override to enable LOAD_STACK_GUARD lowering on Linux.
-bool PPCTargetLowering::useLoadStackGuardNode() const {
- if (!Subtarget.isTargetLinux())
- return TargetLowering::useLoadStackGuardNode();
- return true;
-}
-
-// Override to disable global variable loading on Linux.
-void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
- if (!Subtarget.isTargetLinux())
- return TargetLowering::insertSSPDeclarations(M);
-}
-
-bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
- if (!VT.isSimple() || !Subtarget.hasVSX())
- return false;
-
- switch(VT.getSimpleVT().SimpleTy) {
- default:
- // For FP types that are currently not supported by PPC backend, return
- // false. Examples: f16, f80.
- return false;
- case MVT::f32:
- case MVT::f64:
- case MVT::ppcf128:
- return Imm.isPosZero();
- }
-}
-
-// For vector shift operation op, fold
-// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
-static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
- SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
- unsigned Opcode = N->getOpcode();
- unsigned TargetOpcode;
-
- switch (Opcode) {
- default:
- llvm_unreachable("Unexpected shift operation");
- case ISD::SHL:
- TargetOpcode = PPCISD::SHL;
- break;
- case ISD::SRL:
- TargetOpcode = PPCISD::SRL;
- break;
- case ISD::SRA:
- TargetOpcode = PPCISD::SRA;
- break;
- }
-
- if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
- N1->getOpcode() == ISD::AND)
- if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
- if (Mask->getZExtValue() == OpSizeInBits - 1)
- return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
-
- return SDValue();
-}
-
-SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
- if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
- return Value;
-
- SDValue N0 = N->getOperand(0);
- ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!Subtarget.isISA3_0() ||
- N0.getOpcode() != ISD::SIGN_EXTEND ||
- N0.getOperand(0).getValueType() != MVT::i32 ||
- CN1 == nullptr || N->getValueType(0) != MVT::i64)
- return SDValue();
-
- // We can't save an operation here if the value is already extended, and
- // the existing shift is easier to combine.
- SDValue ExtsSrc = N0.getOperand(0);
- if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
- ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
- return SDValue();
-
- SDLoc DL(N0);
- SDValue ShiftBy = SDValue(CN1, 0);
- // We want the shift amount to be i32 on the extswli, but the shift could
- // have an i64.
- if (ShiftBy.getValueType() == MVT::i64)
- ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
-
- return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
- ShiftBy);
-}
-
-SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
- if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
- return Value;
-
- return SDValue();
-}
-
-SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
- if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
- return Value;
-
- return SDValue();
-}
-
-// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
-// Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
-// When C is zero, the equation (addi Z, -C) can be simplified to Z
-// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
-static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
- const PPCSubtarget &Subtarget) {
- if (!Subtarget.isPPC64())
- return SDValue();
-
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
-
- auto isZextOfCompareWithConstant = [](SDValue Op) {
- if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
- Op.getValueType() != MVT::i64)
- return false;
-
- SDValue Cmp = Op.getOperand(0);
- if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
- Cmp.getOperand(0).getValueType() != MVT::i64)
- return false;
-
- if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
- int64_t NegConstant = 0 - Constant->getSExtValue();
- // Due to the limitations of the addi instruction,
- // -C is required to be [-32768, 32767].
- return isInt<16>(NegConstant);
- }
-
- return false;
- };
-
- bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
- bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
-
- // If there is a pattern, canonicalize a zext operand to the RHS.
- if (LHSHasPattern && !RHSHasPattern)
- std::swap(LHS, RHS);
- else if (!LHSHasPattern && !RHSHasPattern)
- return SDValue();
-
- SDLoc DL(N);
- SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
- SDValue Cmp = RHS.getOperand(0);
- SDValue Z = Cmp.getOperand(0);
- auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
-
- assert(Constant && "Constant Should not be a null pointer.");
- int64_t NegConstant = 0 - Constant->getSExtValue();
-
- switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
- default: break;
- case ISD::SETNE: {
- // when C == 0
- // --> addze X, (addic Z, -1).carry
- // /
- // add X, (zext(setne Z, C))--
- // \ when -32768 <= -C <= 32767 && C != 0
- // --> addze X, (addic (addi Z, -C), -1).carry
- SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
- DAG.getConstant(NegConstant, DL, MVT::i64));
- SDValue AddOrZ = NegConstant != 0 ? Add : Z;
- SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
- AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
- return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
- SDValue(Addc.getNode(), 1));
- }
- case ISD::SETEQ: {
- // when C == 0
- // --> addze X, (subfic Z, 0).carry
- // /
- // add X, (zext(sete Z, C))--
- // \ when -32768 <= -C <= 32767 && C != 0
- // --> addze X, (subfic (addi Z, -C), 0).carry
- SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
- DAG.getConstant(NegConstant, DL, MVT::i64));
- SDValue AddOrZ = NegConstant != 0 ? Add : Z;
- SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
- DAG.getConstant(0, DL, MVT::i64), AddOrZ);
- return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
- SDValue(Subc.getNode(), 1));
- }
- }
-
- return SDValue();
-}
-
-SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
- if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
- return Value;
-
- return SDValue();
-}
-
-// Detect TRUNCATE operations on bitcasts of float128 values.
-// What we are looking for here is the situtation where we extract a subset
-// of bits from a 128 bit float.
-// This can be of two forms:
-// 1) BITCAST of f128 feeding TRUNCATE
-// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
-// The reason this is required is because we do not have a legal i128 type
-// and so we want to prevent having to store the f128 and then reload part
-// of it.
-SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
- DAGCombinerInfo &DCI) const {
- // If we are using CRBits then try that first.
- if (Subtarget.useCRBits()) {
- // Check if CRBits did anything and return that if it did.
- if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
- return CRTruncValue;
- }
-
- SDLoc dl(N);
- SDValue Op0 = N->getOperand(0);
-
- // Looking for a truncate of i128 to i64.
- if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
- return SDValue();
-
- int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
-
- // SRL feeding TRUNCATE.
- if (Op0.getOpcode() == ISD::SRL) {
- ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
- // The right shift has to be by 64 bits.
- if (!ConstNode || ConstNode->getZExtValue() != 64)
- return SDValue();
-
- // Switch the element number to extract.
- EltToExtract = EltToExtract ? 0 : 1;
- // Update Op0 past the SRL.
- Op0 = Op0.getOperand(0);
- }
-
- // BITCAST feeding a TRUNCATE possibly via SRL.
- if (Op0.getOpcode() == ISD::BITCAST &&
- Op0.getValueType() == MVT::i128 &&
- Op0.getOperand(0).getValueType() == MVT::f128) {
- SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
- return DCI.DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
- DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
- }
- return SDValue();
-}
-
-bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
- // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
- if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
- return false;
-
- // If not a tail call then no need to proceed.
- if (!CI->isTailCall())
- return false;
-
- // If tail calls are disabled for the caller then we are done.
- const Function *Caller = CI->getParent()->getParent();
- auto Attr = Caller->getFnAttribute("disable-tail-calls");
- if (Attr.getValueAsString() == "true")
- return false;
-
- // If sibling calls have been disabled and tail-calls aren't guaranteed
- // there is no reason to duplicate.
- auto &TM = getTargetMachine();
- if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
- return false;
-
- // Can't tail call a function called indirectly, or if it has variadic args.
- const Function *Callee = CI->getCalledFunction();
- if (!Callee || Callee->isVarArg())
- return false;
-
- // Make sure the callee and caller calling conventions are eligible for tco.
- if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
- CI->getCallingConv()))
- return false;
-
- // If the function is local then we have a good chance at tail-calling it
- return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
-}
-
-bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
- if (!Subtarget.hasVSX())
- return false;
- if (Subtarget.hasP9Vector() && VT == MVT::f128)
- return true;
- return VT == MVT::f32 || VT == MVT::f64 ||
- VT == MVT::v4f32 || VT == MVT::v2f64;
-}
-
-bool PPCTargetLowering::
-isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
- const Value *Mask = AndI.getOperand(1);
- // If the mask is suitable for andi. or andis. we should sink the and.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
- // Can't handle constants wider than 64-bits.
- if (CI->getBitWidth() > 64)
- return false;
- int64_t ConstVal = CI->getZExtValue();
- return isUInt<16>(ConstVal) ||
- (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
- }
-
- // For non-constant masks, we can always use the record-form and.
- return true;
-}
-
-// Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
-// Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
-// Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
-// Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
-// Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
-SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
- assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
- assert(Subtarget.hasP9Altivec() &&
- "Only combine this when P9 altivec supported!");
- EVT VT = N->getValueType(0);
- if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
- return SDValue();
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- if (N->getOperand(0).getOpcode() == ISD::SUB) {
- // Even for signed integers, if it's known to be positive (as signed
- // integer) due to zero-extended inputs.
- unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
- unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
- if ((SubOpcd0 == ISD::ZERO_EXTEND ||
- SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
- (SubOpcd1 == ISD::ZERO_EXTEND ||
- SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
- return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
- N->getOperand(0)->getOperand(0),
- N->getOperand(0)->getOperand(1),
- DAG.getTargetConstant(0, dl, MVT::i32));
- }
-
- // For type v4i32, it can be optimized with xvnegsp + vabsduw
- if (N->getOperand(0).getValueType() == MVT::v4i32 &&
- N->getOperand(0).hasOneUse()) {
- return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
- N->getOperand(0)->getOperand(0),
- N->getOperand(0)->getOperand(1),
- DAG.getTargetConstant(1, dl, MVT::i32));
- }
- }
-
- return SDValue();
-}
-
-// For type v4i32/v8ii16/v16i8, transform
-// from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
-// from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
-// from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
-// from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
-SDValue PPCTargetLowering::combineVSelect(SDNode *N,
- DAGCombinerInfo &DCI) const {
- assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
- assert(Subtarget.hasP9Altivec() &&
- "Only combine this when P9 altivec supported!");
-
- SelectionDAG &DAG = DCI.DAG;
- SDLoc dl(N);
- SDValue Cond = N->getOperand(0);
- SDValue TrueOpnd = N->getOperand(1);
- SDValue FalseOpnd = N->getOperand(2);
- EVT VT = N->getOperand(1).getValueType();
-
- if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
- FalseOpnd.getOpcode() != ISD::SUB)
- return SDValue();
-
- // ABSD only available for type v4i32/v8i16/v16i8
- if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
- return SDValue();
-
- // At least to save one more dependent computation
- if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
- return SDValue();
-
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
-
- // Can only handle unsigned comparison here
- switch (CC) {
- default:
- return SDValue();
- case ISD::SETUGT:
- case ISD::SETUGE:
- break;
- case ISD::SETULT:
- case ISD::SETULE:
- std::swap(TrueOpnd, FalseOpnd);
- break;
- }
-
- SDValue CmpOpnd1 = Cond.getOperand(0);
- SDValue CmpOpnd2 = Cond.getOperand(1);
-
- // SETCC CmpOpnd1 CmpOpnd2 cond
- // TrueOpnd = CmpOpnd1 - CmpOpnd2
- // FalseOpnd = CmpOpnd2 - CmpOpnd1
- if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
- TrueOpnd.getOperand(1) == CmpOpnd2 &&
- FalseOpnd.getOperand(0) == CmpOpnd2 &&
- FalseOpnd.getOperand(1) == CmpOpnd1) {
- return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
- CmpOpnd1, CmpOpnd2,
- DAG.getTargetConstant(0, dl, MVT::i32));
- }
-
- return SDValue();
-}