summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp')
-rw-r--r--gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp1125
1 files changed, 0 insertions, 1125 deletions
diff --git a/gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp b/gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
deleted file mode 100644
index 129610fe095..00000000000
--- a/gnu/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
+++ /dev/null
@@ -1,1125 +0,0 @@
-//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a TargetTransformInfo analysis pass specific to the
-// SystemZ target machine. It uses the target's detailed information to provide
-// more precise answers to certain TTI queries, while letting the target
-// independent and default TTI implementations handle the rest.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SystemZTargetTransformInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/CodeGen/BasicTTIImpl.h"
-#include "llvm/CodeGen/CostTable.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/Support/Debug.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "systemztti"
-
-//===----------------------------------------------------------------------===//
-//
-// SystemZ cost model.
-//
-//===----------------------------------------------------------------------===//
-
-int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
- assert(Ty->isIntegerTy());
-
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- // There is no cost model for constants with a bit size of 0. Return TCC_Free
- // here, so that constant hoisting will ignore this constant.
- if (BitSize == 0)
- return TTI::TCC_Free;
- // No cost model for operations on integers larger than 64 bit implemented yet.
- if (BitSize > 64)
- return TTI::TCC_Free;
-
- if (Imm == 0)
- return TTI::TCC_Free;
-
- if (Imm.getBitWidth() <= 64) {
- // Constants loaded via lgfi.
- if (isInt<32>(Imm.getSExtValue()))
- return TTI::TCC_Basic;
- // Constants loaded via llilf.
- if (isUInt<32>(Imm.getZExtValue()))
- return TTI::TCC_Basic;
- // Constants loaded via llihf:
- if ((Imm.getZExtValue() & 0xffffffff) == 0)
- return TTI::TCC_Basic;
-
- return 2 * TTI::TCC_Basic;
- }
-
- return 4 * TTI::TCC_Basic;
-}
-
-int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty) {
- assert(Ty->isIntegerTy());
-
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- // There is no cost model for constants with a bit size of 0. Return TCC_Free
- // here, so that constant hoisting will ignore this constant.
- if (BitSize == 0)
- return TTI::TCC_Free;
- // No cost model for operations on integers larger than 64 bit implemented yet.
- if (BitSize > 64)
- return TTI::TCC_Free;
-
- switch (Opcode) {
- default:
- return TTI::TCC_Free;
- case Instruction::GetElementPtr:
- // Always hoist the base address of a GetElementPtr. This prevents the
- // creation of new constants for every base constant that gets constant
- // folded with the offset.
- if (Idx == 0)
- return 2 * TTI::TCC_Basic;
- return TTI::TCC_Free;
- case Instruction::Store:
- if (Idx == 0 && Imm.getBitWidth() <= 64) {
- // Any 8-bit immediate store can by implemented via mvi.
- if (BitSize == 8)
- return TTI::TCC_Free;
- // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
- if (isInt<16>(Imm.getSExtValue()))
- return TTI::TCC_Free;
- }
- break;
- case Instruction::ICmp:
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- // Comparisons against signed 32-bit immediates implemented via cgfi.
- if (isInt<32>(Imm.getSExtValue()))
- return TTI::TCC_Free;
- // Comparisons against unsigned 32-bit immediates implemented via clgfi.
- if (isUInt<32>(Imm.getZExtValue()))
- return TTI::TCC_Free;
- }
- break;
- case Instruction::Add:
- case Instruction::Sub:
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
- if (isUInt<32>(Imm.getZExtValue()))
- return TTI::TCC_Free;
- // Or their negation, by swapping addition vs. subtraction.
- if (isUInt<32>(-Imm.getSExtValue()))
- return TTI::TCC_Free;
- }
- break;
- case Instruction::Mul:
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- // We use msgfi to multiply by 32-bit signed immediates.
- if (isInt<32>(Imm.getSExtValue()))
- return TTI::TCC_Free;
- }
- break;
- case Instruction::Or:
- case Instruction::Xor:
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- // Masks supported by oilf/xilf.
- if (isUInt<32>(Imm.getZExtValue()))
- return TTI::TCC_Free;
- // Masks supported by oihf/xihf.
- if ((Imm.getZExtValue() & 0xffffffff) == 0)
- return TTI::TCC_Free;
- }
- break;
- case Instruction::And:
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- // Any 32-bit AND operation can by implemented via nilf.
- if (BitSize <= 32)
- return TTI::TCC_Free;
- // 64-bit masks supported by nilf.
- if (isUInt<32>(~Imm.getZExtValue()))
- return TTI::TCC_Free;
- // 64-bit masks supported by nilh.
- if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
- return TTI::TCC_Free;
- // Some 64-bit AND operations can be implemented via risbg.
- const SystemZInstrInfo *TII = ST->getInstrInfo();
- unsigned Start, End;
- if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
- return TTI::TCC_Free;
- }
- break;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- // Always return TCC_Free for the shift value of a shift instruction.
- if (Idx == 1)
- return TTI::TCC_Free;
- break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- case Instruction::BitCast:
- case Instruction::PHI:
- case Instruction::Call:
- case Instruction::Select:
- case Instruction::Ret:
- case Instruction::Load:
- break;
- }
-
- return SystemZTTIImpl::getIntImmCost(Imm, Ty);
-}
-
-int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty) {
- assert(Ty->isIntegerTy());
-
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- // There is no cost model for constants with a bit size of 0. Return TCC_Free
- // here, so that constant hoisting will ignore this constant.
- if (BitSize == 0)
- return TTI::TCC_Free;
- // No cost model for operations on integers larger than 64 bit implemented yet.
- if (BitSize > 64)
- return TTI::TCC_Free;
-
- switch (IID) {
- default:
- return TTI::TCC_Free;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- // These get expanded to include a normal addition/subtraction.
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- if (isUInt<32>(Imm.getZExtValue()))
- return TTI::TCC_Free;
- if (isUInt<32>(-Imm.getSExtValue()))
- return TTI::TCC_Free;
- }
- break;
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- // These get expanded to include a normal multiplication.
- if (Idx == 1 && Imm.getBitWidth() <= 64) {
- if (isInt<32>(Imm.getSExtValue()))
- return TTI::TCC_Free;
- }
- break;
- case Intrinsic::experimental_stackmap:
- if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- }
- return SystemZTTIImpl::getIntImmCost(Imm, Ty);
-}
-
-TargetTransformInfo::PopcntSupportKind
-SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
- assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
- if (ST->hasPopulationCount() && TyWidth <= 64)
- return TTI::PSK_FastHardware;
- return TTI::PSK_Software;
-}
-
-void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP) {
- // Find out if L contains a call, what the machine instruction count
- // estimate is, and how many stores there are.
- bool HasCall = false;
- unsigned NumStores = 0;
- for (auto &BB : L->blocks())
- for (auto &I : *BB) {
- if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
- ImmutableCallSite CS(&I);
- if (const Function *F = CS.getCalledFunction()) {
- if (isLoweredToCall(F))
- HasCall = true;
- if (F->getIntrinsicID() == Intrinsic::memcpy ||
- F->getIntrinsicID() == Intrinsic::memset)
- NumStores++;
- } else { // indirect call.
- HasCall = true;
- }
- }
- if (isa<StoreInst>(&I)) {
- Type *MemAccessTy = I.getOperand(0)->getType();
- NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
- }
- }
-
- // The z13 processor will run out of store tags if too many stores
- // are fed into it too quickly. Therefore make sure there are not
- // too many stores in the resulting unrolled loop.
- unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
-
- if (HasCall) {
- // Only allow full unrolling if loop has any calls.
- UP.FullUnrollMaxCount = Max;
- UP.MaxCount = 1;
- return;
- }
-
- UP.MaxCount = Max;
- if (UP.MaxCount <= 1)
- return;
-
- // Allow partial and runtime trip count unrolling.
- UP.Partial = UP.Runtime = true;
-
- UP.PartialThreshold = 75;
- UP.DefaultUnrollRuntimeCount = 4;
-
- // Allow expensive instructions in the pre-header of the loop.
- UP.AllowExpensiveTripCount = true;
-
- UP.Force = true;
-}
-
-
-bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
- TargetTransformInfo::LSRCost &C2) {
- // SystemZ specific: check instruction count (first), and don't care about
- // ImmCost, since offsets are checked explicitly.
- return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
- C1.NumIVMuls, C1.NumBaseAdds,
- C1.ScaleCost, C1.SetupCost) <
- std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
- C2.NumIVMuls, C2.NumBaseAdds,
- C2.ScaleCost, C2.SetupCost);
-}
-
-unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
- if (!Vector)
- // Discount the stack pointer. Also leave out %r0, since it can't
- // be used in an address.
- return 14;
- if (ST->hasVector())
- return 32;
- return 0;
-}
-
-unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
- if (!Vector)
- return 64;
- if (ST->hasVector())
- return 128;
- return 0;
-}
-
-bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
- EVT VT = TLI->getValueType(DL, DataType);
- return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
-}
-
-// Return the bit size for the scalar type or vector element
-// type. getScalarSizeInBits() returns 0 for a pointer type.
-static unsigned getScalarSizeInBits(Type *Ty) {
- unsigned Size =
- (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
- assert(Size > 0 && "Element must have non-zero size.");
- return Size;
-}
-
-// getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
-// type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
-// 3.
-static unsigned getNumVectorRegs(Type *Ty) {
- assert(Ty->isVectorTy() && "Expected vector type");
- unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
- assert(WideBits > 0 && "Could not compute size of vector");
- return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
-}
-
-int SystemZTTIImpl::getArithmeticInstrCost(
- unsigned Opcode, Type *Ty,
- TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
- TTI::OperandValueProperties Opd1PropInfo,
- TTI::OperandValueProperties Opd2PropInfo,
- ArrayRef<const Value *> Args) {
-
- // TODO: return a good value for BB-VECTORIZER that includes the
- // immediate loads, which we do not want to count for the loop
- // vectorizer, since they are hopefully hoisted out of the loop. This
- // would require a new parameter 'InLoop', but not sure if constant
- // args are common enough to motivate this.
-
- unsigned ScalarBits = Ty->getScalarSizeInBits();
-
- // There are thre cases of division and remainder: Dividing with a register
- // needs a divide instruction. A divisor which is a power of two constant
- // can be implemented with a sequence of shifts. Any other constant needs a
- // multiply and shifts.
- const unsigned DivInstrCost = 20;
- const unsigned DivMulSeqCost = 10;
- const unsigned SDivPow2Cost = 4;
-
- bool SignedDivRem =
- Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
- bool UnsignedDivRem =
- Opcode == Instruction::UDiv || Opcode == Instruction::URem;
-
- // Check for a constant divisor.
- bool DivRemConst = false;
- bool DivRemConstPow2 = false;
- if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
- if (const Constant *C = dyn_cast<Constant>(Args[1])) {
- const ConstantInt *CVal =
- (C->getType()->isVectorTy()
- ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
- : dyn_cast<const ConstantInt>(C));
- if (CVal != nullptr &&
- (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
- DivRemConstPow2 = true;
- else
- DivRemConst = true;
- }
- }
-
- if (Ty->isVectorTy()) {
- assert(ST->hasVector() &&
- "getArithmeticInstrCost() called with vector type.");
- unsigned VF = Ty->getVectorNumElements();
- unsigned NumVectors = getNumVectorRegs(Ty);
-
- // These vector operations are custom handled, but are still supported
- // with one instruction per vector, regardless of element size.
- if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
- Opcode == Instruction::AShr) {
- return NumVectors;
- }
-
- if (DivRemConstPow2)
- return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
- if (DivRemConst)
- return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args);
- if ((SignedDivRem || UnsignedDivRem) && VF > 4)
- // Temporary hack: disable high vectorization factors with integer
- // division/remainder, which will get scalarized and handled with
- // GR128 registers. The mischeduler is not clever enough to avoid
- // spilling yet.
- return 1000;
-
- // These FP operations are supported with a single vector instruction for
- // double (base implementation assumes float generally costs 2). For
- // FP128, the scalar cost is 1, and there is no overhead since the values
- // are already in scalar registers.
- if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
- Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
- switch (ScalarBits) {
- case 32: {
- // The vector enhancements facility 1 provides v4f32 instructions.
- if (ST->hasVectorEnhancements1())
- return NumVectors;
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- unsigned ScalarCost =
- getArithmeticInstrCost(Opcode, Ty->getScalarType());
- unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
- // FIXME: VF 2 for these FP operations are currently just as
- // expensive as for VF 4.
- if (VF == 2)
- Cost *= 2;
- return Cost;
- }
- case 64:
- case 128:
- return NumVectors;
- default:
- break;
- }
- }
-
- // There is no native support for FRem.
- if (Opcode == Instruction::FRem) {
- unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
- // FIXME: VF 2 for float is currently just as expensive as for VF 4.
- if (VF == 2 && ScalarBits == 32)
- Cost *= 2;
- return Cost;
- }
- }
- else { // Scalar:
- // These FP operations are supported with a dedicated instruction for
- // float, double and fp128 (base implementation assumes float generally
- // costs 2).
- if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
- Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
- return 1;
-
- // There is no native support for FRem.
- if (Opcode == Instruction::FRem)
- return LIBCALL_COST;
-
- // Or requires one instruction, although it has custom handling for i64.
- if (Opcode == Instruction::Or)
- return 1;
-
- if (Opcode == Instruction::Xor && ScalarBits == 1) {
- if (ST->hasLoadStoreOnCond2())
- return 5; // 2 * (li 0; loc 1); xor
- return 7; // 2 * ipm sequences ; xor ; shift ; compare
- }
-
- if (DivRemConstPow2)
- return (SignedDivRem ? SDivPow2Cost : 1);
- if (DivRemConst)
- return DivMulSeqCost;
- if (SignedDivRem || UnsignedDivRem)
- return DivInstrCost;
- }
-
- // Fallback to the default implementation.
- return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
- Opd1PropInfo, Opd2PropInfo, Args);
-}
-
-int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) {
- assert (Tp->isVectorTy());
- assert (ST->hasVector() && "getShuffleCost() called.");
- unsigned NumVectors = getNumVectorRegs(Tp);
-
- // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
-
- // FP128 values are always in scalar registers, so there is no work
- // involved with a shuffle, except for broadcast. In that case register
- // moves are done with a single instruction per element.
- if (Tp->getScalarType()->isFP128Ty())
- return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
-
- switch (Kind) {
- case TargetTransformInfo::SK_ExtractSubvector:
- // ExtractSubvector Index indicates start offset.
-
- // Extracting a subvector from first index is a noop.
- return (Index == 0 ? 0 : NumVectors);
-
- case TargetTransformInfo::SK_Broadcast:
- // Loop vectorizer calls here to figure out the extra cost of
- // broadcasting a loaded value to all elements of a vector. Since vlrep
- // loads and replicates with a single instruction, adjust the returned
- // value.
- return NumVectors - 1;
-
- default:
-
- // SystemZ supports single instruction permutation / replication.
- return NumVectors;
- }
-
- return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
-}
-
-// Return the log2 difference of the element sizes of the two vector types.
-static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
- unsigned Bits0 = Ty0->getScalarSizeInBits();
- unsigned Bits1 = Ty1->getScalarSizeInBits();
-
- if (Bits1 > Bits0)
- return (Log2_32(Bits1) - Log2_32(Bits0));
-
- return (Log2_32(Bits0) - Log2_32(Bits1));
-}
-
-// Return the number of instructions needed to truncate SrcTy to DstTy.
-unsigned SystemZTTIImpl::
-getVectorTruncCost(Type *SrcTy, Type *DstTy) {
- assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
- assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
- "Packing must reduce size of vector type.");
- assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
- "Packing should not change number of elements.");
-
- // TODO: Since fp32 is expanded, the extract cost should always be 0.
-
- unsigned NumParts = getNumVectorRegs(SrcTy);
- if (NumParts <= 2)
- // Up to 2 vector registers can be truncated efficiently with pack or
- // permute. The latter requires an immediate mask to be loaded, which
- // typically gets hoisted out of a loop. TODO: return a good value for
- // BB-VECTORIZER that includes the immediate loads, which we do not want
- // to count for the loop vectorizer.
- return 1;
-
- unsigned Cost = 0;
- unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
- unsigned VF = SrcTy->getVectorNumElements();
- for (unsigned P = 0; P < Log2Diff; ++P) {
- if (NumParts > 1)
- NumParts /= 2;
- Cost += NumParts;
- }
-
- // Currently, a general mix of permutes and pack instructions is output by
- // isel, which follow the cost computation above except for this case which
- // is one instruction less:
- if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
- DstTy->getScalarSizeInBits() == 8)
- Cost--;
-
- return Cost;
-}
-
-// Return the cost of converting a vector bitmask produced by a compare
-// (SrcTy), to the type of the select or extend instruction (DstTy).
-unsigned SystemZTTIImpl::
-getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
- assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
- "Should only be called with vector types.");
-
- unsigned PackCost = 0;
- unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
- unsigned DstScalarBits = DstTy->getScalarSizeInBits();
- unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
- if (SrcScalarBits > DstScalarBits)
- // The bitmask will be truncated.
- PackCost = getVectorTruncCost(SrcTy, DstTy);
- else if (SrcScalarBits < DstScalarBits) {
- unsigned DstNumParts = getNumVectorRegs(DstTy);
- // Each vector select needs its part of the bitmask unpacked.
- PackCost = Log2Diff * DstNumParts;
- // Extra cost for moving part of mask before unpacking.
- PackCost += DstNumParts - 1;
- }
-
- return PackCost;
-}
-
-// Return the type of the compared operands. This is needed to compute the
-// cost for a Select / ZExt or SExt instruction.
-static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
- Type *OpTy = nullptr;
- if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
- OpTy = CI->getOperand(0)->getType();
- else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
- if (LogicI->getNumOperands() == 2)
- if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
- if (isa<CmpInst>(LogicI->getOperand(1)))
- OpTy = CI0->getOperand(0)->getType();
-
- if (OpTy != nullptr) {
- if (VF == 1) {
- assert (!OpTy->isVectorTy() && "Expected scalar type");
- return OpTy;
- }
- // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
- // be either scalar or already vectorized with a same or lesser VF.
- Type *ElTy = OpTy->getScalarType();
- return VectorType::get(ElTy, VF);
- }
-
- return nullptr;
-}
-
-// Get the cost of converting a boolean vector to a vector with same width
-// and element size as Dst, plus the cost of zero extending if needed.
-unsigned SystemZTTIImpl::
-getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
- const Instruction *I) {
- assert (Dst->isVectorTy());
- unsigned VF = Dst->getVectorNumElements();
- unsigned Cost = 0;
- // If we know what the widths of the compared operands, get any cost of
- // converting it to match Dst. Otherwise assume same widths.
- Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
- if (CmpOpTy != nullptr)
- Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
- if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
- // One 'vn' per dst vector with an immediate mask.
- Cost += getNumVectorRegs(Dst);
- return Cost;
-}
-
-int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
- const Instruction *I) {
- unsigned DstScalarBits = Dst->getScalarSizeInBits();
- unsigned SrcScalarBits = Src->getScalarSizeInBits();
-
- if (Src->isVectorTy()) {
- assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
- assert (Dst->isVectorTy());
- unsigned VF = Src->getVectorNumElements();
- unsigned NumDstVectors = getNumVectorRegs(Dst);
- unsigned NumSrcVectors = getNumVectorRegs(Src);
-
- if (Opcode == Instruction::Trunc) {
- if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
- return 0; // Check for NOOP conversions.
- return getVectorTruncCost(Src, Dst);
- }
-
- if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
- if (SrcScalarBits >= 8) {
- // ZExt/SExt will be handled with one unpack per doubling of width.
- unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
-
- // For types that spans multiple vector registers, some additional
- // instructions are used to setup the unpacking.
- unsigned NumSrcVectorOps =
- (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
- : (NumDstVectors / 2));
-
- return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
- }
- else if (SrcScalarBits == 1)
- return getBoolVecToIntConversionCost(Opcode, Dst, I);
- }
-
- if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
- Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
- // TODO: Fix base implementation which could simplify things a bit here
- // (seems to miss on differentiating on scalar/vector types).
-
- // Only 64 bit vector conversions are natively supported.
- if (DstScalarBits == 64) {
- if (SrcScalarBits == 64)
- return NumDstVectors;
-
- if (SrcScalarBits == 1)
- return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
- }
-
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values. Base implementation does not
- // realize float->int gets scalarized.
- unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
- Src->getScalarType());
- unsigned TotCost = VF * ScalarCost;
- bool NeedsInserts = true, NeedsExtracts = true;
- // FP128 registers do not get inserted or extracted.
- if (DstScalarBits == 128 &&
- (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
- NeedsInserts = false;
- if (SrcScalarBits == 128 &&
- (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
- NeedsExtracts = false;
-
- TotCost += getScalarizationOverhead(Src, false, NeedsExtracts);
- TotCost += getScalarizationOverhead(Dst, NeedsInserts, false);
-
- // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
- if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
- TotCost *= 2;
-
- return TotCost;
- }
-
- if (Opcode == Instruction::FPTrunc) {
- if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
- return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
- else // double -> float
- return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
- }
-
- if (Opcode == Instruction::FPExt) {
- if (SrcScalarBits == 32 && DstScalarBits == 64) {
- // float -> double is very rare and currently unoptimized. Instead of
- // using vldeb, which can do two at a time, all conversions are
- // scalarized.
- return VF * 2;
- }
- // -> fp128. VF * lxdb/lxeb + extraction of elements.
- return VF + getScalarizationOverhead(Src, false, true);
- }
- }
- else { // Scalar
- assert (!Dst->isVectorTy());
-
- if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
- if (SrcScalarBits >= 32 ||
- (I != nullptr && isa<LoadInst>(I->getOperand(0))))
- return 1;
- return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
- }
-
- if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- Src->isIntegerTy(1)) {
- if (ST->hasLoadStoreOnCond2())
- return 2; // li 0; loc 1
-
- // This should be extension of a compare i1 result, which is done with
- // ipm and a varying sequence of instructions.
- unsigned Cost = 0;
- if (Opcode == Instruction::SExt)
- Cost = (DstScalarBits < 64 ? 3 : 4);
- if (Opcode == Instruction::ZExt)
- Cost = 3;
- Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
- if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
- // If operands of an fp-type was compared, this costs +1.
- Cost++;
- return Cost;
- }
- }
-
- return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
-}
-
-// Scalar i8 / i16 operations will typically be made after first extending
-// the operands to i32.
-static unsigned getOperandsExtensionCost(const Instruction *I) {
- unsigned ExtCost = 0;
- for (Value *Op : I->operands())
- // A load of i8 or i16 sign/zero extends to i32.
- if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
- ExtCost++;
-
- return ExtCost;
-}
-
-int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy, const Instruction *I) {
- if (ValTy->isVectorTy()) {
- assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
- unsigned VF = ValTy->getVectorNumElements();
-
- // Called with a compare instruction.
- if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
- unsigned PredicateExtraCost = 0;
- if (I != nullptr) {
- // Some predicates cost one or two extra instructions.
- switch (cast<CmpInst>(I)->getPredicate()) {
- case CmpInst::Predicate::ICMP_NE:
- case CmpInst::Predicate::ICMP_UGE:
- case CmpInst::Predicate::ICMP_ULE:
- case CmpInst::Predicate::ICMP_SGE:
- case CmpInst::Predicate::ICMP_SLE:
- PredicateExtraCost = 1;
- break;
- case CmpInst::Predicate::FCMP_ONE:
- case CmpInst::Predicate::FCMP_ORD:
- case CmpInst::Predicate::FCMP_UEQ:
- case CmpInst::Predicate::FCMP_UNO:
- PredicateExtraCost = 2;
- break;
- default:
- break;
- }
- }
-
- // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
- // floats. FIXME: <2 x float> generates same code as <4 x float>.
- unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
- unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
-
- unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
- return Cost;
- }
- else { // Called with a select instruction.
- assert (Opcode == Instruction::Select);
-
- // We can figure out the extra cost of packing / unpacking if the
- // instruction was passed and the compare instruction is found.
- unsigned PackCost = 0;
- Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
- if (CmpOpTy != nullptr)
- PackCost =
- getVectorBitmaskConversionCost(CmpOpTy, ValTy);
-
- return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
- }
- }
- else { // Scalar
- switch (Opcode) {
- case Instruction::ICmp: {
- // A loaded value compared with 0 with multiple users becomes Load and
- // Test. The load is then not foldable, so return 0 cost for the ICmp.
- unsigned ScalarBits = ValTy->getScalarSizeInBits();
- if (I != nullptr && ScalarBits >= 32)
- if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
- if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
- if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
- C->getZExtValue() == 0)
- return 0;
-
- unsigned Cost = 1;
- if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
- Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
- return Cost;
- }
- case Instruction::Select:
- if (ValTy->isFloatingPointTy())
- return 4; // No load on condition for FP - costs a conditional jump.
- return 1; // Load On Condition.
- }
- }
-
- return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
-}
-
-int SystemZTTIImpl::
-getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
- // vlvgp will insert two grs into a vector register, so only count half the
- // number of instructions.
- if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
- return ((Index % 2 == 0) ? 1 : 0);
-
- if (Opcode == Instruction::ExtractElement) {
- int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
-
- // Give a slight penalty for moving out of vector pipeline to FXU unit.
- if (Index == 0 && Val->isIntOrIntVectorTy())
- Cost += 1;
-
- return Cost;
- }
-
- return BaseT::getVectorInstrCost(Opcode, Val, Index);
-}
-
-// Check if a load may be folded as a memory operand in its user.
-bool SystemZTTIImpl::
-isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
- if (!Ld->hasOneUse())
- return false;
- FoldedValue = Ld;
- const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
- unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
- unsigned TruncBits = 0;
- unsigned SExtBits = 0;
- unsigned ZExtBits = 0;
- if (UserI->hasOneUse()) {
- unsigned UserBits = UserI->getType()->getScalarSizeInBits();
- if (isa<TruncInst>(UserI))
- TruncBits = UserBits;
- else if (isa<SExtInst>(UserI))
- SExtBits = UserBits;
- else if (isa<ZExtInst>(UserI))
- ZExtBits = UserBits;
- }
- if (TruncBits || SExtBits || ZExtBits) {
- FoldedValue = UserI;
- UserI = cast<Instruction>(*UserI->user_begin());
- // Load (single use) -> trunc/extend (single use) -> UserI
- }
- if ((UserI->getOpcode() == Instruction::Sub ||
- UserI->getOpcode() == Instruction::SDiv ||
- UserI->getOpcode() == Instruction::UDiv) &&
- UserI->getOperand(1) != FoldedValue)
- return false; // Not commutative, only RHS foldable.
- // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
- // extension was made of the load.
- unsigned LoadOrTruncBits =
- ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
- switch (UserI->getOpcode()) {
- case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
- case Instruction::Sub:
- case Instruction::ICmp:
- if (LoadedBits == 32 && ZExtBits == 64)
- return true;
- LLVM_FALLTHROUGH;
- case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
- if (UserI->getOpcode() != Instruction::ICmp) {
- if (LoadedBits == 16 &&
- (SExtBits == 32 ||
- (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
- return true;
- if (LoadOrTruncBits == 16)
- return true;
- }
- LLVM_FALLTHROUGH;
- case Instruction::SDiv:// SE: 32->64
- if (LoadedBits == 32 && SExtBits == 64)
- return true;
- LLVM_FALLTHROUGH;
- case Instruction::UDiv:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // This also makes sense for float operations, but disabled for now due
- // to regressions.
- // case Instruction::FCmp:
- // case Instruction::FAdd:
- // case Instruction::FSub:
- // case Instruction::FMul:
- // case Instruction::FDiv:
-
- // All possible extensions of memory checked above.
-
- // Comparison between memory and immediate.
- if (UserI->getOpcode() == Instruction::ICmp)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
- if (isUInt<16>(CI->getZExtValue()))
- return true;
- return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
- break;
- }
- return false;
-}
-
-static bool isBswapIntrinsicCall(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- if (auto *CI = dyn_cast<CallInst>(I))
- if (auto *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::bswap)
- return true;
- return false;
-}
-
-int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment, unsigned AddressSpace,
- const Instruction *I) {
- assert(!Src->isVoidTy() && "Invalid type");
-
- if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
- // Store the load or its truncated or extended value in FoldedValue.
- const Instruction *FoldedValue = nullptr;
- if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
- const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
- assert (UserI->getNumOperands() == 2 && "Expected a binop.");
-
- // UserI can't fold two loads, so in that case return 0 cost only
- // half of the time.
- for (unsigned i = 0; i < 2; ++i) {
- if (UserI->getOperand(i) == FoldedValue)
- continue;
-
- if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
- LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
- if (!OtherLoad &&
- (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
- isa<ZExtInst>(OtherOp)))
- OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
- if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
- return i == 0; // Both operands foldable.
- }
- }
-
- return 0; // Only I is foldable in user.
- }
- }
-
- unsigned NumOps =
- (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
-
- // Store/Load reversed saves one instruction.
- if (!Src->isVectorTy() && NumOps == 1 && I != nullptr) {
- if (Opcode == Instruction::Load && I->hasOneUse()) {
- const Instruction *LdUser = cast<Instruction>(*I->user_begin());
- // In case of load -> bswap -> store, return normal cost for the load.
- if (isBswapIntrinsicCall(LdUser) &&
- (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
- return 0;
- }
- else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
- const Value *StoredVal = SI->getValueOperand();
- if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
- return 0;
- }
- }
-
- if (Src->getScalarSizeInBits() == 128)
- // 128 bit scalars are held in a pair of two 64 bit registers.
- NumOps *= 2;
-
- return NumOps;
-}
-
-// The generic implementation of getInterleavedMemoryOpCost() is based on
-// adding costs of the memory operations plus all the extracts and inserts
-// needed for using / defining the vector operands. The SystemZ version does
-// roughly the same but bases the computations on vector permutations
-// instead.
-int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
- unsigned Factor,
- ArrayRef<unsigned> Indices,
- unsigned Alignment,
- unsigned AddressSpace,
- bool UseMaskForCond,
- bool UseMaskForGaps) {
- if (UseMaskForCond || UseMaskForGaps)
- return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace,
- UseMaskForCond, UseMaskForGaps);
- assert(isa<VectorType>(VecTy) &&
- "Expect a vector type for interleaved memory op");
-
- // Return the ceiling of dividing A by B.
- auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
-
- unsigned NumElts = VecTy->getVectorNumElements();
- assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
- unsigned VF = NumElts / Factor;
- unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
- unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
- unsigned NumPermutes = 0;
-
- if (Opcode == Instruction::Load) {
- // Loading interleave groups may have gaps, which may mean fewer
- // loads. Find out how many vectors will be loaded in total, and in how
- // many of them each value will be in.
- BitVector UsedInsts(NumVectorMemOps, false);
- std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
- for (unsigned Index : Indices)
- for (unsigned Elt = 0; Elt < VF; ++Elt) {
- unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
- UsedInsts.set(Vec);
- ValueVecs[Index].set(Vec);
- }
- NumVectorMemOps = UsedInsts.count();
-
- for (unsigned Index : Indices) {
- // Estimate that each loaded source vector containing this Index
- // requires one operation, except that vperm can handle two input
- // registers first time for each dst vector.
- unsigned NumSrcVecs = ValueVecs[Index].count();
- unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
- assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
- NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
- }
- } else {
- // Estimate the permutes for each stored vector as the smaller of the
- // number of elements and the number of source vectors. Subtract one per
- // dst vector for vperm (S.A.).
- unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
- unsigned NumDstVecs = NumVectorMemOps;
- assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
- NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
- }
-
- // Cost of load/store operations and the permutations needed.
- return NumVectorMemOps + NumPermutes;
-}
-
-static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
- if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
- return getNumVectorRegs(RetTy); // VPERM
- return -1;
-}
-
-int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
- ArrayRef<Value *> Args,
- FastMathFlags FMF, unsigned VF) {
- int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
- if (Cost != -1)
- return Cost;
- return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
-}
-
-int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
- ArrayRef<Type *> Tys,
- FastMathFlags FMF,
- unsigned ScalarizationCostPassed) {
- int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
- if (Cost != -1)
- return Cost;
- return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys,
- FMF, ScalarizationCostPassed);
-}