diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/X86/X86FastISel.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/X86/X86FastISel.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/X86/X86FastISel.cpp | 4038 |
1 files changed, 0 insertions, 4038 deletions
diff --git a/gnu/llvm/lib/Target/X86/X86FastISel.cpp b/gnu/llvm/lib/Target/X86/X86FastISel.cpp deleted file mode 100644 index 12cd613c34c..00000000000 --- a/gnu/llvm/lib/Target/X86/X86FastISel.cpp +++ /dev/null @@ -1,4038 +0,0 @@ -//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the X86-specific support for the FastISel class. Much -// of the target-specific code is generated by tablegen in the file -// X86GenFastISel.inc, which is #included here. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86CallingConv.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "X86MachineFunctionInfo.h" -#include "X86RegisterInfo.h" -#include "X86Subtarget.h" -#include "X86TargetMachine.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/CodeGen/FastISel.h" -#include "llvm/CodeGen/FunctionLoweringInfo.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/DebugInfo.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Operator.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Target/TargetOptions.h" -using namespace llvm; - -namespace { - -class X86FastISel final : public FastISel { - /// Subtarget - Keep a pointer to the X86Subtarget around so that we can - /// make the right decision when generating code for different targets. - const X86Subtarget *Subtarget; - - /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 - /// floating point ops. - /// When SSE is available, use it for f32 operations. - /// When SSE2 is available, use it for f64 operations. - bool X86ScalarSSEf64; - bool X86ScalarSSEf32; - -public: - explicit X86FastISel(FunctionLoweringInfo &funcInfo, - const TargetLibraryInfo *libInfo) - : FastISel(funcInfo, libInfo) { - Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); - X86ScalarSSEf64 = Subtarget->hasSSE2(); - X86ScalarSSEf32 = Subtarget->hasSSE1(); - } - - bool fastSelectInstruction(const Instruction *I) override; - - /// The specified machine instr operand is a vreg, and that - /// vreg is being provided by the specified load instruction. If possible, - /// try to fold the load as an operand to the instruction, returning true if - /// possible. - bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, - const LoadInst *LI) override; - - bool fastLowerArguments() override; - bool fastLowerCall(CallLoweringInfo &CLI) override; - bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; - -#include "X86GenFastISel.inc" - -private: - bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, - const DebugLoc &DL); - - bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO, - unsigned &ResultReg, unsigned Alignment = 1); - - bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, - MachineMemOperand *MMO = nullptr, bool Aligned = false); - bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, - X86AddressMode &AM, - MachineMemOperand *MMO = nullptr, bool Aligned = false); - - bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, - unsigned &ResultReg); - - bool X86SelectAddress(const Value *V, X86AddressMode &AM); - bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); - - bool X86SelectLoad(const Instruction *I); - - bool X86SelectStore(const Instruction *I); - - bool X86SelectRet(const Instruction *I); - - bool X86SelectCmp(const Instruction *I); - - bool X86SelectZExt(const Instruction *I); - - bool X86SelectSExt(const Instruction *I); - - bool X86SelectBranch(const Instruction *I); - - bool X86SelectShift(const Instruction *I); - - bool X86SelectDivRem(const Instruction *I); - - bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); - - bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); - - bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); - - bool X86SelectSelect(const Instruction *I); - - bool X86SelectTrunc(const Instruction *I); - - bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, - const TargetRegisterClass *RC); - - bool X86SelectFPExt(const Instruction *I); - bool X86SelectFPTrunc(const Instruction *I); - bool X86SelectSIToFP(const Instruction *I); - bool X86SelectUIToFP(const Instruction *I); - bool X86SelectIntToFP(const Instruction *I, bool IsSigned); - - const X86InstrInfo *getInstrInfo() const { - return Subtarget->getInstrInfo(); - } - const X86TargetMachine *getTargetMachine() const { - return static_cast<const X86TargetMachine *>(&TM); - } - - bool handleConstantAddresses(const Value *V, X86AddressMode &AM); - - unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); - unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); - unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); - unsigned fastMaterializeConstant(const Constant *C) override; - - unsigned fastMaterializeAlloca(const AllocaInst *C) override; - - unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; - - /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is - /// computed in an SSE register, not on the X87 floating point stack. - bool isScalarFPTypeInSSEReg(EVT VT) const { - return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 - (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 - } - - bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); - - bool IsMemcpySmall(uint64_t Len); - - bool TryEmitSmallMemcpy(X86AddressMode DestAM, - X86AddressMode SrcAM, uint64_t Len); - - bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, - const Value *Cond); - - const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, - X86AddressMode &AM); - - unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, - const TargetRegisterClass *RC, unsigned Op0, - bool Op0IsKill, unsigned Op1, bool Op1IsKill, - unsigned Op2, bool Op2IsKill, unsigned Op3, - bool Op3IsKill); -}; - -} // end anonymous namespace. - -static std::pair<unsigned, bool> -getX86SSEConditionCode(CmpInst::Predicate Predicate) { - unsigned CC; - bool NeedSwap = false; - - // SSE Condition code mapping: - // 0 - EQ - // 1 - LT - // 2 - LE - // 3 - UNORD - // 4 - NEQ - // 5 - NLT - // 6 - NLE - // 7 - ORD - switch (Predicate) { - default: llvm_unreachable("Unexpected predicate"); - case CmpInst::FCMP_OEQ: CC = 0; break; - case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; - case CmpInst::FCMP_OLT: CC = 1; break; - case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; - case CmpInst::FCMP_OLE: CC = 2; break; - case CmpInst::FCMP_UNO: CC = 3; break; - case CmpInst::FCMP_UNE: CC = 4; break; - case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; - case CmpInst::FCMP_UGE: CC = 5; break; - case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; - case CmpInst::FCMP_UGT: CC = 6; break; - case CmpInst::FCMP_ORD: CC = 7; break; - case CmpInst::FCMP_UEQ: CC = 8; break; - case CmpInst::FCMP_ONE: CC = 12; break; - } - - return std::make_pair(CC, NeedSwap); -} - -/// Adds a complex addressing mode to the given machine instr builder. -/// Note, this will constrain the index register. If its not possible to -/// constrain the given index register, then a new one will be created. The -/// IndexReg field of the addressing mode will be updated to match in this case. -const MachineInstrBuilder & -X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, - X86AddressMode &AM) { - // First constrain the index register. It needs to be a GR64_NOSP. - AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, - MIB->getNumOperands() + - X86::AddrIndexReg); - return ::addFullAddress(MIB, AM); -} - -/// Check if it is possible to fold the condition from the XALU intrinsic -/// into the user. The condition code will only be updated on success. -bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, - const Value *Cond) { - if (!isa<ExtractValueInst>(Cond)) - return false; - - const auto *EV = cast<ExtractValueInst>(Cond); - if (!isa<IntrinsicInst>(EV->getAggregateOperand())) - return false; - - const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); - MVT RetVT; - const Function *Callee = II->getCalledFunction(); - Type *RetTy = - cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); - if (!isTypeLegal(RetTy, RetVT)) - return false; - - if (RetVT != MVT::i32 && RetVT != MVT::i64) - return false; - - X86::CondCode TmpCC; - switch (II->getIntrinsicID()) { - default: return false; - case Intrinsic::sadd_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; - case Intrinsic::uadd_with_overflow: - case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; - } - - // Check if both instructions are in the same basic block. - if (II->getParent() != I->getParent()) - return false; - - // Make sure nothing is in the way - BasicBlock::const_iterator Start(I); - BasicBlock::const_iterator End(II); - for (auto Itr = std::prev(Start); Itr != End; --Itr) { - // We only expect extractvalue instructions between the intrinsic and the - // instruction to be selected. - if (!isa<ExtractValueInst>(Itr)) - return false; - - // Check that the extractvalue operand comes from the intrinsic. - const auto *EVI = cast<ExtractValueInst>(Itr); - if (EVI->getAggregateOperand() != II) - return false; - } - - CC = TmpCC; - return true; -} - -bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { - EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true); - if (evt == MVT::Other || !evt.isSimple()) - // Unhandled type. Halt "fast" selection and bail. - return false; - - VT = evt.getSimpleVT(); - // For now, require SSE/SSE2 for performing floating-point operations, - // since x87 requires additional work. - if (VT == MVT::f64 && !X86ScalarSSEf64) - return false; - if (VT == MVT::f32 && !X86ScalarSSEf32) - return false; - // Similarly, no f80 support yet. - if (VT == MVT::f80) - return false; - // We only handle legal types. For example, on x86-32 the instruction - // selector contains all of the 64-bit instructions from x86-64, - // under the assumption that i64 won't be used if the target doesn't - // support it. - return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); -} - -#include "X86GenCallingConv.inc" - -/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. -/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. -/// Return true and the result register by reference if it is possible. -bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM, - MachineMemOperand *MMO, unsigned &ResultReg, - unsigned Alignment) { - bool HasSSE41 = Subtarget->hasSSE41(); - bool HasAVX = Subtarget->hasAVX(); - bool HasAVX2 = Subtarget->hasAVX2(); - bool HasAVX512 = Subtarget->hasAVX512(); - bool HasVLX = Subtarget->hasVLX(); - bool IsNonTemporal = MMO && MMO->isNonTemporal(); - - // Get opcode and regclass of the output for the given load instruction. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - switch (VT.getSimpleVT().SimpleTy) { - default: return false; - case MVT::i1: - case MVT::i8: - Opc = X86::MOV8rm; - RC = &X86::GR8RegClass; - break; - case MVT::i16: - Opc = X86::MOV16rm; - RC = &X86::GR16RegClass; - break; - case MVT::i32: - Opc = X86::MOV32rm; - RC = &X86::GR32RegClass; - break; - case MVT::i64: - // Must be in x86-64 mode. - Opc = X86::MOV64rm; - RC = &X86::GR64RegClass; - break; - case MVT::f32: - if (X86ScalarSSEf32) { - Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm; - RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass; - } else { - Opc = X86::LD_Fp32m; - RC = &X86::RFP32RegClass; - } - break; - case MVT::f64: - if (X86ScalarSSEf64) { - Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm; - RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass; - } else { - Opc = X86::LD_Fp64m; - RC = &X86::RFP64RegClass; - } - break; - case MVT::f80: - // No f80 support yet. - return false; - case MVT::v4f32: - if (IsNonTemporal && Alignment >= 16 && HasSSE41) - Opc = HasVLX ? X86::VMOVNTDQAZ128rm : - HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; - else if (Alignment >= 16) - Opc = HasVLX ? X86::VMOVAPSZ128rm : - HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; - else - Opc = HasVLX ? X86::VMOVUPSZ128rm : - HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; - RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; - break; - case MVT::v2f64: - if (IsNonTemporal && Alignment >= 16 && HasSSE41) - Opc = HasVLX ? X86::VMOVNTDQAZ128rm : - HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; - else if (Alignment >= 16) - Opc = HasVLX ? X86::VMOVAPDZ128rm : - HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; - else - Opc = HasVLX ? X86::VMOVUPDZ128rm : - HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; - RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; - break; - case MVT::v4i32: - case MVT::v2i64: - case MVT::v8i16: - case MVT::v16i8: - if (IsNonTemporal && Alignment >= 16 && HasSSE41) - Opc = HasVLX ? X86::VMOVNTDQAZ128rm : - HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; - else if (Alignment >= 16) - Opc = HasVLX ? X86::VMOVDQA64Z128rm : - HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; - else - Opc = HasVLX ? X86::VMOVDQU64Z128rm : - HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; - RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; - break; - case MVT::v8f32: - assert(HasAVX); - if (IsNonTemporal && Alignment >= 32 && HasAVX2) - Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; - else if (IsNonTemporal && Alignment >= 16) - return false; // Force split for X86::VMOVNTDQArm - else if (Alignment >= 32) - Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; - else - Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; - RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; - break; - case MVT::v4f64: - assert(HasAVX); - if (IsNonTemporal && Alignment >= 32 && HasAVX2) - Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; - else if (IsNonTemporal && Alignment >= 16) - return false; // Force split for X86::VMOVNTDQArm - else if (Alignment >= 32) - Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; - else - Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; - RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; - break; - case MVT::v8i32: - case MVT::v4i64: - case MVT::v16i16: - case MVT::v32i8: - assert(HasAVX); - if (IsNonTemporal && Alignment >= 32 && HasAVX2) - Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; - else if (IsNonTemporal && Alignment >= 16) - return false; // Force split for X86::VMOVNTDQArm - else if (Alignment >= 32) - Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; - else - Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; - RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; - break; - case MVT::v16f32: - assert(HasAVX512); - if (IsNonTemporal && Alignment >= 64) - Opc = X86::VMOVNTDQAZrm; - else - Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; - RC = &X86::VR512RegClass; - break; - case MVT::v8f64: - assert(HasAVX512); - if (IsNonTemporal && Alignment >= 64) - Opc = X86::VMOVNTDQAZrm; - else - Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; - RC = &X86::VR512RegClass; - break; - case MVT::v8i64: - case MVT::v16i32: - case MVT::v32i16: - case MVT::v64i8: - assert(HasAVX512); - // Note: There are a lot more choices based on type with AVX-512, but - // there's really no advantage when the load isn't masked. - if (IsNonTemporal && Alignment >= 64) - Opc = X86::VMOVNTDQAZrm; - else - Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; - RC = &X86::VR512RegClass; - break; - } - - ResultReg = createResultReg(RC); - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); - addFullAddress(MIB, AM); - if (MMO) - MIB->addMemOperand(*FuncInfo.MF, MMO); - return true; -} - -/// X86FastEmitStore - Emit a machine instruction to store a value Val of -/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr -/// and a displacement offset, or a GlobalAddress, -/// i.e. V. Return true if it is possible. -bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, - X86AddressMode &AM, - MachineMemOperand *MMO, bool Aligned) { - bool HasSSE1 = Subtarget->hasSSE1(); - bool HasSSE2 = Subtarget->hasSSE2(); - bool HasSSE4A = Subtarget->hasSSE4A(); - bool HasAVX = Subtarget->hasAVX(); - bool HasAVX512 = Subtarget->hasAVX512(); - bool HasVLX = Subtarget->hasVLX(); - bool IsNonTemporal = MMO && MMO->isNonTemporal(); - - // Get opcode and regclass of the output for the given store instruction. - unsigned Opc = 0; - switch (VT.getSimpleVT().SimpleTy) { - case MVT::f80: // No f80 support yet. - default: return false; - case MVT::i1: { - // Mask out all but lowest bit. - unsigned AndResult = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::AND8ri), AndResult) - .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); - ValReg = AndResult; - LLVM_FALLTHROUGH; // handle i1 as i8. - } - case MVT::i8: Opc = X86::MOV8mr; break; - case MVT::i16: Opc = X86::MOV16mr; break; - case MVT::i32: - Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; - break; - case MVT::i64: - // Must be in x86-64 mode. - Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; - break; - case MVT::f32: - if (X86ScalarSSEf32) { - if (IsNonTemporal && HasSSE4A) - Opc = X86::MOVNTSS; - else - Opc = HasAVX512 ? X86::VMOVSSZmr : - HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; - } else - Opc = X86::ST_Fp32m; - break; - case MVT::f64: - if (X86ScalarSSEf32) { - if (IsNonTemporal && HasSSE4A) - Opc = X86::MOVNTSD; - else - Opc = HasAVX512 ? X86::VMOVSDZmr : - HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; - } else - Opc = X86::ST_Fp64m; - break; - case MVT::x86mmx: - Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; - break; - case MVT::v4f32: - if (Aligned) { - if (IsNonTemporal) - Opc = HasVLX ? X86::VMOVNTPSZ128mr : - HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; - else - Opc = HasVLX ? X86::VMOVAPSZ128mr : - HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; - } else - Opc = HasVLX ? X86::VMOVUPSZ128mr : - HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; - break; - case MVT::v2f64: - if (Aligned) { - if (IsNonTemporal) - Opc = HasVLX ? X86::VMOVNTPDZ128mr : - HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; - else - Opc = HasVLX ? X86::VMOVAPDZ128mr : - HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; - } else - Opc = HasVLX ? X86::VMOVUPDZ128mr : - HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; - break; - case MVT::v4i32: - case MVT::v2i64: - case MVT::v8i16: - case MVT::v16i8: - if (Aligned) { - if (IsNonTemporal) - Opc = HasVLX ? X86::VMOVNTDQZ128mr : - HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; - else - Opc = HasVLX ? X86::VMOVDQA64Z128mr : - HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; - } else - Opc = HasVLX ? X86::VMOVDQU64Z128mr : - HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; - break; - case MVT::v8f32: - assert(HasAVX); - if (Aligned) { - if (IsNonTemporal) - Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; - else - Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; - } else - Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; - break; - case MVT::v4f64: - assert(HasAVX); - if (Aligned) { - if (IsNonTemporal) - Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; - else - Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; - } else - Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; - break; - case MVT::v8i32: - case MVT::v4i64: - case MVT::v16i16: - case MVT::v32i8: - assert(HasAVX); - if (Aligned) { - if (IsNonTemporal) - Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; - else - Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; - } else - Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; - break; - case MVT::v16f32: - assert(HasAVX512); - if (Aligned) - Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; - else - Opc = X86::VMOVUPSZmr; - break; - case MVT::v8f64: - assert(HasAVX512); - if (Aligned) { - Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; - } else - Opc = X86::VMOVUPDZmr; - break; - case MVT::v8i64: - case MVT::v16i32: - case MVT::v32i16: - case MVT::v64i8: - assert(HasAVX512); - // Note: There are a lot more choices based on type with AVX-512, but - // there's really no advantage when the store isn't masked. - if (Aligned) - Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; - else - Opc = X86::VMOVDQU64Zmr; - break; - } - - const MCInstrDesc &Desc = TII.get(Opc); - // Some of the instructions in the previous switch use FR128 instead - // of FR32 for ValReg. Make sure the register we feed the instruction - // matches its register class constraints. - // Note: This is fine to do a copy from FR32 to FR128, this is the - // same registers behind the scene and actually why it did not trigger - // any bugs before. - ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); - addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); - if (MMO) - MIB->addMemOperand(*FuncInfo.MF, MMO); - - return true; -} - -bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, - X86AddressMode &AM, - MachineMemOperand *MMO, bool Aligned) { - // Handle 'null' like i32/i64 0. - if (isa<ConstantPointerNull>(Val)) - Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); - - // If this is a store of a simple constant, fold the constant into the store. - if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { - unsigned Opc = 0; - bool Signed = true; - switch (VT.getSimpleVT().SimpleTy) { - default: break; - case MVT::i1: - Signed = false; - LLVM_FALLTHROUGH; // Handle as i8. - case MVT::i8: Opc = X86::MOV8mi; break; - case MVT::i16: Opc = X86::MOV16mi; break; - case MVT::i32: Opc = X86::MOV32mi; break; - case MVT::i64: - // Must be a 32-bit sign extended value. - if (isInt<32>(CI->getSExtValue())) - Opc = X86::MOV64mi32; - break; - } - - if (Opc) { - MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); - addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() - : CI->getZExtValue()); - if (MMO) - MIB->addMemOperand(*FuncInfo.MF, MMO); - return true; - } - } - - unsigned ValReg = getRegForValue(Val); - if (ValReg == 0) - return false; - - bool ValKill = hasTrivialKill(Val); - return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); -} - -/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of -/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. -/// ISD::SIGN_EXTEND). -bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, - unsigned Src, EVT SrcVT, - unsigned &ResultReg) { - unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, - Src, /*TODO: Kill=*/false); - if (RR == 0) - return false; - - ResultReg = RR; - return true; -} - -bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { - // Handle constant address. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return false; - - // Can't handle TLS yet. - if (GV->isThreadLocal()) - return false; - - // Can't handle !absolute_symbol references yet. - if (GV->isAbsoluteSymbolRef()) - return false; - - // RIP-relative addresses can't have additional register operands, so if - // we've already folded stuff into the addressing mode, just force the - // global value into its own register, which we can use as the basereg. - if (!Subtarget->isPICStyleRIPRel() || - (AM.Base.Reg == 0 && AM.IndexReg == 0)) { - // Okay, we've committed to selecting this global. Set up the address. - AM.GV = GV; - - // Allow the subtarget to classify the global. - unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); - - // If this reference is relative to the pic base, set it now. - if (isGlobalRelativeToPICBase(GVFlags)) { - // FIXME: How do we know Base.Reg is free?? - AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } - - // Unless the ABI requires an extra load, return a direct reference to - // the global. - if (!isGlobalStubReference(GVFlags)) { - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; - } - AM.GVOpFlags = GVFlags; - return true; - } - - // Ok, we need to do a load from a stub. If we've already loaded from - // this stub, reuse the loaded pointer, otherwise emit the load now. - DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); - unsigned LoadReg; - if (I != LocalValueMap.end() && I->second != 0) { - LoadReg = I->second; - } else { - // Issue load from stub. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - X86AddressMode StubAM; - StubAM.Base.Reg = AM.Base.Reg; - StubAM.GV = GV; - StubAM.GVOpFlags = GVFlags; - - // Prepare for inserting code in the local-value area. - SavePoint SaveInsertPt = enterLocalValueArea(); - - if (TLI.getPointerTy(DL) == MVT::i64) { - Opc = X86::MOV64rm; - RC = &X86::GR64RegClass; - - if (Subtarget->isPICStyleRIPRel()) - StubAM.Base.Reg = X86::RIP; - } else { - Opc = X86::MOV32rm; - RC = &X86::GR32RegClass; - } - - LoadReg = createResultReg(RC); - MachineInstrBuilder LoadMI = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); - addFullAddress(LoadMI, StubAM); - - // Ok, back to normal mode. - leaveLocalValueArea(SaveInsertPt); - - // Prevent loading GV stub multiple times in same MBB. - LocalValueMap[V] = LoadReg; - } - - // Now construct the final address. Note that the Disp, Scale, - // and Index values may already be set here. - AM.Base.Reg = LoadReg; - AM.GV = nullptr; - return true; - } - } - - // If all else fails, try to materialize the value in a register. - if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { - if (AM.Base.Reg == 0) { - AM.Base.Reg = getRegForValue(V); - return AM.Base.Reg != 0; - } - if (AM.IndexReg == 0) { - assert(AM.Scale == 1 && "Scale with no index!"); - AM.IndexReg = getRegForValue(V); - return AM.IndexReg != 0; - } - } - - return false; -} - -/// X86SelectAddress - Attempt to fill in an address from the given value. -/// -bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { - SmallVector<const Value *, 32> GEPs; -redo_gep: - const User *U = nullptr; - unsigned Opcode = Instruction::UserOp1; - if (const Instruction *I = dyn_cast<Instruction>(V)) { - // Don't walk into other basic blocks; it's possible we haven't - // visited them yet, so the instructions may not yet be assigned - // virtual registers. - if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || - FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { - Opcode = I->getOpcode(); - U = I; - } - } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { - Opcode = C->getOpcode(); - U = C; - } - - if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) - if (Ty->getAddressSpace() > 255) - // Fast instruction selection doesn't support the special - // address spaces. - return false; - - switch (Opcode) { - default: break; - case Instruction::BitCast: - // Look past bitcasts. - return X86SelectAddress(U->getOperand(0), AM); - - case Instruction::IntToPtr: - // Look past no-op inttoptrs. - if (TLI.getValueType(DL, U->getOperand(0)->getType()) == - TLI.getPointerTy(DL)) - return X86SelectAddress(U->getOperand(0), AM); - break; - - case Instruction::PtrToInt: - // Look past no-op ptrtoints. - if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) - return X86SelectAddress(U->getOperand(0), AM); - break; - - case Instruction::Alloca: { - // Do static allocas. - const AllocaInst *A = cast<AllocaInst>(V); - DenseMap<const AllocaInst *, int>::iterator SI = - FuncInfo.StaticAllocaMap.find(A); - if (SI != FuncInfo.StaticAllocaMap.end()) { - AM.BaseType = X86AddressMode::FrameIndexBase; - AM.Base.FrameIndex = SI->second; - return true; - } - break; - } - - case Instruction::Add: { - // Adds of constants are common and easy enough. - if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { - uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); - // They have to fit in the 32-bit signed displacement field though. - if (isInt<32>(Disp)) { - AM.Disp = (uint32_t)Disp; - return X86SelectAddress(U->getOperand(0), AM); - } - } - break; - } - - case Instruction::GetElementPtr: { - X86AddressMode SavedAM = AM; - - // Pattern-match simple GEPs. - uint64_t Disp = (int32_t)AM.Disp; - unsigned IndexReg = AM.IndexReg; - unsigned Scale = AM.Scale; - gep_type_iterator GTI = gep_type_begin(U); - // Iterate through the indices, folding what we can. Constants can be - // folded, and one dynamic index can be handled, if the scale is supported. - for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); - i != e; ++i, ++GTI) { - const Value *Op = *i; - if (StructType *STy = GTI.getStructTypeOrNull()) { - const StructLayout *SL = DL.getStructLayout(STy); - Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); - continue; - } - - // A array/variable index is always of the form i*S where S is the - // constant scale size. See if we can push the scale into immediates. - uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); - for (;;) { - if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { - // Constant-offset addressing. - Disp += CI->getSExtValue() * S; - break; - } - if (canFoldAddIntoGEP(U, Op)) { - // A compatible add with a constant operand. Fold the constant. - ConstantInt *CI = - cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); - Disp += CI->getSExtValue() * S; - // Iterate on the other operand. - Op = cast<AddOperator>(Op)->getOperand(0); - continue; - } - if (IndexReg == 0 && - (!AM.GV || !Subtarget->isPICStyleRIPRel()) && - (S == 1 || S == 2 || S == 4 || S == 8)) { - // Scaled-index addressing. - Scale = S; - IndexReg = getRegForGEPIndex(Op).first; - if (IndexReg == 0) - return false; - break; - } - // Unsupported. - goto unsupported_gep; - } - } - - // Check for displacement overflow. - if (!isInt<32>(Disp)) - break; - - AM.IndexReg = IndexReg; - AM.Scale = Scale; - AM.Disp = (uint32_t)Disp; - GEPs.push_back(V); - - if (const GetElementPtrInst *GEP = - dyn_cast<GetElementPtrInst>(U->getOperand(0))) { - // Ok, the GEP indices were covered by constant-offset and scaled-index - // addressing. Update the address state and move on to examining the base. - V = GEP; - goto redo_gep; - } else if (X86SelectAddress(U->getOperand(0), AM)) { - return true; - } - - // If we couldn't merge the gep value into this addr mode, revert back to - // our address and just match the value instead of completely failing. - AM = SavedAM; - - for (const Value *I : reverse(GEPs)) - if (handleConstantAddresses(I, AM)) - return true; - - return false; - unsupported_gep: - // Ok, the GEP indices weren't all covered. - break; - } - } - - return handleConstantAddresses(V, AM); -} - -/// X86SelectCallAddress - Attempt to fill in an address from the given value. -/// -bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { - const User *U = nullptr; - unsigned Opcode = Instruction::UserOp1; - const Instruction *I = dyn_cast<Instruction>(V); - // Record if the value is defined in the same basic block. - // - // This information is crucial to know whether or not folding an - // operand is valid. - // Indeed, FastISel generates or reuses a virtual register for all - // operands of all instructions it selects. Obviously, the definition and - // its uses must use the same virtual register otherwise the produced - // code is incorrect. - // Before instruction selection, FunctionLoweringInfo::set sets the virtual - // registers for values that are alive across basic blocks. This ensures - // that the values are consistently set between across basic block, even - // if different instruction selection mechanisms are used (e.g., a mix of - // SDISel and FastISel). - // For values local to a basic block, the instruction selection process - // generates these virtual registers with whatever method is appropriate - // for its needs. In particular, FastISel and SDISel do not share the way - // local virtual registers are set. - // Therefore, this is impossible (or at least unsafe) to share values - // between basic blocks unless they use the same instruction selection - // method, which is not guarantee for X86. - // Moreover, things like hasOneUse could not be used accurately, if we - // allow to reference values across basic blocks whereas they are not - // alive across basic blocks initially. - bool InMBB = true; - if (I) { - Opcode = I->getOpcode(); - U = I; - InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); - } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { - Opcode = C->getOpcode(); - U = C; - } - - switch (Opcode) { - default: break; - case Instruction::BitCast: - // Look past bitcasts if its operand is in the same BB. - if (InMBB) - return X86SelectCallAddress(U->getOperand(0), AM); - break; - - case Instruction::IntToPtr: - // Look past no-op inttoptrs if its operand is in the same BB. - if (InMBB && - TLI.getValueType(DL, U->getOperand(0)->getType()) == - TLI.getPointerTy(DL)) - return X86SelectCallAddress(U->getOperand(0), AM); - break; - - case Instruction::PtrToInt: - // Look past no-op ptrtoints if its operand is in the same BB. - if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) - return X86SelectCallAddress(U->getOperand(0), AM); - break; - } - - // Handle constant address. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return false; - - // RIP-relative addresses can't have additional register operands. - if (Subtarget->isPICStyleRIPRel() && - (AM.Base.Reg != 0 || AM.IndexReg != 0)) - return false; - - // Can't handle TLS. - if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) - if (GVar->isThreadLocal()) - return false; - - // Okay, we've committed to selecting this global. Set up the basic address. - AM.GV = GV; - - // Return a direct reference to the global. Fastisel can handle calls to - // functions that require loads, such as dllimport and nonlazybind - // functions. - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; - } else { - AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); - } - - return true; - } - - // If all else fails, try to materialize the value in a register. - if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { - if (AM.Base.Reg == 0) { - AM.Base.Reg = getRegForValue(V); - return AM.Base.Reg != 0; - } - if (AM.IndexReg == 0) { - assert(AM.Scale == 1 && "Scale with no index!"); - AM.IndexReg = getRegForValue(V); - return AM.IndexReg != 0; - } - } - - return false; -} - - -/// X86SelectStore - Select and emit code to implement store instructions. -bool X86FastISel::X86SelectStore(const Instruction *I) { - // Atomic stores need special handling. - const StoreInst *S = cast<StoreInst>(I); - - if (S->isAtomic()) - return false; - - const Value *PtrV = I->getOperand(1); - if (TLI.supportSwiftError()) { - // Swifterror values can come from either a function parameter with - // swifterror attribute or an alloca with swifterror attribute. - if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { - if (Arg->hasSwiftErrorAttr()) - return false; - } - - if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { - if (Alloca->isSwiftError()) - return false; - } - } - - const Value *Val = S->getValueOperand(); - const Value *Ptr = S->getPointerOperand(); - - MVT VT; - if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) - return false; - - unsigned Alignment = S->getAlignment(); - unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); - if (Alignment == 0) // Ensure that codegen never sees alignment 0 - Alignment = ABIAlignment; - bool Aligned = Alignment >= ABIAlignment; - - X86AddressMode AM; - if (!X86SelectAddress(Ptr, AM)) - return false; - - return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); -} - -/// X86SelectRet - Select and emit code to implement ret instructions. -bool X86FastISel::X86SelectRet(const Instruction *I) { - const ReturnInst *Ret = cast<ReturnInst>(I); - const Function &F = *I->getParent()->getParent(); - const X86MachineFunctionInfo *X86MFInfo = - FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); - - if (!FuncInfo.CanLowerReturn) - return false; - - if (TLI.supportSwiftError() && - F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) - return false; - - if (TLI.supportSplitCSR(FuncInfo.MF)) - return false; - - CallingConv::ID CC = F.getCallingConv(); - if (CC != CallingConv::C && - CC != CallingConv::Fast && - CC != CallingConv::X86_FastCall && - CC != CallingConv::X86_StdCall && - CC != CallingConv::X86_ThisCall && - CC != CallingConv::X86_64_SysV && - CC != CallingConv::Win64) - return false; - - // Don't handle popping bytes if they don't fit the ret's immediate. - if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) - return false; - - // fastcc with -tailcallopt is intended to provide a guaranteed - // tail call optimization. Fastisel doesn't know how to do that. - if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) - return false; - - // Let SDISel handle vararg functions. - if (F.isVarArg()) - return false; - - // Build a list of return value registers. - SmallVector<unsigned, 4> RetRegs; - - if (Ret->getNumOperands() > 0) { - SmallVector<ISD::OutputArg, 4> Outs; - GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); - - // Analyze operands of the call, assigning locations to each operand. - SmallVector<CCValAssign, 16> ValLocs; - CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); - CCInfo.AnalyzeReturn(Outs, RetCC_X86); - - const Value *RV = Ret->getOperand(0); - unsigned Reg = getRegForValue(RV); - if (Reg == 0) - return false; - - // Only handle a single return value for now. - if (ValLocs.size() != 1) - return false; - - CCValAssign &VA = ValLocs[0]; - - // Don't bother handling odd stuff for now. - if (VA.getLocInfo() != CCValAssign::Full) - return false; - // Only handle register returns for now. - if (!VA.isRegLoc()) - return false; - - // The calling-convention tables for x87 returns don't tell - // the whole story. - if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) - return false; - - unsigned SrcReg = Reg + VA.getValNo(); - EVT SrcVT = TLI.getValueType(DL, RV->getType()); - EVT DstVT = VA.getValVT(); - // Special handling for extended integers. - if (SrcVT != DstVT) { - if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) - return false; - - if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) - return false; - - assert(DstVT == MVT::i32 && "X86 should always ext to i32"); - - if (SrcVT == MVT::i1) { - if (Outs[0].Flags.isSExt()) - return false; - SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); - SrcVT = MVT::i8; - } - unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : - ISD::SIGN_EXTEND; - SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, - SrcReg, /*TODO: Kill=*/false); - } - - // Make the copy. - unsigned DstReg = VA.getLocReg(); - const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); - // Avoid a cross-class copy. This is very unlikely. - if (!SrcRC->contains(DstReg)) - return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); - - // Add register to return instruction. - RetRegs.push_back(VA.getLocReg()); - } - - // Swift calling convention does not require we copy the sret argument - // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. - - // All x86 ABIs require that for returning structs by value we copy - // the sret argument into %rax/%eax (depending on ABI) for the return. - // We saved the argument into a virtual register in the entry block, - // so now we copy the value out and into %rax/%eax. - if (F.hasStructRetAttr() && CC != CallingConv::Swift) { - unsigned Reg = X86MFInfo->getSRetReturnReg(); - assert(Reg && - "SRetReturnReg should have been set in LowerFormalArguments()!"); - unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); - RetRegs.push_back(RetReg); - } - - // Now emit the RET. - MachineInstrBuilder MIB; - if (X86MFInfo->getBytesToPopOnReturn()) { - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) - .addImm(X86MFInfo->getBytesToPopOnReturn()); - } else { - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); - } - for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) - MIB.addReg(RetRegs[i], RegState::Implicit); - return true; -} - -/// X86SelectLoad - Select and emit code to implement load instructions. -/// -bool X86FastISel::X86SelectLoad(const Instruction *I) { - const LoadInst *LI = cast<LoadInst>(I); - - // Atomic loads need special handling. - if (LI->isAtomic()) - return false; - - const Value *SV = I->getOperand(0); - if (TLI.supportSwiftError()) { - // Swifterror values can come from either a function parameter with - // swifterror attribute or an alloca with swifterror attribute. - if (const Argument *Arg = dyn_cast<Argument>(SV)) { - if (Arg->hasSwiftErrorAttr()) - return false; - } - - if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { - if (Alloca->isSwiftError()) - return false; - } - } - - MVT VT; - if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) - return false; - - const Value *Ptr = LI->getPointerOperand(); - - X86AddressMode AM; - if (!X86SelectAddress(Ptr, AM)) - return false; - - unsigned Alignment = LI->getAlignment(); - unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); - if (Alignment == 0) // Ensure that codegen never sees alignment 0 - Alignment = ABIAlignment; - - unsigned ResultReg = 0; - if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, - Alignment)) - return false; - - updateValueMap(I, ResultReg); - return true; -} - -static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { - bool HasAVX512 = Subtarget->hasAVX512(); - bool HasAVX = Subtarget->hasAVX(); - bool X86ScalarSSEf32 = Subtarget->hasSSE1(); - bool X86ScalarSSEf64 = Subtarget->hasSSE2(); - - switch (VT.getSimpleVT().SimpleTy) { - default: return 0; - case MVT::i8: return X86::CMP8rr; - case MVT::i16: return X86::CMP16rr; - case MVT::i32: return X86::CMP32rr; - case MVT::i64: return X86::CMP64rr; - case MVT::f32: - return X86ScalarSSEf32 - ? (HasAVX512 ? X86::VUCOMISSZrr - : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) - : 0; - case MVT::f64: - return X86ScalarSSEf64 - ? (HasAVX512 ? X86::VUCOMISDZrr - : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) - : 0; - } -} - -/// If we have a comparison with RHS as the RHS of the comparison, return an -/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. -static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { - int64_t Val = RHSC->getSExtValue(); - switch (VT.getSimpleVT().SimpleTy) { - // Otherwise, we can't fold the immediate into this comparison. - default: - return 0; - case MVT::i8: - return X86::CMP8ri; - case MVT::i16: - if (isInt<8>(Val)) - return X86::CMP16ri8; - return X86::CMP16ri; - case MVT::i32: - if (isInt<8>(Val)) - return X86::CMP32ri8; - return X86::CMP32ri; - case MVT::i64: - if (isInt<8>(Val)) - return X86::CMP64ri8; - // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext - // field. - if (isInt<32>(Val)) - return X86::CMP64ri32; - return 0; - } -} - -bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, - const DebugLoc &CurDbgLoc) { - unsigned Op0Reg = getRegForValue(Op0); - if (Op0Reg == 0) return false; - - // Handle 'null' like i32/i64 0. - if (isa<ConstantPointerNull>(Op1)) - Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); - - // We have two options: compare with register or immediate. If the RHS of - // the compare is an immediate that we can fold into this compare, use - // CMPri, otherwise use CMPrr. - if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { - if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) - .addReg(Op0Reg) - .addImm(Op1C->getSExtValue()); - return true; - } - } - - unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); - if (CompareOpc == 0) return false; - - unsigned Op1Reg = getRegForValue(Op1); - if (Op1Reg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) - .addReg(Op0Reg) - .addReg(Op1Reg); - - return true; -} - -bool X86FastISel::X86SelectCmp(const Instruction *I) { - const CmpInst *CI = cast<CmpInst>(I); - - MVT VT; - if (!isTypeLegal(I->getOperand(0)->getType(), VT)) - return false; - - // Try to optimize or fold the cmp. - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - unsigned ResultReg = 0; - switch (Predicate) { - default: break; - case CmpInst::FCMP_FALSE: { - ResultReg = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), - ResultReg); - ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, - X86::sub_8bit); - if (!ResultReg) - return false; - break; - } - case CmpInst::FCMP_TRUE: { - ResultReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), - ResultReg).addImm(1); - break; - } - } - - if (ResultReg) { - updateValueMap(I, ResultReg); - return true; - } - - const Value *LHS = CI->getOperand(0); - const Value *RHS = CI->getOperand(1); - - // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. - // We don't have to materialize a zero constant for this case and can just use - // %x again on the RHS. - if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { - const auto *RHSC = dyn_cast<ConstantFP>(RHS); - if (RHSC && RHSC->isNullValue()) - RHS = LHS; - } - - // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. - static const uint16_t SETFOpcTable[2][3] = { - { X86::SETEr, X86::SETNPr, X86::AND8rr }, - { X86::SETNEr, X86::SETPr, X86::OR8rr } - }; - const uint16_t *SETFOpc = nullptr; - switch (Predicate) { - default: break; - case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; - case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; - } - - ResultReg = createResultReg(&X86::GR8RegClass); - if (SETFOpc) { - if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) - return false; - - unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); - unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), - FlagReg1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), - FlagReg2); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), - ResultReg).addReg(FlagReg1).addReg(FlagReg2); - updateValueMap(I, ResultReg); - return true; - } - - X86::CondCode CC; - bool SwapArgs; - std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); - assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); - unsigned Opc = X86::getSETFromCond(CC); - - if (SwapArgs) - std::swap(LHS, RHS); - - // Emit a compare of LHS/RHS. - if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) - return false; - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectZExt(const Instruction *I) { - EVT DstVT = TLI.getValueType(DL, I->getType()); - if (!TLI.isTypeLegal(DstVT)) - return false; - - unsigned ResultReg = getRegForValue(I->getOperand(0)); - if (ResultReg == 0) - return false; - - // Handle zero-extension from i1 to i8, which is common. - MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); - if (SrcVT == MVT::i1) { - // Set the high bits to zero. - ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); - SrcVT = MVT::i8; - - if (ResultReg == 0) - return false; - } - - if (DstVT == MVT::i64) { - // Handle extension to 64-bits via sub-register shenanigans. - unsigned MovInst; - - switch (SrcVT.SimpleTy) { - case MVT::i8: MovInst = X86::MOVZX32rr8; break; - case MVT::i16: MovInst = X86::MOVZX32rr16; break; - case MVT::i32: MovInst = X86::MOV32rr; break; - default: llvm_unreachable("Unexpected zext to i64 source type"); - } - - unsigned Result32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) - .addReg(ResultReg); - - ResultReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), - ResultReg) - .addImm(0).addReg(Result32).addImm(X86::sub_32bit); - } else if (DstVT == MVT::i16) { - // i8->i16 doesn't exist in the autogenerated isel table. Need to zero - // extend to 32-bits and then extract down to 16-bits. - unsigned Result32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), - Result32).addReg(ResultReg); - - ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, - X86::sub_16bit); - } else if (DstVT != MVT::i8) { - ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, - ResultReg, /*Kill=*/true); - if (ResultReg == 0) - return false; - } - - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectSExt(const Instruction *I) { - EVT DstVT = TLI.getValueType(DL, I->getType()); - if (!TLI.isTypeLegal(DstVT)) - return false; - - unsigned ResultReg = getRegForValue(I->getOperand(0)); - if (ResultReg == 0) - return false; - - // Handle sign-extension from i1 to i8. - MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); - if (SrcVT == MVT::i1) { - // Set the high bits to zero. - unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, - /*TODO: Kill=*/false); - if (ZExtReg == 0) - return false; - - // Negate the result to make an 8-bit sign extended value. - ResultReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), - ResultReg).addReg(ZExtReg); - - SrcVT = MVT::i8; - } - - if (DstVT == MVT::i16) { - // i8->i16 doesn't exist in the autogenerated isel table. Need to sign - // extend to 32-bits and then extract down to 16-bits. - unsigned Result32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), - Result32).addReg(ResultReg); - - ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, - X86::sub_16bit); - } else if (DstVT != MVT::i8) { - ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, - ResultReg, /*Kill=*/true); - if (ResultReg == 0) - return false; - } - - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectBranch(const Instruction *I) { - // Unconditional branches are selected by tablegen-generated code. - // Handle a conditional branch. - const BranchInst *BI = cast<BranchInst>(I); - MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; - MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; - - // Fold the common case of a conditional branch with a comparison - // in the same block (values defined on other blocks may not have - // initialized registers). - X86::CondCode CC; - if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { - if (CI->hasOneUse() && CI->getParent() == I->getParent()) { - EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); - - // Try to optimize or fold the cmp. - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - switch (Predicate) { - default: break; - case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; - case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; - } - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - - // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, - // 0.0. - // We don't have to materialize a zero constant for this case and can just - // use %x again on the RHS. - if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { - const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); - if (CmpRHSC && CmpRHSC->isNullValue()) - CmpRHS = CmpLHS; - } - - // Try to take advantage of fallthrough opportunities. - if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { - std::swap(TrueMBB, FalseMBB); - Predicate = CmpInst::getInversePredicate(Predicate); - } - - // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition - // code check. Instead two branch instructions are required to check all - // the flags. First we change the predicate to a supported condition code, - // which will be the first branch. Later one we will emit the second - // branch. - bool NeedExtraBranch = false; - switch (Predicate) { - default: break; - case CmpInst::FCMP_OEQ: - std::swap(TrueMBB, FalseMBB); - LLVM_FALLTHROUGH; - case CmpInst::FCMP_UNE: - NeedExtraBranch = true; - Predicate = CmpInst::FCMP_ONE; - break; - } - - bool SwapArgs; - unsigned BranchOpc; - std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); - assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); - - BranchOpc = X86::GetCondBranchFromCond(CC); - if (SwapArgs) - std::swap(CmpLHS, CmpRHS); - - // Emit a compare of the LHS and RHS, setting the flags. - if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) - return false; - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) - .addMBB(TrueMBB); - - // X86 requires a second branch to handle UNE (and OEQ, which is mapped - // to UNE above). - if (NeedExtraBranch) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1)) - .addMBB(TrueMBB); - } - - finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); - return true; - } - } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { - // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which - // typically happen for _Bool and C++ bools. - MVT SourceVT; - if (TI->hasOneUse() && TI->getParent() == I->getParent() && - isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { - unsigned TestOpc = 0; - switch (SourceVT.SimpleTy) { - default: break; - case MVT::i8: TestOpc = X86::TEST8ri; break; - case MVT::i16: TestOpc = X86::TEST16ri; break; - case MVT::i32: TestOpc = X86::TEST32ri; break; - case MVT::i64: TestOpc = X86::TEST64ri32; break; - } - if (TestOpc) { - unsigned OpReg = getRegForValue(TI->getOperand(0)); - if (OpReg == 0) return false; - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) - .addReg(OpReg).addImm(1); - - unsigned JmpOpc = X86::JNE_1; - if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { - std::swap(TrueMBB, FalseMBB); - JmpOpc = X86::JE_1; - } - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc)) - .addMBB(TrueMBB); - - finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); - return true; - } - } - } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { - // Fake request the condition, otherwise the intrinsic might be completely - // optimized away. - unsigned TmpReg = getRegForValue(BI->getCondition()); - if (TmpReg == 0) - return false; - - unsigned BranchOpc = X86::GetCondBranchFromCond(CC); - - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) - .addMBB(TrueMBB); - finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); - return true; - } - - // Otherwise do a clumsy setcc and re-test it. - // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used - // in an explicit cast, so make sure to handle that correctly. - unsigned OpReg = getRegForValue(BI->getCondition()); - if (OpReg == 0) return false; - - // In case OpReg is a K register, COPY to a GPR - if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { - unsigned KOpReg = OpReg; - OpReg = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), OpReg) - .addReg(KOpReg); - OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, - X86::sub_8bit); - } - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) - .addReg(OpReg) - .addImm(1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1)) - .addMBB(TrueMBB); - finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); - return true; -} - -bool X86FastISel::X86SelectShift(const Instruction *I) { - unsigned CReg = 0, OpReg = 0; - const TargetRegisterClass *RC = nullptr; - if (I->getType()->isIntegerTy(8)) { - CReg = X86::CL; - RC = &X86::GR8RegClass; - switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR8rCL; break; - case Instruction::AShr: OpReg = X86::SAR8rCL; break; - case Instruction::Shl: OpReg = X86::SHL8rCL; break; - default: return false; - } - } else if (I->getType()->isIntegerTy(16)) { - CReg = X86::CX; - RC = &X86::GR16RegClass; - switch (I->getOpcode()) { - default: llvm_unreachable("Unexpected shift opcode"); - case Instruction::LShr: OpReg = X86::SHR16rCL; break; - case Instruction::AShr: OpReg = X86::SAR16rCL; break; - case Instruction::Shl: OpReg = X86::SHL16rCL; break; - } - } else if (I->getType()->isIntegerTy(32)) { - CReg = X86::ECX; - RC = &X86::GR32RegClass; - switch (I->getOpcode()) { - default: llvm_unreachable("Unexpected shift opcode"); - case Instruction::LShr: OpReg = X86::SHR32rCL; break; - case Instruction::AShr: OpReg = X86::SAR32rCL; break; - case Instruction::Shl: OpReg = X86::SHL32rCL; break; - } - } else if (I->getType()->isIntegerTy(64)) { - CReg = X86::RCX; - RC = &X86::GR64RegClass; - switch (I->getOpcode()) { - default: llvm_unreachable("Unexpected shift opcode"); - case Instruction::LShr: OpReg = X86::SHR64rCL; break; - case Instruction::AShr: OpReg = X86::SAR64rCL; break; - case Instruction::Shl: OpReg = X86::SHL64rCL; break; - } - } else { - return false; - } - - MVT VT; - if (!isTypeLegal(I->getType(), VT)) - return false; - - unsigned Op0Reg = getRegForValue(I->getOperand(0)); - if (Op0Reg == 0) return false; - - unsigned Op1Reg = getRegForValue(I->getOperand(1)); - if (Op1Reg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), - CReg).addReg(Op1Reg); - - // The shift instruction uses X86::CL. If we defined a super-register - // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. - if (CReg != X86::CL) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::KILL), X86::CL) - .addReg(CReg, RegState::Kill); - - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) - .addReg(Op0Reg); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectDivRem(const Instruction *I) { - const static unsigned NumTypes = 4; // i8, i16, i32, i64 - const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem - const static bool S = true; // IsSigned - const static bool U = false; // !IsSigned - const static unsigned Copy = TargetOpcode::COPY; - // For the X86 DIV/IDIV instruction, in most cases the dividend - // (numerator) must be in a specific register pair highreg:lowreg, - // producing the quotient in lowreg and the remainder in highreg. - // For most data types, to set up the instruction, the dividend is - // copied into lowreg, and lowreg is sign-extended or zero-extended - // into highreg. The exception is i8, where the dividend is defined - // as a single register rather than a register pair, and we - // therefore directly sign-extend or zero-extend the dividend into - // lowreg, instead of copying, and ignore the highreg. - const static struct DivRemEntry { - // The following portion depends only on the data type. - const TargetRegisterClass *RC; - unsigned LowInReg; // low part of the register pair - unsigned HighInReg; // high part of the register pair - // The following portion depends on both the data type and the operation. - struct DivRemResult { - unsigned OpDivRem; // The specific DIV/IDIV opcode to use. - unsigned OpSignExtend; // Opcode for sign-extending lowreg into - // highreg, or copying a zero into highreg. - unsigned OpCopy; // Opcode for copying dividend into lowreg, or - // zero/sign-extending into lowreg for i8. - unsigned DivRemResultReg; // Register containing the desired result. - bool IsOpSigned; // Whether to use signed or unsigned form. - } ResultTable[NumOps]; - } OpTable[NumTypes] = { - { &X86::GR8RegClass, X86::AX, 0, { - { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv - { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem - { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv - { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem - } - }, // i8 - { &X86::GR16RegClass, X86::AX, X86::DX, { - { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv - { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem - { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv - { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem - } - }, // i16 - { &X86::GR32RegClass, X86::EAX, X86::EDX, { - { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv - { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem - { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv - { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem - } - }, // i32 - { &X86::GR64RegClass, X86::RAX, X86::RDX, { - { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv - { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem - { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv - { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem - } - }, // i64 - }; - - MVT VT; - if (!isTypeLegal(I->getType(), VT)) - return false; - - unsigned TypeIndex, OpIndex; - switch (VT.SimpleTy) { - default: return false; - case MVT::i8: TypeIndex = 0; break; - case MVT::i16: TypeIndex = 1; break; - case MVT::i32: TypeIndex = 2; break; - case MVT::i64: TypeIndex = 3; - if (!Subtarget->is64Bit()) - return false; - break; - } - - switch (I->getOpcode()) { - default: llvm_unreachable("Unexpected div/rem opcode"); - case Instruction::SDiv: OpIndex = 0; break; - case Instruction::SRem: OpIndex = 1; break; - case Instruction::UDiv: OpIndex = 2; break; - case Instruction::URem: OpIndex = 3; break; - } - - const DivRemEntry &TypeEntry = OpTable[TypeIndex]; - const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; - unsigned Op0Reg = getRegForValue(I->getOperand(0)); - if (Op0Reg == 0) - return false; - unsigned Op1Reg = getRegForValue(I->getOperand(1)); - if (Op1Reg == 0) - return false; - - // Move op0 into low-order input register. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); - // Zero-extend or sign-extend into high-order input register. - if (OpEntry.OpSignExtend) { - if (OpEntry.IsOpSigned) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(OpEntry.OpSignExtend)); - else { - unsigned Zero32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::MOV32r0), Zero32); - - // Copy the zero into the appropriate sub/super/identical physical - // register. Unfortunately the operations needed are not uniform enough - // to fit neatly into the table above. - if (VT == MVT::i16) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Copy), TypeEntry.HighInReg) - .addReg(Zero32, 0, X86::sub_16bit); - } else if (VT == MVT::i32) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Copy), TypeEntry.HighInReg) - .addReg(Zero32); - } else if (VT == MVT::i64) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) - .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); - } - } - } - // Generate the DIV/IDIV instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); - // For i8 remainder, we can't reference ah directly, as we'll end - // up with bogus copies like %r9b = COPY %ah. Reference ax - // instead to prevent ah references in a rex instruction. - // - // The current assumption of the fast register allocator is that isel - // won't generate explicit references to the GR8_NOREX registers. If - // the allocator and/or the backend get enhanced to be more robust in - // that regard, this can be, and should be, removed. - unsigned ResultReg = 0; - if ((I->getOpcode() == Instruction::SRem || - I->getOpcode() == Instruction::URem) && - OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { - unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); - unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Copy), SourceSuperReg).addReg(X86::AX); - - // Shift AX right by 8 bits instead of using AH. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), - ResultSuperReg).addReg(SourceSuperReg).addImm(8); - - // Now reference the 8-bit subreg of the result. - ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, - /*Kill=*/true, X86::sub_8bit); - } - // Copy the result out of the physreg if we haven't already. - if (!ResultReg) { - ResultReg = createResultReg(TypeEntry.RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) - .addReg(OpEntry.DivRemResultReg); - } - updateValueMap(I, ResultReg); - - return true; -} - -/// Emit a conditional move instruction (if the are supported) to lower -/// the select. -bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { - // Check if the subtarget supports these instructions. - if (!Subtarget->hasCMov()) - return false; - - // FIXME: Add support for i8. - if (RetVT < MVT::i16 || RetVT > MVT::i64) - return false; - - const Value *Cond = I->getOperand(0); - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - bool NeedTest = true; - X86::CondCode CC = X86::COND_NE; - - // Optimize conditions coming from a compare if both instructions are in the - // same basic block (values defined in other basic blocks may not have - // initialized registers). - const auto *CI = dyn_cast<CmpInst>(Cond); - if (CI && (CI->getParent() == I->getParent())) { - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - - // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. - static const uint16_t SETFOpcTable[2][3] = { - { X86::SETNPr, X86::SETEr , X86::TEST8rr }, - { X86::SETPr, X86::SETNEr, X86::OR8rr } - }; - const uint16_t *SETFOpc = nullptr; - switch (Predicate) { - default: break; - case CmpInst::FCMP_OEQ: - SETFOpc = &SETFOpcTable[0][0]; - Predicate = CmpInst::ICMP_NE; - break; - case CmpInst::FCMP_UNE: - SETFOpc = &SETFOpcTable[1][0]; - Predicate = CmpInst::ICMP_NE; - break; - } - - bool NeedSwap; - std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); - assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - if (NeedSwap) - std::swap(CmpLHS, CmpRHS); - - EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); - // Emit a compare of the LHS and RHS, setting the flags. - if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) - return false; - - if (SETFOpc) { - unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); - unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), - FlagReg1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), - FlagReg2); - auto const &II = TII.get(SETFOpc[2]); - if (II.getNumDefs()) { - unsigned TmpReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) - .addReg(FlagReg2).addReg(FlagReg1); - } else { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) - .addReg(FlagReg2).addReg(FlagReg1); - } - } - NeedTest = false; - } else if (foldX86XALUIntrinsic(CC, I, Cond)) { - // Fake request the condition, otherwise the intrinsic might be completely - // optimized away. - unsigned TmpReg = getRegForValue(Cond); - if (TmpReg == 0) - return false; - - NeedTest = false; - } - - if (NeedTest) { - // Selects operate on i1, however, CondReg is 8 bits width and may contain - // garbage. Indeed, only the less significant bit is supposed to be - // accurate. If we read more than the lsb, we may see non-zero values - // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for - // the select. This is achieved by performing TEST against 1. - unsigned CondReg = getRegForValue(Cond); - if (CondReg == 0) - return false; - bool CondIsKill = hasTrivialKill(Cond); - - // In case OpReg is a K register, COPY to a GPR - if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { - unsigned KCondReg = CondReg; - CondReg = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), CondReg) - .addReg(KCondReg, getKillRegState(CondIsKill)); - CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, - X86::sub_8bit); - } - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) - .addReg(CondReg, getKillRegState(CondIsKill)) - .addImm(1); - } - - const Value *LHS = I->getOperand(1); - const Value *RHS = I->getOperand(2); - - unsigned RHSReg = getRegForValue(RHS); - bool RHSIsKill = hasTrivialKill(RHS); - - unsigned LHSReg = getRegForValue(LHS); - bool LHSIsKill = hasTrivialKill(LHS); - - if (!LHSReg || !RHSReg) - return false; - - const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); - unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8); - unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill, - LHSReg, LHSIsKill); - updateValueMap(I, ResultReg); - return true; -} - -/// Emit SSE or AVX instructions to lower the select. -/// -/// Try to use SSE1/SSE2 instructions to simulate a select without branches. -/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary -/// SSE instructions are available. If AVX is available, try to use a VBLENDV. -bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { - // Optimize conditions coming from a compare if both instructions are in the - // same basic block (values defined in other basic blocks may not have - // initialized registers). - const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); - if (!CI || (CI->getParent() != I->getParent())) - return false; - - if (I->getType() != CI->getOperand(0)->getType() || - !((Subtarget->hasSSE1() && RetVT == MVT::f32) || - (Subtarget->hasSSE2() && RetVT == MVT::f64))) - return false; - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - - // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. - // We don't have to materialize a zero constant for this case and can just use - // %x again on the RHS. - if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { - const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); - if (CmpRHSC && CmpRHSC->isNullValue()) - CmpRHS = CmpLHS; - } - - unsigned CC; - bool NeedSwap; - std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); - if (CC > 7 && !Subtarget->hasAVX()) - return false; - - if (NeedSwap) - std::swap(CmpLHS, CmpRHS); - - // Choose the SSE instruction sequence based on data type (float or double). - static const uint16_t OpcTable[2][4] = { - { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, - { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } - }; - - const uint16_t *Opc = nullptr; - switch (RetVT.SimpleTy) { - default: return false; - case MVT::f32: Opc = &OpcTable[0][0]; break; - case MVT::f64: Opc = &OpcTable[1][0]; break; - } - - const Value *LHS = I->getOperand(1); - const Value *RHS = I->getOperand(2); - - unsigned LHSReg = getRegForValue(LHS); - bool LHSIsKill = hasTrivialKill(LHS); - - unsigned RHSReg = getRegForValue(RHS); - bool RHSIsKill = hasTrivialKill(RHS); - - unsigned CmpLHSReg = getRegForValue(CmpLHS); - bool CmpLHSIsKill = hasTrivialKill(CmpLHS); - - unsigned CmpRHSReg = getRegForValue(CmpRHS); - bool CmpRHSIsKill = hasTrivialKill(CmpRHS); - - if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) - return false; - - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - unsigned ResultReg; - - if (Subtarget->hasAVX512()) { - // If we have AVX512 we can use a mask compare and masked movss/sd. - const TargetRegisterClass *VR128X = &X86::VR128XRegClass; - const TargetRegisterClass *VK1 = &X86::VK1RegClass; - - unsigned CmpOpcode = - (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; - unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, - CmpRHSReg, CmpRHSIsKill, CC); - - // Need an IMPLICIT_DEF for the input that is used to generate the upper - // bits of the result register since its not based on any of the inputs. - unsigned ImplicitDefReg = createResultReg(VR128X); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); - - // Place RHSReg is the passthru of the masked movss/sd operation and put - // LHS in the input. The mask input comes from the compare. - unsigned MovOpcode = - (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; - unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, - CmpReg, true, ImplicitDefReg, true, - LHSReg, LHSIsKill); - - ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); - - } else if (Subtarget->hasAVX()) { - const TargetRegisterClass *VR128 = &X86::VR128RegClass; - - // If we have AVX, create 1 blendv instead of 3 logic instructions. - // Blendv was introduced with SSE 4.1, but the 2 register form implicitly - // uses XMM0 as the selection register. That may need just as many - // instructions as the AND/ANDN/OR sequence due to register moves, so - // don't bother. - unsigned CmpOpcode = - (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; - unsigned BlendOpcode = - (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; - - unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, - CmpRHSReg, CmpRHSIsKill, CC); - unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, - LHSReg, LHSIsKill, CmpReg, true); - ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); - } else { - const TargetRegisterClass *VR128 = &X86::VR128RegClass; - unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, - CmpRHSReg, CmpRHSIsKill, CC); - unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, - LHSReg, LHSIsKill); - unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, - RHSReg, RHSIsKill); - unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, - AndReg, /*IsKill=*/true); - ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); - } - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { - // These are pseudo CMOV instructions and will be later expanded into control- - // flow. - unsigned Opc; - switch (RetVT.SimpleTy) { - default: return false; - case MVT::i8: Opc = X86::CMOV_GR8; break; - case MVT::i16: Opc = X86::CMOV_GR16; break; - case MVT::i32: Opc = X86::CMOV_GR32; break; - case MVT::f32: Opc = X86::CMOV_FR32; break; - case MVT::f64: Opc = X86::CMOV_FR64; break; - } - - const Value *Cond = I->getOperand(0); - X86::CondCode CC = X86::COND_NE; - - // Optimize conditions coming from a compare if both instructions are in the - // same basic block (values defined in other basic blocks may not have - // initialized registers). - const auto *CI = dyn_cast<CmpInst>(Cond); - if (CI && (CI->getParent() == I->getParent())) { - bool NeedSwap; - std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); - if (CC > X86::LAST_VALID_COND) - return false; - - const Value *CmpLHS = CI->getOperand(0); - const Value *CmpRHS = CI->getOperand(1); - - if (NeedSwap) - std::swap(CmpLHS, CmpRHS); - - EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); - if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) - return false; - } else { - unsigned CondReg = getRegForValue(Cond); - if (CondReg == 0) - return false; - bool CondIsKill = hasTrivialKill(Cond); - - // In case OpReg is a K register, COPY to a GPR - if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { - unsigned KCondReg = CondReg; - CondReg = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), CondReg) - .addReg(KCondReg, getKillRegState(CondIsKill)); - CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, - X86::sub_8bit); - } - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) - .addReg(CondReg, getKillRegState(CondIsKill)) - .addImm(1); - } - - const Value *LHS = I->getOperand(1); - const Value *RHS = I->getOperand(2); - - unsigned LHSReg = getRegForValue(LHS); - bool LHSIsKill = hasTrivialKill(LHS); - - unsigned RHSReg = getRegForValue(RHS); - bool RHSIsKill = hasTrivialKill(RHS); - - if (!LHSReg || !RHSReg) - return false; - - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - - unsigned ResultReg = - fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectSelect(const Instruction *I) { - MVT RetVT; - if (!isTypeLegal(I->getType(), RetVT)) - return false; - - // Check if we can fold the select. - if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { - CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); - const Value *Opnd = nullptr; - switch (Predicate) { - default: break; - case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; - case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; - } - // No need for a select anymore - this is an unconditional move. - if (Opnd) { - unsigned OpReg = getRegForValue(Opnd); - if (OpReg == 0) - return false; - bool OpIsKill = hasTrivialKill(Opnd); - const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg) - .addReg(OpReg, getKillRegState(OpIsKill)); - updateValueMap(I, ResultReg); - return true; - } - } - - // First try to use real conditional move instructions. - if (X86FastEmitCMoveSelect(RetVT, I)) - return true; - - // Try to use a sequence of SSE instructions to simulate a conditional move. - if (X86FastEmitSSESelect(RetVT, I)) - return true; - - // Fall-back to pseudo conditional move instructions, which will be later - // converted to control-flow. - if (X86FastEmitPseudoSelect(RetVT, I)) - return true; - - return false; -} - -// Common code for X86SelectSIToFP and X86SelectUIToFP. -bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { - // The target-independent selection algorithm in FastISel already knows how - // to select a SINT_TO_FP if the target is SSE but not AVX. - // Early exit if the subtarget doesn't have AVX. - // Unsigned conversion requires avx512. - bool HasAVX512 = Subtarget->hasAVX512(); - if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) - return false; - - // TODO: We could sign extend narrower types. - MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); - if (SrcVT != MVT::i32 && SrcVT != MVT::i64) - return false; - - // Select integer to float/double conversion. - unsigned OpReg = getRegForValue(I->getOperand(0)); - if (OpReg == 0) - return false; - - unsigned Opcode; - - static const uint16_t SCvtOpc[2][2][2] = { - { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, - { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, - { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, - { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, - }; - static const uint16_t UCvtOpc[2][2] = { - { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, - { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, - }; - bool Is64Bit = SrcVT == MVT::i64; - - if (I->getType()->isDoubleTy()) { - // s/uitofp int -> double - Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; - } else if (I->getType()->isFloatTy()) { - // s/uitofp int -> float - Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; - } else - return false; - - MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); - const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); - unsigned ImplicitDefReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); - unsigned ResultReg = - fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectSIToFP(const Instruction *I) { - return X86SelectIntToFP(I, /*IsSigned*/true); -} - -bool X86FastISel::X86SelectUIToFP(const Instruction *I) { - return X86SelectIntToFP(I, /*IsSigned*/false); -} - -// Helper method used by X86SelectFPExt and X86SelectFPTrunc. -bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, - unsigned TargetOpc, - const TargetRegisterClass *RC) { - assert((I->getOpcode() == Instruction::FPExt || - I->getOpcode() == Instruction::FPTrunc) && - "Instruction must be an FPExt or FPTrunc!"); - - unsigned OpReg = getRegForValue(I->getOperand(0)); - if (OpReg == 0) - return false; - - unsigned ImplicitDefReg; - if (Subtarget->hasAVX()) { - ImplicitDefReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); - - } - - unsigned ResultReg = createResultReg(RC); - MachineInstrBuilder MIB; - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), - ResultReg); - - if (Subtarget->hasAVX()) - MIB.addReg(ImplicitDefReg); - - MIB.addReg(OpReg); - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::X86SelectFPExt(const Instruction *I) { - if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && - I->getOperand(0)->getType()->isFloatTy()) { - bool HasAVX512 = Subtarget->hasAVX512(); - // fpext from float to double. - unsigned Opc = - HasAVX512 ? X86::VCVTSS2SDZrr - : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; - return X86SelectFPExtOrFPTrunc( - I, Opc, HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass); - } - - return false; -} - -bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { - if (X86ScalarSSEf64 && I->getType()->isFloatTy() && - I->getOperand(0)->getType()->isDoubleTy()) { - bool HasAVX512 = Subtarget->hasAVX512(); - // fptrunc from double to float. - unsigned Opc = - HasAVX512 ? X86::VCVTSD2SSZrr - : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; - return X86SelectFPExtOrFPTrunc( - I, Opc, HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass); - } - - return false; -} - -bool X86FastISel::X86SelectTrunc(const Instruction *I) { - EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); - EVT DstVT = TLI.getValueType(DL, I->getType()); - - // This code only handles truncation to byte. - if (DstVT != MVT::i8 && DstVT != MVT::i1) - return false; - if (!TLI.isTypeLegal(SrcVT)) - return false; - - unsigned InputReg = getRegForValue(I->getOperand(0)); - if (!InputReg) - // Unhandled operand. Halt "fast" selection and bail. - return false; - - if (SrcVT == MVT::i8) { - // Truncate from i8 to i1; no code needed. - updateValueMap(I, InputReg); - return true; - } - - // Issue an extract_subreg. - unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, - InputReg, false, - X86::sub_8bit); - if (!ResultReg) - return false; - - updateValueMap(I, ResultReg); - return true; -} - -bool X86FastISel::IsMemcpySmall(uint64_t Len) { - return Len <= (Subtarget->is64Bit() ? 32 : 16); -} - -bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, - X86AddressMode SrcAM, uint64_t Len) { - - // Make sure we don't bloat code by inlining very large memcpy's. - if (!IsMemcpySmall(Len)) - return false; - - bool i64Legal = Subtarget->is64Bit(); - - // We don't care about alignment here since we just emit integer accesses. - while (Len) { - MVT VT; - if (Len >= 8 && i64Legal) - VT = MVT::i64; - else if (Len >= 4) - VT = MVT::i32; - else if (Len >= 2) - VT = MVT::i16; - else - VT = MVT::i8; - - unsigned Reg; - bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); - RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); - assert(RV && "Failed to emit load or store??"); - - unsigned Size = VT.getSizeInBits()/8; - Len -= Size; - DestAM.Disp += Size; - SrcAM.Disp += Size; - } - - return true; -} - -bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { - // FIXME: Handle more intrinsics. - switch (II->getIntrinsicID()) { - default: return false; - case Intrinsic::convert_from_fp16: - case Intrinsic::convert_to_fp16: { - if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) - return false; - - const Value *Op = II->getArgOperand(0); - unsigned InputReg = getRegForValue(Op); - if (InputReg == 0) - return false; - - // F16C only allows converting from float to half and from half to float. - bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; - if (IsFloatToHalf) { - if (!Op->getType()->isFloatTy()) - return false; - } else { - if (!II->getType()->isFloatTy()) - return false; - } - - unsigned ResultReg = 0; - const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); - if (IsFloatToHalf) { - // 'InputReg' is implicitly promoted from register class FR32 to - // register class VR128 by method 'constrainOperandRegClass' which is - // directly called by 'fastEmitInst_ri'. - // Instruction VCVTPS2PHrr takes an extra immediate operand which is - // used to provide rounding control: use MXCSR.RC, encoded as 0b100. - // It's consistent with the other FP instructions, which are usually - // controlled by MXCSR. - InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); - - // Move the lower 32-bits of ResultReg to another register of class GR32. - ResultReg = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(X86::VMOVPDI2DIrr), ResultReg) - .addReg(InputReg, RegState::Kill); - - // The result value is in the lower 16-bits of ResultReg. - unsigned RegIdx = X86::sub_16bit; - ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); - } else { - assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); - // Explicitly sign-extend the input to 32-bit. - InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, - /*Kill=*/false); - - // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. - InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, - InputReg, /*Kill=*/true); - - InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); - - // The result value is in the lower 32-bits of ResultReg. - // Emit an explicit copy from register class VR128 to register class FR32. - ResultReg = createResultReg(&X86::FR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg) - .addReg(InputReg, RegState::Kill); - } - - updateValueMap(II, ResultReg); - return true; - } - case Intrinsic::frameaddress: { - MachineFunction *MF = FuncInfo.MF; - if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) - return false; - - Type *RetTy = II->getCalledFunction()->getReturnType(); - - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - unsigned Opc; - const TargetRegisterClass *RC = nullptr; - - switch (VT.SimpleTy) { - default: llvm_unreachable("Invalid result type for frameaddress."); - case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; - case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; - } - - // This needs to be set before we call getPtrSizedFrameRegister, otherwise - // we get the wrong frame register. - MachineFrameInfo &MFI = MF->getFrameInfo(); - MFI.setFrameAddressIsTaken(true); - - const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); - unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); - assert(((FrameReg == X86::RBP && VT == MVT::i64) || - (FrameReg == X86::EBP && VT == MVT::i32)) && - "Invalid Frame Register!"); - - // Always make a copy of the frame register to a vreg first, so that we - // never directly reference the frame register (the TwoAddressInstruction- - // Pass doesn't like that). - unsigned SrcReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); - - // Now recursively load from the frame address. - // movq (%rbp), %rax - // movq (%rax), %rax - // movq (%rax), %rax - // ... - unsigned DestReg; - unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); - while (Depth--) { - DestReg = createResultReg(RC); - addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), DestReg), SrcReg); - SrcReg = DestReg; - } - - updateValueMap(II, SrcReg); - return true; - } - case Intrinsic::memcpy: { - const MemCpyInst *MCI = cast<MemCpyInst>(II); - // Don't handle volatile or variable length memcpys. - if (MCI->isVolatile()) - return false; - - if (isa<ConstantInt>(MCI->getLength())) { - // Small memcpy's are common enough that we want to do them - // without a call if possible. - uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); - if (IsMemcpySmall(Len)) { - X86AddressMode DestAM, SrcAM; - if (!X86SelectAddress(MCI->getRawDest(), DestAM) || - !X86SelectAddress(MCI->getRawSource(), SrcAM)) - return false; - TryEmitSmallMemcpy(DestAM, SrcAM, Len); - return true; - } - } - - unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; - if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) - return false; - - if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) - return false; - - return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); - } - case Intrinsic::memset: { - const MemSetInst *MSI = cast<MemSetInst>(II); - - if (MSI->isVolatile()) - return false; - - unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; - if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) - return false; - - if (MSI->getDestAddressSpace() > 255) - return false; - - return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); - } - case Intrinsic::stackprotector: { - // Emit code to store the stack guard onto the stack. - EVT PtrTy = TLI.getPointerTy(DL); - - const Value *Op1 = II->getArgOperand(0); // The guard's value. - const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); - - MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); - - // Grab the frame index. - X86AddressMode AM; - if (!X86SelectAddress(Slot, AM)) return false; - if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; - return true; - } - case Intrinsic::dbg_declare: { - const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); - X86AddressMode AM; - assert(DI->getAddress() && "Null address should be checked earlier!"); - if (!X86SelectAddress(DI->getAddress(), AM)) - return false; - const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); - // FIXME may need to add RegState::Debug to any registers produced, - // although ESP/EBP should be the only ones at the moment. - assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && - "Expected inlined-at fields to agree"); - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) - .addImm(0) - .addMetadata(DI->getVariable()) - .addMetadata(DI->getExpression()); - return true; - } - case Intrinsic::trap: { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); - return true; - } - case Intrinsic::sqrt: { - if (!Subtarget->hasSSE1()) - return false; - - Type *RetTy = II->getCalledFunction()->getReturnType(); - - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT - // is not generated by FastISel yet. - // FIXME: Update this code once tablegen can handle it. - static const uint16_t SqrtOpc[3][2] = { - { X86::SQRTSSr, X86::SQRTSDr }, - { X86::VSQRTSSr, X86::VSQRTSDr }, - { X86::VSQRTSSZr, X86::VSQRTSDZr }, - }; - unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : - Subtarget->hasAVX() ? 1 : - 0; - unsigned Opc; - switch (VT.SimpleTy) { - default: return false; - case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; - case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; - } - - const Value *SrcVal = II->getArgOperand(0); - unsigned SrcReg = getRegForValue(SrcVal); - - if (SrcReg == 0) - return false; - - const TargetRegisterClass *RC = TLI.getRegClassFor(VT); - unsigned ImplicitDefReg = 0; - if (AVXLevel > 0) { - ImplicitDefReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); - } - - unsigned ResultReg = createResultReg(RC); - MachineInstrBuilder MIB; - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), - ResultReg); - - if (ImplicitDefReg) - MIB.addReg(ImplicitDefReg); - - MIB.addReg(SrcReg); - - updateValueMap(II, ResultReg); - return true; - } - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::usub_with_overflow: - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: { - // This implements the basic lowering of the xalu with overflow intrinsics - // into add/sub/mul followed by either seto or setb. - const Function *Callee = II->getCalledFunction(); - auto *Ty = cast<StructType>(Callee->getReturnType()); - Type *RetTy = Ty->getTypeAtIndex(0U); - assert(Ty->getTypeAtIndex(1)->isIntegerTy() && - Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && - "Overflow value expected to be an i1"); - - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - if (VT < MVT::i8 || VT > MVT::i64) - return false; - - const Value *LHS = II->getArgOperand(0); - const Value *RHS = II->getArgOperand(1); - - // Canonicalize immediate to the RHS. - if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && - isCommutativeIntrinsic(II)) - std::swap(LHS, RHS); - - unsigned BaseOpc, CondOpc; - switch (II->getIntrinsicID()) { - default: llvm_unreachable("Unexpected intrinsic!"); - case Intrinsic::sadd_with_overflow: - BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break; - case Intrinsic::uadd_with_overflow: - BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break; - case Intrinsic::ssub_with_overflow: - BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break; - case Intrinsic::usub_with_overflow: - BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break; - case Intrinsic::smul_with_overflow: - BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break; - case Intrinsic::umul_with_overflow: - BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break; - } - - unsigned LHSReg = getRegForValue(LHS); - if (LHSReg == 0) - return false; - bool LHSIsKill = hasTrivialKill(LHS); - - unsigned ResultReg = 0; - // Check if we have an immediate version. - if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { - static const uint16_t Opc[2][4] = { - { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, - { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } - }; - - if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && - CondOpc == X86::SETOr) { - // We can use INC/DEC. - ResultReg = createResultReg(TLI.getRegClassFor(VT)); - bool IsDec = BaseOpc == ISD::SUB; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) - .addReg(LHSReg, getKillRegState(LHSIsKill)); - } else - ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, - CI->getZExtValue()); - } - - unsigned RHSReg; - bool RHSIsKill; - if (!ResultReg) { - RHSReg = getRegForValue(RHS); - if (RHSReg == 0) - return false; - RHSIsKill = hasTrivialKill(RHS); - ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, - RHSIsKill); - } - - // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit - // it manually. - if (BaseOpc == X86ISD::UMUL && !ResultReg) { - static const uint16_t MULOpc[] = - { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; - static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; - // First copy the first operand into RAX, which is an implicit input to - // the X86::MUL*r instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) - .addReg(LHSReg, getKillRegState(LHSIsKill)); - ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], - TLI.getRegClassFor(VT), RHSReg, RHSIsKill); - } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { - static const uint16_t MULOpc[] = - { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; - if (VT == MVT::i8) { - // Copy the first operand into AL, which is an implicit input to the - // X86::IMUL8r instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), X86::AL) - .addReg(LHSReg, getKillRegState(LHSIsKill)); - ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, - RHSIsKill); - } else - ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], - TLI.getRegClassFor(VT), LHSReg, LHSIsKill, - RHSReg, RHSIsKill); - } - - if (!ResultReg) - return false; - - // Assign to a GPR since the overflow return value is lowered to a SETcc. - unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); - assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc), - ResultReg2); - - updateValueMap(II, ResultReg, 2); - return true; - } - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: { - bool IsInputDouble; - switch (II->getIntrinsicID()) { - default: llvm_unreachable("Unexpected intrinsic."); - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - if (!Subtarget->hasSSE1()) - return false; - IsInputDouble = false; - break; - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: - if (!Subtarget->hasSSE2()) - return false; - IsInputDouble = true; - break; - } - - Type *RetTy = II->getCalledFunction()->getReturnType(); - MVT VT; - if (!isTypeLegal(RetTy, VT)) - return false; - - static const uint16_t CvtOpc[3][2][2] = { - { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, - { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, - { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, - { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, - { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, - { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, - }; - unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : - Subtarget->hasAVX() ? 1 : - 0; - unsigned Opc; - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected result type."); - case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; - case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; - } - - // Check if we can fold insertelement instructions into the convert. - const Value *Op = II->getArgOperand(0); - while (auto *IE = dyn_cast<InsertElementInst>(Op)) { - const Value *Index = IE->getOperand(2); - if (!isa<ConstantInt>(Index)) - break; - unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); - - if (Idx == 0) { - Op = IE->getOperand(1); - break; - } - Op = IE->getOperand(0); - } - - unsigned Reg = getRegForValue(Op); - if (Reg == 0) - return false; - - unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) - .addReg(Reg); - - updateValueMap(II, ResultReg); - return true; - } - } -} - -bool X86FastISel::fastLowerArguments() { - if (!FuncInfo.CanLowerReturn) - return false; - - const Function *F = FuncInfo.Fn; - if (F->isVarArg()) - return false; - - CallingConv::ID CC = F->getCallingConv(); - if (CC != CallingConv::C) - return false; - - if (Subtarget->isCallingConvWin64(CC)) - return false; - - if (!Subtarget->is64Bit()) - return false; - - if (Subtarget->useSoftFloat()) - return false; - - // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. - unsigned GPRCnt = 0; - unsigned FPRCnt = 0; - for (auto const &Arg : F->args()) { - if (Arg.hasAttribute(Attribute::ByVal) || - Arg.hasAttribute(Attribute::InReg) || - Arg.hasAttribute(Attribute::StructRet) || - Arg.hasAttribute(Attribute::SwiftSelf) || - Arg.hasAttribute(Attribute::SwiftError) || - Arg.hasAttribute(Attribute::Nest)) - return false; - - Type *ArgTy = Arg.getType(); - if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) - return false; - - EVT ArgVT = TLI.getValueType(DL, ArgTy); - if (!ArgVT.isSimple()) return false; - switch (ArgVT.getSimpleVT().SimpleTy) { - default: return false; - case MVT::i32: - case MVT::i64: - ++GPRCnt; - break; - case MVT::f32: - case MVT::f64: - if (!Subtarget->hasSSE1()) - return false; - ++FPRCnt; - break; - } - - if (GPRCnt > 6) - return false; - - if (FPRCnt > 8) - return false; - } - - static const MCPhysReg GPR32ArgRegs[] = { - X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D - }; - static const MCPhysReg GPR64ArgRegs[] = { - X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 - }; - static const MCPhysReg XMMArgRegs[] = { - X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, - X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 - }; - - unsigned GPRIdx = 0; - unsigned FPRIdx = 0; - for (auto const &Arg : F->args()) { - MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); - const TargetRegisterClass *RC = TLI.getRegClassFor(VT); - unsigned SrcReg; - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected value type."); - case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; - case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; - case MVT::f32: LLVM_FALLTHROUGH; - case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; - } - unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); - // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. - // Without this, EmitLiveInCopies may eliminate the livein if its only - // use is a bitcast (which isn't turned into an instruction). - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg) - .addReg(DstReg, getKillRegState(true)); - updateValueMap(&Arg, ResultReg); - } - return true; -} - -static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, - CallingConv::ID CC, - ImmutableCallSite *CS) { - if (Subtarget->is64Bit()) - return 0; - if (Subtarget->getTargetTriple().isOSMSVCRT()) - return 0; - if (CC == CallingConv::Fast || CC == CallingConv::GHC || - CC == CallingConv::HiPE) - return 0; - - if (CS) - if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || - CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) - return 0; - - return 4; -} - -bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { - auto &OutVals = CLI.OutVals; - auto &OutFlags = CLI.OutFlags; - auto &OutRegs = CLI.OutRegs; - auto &Ins = CLI.Ins; - auto &InRegs = CLI.InRegs; - CallingConv::ID CC = CLI.CallConv; - bool &IsTailCall = CLI.IsTailCall; - bool IsVarArg = CLI.IsVarArg; - const Value *Callee = CLI.Callee; - MCSymbol *Symbol = CLI.Symbol; - - bool Is64Bit = Subtarget->is64Bit(); - bool IsWin64 = Subtarget->isCallingConvWin64(CC); - - const CallInst *CI = - CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; - const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; - - // Call / invoke instructions with NoCfCheck attribute require special - // handling. - const auto *II = - CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; - if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) - return false; - - // Functions with no_caller_saved_registers that need special handling. - if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || - (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) - return false; - - // Functions using retpoline for indirect calls need to use SDISel. - if (Subtarget->useRetpolineIndirectCalls()) - return false; - - // Handle only C, fastcc, and webkit_js calling conventions for now. - switch (CC) { - default: return false; - case CallingConv::C: - case CallingConv::Fast: - case CallingConv::WebKit_JS: - case CallingConv::Swift: - case CallingConv::X86_FastCall: - case CallingConv::X86_StdCall: - case CallingConv::X86_ThisCall: - case CallingConv::Win64: - case CallingConv::X86_64_SysV: - break; - } - - // Allow SelectionDAG isel to handle tail calls. - if (IsTailCall) - return false; - - // fastcc with -tailcallopt is intended to provide a guaranteed - // tail call optimization. Fastisel doesn't know how to do that. - if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) - return false; - - // Don't know how to handle Win64 varargs yet. Nothing special needed for - // x86-32. Special handling for x86-64 is implemented. - if (IsVarArg && IsWin64) - return false; - - // Don't know about inalloca yet. - if (CLI.CS && CLI.CS->hasInAllocaArgument()) - return false; - - for (auto Flag : CLI.OutFlags) - if (Flag.isSwiftError()) - return false; - - SmallVector<MVT, 16> OutVTs; - SmallVector<unsigned, 16> ArgRegs; - - // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra - // instruction. This is safe because it is common to all FastISel supported - // calling conventions on x86. - for (int i = 0, e = OutVals.size(); i != e; ++i) { - Value *&Val = OutVals[i]; - ISD::ArgFlagsTy Flags = OutFlags[i]; - if (auto *CI = dyn_cast<ConstantInt>(Val)) { - if (CI->getBitWidth() < 32) { - if (Flags.isSExt()) - Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); - else - Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); - } - } - - // Passing bools around ends up doing a trunc to i1 and passing it. - // Codegen this as an argument + "and 1". - MVT VT; - auto *TI = dyn_cast<TruncInst>(Val); - unsigned ResultReg; - if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && - (TI->getParent() == CLI.CS->getInstruction()->getParent()) && - TI->hasOneUse()) { - Value *PrevVal = TI->getOperand(0); - ResultReg = getRegForValue(PrevVal); - - if (!ResultReg) - return false; - - if (!isTypeLegal(PrevVal->getType(), VT)) - return false; - - ResultReg = - fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); - } else { - if (!isTypeLegal(Val->getType(), VT)) - return false; - ResultReg = getRegForValue(Val); - } - - if (!ResultReg) - return false; - - ArgRegs.push_back(ResultReg); - OutVTs.push_back(VT); - } - - // Analyze operands of the call, assigning locations to each operand. - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); - - // Allocate shadow area for Win64 - if (IsWin64) - CCInfo.AllocateStack(32, 8); - - CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); - - // Get a count of how many bytes are to be pushed on the stack. - unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); - - // Issue CALLSEQ_START - unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) - .addImm(NumBytes).addImm(0).addImm(0); - - // Walk the register/memloc assignments, inserting copies/loads. - const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); - for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { - CCValAssign const &VA = ArgLocs[i]; - const Value *ArgVal = OutVals[VA.getValNo()]; - MVT ArgVT = OutVTs[VA.getValNo()]; - - if (ArgVT == MVT::x86mmx) - return false; - - unsigned ArgReg = ArgRegs[VA.getValNo()]; - - // Promote the value if needed. - switch (VA.getLocInfo()) { - case CCValAssign::Full: break; - case CCValAssign::SExt: { - assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && - "Unexpected extend"); - - if (ArgVT == MVT::i1) - return false; - - bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - assert(Emitted && "Failed to emit a sext!"); (void)Emitted; - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::ZExt: { - assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && - "Unexpected extend"); - - // Handle zero-extension from i1 to i8, which is common. - if (ArgVT == MVT::i1) { - // Set the high bits to zero. - ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); - ArgVT = MVT::i8; - - if (ArgReg == 0) - return false; - } - - bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - assert(Emitted && "Failed to emit a zext!"); (void)Emitted; - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::AExt: { - assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && - "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - if (!Emitted) - Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - if (!Emitted) - Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, - ArgVT, ArgReg); - - assert(Emitted && "Failed to emit a aext!"); (void)Emitted; - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::BCvt: { - ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, - /*TODO: Kill=*/false); - assert(ArgReg && "Failed to emit a bitcast!"); - ArgVT = VA.getLocVT(); - break; - } - case CCValAssign::VExt: - // VExt has not been implemented, so this should be impossible to reach - // for now. However, fallback to Selection DAG isel once implemented. - return false; - case CCValAssign::AExtUpper: - case CCValAssign::SExtUpper: - case CCValAssign::ZExtUpper: - case CCValAssign::FPExt: - llvm_unreachable("Unexpected loc info!"); - case CCValAssign::Indirect: - // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully - // support this. - return false; - } - - if (VA.isRegLoc()) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); - OutRegs.push_back(VA.getLocReg()); - } else { - assert(VA.isMemLoc()); - - // Don't emit stores for undef values. - if (isa<UndefValue>(ArgVal)) - continue; - - unsigned LocMemOffset = VA.getLocMemOffset(); - X86AddressMode AM; - AM.Base.Reg = RegInfo->getStackRegister(); - AM.Disp = LocMemOffset; - ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; - unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); - MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( - MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), - MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); - if (Flags.isByVal()) { - X86AddressMode SrcAM; - SrcAM.Base.Reg = ArgReg; - if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) - return false; - } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { - // If this is a really simple value, emit this with the Value* version - // of X86FastEmitStore. If it isn't simple, we don't want to do this, - // as it can cause us to reevaluate the argument. - if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) - return false; - } else { - bool ValIsKill = hasTrivialKill(ArgVal); - if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) - return false; - } - } - } - - // ELF / PIC requires GOT in the EBX register before function calls via PLT - // GOT pointer. - if (Subtarget->isPICStyleGOT()) { - unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); - } - - if (Is64Bit && IsVarArg && !IsWin64) { - // From AMD64 ABI document: - // For calls that may call functions that use varargs or stdargs - // (prototype-less calls or calls to functions containing ellipsis (...) in - // the declaration) %al is used as hidden argument to specify the number - // of SSE registers used. The contents of %al do not need to match exactly - // the number of registers, but must be an ubound on the number of SSE - // registers used and is in the range 0 - 8 inclusive. - - // Count the number of XMM registers allocated. - static const MCPhysReg XMMArgRegs[] = { - X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, - X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 - }; - unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); - assert((Subtarget->hasSSE1() || !NumXMMRegs) - && "SSE registers cannot be used when SSE is disabled"); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), - X86::AL).addImm(NumXMMRegs); - } - - // Materialize callee address in a register. FIXME: GV address can be - // handled with a CALLpcrel32 instead. - X86AddressMode CalleeAM; - if (!X86SelectCallAddress(Callee, CalleeAM)) - return false; - - unsigned CalleeOp = 0; - const GlobalValue *GV = nullptr; - if (CalleeAM.GV != nullptr) { - GV = CalleeAM.GV; - } else if (CalleeAM.Base.Reg != 0) { - CalleeOp = CalleeAM.Base.Reg; - } else - return false; - - // Issue the call. - MachineInstrBuilder MIB; - if (CalleeOp) { - // Register-indirect call. - unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) - .addReg(CalleeOp); - } else { - // Direct call. - assert(GV && "Not a direct call"); - // See if we need any target-specific flags on the GV operand. - unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); - - // This will be a direct call, or an indirect call through memory for - // NonLazyBind calls or dllimport calls. - bool NeedLoad = - OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL; - unsigned CallOpc = NeedLoad - ? (Is64Bit ? X86::CALL64m : X86::CALL32m) - : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); - - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); - if (NeedLoad) - MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); - if (Symbol) - MIB.addSym(Symbol, OpFlags); - else - MIB.addGlobalAddress(GV, 0, OpFlags); - if (NeedLoad) - MIB.addReg(0); - } - - // Add a register mask operand representing the call-preserved registers. - // Proper defs for return values will be added by setPhysRegsDeadExcept(). - MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); - - // Add an implicit use GOT pointer in EBX. - if (Subtarget->isPICStyleGOT()) - MIB.addReg(X86::EBX, RegState::Implicit); - - if (Is64Bit && IsVarArg && !IsWin64) - MIB.addReg(X86::AL, RegState::Implicit); - - // Add implicit physical register uses to the call. - for (auto Reg : OutRegs) - MIB.addReg(Reg, RegState::Implicit); - - // Issue CALLSEQ_END - unsigned NumBytesForCalleeToPop = - X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, - TM.Options.GuaranteedTailCallOpt) - ? NumBytes // Callee pops everything. - : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); - unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) - .addImm(NumBytes).addImm(NumBytesForCalleeToPop); - - // Now handle call return values. - SmallVector<CCValAssign, 16> RVLocs; - CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, - CLI.RetTy->getContext()); - CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); - - // Copy all of the result registers out of their specified physreg. - unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); - for (unsigned i = 0; i != RVLocs.size(); ++i) { - CCValAssign &VA = RVLocs[i]; - EVT CopyVT = VA.getValVT(); - unsigned CopyReg = ResultReg + i; - unsigned SrcReg = VA.getLocReg(); - - // If this is x86-64, and we disabled SSE, we can't return FP values - if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && - ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { - report_fatal_error("SSE register return with SSE disabled"); - } - - // If we prefer to use the value in xmm registers, copy it out as f80 and - // use a truncate to move it from fp stack reg to xmm reg. - if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && - isScalarFPTypeInSSEReg(VA.getValVT())) { - CopyVT = MVT::f80; - CopyReg = createResultReg(&X86::RFP80RegClass); - } - - // Copy out the result. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); - InRegs.push_back(VA.getLocReg()); - - // Round the f80 to the right size, which also moves it to the appropriate - // xmm register. This is accomplished by storing the f80 value in memory - // and then loading it back. - if (CopyVT != VA.getValVT()) { - EVT ResVT = VA.getValVT(); - unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; - unsigned MemSize = ResVT.getSizeInBits()/8; - int FI = MFI.CreateStackObject(MemSize, MemSize, false); - addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc)), FI) - .addReg(CopyReg); - Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; - addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg + i), FI); - } - } - - CLI.ResultReg = ResultReg; - CLI.NumResultRegs = RVLocs.size(); - CLI.Call = MIB; - - return true; -} - -bool -X86FastISel::fastSelectInstruction(const Instruction *I) { - switch (I->getOpcode()) { - default: break; - case Instruction::Load: - return X86SelectLoad(I); - case Instruction::Store: - return X86SelectStore(I); - case Instruction::Ret: - return X86SelectRet(I); - case Instruction::ICmp: - case Instruction::FCmp: - return X86SelectCmp(I); - case Instruction::ZExt: - return X86SelectZExt(I); - case Instruction::SExt: - return X86SelectSExt(I); - case Instruction::Br: - return X86SelectBranch(I); - case Instruction::LShr: - case Instruction::AShr: - case Instruction::Shl: - return X86SelectShift(I); - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::SRem: - case Instruction::URem: - return X86SelectDivRem(I); - case Instruction::Select: - return X86SelectSelect(I); - case Instruction::Trunc: - return X86SelectTrunc(I); - case Instruction::FPExt: - return X86SelectFPExt(I); - case Instruction::FPTrunc: - return X86SelectFPTrunc(I); - case Instruction::SIToFP: - return X86SelectSIToFP(I); - case Instruction::UIToFP: - return X86SelectUIToFP(I); - case Instruction::IntToPtr: // Deliberate fall-through. - case Instruction::PtrToInt: { - EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); - EVT DstVT = TLI.getValueType(DL, I->getType()); - if (DstVT.bitsGT(SrcVT)) - return X86SelectZExt(I); - if (DstVT.bitsLT(SrcVT)) - return X86SelectTrunc(I); - unsigned Reg = getRegForValue(I->getOperand(0)); - if (Reg == 0) return false; - updateValueMap(I, Reg); - return true; - } - case Instruction::BitCast: { - // Select SSE2/AVX bitcasts between 128/256 bit vector types. - if (!Subtarget->hasSSE2()) - return false; - - EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); - EVT DstVT = TLI.getValueType(DL, I->getType()); - - if (!SrcVT.isSimple() || !DstVT.isSimple()) - return false; - - MVT SVT = SrcVT.getSimpleVT(); - MVT DVT = DstVT.getSimpleVT(); - - if (!SVT.is128BitVector() && - !(Subtarget->hasAVX() && SVT.is256BitVector()) && - !(Subtarget->hasAVX512() && SVT.is512BitVector() && - (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 && - DVT.getScalarSizeInBits() >= 32)))) - return false; - - unsigned Reg = getRegForValue(I->getOperand(0)); - if (Reg == 0) - return false; - - // No instruction is needed for conversion. Reuse the register used by - // the fist operand. - updateValueMap(I, Reg); - return true; - } - } - - return false; -} - -unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { - if (VT > MVT::i64) - return 0; - - uint64_t Imm = CI->getZExtValue(); - if (Imm == 0) { - unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected value type"); - case MVT::i1: - case MVT::i8: - return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, - X86::sub_8bit); - case MVT::i16: - return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, - X86::sub_16bit); - case MVT::i32: - return SrcReg; - case MVT::i64: { - unsigned ResultReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) - .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); - return ResultReg; - } - } - } - - unsigned Opc = 0; - switch (VT.SimpleTy) { - default: llvm_unreachable("Unexpected value type"); - case MVT::i1: - VT = MVT::i8; - LLVM_FALLTHROUGH; - case MVT::i8: Opc = X86::MOV8ri; break; - case MVT::i16: Opc = X86::MOV16ri; break; - case MVT::i32: Opc = X86::MOV32ri; break; - case MVT::i64: { - if (isUInt<32>(Imm)) - Opc = X86::MOV32ri64; - else if (isInt<32>(Imm)) - Opc = X86::MOV64ri32; - else - Opc = X86::MOV64ri; - break; - } - } - return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); -} - -unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { - if (CFP->isNullValue()) - return fastMaterializeFloatZero(CFP); - - // Can't handle alternate code models yet. - CodeModel::Model CM = TM.getCodeModel(); - if (CM != CodeModel::Small && CM != CodeModel::Large) - return 0; - - // Get opcode and regclass of the output for the given load instruction. - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - switch (VT.SimpleTy) { - default: return 0; - case MVT::f32: - if (X86ScalarSSEf32) { - Opc = Subtarget->hasAVX512() - ? X86::VMOVSSZrm - : Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; - RC = Subtarget->hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; - } else { - Opc = X86::LD_Fp32m; - RC = &X86::RFP32RegClass; - } - break; - case MVT::f64: - if (X86ScalarSSEf64) { - Opc = Subtarget->hasAVX512() - ? X86::VMOVSDZrm - : Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; - RC = Subtarget->hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; - } else { - Opc = X86::LD_Fp64m; - RC = &X86::RFP64RegClass; - } - break; - case MVT::f80: - // No f80 support yet. - return 0; - } - - // MachineConstantPool wants an explicit alignment. - unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); - if (Align == 0) { - // Alignment of vector types. FIXME! - Align = DL.getTypeAllocSize(CFP->getType()); - } - - // x86-32 PIC requires a PIC base register for constant pools. - unsigned PICBase = 0; - unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); - if (OpFlag == X86II::MO_PIC_BASE_OFFSET) - PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - else if (OpFlag == X86II::MO_GOTOFF) - PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) - PICBase = X86::RIP; - - // Create the load from the constant pool. - unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); - unsigned ResultReg = createResultReg(RC); - - if (CM == CodeModel::Large) { - unsigned AddrReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), - AddrReg) - .addConstantPoolIndex(CPI, 0, OpFlag); - MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg); - addDirectMem(MIB, AddrReg); - MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( - MachinePointerInfo::getConstantPool(*FuncInfo.MF), - MachineMemOperand::MOLoad, DL.getPointerSize(), Align); - MIB->addMemOperand(*FuncInfo.MF, MMO); - return ResultReg; - } - - addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg), - CPI, PICBase, OpFlag); - return ResultReg; -} - -unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return 0; - - // Materialize addresses with LEA/MOV instructions. - X86AddressMode AM; - if (X86SelectAddress(GV, AM)) { - // If the expression is just a basereg, then we're done, otherwise we need - // to emit an LEA. - if (AM.BaseType == X86AddressMode::RegBase && - AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) - return AM.Base.Reg; - - unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - if (TM.getRelocationModel() == Reloc::Static && - TLI.getPointerTy(DL) == MVT::i64) { - // The displacement code could be more than 32 bits away so we need to use - // an instruction with a 64 bit immediate - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), - ResultReg) - .addGlobalAddress(GV); - } else { - unsigned Opc = - TLI.getPointerTy(DL) == MVT::i32 - ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) - : X86::LEA64r; - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg), AM); - } - return ResultReg; - } - return 0; -} - -unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { - EVT CEVT = TLI.getValueType(DL, C->getType(), true); - - // Only handle simple types. - if (!CEVT.isSimple()) - return 0; - MVT VT = CEVT.getSimpleVT(); - - if (const auto *CI = dyn_cast<ConstantInt>(C)) - return X86MaterializeInt(CI, VT); - else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) - return X86MaterializeFP(CFP, VT); - else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) - return X86MaterializeGV(GV, VT); - - return 0; -} - -unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { - // Fail on dynamic allocas. At this point, getRegForValue has already - // checked its CSE maps, so if we're here trying to handle a dynamic - // alloca, we're not going to succeed. X86SelectAddress has a - // check for dynamic allocas, because it's called directly from - // various places, but targetMaterializeAlloca also needs a check - // in order to avoid recursion between getRegForValue, - // X86SelectAddrss, and targetMaterializeAlloca. - if (!FuncInfo.StaticAllocaMap.count(C)) - return 0; - assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); - - X86AddressMode AM; - if (!X86SelectAddress(C, AM)) - return 0; - unsigned Opc = - TLI.getPointerTy(DL) == MVT::i32 - ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) - : X86::LEA64r; - const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); - unsigned ResultReg = createResultReg(RC); - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(Opc), ResultReg), AM); - return ResultReg; -} - -unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { - MVT VT; - if (!isTypeLegal(CF->getType(), VT)) - return 0; - - // Get opcode and regclass for the given zero. - bool HasAVX512 = Subtarget->hasAVX512(); - unsigned Opc = 0; - const TargetRegisterClass *RC = nullptr; - switch (VT.SimpleTy) { - default: return 0; - case MVT::f32: - if (X86ScalarSSEf32) { - Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; - RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass; - } else { - Opc = X86::LD_Fp032; - RC = &X86::RFP32RegClass; - } - break; - case MVT::f64: - if (X86ScalarSSEf64) { - Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; - RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass; - } else { - Opc = X86::LD_Fp064; - RC = &X86::RFP64RegClass; - } - break; - case MVT::f80: - // No f80 support yet. - return 0; - } - - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); - return ResultReg; -} - - -bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, - const LoadInst *LI) { - const Value *Ptr = LI->getPointerOperand(); - X86AddressMode AM; - if (!X86SelectAddress(Ptr, AM)) - return false; - - const X86InstrInfo &XII = (const X86InstrInfo &)TII; - - unsigned Size = DL.getTypeAllocSize(LI->getType()); - unsigned Alignment = LI->getAlignment(); - - if (Alignment == 0) // Ensure that codegen never sees alignment 0 - Alignment = DL.getABITypeAlignment(LI->getType()); - - SmallVector<MachineOperand, 8> AddrOps; - AM.getFullAddress(AddrOps); - - MachineInstr *Result = XII.foldMemoryOperandImpl( - *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, - /*AllowCommute=*/true); - if (!Result) - return false; - - // The index register could be in the wrong register class. Unfortunately, - // foldMemoryOperandImpl could have commuted the instruction so its not enough - // to just look at OpNo + the offset to the index reg. We actually need to - // scan the instruction to find the index reg and see if its the correct reg - // class. - unsigned OperandNo = 0; - for (MachineInstr::mop_iterator I = Result->operands_begin(), - E = Result->operands_end(); I != E; ++I, ++OperandNo) { - MachineOperand &MO = *I; - if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) - continue; - // Found the index reg, now try to rewrite it. - unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), - MO.getReg(), OperandNo); - if (IndexReg == MO.getReg()) - continue; - MO.setReg(IndexReg); - } - - Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); - MachineBasicBlock::iterator I(MI); - removeDeadCode(I, std::next(I)); - return true; -} - -unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, - const TargetRegisterClass *RC, - unsigned Op0, bool Op0IsKill, - unsigned Op1, bool Op1IsKill, - unsigned Op2, bool Op2IsKill, - unsigned Op3, bool Op3IsKill) { - const MCInstrDesc &II = TII.get(MachineInstOpcode); - - unsigned ResultReg = createResultReg(RC); - Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); - Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); - Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); - Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); - - if (II.getNumDefs() >= 1) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) - .addReg(Op0, getKillRegState(Op0IsKill)) - .addReg(Op1, getKillRegState(Op1IsKill)) - .addReg(Op2, getKillRegState(Op2IsKill)) - .addReg(Op3, getKillRegState(Op3IsKill)); - else { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) - .addReg(Op0, getKillRegState(Op0IsKill)) - .addReg(Op1, getKillRegState(Op1IsKill)) - .addReg(Op2, getKillRegState(Op2IsKill)) - .addReg(Op3, getKillRegState(Op3IsKill)); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, - TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); - } - return ResultReg; -} - - -namespace llvm { - FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, - const TargetLibraryInfo *libInfo) { - return new X86FastISel(funcInfo, libInfo); - } -} |
