summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp')
-rw-r--r--gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp844
1 files changed, 0 insertions, 844 deletions
diff --git a/gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp b/gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp
deleted file mode 100644
index 28940754a20..00000000000
--- a/gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp
+++ /dev/null
@@ -1,844 +0,0 @@
-//===- X86InterleavedAccess.cpp -------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file
-/// This file contains the X86 implementation of the interleaved accesses
-/// optimization generating X86-specific instructions/intrinsics for
-/// interleaved access groups.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86ISelLowering.h"
-#include "X86Subtarget.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/MachineValueType.h"
-#include <algorithm>
-#include <cassert>
-#include <cmath>
-#include <cstdint>
-
-using namespace llvm;
-
-namespace {
-
-/// This class holds necessary information to represent an interleaved
-/// access group and supports utilities to lower the group into
-/// X86-specific instructions/intrinsics.
-/// E.g. A group of interleaving access loads (Factor = 2; accessing every
-/// other element)
-/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
-/// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
-/// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
-class X86InterleavedAccessGroup {
- /// Reference to the wide-load instruction of an interleaved access
- /// group.
- Instruction *const Inst;
-
- /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
- ArrayRef<ShuffleVectorInst *> Shuffles;
-
- /// Reference to the starting index of each user-shuffle.
- ArrayRef<unsigned> Indices;
-
- /// Reference to the interleaving stride in terms of elements.
- const unsigned Factor;
-
- /// Reference to the underlying target.
- const X86Subtarget &Subtarget;
-
- const DataLayout &DL;
-
- IRBuilder<> &Builder;
-
- /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
- /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
- void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
- SmallVectorImpl<Instruction *> &DecomposedVectors);
-
- /// Performs matrix transposition on a 4x4 matrix \p InputVectors and
- /// returns the transposed-vectors in \p TransposedVectors.
- /// E.g.
- /// InputVectors:
- /// In-V0 = p1, p2, p3, p4
- /// In-V1 = q1, q2, q3, q4
- /// In-V2 = r1, r2, r3, r4
- /// In-V3 = s1, s2, s3, s4
- /// OutputVectors:
- /// Out-V0 = p1, q1, r1, s1
- /// Out-V1 = p2, q2, r2, s2
- /// Out-V2 = p3, q3, r3, s3
- /// Out-V3 = P4, q4, r4, s4
- void transpose_4x4(ArrayRef<Instruction *> InputVectors,
- SmallVectorImpl<Value *> &TransposedMatrix);
- void interleave8bitStride4(ArrayRef<Instruction *> InputVectors,
- SmallVectorImpl<Value *> &TransposedMatrix,
- unsigned NumSubVecElems);
- void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors,
- SmallVectorImpl<Value *> &TransposedMatrix);
- void interleave8bitStride3(ArrayRef<Instruction *> InputVectors,
- SmallVectorImpl<Value *> &TransposedMatrix,
- unsigned NumSubVecElems);
- void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors,
- SmallVectorImpl<Value *> &TransposedMatrix,
- unsigned NumSubVecElems);
-
-public:
- /// In order to form an interleaved access group X86InterleavedAccessGroup
- /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
- /// \p Shuffs, reference to the first indices of each interleaved-vector
- /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
- /// X86-specific instructions/intrinsics it also requires the underlying
- /// target information \p STarget.
- explicit X86InterleavedAccessGroup(Instruction *I,
- ArrayRef<ShuffleVectorInst *> Shuffs,
- ArrayRef<unsigned> Ind, const unsigned F,
- const X86Subtarget &STarget,
- IRBuilder<> &B)
- : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
- DL(Inst->getModule()->getDataLayout()), Builder(B) {}
-
- /// Returns true if this interleaved access group can be lowered into
- /// x86-specific instructions/intrinsics, false otherwise.
- bool isSupported() const;
-
- /// Lowers this interleaved access group into X86-specific
- /// instructions/intrinsics.
- bool lowerIntoOptimizedSequence();
-};
-
-} // end anonymous namespace
-
-bool X86InterleavedAccessGroup::isSupported() const {
- VectorType *ShuffleVecTy = Shuffles[0]->getType();
- Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
- unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
- unsigned WideInstSize;
-
- // Currently, lowering is supported for the following vectors:
- // Stride 4:
- // 1. Store and load of 4-element vectors of 64 bits on AVX.
- // 2. Store of 16/32-element vectors of 8 bits on AVX.
- // Stride 3:
- // 1. Load of 16/32-element vectors of 8 bits on AVX.
- if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3))
- return false;
-
- if (isa<LoadInst>(Inst)) {
- WideInstSize = DL.getTypeSizeInBits(Inst->getType());
- if (cast<LoadInst>(Inst)->getPointerAddressSpace())
- return false;
- } else
- WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());
-
- // We support shuffle represents stride 4 for byte type with size of
- // WideInstSize.
- if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4)
- return true;
-
- if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 &&
- (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 ||
- WideInstSize == 2048))
- return true;
-
- if (ShuffleElemSize == 8 && Factor == 3 &&
- (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536))
- return true;
-
- return false;
-}
-
-void X86InterleavedAccessGroup::decompose(
- Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
- SmallVectorImpl<Instruction *> &DecomposedVectors) {
- assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
- "Expected Load or Shuffle");
-
- Type *VecWidth = VecInst->getType();
- (void)VecWidth;
- assert(VecWidth->isVectorTy() &&
- DL.getTypeSizeInBits(VecWidth) >=
- DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
- "Invalid Inst-size!!!");
-
- if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
- Value *Op0 = SVI->getOperand(0);
- Value *Op1 = SVI->getOperand(1);
-
- // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
- for (unsigned i = 0; i < NumSubVectors; ++i)
- DecomposedVectors.push_back(
- cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
- Op0, Op1,
- createSequentialMask(Builder, Indices[i],
- SubVecTy->getVectorNumElements(), 0))));
- return;
- }
-
- // Decompose the load instruction.
- LoadInst *LI = cast<LoadInst>(VecInst);
- Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
- Value *VecBasePtr;
- unsigned int NumLoads = NumSubVectors;
- // In the case of stride 3 with a vector of 32 elements load the information
- // in the following way:
- // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1]
- unsigned VecLength = DL.getTypeSizeInBits(VecWidth);
- if (VecLength == 768 || VecLength == 1536) {
- Type *VecTran =
- VectorType::get(Type::getInt8Ty(LI->getContext()), 16)->getPointerTo();
- VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTran);
- NumLoads = NumSubVectors * (VecLength / 384);
- } else
- VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
- // Generate N loads of T type.
- for (unsigned i = 0; i < NumLoads; i++) {
- // TODO: Support inbounds GEP.
- Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
- Instruction *NewLoad =
- Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
- DecomposedVectors.push_back(NewLoad);
- }
-}
-
-// Changing the scale of the vector type by reducing the number of elements and
-// doubling the scalar size.
-static MVT scaleVectorType(MVT VT) {
- unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2;
- return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize),
- VT.getVectorNumElements() / 2);
-}
-
-static uint32_t Concat[] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 };
-
-// genShuffleBland - Creates shuffle according to two vectors.This function is
-// only works on instructions with lane inside 256 registers. According to
-// the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The
-// offset amount depends on the two integer, 'LowOffset' and 'HighOffset'.
-// Where the 'LowOffset' refers to the first vector and the highOffset refers to
-// the second vector.
-// |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20|
-// |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25|
-// |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31|
-// For the sequence to work as a mirror to the load.
-// We must consider the elements order as above.
-// In this function we are combining two types of shuffles.
-// The first one is vpshufed and the second is a type of "blend" shuffle.
-// By computing the shuffle on a sequence of 16 elements(one lane) and add the
-// correct offset. We are creating a vpsuffed + blend sequence between two
-// shuffles.
-static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask,
- SmallVectorImpl<uint32_t> &Out, int LowOffset,
- int HighOffset) {
- assert(VT.getSizeInBits() >= 256 &&
- "This function doesn't accept width smaller then 256");
- unsigned NumOfElm = VT.getVectorNumElements();
- for (unsigned i = 0; i < Mask.size(); i++)
- Out.push_back(Mask[i] + LowOffset);
- for (unsigned i = 0; i < Mask.size(); i++)
- Out.push_back(Mask[i] + HighOffset + NumOfElm);
-}
-
-// reorderSubVector returns the data to is the original state. And de-facto is
-// the opposite of the function concatSubVector.
-
-// For VecElems = 16
-// Invec[0] - |0| TransposedMatrix[0] - |0|
-// Invec[1] - |1| => TransposedMatrix[1] - |1|
-// Invec[2] - |2| TransposedMatrix[2] - |2|
-
-// For VecElems = 32
-// Invec[0] - |0|3| TransposedMatrix[0] - |0|1|
-// Invec[1] - |1|4| => TransposedMatrix[1] - |2|3|
-// Invec[2] - |2|5| TransposedMatrix[2] - |4|5|
-
-// For VecElems = 64
-// Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 |
-// Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 |
-// Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11|
-
-static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix,
- ArrayRef<Value *> Vec, ArrayRef<uint32_t> VPShuf,
- unsigned VecElems, unsigned Stride,
- IRBuilder<> Builder) {
-
- if (VecElems == 16) {
- for (unsigned i = 0; i < Stride; i++)
- TransposedMatrix[i] = Builder.CreateShuffleVector(
- Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf);
- return;
- }
-
- SmallVector<uint32_t, 32> OptimizeShuf;
- Value *Temp[8];
-
- for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) {
- genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16,
- (i + 1) / Stride * 16);
- Temp[i / 2] = Builder.CreateShuffleVector(
- Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf);
- OptimizeShuf.clear();
- }
-
- if (VecElems == 32) {
- std::copy(Temp, Temp + Stride, TransposedMatrix.begin());
- return;
- }
- else
- for (unsigned i = 0; i < Stride; i++)
- TransposedMatrix[i] =
- Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat);
-}
-
-void X86InterleavedAccessGroup::interleave8bitStride4VF8(
- ArrayRef<Instruction *> Matrix,
- SmallVectorImpl<Value *> &TransposedMatrix) {
- // Assuming we start from the following vectors:
- // Matrix[0]= c0 c1 c2 c3 c4 ... c7
- // Matrix[1]= m0 m1 m2 m3 m4 ... m7
- // Matrix[2]= y0 y1 y2 y3 y4 ... y7
- // Matrix[3]= k0 k1 k2 k3 k4 ... k7
-
- MVT VT = MVT::v8i16;
- TransposedMatrix.resize(2);
- SmallVector<uint32_t, 16> MaskLow;
- SmallVector<uint32_t, 32> MaskLowTemp1, MaskLowWord;
- SmallVector<uint32_t, 32> MaskHighTemp1, MaskHighWord;
-
- for (unsigned i = 0; i < 8; ++i) {
- MaskLow.push_back(i);
- MaskLow.push_back(i + 8);
- }
-
- createUnpackShuffleMask<uint32_t>(VT, MaskLowTemp1, true, false);
- createUnpackShuffleMask<uint32_t>(VT, MaskHighTemp1, false, false);
- scaleShuffleMask<uint32_t>(2, MaskHighTemp1, MaskHighWord);
- scaleShuffleMask<uint32_t>(2, MaskLowTemp1, MaskLowWord);
- // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7
- // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7
- Value *IntrVec1Low =
- Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
- Value *IntrVec2Low =
- Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
-
- // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3
- // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7
-
- TransposedMatrix[0] =
- Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
- TransposedMatrix[1] =
- Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
-}
-
-void X86InterleavedAccessGroup::interleave8bitStride4(
- ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix,
- unsigned NumOfElm) {
- // Example: Assuming we start from the following vectors:
- // Matrix[0]= c0 c1 c2 c3 c4 ... c31
- // Matrix[1]= m0 m1 m2 m3 m4 ... m31
- // Matrix[2]= y0 y1 y2 y3 y4 ... y31
- // Matrix[3]= k0 k1 k2 k3 k4 ... k31
-
- MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm);
- MVT HalfVT = scaleVectorType(VT);
-
- TransposedMatrix.resize(4);
- SmallVector<uint32_t, 32> MaskHigh;
- SmallVector<uint32_t, 32> MaskLow;
- SmallVector<uint32_t, 32> LowHighMask[2];
- SmallVector<uint32_t, 32> MaskHighTemp;
- SmallVector<uint32_t, 32> MaskLowTemp;
-
- // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
- // shuffle pattern.
-
- createUnpackShuffleMask<uint32_t>(VT, MaskLow, true, false);
- createUnpackShuffleMask<uint32_t>(VT, MaskHigh, false, false);
-
- // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
- // shuffle pattern.
-
- createUnpackShuffleMask<uint32_t>(HalfVT, MaskLowTemp, true, false);
- createUnpackShuffleMask<uint32_t>(HalfVT, MaskHighTemp, false, false);
- scaleShuffleMask<uint32_t>(2, MaskLowTemp, LowHighMask[0]);
- scaleShuffleMask<uint32_t>(2, MaskHighTemp, LowHighMask[1]);
-
- // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23
- // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
- // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23
- // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
- Value *IntrVec[4];
-
- IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
- IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
- IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
- IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);
-
- // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23
- // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
- // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19
- // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27
-
- Value *VecOut[4];
- for (int i = 0; i < 4; i++)
- VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2],
- LowHighMask[i % 2]);
-
- // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7
- // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15
- // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23
- // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31
-
- if (VT == MVT::v16i8) {
- std::copy(VecOut, VecOut + 4, TransposedMatrix.begin());
- return;
- }
-
- reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16),
- NumOfElm, 4, Builder);
-}
-
-// createShuffleStride returns shuffle mask of size N.
-// The shuffle pattern is as following :
-// {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane),
-// (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),...,
-// (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)}
-// Where Lane is the # of lanes in a register:
-// VectorSize = 128 => Lane = 1
-// VectorSize = 256 => Lane = 2
-// For example shuffle pattern for VF 16 register size 256 -> lanes = 2
-// {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>}
-static void createShuffleStride(MVT VT, int Stride,
- SmallVectorImpl<uint32_t> &Mask) {
- int VectorSize = VT.getSizeInBits();
- int VF = VT.getVectorNumElements();
- int LaneCount = std::max(VectorSize / 128, 1);
- for (int Lane = 0; Lane < LaneCount; Lane++)
- for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i)
- Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane);
-}
-
-// setGroupSize sets 'SizeInfo' to the size(number of elements) of group
-// inside mask a shuffleMask. A mask contains exactly 3 groups, where
-// each group is a monotonically increasing sequence with stride 3.
-// For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2}
-static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) {
- int VectorSize = VT.getSizeInBits();
- int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1);
- for (int i = 0, FirstGroupElement = 0; i < 3; i++) {
- int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0);
- SizeInfo.push_back(GroupSize);
- FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF;
- }
-}
-
-// DecodePALIGNRMask returns the shuffle mask of vpalign instruction.
-// vpalign works according to lanes
-// Where Lane is the # of lanes in a register:
-// VectorWide = 128 => Lane = 1
-// VectorWide = 256 => Lane = 2
-// For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}.
-// For Lane = 2 shuffle pattern is:
-// {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}.
-// Imm variable sets the offset amount. The result of the
-// function is stored inside ShuffleMask vector and it built as described in
-// the begin of the description. AlignDirection is a boolean that indicates the
-// direction of the alignment. (false - align to the "right" side while true -
-// align to the "left" side)
-static void DecodePALIGNRMask(MVT VT, unsigned Imm,
- SmallVectorImpl<uint32_t> &ShuffleMask,
- bool AlignDirection = true, bool Unary = false) {
- unsigned NumElts = VT.getVectorNumElements();
- unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1);
- unsigned NumLaneElts = NumElts / NumLanes;
-
- Imm = AlignDirection ? Imm : (NumLaneElts - Imm);
- unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8);
-
- for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
- for (unsigned i = 0; i != NumLaneElts; ++i) {
- unsigned Base = i + Offset;
- // if i+offset is out of this lane then we actually need the other source
- // If Unary the other source is the first source.
- if (Base >= NumLaneElts)
- Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts;
- ShuffleMask.push_back(Base + l);
- }
- }
-}
-
-// concatSubVector - The function rebuilds the data to a correct expected
-// order. An assumption(The shape of the matrix) was taken for the
-// deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'.
-// This function ensures that the data is built in correct way for the lane
-// instructions. Each lane inside the vector is a 128-bit length.
-//
-// The 'InVec' argument contains the data in increasing order. In InVec[0] You
-// can find the first 128 bit data. The number of different lanes inside a
-// vector depends on the 'VecElems'.In general, the formula is
-// VecElems * type / 128. The size of the array 'InVec' depends and equal to
-// 'VecElems'.
-
-// For VecElems = 16
-// Invec[0] - |0| Vec[0] - |0|
-// Invec[1] - |1| => Vec[1] - |1|
-// Invec[2] - |2| Vec[2] - |2|
-
-// For VecElems = 32
-// Invec[0] - |0|1| Vec[0] - |0|3|
-// Invec[1] - |2|3| => Vec[1] - |1|4|
-// Invec[2] - |4|5| Vec[2] - |2|5|
-
-// For VecElems = 64
-// Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 |
-// Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10|
-// Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11|
-
-static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec,
- unsigned VecElems, IRBuilder<> Builder) {
- if (VecElems == 16) {
- for (int i = 0; i < 3; i++)
- Vec[i] = InVec[i];
- return;
- }
-
- for (unsigned j = 0; j < VecElems / 32; j++)
- for (int i = 0; i < 3; i++)
- Vec[i + j * 3] = Builder.CreateShuffleVector(
- InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32));
-
- if (VecElems == 32)
- return;
-
- for (int i = 0; i < 3; i++)
- Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat);
-}
-
-void X86InterleavedAccessGroup::deinterleave8bitStride3(
- ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
- unsigned VecElems) {
- // Example: Assuming we start from the following vectors:
- // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2
- // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5
- // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7
-
- TransposedMatrix.resize(3);
- SmallVector<uint32_t, 32> VPShuf;
- SmallVector<uint32_t, 32> VPAlign[2];
- SmallVector<uint32_t, 32> VPAlign2;
- SmallVector<uint32_t, 32> VPAlign3;
- SmallVector<uint32_t, 3> GroupSize;
- Value *Vec[6], *TempVector[3];
-
- MVT VT = MVT::getVT(Shuffles[0]->getType());
-
- createShuffleStride(VT, 3, VPShuf);
- setGroupSize(VT, GroupSize);
-
- for (int i = 0; i < 2; i++)
- DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false);
-
- DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true);
- DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true);
-
- concatSubVector(Vec, InVec, VecElems, Builder);
- // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
- // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
- // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
-
- for (int i = 0; i < 3; i++)
- Vec[i] = Builder.CreateShuffleVector(
- Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf);
-
- // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2
- // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5
- // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7
-
- for (int i = 0; i < 3; i++)
- TempVector[i] =
- Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]);
-
- // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
- // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
- // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
-
- for (int i = 0; i < 3; i++)
- Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i],
- VPAlign[1]);
-
- // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
- // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
- // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7
-
- Value *TempVec = Builder.CreateShuffleVector(
- Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3);
- TransposedMatrix[0] = Builder.CreateShuffleVector(
- Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2);
- TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec;
- TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2];
-}
-
-// group2Shuffle reorder the shuffle stride back into continuous order.
-// For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} =>
-// MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}.
-static void group2Shuffle(MVT VT, SmallVectorImpl<uint32_t> &Mask,
- SmallVectorImpl<uint32_t> &Output) {
- int IndexGroup[3] = {0, 0, 0};
- int Index = 0;
- int VectorWidth = VT.getSizeInBits();
- int VF = VT.getVectorNumElements();
- // Find the index of the different groups.
- int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1;
- for (int i = 0; i < 3; i++) {
- IndexGroup[(Index * 3) % (VF / Lane)] = Index;
- Index += Mask[i];
- }
- // According to the index compute the convert mask.
- for (int i = 0; i < VF / Lane; i++) {
- Output.push_back(IndexGroup[i % 3]);
- IndexGroup[i % 3]++;
- }
-}
-
-void X86InterleavedAccessGroup::interleave8bitStride3(
- ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
- unsigned VecElems) {
- // Example: Assuming we start from the following vectors:
- // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
- // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
- // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7
-
- TransposedMatrix.resize(3);
- SmallVector<uint32_t, 3> GroupSize;
- SmallVector<uint32_t, 32> VPShuf;
- SmallVector<uint32_t, 32> VPAlign[3];
- SmallVector<uint32_t, 32> VPAlign2;
- SmallVector<uint32_t, 32> VPAlign3;
-
- Value *Vec[3], *TempVector[3];
- MVT VT = MVT::getVectorVT(MVT::i8, VecElems);
-
- setGroupSize(VT, GroupSize);
-
- for (int i = 0; i < 3; i++)
- DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]);
-
- DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true);
- DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true);
-
- // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
- // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
- // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
-
- Vec[0] = Builder.CreateShuffleVector(
- InVec[0], UndefValue::get(InVec[0]->getType()), VPAlign2);
- Vec[1] = Builder.CreateShuffleVector(
- InVec[1], UndefValue::get(InVec[1]->getType()), VPAlign3);
- Vec[2] = InVec[2];
-
- // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2
- // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5
- // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7
-
- for (int i = 0; i < 3; i++)
- TempVector[i] =
- Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]);
-
- // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
- // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
- // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
-
- for (int i = 0; i < 3; i++)
- Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3],
- VPAlign[2]);
-
- // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2
- // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5
- // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7
-
- unsigned NumOfElm = VT.getVectorNumElements();
- group2Shuffle(VT, GroupSize, VPShuf);
- reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm,3, Builder);
-}
-
-void X86InterleavedAccessGroup::transpose_4x4(
- ArrayRef<Instruction *> Matrix,
- SmallVectorImpl<Value *> &TransposedMatrix) {
- assert(Matrix.size() == 4 && "Invalid matrix size");
- TransposedMatrix.resize(4);
-
- // dst = src1[0,1],src2[0,1]
- uint32_t IntMask1[] = {0, 1, 4, 5};
- ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
- Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
- Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
-
- // dst = src1[2,3],src2[2,3]
- uint32_t IntMask2[] = {2, 3, 6, 7};
- Mask = makeArrayRef(IntMask2, 4);
- Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
- Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
-
- // dst = src1[0],src2[0],src1[2],src2[2]
- uint32_t IntMask3[] = {0, 4, 2, 6};
- Mask = makeArrayRef(IntMask3, 4);
- TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
- TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
-
- // dst = src1[1],src2[1],src1[3],src2[3]
- uint32_t IntMask4[] = {1, 5, 3, 7};
- Mask = makeArrayRef(IntMask4, 4);
- TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
- TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
-}
-
-// Lowers this interleaved access group into X86-specific
-// instructions/intrinsics.
-bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
- SmallVector<Instruction *, 4> DecomposedVectors;
- SmallVector<Value *, 4> TransposedVectors;
- VectorType *ShuffleTy = Shuffles[0]->getType();
-
- if (isa<LoadInst>(Inst)) {
- // Try to generate target-sized register(/instruction).
- decompose(Inst, Factor, ShuffleTy, DecomposedVectors);
-
- Type *ShuffleEltTy = Inst->getType();
- unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor;
- // Perform matrix-transposition in order to compute interleaved
- // results by generating some sort of (optimized) target-specific
- // instructions.
-
- switch (NumSubVecElems) {
- default:
- return false;
- case 4:
- transpose_4x4(DecomposedVectors, TransposedVectors);
- break;
- case 8:
- case 16:
- case 32:
- case 64:
- deinterleave8bitStride3(DecomposedVectors, TransposedVectors,
- NumSubVecElems);
- break;
- }
-
- // Now replace the unoptimized-interleaved-vectors with the
- // transposed-interleaved vectors.
- for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
- Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);
-
- return true;
- }
-
- Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
- unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;
-
- // Lower the interleaved stores:
- // 1. Decompose the interleaved wide shuffle into individual shuffle
- // vectors.
- decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems),
- DecomposedVectors);
-
- // 2. Transpose the interleaved-vectors into vectors of contiguous
- // elements.
- switch (NumSubVecElems) {
- case 4:
- transpose_4x4(DecomposedVectors, TransposedVectors);
- break;
- case 8:
- interleave8bitStride4VF8(DecomposedVectors, TransposedVectors);
- break;
- case 16:
- case 32:
- case 64:
- if (Factor == 4)
- interleave8bitStride4(DecomposedVectors, TransposedVectors,
- NumSubVecElems);
- if (Factor == 3)
- interleave8bitStride3(DecomposedVectors, TransposedVectors,
- NumSubVecElems);
- break;
- default:
- return false;
- }
-
- // 3. Concatenate the contiguous-vectors back into a wide vector.
- Value *WideVec = concatenateVectors(Builder, TransposedVectors);
-
- // 4. Generate a store instruction for wide-vec.
- StoreInst *SI = cast<StoreInst>(Inst);
- Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
- SI->getAlignment());
-
- return true;
-}
-
-// Lower interleaved load(s) into target specific instructions/
-// intrinsics. Lowering sequence varies depending on the vector-types, factor,
-// number of shuffles and ISA.
-// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
-bool X86TargetLowering::lowerInterleavedLoad(
- LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
- ArrayRef<unsigned> Indices, unsigned Factor) const {
- assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
- "Invalid interleave factor");
- assert(!Shuffles.empty() && "Empty shufflevector input");
- assert(Shuffles.size() == Indices.size() &&
- "Unmatched number of shufflevectors and indices");
-
- // Create an interleaved access group.
- IRBuilder<> Builder(LI);
- X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
- Builder);
-
- return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
-}
-
-bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
- ShuffleVectorInst *SVI,
- unsigned Factor) const {
- assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
- "Invalid interleave factor");
-
- assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
- "Invalid interleaved store");
-
- // Holds the indices of SVI that correspond to the starting index of each
- // interleaved shuffle.
- SmallVector<unsigned, 4> Indices;
- auto Mask = SVI->getShuffleMask();
- for (unsigned i = 0; i < Factor; i++)
- Indices.push_back(Mask[i]);
-
- ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);
-
- // Create an interleaved access group.
- IRBuilder<> Builder(SI);
- X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
- Builder);
-
- return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
-}