diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/X86/X86MCInstLower.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/X86/X86MCInstLower.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/X86/X86MCInstLower.cpp | 2274 |
1 files changed, 0 insertions, 2274 deletions
diff --git a/gnu/llvm/lib/Target/X86/X86MCInstLower.cpp b/gnu/llvm/lib/Target/X86/X86MCInstLower.cpp deleted file mode 100644 index e9c48d4474f..00000000000 --- a/gnu/llvm/lib/Target/X86/X86MCInstLower.cpp +++ /dev/null @@ -1,2274 +0,0 @@ -//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains code to lower X86 MachineInstrs to their corresponding -// MCInst records. -// -//===----------------------------------------------------------------------===// - -#include "InstPrinter/X86ATTInstPrinter.h" -#include "InstPrinter/X86InstComments.h" -#include "MCTargetDesc/X86BaseInfo.h" -#include "MCTargetDesc/X86TargetStreamer.h" -#include "Utils/X86ShuffleDecode.h" -#include "X86AsmPrinter.h" -#include "X86RegisterInfo.h" -#include "X86ShuffleDecodeConstantPool.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineModuleInfoImpls.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/StackMaps.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/Mangler.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCCodeEmitter.h" -#include "llvm/MC/MCContext.h" -#include "llvm/MC/MCExpr.h" -#include "llvm/MC/MCFixup.h" -#include "llvm/MC/MCInst.h" -#include "llvm/MC/MCInstBuilder.h" -#include "llvm/MC/MCSection.h" -#include "llvm/MC/MCSectionELF.h" -#include "llvm/MC/MCStreamer.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/MC/MCSymbolELF.h" -#include "llvm/Target/TargetLoweringObjectFile.h" - -using namespace llvm; - -namespace { - -/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. -class X86MCInstLower { - MCContext &Ctx; - const MachineFunction &MF; - const TargetMachine &TM; - const MCAsmInfo &MAI; - X86AsmPrinter &AsmPrinter; - -public: - X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); - - Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI, - const MachineOperand &MO) const; - void Lower(const MachineInstr *MI, MCInst &OutMI) const; - - MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; - MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; - -private: - MachineModuleInfoMachO &getMachOMMI() const; -}; - -} // end anonymous namespace - -// Emit a minimal sequence of nops spanning NumBytes bytes. -static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, - const MCSubtargetInfo &STI); - -void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst, - const MCSubtargetInfo &STI, - MCCodeEmitter *CodeEmitter) { - if (InShadow) { - SmallString<256> Code; - SmallVector<MCFixup, 4> Fixups; - raw_svector_ostream VecOS(Code); - CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI); - CurrentShadowSize += Code.size(); - if (CurrentShadowSize >= RequiredShadowSize) - InShadow = false; // The shadow is big enough. Stop counting. - } -} - -void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( - MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { - if (InShadow && CurrentShadowSize < RequiredShadowSize) { - InShadow = false; - EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize, - MF->getSubtarget<X86Subtarget>().is64Bit(), STI); - } -} - -void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { - OutStreamer->EmitInstruction(Inst, getSubtargetInfo(), - EnablePrintSchedInfo && - !(Inst.getFlags() & X86::NO_SCHED_INFO)); - SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get()); -} - -X86MCInstLower::X86MCInstLower(const MachineFunction &mf, - X86AsmPrinter &asmprinter) - : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()), - AsmPrinter(asmprinter) {} - -MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { - return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>(); -} - -/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol -/// operand to an MCSymbol. -MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const { - const DataLayout &DL = MF.getDataLayout(); - assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && - "Isn't a symbol reference"); - - MCSymbol *Sym = nullptr; - SmallString<128> Name; - StringRef Suffix; - - switch (MO.getTargetFlags()) { - case X86II::MO_DLLIMPORT: - // Handle dllimport linkage. - Name += "__imp_"; - break; - case X86II::MO_COFFSTUB: - Name += ".refptr."; - break; - case X86II::MO_DARWIN_NONLAZY: - case X86II::MO_DARWIN_NONLAZY_PIC_BASE: - Suffix = "$non_lazy_ptr"; - break; - } - - if (!Suffix.empty()) - Name += DL.getPrivateGlobalPrefix(); - - if (MO.isGlobal()) { - const GlobalValue *GV = MO.getGlobal(); - AsmPrinter.getNameWithPrefix(Name, GV); - } else if (MO.isSymbol()) { - Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL); - } else if (MO.isMBB()) { - assert(Suffix.empty()); - Sym = MO.getMBB()->getSymbol(); - } - - Name += Suffix; - if (!Sym) - Sym = Ctx.getOrCreateSymbol(Name); - - // If the target flags on the operand changes the name of the symbol, do that - // before we return the symbol. - switch (MO.getTargetFlags()) { - default: - break; - case X86II::MO_COFFSTUB: { - MachineModuleInfoCOFF &MMICOFF = - MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>(); - MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym); - if (!StubSym.getPointer()) { - assert(MO.isGlobal() && "Extern symbol not handled yet"); - StubSym = MachineModuleInfoImpl::StubValueTy( - AsmPrinter.getSymbol(MO.getGlobal()), true); - } - break; - } - case X86II::MO_DARWIN_NONLAZY: - case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { - MachineModuleInfoImpl::StubValueTy &StubSym = - getMachOMMI().getGVStubEntry(Sym); - if (!StubSym.getPointer()) { - assert(MO.isGlobal() && "Extern symbol not handled yet"); - StubSym = MachineModuleInfoImpl::StubValueTy( - AsmPrinter.getSymbol(MO.getGlobal()), - !MO.getGlobal()->hasInternalLinkage()); - } - break; - } - } - - return Sym; -} - -MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, - MCSymbol *Sym) const { - // FIXME: We would like an efficient form for this, so we don't have to do a - // lot of extra uniquing. - const MCExpr *Expr = nullptr; - MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None; - - switch (MO.getTargetFlags()) { - default: - llvm_unreachable("Unknown target flag on GV operand"); - case X86II::MO_NO_FLAG: // No flag. - // These affect the name of the symbol, not any suffix. - case X86II::MO_DARWIN_NONLAZY: - case X86II::MO_DLLIMPORT: - case X86II::MO_COFFSTUB: - break; - - case X86II::MO_TLVP: - RefKind = MCSymbolRefExpr::VK_TLVP; - break; - case X86II::MO_TLVP_PIC_BASE: - Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); - // Subtract the pic base. - Expr = MCBinaryExpr::createSub( - Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); - break; - case X86II::MO_SECREL: - RefKind = MCSymbolRefExpr::VK_SECREL; - break; - case X86II::MO_TLSGD: - RefKind = MCSymbolRefExpr::VK_TLSGD; - break; - case X86II::MO_TLSLD: - RefKind = MCSymbolRefExpr::VK_TLSLD; - break; - case X86II::MO_TLSLDM: - RefKind = MCSymbolRefExpr::VK_TLSLDM; - break; - case X86II::MO_GOTTPOFF: - RefKind = MCSymbolRefExpr::VK_GOTTPOFF; - break; - case X86II::MO_INDNTPOFF: - RefKind = MCSymbolRefExpr::VK_INDNTPOFF; - break; - case X86II::MO_TPOFF: - RefKind = MCSymbolRefExpr::VK_TPOFF; - break; - case X86II::MO_DTPOFF: - RefKind = MCSymbolRefExpr::VK_DTPOFF; - break; - case X86II::MO_NTPOFF: - RefKind = MCSymbolRefExpr::VK_NTPOFF; - break; - case X86II::MO_GOTNTPOFF: - RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; - break; - case X86II::MO_GOTPCREL: - RefKind = MCSymbolRefExpr::VK_GOTPCREL; - break; - case X86II::MO_GOT: - RefKind = MCSymbolRefExpr::VK_GOT; - break; - case X86II::MO_GOTOFF: - RefKind = MCSymbolRefExpr::VK_GOTOFF; - break; - case X86II::MO_PLT: - RefKind = MCSymbolRefExpr::VK_PLT; - break; - case X86II::MO_ABS8: - RefKind = MCSymbolRefExpr::VK_X86_ABS8; - break; - case X86II::MO_PIC_BASE_OFFSET: - case X86II::MO_DARWIN_NONLAZY_PIC_BASE: - Expr = MCSymbolRefExpr::create(Sym, Ctx); - // Subtract the pic base. - Expr = MCBinaryExpr::createSub( - Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); - if (MO.isJTI()) { - assert(MAI.doesSetDirectiveSuppressReloc()); - // If .set directive is supported, use it to reduce the number of - // relocations the assembler will generate for differences between - // local labels. This is only safe when the symbols are in the same - // section so we are restricting it to jumptable references. - MCSymbol *Label = Ctx.createTempSymbol(); - AsmPrinter.OutStreamer->EmitAssignment(Label, Expr); - Expr = MCSymbolRefExpr::create(Label, Ctx); - } - break; - } - - if (!Expr) - Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx); - - if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) - Expr = MCBinaryExpr::createAdd( - Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx); - return MCOperand::createExpr(Expr); -} - -/// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with -/// a short fixed-register form. -static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) { - unsigned ImmOp = Inst.getNumOperands() - 1; - assert(Inst.getOperand(0).isReg() && - (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) && - ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() && - Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) || - Inst.getNumOperands() == 2) && - "Unexpected instruction!"); - - // Check whether the destination register can be fixed. - unsigned Reg = Inst.getOperand(0).getReg(); - if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) - return; - - // If so, rewrite the instruction. - MCOperand Saved = Inst.getOperand(ImmOp); - Inst = MCInst(); - Inst.setOpcode(Opcode); - Inst.addOperand(Saved); -} - -/// If a movsx instruction has a shorter encoding for the used register -/// simplify the instruction to use it instead. -static void SimplifyMOVSX(MCInst &Inst) { - unsigned NewOpcode = 0; - unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg(); - switch (Inst.getOpcode()) { - default: - llvm_unreachable("Unexpected instruction!"); - case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw - if (Op0 == X86::AX && Op1 == X86::AL) - NewOpcode = X86::CBW; - break; - case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl - if (Op0 == X86::EAX && Op1 == X86::AX) - NewOpcode = X86::CWDE; - break; - case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq - if (Op0 == X86::RAX && Op1 == X86::EAX) - NewOpcode = X86::CDQE; - break; - } - - if (NewOpcode != 0) { - Inst = MCInst(); - Inst.setOpcode(NewOpcode); - } -} - -/// Simplify things like MOV32rm to MOV32o32a. -static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst, - unsigned Opcode) { - // Don't make these simplifications in 64-bit mode; other assemblers don't - // perform them because they make the code larger. - if (Printer.getSubtarget().is64Bit()) - return; - - bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg(); - unsigned AddrBase = IsStore; - unsigned RegOp = IsStore ? 0 : 5; - unsigned AddrOp = AddrBase + 3; - assert( - Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() && - Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() && - Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() && - Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() && - Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() && - (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) && - "Unexpected instruction!"); - - // Check whether the destination register can be fixed. - unsigned Reg = Inst.getOperand(RegOp).getReg(); - if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) - return; - - // Check whether this is an absolute address. - // FIXME: We know TLVP symbol refs aren't, but there should be a better way - // to do this here. - bool Absolute = true; - if (Inst.getOperand(AddrOp).isExpr()) { - const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); - if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE)) - if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) - Absolute = false; - } - - if (Absolute && - (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 || - Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 || - Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0)) - return; - - // If so, rewrite the instruction. - MCOperand Saved = Inst.getOperand(AddrOp); - MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg); - Inst = MCInst(); - Inst.setOpcode(Opcode); - Inst.addOperand(Saved); - Inst.addOperand(Seg); -} - -static unsigned getRetOpcode(const X86Subtarget &Subtarget) { - return Subtarget.is64Bit() ? X86::RETQ : X86::RETL; -} - -Optional<MCOperand> -X86MCInstLower::LowerMachineOperand(const MachineInstr *MI, - const MachineOperand &MO) const { - switch (MO.getType()) { - default: - MI->print(errs()); - llvm_unreachable("unknown operand type"); - case MachineOperand::MO_Register: - // Ignore all implicit register operands. - if (MO.isImplicit()) - return None; - return MCOperand::createReg(MO.getReg()); - case MachineOperand::MO_Immediate: - return MCOperand::createImm(MO.getImm()); - case MachineOperand::MO_MachineBasicBlock: - case MachineOperand::MO_GlobalAddress: - case MachineOperand::MO_ExternalSymbol: - return LowerSymbolOperand(MO, GetSymbolFromOperand(MO)); - case MachineOperand::MO_MCSymbol: - return LowerSymbolOperand(MO, MO.getMCSymbol()); - case MachineOperand::MO_JumpTableIndex: - return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex())); - case MachineOperand::MO_ConstantPoolIndex: - return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex())); - case MachineOperand::MO_BlockAddress: - return LowerSymbolOperand( - MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress())); - case MachineOperand::MO_RegisterMask: - // Ignore call clobbers. - return None; - } -} - -void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { - OutMI.setOpcode(MI->getOpcode()); - - for (const MachineOperand &MO : MI->operands()) - if (auto MaybeMCOp = LowerMachineOperand(MI, MO)) - OutMI.addOperand(MaybeMCOp.getValue()); - - // Handle a few special cases to eliminate operand modifiers. -ReSimplify: - switch (OutMI.getOpcode()) { - case X86::LEA64_32r: - case X86::LEA64r: - case X86::LEA16r: - case X86::LEA32r: - // LEA should have a segment register, but it must be empty. - assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands && - "Unexpected # of LEA operands"); - assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && - "LEA has segment specified!"); - break; - - // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B - // if one of the registers is extended, but other isn't. - case X86::VMOVZPQILo2PQIrr: - case X86::VMOVAPDrr: - case X86::VMOVAPDYrr: - case X86::VMOVAPSrr: - case X86::VMOVAPSYrr: - case X86::VMOVDQArr: - case X86::VMOVDQAYrr: - case X86::VMOVDQUrr: - case X86::VMOVDQUYrr: - case X86::VMOVUPDrr: - case X86::VMOVUPDYrr: - case X86::VMOVUPSrr: - case X86::VMOVUPSYrr: { - if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && - X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { - unsigned NewOpc; - switch (OutMI.getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break; - case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; - case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; - case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; - case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; - case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; - case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; - case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; - case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; - case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; - case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; - case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; - case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; - } - OutMI.setOpcode(NewOpc); - } - break; - } - case X86::VMOVSDrr: - case X86::VMOVSSrr: { - if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && - X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { - unsigned NewOpc; - switch (OutMI.getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; - case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; - } - OutMI.setOpcode(NewOpc); - } - break; - } - - // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register - // inputs modeled as normal uses instead of implicit uses. As such, truncate - // off all but the first operand (the callee). FIXME: Change isel. - case X86::TAILJMPr64: - case X86::TAILJMPr64_REX: - case X86::CALL64r: - case X86::CALL64pcrel32: { - unsigned Opcode = OutMI.getOpcode(); - MCOperand Saved = OutMI.getOperand(0); - OutMI = MCInst(); - OutMI.setOpcode(Opcode); - OutMI.addOperand(Saved); - break; - } - - case X86::EH_RETURN: - case X86::EH_RETURN64: { - OutMI = MCInst(); - OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); - break; - } - - case X86::CLEANUPRET: { - // Replace CLEANUPRET with the appropriate RET. - OutMI = MCInst(); - OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); - break; - } - - case X86::CATCHRET: { - // Replace CATCHRET with the appropriate RET. - const X86Subtarget &Subtarget = AsmPrinter.getSubtarget(); - unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; - OutMI = MCInst(); - OutMI.setOpcode(getRetOpcode(Subtarget)); - OutMI.addOperand(MCOperand::createReg(ReturnReg)); - break; - } - - // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump - // instruction. - { - unsigned Opcode; - case X86::TAILJMPr: - Opcode = X86::JMP32r; - goto SetTailJmpOpcode; - case X86::TAILJMPd: - case X86::TAILJMPd64: - Opcode = X86::JMP_1; - goto SetTailJmpOpcode; - case X86::TAILJMPd_CC: - case X86::TAILJMPd64_CC: - Opcode = X86::GetCondBranchFromCond( - static_cast<X86::CondCode>(MI->getOperand(1).getImm())); - goto SetTailJmpOpcode; - - SetTailJmpOpcode: - MCOperand Saved = OutMI.getOperand(0); - OutMI = MCInst(); - OutMI.setOpcode(Opcode); - OutMI.addOperand(Saved); - break; - } - - case X86::DEC16r: - case X86::DEC32r: - case X86::INC16r: - case X86::INC32r: - // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions. - if (!AsmPrinter.getSubtarget().is64Bit()) { - unsigned Opcode; - switch (OutMI.getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::DEC16r: Opcode = X86::DEC16r_alt; break; - case X86::DEC32r: Opcode = X86::DEC32r_alt; break; - case X86::INC16r: Opcode = X86::INC16r_alt; break; - case X86::INC32r: Opcode = X86::INC32r_alt; break; - } - OutMI.setOpcode(Opcode); - } - break; - - // These are pseudo-ops for OR to help with the OR->ADD transformation. We do - // this with an ugly goto in case the resultant OR uses EAX and needs the - // short form. - case X86::ADD16rr_DB: OutMI.setOpcode(X86::OR16rr); goto ReSimplify; - case X86::ADD32rr_DB: OutMI.setOpcode(X86::OR32rr); goto ReSimplify; - case X86::ADD64rr_DB: OutMI.setOpcode(X86::OR64rr); goto ReSimplify; - case X86::ADD16ri_DB: OutMI.setOpcode(X86::OR16ri); goto ReSimplify; - case X86::ADD32ri_DB: OutMI.setOpcode(X86::OR32ri); goto ReSimplify; - case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify; - case X86::ADD16ri8_DB: OutMI.setOpcode(X86::OR16ri8); goto ReSimplify; - case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify; - case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify; - - // We don't currently select the correct instruction form for instructions - // which have a short %eax, etc. form. Handle this by custom lowering, for - // now. - // - // Note, we are currently not handling the following instructions: - // MOV64ao8, MOV64o8a - // XCHG16ar, XCHG32ar, XCHG64ar - case X86::MOV8mr_NOREX: - case X86::MOV8mr: - case X86::MOV8rm_NOREX: - case X86::MOV8rm: - case X86::MOV16mr: - case X86::MOV16rm: - case X86::MOV32mr: - case X86::MOV32rm: { - unsigned NewOpc; - switch (OutMI.getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::MOV8mr_NOREX: - case X86::MOV8mr: NewOpc = X86::MOV8o32a; break; - case X86::MOV8rm_NOREX: - case X86::MOV8rm: NewOpc = X86::MOV8ao32; break; - case X86::MOV16mr: NewOpc = X86::MOV16o32a; break; - case X86::MOV16rm: NewOpc = X86::MOV16ao32; break; - case X86::MOV32mr: NewOpc = X86::MOV32o32a; break; - case X86::MOV32rm: NewOpc = X86::MOV32ao32; break; - } - SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc); - break; - } - - case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32: - case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32: - case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32: - case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32: - case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32: - case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32: - case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32: - case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32: - case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: { - unsigned NewOpc; - switch (OutMI.getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::ADC8ri: NewOpc = X86::ADC8i8; break; - case X86::ADC16ri: NewOpc = X86::ADC16i16; break; - case X86::ADC32ri: NewOpc = X86::ADC32i32; break; - case X86::ADC64ri32: NewOpc = X86::ADC64i32; break; - case X86::ADD8ri: NewOpc = X86::ADD8i8; break; - case X86::ADD16ri: NewOpc = X86::ADD16i16; break; - case X86::ADD32ri: NewOpc = X86::ADD32i32; break; - case X86::ADD64ri32: NewOpc = X86::ADD64i32; break; - case X86::AND8ri: NewOpc = X86::AND8i8; break; - case X86::AND16ri: NewOpc = X86::AND16i16; break; - case X86::AND32ri: NewOpc = X86::AND32i32; break; - case X86::AND64ri32: NewOpc = X86::AND64i32; break; - case X86::CMP8ri: NewOpc = X86::CMP8i8; break; - case X86::CMP16ri: NewOpc = X86::CMP16i16; break; - case X86::CMP32ri: NewOpc = X86::CMP32i32; break; - case X86::CMP64ri32: NewOpc = X86::CMP64i32; break; - case X86::OR8ri: NewOpc = X86::OR8i8; break; - case X86::OR16ri: NewOpc = X86::OR16i16; break; - case X86::OR32ri: NewOpc = X86::OR32i32; break; - case X86::OR64ri32: NewOpc = X86::OR64i32; break; - case X86::SBB8ri: NewOpc = X86::SBB8i8; break; - case X86::SBB16ri: NewOpc = X86::SBB16i16; break; - case X86::SBB32ri: NewOpc = X86::SBB32i32; break; - case X86::SBB64ri32: NewOpc = X86::SBB64i32; break; - case X86::SUB8ri: NewOpc = X86::SUB8i8; break; - case X86::SUB16ri: NewOpc = X86::SUB16i16; break; - case X86::SUB32ri: NewOpc = X86::SUB32i32; break; - case X86::SUB64ri32: NewOpc = X86::SUB64i32; break; - case X86::TEST8ri: NewOpc = X86::TEST8i8; break; - case X86::TEST16ri: NewOpc = X86::TEST16i16; break; - case X86::TEST32ri: NewOpc = X86::TEST32i32; break; - case X86::TEST64ri32: NewOpc = X86::TEST64i32; break; - case X86::XOR8ri: NewOpc = X86::XOR8i8; break; - case X86::XOR16ri: NewOpc = X86::XOR16i16; break; - case X86::XOR32ri: NewOpc = X86::XOR32i32; break; - case X86::XOR64ri32: NewOpc = X86::XOR64i32; break; - } - SimplifyShortImmForm(OutMI, NewOpc); - break; - } - - // Try to shrink some forms of movsx. - case X86::MOVSX16rr8: - case X86::MOVSX32rr16: - case X86::MOVSX64rr32: - SimplifyMOVSX(OutMI); - break; - } -} - -void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, - const MachineInstr &MI) { - - bool is64Bits = MI.getOpcode() == X86::TLS_addr64 || - MI.getOpcode() == X86::TLS_base_addr64; - - bool needsPadding = MI.getOpcode() == X86::TLS_addr64; - - MCContext &context = OutStreamer->getContext(); - - if (needsPadding) - EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); - - MCSymbolRefExpr::VariantKind SRVK; - switch (MI.getOpcode()) { - case X86::TLS_addr32: - case X86::TLS_addr64: - SRVK = MCSymbolRefExpr::VK_TLSGD; - break; - case X86::TLS_base_addr32: - SRVK = MCSymbolRefExpr::VK_TLSLDM; - break; - case X86::TLS_base_addr64: - SRVK = MCSymbolRefExpr::VK_TLSLD; - break; - default: - llvm_unreachable("unexpected opcode"); - } - - MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)); - const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context); - - MCInst LEA; - if (is64Bits) { - LEA.setOpcode(X86::LEA64r); - LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest - LEA.addOperand(MCOperand::createReg(X86::RIP)); // base - LEA.addOperand(MCOperand::createImm(1)); // scale - LEA.addOperand(MCOperand::createReg(0)); // index - LEA.addOperand(MCOperand::createExpr(symRef)); // disp - LEA.addOperand(MCOperand::createReg(0)); // seg - } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) { - LEA.setOpcode(X86::LEA32r); - LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest - LEA.addOperand(MCOperand::createReg(X86::EBX)); // base - LEA.addOperand(MCOperand::createImm(1)); // scale - LEA.addOperand(MCOperand::createReg(0)); // index - LEA.addOperand(MCOperand::createExpr(symRef)); // disp - LEA.addOperand(MCOperand::createReg(0)); // seg - } else { - LEA.setOpcode(X86::LEA32r); - LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest - LEA.addOperand(MCOperand::createReg(0)); // base - LEA.addOperand(MCOperand::createImm(1)); // scale - LEA.addOperand(MCOperand::createReg(X86::EBX)); // index - LEA.addOperand(MCOperand::createExpr(symRef)); // disp - LEA.addOperand(MCOperand::createReg(0)); // seg - } - EmitAndCountInstruction(LEA); - - if (needsPadding) { - EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); - EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); - EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX)); - } - - StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr"; - MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name); - const MCSymbolRefExpr *tlsRef = - MCSymbolRefExpr::create(tlsGetAddr, MCSymbolRefExpr::VK_PLT, context); - - EmitAndCountInstruction( - MCInstBuilder(is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) - .addExpr(tlsRef)); -} - -/// Emit the largest nop instruction smaller than or equal to \p NumBytes -/// bytes. Return the size of nop emitted. -static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, - const MCSubtargetInfo &STI) { - // This works only for 64bit. For 32bit we have to do additional checking if - // the CPU supports multi-byte nops. - assert(Is64Bit && "EmitNops only supports X86-64"); - - unsigned NopSize; - unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; - Opc = IndexReg = Displacement = SegmentReg = 0; - BaseReg = X86::RAX; - ScaleVal = 1; - switch (NumBytes) { - case 0: - llvm_unreachable("Zero nops?"); - break; - case 1: - NopSize = 1; - Opc = X86::NOOP; - break; - case 2: - NopSize = 2; - Opc = X86::XCHG16ar; - break; - case 3: - NopSize = 3; - Opc = X86::NOOPL; - break; - case 4: - NopSize = 4; - Opc = X86::NOOPL; - Displacement = 8; - break; - case 5: - NopSize = 5; - Opc = X86::NOOPL; - Displacement = 8; - IndexReg = X86::RAX; - break; - case 6: - NopSize = 6; - Opc = X86::NOOPW; - Displacement = 8; - IndexReg = X86::RAX; - break; - case 7: - NopSize = 7; - Opc = X86::NOOPL; - Displacement = 512; - break; - case 8: - NopSize = 8; - Opc = X86::NOOPL; - Displacement = 512; - IndexReg = X86::RAX; - break; - case 9: - NopSize = 9; - Opc = X86::NOOPW; - Displacement = 512; - IndexReg = X86::RAX; - break; - default: - NopSize = 10; - Opc = X86::NOOPW; - Displacement = 512; - IndexReg = X86::RAX; - SegmentReg = X86::CS; - break; - } - - unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U); - NopSize += NumPrefixes; - for (unsigned i = 0; i != NumPrefixes; ++i) - OS.EmitBytes("\x66"); - - switch (Opc) { - default: llvm_unreachable("Unexpected opcode"); - case X86::NOOP: - OS.EmitInstruction(MCInstBuilder(Opc), STI); - break; - case X86::XCHG16ar: - OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI); - break; - case X86::NOOPL: - case X86::NOOPW: - OS.EmitInstruction(MCInstBuilder(Opc) - .addReg(BaseReg) - .addImm(ScaleVal) - .addReg(IndexReg) - .addImm(Displacement) - .addReg(SegmentReg), - STI); - break; - } - assert(NopSize <= NumBytes && "We overemitted?"); - return NopSize; -} - -/// Emit the optimal amount of multi-byte nops on X86. -static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, - const MCSubtargetInfo &STI) { - unsigned NopsToEmit = NumBytes; - (void)NopsToEmit; - while (NumBytes) { - NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI); - assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!"); - } -} - -void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI, - X86MCInstLower &MCIL) { - assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64"); - - StatepointOpers SOpers(&MI); - if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { - EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(), - getSubtargetInfo()); - } else { - // Lower call target and choose correct opcode - const MachineOperand &CallTarget = SOpers.getCallTarget(); - MCOperand CallTargetMCOp; - unsigned CallOpcode; - switch (CallTarget.getType()) { - case MachineOperand::MO_GlobalAddress: - case MachineOperand::MO_ExternalSymbol: - CallTargetMCOp = MCIL.LowerSymbolOperand( - CallTarget, MCIL.GetSymbolFromOperand(CallTarget)); - CallOpcode = X86::CALL64pcrel32; - // Currently, we only support relative addressing with statepoints. - // Otherwise, we'll need a scratch register to hold the target - // address. You'll fail asserts during load & relocation if this - // symbol is to far away. (TODO: support non-relative addressing) - break; - case MachineOperand::MO_Immediate: - CallTargetMCOp = MCOperand::createImm(CallTarget.getImm()); - CallOpcode = X86::CALL64pcrel32; - // Currently, we only support relative addressing with statepoints. - // Otherwise, we'll need a scratch register to hold the target - // immediate. You'll fail asserts during load & relocation if this - // address is to far away. (TODO: support non-relative addressing) - break; - case MachineOperand::MO_Register: - // FIXME: Add retpoline support and remove this. - if (Subtarget->useRetpolineIndirectCalls()) - report_fatal_error("Lowering register statepoints with retpoline not " - "yet implemented."); - CallTargetMCOp = MCOperand::createReg(CallTarget.getReg()); - CallOpcode = X86::CALL64r; - break; - default: - llvm_unreachable("Unsupported operand type in statepoint call target"); - break; - } - - // Emit call - MCInst CallInst; - CallInst.setOpcode(CallOpcode); - CallInst.addOperand(CallTargetMCOp); - OutStreamer->EmitInstruction(CallInst, getSubtargetInfo()); - } - - // Record our statepoint node in the same section used by STACKMAP - // and PATCHPOINT - SM.recordStatepoint(MI); -} - -void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI, - X86MCInstLower &MCIL) { - // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, - // <opcode>, <operands> - - unsigned DefRegister = FaultingMI.getOperand(0).getReg(); - FaultMaps::FaultKind FK = - static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm()); - MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol(); - unsigned Opcode = FaultingMI.getOperand(3).getImm(); - unsigned OperandsBeginIdx = 4; - - assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!"); - FM.recordFaultingOp(FK, HandlerLabel); - - MCInst MI; - MI.setOpcode(Opcode); - - if (DefRegister != X86::NoRegister) - MI.addOperand(MCOperand::createReg(DefRegister)); - - for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx, - E = FaultingMI.operands_end(); - I != E; ++I) - if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I)) - MI.addOperand(MaybeOperand.getValue()); - - OutStreamer->EmitInstruction(MI, getSubtargetInfo()); -} - -void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI, - X86MCInstLower &MCIL) { - bool Is64Bits = Subtarget->is64Bit(); - MCContext &Ctx = OutStreamer->getContext(); - MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__"); - const MCSymbolRefExpr *Op = - MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx); - - EmitAndCountInstruction( - MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) - .addExpr(Op)); -} - -void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI, - X86MCInstLower &MCIL) { - // PATCHABLE_OP minsize, opcode, operands - - unsigned MinSize = MI.getOperand(0).getImm(); - unsigned Opcode = MI.getOperand(1).getImm(); - - MCInst MCI; - MCI.setOpcode(Opcode); - for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end())) - if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) - MCI.addOperand(MaybeOperand.getValue()); - - SmallString<256> Code; - SmallVector<MCFixup, 4> Fixups; - raw_svector_ostream VecOS(Code); - CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo()); - - if (Code.size() < MinSize) { - if (MinSize == 2 && Opcode == X86::PUSH64r) { - // This is an optimization that lets us get away without emitting a nop in - // many cases. - // - // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two - // bytes too, so the check on MinSize is important. - MCI.setOpcode(X86::PUSH64rmr); - } else { - unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(), - getSubtargetInfo()); - assert(NopSize == MinSize && "Could not implement MinSize!"); - (void)NopSize; - } - } - - OutStreamer->EmitInstruction(MCI, getSubtargetInfo()); -} - -// Lower a stackmap of the form: -// <id>, <shadowBytes>, ... -void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { - SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); - SM.recordStackMap(MI); - unsigned NumShadowBytes = MI.getOperand(1).getImm(); - SMShadowTracker.reset(NumShadowBytes); -} - -// Lower a patchpoint of the form: -// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... -void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI, - X86MCInstLower &MCIL) { - assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64"); - - SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); - - SM.recordPatchPoint(MI); - - PatchPointOpers opers(&MI); - unsigned ScratchIdx = opers.getNextScratchIdx(); - unsigned EncodedBytes = 0; - const MachineOperand &CalleeMO = opers.getCallTarget(); - - // Check for null target. If target is non-null (i.e. is non-zero or is - // symbolic) then emit a call. - if (!(CalleeMO.isImm() && !CalleeMO.getImm())) { - MCOperand CalleeMCOp; - switch (CalleeMO.getType()) { - default: - /// FIXME: Add a verifier check for bad callee types. - llvm_unreachable("Unrecognized callee operand type."); - case MachineOperand::MO_Immediate: - if (CalleeMO.getImm()) - CalleeMCOp = MCOperand::createImm(CalleeMO.getImm()); - break; - case MachineOperand::MO_ExternalSymbol: - case MachineOperand::MO_GlobalAddress: - CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO, - MCIL.GetSymbolFromOperand(CalleeMO)); - break; - } - - // Emit MOV to materialize the target address and the CALL to target. - // This is encoded with 12-13 bytes, depending on which register is used. - unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg(); - if (X86II::isX86_64ExtendedReg(ScratchReg)) - EncodedBytes = 13; - else - EncodedBytes = 12; - - EmitAndCountInstruction( - MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp)); - // FIXME: Add retpoline support and remove this. - if (Subtarget->useRetpolineIndirectCalls()) - report_fatal_error( - "Lowering patchpoint with retpoline not yet implemented."); - EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg)); - } - - // Emit padding. - unsigned NumBytes = opers.getNumPatchBytes(); - assert(NumBytes >= EncodedBytes && - "Patchpoint can't request size less than the length of a call."); - - EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(), - getSubtargetInfo()); -} - -void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI, - X86MCInstLower &MCIL) { - assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64"); - - // We want to emit the following pattern, which follows the x86 calling - // convention to prepare for the trampoline call to be patched in. - // - // .p2align 1, ... - // .Lxray_event_sled_N: - // jmp +N // jump across the instrumentation sled - // ... // set up arguments in register - // callq __xray_CustomEvent@plt // force dependency to symbol - // ... - // <jump here> - // - // After patching, it would look something like: - // - // nopw (2-byte nop) - // ... - // callq __xrayCustomEvent // already lowered - // ... - // - // --- - // First we emit the label and the jump. - auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true); - OutStreamer->AddComment("# XRay Custom Event Log"); - OutStreamer->EmitCodeAlignment(2); - OutStreamer->EmitLabel(CurSled); - - // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as - // an operand (computed as an offset from the jmp instruction). - // FIXME: Find another less hacky way do force the relative jump. - OutStreamer->EmitBinaryData("\xeb\x0f"); - - // The default C calling convention will place two arguments into %rcx and - // %rdx -- so we only work with those. - unsigned DestRegs[] = {X86::RDI, X86::RSI}; - bool UsedMask[] = {false, false}; - // Filled out in loop. - unsigned SrcRegs[] = {0, 0}; - - // Then we put the operands in the %rdi and %rsi registers. We spill the - // values in the register before we clobber them, and mark them as used in - // UsedMask. In case the arguments are already in the correct register, we use - // emit nops appropriately sized to keep the sled the same size in every - // situation. - for (unsigned I = 0; I < MI.getNumOperands(); ++I) - if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { - assert(Op->isReg() && "Only support arguments in registers"); - SrcRegs[I] = Op->getReg(); - if (SrcRegs[I] != DestRegs[I]) { - UsedMask[I] = true; - EmitAndCountInstruction( - MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); - } else { - EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo()); - } - } - - // Now that the register values are stashed, mov arguments into place. - for (unsigned I = 0; I < MI.getNumOperands(); ++I) - if (SrcRegs[I] != DestRegs[I]) - EmitAndCountInstruction( - MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); - - // We emit a hard dependency on the __xray_CustomEvent symbol, which is the - // name of the trampoline to be implemented by the XRay runtime. - auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent"); - MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); - if (isPositionIndependent()) - TOp.setTargetFlags(X86II::MO_PLT); - - // Emit the call instruction. - EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) - .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); - - // Restore caller-saved and used registers. - for (unsigned I = sizeof UsedMask; I-- > 0;) - if (UsedMask[I]) - EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); - else - EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo()); - - OutStreamer->AddComment("xray custom event end."); - - // Record the sled version. Older versions of this sled were spelled - // differently, so we let the runtime handle the different offsets we're - // using. - recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1); -} - -void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI, - X86MCInstLower &MCIL) { - assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64"); - - // We want to emit the following pattern, which follows the x86 calling - // convention to prepare for the trampoline call to be patched in. - // - // .p2align 1, ... - // .Lxray_event_sled_N: - // jmp +N // jump across the instrumentation sled - // ... // set up arguments in register - // callq __xray_TypedEvent@plt // force dependency to symbol - // ... - // <jump here> - // - // After patching, it would look something like: - // - // nopw (2-byte nop) - // ... - // callq __xrayTypedEvent // already lowered - // ... - // - // --- - // First we emit the label and the jump. - auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true); - OutStreamer->AddComment("# XRay Typed Event Log"); - OutStreamer->EmitCodeAlignment(2); - OutStreamer->EmitLabel(CurSled); - - // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as - // an operand (computed as an offset from the jmp instruction). - // FIXME: Find another less hacky way do force the relative jump. - OutStreamer->EmitBinaryData("\xeb\x14"); - - // An x86-64 convention may place three arguments into %rcx, %rdx, and R8, - // so we'll work with those. Or we may be called via SystemV, in which case - // we don't have to do any translation. - unsigned DestRegs[] = {X86::RDI, X86::RSI, X86::RDX}; - bool UsedMask[] = {false, false, false}; - - // Will fill out src regs in the loop. - unsigned SrcRegs[] = {0, 0, 0}; - - // Then we put the operands in the SystemV registers. We spill the values in - // the registers before we clobber them, and mark them as used in UsedMask. - // In case the arguments are already in the correct register, we emit nops - // appropriately sized to keep the sled the same size in every situation. - for (unsigned I = 0; I < MI.getNumOperands(); ++I) - if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { - // TODO: Is register only support adequate? - assert(Op->isReg() && "Only supports arguments in registers"); - SrcRegs[I] = Op->getReg(); - if (SrcRegs[I] != DestRegs[I]) { - UsedMask[I] = true; - EmitAndCountInstruction( - MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); - } else { - EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo()); - } - } - - // In the above loop we only stash all of the destination registers or emit - // nops if the arguments are already in the right place. Doing the actually - // moving is postponed until after all the registers are stashed so nothing - // is clobbers. We've already added nops to account for the size of mov and - // push if the register is in the right place, so we only have to worry about - // emitting movs. - for (unsigned I = 0; I < MI.getNumOperands(); ++I) - if (UsedMask[I]) - EmitAndCountInstruction( - MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); - - // We emit a hard dependency on the __xray_TypedEvent symbol, which is the - // name of the trampoline to be implemented by the XRay runtime. - auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent"); - MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); - if (isPositionIndependent()) - TOp.setTargetFlags(X86II::MO_PLT); - - // Emit the call instruction. - EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) - .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); - - // Restore caller-saved and used registers. - for (unsigned I = sizeof UsedMask; I-- > 0;) - if (UsedMask[I]) - EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); - else - EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo()); - - OutStreamer->AddComment("xray typed event end."); - - // Record the sled version. - recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0); -} - -void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI, - X86MCInstLower &MCIL) { - // We want to emit the following pattern: - // - // .p2align 1, ... - // .Lxray_sled_N: - // jmp .tmpN - // # 9 bytes worth of noops - // - // We need the 9 bytes because at runtime, we'd be patching over the full 11 - // bytes with the following pattern: - // - // mov %r10, <function id, 32-bit> // 6 bytes - // call <relative offset, 32-bits> // 5 bytes - // - auto CurSled = OutContext.createTempSymbol("xray_sled_", true); - OutStreamer->EmitCodeAlignment(2); - OutStreamer->EmitLabel(CurSled); - - // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as - // an operand (computed as an offset from the jmp instruction). - // FIXME: Find another less hacky way do force the relative jump. - OutStreamer->EmitBytes("\xeb\x09"); - EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo()); - recordSled(CurSled, MI, SledKind::FUNCTION_ENTER); -} - -void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI, - X86MCInstLower &MCIL) { - // Since PATCHABLE_RET takes the opcode of the return statement as an - // argument, we use that to emit the correct form of the RET that we want. - // i.e. when we see this: - // - // PATCHABLE_RET X86::RET ... - // - // We should emit the RET followed by sleds. - // - // .p2align 1, ... - // .Lxray_sled_N: - // ret # or equivalent instruction - // # 10 bytes worth of noops - // - // This just makes sure that the alignment for the next instruction is 2. - auto CurSled = OutContext.createTempSymbol("xray_sled_", true); - OutStreamer->EmitCodeAlignment(2); - OutStreamer->EmitLabel(CurSled); - unsigned OpCode = MI.getOperand(0).getImm(); - MCInst Ret; - Ret.setOpcode(OpCode); - for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end())) - if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) - Ret.addOperand(MaybeOperand.getValue()); - OutStreamer->EmitInstruction(Ret, getSubtargetInfo()); - EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo()); - recordSled(CurSled, MI, SledKind::FUNCTION_EXIT); -} - -void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, - X86MCInstLower &MCIL) { - // Like PATCHABLE_RET, we have the actual instruction in the operands to this - // instruction so we lower that particular instruction and its operands. - // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how - // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to - // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual - // tail call much like how we have it in PATCHABLE_RET. - auto CurSled = OutContext.createTempSymbol("xray_sled_", true); - OutStreamer->EmitCodeAlignment(2); - OutStreamer->EmitLabel(CurSled); - auto Target = OutContext.createTempSymbol(); - - // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as - // an operand (computed as an offset from the jmp instruction). - // FIXME: Find another less hacky way do force the relative jump. - OutStreamer->EmitBytes("\xeb\x09"); - EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo()); - OutStreamer->EmitLabel(Target); - recordSled(CurSled, MI, SledKind::TAIL_CALL); - - unsigned OpCode = MI.getOperand(0).getImm(); - MCInst TC; - TC.setOpcode(OpCode); - - // Before emitting the instruction, add a comment to indicate that this is - // indeed a tail call. - OutStreamer->AddComment("TAILCALL"); - for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end())) - if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) - TC.addOperand(MaybeOperand.getValue()); - OutStreamer->EmitInstruction(TC, getSubtargetInfo()); -} - -// Returns instruction preceding MBBI in MachineFunction. -// If MBBI is the first instruction of the first basic block, returns null. -static MachineBasicBlock::const_iterator -PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) { - const MachineBasicBlock *MBB = MBBI->getParent(); - while (MBBI == MBB->begin()) { - if (MBB == &MBB->getParent()->front()) - return MachineBasicBlock::const_iterator(); - MBB = MBB->getPrevNode(); - MBBI = MBB->end(); - } - return --MBBI; -} - -static const Constant *getConstantFromPool(const MachineInstr &MI, - const MachineOperand &Op) { - if (!Op.isCPI() || Op.getOffset() != 0) - return nullptr; - - ArrayRef<MachineConstantPoolEntry> Constants = - MI.getParent()->getParent()->getConstantPool()->getConstants(); - const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()]; - - // Bail if this is a machine constant pool entry, we won't be able to dig out - // anything useful. - if (ConstantEntry.isMachineConstantPoolEntry()) - return nullptr; - - const Constant *C = ConstantEntry.Val.ConstVal; - assert((!C || ConstantEntry.getType() == C->getType()) && - "Expected a constant of the same type!"); - return C; -} - -static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx, - unsigned SrcOp2Idx, ArrayRef<int> Mask) { - std::string Comment; - - // Compute the name for a register. This is really goofy because we have - // multiple instruction printers that could (in theory) use different - // names. Fortunately most people use the ATT style (outside of Windows) - // and they actually agree on register naming here. Ultimately, this is - // a comment, and so its OK if it isn't perfect. - auto GetRegisterName = [](unsigned RegNum) -> StringRef { - return X86ATTInstPrinter::getRegisterName(RegNum); - }; - - const MachineOperand &DstOp = MI->getOperand(0); - const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx); - const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx); - - StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem"; - StringRef Src1Name = - SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem"; - StringRef Src2Name = - SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem"; - - // One source operand, fix the mask to print all elements in one span. - SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end()); - if (Src1Name == Src2Name) - for (int i = 0, e = ShuffleMask.size(); i != e; ++i) - if (ShuffleMask[i] >= e) - ShuffleMask[i] -= e; - - raw_string_ostream CS(Comment); - CS << DstName; - - // Handle AVX512 MASK/MASXZ write mask comments. - // MASK: zmmX {%kY} - // MASKZ: zmmX {%kY} {z} - if (SrcOp1Idx > 1) { - assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask"); - - const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1); - if (WriteMaskOp.isReg()) { - CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}"; - - if (SrcOp1Idx == 2) { - CS << " {z}"; - } - } - } - - CS << " = "; - - for (int i = 0, e = ShuffleMask.size(); i != e; ++i) { - if (i != 0) - CS << ","; - if (ShuffleMask[i] == SM_SentinelZero) { - CS << "zero"; - continue; - } - - // Otherwise, it must come from src1 or src2. Print the span of elements - // that comes from this src. - bool isSrc1 = ShuffleMask[i] < (int)e; - CS << (isSrc1 ? Src1Name : Src2Name) << '['; - - bool IsFirst = true; - while (i != e && ShuffleMask[i] != SM_SentinelZero && - (ShuffleMask[i] < (int)e) == isSrc1) { - if (!IsFirst) - CS << ','; - else - IsFirst = false; - if (ShuffleMask[i] == SM_SentinelUndef) - CS << "u"; - else - CS << ShuffleMask[i] % (int)e; - ++i; - } - CS << ']'; - --i; // For loop increments element #. - } - CS.flush(); - - return Comment; -} - -static void printConstant(const APInt &Val, raw_ostream &CS) { - if (Val.getBitWidth() <= 64) { - CS << Val.getZExtValue(); - } else { - // print multi-word constant as (w0,w1) - CS << "("; - for (int i = 0, N = Val.getNumWords(); i < N; ++i) { - if (i > 0) - CS << ","; - CS << Val.getRawData()[i]; - } - CS << ")"; - } -} - -static void printConstant(const APFloat &Flt, raw_ostream &CS) { - SmallString<32> Str; - // Force scientific notation to distinquish from integers. - Flt.toString(Str, 0, 0); - CS << Str; -} - -static void printConstant(const Constant *COp, raw_ostream &CS) { - if (isa<UndefValue>(COp)) { - CS << "u"; - } else if (auto *CI = dyn_cast<ConstantInt>(COp)) { - printConstant(CI->getValue(), CS); - } else if (auto *CF = dyn_cast<ConstantFP>(COp)) { - printConstant(CF->getValueAPF(), CS); - } else { - CS << "?"; - } -} - -void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) { - assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); - assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only"); - const X86RegisterInfo *RI = - MF->getSubtarget<X86Subtarget>().getRegisterInfo(); - - // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86. - if (EmitFPOData) { - X86TargetStreamer *XTS = - static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); - switch (MI->getOpcode()) { - case X86::SEH_PushReg: - XTS->emitFPOPushReg(MI->getOperand(0).getImm()); - break; - case X86::SEH_StackAlloc: - XTS->emitFPOStackAlloc(MI->getOperand(0).getImm()); - break; - case X86::SEH_StackAlign: - XTS->emitFPOStackAlign(MI->getOperand(0).getImm()); - break; - case X86::SEH_SetFrame: - assert(MI->getOperand(1).getImm() == 0 && - ".cv_fpo_setframe takes no offset"); - XTS->emitFPOSetFrame(MI->getOperand(0).getImm()); - break; - case X86::SEH_EndPrologue: - XTS->emitFPOEndPrologue(); - break; - case X86::SEH_SaveReg: - case X86::SEH_SaveXMM: - case X86::SEH_PushFrame: - llvm_unreachable("SEH_ directive incompatible with FPO"); - break; - default: - llvm_unreachable("expected SEH_ instruction"); - } - return; - } - - // Otherwise, use the .seh_ directives for all other Windows platforms. - switch (MI->getOpcode()) { - case X86::SEH_PushReg: - OutStreamer->EmitWinCFIPushReg( - RI->getSEHRegNum(MI->getOperand(0).getImm())); - break; - - case X86::SEH_SaveReg: - OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()), - MI->getOperand(1).getImm()); - break; - - case X86::SEH_SaveXMM: - OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()), - MI->getOperand(1).getImm()); - break; - - case X86::SEH_StackAlloc: - OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm()); - break; - - case X86::SEH_SetFrame: - OutStreamer->EmitWinCFISetFrame( - RI->getSEHRegNum(MI->getOperand(0).getImm()), - MI->getOperand(1).getImm()); - break; - - case X86::SEH_PushFrame: - OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm()); - break; - - case X86::SEH_EndPrologue: - OutStreamer->EmitWinCFIEndProlog(); - break; - - default: - llvm_unreachable("expected SEH_ instruction"); - } -} - -static unsigned getRegisterWidth(const MCOperandInfo &Info) { - if (Info.RegClass == X86::VR128RegClassID || - Info.RegClass == X86::VR128XRegClassID) - return 128; - if (Info.RegClass == X86::VR256RegClassID || - Info.RegClass == X86::VR256XRegClassID) - return 256; - if (Info.RegClass == X86::VR512RegClassID) - return 512; - llvm_unreachable("Unknown register class!"); -} - -void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { - X86MCInstLower MCInstLowering(*MF, *this); - const X86RegisterInfo *RI = - MF->getSubtarget<X86Subtarget>().getRegisterInfo(); - - // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that - // are compressed from EVEX encoding to VEX encoding. - if (TM.Options.MCOptions.ShowMCEncoding) { - if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX) - OutStreamer->AddComment("EVEX TO VEX Compression ", false); - } - - switch (MI->getOpcode()) { - case TargetOpcode::DBG_VALUE: - llvm_unreachable("Should be handled target independently"); - - // Emit nothing here but a comment if we can. - case X86::Int_MemBarrier: - OutStreamer->emitRawComment("MEMBARRIER"); - return; - - case X86::EH_RETURN: - case X86::EH_RETURN64: { - // Lower these as normal, but add some comments. - unsigned Reg = MI->getOperand(0).getReg(); - OutStreamer->AddComment(StringRef("eh_return, addr: %") + - X86ATTInstPrinter::getRegisterName(Reg)); - break; - } - case X86::CLEANUPRET: { - // Lower these as normal, but add some comments. - OutStreamer->AddComment("CLEANUPRET"); - break; - } - - case X86::CATCHRET: { - // Lower these as normal, but add some comments. - OutStreamer->AddComment("CATCHRET"); - break; - } - - case X86::TAILJMPr: - case X86::TAILJMPm: - case X86::TAILJMPd: - case X86::TAILJMPd_CC: - case X86::TAILJMPr64: - case X86::TAILJMPm64: - case X86::TAILJMPd64: - case X86::TAILJMPd64_CC: - case X86::TAILJMPr64_REX: - case X86::TAILJMPm64_REX: - // Lower these as normal, but add some comments. - OutStreamer->AddComment("TAILCALL"); - break; - - case X86::TLS_addr32: - case X86::TLS_addr64: - case X86::TLS_base_addr32: - case X86::TLS_base_addr64: - return LowerTlsAddr(MCInstLowering, *MI); - - case X86::MOVPC32r: { - // This is a pseudo op for a two instruction sequence with a label, which - // looks like: - // call "L1$pb" - // "L1$pb": - // popl %esi - - // Emit the call. - MCSymbol *PICBase = MF->getPICBaseSymbol(); - // FIXME: We would like an efficient form for this, so we don't have to do a - // lot of extra uniquing. - EmitAndCountInstruction( - MCInstBuilder(X86::CALLpcrel32) - .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); - - const X86FrameLowering *FrameLowering = - MF->getSubtarget<X86Subtarget>().getFrameLowering(); - bool hasFP = FrameLowering->hasFP(*MF); - - // TODO: This is needed only if we require precise CFA. - bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() && - !OutStreamer->getDwarfFrameInfos().back().End; - - int stackGrowth = -RI->getSlotSize(); - - if (HasActiveDwarfFrame && !hasFP) { - OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth); - } - - // Emit the label. - OutStreamer->EmitLabel(PICBase); - - // popl $reg - EmitAndCountInstruction( - MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg())); - - if (HasActiveDwarfFrame && !hasFP) { - OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth); - } - return; - } - - case X86::ADD32ri: { - // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. - if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) - break; - - // Okay, we have something like: - // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) - - // For this, we want to print something like: - // MYGLOBAL + (. - PICBASE) - // However, we can't generate a ".", so just emit a new label here and refer - // to it. - MCSymbol *DotSym = OutContext.createTempSymbol(); - OutStreamer->EmitLabel(DotSym); - - // Now that we have emitted the label, lower the complex operand expression. - MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); - - const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); - const MCExpr *PICBase = - MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); - DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext); - - DotExpr = MCBinaryExpr::createAdd( - MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext); - - EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri) - .addReg(MI->getOperand(0).getReg()) - .addReg(MI->getOperand(1).getReg()) - .addExpr(DotExpr)); - return; - } - case TargetOpcode::STATEPOINT: - return LowerSTATEPOINT(*MI, MCInstLowering); - - case TargetOpcode::FAULTING_OP: - return LowerFAULTING_OP(*MI, MCInstLowering); - - case TargetOpcode::FENTRY_CALL: - return LowerFENTRY_CALL(*MI, MCInstLowering); - - case TargetOpcode::PATCHABLE_OP: - return LowerPATCHABLE_OP(*MI, MCInstLowering); - - case TargetOpcode::STACKMAP: - return LowerSTACKMAP(*MI); - - case TargetOpcode::PATCHPOINT: - return LowerPATCHPOINT(*MI, MCInstLowering); - - case TargetOpcode::PATCHABLE_FUNCTION_ENTER: - return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering); - - case TargetOpcode::PATCHABLE_RET: - return LowerPATCHABLE_RET(*MI, MCInstLowering); - - case TargetOpcode::PATCHABLE_TAIL_CALL: - return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering); - - case TargetOpcode::PATCHABLE_EVENT_CALL: - return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering); - - case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: - return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering); - - case X86::MORESTACK_RET: - EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); - return; - - case X86::MORESTACK_RET_RESTORE_R10: - // Return, then restore R10. - EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); - EmitAndCountInstruction( - MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX)); - return; - - case X86::RETGUARD_JMP_TRAP: { - // Make a symbol for the end of the trapsled and emit a jump to it - MCSymbol *RGSuccSym = OutContext.createTempSymbol(); - const MCExpr *RGSuccExpr = MCSymbolRefExpr::create(RGSuccSym, OutContext); - EmitAndCountInstruction(MCInstBuilder(X86::JE_1).addExpr(RGSuccExpr)); - - // Emit at least two trap instructions - EmitAndCountInstruction(MCInstBuilder(X86::INT3)); - EmitAndCountInstruction(MCInstBuilder(X86::INT3)); - - // Now .fill up to 0xe byte, so the ret happens on 0xf - MCSymbol *Dot = OutContext.createTempSymbol(); - OutStreamer->EmitLabel(Dot); - const MCExpr *DotE = MCSymbolRefExpr::create(Dot, OutContext); - const MCExpr *BaseE = MCSymbolRefExpr::create( - TM.getSymbol(&MF->getFunction()), OutContext); - // .fill (0xf - ((DotE - BaseE) & 0xf)), 1, 0xcc - const MCExpr *FillE = MCBinaryExpr::createSub( - MCConstantExpr::create(0xf, OutContext), - MCBinaryExpr::createAnd( - MCBinaryExpr::createSub(DotE, BaseE, OutContext), - MCConstantExpr::create(0xf, OutContext), - OutContext), - OutContext); - OutStreamer->emitFill(*FillE, 0xCC); - - // And finally emit the jump target symbol - OutStreamer->EmitLabel(RGSuccSym); - return; - } - - case X86::JMP_TRAP: { - MCSymbol *RGSuccSym = OutContext.createTempSymbol(); - const MCExpr *RGSuccExpr = MCSymbolRefExpr::create(RGSuccSym, OutContext); - EmitAndCountInstruction(MCInstBuilder(X86::JMP_1).addExpr(RGSuccExpr)); - EmitAndCountInstruction(MCInstBuilder(X86::INT3)); - EmitAndCountInstruction(MCInstBuilder(X86::INT3)); - OutStreamer->EmitValueToAlignment(8, 0xCC, 1); - OutStreamer->EmitLabel(RGSuccSym); - return; - } - - case X86::SEH_PushReg: - case X86::SEH_SaveReg: - case X86::SEH_SaveXMM: - case X86::SEH_StackAlloc: - case X86::SEH_StackAlign: - case X86::SEH_SetFrame: - case X86::SEH_PushFrame: - case X86::SEH_EndPrologue: - EmitSEHInstruction(MI); - return; - - case X86::SEH_Epilogue: { - assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); - MachineBasicBlock::const_iterator MBBI(MI); - // Check if preceded by a call and emit nop if so. - for (MBBI = PrevCrossBBInst(MBBI); - MBBI != MachineBasicBlock::const_iterator(); - MBBI = PrevCrossBBInst(MBBI)) { - // Conservatively assume that pseudo instructions don't emit code and keep - // looking for a call. We may emit an unnecessary nop in some cases. - if (!MBBI->isPseudo()) { - if (MBBI->isCall()) - EmitAndCountInstruction(MCInstBuilder(X86::NOOP)); - break; - } - } - return; - } - - // Lower PSHUFB and VPERMILP normally but add a comment if we can find - // a constant shuffle mask. We won't be able to do this at the MC layer - // because the mask isn't an immediate. - case X86::PSHUFBrm: - case X86::VPSHUFBrm: - case X86::VPSHUFBYrm: - case X86::VPSHUFBZ128rm: - case X86::VPSHUFBZ128rmk: - case X86::VPSHUFBZ128rmkz: - case X86::VPSHUFBZ256rm: - case X86::VPSHUFBZ256rmk: - case X86::VPSHUFBZ256rmkz: - case X86::VPSHUFBZrm: - case X86::VPSHUFBZrmk: - case X86::VPSHUFBZrmkz: { - if (!OutStreamer->isVerboseAsm()) - break; - unsigned SrcIdx, MaskIdx; - switch (MI->getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::PSHUFBrm: - case X86::VPSHUFBrm: - case X86::VPSHUFBYrm: - case X86::VPSHUFBZ128rm: - case X86::VPSHUFBZ256rm: - case X86::VPSHUFBZrm: - SrcIdx = 1; MaskIdx = 5; break; - case X86::VPSHUFBZ128rmkz: - case X86::VPSHUFBZ256rmkz: - case X86::VPSHUFBZrmkz: - SrcIdx = 2; MaskIdx = 6; break; - case X86::VPSHUFBZ128rmk: - case X86::VPSHUFBZ256rmk: - case X86::VPSHUFBZrmk: - SrcIdx = 3; MaskIdx = 7; break; - } - - assert(MI->getNumOperands() >= 6 && - "We should always have at least 6 operands!"); - - const MachineOperand &MaskOp = MI->getOperand(MaskIdx); - if (auto *C = getConstantFromPool(*MI, MaskOp)) { - unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); - SmallVector<int, 64> Mask; - DecodePSHUFBMask(C, Width, Mask); - if (!Mask.empty()) - OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask), - !EnablePrintSchedInfo); - } - break; - } - - case X86::VPERMILPSrm: - case X86::VPERMILPSYrm: - case X86::VPERMILPSZ128rm: - case X86::VPERMILPSZ128rmk: - case X86::VPERMILPSZ128rmkz: - case X86::VPERMILPSZ256rm: - case X86::VPERMILPSZ256rmk: - case X86::VPERMILPSZ256rmkz: - case X86::VPERMILPSZrm: - case X86::VPERMILPSZrmk: - case X86::VPERMILPSZrmkz: - case X86::VPERMILPDrm: - case X86::VPERMILPDYrm: - case X86::VPERMILPDZ128rm: - case X86::VPERMILPDZ128rmk: - case X86::VPERMILPDZ128rmkz: - case X86::VPERMILPDZ256rm: - case X86::VPERMILPDZ256rmk: - case X86::VPERMILPDZ256rmkz: - case X86::VPERMILPDZrm: - case X86::VPERMILPDZrmk: - case X86::VPERMILPDZrmkz: { - if (!OutStreamer->isVerboseAsm()) - break; - unsigned SrcIdx, MaskIdx; - unsigned ElSize; - switch (MI->getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::VPERMILPSrm: - case X86::VPERMILPSYrm: - case X86::VPERMILPSZ128rm: - case X86::VPERMILPSZ256rm: - case X86::VPERMILPSZrm: - SrcIdx = 1; MaskIdx = 5; ElSize = 32; break; - case X86::VPERMILPSZ128rmkz: - case X86::VPERMILPSZ256rmkz: - case X86::VPERMILPSZrmkz: - SrcIdx = 2; MaskIdx = 6; ElSize = 32; break; - case X86::VPERMILPSZ128rmk: - case X86::VPERMILPSZ256rmk: - case X86::VPERMILPSZrmk: - SrcIdx = 3; MaskIdx = 7; ElSize = 32; break; - case X86::VPERMILPDrm: - case X86::VPERMILPDYrm: - case X86::VPERMILPDZ128rm: - case X86::VPERMILPDZ256rm: - case X86::VPERMILPDZrm: - SrcIdx = 1; MaskIdx = 5; ElSize = 64; break; - case X86::VPERMILPDZ128rmkz: - case X86::VPERMILPDZ256rmkz: - case X86::VPERMILPDZrmkz: - SrcIdx = 2; MaskIdx = 6; ElSize = 64; break; - case X86::VPERMILPDZ128rmk: - case X86::VPERMILPDZ256rmk: - case X86::VPERMILPDZrmk: - SrcIdx = 3; MaskIdx = 7; ElSize = 64; break; - } - - assert(MI->getNumOperands() >= 6 && - "We should always have at least 6 operands!"); - - const MachineOperand &MaskOp = MI->getOperand(MaskIdx); - if (auto *C = getConstantFromPool(*MI, MaskOp)) { - unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); - SmallVector<int, 16> Mask; - DecodeVPERMILPMask(C, ElSize, Width, Mask); - if (!Mask.empty()) - OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask), - !EnablePrintSchedInfo); - } - break; - } - - case X86::VPERMIL2PDrm: - case X86::VPERMIL2PSrm: - case X86::VPERMIL2PDYrm: - case X86::VPERMIL2PSYrm: { - if (!OutStreamer->isVerboseAsm()) - break; - assert(MI->getNumOperands() >= 8 && - "We should always have at least 8 operands!"); - - const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1); - if (!CtrlOp.isImm()) - break; - - unsigned ElSize; - switch (MI->getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break; - case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break; - } - - const MachineOperand &MaskOp = MI->getOperand(6); - if (auto *C = getConstantFromPool(*MI, MaskOp)) { - unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); - SmallVector<int, 16> Mask; - DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask); - if (!Mask.empty()) - OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask), - !EnablePrintSchedInfo); - } - break; - } - - case X86::VPPERMrrm: { - if (!OutStreamer->isVerboseAsm()) - break; - assert(MI->getNumOperands() >= 7 && - "We should always have at least 7 operands!"); - - const MachineOperand &MaskOp = MI->getOperand(6); - if (auto *C = getConstantFromPool(*MI, MaskOp)) { - unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); - SmallVector<int, 16> Mask; - DecodeVPPERMMask(C, Width, Mask); - if (!Mask.empty()) - OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask), - !EnablePrintSchedInfo); - } - break; - } - - case X86::MMX_MOVQ64rm: { - if (!OutStreamer->isVerboseAsm()) - break; - if (MI->getNumOperands() <= 4) - break; - if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) { - std::string Comment; - raw_string_ostream CS(Comment); - const MachineOperand &DstOp = MI->getOperand(0); - CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; - if (auto *CF = dyn_cast<ConstantFP>(C)) { - CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false); - OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); - } - } - break; - } - -#define MOV_CASE(Prefix, Suffix) \ - case X86::Prefix##MOVAPD##Suffix##rm: \ - case X86::Prefix##MOVAPS##Suffix##rm: \ - case X86::Prefix##MOVUPD##Suffix##rm: \ - case X86::Prefix##MOVUPS##Suffix##rm: \ - case X86::Prefix##MOVDQA##Suffix##rm: \ - case X86::Prefix##MOVDQU##Suffix##rm: - -#define MOV_AVX512_CASE(Suffix) \ - case X86::VMOVDQA64##Suffix##rm: \ - case X86::VMOVDQA32##Suffix##rm: \ - case X86::VMOVDQU64##Suffix##rm: \ - case X86::VMOVDQU32##Suffix##rm: \ - case X86::VMOVDQU16##Suffix##rm: \ - case X86::VMOVDQU8##Suffix##rm: \ - case X86::VMOVAPS##Suffix##rm: \ - case X86::VMOVAPD##Suffix##rm: \ - case X86::VMOVUPS##Suffix##rm: \ - case X86::VMOVUPD##Suffix##rm: - -#define CASE_ALL_MOV_RM() \ - MOV_CASE(, ) /* SSE */ \ - MOV_CASE(V, ) /* AVX-128 */ \ - MOV_CASE(V, Y) /* AVX-256 */ \ - MOV_AVX512_CASE(Z) \ - MOV_AVX512_CASE(Z256) \ - MOV_AVX512_CASE(Z128) - - // For loads from a constant pool to a vector register, print the constant - // loaded. - CASE_ALL_MOV_RM() - case X86::VBROADCASTF128: - case X86::VBROADCASTI128: - case X86::VBROADCASTF32X4Z256rm: - case X86::VBROADCASTF32X4rm: - case X86::VBROADCASTF32X8rm: - case X86::VBROADCASTF64X2Z128rm: - case X86::VBROADCASTF64X2rm: - case X86::VBROADCASTF64X4rm: - case X86::VBROADCASTI32X4Z256rm: - case X86::VBROADCASTI32X4rm: - case X86::VBROADCASTI32X8rm: - case X86::VBROADCASTI64X2Z128rm: - case X86::VBROADCASTI64X2rm: - case X86::VBROADCASTI64X4rm: - if (!OutStreamer->isVerboseAsm()) - break; - if (MI->getNumOperands() <= 4) - break; - if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) { - int NumLanes = 1; - // Override NumLanes for the broadcast instructions. - switch (MI->getOpcode()) { - case X86::VBROADCASTF128: NumLanes = 2; break; - case X86::VBROADCASTI128: NumLanes = 2; break; - case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break; - case X86::VBROADCASTF32X4rm: NumLanes = 4; break; - case X86::VBROADCASTF32X8rm: NumLanes = 2; break; - case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break; - case X86::VBROADCASTF64X2rm: NumLanes = 4; break; - case X86::VBROADCASTF64X4rm: NumLanes = 2; break; - case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break; - case X86::VBROADCASTI32X4rm: NumLanes = 4; break; - case X86::VBROADCASTI32X8rm: NumLanes = 2; break; - case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break; - case X86::VBROADCASTI64X2rm: NumLanes = 4; break; - case X86::VBROADCASTI64X4rm: NumLanes = 2; break; - } - - std::string Comment; - raw_string_ostream CS(Comment); - const MachineOperand &DstOp = MI->getOperand(0); - CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; - if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { - CS << "["; - for (int l = 0; l != NumLanes; ++l) { - for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; - ++i) { - if (i != 0 || l != 0) - CS << ","; - if (CDS->getElementType()->isIntegerTy()) - printConstant(CDS->getElementAsAPInt(i), CS); - else if (CDS->getElementType()->isHalfTy() || - CDS->getElementType()->isFloatTy() || - CDS->getElementType()->isDoubleTy()) - printConstant(CDS->getElementAsAPFloat(i), CS); - else - CS << "?"; - } - } - CS << "]"; - OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); - } else if (auto *CV = dyn_cast<ConstantVector>(C)) { - CS << "<"; - for (int l = 0; l != NumLanes; ++l) { - for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; - ++i) { - if (i != 0 || l != 0) - CS << ","; - printConstant(CV->getOperand(i), CS); - } - } - CS << ">"; - OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); - } - } - break; - case X86::MOVDDUPrm: - case X86::VMOVDDUPrm: - case X86::VMOVDDUPZ128rm: - case X86::VBROADCASTSSrm: - case X86::VBROADCASTSSYrm: - case X86::VBROADCASTSSZ128m: - case X86::VBROADCASTSSZ256m: - case X86::VBROADCASTSSZm: - case X86::VBROADCASTSDYrm: - case X86::VBROADCASTSDZ256m: - case X86::VBROADCASTSDZm: - case X86::VPBROADCASTBrm: - case X86::VPBROADCASTBYrm: - case X86::VPBROADCASTBZ128m: - case X86::VPBROADCASTBZ256m: - case X86::VPBROADCASTBZm: - case X86::VPBROADCASTDrm: - case X86::VPBROADCASTDYrm: - case X86::VPBROADCASTDZ128m: - case X86::VPBROADCASTDZ256m: - case X86::VPBROADCASTDZm: - case X86::VPBROADCASTQrm: - case X86::VPBROADCASTQYrm: - case X86::VPBROADCASTQZ128m: - case X86::VPBROADCASTQZ256m: - case X86::VPBROADCASTQZm: - case X86::VPBROADCASTWrm: - case X86::VPBROADCASTWYrm: - case X86::VPBROADCASTWZ128m: - case X86::VPBROADCASTWZ256m: - case X86::VPBROADCASTWZm: - if (!OutStreamer->isVerboseAsm()) - break; - if (MI->getNumOperands() <= 4) - break; - if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) { - int NumElts; - switch (MI->getOpcode()) { - default: llvm_unreachable("Invalid opcode"); - case X86::MOVDDUPrm: NumElts = 2; break; - case X86::VMOVDDUPrm: NumElts = 2; break; - case X86::VMOVDDUPZ128rm: NumElts = 2; break; - case X86::VBROADCASTSSrm: NumElts = 4; break; - case X86::VBROADCASTSSYrm: NumElts = 8; break; - case X86::VBROADCASTSSZ128m: NumElts = 4; break; - case X86::VBROADCASTSSZ256m: NumElts = 8; break; - case X86::VBROADCASTSSZm: NumElts = 16; break; - case X86::VBROADCASTSDYrm: NumElts = 4; break; - case X86::VBROADCASTSDZ256m: NumElts = 4; break; - case X86::VBROADCASTSDZm: NumElts = 8; break; - case X86::VPBROADCASTBrm: NumElts = 16; break; - case X86::VPBROADCASTBYrm: NumElts = 32; break; - case X86::VPBROADCASTBZ128m: NumElts = 16; break; - case X86::VPBROADCASTBZ256m: NumElts = 32; break; - case X86::VPBROADCASTBZm: NumElts = 64; break; - case X86::VPBROADCASTDrm: NumElts = 4; break; - case X86::VPBROADCASTDYrm: NumElts = 8; break; - case X86::VPBROADCASTDZ128m: NumElts = 4; break; - case X86::VPBROADCASTDZ256m: NumElts = 8; break; - case X86::VPBROADCASTDZm: NumElts = 16; break; - case X86::VPBROADCASTQrm: NumElts = 2; break; - case X86::VPBROADCASTQYrm: NumElts = 4; break; - case X86::VPBROADCASTQZ128m: NumElts = 2; break; - case X86::VPBROADCASTQZ256m: NumElts = 4; break; - case X86::VPBROADCASTQZm: NumElts = 8; break; - case X86::VPBROADCASTWrm: NumElts = 8; break; - case X86::VPBROADCASTWYrm: NumElts = 16; break; - case X86::VPBROADCASTWZ128m: NumElts = 8; break; - case X86::VPBROADCASTWZ256m: NumElts = 16; break; - case X86::VPBROADCASTWZm: NumElts = 32; break; - } - - std::string Comment; - raw_string_ostream CS(Comment); - const MachineOperand &DstOp = MI->getOperand(0); - CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; - CS << "["; - for (int i = 0; i != NumElts; ++i) { - if (i != 0) - CS << ","; - printConstant(C, CS); - } - CS << "]"; - OutStreamer->AddComment(CS.str(), !EnablePrintSchedInfo); - } - } - - MCInst TmpInst; - MCInstLowering.Lower(MI, TmpInst); - if (MI->getAsmPrinterFlag(MachineInstr::NoSchedComment)) - TmpInst.setFlags(TmpInst.getFlags() | X86::NO_SCHED_INFO); - - // Stackmap shadows cannot include branch targets, so we can count the bytes - // in a call towards the shadow, but must ensure that the no thread returns - // in to the stackmap shadow. The only way to achieve this is if the call - // is at the end of the shadow. - if (MI->isCall()) { - // Count then size of the call towards the shadow - SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get()); - // Then flush the shadow so that we fill with nops before the call, not - // after it. - SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); - // Then emit the call - OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo()); - return; - } - - EmitAndCountInstruction(TmpInst); -} - -/// Emit Trap bytes to the specified power of two alignment -void X86AsmPrinter::EmitTrapToAlignment(unsigned NumBits) const { - if (NumBits == 0) return; - OutStreamer->EmitValueToAlignment(1u << NumBits, 0xCC, 1); -} |
