diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp | 709 |
1 files changed, 0 insertions, 709 deletions
diff --git a/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp deleted file mode 100644 index b56d02b6bfb..00000000000 --- a/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp +++ /dev/null @@ -1,709 +0,0 @@ -//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the pass that performs some optimizations with LEA -// instructions in order to improve performance and code size. -// Currently, it does two things: -// 1) If there are two LEA instructions calculating addresses which only differ -// by displacement inside a basic block, one of them is removed. -// 2) Address calculations in load and store instructions are replaced by -// existing LEA def registers where possible. -// -//===----------------------------------------------------------------------===// - -#include "MCTargetDesc/X86BaseInfo.h" -#include "X86.h" -#include "X86InstrInfo.h" -#include "X86Subtarget.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetOpcodes.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Function.h" -#include "llvm/MC/MCInstrDesc.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <cassert> -#include <cstdint> -#include <iterator> - -using namespace llvm; - -#define DEBUG_TYPE "x86-optimize-LEAs" - -static cl::opt<bool> - DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, - cl::desc("X86: Disable LEA optimizations."), - cl::init(false)); - -STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); -STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); - -/// Returns true if two machine operands are identical and they are not -/// physical registers. -static inline bool isIdenticalOp(const MachineOperand &MO1, - const MachineOperand &MO2); - -/// Returns true if two address displacement operands are of the same -/// type and use the same symbol/index/address regardless of the offset. -static bool isSimilarDispOp(const MachineOperand &MO1, - const MachineOperand &MO2); - -/// Returns true if the instruction is LEA. -static inline bool isLEA(const MachineInstr &MI); - -namespace { - -/// A key based on instruction's memory operands. -class MemOpKey { -public: - MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, - const MachineOperand *Index, const MachineOperand *Segment, - const MachineOperand *Disp) - : Disp(Disp) { - Operands[0] = Base; - Operands[1] = Scale; - Operands[2] = Index; - Operands[3] = Segment; - } - - bool operator==(const MemOpKey &Other) const { - // Addresses' bases, scales, indices and segments must be identical. - for (int i = 0; i < 4; ++i) - if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) - return false; - - // Addresses' displacements don't have to be exactly the same. It only - // matters that they use the same symbol/index/address. Immediates' or - // offsets' differences will be taken care of during instruction - // substitution. - return isSimilarDispOp(*Disp, *Other.Disp); - } - - // Address' base, scale, index and segment operands. - const MachineOperand *Operands[4]; - - // Address' displacement operand. - const MachineOperand *Disp; -}; - -} // end anonymous namespace - -/// Provide DenseMapInfo for MemOpKey. -namespace llvm { - -template <> struct DenseMapInfo<MemOpKey> { - using PtrInfo = DenseMapInfo<const MachineOperand *>; - - static inline MemOpKey getEmptyKey() { - return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), - PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), - PtrInfo::getEmptyKey()); - } - - static inline MemOpKey getTombstoneKey() { - return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), - PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), - PtrInfo::getTombstoneKey()); - } - - static unsigned getHashValue(const MemOpKey &Val) { - // Checking any field of MemOpKey is enough to determine if the key is - // empty or tombstone. - assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); - assert(Val.Disp != PtrInfo::getTombstoneKey() && - "Cannot hash the tombstone key"); - - hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], - *Val.Operands[2], *Val.Operands[3]); - - // If the address displacement is an immediate, it should not affect the - // hash so that memory operands which differ only be immediate displacement - // would have the same hash. If the address displacement is something else, - // we should reflect symbol/index/address in the hash. - switch (Val.Disp->getType()) { - case MachineOperand::MO_Immediate: - break; - case MachineOperand::MO_ConstantPoolIndex: - case MachineOperand::MO_JumpTableIndex: - Hash = hash_combine(Hash, Val.Disp->getIndex()); - break; - case MachineOperand::MO_ExternalSymbol: - Hash = hash_combine(Hash, Val.Disp->getSymbolName()); - break; - case MachineOperand::MO_GlobalAddress: - Hash = hash_combine(Hash, Val.Disp->getGlobal()); - break; - case MachineOperand::MO_BlockAddress: - Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); - break; - case MachineOperand::MO_MCSymbol: - Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); - break; - case MachineOperand::MO_MachineBasicBlock: - Hash = hash_combine(Hash, Val.Disp->getMBB()); - break; - default: - llvm_unreachable("Invalid address displacement operand"); - } - - return (unsigned)Hash; - } - - static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { - // Checking any field of MemOpKey is enough to determine if the key is - // empty or tombstone. - if (RHS.Disp == PtrInfo::getEmptyKey()) - return LHS.Disp == PtrInfo::getEmptyKey(); - if (RHS.Disp == PtrInfo::getTombstoneKey()) - return LHS.Disp == PtrInfo::getTombstoneKey(); - return LHS == RHS; - } -}; - -} // end namespace llvm - -/// Returns a hash table key based on memory operands of \p MI. The -/// number of the first memory operand of \p MI is specified through \p N. -static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { - assert((isLEA(MI) || MI.mayLoadOrStore()) && - "The instruction must be a LEA, a load or a store"); - return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), - &MI.getOperand(N + X86::AddrScaleAmt), - &MI.getOperand(N + X86::AddrIndexReg), - &MI.getOperand(N + X86::AddrSegmentReg), - &MI.getOperand(N + X86::AddrDisp)); -} - -static inline bool isIdenticalOp(const MachineOperand &MO1, - const MachineOperand &MO2) { - return MO1.isIdenticalTo(MO2) && - (!MO1.isReg() || - !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); -} - -#ifndef NDEBUG -static bool isValidDispOp(const MachineOperand &MO) { - return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || - MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); -} -#endif - -static bool isSimilarDispOp(const MachineOperand &MO1, - const MachineOperand &MO2) { - assert(isValidDispOp(MO1) && isValidDispOp(MO2) && - "Address displacement operand is not valid"); - return (MO1.isImm() && MO2.isImm()) || - (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || - (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || - (MO1.isSymbol() && MO2.isSymbol() && - MO1.getSymbolName() == MO2.getSymbolName()) || - (MO1.isGlobal() && MO2.isGlobal() && - MO1.getGlobal() == MO2.getGlobal()) || - (MO1.isBlockAddress() && MO2.isBlockAddress() && - MO1.getBlockAddress() == MO2.getBlockAddress()) || - (MO1.isMCSymbol() && MO2.isMCSymbol() && - MO1.getMCSymbol() == MO2.getMCSymbol()) || - (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); -} - -static inline bool isLEA(const MachineInstr &MI) { - unsigned Opcode = MI.getOpcode(); - return Opcode == X86::LEA16r || Opcode == X86::LEA32r || - Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; -} - -namespace { - -class OptimizeLEAPass : public MachineFunctionPass { -public: - OptimizeLEAPass() : MachineFunctionPass(ID) {} - - StringRef getPassName() const override { return "X86 LEA Optimize"; } - - /// Loop over all of the basic blocks, replacing address - /// calculations in load and store instructions, if it's already - /// been calculated by LEA. Also, remove redundant LEAs. - bool runOnMachineFunction(MachineFunction &MF) override; - -private: - using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>; - - /// Returns a distance between two instructions inside one basic block. - /// Negative result means, that instructions occur in reverse order. - int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); - - /// Choose the best \p LEA instruction from the \p List to replace - /// address calculation in \p MI instruction. Return the address displacement - /// and the distance between \p MI and the chosen \p BestLEA in - /// \p AddrDispShift and \p Dist. - bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, - const MachineInstr &MI, MachineInstr *&BestLEA, - int64_t &AddrDispShift, int &Dist); - - /// Returns the difference between addresses' displacements of \p MI1 - /// and \p MI2. The numbers of the first memory operands for the instructions - /// are specified through \p N1 and \p N2. - int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, - const MachineInstr &MI2, unsigned N2) const; - - /// Returns true if the \p Last LEA instruction can be replaced by the - /// \p First. The difference between displacements of the addresses calculated - /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper - /// replacement of the \p Last LEA's uses with the \p First's def register. - bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, - int64_t &AddrDispShift) const; - - /// Find all LEA instructions in the basic block. Also, assign position - /// numbers to all instructions in the basic block to speed up calculation of - /// distance between them. - void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); - - /// Removes redundant address calculations. - bool removeRedundantAddrCalc(MemOpMap &LEAs); - - /// Replace debug value MI with a new debug value instruction using register - /// VReg with an appropriate offset and DIExpression to incorporate the - /// address displacement AddrDispShift. Return new debug value instruction. - MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg, - int64_t AddrDispShift); - - /// Removes LEAs which calculate similar addresses. - bool removeRedundantLEAs(MemOpMap &LEAs); - - DenseMap<const MachineInstr *, unsigned> InstrPos; - - MachineRegisterInfo *MRI; - const X86InstrInfo *TII; - const X86RegisterInfo *TRI; - - static char ID; -}; - -} // end anonymous namespace - -char OptimizeLEAPass::ID = 0; - -FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } - -int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, - const MachineInstr &Last) { - // Both instructions must be in the same basic block and they must be - // presented in InstrPos. - assert(Last.getParent() == First.getParent() && - "Instructions are in different basic blocks"); - assert(InstrPos.find(&First) != InstrPos.end() && - InstrPos.find(&Last) != InstrPos.end() && - "Instructions' positions are undefined"); - - return InstrPos[&Last] - InstrPos[&First]; -} - -// Find the best LEA instruction in the List to replace address recalculation in -// MI. Such LEA must meet these requirements: -// 1) The address calculated by the LEA differs only by the displacement from -// the address used in MI. -// 2) The register class of the definition of the LEA is compatible with the -// register class of the address base register of MI. -// 3) Displacement of the new memory operand should fit in 1 byte if possible. -// 4) The LEA should be as close to MI as possible, and prior to it if -// possible. -bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, - const MachineInstr &MI, - MachineInstr *&BestLEA, - int64_t &AddrDispShift, int &Dist) { - const MachineFunction *MF = MI.getParent()->getParent(); - const MCInstrDesc &Desc = MI.getDesc(); - int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + - X86II::getOperandBias(Desc); - - BestLEA = nullptr; - - // Loop over all LEA instructions. - for (auto DefMI : List) { - // Get new address displacement. - int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); - - // Make sure address displacement fits 4 bytes. - if (!isInt<32>(AddrDispShiftTemp)) - continue; - - // Check that LEA def register can be used as MI address base. Some - // instructions can use a limited set of registers as address base, for - // example MOV8mr_NOREX. We could constrain the register class of the LEA - // def to suit MI, however since this case is very rare and hard to - // reproduce in a test it's just more reliable to skip the LEA. - if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != - MRI->getRegClass(DefMI->getOperand(0).getReg())) - continue; - - // Choose the closest LEA instruction from the list, prior to MI if - // possible. Note that we took into account resulting address displacement - // as well. Also note that the list is sorted by the order in which the LEAs - // occur, so the break condition is pretty simple. - int DistTemp = calcInstrDist(*DefMI, MI); - assert(DistTemp != 0 && - "The distance between two different instructions cannot be zero"); - if (DistTemp > 0 || BestLEA == nullptr) { - // Do not update return LEA, if the current one provides a displacement - // which fits in 1 byte, while the new candidate does not. - if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && - isInt<8>(AddrDispShift)) - continue; - - BestLEA = DefMI; - AddrDispShift = AddrDispShiftTemp; - Dist = DistTemp; - } - - // FIXME: Maybe we should not always stop at the first LEA after MI. - if (DistTemp < 0) - break; - } - - return BestLEA != nullptr; -} - -// Get the difference between the addresses' displacements of the two -// instructions \p MI1 and \p MI2. The numbers of the first memory operands are -// passed through \p N1 and \p N2. -int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1, - const MachineInstr &MI2, - unsigned N2) const { - const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); - const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); - - assert(isSimilarDispOp(Op1, Op2) && - "Address displacement operands are not compatible"); - - // After the assert above we can be sure that both operands are of the same - // valid type and use the same symbol/index/address, thus displacement shift - // calculation is rather simple. - if (Op1.isJTI()) - return 0; - return Op1.isImm() ? Op1.getImm() - Op2.getImm() - : Op1.getOffset() - Op2.getOffset(); -} - -// Check that the Last LEA can be replaced by the First LEA. To be so, -// these requirements must be met: -// 1) Addresses calculated by LEAs differ only by displacement. -// 2) Def registers of LEAs belong to the same class. -// 3) All uses of the Last LEA def register are replaceable, thus the -// register is used only as address base. -bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, - const MachineInstr &Last, - int64_t &AddrDispShift) const { - assert(isLEA(First) && isLEA(Last) && - "The function works only with LEA instructions"); - - // Make sure that LEA def registers belong to the same class. There may be - // instructions (like MOV8mr_NOREX) which allow a limited set of registers to - // be used as their operands, so we must be sure that replacing one LEA - // with another won't lead to putting a wrong register in the instruction. - if (MRI->getRegClass(First.getOperand(0).getReg()) != - MRI->getRegClass(Last.getOperand(0).getReg())) - return false; - - // Get new address displacement. - AddrDispShift = getAddrDispShift(Last, 1, First, 1); - - // Loop over all uses of the Last LEA to check that its def register is - // used only as address base for memory accesses. If so, it can be - // replaced, otherwise - no. - for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) { - MachineInstr &MI = *MO.getParent(); - - // Get the number of the first memory operand. - const MCInstrDesc &Desc = MI.getDesc(); - int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); - - // If the use instruction has no memory operand - the LEA is not - // replaceable. - if (MemOpNo < 0) - return false; - - MemOpNo += X86II::getOperandBias(Desc); - - // If the address base of the use instruction is not the LEA def register - - // the LEA is not replaceable. - if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) - return false; - - // If the LEA def register is used as any other operand of the use - // instruction - the LEA is not replaceable. - for (unsigned i = 0; i < MI.getNumOperands(); i++) - if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && - isIdenticalOp(MI.getOperand(i), MO)) - return false; - - // Check that the new address displacement will fit 4 bytes. - if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && - !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + - AddrDispShift)) - return false; - } - - return true; -} - -void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) { - unsigned Pos = 0; - for (auto &MI : MBB) { - // Assign the position number to the instruction. Note that we are going to - // move some instructions during the optimization however there will never - // be a need to move two instructions before any selected instruction. So to - // avoid multiple positions' updates during moves we just increase position - // counter by two leaving a free space for instructions which will be moved. - InstrPos[&MI] = Pos += 2; - - if (isLEA(MI)) - LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); - } -} - -// Try to find load and store instructions which recalculate addresses already -// calculated by some LEA and replace their memory operands with its def -// register. -bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { - bool Changed = false; - - assert(!LEAs.empty()); - MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); - - // Process all instructions in basic block. - for (auto I = MBB->begin(), E = MBB->end(); I != E;) { - MachineInstr &MI = *I++; - - // Instruction must be load or store. - if (!MI.mayLoadOrStore()) - continue; - - // Get the number of the first memory operand. - const MCInstrDesc &Desc = MI.getDesc(); - int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); - - // If instruction has no memory operand - skip it. - if (MemOpNo < 0) - continue; - - MemOpNo += X86II::getOperandBias(Desc); - - // Do not call chooseBestLEA if there was no matching LEA - auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo)); - if (Insns == LEAs.end()) - continue; - - // Get the best LEA instruction to replace address calculation. - MachineInstr *DefMI; - int64_t AddrDispShift; - int Dist; - if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist)) - continue; - - // If LEA occurs before current instruction, we can freely replace - // the instruction. If LEA occurs after, we can lift LEA above the - // instruction and this way to be able to replace it. Since LEA and the - // instruction have similar memory operands (thus, the same def - // instructions for these operands), we can always do that, without - // worries of using registers before their defs. - if (Dist < 0) { - DefMI->removeFromParent(); - MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); - InstrPos[DefMI] = InstrPos[&MI] - 1; - - // Make sure the instructions' position numbers are sane. - assert(((InstrPos[DefMI] == 1 && - MachineBasicBlock::iterator(DefMI) == MBB->begin()) || - InstrPos[DefMI] > - InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && - "Instruction positioning is broken"); - } - - // Since we can possibly extend register lifetime, clear kill flags. - MRI->clearKillFlags(DefMI->getOperand(0).getReg()); - - ++NumSubstLEAs; - LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); - - // Change instruction operands. - MI.getOperand(MemOpNo + X86::AddrBaseReg) - .ChangeToRegister(DefMI->getOperand(0).getReg(), false); - MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); - MI.getOperand(MemOpNo + X86::AddrIndexReg) - .ChangeToRegister(X86::NoRegister, false); - MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); - MI.getOperand(MemOpNo + X86::AddrSegmentReg) - .ChangeToRegister(X86::NoRegister, false); - - LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); - - Changed = true; - } - - return Changed; -} - -MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI, - unsigned VReg, - int64_t AddrDispShift) { - DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression()); - - if (AddrDispShift != 0) - Expr = DIExpression::prepend(Expr, DIExpression::NoDeref, AddrDispShift, - DIExpression::NoDeref, - DIExpression::WithStackValue); - - // Replace DBG_VALUE instruction with modified version. - MachineBasicBlock *MBB = MI.getParent(); - DebugLoc DL = MI.getDebugLoc(); - bool IsIndirect = MI.isIndirectDebugValue(); - const MDNode *Var = MI.getDebugVariable(); - if (IsIndirect) - assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); - return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE), - IsIndirect, VReg, Var, Expr); -} - -// Try to find similar LEAs in the list and replace one with another. -bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { - bool Changed = false; - - // Loop over all entries in the table. - for (auto &E : LEAs) { - auto &List = E.second; - - // Loop over all LEA pairs. - auto I1 = List.begin(); - while (I1 != List.end()) { - MachineInstr &First = **I1; - auto I2 = std::next(I1); - while (I2 != List.end()) { - MachineInstr &Last = **I2; - int64_t AddrDispShift; - - // LEAs should be in occurrence order in the list, so we can freely - // replace later LEAs with earlier ones. - assert(calcInstrDist(First, Last) > 0 && - "LEAs must be in occurrence order in the list"); - - // Check that the Last LEA instruction can be replaced by the First. - if (!isReplaceable(First, Last, AddrDispShift)) { - ++I2; - continue; - } - - // Loop over all uses of the Last LEA and update their operands. Note - // that the correctness of this has already been checked in the - // isReplaceable function. - unsigned FirstVReg = First.getOperand(0).getReg(); - unsigned LastVReg = Last.getOperand(0).getReg(); - for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end(); - UI != UE;) { - MachineOperand &MO = *UI++; - MachineInstr &MI = *MO.getParent(); - - if (MI.isDebugValue()) { - // Replace DBG_VALUE instruction with modified version using the - // register from the replacing LEA and the address displacement - // between the LEA instructions. - replaceDebugValue(MI, FirstVReg, AddrDispShift); - continue; - } - - // Get the number of the first memory operand. - const MCInstrDesc &Desc = MI.getDesc(); - int MemOpNo = - X86II::getMemoryOperandNo(Desc.TSFlags) + - X86II::getOperandBias(Desc); - - // Update address base. - MO.setReg(FirstVReg); - - // Update address disp. - MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); - if (Op.isImm()) - Op.setImm(Op.getImm() + AddrDispShift); - else if (!Op.isJTI()) - Op.setOffset(Op.getOffset() + AddrDispShift); - } - - // Since we can possibly extend register lifetime, clear kill flags. - MRI->clearKillFlags(FirstVReg); - - ++NumRedundantLEAs; - LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; - Last.dump();); - - // By this moment, all of the Last LEA's uses must be replaced. So we - // can freely remove it. - assert(MRI->use_empty(LastVReg) && - "The LEA's def register must have no uses"); - Last.eraseFromParent(); - - // Erase removed LEA from the list. - I2 = List.erase(I2); - - Changed = true; - } - ++I1; - } - } - - return Changed; -} - -bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { - bool Changed = false; - - if (DisableX86LEAOpt || skipFunction(MF.getFunction())) - return false; - - MRI = &MF.getRegInfo(); - TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); - TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); - - // Process all basic blocks. - for (auto &MBB : MF) { - MemOpMap LEAs; - InstrPos.clear(); - - // Find all LEA instructions in basic block. - findLEAs(MBB, LEAs); - - // If current basic block has no LEAs, move on to the next one. - if (LEAs.empty()) - continue; - - // Remove redundant LEA instructions. - Changed |= removeRedundantLEAs(LEAs); - - // Remove redundant address calculations. Do it only for -Os/-Oz since only - // a code size gain is expected from this part of the pass. - if (MF.getFunction().optForSize()) - Changed |= removeRedundantAddrCalc(LEAs); - } - - return Changed; -} |
