summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
-rw-r--r--gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp709
1 files changed, 0 insertions, 709 deletions
diff --git a/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
deleted file mode 100644
index b56d02b6bfb..00000000000
--- a/gnu/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
+++ /dev/null
@@ -1,709 +0,0 @@
-//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the pass that performs some optimizations with LEA
-// instructions in order to improve performance and code size.
-// Currently, it does two things:
-// 1) If there are two LEA instructions calculating addresses which only differ
-// by displacement inside a basic block, one of them is removed.
-// 2) Address calculations in load and store instructions are replaced by
-// existing LEA def registers where possible.
-//
-//===----------------------------------------------------------------------===//
-
-#include "MCTargetDesc/X86BaseInfo.h"
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86Subtarget.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/TargetOpcodes.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/Function.h"
-#include "llvm/MC/MCInstrDesc.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "x86-optimize-LEAs"
-
-static cl::opt<bool>
- DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
- cl::desc("X86: Disable LEA optimizations."),
- cl::init(false));
-
-STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
-STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
-
-/// Returns true if two machine operands are identical and they are not
-/// physical registers.
-static inline bool isIdenticalOp(const MachineOperand &MO1,
- const MachineOperand &MO2);
-
-/// Returns true if two address displacement operands are of the same
-/// type and use the same symbol/index/address regardless of the offset.
-static bool isSimilarDispOp(const MachineOperand &MO1,
- const MachineOperand &MO2);
-
-/// Returns true if the instruction is LEA.
-static inline bool isLEA(const MachineInstr &MI);
-
-namespace {
-
-/// A key based on instruction's memory operands.
-class MemOpKey {
-public:
- MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
- const MachineOperand *Index, const MachineOperand *Segment,
- const MachineOperand *Disp)
- : Disp(Disp) {
- Operands[0] = Base;
- Operands[1] = Scale;
- Operands[2] = Index;
- Operands[3] = Segment;
- }
-
- bool operator==(const MemOpKey &Other) const {
- // Addresses' bases, scales, indices and segments must be identical.
- for (int i = 0; i < 4; ++i)
- if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
- return false;
-
- // Addresses' displacements don't have to be exactly the same. It only
- // matters that they use the same symbol/index/address. Immediates' or
- // offsets' differences will be taken care of during instruction
- // substitution.
- return isSimilarDispOp(*Disp, *Other.Disp);
- }
-
- // Address' base, scale, index and segment operands.
- const MachineOperand *Operands[4];
-
- // Address' displacement operand.
- const MachineOperand *Disp;
-};
-
-} // end anonymous namespace
-
-/// Provide DenseMapInfo for MemOpKey.
-namespace llvm {
-
-template <> struct DenseMapInfo<MemOpKey> {
- using PtrInfo = DenseMapInfo<const MachineOperand *>;
-
- static inline MemOpKey getEmptyKey() {
- return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
- PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
- PtrInfo::getEmptyKey());
- }
-
- static inline MemOpKey getTombstoneKey() {
- return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
- PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
- PtrInfo::getTombstoneKey());
- }
-
- static unsigned getHashValue(const MemOpKey &Val) {
- // Checking any field of MemOpKey is enough to determine if the key is
- // empty or tombstone.
- assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
- assert(Val.Disp != PtrInfo::getTombstoneKey() &&
- "Cannot hash the tombstone key");
-
- hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
- *Val.Operands[2], *Val.Operands[3]);
-
- // If the address displacement is an immediate, it should not affect the
- // hash so that memory operands which differ only be immediate displacement
- // would have the same hash. If the address displacement is something else,
- // we should reflect symbol/index/address in the hash.
- switch (Val.Disp->getType()) {
- case MachineOperand::MO_Immediate:
- break;
- case MachineOperand::MO_ConstantPoolIndex:
- case MachineOperand::MO_JumpTableIndex:
- Hash = hash_combine(Hash, Val.Disp->getIndex());
- break;
- case MachineOperand::MO_ExternalSymbol:
- Hash = hash_combine(Hash, Val.Disp->getSymbolName());
- break;
- case MachineOperand::MO_GlobalAddress:
- Hash = hash_combine(Hash, Val.Disp->getGlobal());
- break;
- case MachineOperand::MO_BlockAddress:
- Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
- break;
- case MachineOperand::MO_MCSymbol:
- Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
- break;
- case MachineOperand::MO_MachineBasicBlock:
- Hash = hash_combine(Hash, Val.Disp->getMBB());
- break;
- default:
- llvm_unreachable("Invalid address displacement operand");
- }
-
- return (unsigned)Hash;
- }
-
- static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
- // Checking any field of MemOpKey is enough to determine if the key is
- // empty or tombstone.
- if (RHS.Disp == PtrInfo::getEmptyKey())
- return LHS.Disp == PtrInfo::getEmptyKey();
- if (RHS.Disp == PtrInfo::getTombstoneKey())
- return LHS.Disp == PtrInfo::getTombstoneKey();
- return LHS == RHS;
- }
-};
-
-} // end namespace llvm
-
-/// Returns a hash table key based on memory operands of \p MI. The
-/// number of the first memory operand of \p MI is specified through \p N.
-static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
- assert((isLEA(MI) || MI.mayLoadOrStore()) &&
- "The instruction must be a LEA, a load or a store");
- return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
- &MI.getOperand(N + X86::AddrScaleAmt),
- &MI.getOperand(N + X86::AddrIndexReg),
- &MI.getOperand(N + X86::AddrSegmentReg),
- &MI.getOperand(N + X86::AddrDisp));
-}
-
-static inline bool isIdenticalOp(const MachineOperand &MO1,
- const MachineOperand &MO2) {
- return MO1.isIdenticalTo(MO2) &&
- (!MO1.isReg() ||
- !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
-}
-
-#ifndef NDEBUG
-static bool isValidDispOp(const MachineOperand &MO) {
- return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
- MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
-}
-#endif
-
-static bool isSimilarDispOp(const MachineOperand &MO1,
- const MachineOperand &MO2) {
- assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
- "Address displacement operand is not valid");
- return (MO1.isImm() && MO2.isImm()) ||
- (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
- (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
- (MO1.isSymbol() && MO2.isSymbol() &&
- MO1.getSymbolName() == MO2.getSymbolName()) ||
- (MO1.isGlobal() && MO2.isGlobal() &&
- MO1.getGlobal() == MO2.getGlobal()) ||
- (MO1.isBlockAddress() && MO2.isBlockAddress() &&
- MO1.getBlockAddress() == MO2.getBlockAddress()) ||
- (MO1.isMCSymbol() && MO2.isMCSymbol() &&
- MO1.getMCSymbol() == MO2.getMCSymbol()) ||
- (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
-}
-
-static inline bool isLEA(const MachineInstr &MI) {
- unsigned Opcode = MI.getOpcode();
- return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
- Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
-}
-
-namespace {
-
-class OptimizeLEAPass : public MachineFunctionPass {
-public:
- OptimizeLEAPass() : MachineFunctionPass(ID) {}
-
- StringRef getPassName() const override { return "X86 LEA Optimize"; }
-
- /// Loop over all of the basic blocks, replacing address
- /// calculations in load and store instructions, if it's already
- /// been calculated by LEA. Also, remove redundant LEAs.
- bool runOnMachineFunction(MachineFunction &MF) override;
-
-private:
- using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
-
- /// Returns a distance between two instructions inside one basic block.
- /// Negative result means, that instructions occur in reverse order.
- int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
-
- /// Choose the best \p LEA instruction from the \p List to replace
- /// address calculation in \p MI instruction. Return the address displacement
- /// and the distance between \p MI and the chosen \p BestLEA in
- /// \p AddrDispShift and \p Dist.
- bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
- const MachineInstr &MI, MachineInstr *&BestLEA,
- int64_t &AddrDispShift, int &Dist);
-
- /// Returns the difference between addresses' displacements of \p MI1
- /// and \p MI2. The numbers of the first memory operands for the instructions
- /// are specified through \p N1 and \p N2.
- int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
- const MachineInstr &MI2, unsigned N2) const;
-
- /// Returns true if the \p Last LEA instruction can be replaced by the
- /// \p First. The difference between displacements of the addresses calculated
- /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
- /// replacement of the \p Last LEA's uses with the \p First's def register.
- bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
- int64_t &AddrDispShift) const;
-
- /// Find all LEA instructions in the basic block. Also, assign position
- /// numbers to all instructions in the basic block to speed up calculation of
- /// distance between them.
- void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
-
- /// Removes redundant address calculations.
- bool removeRedundantAddrCalc(MemOpMap &LEAs);
-
- /// Replace debug value MI with a new debug value instruction using register
- /// VReg with an appropriate offset and DIExpression to incorporate the
- /// address displacement AddrDispShift. Return new debug value instruction.
- MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
- int64_t AddrDispShift);
-
- /// Removes LEAs which calculate similar addresses.
- bool removeRedundantLEAs(MemOpMap &LEAs);
-
- DenseMap<const MachineInstr *, unsigned> InstrPos;
-
- MachineRegisterInfo *MRI;
- const X86InstrInfo *TII;
- const X86RegisterInfo *TRI;
-
- static char ID;
-};
-
-} // end anonymous namespace
-
-char OptimizeLEAPass::ID = 0;
-
-FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
-
-int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
- const MachineInstr &Last) {
- // Both instructions must be in the same basic block and they must be
- // presented in InstrPos.
- assert(Last.getParent() == First.getParent() &&
- "Instructions are in different basic blocks");
- assert(InstrPos.find(&First) != InstrPos.end() &&
- InstrPos.find(&Last) != InstrPos.end() &&
- "Instructions' positions are undefined");
-
- return InstrPos[&Last] - InstrPos[&First];
-}
-
-// Find the best LEA instruction in the List to replace address recalculation in
-// MI. Such LEA must meet these requirements:
-// 1) The address calculated by the LEA differs only by the displacement from
-// the address used in MI.
-// 2) The register class of the definition of the LEA is compatible with the
-// register class of the address base register of MI.
-// 3) Displacement of the new memory operand should fit in 1 byte if possible.
-// 4) The LEA should be as close to MI as possible, and prior to it if
-// possible.
-bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
- const MachineInstr &MI,
- MachineInstr *&BestLEA,
- int64_t &AddrDispShift, int &Dist) {
- const MachineFunction *MF = MI.getParent()->getParent();
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
- X86II::getOperandBias(Desc);
-
- BestLEA = nullptr;
-
- // Loop over all LEA instructions.
- for (auto DefMI : List) {
- // Get new address displacement.
- int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
-
- // Make sure address displacement fits 4 bytes.
- if (!isInt<32>(AddrDispShiftTemp))
- continue;
-
- // Check that LEA def register can be used as MI address base. Some
- // instructions can use a limited set of registers as address base, for
- // example MOV8mr_NOREX. We could constrain the register class of the LEA
- // def to suit MI, however since this case is very rare and hard to
- // reproduce in a test it's just more reliable to skip the LEA.
- if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
- MRI->getRegClass(DefMI->getOperand(0).getReg()))
- continue;
-
- // Choose the closest LEA instruction from the list, prior to MI if
- // possible. Note that we took into account resulting address displacement
- // as well. Also note that the list is sorted by the order in which the LEAs
- // occur, so the break condition is pretty simple.
- int DistTemp = calcInstrDist(*DefMI, MI);
- assert(DistTemp != 0 &&
- "The distance between two different instructions cannot be zero");
- if (DistTemp > 0 || BestLEA == nullptr) {
- // Do not update return LEA, if the current one provides a displacement
- // which fits in 1 byte, while the new candidate does not.
- if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
- isInt<8>(AddrDispShift))
- continue;
-
- BestLEA = DefMI;
- AddrDispShift = AddrDispShiftTemp;
- Dist = DistTemp;
- }
-
- // FIXME: Maybe we should not always stop at the first LEA after MI.
- if (DistTemp < 0)
- break;
- }
-
- return BestLEA != nullptr;
-}
-
-// Get the difference between the addresses' displacements of the two
-// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
-// passed through \p N1 and \p N2.
-int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
- const MachineInstr &MI2,
- unsigned N2) const {
- const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
- const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
-
- assert(isSimilarDispOp(Op1, Op2) &&
- "Address displacement operands are not compatible");
-
- // After the assert above we can be sure that both operands are of the same
- // valid type and use the same symbol/index/address, thus displacement shift
- // calculation is rather simple.
- if (Op1.isJTI())
- return 0;
- return Op1.isImm() ? Op1.getImm() - Op2.getImm()
- : Op1.getOffset() - Op2.getOffset();
-}
-
-// Check that the Last LEA can be replaced by the First LEA. To be so,
-// these requirements must be met:
-// 1) Addresses calculated by LEAs differ only by displacement.
-// 2) Def registers of LEAs belong to the same class.
-// 3) All uses of the Last LEA def register are replaceable, thus the
-// register is used only as address base.
-bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
- const MachineInstr &Last,
- int64_t &AddrDispShift) const {
- assert(isLEA(First) && isLEA(Last) &&
- "The function works only with LEA instructions");
-
- // Make sure that LEA def registers belong to the same class. There may be
- // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
- // be used as their operands, so we must be sure that replacing one LEA
- // with another won't lead to putting a wrong register in the instruction.
- if (MRI->getRegClass(First.getOperand(0).getReg()) !=
- MRI->getRegClass(Last.getOperand(0).getReg()))
- return false;
-
- // Get new address displacement.
- AddrDispShift = getAddrDispShift(Last, 1, First, 1);
-
- // Loop over all uses of the Last LEA to check that its def register is
- // used only as address base for memory accesses. If so, it can be
- // replaced, otherwise - no.
- for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
- MachineInstr &MI = *MO.getParent();
-
- // Get the number of the first memory operand.
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
-
- // If the use instruction has no memory operand - the LEA is not
- // replaceable.
- if (MemOpNo < 0)
- return false;
-
- MemOpNo += X86II::getOperandBias(Desc);
-
- // If the address base of the use instruction is not the LEA def register -
- // the LEA is not replaceable.
- if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
- return false;
-
- // If the LEA def register is used as any other operand of the use
- // instruction - the LEA is not replaceable.
- for (unsigned i = 0; i < MI.getNumOperands(); i++)
- if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
- isIdenticalOp(MI.getOperand(i), MO))
- return false;
-
- // Check that the new address displacement will fit 4 bytes.
- if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
- !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
- AddrDispShift))
- return false;
- }
-
- return true;
-}
-
-void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
- unsigned Pos = 0;
- for (auto &MI : MBB) {
- // Assign the position number to the instruction. Note that we are going to
- // move some instructions during the optimization however there will never
- // be a need to move two instructions before any selected instruction. So to
- // avoid multiple positions' updates during moves we just increase position
- // counter by two leaving a free space for instructions which will be moved.
- InstrPos[&MI] = Pos += 2;
-
- if (isLEA(MI))
- LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
- }
-}
-
-// Try to find load and store instructions which recalculate addresses already
-// calculated by some LEA and replace their memory operands with its def
-// register.
-bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
- bool Changed = false;
-
- assert(!LEAs.empty());
- MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
-
- // Process all instructions in basic block.
- for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
- MachineInstr &MI = *I++;
-
- // Instruction must be load or store.
- if (!MI.mayLoadOrStore())
- continue;
-
- // Get the number of the first memory operand.
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
-
- // If instruction has no memory operand - skip it.
- if (MemOpNo < 0)
- continue;
-
- MemOpNo += X86II::getOperandBias(Desc);
-
- // Do not call chooseBestLEA if there was no matching LEA
- auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
- if (Insns == LEAs.end())
- continue;
-
- // Get the best LEA instruction to replace address calculation.
- MachineInstr *DefMI;
- int64_t AddrDispShift;
- int Dist;
- if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
- continue;
-
- // If LEA occurs before current instruction, we can freely replace
- // the instruction. If LEA occurs after, we can lift LEA above the
- // instruction and this way to be able to replace it. Since LEA and the
- // instruction have similar memory operands (thus, the same def
- // instructions for these operands), we can always do that, without
- // worries of using registers before their defs.
- if (Dist < 0) {
- DefMI->removeFromParent();
- MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
- InstrPos[DefMI] = InstrPos[&MI] - 1;
-
- // Make sure the instructions' position numbers are sane.
- assert(((InstrPos[DefMI] == 1 &&
- MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
- InstrPos[DefMI] >
- InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
- "Instruction positioning is broken");
- }
-
- // Since we can possibly extend register lifetime, clear kill flags.
- MRI->clearKillFlags(DefMI->getOperand(0).getReg());
-
- ++NumSubstLEAs;
- LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
-
- // Change instruction operands.
- MI.getOperand(MemOpNo + X86::AddrBaseReg)
- .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
- MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
- MI.getOperand(MemOpNo + X86::AddrIndexReg)
- .ChangeToRegister(X86::NoRegister, false);
- MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
- MI.getOperand(MemOpNo + X86::AddrSegmentReg)
- .ChangeToRegister(X86::NoRegister, false);
-
- LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
-
- Changed = true;
- }
-
- return Changed;
-}
-
-MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
- unsigned VReg,
- int64_t AddrDispShift) {
- DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
-
- if (AddrDispShift != 0)
- Expr = DIExpression::prepend(Expr, DIExpression::NoDeref, AddrDispShift,
- DIExpression::NoDeref,
- DIExpression::WithStackValue);
-
- // Replace DBG_VALUE instruction with modified version.
- MachineBasicBlock *MBB = MI.getParent();
- DebugLoc DL = MI.getDebugLoc();
- bool IsIndirect = MI.isIndirectDebugValue();
- const MDNode *Var = MI.getDebugVariable();
- if (IsIndirect)
- assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
- return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
- IsIndirect, VReg, Var, Expr);
-}
-
-// Try to find similar LEAs in the list and replace one with another.
-bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
- bool Changed = false;
-
- // Loop over all entries in the table.
- for (auto &E : LEAs) {
- auto &List = E.second;
-
- // Loop over all LEA pairs.
- auto I1 = List.begin();
- while (I1 != List.end()) {
- MachineInstr &First = **I1;
- auto I2 = std::next(I1);
- while (I2 != List.end()) {
- MachineInstr &Last = **I2;
- int64_t AddrDispShift;
-
- // LEAs should be in occurrence order in the list, so we can freely
- // replace later LEAs with earlier ones.
- assert(calcInstrDist(First, Last) > 0 &&
- "LEAs must be in occurrence order in the list");
-
- // Check that the Last LEA instruction can be replaced by the First.
- if (!isReplaceable(First, Last, AddrDispShift)) {
- ++I2;
- continue;
- }
-
- // Loop over all uses of the Last LEA and update their operands. Note
- // that the correctness of this has already been checked in the
- // isReplaceable function.
- unsigned FirstVReg = First.getOperand(0).getReg();
- unsigned LastVReg = Last.getOperand(0).getReg();
- for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
- UI != UE;) {
- MachineOperand &MO = *UI++;
- MachineInstr &MI = *MO.getParent();
-
- if (MI.isDebugValue()) {
- // Replace DBG_VALUE instruction with modified version using the
- // register from the replacing LEA and the address displacement
- // between the LEA instructions.
- replaceDebugValue(MI, FirstVReg, AddrDispShift);
- continue;
- }
-
- // Get the number of the first memory operand.
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo =
- X86II::getMemoryOperandNo(Desc.TSFlags) +
- X86II::getOperandBias(Desc);
-
- // Update address base.
- MO.setReg(FirstVReg);
-
- // Update address disp.
- MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
- if (Op.isImm())
- Op.setImm(Op.getImm() + AddrDispShift);
- else if (!Op.isJTI())
- Op.setOffset(Op.getOffset() + AddrDispShift);
- }
-
- // Since we can possibly extend register lifetime, clear kill flags.
- MRI->clearKillFlags(FirstVReg);
-
- ++NumRedundantLEAs;
- LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
- Last.dump(););
-
- // By this moment, all of the Last LEA's uses must be replaced. So we
- // can freely remove it.
- assert(MRI->use_empty(LastVReg) &&
- "The LEA's def register must have no uses");
- Last.eraseFromParent();
-
- // Erase removed LEA from the list.
- I2 = List.erase(I2);
-
- Changed = true;
- }
- ++I1;
- }
- }
-
- return Changed;
-}
-
-bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
- bool Changed = false;
-
- if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
- return false;
-
- MRI = &MF.getRegInfo();
- TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
- TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
-
- // Process all basic blocks.
- for (auto &MBB : MF) {
- MemOpMap LEAs;
- InstrPos.clear();
-
- // Find all LEA instructions in basic block.
- findLEAs(MBB, LEAs);
-
- // If current basic block has no LEAs, move on to the next one.
- if (LEAs.empty())
- continue;
-
- // Remove redundant LEA instructions.
- Changed |= removeRedundantLEAs(LEAs);
-
- // Remove redundant address calculations. Do it only for -Os/-Oz since only
- // a code size gain is expected from this part of the pass.
- if (MF.getFunction().optForSize())
- Changed |= removeRedundantAddrCalc(LEAs);
- }
-
- return Changed;
-}