summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp
diff options
context:
space:
mode:
authorpascal <pascal@openbsd.org>2016-09-03 22:46:54 +0000
committerpascal <pascal@openbsd.org>2016-09-03 22:46:54 +0000
commitb5500b9ca0102f1ccaf32f0e77e96d0739aded9b (patch)
treee1b7ebb5a0231f9e6d8d3f6f719582cebd64dc98 /gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp
parentclarify purpose of src/gnu/ directory. (diff)
downloadwireguard-openbsd-b5500b9ca0102f1ccaf32f0e77e96d0739aded9b.tar.xz
wireguard-openbsd-b5500b9ca0102f1ccaf32f0e77e96d0739aded9b.zip
Use the space freed up by sparc and zaurus to import LLVM.
ok hackroom@
Diffstat (limited to 'gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp')
-rw-r--r--gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp1978
1 files changed, 1978 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp b/gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp
new file mode 100644
index 00000000000..105b2cfb1be
--- /dev/null
+++ b/gnu/llvm/lib/Target/XCore/XCoreISelLowering.cpp
@@ -0,0 +1,1978 @@
+//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the XCoreTargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreISelLowering.h"
+#include "XCore.h"
+#include "XCoreMachineFunctionInfo.h"
+#include "XCoreSubtarget.h"
+#include "XCoreTargetMachine.h"
+#include "XCoreTargetObjectFile.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "xcore-lower"
+
+const char *XCoreTargetLowering::
+getTargetNodeName(unsigned Opcode) const
+{
+ switch ((XCoreISD::NodeType)Opcode)
+ {
+ case XCoreISD::FIRST_NUMBER : break;
+ case XCoreISD::BL : return "XCoreISD::BL";
+ case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
+ case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
+ case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
+ case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
+ case XCoreISD::STWSP : return "XCoreISD::STWSP";
+ case XCoreISD::RETSP : return "XCoreISD::RETSP";
+ case XCoreISD::LADD : return "XCoreISD::LADD";
+ case XCoreISD::LSUB : return "XCoreISD::LSUB";
+ case XCoreISD::LMUL : return "XCoreISD::LMUL";
+ case XCoreISD::MACCU : return "XCoreISD::MACCU";
+ case XCoreISD::MACCS : return "XCoreISD::MACCS";
+ case XCoreISD::CRC8 : return "XCoreISD::CRC8";
+ case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
+ case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
+ case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
+ case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
+ case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
+ }
+ return nullptr;
+}
+
+XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
+ const XCoreSubtarget &Subtarget)
+ : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties(Subtarget.getRegisterInfo());
+
+ setStackPointerRegisterToSaveRestore(XCore::SP);
+
+ setSchedulingPreference(Sched::Source);
+
+ // Use i32 for setcc operations results (slt, sgt, ...).
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
+
+ // XCore does not have the NodeTypes below.
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::ADDC, MVT::i32, Expand);
+ setOperationAction(ISD::ADDE, MVT::i32, Expand);
+ setOperationAction(ISD::SUBC, MVT::i32, Expand);
+ setOperationAction(ISD::SUBE, MVT::i32, Expand);
+
+ // 64bit
+ setOperationAction(ISD::ADD, MVT::i64, Custom);
+ setOperationAction(ISD::SUB, MVT::i64, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+
+ // Bit Manipulation
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL , MVT::i32, Expand);
+ setOperationAction(ISD::ROTR , MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // Jump tables.
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
+
+ // Conversion of i64 -> double produces constantpool nodes
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+
+ // Loads
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
+ }
+
+ // Custom expand misaligned loads / stores.
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::i32, Custom);
+
+ // Varargs
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+
+ // Dynamic stack
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+
+ // Exception handling
+ setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
+
+ // Atomic operations
+ // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
+ // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
+ setInsertFencesForAtomic(true);
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+
+ // TRAMPOLINE is custom lowered.
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
+ MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
+ = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+
+ setMinFunctionAlignment(1);
+ setPrefFunctionAlignment(2);
+}
+
+bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ EVT VT1 = Val.getValueType();
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i8:
+ return true;
+ }
+
+ return false;
+}
+
+SDValue XCoreTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode())
+ {
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::LOAD: return LowerLOAD(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
+ case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
+ // FIXME: Remove these when LegalizeDAGTypes lands.
+ case ISD::ADD:
+ case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
+ case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
+ case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
+ default:
+ llvm_unreachable("unimplemented operand");
+ }
+}
+
+/// ReplaceNodeResults - Replace the results of node with an illegal result
+/// type with new values built out of custom code.
+void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this!");
+ case ISD::ADD:
+ case ISD::SUB:
+ Results.push_back(ExpandADDSUB(N, DAG));
+ return;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Misc Lower Operation implementation
+//===----------------------------------------------------------------------===//
+
+SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
+ const GlobalValue *GV,
+ SelectionDAG &DAG) const {
+ // FIXME there is no actual debug info here
+ SDLoc dl(GA);
+
+ if (GV->getType()->getElementType()->isFunctionTy())
+ return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
+
+ const auto *GVar = dyn_cast<GlobalVariable>(GV);
+ if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
+ (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
+ return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
+
+ return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
+}
+
+static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
+ if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
+ return true;
+
+ Type *ObjType = GV->getType()->getPointerElementType();
+ if (!ObjType->isSized())
+ return false;
+
+ auto &DL = GV->getParent()->getDataLayout();
+ unsigned ObjSize = DL.getTypeAllocSize(ObjType);
+ return ObjSize < CodeModelLargeSize && ObjSize != 0;
+}
+
+SDValue XCoreTargetLowering::
+LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GN->getGlobal();
+ SDLoc DL(GN);
+ int64_t Offset = GN->getOffset();
+ if (IsSmallObject(GV, *this)) {
+ // We can only fold positive offsets that are a multiple of the word size.
+ int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
+ GA = getGlobalAddressWrapper(GA, GV, DAG);
+ // Handle the rest of the offset.
+ if (Offset != FoldedOffset) {
+ SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
+ GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
+ }
+ return GA;
+ } else {
+ // Ideally we would not fold in offset with an index <= 11.
+ Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
+ Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
+ Ty = Type::getInt32Ty(*DAG.getContext());
+ Constant *Idx = ConstantInt::get(Ty, Offset);
+ Constant *GAI = ConstantExpr::getGetElementPtr(
+ Type::getInt8Ty(*DAG.getContext()), GA, Idx);
+ SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
+ return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
+ DAG.getEntryNode(), CP, MachinePointerInfo(), false,
+ false, false, 0);
+ }
+}
+
+SDValue XCoreTargetLowering::
+LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ SDLoc DL(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
+
+ return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
+}
+
+SDValue XCoreTargetLowering::
+LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
+{
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ // FIXME there isn't really debug info here
+ SDLoc dl(CP);
+ EVT PtrVT = Op.getValueType();
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry()) {
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment(), CP->getOffset());
+ } else {
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment(), CP->getOffset());
+ }
+ return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
+}
+
+unsigned XCoreTargetLowering::getJumpTableEncoding() const {
+ return MachineJumpTableInfo::EK_Inline;
+}
+
+SDValue XCoreTargetLowering::
+LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ SDLoc dl(Op);
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ unsigned JTI = JT->getIndex();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
+ SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
+
+ unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
+ if (NumEntries <= 32) {
+ return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
+ }
+ assert((NumEntries >> 31) == 0);
+ SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
+ DAG.getConstant(1, dl, MVT::i32));
+ return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
+ ScaledIndex);
+}
+
+SDValue XCoreTargetLowering::
+lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
+ int64_t Offset, SelectionDAG &DAG) const
+{
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ if ((Offset & 0x3) == 0) {
+ return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false,
+ false, false, 0);
+ }
+ // Lower to pair of consecutive word aligned loads plus some bit shifting.
+ int32_t HighOffset = RoundUpToAlignment(Offset, 4);
+ int32_t LowOffset = HighOffset - 4;
+ SDValue LowAddr, HighAddr;
+ if (GlobalAddressSDNode *GASD =
+ dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
+ LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
+ LowOffset);
+ HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
+ HighOffset);
+ } else {
+ LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
+ DAG.getConstant(LowOffset, DL, MVT::i32));
+ HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
+ DAG.getConstant(HighOffset, DL, MVT::i32));
+ }
+ SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
+ SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
+
+ SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(),
+ false, false, false, 0);
+ SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(),
+ false, false, false, 0);
+ SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
+ SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
+ SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
+ High.getValue(1));
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
+{
+ APInt KnownZero, KnownOne;
+ DAG.computeKnownBits(Value, KnownZero, KnownOne);
+ return KnownZero.countTrailingOnes() >= 2;
+}
+
+SDValue XCoreTargetLowering::
+LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
+ "Unexpected extension type");
+ assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
+ if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
+ LD->getAddressSpace(),
+ LD->getAlignment()))
+ return SDValue();
+
+ auto &TD = DAG.getDataLayout();
+ unsigned ABIAlignment = TD.getABITypeAlignment(
+ LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
+ // Leave aligned load alone.
+ if (LD->getAlignment() >= ABIAlignment)
+ return SDValue();
+
+ SDValue Chain = LD->getChain();
+ SDValue BasePtr = LD->getBasePtr();
+ SDLoc DL(Op);
+
+ if (!LD->isVolatile()) {
+ const GlobalValue *GV;
+ int64_t Offset = 0;
+ if (DAG.isBaseWithConstantOffset(BasePtr) &&
+ isWordAligned(BasePtr->getOperand(0), DAG)) {
+ SDValue NewBasePtr = BasePtr->getOperand(0);
+ Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
+ return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
+ Offset, DAG);
+ }
+ if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
+ MinAlign(GV->getAlignment(), 4) == 4) {
+ SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
+ BasePtr->getValueType(0));
+ return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
+ Offset, DAG);
+ }
+ }
+
+ if (LD->getAlignment() == 2) {
+ SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
+ BasePtr, LD->getPointerInfo(), MVT::i16,
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), 2);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(2, DL, MVT::i32));
+ SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
+ HighAddr,
+ LD->getPointerInfo().getWithOffset(2),
+ MVT::i16, LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(), 2);
+ SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
+ DAG.getConstant(16, DL, MVT::i32));
+ SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
+ High.getValue(1));
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ // Lower to a call to __misaligned_load(BasePtr).
+ Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = BasePtr;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL).setChain(Chain).setCallee(
+ CallingConv::C, IntPtrTy,
+ DAG.getExternalSymbol("__misaligned_load",
+ getPointerTy(DAG.getDataLayout())),
+ std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ SDValue Ops[] = { CallResult.first, CallResult.second };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue XCoreTargetLowering::
+LowerSTORE(SDValue Op, SelectionDAG &DAG) const
+{
+ StoreSDNode *ST = cast<StoreSDNode>(Op);
+ assert(!ST->isTruncatingStore() && "Unexpected store type");
+ assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
+ if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
+ ST->getAddressSpace(),
+ ST->getAlignment())) {
+ return SDValue();
+ }
+ unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
+ ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
+ // Leave aligned store alone.
+ if (ST->getAlignment() >= ABIAlignment) {
+ return SDValue();
+ }
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ SDLoc dl(Op);
+
+ if (ST->getAlignment() == 2) {
+ SDValue Low = Value;
+ SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
+ DAG.getConstant(16, dl, MVT::i32));
+ SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
+ ST->getPointerInfo(), MVT::i16,
+ ST->isVolatile(), ST->isNonTemporal(),
+ 2);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
+ DAG.getConstant(2, dl, MVT::i32));
+ SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
+ ST->getPointerInfo().getWithOffset(2),
+ MVT::i16, ST->isVolatile(),
+ ST->isNonTemporal(), 2);
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
+ }
+
+ // Lower to a call to __misaligned_store(BasePtr, Value).
+ Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = BasePtr;
+ Args.push_back(Entry);
+
+ Entry.Node = Value;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain).setCallee(
+ CallingConv::C, Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol("__misaligned_store",
+ getPointerTy(DAG.getDataLayout())),
+ std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.second;
+}
+
+SDValue XCoreTargetLowering::
+LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
+{
+ assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
+ "Unexpected operand to lower!");
+ SDLoc dl(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
+ LHS, RHS);
+ SDValue Lo(Hi.getNode(), 1);
+ SDValue Ops[] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue XCoreTargetLowering::
+LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
+{
+ assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
+ "Unexpected operand to lower!");
+ SDLoc dl(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
+ Zero, Zero);
+ SDValue Lo(Hi.getNode(), 1);
+ SDValue Ops[] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+/// isADDADDMUL - Return whether Op is in a form that is equivalent to
+/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
+/// each intermediate result in the calculation must also have a single use.
+/// If the Op is in the correct form the constituent parts are written to Mul0,
+/// Mul1, Addend0 and Addend1.
+static bool
+isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
+ SDValue &Addend1, bool requireIntermediatesHaveOneUse)
+{
+ if (Op.getOpcode() != ISD::ADD)
+ return false;
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue AddOp;
+ SDValue OtherOp;
+ if (N0.getOpcode() == ISD::ADD) {
+ AddOp = N0;
+ OtherOp = N1;
+ } else if (N1.getOpcode() == ISD::ADD) {
+ AddOp = N1;
+ OtherOp = N0;
+ } else {
+ return false;
+ }
+ if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
+ return false;
+ if (OtherOp.getOpcode() == ISD::MUL) {
+ // add(add(a,b),mul(x,y))
+ if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
+ return false;
+ Mul0 = OtherOp.getOperand(0);
+ Mul1 = OtherOp.getOperand(1);
+ Addend0 = AddOp.getOperand(0);
+ Addend1 = AddOp.getOperand(1);
+ return true;
+ }
+ if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
+ // add(add(mul(x,y),a),b)
+ if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
+ return false;
+ Mul0 = AddOp.getOperand(0).getOperand(0);
+ Mul1 = AddOp.getOperand(0).getOperand(1);
+ Addend0 = AddOp.getOperand(1);
+ Addend1 = OtherOp;
+ return true;
+ }
+ if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
+ // add(add(a,mul(x,y)),b)
+ if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
+ return false;
+ Mul0 = AddOp.getOperand(1).getOperand(0);
+ Mul1 = AddOp.getOperand(1).getOperand(1);
+ Addend0 = AddOp.getOperand(0);
+ Addend1 = OtherOp;
+ return true;
+ }
+ return false;
+}
+
+SDValue XCoreTargetLowering::
+TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
+{
+ SDValue Mul;
+ SDValue Other;
+ if (N->getOperand(0).getOpcode() == ISD::MUL) {
+ Mul = N->getOperand(0);
+ Other = N->getOperand(1);
+ } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
+ Mul = N->getOperand(1);
+ Other = N->getOperand(0);
+ } else {
+ return SDValue();
+ }
+ SDLoc dl(N);
+ SDValue LL, RL, AddendL, AddendH;
+ LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
+ RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
+ AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Other, DAG.getConstant(0, dl, MVT::i32));
+ AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Other, DAG.getConstant(1, dl, MVT::i32));
+ APInt HighMask = APInt::getHighBitsSet(64, 32);
+ unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
+ unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
+ if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
+ DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
+ // The inputs are both zero-extended.
+ SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), AddendH,
+ AddendL, LL, RL);
+ SDValue Lo(Hi.getNode(), 1);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+ }
+ if (LHSSB > 32 && RHSSB > 32) {
+ // The inputs are both sign-extended.
+ SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), AddendH,
+ AddendL, LL, RL);
+ SDValue Lo(Hi.getNode(), 1);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+ }
+ SDValue LH, RH;
+ LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
+ RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
+ SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), AddendH,
+ AddendL, LL, RL);
+ SDValue Lo(Hi.getNode(), 1);
+ RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
+ LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
+ Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
+ Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+SDValue XCoreTargetLowering::
+ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
+{
+ assert(N->getValueType(0) == MVT::i64 &&
+ (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
+ "Unknown operand to lower!");
+
+ if (N->getOpcode() == ISD::ADD) {
+ SDValue Result = TryExpandADDWithMul(N, DAG);
+ if (Result.getNode())
+ return Result;
+ }
+
+ SDLoc dl(N);
+
+ // Extract components
+ SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(0),
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(0),
+ DAG.getConstant(1, dl, MVT::i32));
+ SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(1),
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ N->getOperand(1),
+ DAG.getConstant(1, dl, MVT::i32));
+
+ // Expand
+ unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
+ XCoreISD::LSUB;
+ SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ LHSL, RHSL, Zero);
+ SDValue Carry(Lo.getNode(), 1);
+
+ SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ LHSH, RHSH, Carry);
+ SDValue Ignored(Hi.getNode(), 1);
+ // Merge the pieces
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+SDValue XCoreTargetLowering::
+LowerVAARG(SDValue Op, SelectionDAG &DAG) const
+{
+ // Whist llvm does not support aggregate varargs we can ignore
+ // the possibility of the ValueType being an implicit byVal vararg.
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0); // not an aggregate
+ SDValue InChain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ EVT PtrVT = VAListPtr.getValueType();
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc dl(Node);
+ SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
+ VAListPtr, MachinePointerInfo(SV),
+ false, false, false, 0);
+ // Increment the pointer, VAList, to the next vararg
+ SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
+ DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
+ dl));
+ // Store the incremented VAList to the legalized pointer
+ InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
+ MachinePointerInfo(SV), false, false, 0);
+ // Load the actual argument out of the pointer VAList
+ return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+SDValue XCoreTargetLowering::
+LowerVASTART(SDValue Op, SelectionDAG &DAG) const
+{
+ SDLoc dl(Op);
+ // vastart stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument
+ MachineFunction &MF = DAG.getMachineFunction();
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
+ return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
+ MachinePointerInfo(), false, false, 0);
+}
+
+SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ // This nodes represent llvm.frameaddress on the DAG.
+ // It takes one operand, the index of the frame address to return.
+ // An index of zero corresponds to the current function's frame address.
+ // An index of one to the parent's frame address, and so on.
+ // Depths > 0 not supported yet!
+ if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
+ return SDValue();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
+ RegInfo->getFrameRegister(MF), MVT::i32);
+}
+
+SDValue XCoreTargetLowering::
+LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
+ // This nodes represent llvm.returnaddress on the DAG.
+ // It takes one operand, the index of the return address to return.
+ // An index of zero corresponds to the current function's return address.
+ // An index of one to the parent's return address, and so on.
+ // Depths > 0 not supported yet!
+ if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
+ return SDValue();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ int FI = XFI->createLRSpillSlot(MF);
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ return DAG.getLoad(
+ getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN,
+ MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0);
+}
+
+SDValue XCoreTargetLowering::
+LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
+ // This node represents offset from frame pointer to first on-stack argument.
+ // This is needed for correct stack adjustment during unwind.
+ // However, we don't know the offset until after the frame has be finalised.
+ // This is done during the XCoreFTAOElim pass.
+ return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
+}
+
+SDValue XCoreTargetLowering::
+LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
+ // This node represents 'eh_return' gcc dwarf builtin, which is used to
+ // return from exception. The general meaning is: adjust stack by OFFSET and
+ // pass execution to HANDLER.
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl(Op);
+
+ // Absolute SP = (FP + FrameToArgs) + Offset
+ const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
+ RegInfo->getFrameRegister(MF), MVT::i32);
+ SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
+ MVT::i32);
+ Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
+ Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
+
+ // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
+ // which leaves 2 caller saved registers, R2 & R3 for us to use.
+ unsigned StackReg = XCore::R2;
+ unsigned HandlerReg = XCore::R3;
+
+ SDValue OutChains[] = {
+ DAG.getCopyToReg(Chain, dl, StackReg, Stack),
+ DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
+ };
+
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+
+ return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
+ DAG.getRegister(StackReg, MVT::i32),
+ DAG.getRegister(HandlerReg, MVT::i32));
+
+}
+
+SDValue XCoreTargetLowering::
+LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
+ return Op.getOperand(0);
+}
+
+SDValue XCoreTargetLowering::
+LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+
+ const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+
+ // .align 4
+ // LDAPF_u10 r11, nest
+ // LDW_2rus r11, r11[0]
+ // STWSP_ru6 r11, sp[0]
+ // LDAPF_u10 r11, fptr
+ // LDW_2rus r11, r11[0]
+ // BAU_1r r11
+ // nest:
+ // .word nest
+ // fptr:
+ // .word fptr
+ SDValue OutChains[5];
+
+ SDValue Addr = Trmp;
+
+ SDLoc dl(Op);
+ OutChains[0] = DAG.getStore(Chain, dl,
+ DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
+ MachinePointerInfo(TrmpAddr), false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(4, dl, MVT::i32));
+ OutChains[1] = DAG.getStore(Chain, dl,
+ DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
+ MachinePointerInfo(TrmpAddr, 4), false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(8, dl, MVT::i32));
+ OutChains[2] = DAG.getStore(Chain, dl,
+ DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
+ MachinePointerInfo(TrmpAddr, 8), false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(12, dl, MVT::i32));
+ OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
+ MachinePointerInfo(TrmpAddr, 12), false, false,
+ 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(16, dl, MVT::i32));
+ OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
+ MachinePointerInfo(TrmpAddr, 16), false, false,
+ 0);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+}
+
+SDValue XCoreTargetLowering::
+LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ case Intrinsic::xcore_crc8:
+ EVT VT = Op.getValueType();
+ SDValue Data =
+ DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
+ Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
+ SDValue Crc(Data.getNode(), 1);
+ SDValue Results[] = { Crc, Data };
+ return DAG.getMergeValues(Results, DL);
+ }
+ return SDValue();
+}
+
+SDValue XCoreTargetLowering::
+LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
+}
+
+SDValue XCoreTargetLowering::
+LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
+ AtomicSDNode *N = cast<AtomicSDNode>(Op);
+ assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
+ assert(N->getOrdering() <= Monotonic &&
+ "setInsertFencesForAtomic(true) and yet greater than Monotonic");
+ if (N->getMemoryVT() == MVT::i32) {
+ if (N->getAlignment() < 4)
+ report_fatal_error("atomic load must be aligned");
+ return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
+ N->getChain(), N->getBasePtr(), N->getPointerInfo(),
+ N->isVolatile(), N->isNonTemporal(), N->isInvariant(),
+ N->getAlignment(), N->getAAInfo(), N->getRanges());
+ }
+ if (N->getMemoryVT() == MVT::i16) {
+ if (N->getAlignment() < 2)
+ report_fatal_error("atomic load must be aligned");
+ return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i16,
+ N->isVolatile(), N->isNonTemporal(),
+ N->isInvariant(), N->getAlignment(), N->getAAInfo());
+ }
+ if (N->getMemoryVT() == MVT::i8)
+ return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i8,
+ N->isVolatile(), N->isNonTemporal(),
+ N->isInvariant(), N->getAlignment(), N->getAAInfo());
+ return SDValue();
+}
+
+SDValue XCoreTargetLowering::
+LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
+ AtomicSDNode *N = cast<AtomicSDNode>(Op);
+ assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
+ assert(N->getOrdering() <= Monotonic &&
+ "setInsertFencesForAtomic(true) and yet greater than Monotonic");
+ if (N->getMemoryVT() == MVT::i32) {
+ if (N->getAlignment() < 4)
+ report_fatal_error("atomic store must be aligned");
+ return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
+ N->getBasePtr(), N->getPointerInfo(),
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getAAInfo());
+ }
+ if (N->getMemoryVT() == MVT::i16) {
+ if (N->getAlignment() < 2)
+ report_fatal_error("atomic store must be aligned");
+ return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i16,
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getAAInfo());
+ }
+ if (N->getMemoryVT() == MVT::i8)
+ return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
+ N->getBasePtr(), N->getPointerInfo(), MVT::i8,
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getAAInfo());
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "XCoreGenCallingConv.inc"
+
+//===----------------------------------------------------------------------===//
+// Call Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+/// XCore call implementation
+SDValue
+XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ // XCore target does not yet support tail call optimization.
+ isTailCall = false;
+
+ // For now, only CallingConv::C implemented
+ switch (CallConv)
+ {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ case CallingConv::C:
+ return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, OutVals, Ins, dl, DAG, InVals);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers / memory locations.
+static SDValue
+LowerCallResult(SDValue Chain, SDValue InFlag,
+ const SmallVectorImpl<CCValAssign> &RVLocs,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
+ // Copy results out of physical registers.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ const CCValAssign &VA = RVLocs[i];
+ if (VA.isRegLoc()) {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
+ InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ } else {
+ assert(VA.isMemLoc());
+ ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
+ InVals.size()));
+ // Reserve space for this result.
+ InVals.push_back(SDValue());
+ }
+ }
+
+ // Copy results out of memory.
+ SmallVector<SDValue, 4> MemOpChains;
+ for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
+ int offset = ResultMemLocs[i].first;
+ unsigned index = ResultMemLocs[i].second;
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
+ SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
+ SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
+ InVals[index] = load;
+ MemOpChains.push_back(load.getValue(1));
+ }
+
+ // Transform all loads nodes into one single node because
+ // all load nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ return Chain;
+}
+
+/// LowerCCCCallTo - functions arguments are copied from virtual
+/// regs to (physical regs)/(stack frame), CALLSEQ_START and
+/// CALLSEQ_END are emitted.
+/// TODO: isTailCall, sret.
+SDValue
+XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ // The ABI dictates there should be one stack slot available to the callee
+ // on function entry (for saving lr).
+ CCInfo.AllocateStack(4, 4);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ // Analyze return values to determine the number of bytes of stack required.
+ CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+ RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
+ RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = RetCCInfo.getNextStackOffset();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ Chain = DAG.getCALLSEQ_START(Chain,
+ DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
+ SmallVector<SDValue, 12> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ int Offset = VA.getLocMemOffset();
+
+ MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
+ Chain, Arg,
+ DAG.getConstant(Offset/4, dl,
+ MVT::i32)));
+ }
+ }
+
+ // Transform all store nodes into one single node because
+ // all store nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
+
+ // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
+ // = Chain, Callee, Reg#1, Reg#2, ...
+ //
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
+ DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
+}
+
+//===----------------------------------------------------------------------===//
+// Formal Arguments Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
+}
+
+/// XCore formal arguments implementation
+SDValue
+XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ switch (CallConv)
+ {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ return LowerCCCArguments(Chain, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+ }
+}
+
+/// LowerCCCArguments - transform physical registers into
+/// virtual registers and generate load operations for
+/// arguments places on the stack.
+/// TODO: sret
+SDValue
+XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
+
+ unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
+
+ unsigned LRSaveSize = StackSlotSize;
+
+ if (!isVarArg)
+ XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
+
+ // All getCopyFromReg ops must precede any getMemcpys to prevent the
+ // scheduler clobbering a register before it has been copied.
+ // The stages are:
+ // 1. CopyFromReg (and load) arg & vararg registers.
+ // 2. Chain CopyFromReg nodes into a TokenFactor.
+ // 3. Memcpy 'byVal' args & push final InVals.
+ // 4. Chain mem ops nodes into a TokenFactor.
+ SmallVector<SDValue, 4> CFRegNode;
+ SmallVector<ArgDataPair, 4> ArgData;
+ SmallVector<SDValue, 4> MemOps;
+
+ // 1a. CopyFromReg (and load) arg registers.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+
+ CCValAssign &VA = ArgLocs[i];
+ SDValue ArgIn;
+
+ if (VA.isRegLoc()) {
+ // Arguments passed in registers
+ EVT RegVT = VA.getLocVT();
+ switch (RegVT.getSimpleVT().SimpleTy) {
+ default:
+ {
+#ifndef NDEBUG
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << RegVT.getSimpleVT().SimpleTy << "\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ case MVT::i32:
+ unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
+ CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
+ }
+ } else {
+ // sanity check
+ assert(VA.isMemLoc());
+ // Load the argument to a virtual register
+ unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
+ if (ObjSize > StackSlotSize) {
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << EVT(VA.getLocVT()).getEVTString()
+ << "\n";
+ }
+ // Create the frame index object for this incoming parameter...
+ int FI = MFI->CreateFixedObject(ObjSize,
+ LRSaveSize + VA.getLocMemOffset(),
+ true);
+
+ // Create the SelectionDAG nodes corresponding to a load
+ //from this parameter
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(MF, FI), false,
+ false, false, 0);
+ }
+ const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
+ ArgData.push_back(ADP);
+ }
+
+ // 1b. CopyFromReg vararg registers.
+ if (isVarArg) {
+ // Argument registers
+ static const MCPhysReg ArgRegs[] = {
+ XCore::R0, XCore::R1, XCore::R2, XCore::R3
+ };
+ XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
+ unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
+ if (FirstVAReg < array_lengthof(ArgRegs)) {
+ int offset = 0;
+ // Save remaining registers, storing higher register numbers at a higher
+ // address
+ for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
+ // Create a stack slot
+ int FI = MFI->CreateFixedObject(4, offset, true);
+ if (i == (int)FirstVAReg) {
+ XFI->setVarArgsFrameIndex(FI);
+ }
+ offset -= StackSlotSize;
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ // Move argument from phys reg -> virt reg
+ unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
+ RegInfo.addLiveIn(ArgRegs[i], VReg);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
+ // Move argument from virt reg -> stack
+ SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(), false, false, 0);
+ MemOps.push_back(Store);
+ }
+ } else {
+ // This will point to the next argument passed via stack.
+ XFI->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
+ true));
+ }
+ }
+
+ // 2. chain CopyFromReg nodes into a TokenFactor.
+ if (!CFRegNode.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
+
+ // 3. Memcpy 'byVal' args & push final InVals.
+ // Aggregates passed "byVal" need to be copied by the callee.
+ // The callee will use a pointer to this copy, rather than the original
+ // pointer.
+ for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
+ ArgDE = ArgData.end();
+ ArgDI != ArgDE; ++ArgDI) {
+ if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
+ unsigned Size = ArgDI->Flags.getByValSize();
+ unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
+ // Create a new object on the stack and copy the pointee into it.
+ int FI = MFI->CreateStackObject(Size, Align, false);
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ InVals.push_back(FIN);
+ MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
+ DAG.getConstant(Size, dl, MVT::i32),
+ Align, false, false, false,
+ MachinePointerInfo(),
+ MachinePointerInfo()));
+ } else {
+ InVals.push_back(ArgDI->SDV);
+ }
+ }
+
+ // 4, chain mem ops nodes into a TokenFactor.
+ if (!MemOps.empty()) {
+ MemOps.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+bool XCoreTargetLowering::
+CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
+ if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
+ return false;
+ if (CCInfo.getNextStackOffset() != 0 && isVarArg)
+ return false;
+ return true;
+}
+
+SDValue
+XCoreTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ XCoreFunctionInfo *XFI =
+ DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+
+ // CCValAssign - represent the assignment of
+ // the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze return values.
+ if (!isVarArg)
+ CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
+
+ CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Return on XCore is always a "retsp 0"
+ RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
+
+ SmallVector<SDValue, 4> MemOpChains;
+ // Handle return values that must be copied to memory.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (VA.isRegLoc())
+ continue;
+ assert(VA.isMemLoc());
+ if (isVarArg) {
+ report_fatal_error("Can't return value from vararg function in memory");
+ }
+
+ int Offset = VA.getLocMemOffset();
+ unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
+ // Create the frame index object for the memory location.
+ int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
+
+ // Create a SelectionDAG node corresponding to a store
+ // to this memory location.
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ MemOpChains.push_back(DAG.getStore(
+ Chain, dl, OutVals[i], FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
+ false, 0));
+ }
+
+ // Transform all store nodes into one single node because
+ // all stores are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Now handle return values copied to registers.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (!VA.isRegLoc())
+ continue;
+ // Copy the result values into the output registers.
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
+
+ // guarantee that all emitted copies are
+ // stuck together, avoiding something bad
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ assert((MI->getOpcode() == XCore::SELECT_CC) &&
+ "Unexpected instr type to insert");
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
+ .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII.get(XCore::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::INTRINSIC_VOID:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::xcore_outt:
+ case Intrinsic::xcore_outct:
+ case Intrinsic::xcore_chkct: {
+ SDValue OutVal = N->getOperand(3);
+ // These instructions ignore the high bits.
+ if (OutVal.hasOneUse()) {
+ unsigned BitWidth = OutVal.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
+ TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
+ TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ break;
+ }
+ case Intrinsic::xcore_setpt: {
+ SDValue Time = N->getOperand(3);
+ // This instruction ignores the high bits.
+ if (Time.hasOneUse()) {
+ unsigned BitWidth = Time.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
+ TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ break;
+ }
+ }
+ break;
+ case XCoreISD::LADD: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // canonicalize constant to RHS
+ if (N0C && !N1C)
+ return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
+
+ // fold (ladd 0, 0, x) -> 0, x & 1
+ if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
+ SDValue Carry = DAG.getConstant(0, dl, VT);
+ SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
+ DAG.getConstant(1, dl, VT));
+ SDValue Ops[] = { Result, Carry };
+ return DAG.getMergeValues(Ops, dl);
+ }
+
+ // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
+ // low bit set
+ if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - 1);
+ DAG.computeKnownBits(N2, KnownZero, KnownOne);
+ if ((KnownZero & Mask) == Mask) {
+ SDValue Carry = DAG.getConstant(0, dl, VT);
+ SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
+ SDValue Ops[] = { Result, Carry };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+ }
+ break;
+ case XCoreISD::LSUB: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
+ if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - 1);
+ DAG.computeKnownBits(N2, KnownZero, KnownOne);
+ if ((KnownZero & Mask) == Mask) {
+ SDValue Borrow = N2;
+ SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
+ DAG.getConstant(0, dl, VT), N2);
+ SDValue Ops[] = { Result, Borrow };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+
+ // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
+ // low bit set
+ if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - 1);
+ DAG.computeKnownBits(N2, KnownZero, KnownOne);
+ if ((KnownZero & Mask) == Mask) {
+ SDValue Borrow = DAG.getConstant(0, dl, VT);
+ SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
+ SDValue Ops[] = { Result, Borrow };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+ }
+ break;
+ case XCoreISD::LMUL: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+ // Canonicalize multiplicative constant to RHS. If both multiplicative
+ // operands are constant canonicalize smallest to RHS.
+ if ((N0C && !N1C) ||
+ (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
+ return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
+ N1, N0, N2, N3);
+
+ // lmul(x, 0, a, b)
+ if (N1C && N1C->isNullValue()) {
+ // If the high result is unused fold to add(a, b)
+ if (N->hasNUsesOfValue(0, 0)) {
+ SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
+ SDValue Ops[] = { Lo, Lo };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ // Otherwise fold to ladd(a, b, 0)
+ SDValue Result =
+ DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
+ SDValue Carry(Result.getNode(), 1);
+ SDValue Ops[] = { Carry, Result };
+ return DAG.getMergeValues(Ops, dl);
+ }
+ }
+ break;
+ case ISD::ADD: {
+ // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
+ // lmul(x, y, a, b). The high result of lmul will be ignored.
+ // This is only profitable if the intermediate results are unused
+ // elsewhere.
+ SDValue Mul0, Mul1, Addend0, Addend1;
+ if (N->getValueType(0) == MVT::i32 &&
+ isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
+ SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Mul0,
+ Mul1, Addend0, Addend1);
+ SDValue Result(Ignored.getNode(), 1);
+ return Result;
+ }
+ APInt HighMask = APInt::getHighBitsSet(64, 32);
+ // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
+ // lmul(x, y, a, b) if all operands are zero-extended. We do this
+ // before type legalization as it is messy to match the operands after
+ // that.
+ if (N->getValueType(0) == MVT::i64 &&
+ isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
+ DAG.MaskedValueIsZero(Mul0, HighMask) &&
+ DAG.MaskedValueIsZero(Mul1, HighMask) &&
+ DAG.MaskedValueIsZero(Addend0, HighMask) &&
+ DAG.MaskedValueIsZero(Addend1, HighMask)) {
+ SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul0, DAG.getConstant(0, dl, MVT::i32));
+ SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Mul1, DAG.getConstant(0, dl, MVT::i32));
+ SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Addend0, DAG.getConstant(0, dl, MVT::i32));
+ SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Addend1, DAG.getConstant(0, dl, MVT::i32));
+ SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
+ Addend0L, Addend1L);
+ SDValue Lo(Hi.getNode(), 1);
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+ }
+ }
+ break;
+ case ISD::STORE: {
+ // Replace unaligned store of unaligned load with memmove.
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ if (!DCI.isBeforeLegalize() ||
+ allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
+ ST->getAddressSpace(),
+ ST->getAlignment()) ||
+ ST->isVolatile() || ST->isIndexed()) {
+ break;
+ }
+ SDValue Chain = ST->getChain();
+
+ unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
+ assert((StoreBits % 8) == 0 &&
+ "Store size in bits must be a multiple of 8");
+ unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
+ ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
+ unsigned Alignment = ST->getAlignment();
+ if (Alignment >= ABIAlignment) {
+ break;
+ }
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
+ if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
+ LD->getAlignment() == Alignment &&
+ !LD->isVolatile() && !LD->isIndexed() &&
+ Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
+ bool isTail = isInTailCallPosition(DAG, ST, Chain);
+ return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
+ LD->getBasePtr(),
+ DAG.getConstant(StoreBits/8, dl, MVT::i32),
+ Alignment, false, isTail, ST->getPointerInfo(),
+ LD->getPointerInfo());
+ }
+ }
+ break;
+ }
+ }
+ return SDValue();
+}
+
+void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case XCoreISD::LADD:
+ case XCoreISD::LSUB:
+ if (Op.getResNo() == 1) {
+ // Top bits of carry / borrow are clear.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 1);
+ }
+ break;
+ case ISD::INTRINSIC_W_CHAIN:
+ {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ case Intrinsic::xcore_getts:
+ // High bits are known to be zero.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 16);
+ break;
+ case Intrinsic::xcore_int:
+ case Intrinsic::xcore_inct:
+ // High bits are known to be zero.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 8);
+ break;
+ case Intrinsic::xcore_testct:
+ // Result is either 0 or 1.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 1);
+ break;
+ case Intrinsic::xcore_testwct:
+ // Result is in the range 0 - 4.
+ KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
+ KnownZero.getBitWidth() - 3);
+ break;
+ }
+ }
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing mode description hooks
+//===----------------------------------------------------------------------===//
+
+static inline bool isImmUs(int64_t val)
+{
+ return (val >= 0 && val <= 11);
+}
+
+static inline bool isImmUs2(int64_t val)
+{
+ return (val%2 == 0 && isImmUs(val/2));
+}
+
+static inline bool isImmUs4(int64_t val)
+{
+ return (val%4 == 0 && isImmUs(val/4));
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ if (Ty->getTypeID() == Type::VoidTyID)
+ return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
+
+ unsigned Size = DL.getTypeAllocSize(Ty);
+ if (AM.BaseGV) {
+ return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
+ AM.BaseOffs%4 == 0;
+ }
+
+ switch (Size) {
+ case 1:
+ // reg + imm
+ if (AM.Scale == 0) {
+ return isImmUs(AM.BaseOffs);
+ }
+ // reg + reg
+ return AM.Scale == 1 && AM.BaseOffs == 0;
+ case 2:
+ case 3:
+ // reg + imm
+ if (AM.Scale == 0) {
+ return isImmUs2(AM.BaseOffs);
+ }
+ // reg + reg<<1
+ return AM.Scale == 2 && AM.BaseOffs == 0;
+ default:
+ // reg + imm
+ if (AM.Scale == 0) {
+ return isImmUs4(AM.BaseOffs);
+ }
+ // reg + reg<<2
+ return AM.Scale == 4 && AM.BaseOffs == 0;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// XCore Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+std::pair<unsigned, const TargetRegisterClass *>
+XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default : break;
+ case 'r':
+ return std::make_pair(0U, &XCore::GRRegsRegClass);
+ }
+ }
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}