diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/IPO/Inliner.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/Inliner.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/IPO/Inliner.cpp | 1231 |
1 files changed, 0 insertions, 1231 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/Inliner.cpp b/gnu/llvm/lib/Transforms/IPO/Inliner.cpp deleted file mode 100644 index 66a6f80f31e..00000000000 --- a/gnu/llvm/lib/Transforms/IPO/Inliner.cpp +++ /dev/null @@ -1,1231 +0,0 @@ -//===- Inliner.cpp - Code common to all inliners --------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the mechanics required to implement inlining without -// missing any calls and updating the call graph. The decisions of which calls -// are profitable to inline are implemented elsewhere. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/IPO/Inliner.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/BasicAliasAnalysis.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/CGSCCPassManager.h" -#include "llvm/Analysis/CallGraph.h" -#include "llvm/Analysis/InlineCost.h" -#include "llvm/Analysis/LazyCallGraph.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include <algorithm> -#include <cassert> -#include <functional> -#include <sstream> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "inline" - -STATISTIC(NumInlined, "Number of functions inlined"); -STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); -STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); -STATISTIC(NumMergedAllocas, "Number of allocas merged together"); - -// This weirdly named statistic tracks the number of times that, when attempting -// to inline a function A into B, we analyze the callers of B in order to see -// if those would be more profitable and blocked inline steps. -STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); - -/// Flag to disable manual alloca merging. -/// -/// Merging of allocas was originally done as a stack-size saving technique -/// prior to LLVM's code generator having support for stack coloring based on -/// lifetime markers. It is now in the process of being removed. To experiment -/// with disabling it and relying fully on lifetime marker based stack -/// coloring, you can pass this flag to LLVM. -static cl::opt<bool> - DisableInlinedAllocaMerging("disable-inlined-alloca-merging", - cl::init(false), cl::Hidden); - -namespace { - -enum class InlinerFunctionImportStatsOpts { - No = 0, - Basic = 1, - Verbose = 2, -}; - -} // end anonymous namespace - -static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( - "inliner-function-import-stats", - cl::init(InlinerFunctionImportStatsOpts::No), - cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", - "basic statistics"), - clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", - "printing of statistics for each inlined function")), - cl::Hidden, cl::desc("Enable inliner stats for imported functions")); - -/// Flag to add inline messages as callsite attributes 'inline-remark'. -static cl::opt<bool> - InlineRemarkAttribute("inline-remark-attribute", cl::init(false), - cl::Hidden, - cl::desc("Enable adding inline-remark attribute to" - " callsites processed by inliner but decided" - " to be not inlined")); - -LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} - -LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) - : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} - -/// For this class, we declare that we require and preserve the call graph. -/// If the derived class implements this method, it should -/// always explicitly call the implementation here. -void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - getAAResultsAnalysisUsage(AU); - CallGraphSCCPass::getAnalysisUsage(AU); -} - -using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; - -/// Look at all of the allocas that we inlined through this call site. If we -/// have already inlined other allocas through other calls into this function, -/// then we know that they have disjoint lifetimes and that we can merge them. -/// -/// There are many heuristics possible for merging these allocas, and the -/// different options have different tradeoffs. One thing that we *really* -/// don't want to hurt is SRoA: once inlining happens, often allocas are no -/// longer address taken and so they can be promoted. -/// -/// Our "solution" for that is to only merge allocas whose outermost type is an -/// array type. These are usually not promoted because someone is using a -/// variable index into them. These are also often the most important ones to -/// merge. -/// -/// A better solution would be to have real memory lifetime markers in the IR -/// and not have the inliner do any merging of allocas at all. This would -/// allow the backend to do proper stack slot coloring of all allocas that -/// *actually make it to the backend*, which is really what we want. -/// -/// Because we don't have this information, we do this simple and useful hack. -static void mergeInlinedArrayAllocas( - Function *Caller, InlineFunctionInfo &IFI, - InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { - SmallPtrSet<AllocaInst *, 16> UsedAllocas; - - // When processing our SCC, check to see if CS was inlined from some other - // call site. For example, if we're processing "A" in this code: - // A() { B() } - // B() { x = alloca ... C() } - // C() { y = alloca ... } - // Assume that C was not inlined into B initially, and so we're processing A - // and decide to inline B into A. Doing this makes an alloca available for - // reuse and makes a callsite (C) available for inlining. When we process - // the C call site we don't want to do any alloca merging between X and Y - // because their scopes are not disjoint. We could make this smarter by - // keeping track of the inline history for each alloca in the - // InlinedArrayAllocas but this isn't likely to be a significant win. - if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. - return; - - // Loop over all the allocas we have so far and see if they can be merged with - // a previously inlined alloca. If not, remember that we had it. - for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; - ++AllocaNo) { - AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; - - // Don't bother trying to merge array allocations (they will usually be - // canonicalized to be an allocation *of* an array), or allocations whose - // type is not itself an array (because we're afraid of pessimizing SRoA). - ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); - if (!ATy || AI->isArrayAllocation()) - continue; - - // Get the list of all available allocas for this array type. - std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; - - // Loop over the allocas in AllocasForType to see if we can reuse one. Note - // that we have to be careful not to reuse the same "available" alloca for - // multiple different allocas that we just inlined, we use the 'UsedAllocas' - // set to keep track of which "available" allocas are being used by this - // function. Also, AllocasForType can be empty of course! - bool MergedAwayAlloca = false; - for (AllocaInst *AvailableAlloca : AllocasForType) { - unsigned Align1 = AI->getAlignment(), - Align2 = AvailableAlloca->getAlignment(); - - // The available alloca has to be in the right function, not in some other - // function in this SCC. - if (AvailableAlloca->getParent() != AI->getParent()) - continue; - - // If the inlined function already uses this alloca then we can't reuse - // it. - if (!UsedAllocas.insert(AvailableAlloca).second) - continue; - - // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare - // success! - LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI - << "\n\t\tINTO: " << *AvailableAlloca << '\n'); - - // Move affected dbg.declare calls immediately after the new alloca to - // avoid the situation when a dbg.declare precedes its alloca. - if (auto *L = LocalAsMetadata::getIfExists(AI)) - if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) - for (User *U : MDV->users()) - if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) - DDI->moveBefore(AvailableAlloca->getNextNode()); - - AI->replaceAllUsesWith(AvailableAlloca); - - if (Align1 != Align2) { - if (!Align1 || !Align2) { - const DataLayout &DL = Caller->getParent()->getDataLayout(); - unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); - - Align1 = Align1 ? Align1 : TypeAlign; - Align2 = Align2 ? Align2 : TypeAlign; - } - - if (Align1 > Align2) - AvailableAlloca->setAlignment(AI->getAlignment()); - } - - AI->eraseFromParent(); - MergedAwayAlloca = true; - ++NumMergedAllocas; - IFI.StaticAllocas[AllocaNo] = nullptr; - break; - } - - // If we already nuked the alloca, we're done with it. - if (MergedAwayAlloca) - continue; - - // If we were unable to merge away the alloca either because there are no - // allocas of the right type available or because we reused them all - // already, remember that this alloca came from an inlined function and mark - // it used so we don't reuse it for other allocas from this inline - // operation. - AllocasForType.push_back(AI); - UsedAllocas.insert(AI); - } -} - -/// If it is possible to inline the specified call site, -/// do so and update the CallGraph for this operation. -/// -/// This function also does some basic book-keeping to update the IR. The -/// InlinedArrayAllocas map keeps track of any allocas that are already -/// available from other functions inlined into the caller. If we are able to -/// inline this call site we attempt to reuse already available allocas or add -/// any new allocas to the set if not possible. -static InlineResult InlineCallIfPossible( - CallSite CS, InlineFunctionInfo &IFI, - InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, - bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, - ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { - Function *Callee = CS.getCalledFunction(); - Function *Caller = CS.getCaller(); - - AAResults &AAR = AARGetter(*Callee); - - // Try to inline the function. Get the list of static allocas that were - // inlined. - InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime); - if (!IR) - return IR; - - if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) - ImportedFunctionsStats.recordInline(*Caller, *Callee); - - AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); - - if (!DisableInlinedAllocaMerging) - mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); - - return IR; // success -} - -/// Return true if inlining of CS can block the caller from being -/// inlined which is proved to be more beneficial. \p IC is the -/// estimated inline cost associated with callsite \p CS. -/// \p TotalSecondaryCost will be set to the estimated cost of inlining the -/// caller if \p CS is suppressed for inlining. -static bool -shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, - int &TotalSecondaryCost, - function_ref<InlineCost(CallSite CS)> GetInlineCost) { - // For now we only handle local or inline functions. - if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) - return false; - // If the cost of inlining CS is non-positive, it is not going to prevent the - // caller from being inlined into its callers and hence we don't need to - // defer. - if (IC.getCost() <= 0) - return false; - // Try to detect the case where the current inlining candidate caller (call - // it B) is a static or linkonce-ODR function and is an inlining candidate - // elsewhere, and the current candidate callee (call it C) is large enough - // that inlining it into B would make B too big to inline later. In these - // circumstances it may be best not to inline C into B, but to inline B into - // its callers. - // - // This only applies to static and linkonce-ODR functions because those are - // expected to be available for inlining in the translation units where they - // are used. Thus we will always have the opportunity to make local inlining - // decisions. Importantly the linkonce-ODR linkage covers inline functions - // and templates in C++. - // - // FIXME: All of this logic should be sunk into getInlineCost. It relies on - // the internal implementation of the inline cost metrics rather than - // treating them as truly abstract units etc. - TotalSecondaryCost = 0; - // The candidate cost to be imposed upon the current function. - int CandidateCost = IC.getCost() - 1; - // If the caller has local linkage and can be inlined to all its callers, we - // can apply a huge negative bonus to TotalSecondaryCost. - bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse(); - // This bool tracks what happens if we DO inline C into B. - bool inliningPreventsSomeOuterInline = false; - for (User *U : Caller->users()) { - // If the caller will not be removed (either because it does not have a - // local linkage or because the LastCallToStaticBonus has been already - // applied), then we can exit the loop early. - if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost()) - return false; - CallSite CS2(U); - - // If this isn't a call to Caller (it could be some other sort - // of reference) skip it. Such references will prevent the caller - // from being removed. - if (!CS2 || CS2.getCalledFunction() != Caller) { - ApplyLastCallBonus = false; - continue; - } - - InlineCost IC2 = GetInlineCost(CS2); - ++NumCallerCallersAnalyzed; - if (!IC2) { - ApplyLastCallBonus = false; - continue; - } - if (IC2.isAlways()) - continue; - - // See if inlining of the original callsite would erase the cost delta of - // this callsite. We subtract off the penalty for the call instruction, - // which we would be deleting. - if (IC2.getCostDelta() <= CandidateCost) { - inliningPreventsSomeOuterInline = true; - TotalSecondaryCost += IC2.getCost(); - } - } - // If all outer calls to Caller would get inlined, the cost for the last - // one is set very low by getInlineCost, in anticipation that Caller will - // be removed entirely. We did not account for this above unless there - // is only one caller of Caller. - if (ApplyLastCallBonus) - TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; - - if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) - return true; - - return false; -} - -static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R, - const ore::NV &Arg) { - return R << Arg.Val; -} - -template <class RemarkT> -RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) { - using namespace ore; - if (IC.isAlways()) { - R << "(cost=always)"; - } else if (IC.isNever()) { - R << "(cost=never)"; - } else { - R << "(cost=" << ore::NV("Cost", IC.getCost()) - << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")"; - } - if (const char *Reason = IC.getReason()) - R << ": " << ore::NV("Reason", Reason); - return R; -} - -static std::string inlineCostStr(const InlineCost &IC) { - std::stringstream Remark; - Remark << IC; - return Remark.str(); -} - -/// Return the cost only if the inliner should attempt to inline at the given -/// CallSite. If we return the cost, we will emit an optimisation remark later -/// using that cost, so we won't do so from this function. -static Optional<InlineCost> -shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost, - OptimizationRemarkEmitter &ORE) { - using namespace ore; - - InlineCost IC = GetInlineCost(CS); - Instruction *Call = CS.getInstruction(); - Function *Callee = CS.getCalledFunction(); - Function *Caller = CS.getCaller(); - - if (IC.isAlways()) { - LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) - << ", Call: " << *CS.getInstruction() << "\n"); - return IC; - } - - if (IC.isNever()) { - LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) - << ", Call: " << *CS.getInstruction() << "\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) - << NV("Callee", Callee) << " not inlined into " - << NV("Caller", Caller) << " because it should never be inlined " - << IC; - }); - return IC; - } - - if (!IC) { - LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC) - << ", Call: " << *CS.getInstruction() << "\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) - << NV("Callee", Callee) << " not inlined into " - << NV("Caller", Caller) << " because too costly to inline " << IC; - }); - return IC; - } - - int TotalSecondaryCost = 0; - if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { - LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() - << " Cost = " << IC.getCost() - << ", outer Cost = " << TotalSecondaryCost << '\n'); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", - Call) - << "Not inlining. Cost of inlining " << NV("Callee", Callee) - << " increases the cost of inlining " << NV("Caller", Caller) - << " in other contexts"; - }); - - // IC does not bool() to false, so get an InlineCost that will. - // This will not be inspected to make an error message. - return None; - } - - LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC) - << ", Call: " << *CS.getInstruction() << '\n'); - return IC; -} - -/// Return true if the specified inline history ID -/// indicates an inline history that includes the specified function. -static bool InlineHistoryIncludes( - Function *F, int InlineHistoryID, - const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { - while (InlineHistoryID != -1) { - assert(unsigned(InlineHistoryID) < InlineHistory.size() && - "Invalid inline history ID"); - if (InlineHistory[InlineHistoryID].first == F) - return true; - InlineHistoryID = InlineHistory[InlineHistoryID].second; - } - return false; -} - -bool LegacyInlinerBase::doInitialization(CallGraph &CG) { - if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) - ImportedFunctionsStats.setModuleInfo(CG.getModule()); - return false; // No changes to CallGraph. -} - -bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { - if (skipSCC(SCC)) - return false; - return inlineCalls(SCC); -} - -static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc, - const BasicBlock *Block, const Function &Callee, - const Function &Caller, const InlineCost &IC) { - ORE.emit([&]() { - bool AlwaysInline = IC.isAlways(); - StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; - return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block) - << ore::NV("Callee", &Callee) << " inlined into " - << ore::NV("Caller", &Caller) << " with " << IC; - }); -} - -static void setInlineRemark(CallSite &CS, StringRef message) { - if (!InlineRemarkAttribute) - return; - - Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message); - CS.addAttribute(AttributeList::FunctionIndex, attr); -} - -static bool -inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, - std::function<AssumptionCache &(Function &)> GetAssumptionCache, - ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI, - bool InsertLifetime, - function_ref<InlineCost(CallSite CS)> GetInlineCost, - function_ref<AAResults &(Function &)> AARGetter, - ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { - SmallPtrSet<Function *, 8> SCCFunctions; - LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); - for (CallGraphNode *Node : SCC) { - Function *F = Node->getFunction(); - if (F) - SCCFunctions.insert(F); - LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); - } - - // Scan through and identify all call sites ahead of time so that we only - // inline call sites in the original functions, not call sites that result - // from inlining other functions. - SmallVector<std::pair<CallSite, int>, 16> CallSites; - - // When inlining a callee produces new call sites, we want to keep track of - // the fact that they were inlined from the callee. This allows us to avoid - // infinite inlining in some obscure cases. To represent this, we use an - // index into the InlineHistory vector. - SmallVector<std::pair<Function *, int>, 8> InlineHistory; - - for (CallGraphNode *Node : SCC) { - Function *F = Node->getFunction(); - if (!F || F->isDeclaration()) - continue; - - OptimizationRemarkEmitter ORE(F); - for (BasicBlock &BB : *F) - for (Instruction &I : BB) { - CallSite CS(cast<Value>(&I)); - // If this isn't a call, or it is a call to an intrinsic, it can - // never be inlined. - if (!CS || isa<IntrinsicInst>(I)) - continue; - - // If this is a direct call to an external function, we can never inline - // it. If it is an indirect call, inlining may resolve it to be a - // direct call, so we keep it. - if (Function *Callee = CS.getCalledFunction()) - if (Callee->isDeclaration()) { - using namespace ore; - - setInlineRemark(CS, "unavailable definition"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) - << NV("Callee", Callee) << " will not be inlined into " - << NV("Caller", CS.getCaller()) - << " because its definition is unavailable" - << setIsVerbose(); - }); - continue; - } - - CallSites.push_back(std::make_pair(CS, -1)); - } - } - - LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); - - // If there are no calls in this function, exit early. - if (CallSites.empty()) - return false; - - // Now that we have all of the call sites, move the ones to functions in the - // current SCC to the end of the list. - unsigned FirstCallInSCC = CallSites.size(); - for (unsigned i = 0; i < FirstCallInSCC; ++i) - if (Function *F = CallSites[i].first.getCalledFunction()) - if (SCCFunctions.count(F)) - std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); - - InlinedArrayAllocasTy InlinedArrayAllocas; - InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); - - // Now that we have all of the call sites, loop over them and inline them if - // it looks profitable to do so. - bool Changed = false; - bool LocalChange; - do { - LocalChange = false; - // Iterate over the outer loop because inlining functions can cause indirect - // calls to become direct calls. - // CallSites may be modified inside so ranged for loop can not be used. - for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { - CallSite CS = CallSites[CSi].first; - - Function *Caller = CS.getCaller(); - Function *Callee = CS.getCalledFunction(); - - // We can only inline direct calls to non-declarations. - if (!Callee || Callee->isDeclaration()) - continue; - - Instruction *Instr = CS.getInstruction(); - - bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI); - - int InlineHistoryID; - if (!IsTriviallyDead) { - // If this call site was obtained by inlining another function, verify - // that the include path for the function did not include the callee - // itself. If so, we'd be recursively inlining the same function, - // which would provide the same callsites, which would cause us to - // infinitely inline. - InlineHistoryID = CallSites[CSi].second; - if (InlineHistoryID != -1 && - InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { - setInlineRemark(CS, "recursive"); - continue; - } - } - - // FIXME for new PM: because of the old PM we currently generate ORE and - // in turn BFI on demand. With the new PM, the ORE dependency should - // just become a regular analysis dependency. - OptimizationRemarkEmitter ORE(Caller); - - Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); - // If the policy determines that we should inline this function, - // delete the call instead. - if (!OIC.hasValue()) { - setInlineRemark(CS, "deferred"); - continue; - } - - if (!OIC.getValue()) { - // shouldInline() call returned a negative inline cost that explains - // why this callsite should not be inlined. - setInlineRemark(CS, inlineCostStr(*OIC)); - continue; - } - - // If this call site is dead and it is to a readonly function, we should - // just delete the call instead of trying to inline it, regardless of - // size. This happens because IPSCCP propagates the result out of the - // call and then we're left with the dead call. - if (IsTriviallyDead) { - LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n"); - // Update the call graph by deleting the edge from Callee to Caller. - setInlineRemark(CS, "trivially dead"); - CG[Caller]->removeCallEdgeFor(CS); - Instr->eraseFromParent(); - ++NumCallsDeleted; - } else { - // Get DebugLoc to report. CS will be invalid after Inliner. - DebugLoc DLoc = CS->getDebugLoc(); - BasicBlock *Block = CS.getParent(); - - // Attempt to inline the function. - using namespace ore; - - InlineResult IR = InlineCallIfPossible( - CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID, - InsertLifetime, AARGetter, ImportedFunctionsStats); - if (!IR) { - setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC)); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, - Block) - << NV("Callee", Callee) << " will not be inlined into " - << NV("Caller", Caller) << ": " << NV("Reason", IR.message); - }); - continue; - } - ++NumInlined; - - emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC); - - // If inlining this function gave us any new call sites, throw them - // onto our worklist to process. They are useful inline candidates. - if (!InlineInfo.InlinedCalls.empty()) { - // Create a new inline history entry for this, so that we remember - // that these new callsites came about due to inlining Callee. - int NewHistoryID = InlineHistory.size(); - InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); - - for (Value *Ptr : InlineInfo.InlinedCalls) - CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); - } - } - - // If we inlined or deleted the last possible call site to the function, - // delete the function body now. - if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && - // TODO: Can remove if in SCC now. - !SCCFunctions.count(Callee) && - // The function may be apparently dead, but if there are indirect - // callgraph references to the node, we cannot delete it yet, this - // could invalidate the CGSCC iterator. - CG[Callee]->getNumReferences() == 0) { - LLVM_DEBUG(dbgs() << " -> Deleting dead function: " - << Callee->getName() << "\n"); - CallGraphNode *CalleeNode = CG[Callee]; - - // Remove any call graph edges from the callee to its callees. - CalleeNode->removeAllCalledFunctions(); - - // Removing the node for callee from the call graph and delete it. - delete CG.removeFunctionFromModule(CalleeNode); - ++NumDeleted; - } - - // Remove this call site from the list. If possible, use - // swap/pop_back for efficiency, but do not use it if doing so would - // move a call site to a function in this SCC before the - // 'FirstCallInSCC' barrier. - if (SCC.isSingular()) { - CallSites[CSi] = CallSites.back(); - CallSites.pop_back(); - } else { - CallSites.erase(CallSites.begin() + CSi); - } - --CSi; - - Changed = true; - LocalChange = true; - } - } while (LocalChange); - - return Changed; -} - -bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { - CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); - ACT = &getAnalysis<AssumptionCacheTracker>(); - PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { - return ACT->getAssumptionCache(F); - }; - return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime, - [this](CallSite CS) { return getInlineCost(CS); }, - LegacyAARGetter(*this), ImportedFunctionsStats); -} - -/// Remove now-dead linkonce functions at the end of -/// processing to avoid breaking the SCC traversal. -bool LegacyInlinerBase::doFinalization(CallGraph &CG) { - if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) - ImportedFunctionsStats.dump(InlinerFunctionImportStats == - InlinerFunctionImportStatsOpts::Verbose); - return removeDeadFunctions(CG); -} - -/// Remove dead functions that are not included in DNR (Do Not Remove) list. -bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, - bool AlwaysInlineOnly) { - SmallVector<CallGraphNode *, 16> FunctionsToRemove; - SmallVector<Function *, 16> DeadFunctionsInComdats; - - auto RemoveCGN = [&](CallGraphNode *CGN) { - // Remove any call graph edges from the function to its callees. - CGN->removeAllCalledFunctions(); - - // Remove any edges from the external node to the function's call graph - // node. These edges might have been made irrelegant due to - // optimization of the program. - CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); - - // Removing the node for callee from the call graph and delete it. - FunctionsToRemove.push_back(CGN); - }; - - // Scan for all of the functions, looking for ones that should now be removed - // from the program. Insert the dead ones in the FunctionsToRemove set. - for (const auto &I : CG) { - CallGraphNode *CGN = I.second.get(); - Function *F = CGN->getFunction(); - if (!F || F->isDeclaration()) - continue; - - // Handle the case when this function is called and we only want to care - // about always-inline functions. This is a bit of a hack to share code - // between here and the InlineAlways pass. - if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) - continue; - - // If the only remaining users of the function are dead constants, remove - // them. - F->removeDeadConstantUsers(); - - if (!F->isDefTriviallyDead()) - continue; - - // It is unsafe to drop a function with discardable linkage from a COMDAT - // without also dropping the other members of the COMDAT. - // The inliner doesn't visit non-function entities which are in COMDAT - // groups so it is unsafe to do so *unless* the linkage is local. - if (!F->hasLocalLinkage()) { - if (F->hasComdat()) { - DeadFunctionsInComdats.push_back(F); - continue; - } - } - - RemoveCGN(CGN); - } - if (!DeadFunctionsInComdats.empty()) { - // Filter out the functions whose comdats remain alive. - filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); - // Remove the rest. - for (Function *F : DeadFunctionsInComdats) - RemoveCGN(CG[F]); - } - - if (FunctionsToRemove.empty()) - return false; - - // Now that we know which functions to delete, do so. We didn't want to do - // this inline, because that would invalidate our CallGraph::iterator - // objects. :( - // - // Note that it doesn't matter that we are iterating over a non-stable order - // here to do this, it doesn't matter which order the functions are deleted - // in. - array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); - FunctionsToRemove.erase( - std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), - FunctionsToRemove.end()); - for (CallGraphNode *CGN : FunctionsToRemove) { - delete CG.removeFunctionFromModule(CGN); - ++NumDeleted; - } - return true; -} - -InlinerPass::~InlinerPass() { - if (ImportedFunctionsStats) { - assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); - ImportedFunctionsStats->dump(InlinerFunctionImportStats == - InlinerFunctionImportStatsOpts::Verbose); - } -} - -PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, - CGSCCAnalysisManager &AM, LazyCallGraph &CG, - CGSCCUpdateResult &UR) { - const ModuleAnalysisManager &MAM = - AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); - bool Changed = false; - - assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); - Module &M = *InitialC.begin()->getFunction().getParent(); - ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); - - if (!ImportedFunctionsStats && - InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { - ImportedFunctionsStats = - llvm::make_unique<ImportedFunctionsInliningStatistics>(); - ImportedFunctionsStats->setModuleInfo(M); - } - - // We use a single common worklist for calls across the entire SCC. We - // process these in-order and append new calls introduced during inlining to - // the end. - // - // Note that this particular order of processing is actually critical to - // avoid very bad behaviors. Consider *highly connected* call graphs where - // each function contains a small amonut of code and a couple of calls to - // other functions. Because the LLVM inliner is fundamentally a bottom-up - // inliner, it can handle gracefully the fact that these all appear to be - // reasonable inlining candidates as it will flatten things until they become - // too big to inline, and then move on and flatten another batch. - // - // However, when processing call edges *within* an SCC we cannot rely on this - // bottom-up behavior. As a consequence, with heavily connected *SCCs* of - // functions we can end up incrementally inlining N calls into each of - // N functions because each incremental inlining decision looks good and we - // don't have a topological ordering to prevent explosions. - // - // To compensate for this, we don't process transitive edges made immediate - // by inlining until we've done one pass of inlining across the entire SCC. - // Large, highly connected SCCs still lead to some amount of code bloat in - // this model, but it is uniformly spread across all the functions in the SCC - // and eventually they all become too large to inline, rather than - // incrementally maknig a single function grow in a super linear fashion. - SmallVector<std::pair<CallSite, int>, 16> Calls; - - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) - .getManager(); - - // Populate the initial list of calls in this SCC. - for (auto &N : InitialC) { - auto &ORE = - FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); - // We want to generally process call sites top-down in order for - // simplifications stemming from replacing the call with the returned value - // after inlining to be visible to subsequent inlining decisions. - // FIXME: Using instructions sequence is a really bad way to do this. - // Instead we should do an actual RPO walk of the function body. - for (Instruction &I : instructions(N.getFunction())) - if (auto CS = CallSite(&I)) - if (Function *Callee = CS.getCalledFunction()) { - if (!Callee->isDeclaration()) - Calls.push_back({CS, -1}); - else if (!isa<IntrinsicInst>(I)) { - using namespace ore; - setInlineRemark(CS, "unavailable definition"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) - << NV("Callee", Callee) << " will not be inlined into " - << NV("Caller", CS.getCaller()) - << " because its definition is unavailable" - << setIsVerbose(); - }); - } - } - } - if (Calls.empty()) - return PreservedAnalyses::all(); - - // Capture updatable variables for the current SCC and RefSCC. - auto *C = &InitialC; - auto *RC = &C->getOuterRefSCC(); - - // When inlining a callee produces new call sites, we want to keep track of - // the fact that they were inlined from the callee. This allows us to avoid - // infinite inlining in some obscure cases. To represent this, we use an - // index into the InlineHistory vector. - SmallVector<std::pair<Function *, int>, 16> InlineHistory; - - // Track a set vector of inlined callees so that we can augment the caller - // with all of their edges in the call graph before pruning out the ones that - // got simplified away. - SmallSetVector<Function *, 4> InlinedCallees; - - // Track the dead functions to delete once finished with inlining calls. We - // defer deleting these to make it easier to handle the call graph updates. - SmallVector<Function *, 4> DeadFunctions; - - // Loop forward over all of the calls. Note that we cannot cache the size as - // inlining can introduce new calls that need to be processed. - for (int i = 0; i < (int)Calls.size(); ++i) { - // We expect the calls to typically be batched with sequences of calls that - // have the same caller, so we first set up some shared infrastructure for - // this caller. We also do any pruning we can at this layer on the caller - // alone. - Function &F = *Calls[i].first.getCaller(); - LazyCallGraph::Node &N = *CG.lookup(F); - if (CG.lookupSCC(N) != C) - continue; - if (F.hasFnAttribute(Attribute::OptimizeNone)) { - setInlineRemark(Calls[i].first, "optnone attribute"); - continue; - } - - LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); - - // Get a FunctionAnalysisManager via a proxy for this particular node. We - // do this each time we visit a node as the SCC may have changed and as - // we're going to mutate this particular function we want to make sure the - // proxy is in place to forward any invalidation events. We can use the - // manager we get here for looking up results for functions other than this - // node however because those functions aren't going to be mutated by this - // pass. - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) - .getManager(); - - // Get the remarks emission analysis for the caller. - auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); - - std::function<AssumptionCache &(Function &)> GetAssumptionCache = - [&](Function &F) -> AssumptionCache & { - return FAM.getResult<AssumptionAnalysis>(F); - }; - auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { - return FAM.getResult<BlockFrequencyAnalysis>(F); - }; - - auto GetInlineCost = [&](CallSite CS) { - Function &Callee = *CS.getCalledFunction(); - auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); - return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, - PSI, &ORE); - }; - - // Now process as many calls as we have within this caller in the sequnece. - // We bail out as soon as the caller has to change so we can update the - // call graph and prepare the context of that new caller. - bool DidInline = false; - for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) { - int InlineHistoryID; - CallSite CS; - std::tie(CS, InlineHistoryID) = Calls[i]; - Function &Callee = *CS.getCalledFunction(); - - if (InlineHistoryID != -1 && - InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { - setInlineRemark(CS, "recursive"); - continue; - } - - // Check if this inlining may repeat breaking an SCC apart that has - // already been split once before. In that case, inlining here may - // trigger infinite inlining, much like is prevented within the inliner - // itself by the InlineHistory above, but spread across CGSCC iterations - // and thus hidden from the full inline history. - if (CG.lookupSCC(*CG.lookup(Callee)) == C && - UR.InlinedInternalEdges.count({&N, C})) { - LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " - "previously split out of this SCC by inlining: " - << F.getName() << " -> " << Callee.getName() << "\n"); - setInlineRemark(CS, "recursive SCC split"); - continue; - } - - Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); - // Check whether we want to inline this callsite. - if (!OIC.hasValue()) { - setInlineRemark(CS, "deferred"); - continue; - } - - if (!OIC.getValue()) { - // shouldInline() call returned a negative inline cost that explains - // why this callsite should not be inlined. - setInlineRemark(CS, inlineCostStr(*OIC)); - continue; - } - - // Setup the data structure used to plumb customization into the - // `InlineFunction` routine. - InlineFunctionInfo IFI( - /*cg=*/nullptr, &GetAssumptionCache, PSI, - &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), - &FAM.getResult<BlockFrequencyAnalysis>(Callee)); - - // Get DebugLoc to report. CS will be invalid after Inliner. - DebugLoc DLoc = CS->getDebugLoc(); - BasicBlock *Block = CS.getParent(); - - using namespace ore; - - InlineResult IR = InlineFunction(CS, IFI); - if (!IR) { - setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC)); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) - << NV("Callee", &Callee) << " will not be inlined into " - << NV("Caller", &F) << ": " << NV("Reason", IR.message); - }); - continue; - } - DidInline = true; - InlinedCallees.insert(&Callee); - - ++NumInlined; - - emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC); - - // Add any new callsites to defined functions to the worklist. - if (!IFI.InlinedCallSites.empty()) { - int NewHistoryID = InlineHistory.size(); - InlineHistory.push_back({&Callee, InlineHistoryID}); - for (CallSite &CS : reverse(IFI.InlinedCallSites)) - if (Function *NewCallee = CS.getCalledFunction()) - if (!NewCallee->isDeclaration()) - Calls.push_back({CS, NewHistoryID}); - } - - if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) - ImportedFunctionsStats->recordInline(F, Callee); - - // Merge the attributes based on the inlining. - AttributeFuncs::mergeAttributesForInlining(F, Callee); - - // For local functions, check whether this makes the callee trivially - // dead. In that case, we can drop the body of the function eagerly - // which may reduce the number of callers of other functions to one, - // changing inline cost thresholds. - if (Callee.hasLocalLinkage()) { - // To check this we also need to nuke any dead constant uses (perhaps - // made dead by this operation on other functions). - Callee.removeDeadConstantUsers(); - if (Callee.use_empty() && !CG.isLibFunction(Callee)) { - Calls.erase( - std::remove_if(Calls.begin() + i + 1, Calls.end(), - [&Callee](const std::pair<CallSite, int> &Call) { - return Call.first.getCaller() == &Callee; - }), - Calls.end()); - // Clear the body and queue the function itself for deletion when we - // finish inlining and call graph updates. - // Note that after this point, it is an error to do anything other - // than use the callee's address or delete it. - Callee.dropAllReferences(); - assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && - "Cannot put cause a function to become dead twice!"); - DeadFunctions.push_back(&Callee); - } - } - } - - // Back the call index up by one to put us in a good position to go around - // the outer loop. - --i; - - if (!DidInline) - continue; - Changed = true; - - // Add all the inlined callees' edges as ref edges to the caller. These are - // by definition trivial edges as we always have *some* transitive ref edge - // chain. While in some cases these edges are direct calls inside the - // callee, they have to be modeled in the inliner as reference edges as - // there may be a reference edge anywhere along the chain from the current - // caller to the callee that causes the whole thing to appear like - // a (transitive) reference edge that will require promotion to a call edge - // below. - for (Function *InlinedCallee : InlinedCallees) { - LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); - for (LazyCallGraph::Edge &E : *CalleeN) - RC->insertTrivialRefEdge(N, E.getNode()); - } - - // At this point, since we have made changes we have at least removed - // a call instruction. However, in the process we do some incremental - // simplification of the surrounding code. This simplification can - // essentially do all of the same things as a function pass and we can - // re-use the exact same logic for updating the call graph to reflect the - // change. - LazyCallGraph::SCC *OldC = C; - C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); - LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); - RC = &C->getOuterRefSCC(); - - // If this causes an SCC to split apart into multiple smaller SCCs, there - // is a subtle risk we need to prepare for. Other transformations may - // expose an "infinite inlining" opportunity later, and because of the SCC - // mutation, we will revisit this function and potentially re-inline. If we - // do, and that re-inlining also has the potentially to mutate the SCC - // structure, the infinite inlining problem can manifest through infinite - // SCC splits and merges. To avoid this, we capture the originating caller - // node and the SCC containing the call edge. This is a slight over - // approximation of the possible inlining decisions that must be avoided, - // but is relatively efficient to store. We use C != OldC to know when - // a new SCC is generated and the original SCC may be generated via merge - // in later iterations. - // - // It is also possible that even if no new SCC is generated - // (i.e., C == OldC), the original SCC could be split and then merged - // into the same one as itself. and the original SCC will be added into - // UR.CWorklist again, we want to catch such cases too. - // - // FIXME: This seems like a very heavyweight way of retaining the inline - // history, we should look for a more efficient way of tracking it. - if ((C != OldC || UR.CWorklist.count(OldC)) && - llvm::any_of(InlinedCallees, [&](Function *Callee) { - return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; - })) { - LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " - "retaining this to avoid infinite inlining.\n"); - UR.InlinedInternalEdges.insert({&N, OldC}); - } - InlinedCallees.clear(); - } - - // Now that we've finished inlining all of the calls across this SCC, delete - // all of the trivially dead functions, updating the call graph and the CGSCC - // pass manager in the process. - // - // Note that this walks a pointer set which has non-deterministic order but - // that is OK as all we do is delete things and add pointers to unordered - // sets. - for (Function *DeadF : DeadFunctions) { - // Get the necessary information out of the call graph and nuke the - // function there. Also, cclear out any cached analyses. - auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) - .getManager(); - FAM.clear(*DeadF, DeadF->getName()); - AM.clear(DeadC, DeadC.getName()); - auto &DeadRC = DeadC.getOuterRefSCC(); - CG.removeDeadFunction(*DeadF); - - // Mark the relevant parts of the call graph as invalid so we don't visit - // them. - UR.InvalidatedSCCs.insert(&DeadC); - UR.InvalidatedRefSCCs.insert(&DeadRC); - - // And delete the actual function from the module. - M.getFunctionList().erase(DeadF); - ++NumDeleted; - } - - if (!Changed) - return PreservedAnalyses::all(); - - // Even if we change the IR, we update the core CGSCC data structures and so - // can preserve the proxy to the function analysis manager. - PreservedAnalyses PA; - PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); - return PA; -} |
