summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2017-10-04 20:27:34 +0000
committerpatrick <patrick@openbsd.org>2017-10-04 20:27:34 +0000
commit31eb748944903b7f4f38afda9851951ca9dfc1ae (patch)
tree9b95b6ea45d0874d75eb05b90c0840e191416439 /gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
parentDon't try to handle IPv4-compatible IPv6 addresses (diff)
downloadwireguard-openbsd-31eb748944903b7f4f38afda9851951ca9dfc1ae.tar.xz
wireguard-openbsd-31eb748944903b7f4f38afda9851951ca9dfc1ae.zip
Import LLVM 5.0.0 release including clang, lld and lldb.
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp481
1 files changed, 217 insertions, 264 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 2d34c1cc74b..809471cfd74 100644
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/gnu/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -17,6 +17,7 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/KnownBits.h"
using namespace llvm;
using namespace PatternMatch;
@@ -163,7 +164,7 @@ namespace {
///
class FAddCombine {
public:
- FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
+ FAddCombine(InstCombiner::BuilderTy &B) : Builder(B), Instr(nullptr) {}
Value *simplify(Instruction *FAdd);
private:
@@ -186,7 +187,7 @@ namespace {
Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
- InstCombiner::BuilderTy *Builder;
+ InstCombiner::BuilderTy &Builder;
Instruction *Instr;
// Debugging stuff are clustered here.
@@ -734,7 +735,7 @@ Value *FAddCombine::createNaryFAdd
}
Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder->CreateFSub(Opnd0, Opnd1);
+ Value *V = Builder.CreateFSub(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
@@ -749,21 +750,21 @@ Value *FAddCombine::createFNeg(Value *V) {
}
Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
+ Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder->CreateFMul(Opnd0, Opnd1);
+ Value *V = Builder.CreateFMul(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
+ Value *V = Builder.CreateFDiv(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
@@ -794,6 +795,11 @@ unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
if (Opnd->isConstant())
continue;
+ // The constant check above is really for a few special constant
+ // coefficients.
+ if (isa<UndefValue>(Opnd->getSymVal()))
+ continue;
+
const FAddendCoef &CE = Opnd->getCoef();
if (CE.isMinusOne() || CE.isMinusTwo())
NegOpndNum++;
@@ -841,108 +847,28 @@ Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
}
-// If one of the operands only has one non-zero bit, and if the other
-// operand has a known-zero bit in a more significant place than it (not
-// including the sign bit) the ripple may go up to and fill the zero, but
-// won't change the sign. For example, (X & ~4) + 1.
-static bool checkRippleForAdd(const APInt &Op0KnownZero,
- const APInt &Op1KnownZero) {
- APInt Op1MaybeOne = ~Op1KnownZero;
- // Make sure that one of the operand has at most one bit set to 1.
- if (Op1MaybeOne.countPopulation() != 1)
- return false;
-
- // Find the most significant known 0 other than the sign bit.
- int BitWidth = Op0KnownZero.getBitWidth();
- APInt Op0KnownZeroTemp(Op0KnownZero);
- Op0KnownZeroTemp.clearBit(BitWidth - 1);
- int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
-
- int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
- assert(Op1OnePosition >= 0);
-
- // This also covers the case of no known zero, since in that case
- // Op0ZeroPosition is -1.
- return Op0ZeroPosition >= Op1OnePosition;
-}
-
-/// Return true if we can prove that:
-/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
-/// This basically requires proving that the add in the original type would not
-/// overflow to change the sign bit or have a carry out.
-bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
- Instruction &CxtI) {
- // There are different heuristics we can use for this. Here are some simple
- // ones.
-
- // If LHS and RHS each have at least two sign bits, the addition will look
- // like
- //
- // XX..... +
- // YY.....
- //
- // If the carry into the most significant position is 0, X and Y can't both
- // be 1 and therefore the carry out of the addition is also 0.
- //
- // If the carry into the most significant position is 1, X and Y can't both
- // be 0 and therefore the carry out of the addition is also 1.
- //
- // Since the carry into the most significant position is always equal to
- // the carry out of the addition, there is no signed overflow.
- if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
- ComputeNumSignBits(RHS, 0, &CxtI) > 1)
- return true;
-
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
-
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
-
- // Addition of two 2's compliment numbers having opposite signs will never
- // overflow.
- if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
- (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
- return true;
-
- // Check if carry bit of addition will not cause overflow.
- if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
- return true;
- if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
- return true;
-
- return false;
-}
-
/// \brief Return true if we can prove that:
/// (sub LHS, RHS) === (sub nsw LHS, RHS)
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
/// TODO: Handle this for Vectors.
-bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
- Instruction &CxtI) {
+bool InstCombiner::willNotOverflowSignedSub(const Value *LHS,
+ const Value *RHS,
+ const Instruction &CxtI) const {
// If LHS and RHS each have at least two sign bits, the subtraction
// cannot overflow.
if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
ComputeNumSignBits(RHS, 0, &CxtI) > 1)
return true;
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
+ KnownBits LHSKnown = computeKnownBits(LHS, 0, &CxtI);
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
+ KnownBits RHSKnown = computeKnownBits(RHS, 0, &CxtI);
- // Subtraction of two 2's compliment numbers having identical signs will
+ // Subtraction of two 2's complement numbers having identical signs will
// never overflow.
- if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
- (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
+ if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
+ (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
return true;
// TODO: implement logic similar to checkRippleForAdd
@@ -951,16 +877,13 @@ bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
/// \brief Return true if we can prove that:
/// (sub LHS, RHS) === (sub nuw LHS, RHS)
-bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
- Instruction &CxtI) {
+bool InstCombiner::willNotOverflowUnsignedSub(const Value *LHS,
+ const Value *RHS,
+ const Instruction &CxtI) const {
// If the LHS is negative and the RHS is non-negative, no unsigned wrap.
- bool LHSKnownNonNegative, LHSKnownNegative;
- bool RHSKnownNonNegative, RHSKnownNegative;
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
- &CxtI);
- ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
- &CxtI);
- if (LHSKnownNegative && RHSKnownNonNegative)
+ KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
+ KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
+ if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
return true;
return false;
@@ -972,7 +895,7 @@ bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
static Value *checkForNegativeOperand(BinaryOperator &I,
- InstCombiner::BuilderTy *Builder) {
+ InstCombiner::BuilderTy &Builder) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// This function creates 2 instructions to replace ADD, we need at least one
@@ -996,13 +919,13 @@ static Value *checkForNegativeOperand(BinaryOperator &I,
// X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
- Value *NewAnd = Builder->CreateAnd(Z, *C1);
- return Builder->CreateSub(RHS, NewAnd, "sub");
+ Value *NewAnd = Builder.CreateAnd(Z, *C1);
+ return Builder.CreateSub(RHS, NewAnd, "sub");
} else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
// X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
- Value *NewOr = Builder->CreateOr(Z, ~(*C1));
- return Builder->CreateSub(RHS, NewOr, "sub");
+ Value *NewOr = Builder.CreateOr(Z, ~(*C1));
+ return Builder.CreateSub(RHS, NewOr, "sub");
}
}
}
@@ -1021,12 +944,73 @@ static Value *checkForNegativeOperand(BinaryOperator &I,
if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
if (C1->countTrailingZeros() == 0)
if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
- Value *NewOr = Builder->CreateOr(Z, ~(*C2));
- return Builder->CreateSub(RHS, NewOr, "sub");
+ Value *NewOr = Builder.CreateOr(Z, ~(*C2));
+ return Builder.CreateSub(RHS, NewOr, "sub");
}
return nullptr;
}
+static Instruction *foldAddWithConstant(BinaryOperator &Add,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
+ const APInt *C;
+ if (!match(Op1, m_APInt(C)))
+ return nullptr;
+
+ if (C->isSignMask()) {
+ // If wrapping is not allowed, then the addition must set the sign bit:
+ // X + (signmask) --> X | signmask
+ if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
+ return BinaryOperator::CreateOr(Op0, Op1);
+
+ // If wrapping is allowed, then the addition flips the sign bit of LHS:
+ // X + (signmask) --> X ^ signmask
+ return BinaryOperator::CreateXor(Op0, Op1);
+ }
+
+ Value *X;
+ const APInt *C2;
+ Type *Ty = Add.getType();
+
+ // Is this add the last step in a convoluted sext?
+ // add(zext(xor i16 X, -32768), -32768) --> sext X
+ if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
+ C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
+ return CastInst::Create(Instruction::SExt, X, Ty);
+
+ // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
+ // FIXME: This should check hasOneUse to not increase the instruction count?
+ if (C->isNegative() &&
+ match(Op0, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2)))) &&
+ C->sge(-C2->sext(C->getBitWidth()))) {
+ Constant *NewC =
+ ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
+ return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
+ }
+
+ if (C->isOneValue() && Op0->hasOneUse()) {
+ // add (sext i1 X), 1 --> zext (not X)
+ // TODO: The smallest IR representation is (select X, 0, 1), and that would
+ // not require the one-use check. But we need to remove a transform in
+ // visitSelect and make sure that IR value tracking for select is equal or
+ // better than for these ops.
+ if (match(Op0, m_SExt(m_Value(X))) &&
+ X->getType()->getScalarSizeInBits() == 1)
+ return new ZExtInst(Builder.CreateNot(X), Ty);
+
+ // Shifts and add used to flip and mask off the low bit:
+ // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
+ const APInt *C3;
+ if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
+ C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
+ Value *NotX = Builder.CreateNot(X);
+ return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
+ }
+ }
+
+ return nullptr;
+}
+
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
@@ -1034,51 +1018,21 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
+ if (Value *V =
+ SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
// (A*B)+(A*C) -> A*(B+C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
- const APInt *Val;
- if (match(RHS, m_APInt(Val))) {
- // X + (signbit) --> X ^ signbit
- if (Val->isSignBit())
- return BinaryOperator::CreateXor(LHS, RHS);
-
- // Is this add the last step in a convoluted sext?
- Value *X;
- const APInt *C;
- if (match(LHS, m_ZExt(m_Xor(m_Value(X), m_APInt(C)))) &&
- C->isMinSignedValue() &&
- C->sext(LHS->getType()->getScalarSizeInBits()) == *Val) {
- // add(zext(xor i16 X, -32768), -32768) --> sext X
- return CastInst::Create(Instruction::SExt, X, LHS->getType());
- }
-
- if (Val->isNegative() &&
- match(LHS, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C)))) &&
- Val->sge(-C->sext(Val->getBitWidth()))) {
- // (add (zext (add nuw X, C)), Val) -> (zext (add nuw X, C+Val))
- return CastInst::Create(
- Instruction::ZExt,
- Builder->CreateNUWAdd(
- X, Constant::getIntegerValue(X->getType(),
- *C + Val->trunc(C->getBitWidth()))),
- I.getType());
- }
- }
+ if (Instruction *X = foldAddWithConstant(I, Builder))
+ return X;
- // FIXME: Use the match above instead of dyn_cast to allow these transforms
- // for splat vectors.
+ // FIXME: This should be moved into the above helper function to allow these
+ // transforms for splat vectors.
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // See if SimplifyDemandedBits can simplify this. This handles stuff like
- // (X & 254)+1 -> (X&254)|1
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
// zext(bool) + C -> bool ? C + 1 : C
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
if (ZI->getSrcTy()->isIntegerTy(1))
@@ -1106,34 +1060,31 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ExtendAmt) {
Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
- Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
+ Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
return BinaryOperator::CreateAShr(NewShl, ShAmt);
}
// If this is a xor that was canonicalized from a sub, turn it back into
// a sub and fuse this add with it.
if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
- IntegerType *IT = cast<IntegerType>(I.getType());
- APInt LHSKnownOne(IT->getBitWidth(), 0);
- APInt LHSKnownZero(IT->getBitWidth(), 0);
- computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
- if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
+ KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
+ if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
XorLHS);
}
- // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
- // transform them into (X + (signbit ^ C))
- if (XorRHS->getValue().isSignBit())
+ // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
+ // transform them into (X + (signmask ^ C))
+ if (XorRHS->getValue().isSignMask())
return BinaryOperator::CreateAdd(XorLHS,
ConstantExpr::getXor(XorRHS, CI));
}
}
- if (isa<Constant>(RHS) && isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (isa<Constant>(RHS))
+ if (Instruction *NV = foldOpWithConstantIntoOperand(I))
return NV;
- if (I.getType()->getScalarType()->isIntegerTy(1))
+ if (I.getType()->isIntOrIntVectorTy(1))
return BinaryOperator::CreateXor(LHS, RHS);
// X + X --> X << 1
@@ -1150,7 +1101,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (Value *LHSV = dyn_castNegVal(LHS)) {
if (!isa<Constant>(RHS))
if (Value *RHSV = dyn_castNegVal(RHS)) {
- Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
+ Value *NewAdd = Builder.CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
@@ -1197,15 +1148,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (AddRHSHighBits == AddRHSHighBitsAnd) {
// Okay, the xform is safe. Insert the new add pronto.
- Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
+ Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
return BinaryOperator::CreateAnd(NewAdd, C2);
}
}
-
- // Try to fold constant add into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
}
// add (select X 0 (sub n A)) A --> select X A n
@@ -1242,10 +1188,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
+ willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
// Insert the new, smaller add.
Value *NewAdd =
- Builder->CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
+ Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
@@ -1253,16 +1199,16 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// (add (sext x), (sext y)) --> (sext (add int x, y))
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
- // Only do this if x/y have the same type, if at last one of them has a
+ // Only do this if x/y have the same type, if at least one of them has a
// single use (so we don't increase the number of sexts), and if the
// integer add will not overflow.
if (LHSConv->getOperand(0)->getType() ==
RHSConv->getOperand(0)->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ willNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), I)) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
@@ -1278,11 +1224,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (ConstantExpr::getZExt(CI, I.getType()) == RHSC &&
- computeOverflowForUnsignedAdd(LHSConv->getOperand(0), CI, &I) ==
- OverflowResult::NeverOverflows) {
+ willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) {
// Insert the new, smaller add.
Value *NewAdd =
- Builder->CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
+ Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
return new ZExtInst(NewAdd, I.getType());
}
}
@@ -1290,17 +1235,16 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// (add (zext x), (zext y)) --> (zext (add int x, y))
if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
- // Only do this if x/y have the same type, if at last one of them has a
+ // Only do this if x/y have the same type, if at least one of them has a
// single use (so we don't increase the number of zexts), and if the
// integer add will not overflow.
if (LHSConv->getOperand(0)->getType() ==
RHSConv->getOperand(0)->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- computeOverflowForUnsignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),
- &I) == OverflowResult::NeverOverflows) {
+ willNotOverflowUnsignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), I)) {
// Insert the new integer add.
- Value *NewAdd = Builder->CreateNUWAdd(
+ Value *NewAdd = Builder.CreateNUWAdd(
LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
return new ZExtInst(NewAdd, I.getType());
}
@@ -1311,13 +1255,11 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
{
Value *A = nullptr, *B = nullptr;
if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
- (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
- match(LHS, m_And(m_Specific(B), m_Specific(A)))))
+ match(LHS, m_c_And(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateOr(A, B);
if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
- (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
- match(RHS, m_And(m_Specific(B), m_Specific(A)))))
+ match(RHS, m_c_And(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateOr(A, B);
}
@@ -1325,8 +1267,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
{
Value *A = nullptr, *B = nullptr;
if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
- (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
- match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
+ match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) {
auto *New = BinaryOperator::CreateAdd(A, B);
New->setHasNoSignedWrap(I.hasNoSignedWrap());
New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
@@ -1334,8 +1275,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
- (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
- match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
+ match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) {
auto *New = BinaryOperator::CreateAdd(A, B);
New->setHasNoSignedWrap(I.hasNoSignedWrap());
New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
@@ -1343,16 +1283,14 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
}
- // TODO(jingyue): Consider WillNotOverflowSignedAdd and
- // WillNotOverflowUnsignedAdd to reduce the number of invocations of
+ // TODO(jingyue): Consider willNotOverflowSignedAdd and
+ // willNotOverflowUnsignedAdd to reduce the number of invocations of
// computeKnownBits.
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
+ if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
- if (!I.hasNoUnsignedWrap() &&
- computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
- OverflowResult::NeverOverflows) {
+ if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
@@ -1367,8 +1305,8 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V =
- SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
+ if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (isa<Constant>(RHS))
@@ -1394,38 +1332,57 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// Check for (fadd double (sitofp x), y), see if we can merge this into an
// integer add followed by a promotion.
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
+ Value *LHSIntVal = LHSConv->getOperand(0);
+ Type *FPType = LHSConv->getType();
+
+ // TODO: This check is overly conservative. In many cases known bits
+ // analysis can tell us that the result of the addition has less significant
+ // bits than the integer type can hold.
+ auto IsValidPromotion = [](Type *FTy, Type *ITy) {
+ Type *FScalarTy = FTy->getScalarType();
+ Type *IScalarTy = ITy->getScalarType();
+
+ // Do we have enough bits in the significand to represent the result of
+ // the integer addition?
+ unsigned MaxRepresentableBits =
+ APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
+ return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
+ };
+
// (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
// ... if the constant fits in the integer value. This is useful for things
// like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
// requires a constant pool load, and generally allows the add to be better
// instcombined.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
- Constant *CI =
- ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
- if (LHSConv->hasOneUse() &&
- ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
- // Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
- CI, "addconv");
- return new SIToFPInst(NewAdd, I.getType());
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
+ if (IsValidPromotion(FPType, LHSIntVal->getType())) {
+ Constant *CI =
+ ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
+ willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
+ return new SIToFPInst(NewAdd, I.getType());
+ }
}
- }
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
- // Only do this if x/y have the same type, if at last one of them has a
- // single use (so we don't increase the number of int->fp conversions),
- // and if the integer add will not overflow.
- if (LHSConv->getOperand(0)->getType() ==
- RHSConv->getOperand(0)->getType() &&
- (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0), I)) {
- // Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),"addconv");
- return new SIToFPInst(NewAdd, I.getType());
+ Value *RHSIntVal = RHSConv->getOperand(0);
+ // It's enough to check LHS types only because we require int types to
+ // be the same for this transform.
+ if (IsValidPromotion(FPType, LHSIntVal->getType())) {
+ // Only do this if x/y have the same type, if at least one of them has a
+ // single use (so we don't increase the number of int->fp conversions),
+ // and if the integer add will not overflow.
+ if (LHSIntVal->getType() == RHSIntVal->getType() &&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
+ return new SIToFPInst(NewAdd, I.getType());
+ }
}
}
}
@@ -1521,14 +1478,14 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
// pointer, subtract it from the offset we have.
if (GEP2) {
Value *Offset = EmitGEPOffset(GEP2);
- Result = Builder->CreateSub(Result, Offset);
+ Result = Builder.CreateSub(Result, Offset);
}
// If we have p - gep(p, ...) then we have to negate the result.
if (Swapped)
- Result = Builder->CreateNeg(Result, "diff.neg");
+ Result = Builder.CreateNeg(Result, "diff.neg");
- return Builder->CreateIntCast(Result, Ty, true);
+ return Builder.CreateIntCast(Result, Ty, true);
}
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
@@ -1537,8 +1494,9 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), DL, &TLI, &DT, &AC))
+ if (Value *V =
+ SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
// (A*B)-(A*C) -> A*(B-C) etc
@@ -1562,7 +1520,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return Res;
}
- if (I.getType()->isIntegerTy(1))
+ if (I.getType()->isIntOrIntVectorTy(1))
return BinaryOperator::CreateXor(Op0, Op1);
// Replace (-1 - A) with (~A).
@@ -1580,22 +1538,24 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
+ // Try to fold constant sub into PHI values.
+ if (PHINode *PN = dyn_cast<PHINode>(Op1))
+ if (Instruction *R = foldOpIntoPhi(I, PN))
+ return R;
+
// C-(X+C2) --> (C-C2)-X
Constant *C2;
if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
// Fold (sub 0, (zext bool to B)) --> (sext bool to B)
if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
- if (X->getType()->getScalarType()->isIntegerTy(1))
+ if (X->getType()->isIntOrIntVectorTy(1))
return CastInst::CreateSExtOrBitCast(X, Op1->getType());
// Fold (sub 0, (sext bool to B)) --> (zext bool to B)
if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
- if (X->getType()->getScalarType()->isIntegerTy(1))
+ if (X->getType()->isIntOrIntVectorTy(1))
return CastInst::CreateZExtOrBitCast(X, Op1->getType());
}
@@ -1605,7 +1565,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
- if (*Op0C == 0) {
+ if (Op0C->isNullValue()) {
Value *X;
const APInt *ShAmt;
if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
@@ -1622,11 +1582,9 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
// zero.
- if ((*Op0C + 1).isPowerOf2()) {
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
- if ((*Op0C | KnownZero).isAllOnesValue())
+ if (Op0C->isMask()) {
+ KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
+ if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
return BinaryOperator::CreateXor(Op1, Op0);
}
}
@@ -1634,8 +1592,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
{
Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
- if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
- match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
+ if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
// (X-Y)-X == -Y
@@ -1645,38 +1602,34 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// (sub (or A, B) (xor A, B)) --> (and A, B)
{
- Value *A = nullptr, *B = nullptr;
+ Value *A, *B;
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
- match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
+ match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateAnd(A, B);
}
- if (Op0->hasOneUse()) {
- Value *Y = nullptr;
+ {
+ Value *Y;
// ((X | Y) - X) --> (~X & Y)
- if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
- match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
+ if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
return BinaryOperator::CreateAnd(
- Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
+ Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
}
if (Op1->hasOneUse()) {
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
Constant *C = nullptr;
- Constant *CI = nullptr;
// (X - (Y - Z)) --> (X + (Z - Y)).
if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
return BinaryOperator::CreateAdd(Op0,
- Builder->CreateSub(Z, Y, Op1->getName()));
+ Builder.CreateSub(Z, Y, Op1->getName()));
// (X - (X & Y)) --> (X & ~Y)
//
- if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
- match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
+ if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
return BinaryOperator::CreateAnd(Op0,
- Builder->CreateNot(Y, Y->getName() + ".not"));
+ Builder.CreateNot(Y, Y->getName() + ".not"));
// 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
@@ -1693,7 +1646,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// 'nuw' is dropped in favor of the canonical form.
if (match(Op1, m_SExt(m_Value(Y))) &&
Y->getType()->getScalarSizeInBits() == 1) {
- Value *Zext = Builder->CreateZExt(Y, I.getType());
+ Value *Zext = Builder.CreateZExt(Y, I.getType());
BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
Add->setHasNoSignedWrap(I.hasNoSignedWrap());
return Add;
@@ -1702,15 +1655,15 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// X - A*-B -> X + A*B
// X - -A*B -> X + A*B
Value *A, *B;
- if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
- match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
- return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
+ Constant *CI;
+ if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
+ return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
// X - A*CI -> X + A*-CI
- // X - CI*A -> X + A*-CI
- if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
- match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
- Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
+ // No need to handle commuted multiply because multiply handling will
+ // ensure constant will be move to the right hand side.
+ if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
+ Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI));
return BinaryOperator::CreateAdd(Op0, NewMul);
}
}
@@ -1730,11 +1683,11 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return replaceInstUsesWith(I, Res);
bool Changed = false;
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
+ if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
- if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
+ if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
@@ -1748,8 +1701,8 @@ Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V =
- SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, &TLI, &DT, &AC))
+ if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
// fsub nsz 0, X ==> fsub nsz -0.0, X
@@ -1774,14 +1727,14 @@ Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
}
if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
- Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
+ Value *NewTrunc = Builder.CreateFPTrunc(V, I.getType());
Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
NewI->copyFastMathFlags(&I);
return NewI;
}
} else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
- Value *NewExt = Builder->CreateFPExt(V, I.getType());
+ Value *NewExt = Builder.CreateFPExt(V, I.getType());
Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
NewI->copyFastMathFlags(&I);
return NewI;