diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp | 5554 |
1 files changed, 0 insertions, 5554 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp deleted file mode 100644 index b5bbb09935e..00000000000 --- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp +++ /dev/null @@ -1,5554 +0,0 @@ -//===- InstCombineCompares.cpp --------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the visitICmp and visitFCmp functions. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/ADT/APSInt.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/KnownBits.h" - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "instcombine" - -// How many times is a select replaced by one of its operands? -STATISTIC(NumSel, "Number of select opts"); - - -/// Compute Result = In1+In2, returning true if the result overflowed for this -/// type. -static bool addWithOverflow(APInt &Result, const APInt &In1, - const APInt &In2, bool IsSigned = false) { - bool Overflow; - if (IsSigned) - Result = In1.sadd_ov(In2, Overflow); - else - Result = In1.uadd_ov(In2, Overflow); - - return Overflow; -} - -/// Compute Result = In1-In2, returning true if the result overflowed for this -/// type. -static bool subWithOverflow(APInt &Result, const APInt &In1, - const APInt &In2, bool IsSigned = false) { - bool Overflow; - if (IsSigned) - Result = In1.ssub_ov(In2, Overflow); - else - Result = In1.usub_ov(In2, Overflow); - - return Overflow; -} - -/// Given an icmp instruction, return true if any use of this comparison is a -/// branch on sign bit comparison. -static bool hasBranchUse(ICmpInst &I) { - for (auto *U : I.users()) - if (isa<BranchInst>(U)) - return true; - return false; -} - -/// Given an exploded icmp instruction, return true if the comparison only -/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the -/// result of the comparison is true when the input value is signed. -static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, - bool &TrueIfSigned) { - switch (Pred) { - case ICmpInst::ICMP_SLT: // True if LHS s< 0 - TrueIfSigned = true; - return RHS.isNullValue(); - case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 - TrueIfSigned = true; - return RHS.isAllOnesValue(); - case ICmpInst::ICMP_SGT: // True if LHS s> -1 - TrueIfSigned = false; - return RHS.isAllOnesValue(); - case ICmpInst::ICMP_UGT: - // True if LHS u> RHS and RHS == high-bit-mask - 1 - TrueIfSigned = true; - return RHS.isMaxSignedValue(); - case ICmpInst::ICMP_UGE: - // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) - TrueIfSigned = true; - return RHS.isSignMask(); - default: - return false; - } -} - -/// Returns true if the exploded icmp can be expressed as a signed comparison -/// to zero and updates the predicate accordingly. -/// The signedness of the comparison is preserved. -/// TODO: Refactor with decomposeBitTestICmp()? -static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { - if (!ICmpInst::isSigned(Pred)) - return false; - - if (C.isNullValue()) - return ICmpInst::isRelational(Pred); - - if (C.isOneValue()) { - if (Pred == ICmpInst::ICMP_SLT) { - Pred = ICmpInst::ICMP_SLE; - return true; - } - } else if (C.isAllOnesValue()) { - if (Pred == ICmpInst::ICMP_SGT) { - Pred = ICmpInst::ICMP_SGE; - return true; - } - } - - return false; -} - -/// Given a signed integer type and a set of known zero and one bits, compute -/// the maximum and minimum values that could have the specified known zero and -/// known one bits, returning them in Min/Max. -/// TODO: Move to method on KnownBits struct? -static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, - APInt &Min, APInt &Max) { - assert(Known.getBitWidth() == Min.getBitWidth() && - Known.getBitWidth() == Max.getBitWidth() && - "KnownZero, KnownOne and Min, Max must have equal bitwidth."); - APInt UnknownBits = ~(Known.Zero|Known.One); - - // The minimum value is when all unknown bits are zeros, EXCEPT for the sign - // bit if it is unknown. - Min = Known.One; - Max = Known.One|UnknownBits; - - if (UnknownBits.isNegative()) { // Sign bit is unknown - Min.setSignBit(); - Max.clearSignBit(); - } -} - -/// Given an unsigned integer type and a set of known zero and one bits, compute -/// the maximum and minimum values that could have the specified known zero and -/// known one bits, returning them in Min/Max. -/// TODO: Move to method on KnownBits struct? -static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, - APInt &Min, APInt &Max) { - assert(Known.getBitWidth() == Min.getBitWidth() && - Known.getBitWidth() == Max.getBitWidth() && - "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); - APInt UnknownBits = ~(Known.Zero|Known.One); - - // The minimum value is when the unknown bits are all zeros. - Min = Known.One; - // The maximum value is when the unknown bits are all ones. - Max = Known.One|UnknownBits; -} - -/// This is called when we see this pattern: -/// cmp pred (load (gep GV, ...)), cmpcst -/// where GV is a global variable with a constant initializer. Try to simplify -/// this into some simple computation that does not need the load. For example -/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". -/// -/// If AndCst is non-null, then the loaded value is masked with that constant -/// before doing the comparison. This handles cases like "A[i]&4 == 0". -Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, - GlobalVariable *GV, - CmpInst &ICI, - ConstantInt *AndCst) { - Constant *Init = GV->getInitializer(); - if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) - return nullptr; - - uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); - // Don't blow up on huge arrays. - if (ArrayElementCount > MaxArraySizeForCombine) - return nullptr; - - // There are many forms of this optimization we can handle, for now, just do - // the simple index into a single-dimensional array. - // - // Require: GEP GV, 0, i {{, constant indices}} - if (GEP->getNumOperands() < 3 || - !isa<ConstantInt>(GEP->getOperand(1)) || - !cast<ConstantInt>(GEP->getOperand(1))->isZero() || - isa<Constant>(GEP->getOperand(2))) - return nullptr; - - // Check that indices after the variable are constants and in-range for the - // type they index. Collect the indices. This is typically for arrays of - // structs. - SmallVector<unsigned, 4> LaterIndices; - - Type *EltTy = Init->getType()->getArrayElementType(); - for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { - ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); - if (!Idx) return nullptr; // Variable index. - - uint64_t IdxVal = Idx->getZExtValue(); - if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. - - if (StructType *STy = dyn_cast<StructType>(EltTy)) - EltTy = STy->getElementType(IdxVal); - else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { - if (IdxVal >= ATy->getNumElements()) return nullptr; - EltTy = ATy->getElementType(); - } else { - return nullptr; // Unknown type. - } - - LaterIndices.push_back(IdxVal); - } - - enum { Overdefined = -3, Undefined = -2 }; - - // Variables for our state machines. - - // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form - // "i == 47 | i == 87", where 47 is the first index the condition is true for, - // and 87 is the second (and last) index. FirstTrueElement is -2 when - // undefined, otherwise set to the first true element. SecondTrueElement is - // -2 when undefined, -3 when overdefined and >= 0 when that index is true. - int FirstTrueElement = Undefined, SecondTrueElement = Undefined; - - // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the - // form "i != 47 & i != 87". Same state transitions as for true elements. - int FirstFalseElement = Undefined, SecondFalseElement = Undefined; - - /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these - /// define a state machine that triggers for ranges of values that the index - /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. - /// This is -2 when undefined, -3 when overdefined, and otherwise the last - /// index in the range (inclusive). We use -2 for undefined here because we - /// use relative comparisons and don't want 0-1 to match -1. - int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; - - // MagicBitvector - This is a magic bitvector where we set a bit if the - // comparison is true for element 'i'. If there are 64 elements or less in - // the array, this will fully represent all the comparison results. - uint64_t MagicBitvector = 0; - - // Scan the array and see if one of our patterns matches. - Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); - for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { - Constant *Elt = Init->getAggregateElement(i); - if (!Elt) return nullptr; - - // If this is indexing an array of structures, get the structure element. - if (!LaterIndices.empty()) - Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); - - // If the element is masked, handle it. - if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); - - // Find out if the comparison would be true or false for the i'th element. - Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, - CompareRHS, DL, &TLI); - // If the result is undef for this element, ignore it. - if (isa<UndefValue>(C)) { - // Extend range state machines to cover this element in case there is an - // undef in the middle of the range. - if (TrueRangeEnd == (int)i-1) - TrueRangeEnd = i; - if (FalseRangeEnd == (int)i-1) - FalseRangeEnd = i; - continue; - } - - // If we can't compute the result for any of the elements, we have to give - // up evaluating the entire conditional. - if (!isa<ConstantInt>(C)) return nullptr; - - // Otherwise, we know if the comparison is true or false for this element, - // update our state machines. - bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); - - // State machine for single/double/range index comparison. - if (IsTrueForElt) { - // Update the TrueElement state machine. - if (FirstTrueElement == Undefined) - FirstTrueElement = TrueRangeEnd = i; // First true element. - else { - // Update double-compare state machine. - if (SecondTrueElement == Undefined) - SecondTrueElement = i; - else - SecondTrueElement = Overdefined; - - // Update range state machine. - if (TrueRangeEnd == (int)i-1) - TrueRangeEnd = i; - else - TrueRangeEnd = Overdefined; - } - } else { - // Update the FalseElement state machine. - if (FirstFalseElement == Undefined) - FirstFalseElement = FalseRangeEnd = i; // First false element. - else { - // Update double-compare state machine. - if (SecondFalseElement == Undefined) - SecondFalseElement = i; - else - SecondFalseElement = Overdefined; - - // Update range state machine. - if (FalseRangeEnd == (int)i-1) - FalseRangeEnd = i; - else - FalseRangeEnd = Overdefined; - } - } - - // If this element is in range, update our magic bitvector. - if (i < 64 && IsTrueForElt) - MagicBitvector |= 1ULL << i; - - // If all of our states become overdefined, bail out early. Since the - // predicate is expensive, only check it every 8 elements. This is only - // really useful for really huge arrays. - if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && - SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && - FalseRangeEnd == Overdefined) - return nullptr; - } - - // Now that we've scanned the entire array, emit our new comparison(s). We - // order the state machines in complexity of the generated code. - Value *Idx = GEP->getOperand(2); - - // If the index is larger than the pointer size of the target, truncate the - // index down like the GEP would do implicitly. We don't have to do this for - // an inbounds GEP because the index can't be out of range. - if (!GEP->isInBounds()) { - Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); - unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); - if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) - Idx = Builder.CreateTrunc(Idx, IntPtrTy); - } - - // If the comparison is only true for one or two elements, emit direct - // comparisons. - if (SecondTrueElement != Overdefined) { - // None true -> false. - if (FirstTrueElement == Undefined) - return replaceInstUsesWith(ICI, Builder.getFalse()); - - Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); - - // True for one element -> 'i == 47'. - if (SecondTrueElement == Undefined) - return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); - - // True for two elements -> 'i == 47 | i == 72'. - Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); - Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); - Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); - return BinaryOperator::CreateOr(C1, C2); - } - - // If the comparison is only false for one or two elements, emit direct - // comparisons. - if (SecondFalseElement != Overdefined) { - // None false -> true. - if (FirstFalseElement == Undefined) - return replaceInstUsesWith(ICI, Builder.getTrue()); - - Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); - - // False for one element -> 'i != 47'. - if (SecondFalseElement == Undefined) - return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); - - // False for two elements -> 'i != 47 & i != 72'. - Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); - Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); - Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); - return BinaryOperator::CreateAnd(C1, C2); - } - - // If the comparison can be replaced with a range comparison for the elements - // where it is true, emit the range check. - if (TrueRangeEnd != Overdefined) { - assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); - - // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). - if (FirstTrueElement) { - Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); - Idx = Builder.CreateAdd(Idx, Offs); - } - - Value *End = ConstantInt::get(Idx->getType(), - TrueRangeEnd-FirstTrueElement+1); - return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); - } - - // False range check. - if (FalseRangeEnd != Overdefined) { - assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); - // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). - if (FirstFalseElement) { - Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); - Idx = Builder.CreateAdd(Idx, Offs); - } - - Value *End = ConstantInt::get(Idx->getType(), - FalseRangeEnd-FirstFalseElement); - return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); - } - - // If a magic bitvector captures the entire comparison state - // of this load, replace it with computation that does: - // ((magic_cst >> i) & 1) != 0 - { - Type *Ty = nullptr; - - // Look for an appropriate type: - // - The type of Idx if the magic fits - // - The smallest fitting legal type - if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) - Ty = Idx->getType(); - else - Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); - - if (Ty) { - Value *V = Builder.CreateIntCast(Idx, Ty, false); - V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); - V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); - return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); - } - } - - return nullptr; -} - -/// Return a value that can be used to compare the *offset* implied by a GEP to -/// zero. For example, if we have &A[i], we want to return 'i' for -/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales -/// are involved. The above expression would also be legal to codegen as -/// "icmp ne (i*4), 0" (assuming A is a pointer to i32). -/// This latter form is less amenable to optimization though, and we are allowed -/// to generate the first by knowing that pointer arithmetic doesn't overflow. -/// -/// If we can't emit an optimized form for this expression, this returns null. -/// -static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, - const DataLayout &DL) { - gep_type_iterator GTI = gep_type_begin(GEP); - - // Check to see if this gep only has a single variable index. If so, and if - // any constant indices are a multiple of its scale, then we can compute this - // in terms of the scale of the variable index. For example, if the GEP - // implies an offset of "12 + i*4", then we can codegen this as "3 + i", - // because the expression will cross zero at the same point. - unsigned i, e = GEP->getNumOperands(); - int64_t Offset = 0; - for (i = 1; i != e; ++i, ++GTI) { - if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { - // Compute the aggregate offset of constant indices. - if (CI->isZero()) continue; - - // Handle a struct index, which adds its field offset to the pointer. - if (StructType *STy = GTI.getStructTypeOrNull()) { - Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); - } else { - uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); - Offset += Size*CI->getSExtValue(); - } - } else { - // Found our variable index. - break; - } - } - - // If there are no variable indices, we must have a constant offset, just - // evaluate it the general way. - if (i == e) return nullptr; - - Value *VariableIdx = GEP->getOperand(i); - // Determine the scale factor of the variable element. For example, this is - // 4 if the variable index is into an array of i32. - uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); - - // Verify that there are no other variable indices. If so, emit the hard way. - for (++i, ++GTI; i != e; ++i, ++GTI) { - ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); - if (!CI) return nullptr; - - // Compute the aggregate offset of constant indices. - if (CI->isZero()) continue; - - // Handle a struct index, which adds its field offset to the pointer. - if (StructType *STy = GTI.getStructTypeOrNull()) { - Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); - } else { - uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); - Offset += Size*CI->getSExtValue(); - } - } - - // Okay, we know we have a single variable index, which must be a - // pointer/array/vector index. If there is no offset, life is simple, return - // the index. - Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); - unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); - if (Offset == 0) { - // Cast to intptrty in case a truncation occurs. If an extension is needed, - // we don't need to bother extending: the extension won't affect where the - // computation crosses zero. - if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { - VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); - } - return VariableIdx; - } - - // Otherwise, there is an index. The computation we will do will be modulo - // the pointer size. - Offset = SignExtend64(Offset, IntPtrWidth); - VariableScale = SignExtend64(VariableScale, IntPtrWidth); - - // To do this transformation, any constant index must be a multiple of the - // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", - // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a - // multiple of the variable scale. - int64_t NewOffs = Offset / (int64_t)VariableScale; - if (Offset != NewOffs*(int64_t)VariableScale) - return nullptr; - - // Okay, we can do this evaluation. Start by converting the index to intptr. - if (VariableIdx->getType() != IntPtrTy) - VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, - true /*Signed*/); - Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); - return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); -} - -/// Returns true if we can rewrite Start as a GEP with pointer Base -/// and some integer offset. The nodes that need to be re-written -/// for this transformation will be added to Explored. -static bool canRewriteGEPAsOffset(Value *Start, Value *Base, - const DataLayout &DL, - SetVector<Value *> &Explored) { - SmallVector<Value *, 16> WorkList(1, Start); - Explored.insert(Base); - - // The following traversal gives us an order which can be used - // when doing the final transformation. Since in the final - // transformation we create the PHI replacement instructions first, - // we don't have to get them in any particular order. - // - // However, for other instructions we will have to traverse the - // operands of an instruction first, which means that we have to - // do a post-order traversal. - while (!WorkList.empty()) { - SetVector<PHINode *> PHIs; - - while (!WorkList.empty()) { - if (Explored.size() >= 100) - return false; - - Value *V = WorkList.back(); - - if (Explored.count(V) != 0) { - WorkList.pop_back(); - continue; - } - - if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && - !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) - // We've found some value that we can't explore which is different from - // the base. Therefore we can't do this transformation. - return false; - - if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { - auto *CI = dyn_cast<CastInst>(V); - if (!CI->isNoopCast(DL)) - return false; - - if (Explored.count(CI->getOperand(0)) == 0) - WorkList.push_back(CI->getOperand(0)); - } - - if (auto *GEP = dyn_cast<GEPOperator>(V)) { - // We're limiting the GEP to having one index. This will preserve - // the original pointer type. We could handle more cases in the - // future. - if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || - GEP->getType() != Start->getType()) - return false; - - if (Explored.count(GEP->getOperand(0)) == 0) - WorkList.push_back(GEP->getOperand(0)); - } - - if (WorkList.back() == V) { - WorkList.pop_back(); - // We've finished visiting this node, mark it as such. - Explored.insert(V); - } - - if (auto *PN = dyn_cast<PHINode>(V)) { - // We cannot transform PHIs on unsplittable basic blocks. - if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) - return false; - Explored.insert(PN); - PHIs.insert(PN); - } - } - - // Explore the PHI nodes further. - for (auto *PN : PHIs) - for (Value *Op : PN->incoming_values()) - if (Explored.count(Op) == 0) - WorkList.push_back(Op); - } - - // Make sure that we can do this. Since we can't insert GEPs in a basic - // block before a PHI node, we can't easily do this transformation if - // we have PHI node users of transformed instructions. - for (Value *Val : Explored) { - for (Value *Use : Val->uses()) { - - auto *PHI = dyn_cast<PHINode>(Use); - auto *Inst = dyn_cast<Instruction>(Val); - - if (Inst == Base || Inst == PHI || !Inst || !PHI || - Explored.count(PHI) == 0) - continue; - - if (PHI->getParent() == Inst->getParent()) - return false; - } - } - return true; -} - -// Sets the appropriate insert point on Builder where we can add -// a replacement Instruction for V (if that is possible). -static void setInsertionPoint(IRBuilder<> &Builder, Value *V, - bool Before = true) { - if (auto *PHI = dyn_cast<PHINode>(V)) { - Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); - return; - } - if (auto *I = dyn_cast<Instruction>(V)) { - if (!Before) - I = &*std::next(I->getIterator()); - Builder.SetInsertPoint(I); - return; - } - if (auto *A = dyn_cast<Argument>(V)) { - // Set the insertion point in the entry block. - BasicBlock &Entry = A->getParent()->getEntryBlock(); - Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); - return; - } - // Otherwise, this is a constant and we don't need to set a new - // insertion point. - assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); -} - -/// Returns a re-written value of Start as an indexed GEP using Base as a -/// pointer. -static Value *rewriteGEPAsOffset(Value *Start, Value *Base, - const DataLayout &DL, - SetVector<Value *> &Explored) { - // Perform all the substitutions. This is a bit tricky because we can - // have cycles in our use-def chains. - // 1. Create the PHI nodes without any incoming values. - // 2. Create all the other values. - // 3. Add the edges for the PHI nodes. - // 4. Emit GEPs to get the original pointers. - // 5. Remove the original instructions. - Type *IndexType = IntegerType::get( - Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); - - DenseMap<Value *, Value *> NewInsts; - NewInsts[Base] = ConstantInt::getNullValue(IndexType); - - // Create the new PHI nodes, without adding any incoming values. - for (Value *Val : Explored) { - if (Val == Base) - continue; - // Create empty phi nodes. This avoids cyclic dependencies when creating - // the remaining instructions. - if (auto *PHI = dyn_cast<PHINode>(Val)) - NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), - PHI->getName() + ".idx", PHI); - } - IRBuilder<> Builder(Base->getContext()); - - // Create all the other instructions. - for (Value *Val : Explored) { - - if (NewInsts.find(Val) != NewInsts.end()) - continue; - - if (auto *CI = dyn_cast<CastInst>(Val)) { - NewInsts[CI] = NewInsts[CI->getOperand(0)]; - continue; - } - if (auto *GEP = dyn_cast<GEPOperator>(Val)) { - Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] - : GEP->getOperand(1); - setInsertionPoint(Builder, GEP); - // Indices might need to be sign extended. GEPs will magically do - // this, but we need to do it ourselves here. - if (Index->getType()->getScalarSizeInBits() != - NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { - Index = Builder.CreateSExtOrTrunc( - Index, NewInsts[GEP->getOperand(0)]->getType(), - GEP->getOperand(0)->getName() + ".sext"); - } - - auto *Op = NewInsts[GEP->getOperand(0)]; - if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) - NewInsts[GEP] = Index; - else - NewInsts[GEP] = Builder.CreateNSWAdd( - Op, Index, GEP->getOperand(0)->getName() + ".add"); - continue; - } - if (isa<PHINode>(Val)) - continue; - - llvm_unreachable("Unexpected instruction type"); - } - - // Add the incoming values to the PHI nodes. - for (Value *Val : Explored) { - if (Val == Base) - continue; - // All the instructions have been created, we can now add edges to the - // phi nodes. - if (auto *PHI = dyn_cast<PHINode>(Val)) { - PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); - for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { - Value *NewIncoming = PHI->getIncomingValue(I); - - if (NewInsts.find(NewIncoming) != NewInsts.end()) - NewIncoming = NewInsts[NewIncoming]; - - NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); - } - } - } - - for (Value *Val : Explored) { - if (Val == Base) - continue; - - // Depending on the type, for external users we have to emit - // a GEP or a GEP + ptrtoint. - setInsertionPoint(Builder, Val, false); - - // If required, create an inttoptr instruction for Base. - Value *NewBase = Base; - if (!Base->getType()->isPointerTy()) - NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), - Start->getName() + "to.ptr"); - - Value *GEP = Builder.CreateInBoundsGEP( - Start->getType()->getPointerElementType(), NewBase, - makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); - - if (!Val->getType()->isPointerTy()) { - Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), - Val->getName() + ".conv"); - GEP = Cast; - } - Val->replaceAllUsesWith(GEP); - } - - return NewInsts[Start]; -} - -/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express -/// the input Value as a constant indexed GEP. Returns a pair containing -/// the GEPs Pointer and Index. -static std::pair<Value *, Value *> -getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { - Type *IndexType = IntegerType::get(V->getContext(), - DL.getIndexTypeSizeInBits(V->getType())); - - Constant *Index = ConstantInt::getNullValue(IndexType); - while (true) { - if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { - // We accept only inbouds GEPs here to exclude the possibility of - // overflow. - if (!GEP->isInBounds()) - break; - if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && - GEP->getType() == V->getType()) { - V = GEP->getOperand(0); - Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); - Index = ConstantExpr::getAdd( - Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); - continue; - } - break; - } - if (auto *CI = dyn_cast<IntToPtrInst>(V)) { - if (!CI->isNoopCast(DL)) - break; - V = CI->getOperand(0); - continue; - } - if (auto *CI = dyn_cast<PtrToIntInst>(V)) { - if (!CI->isNoopCast(DL)) - break; - V = CI->getOperand(0); - continue; - } - break; - } - return {V, Index}; -} - -/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. -/// We can look through PHIs, GEPs and casts in order to determine a common base -/// between GEPLHS and RHS. -static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, - ICmpInst::Predicate Cond, - const DataLayout &DL) { - if (!GEPLHS->hasAllConstantIndices()) - return nullptr; - - // Make sure the pointers have the same type. - if (GEPLHS->getType() != RHS->getType()) - return nullptr; - - Value *PtrBase, *Index; - std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); - - // The set of nodes that will take part in this transformation. - SetVector<Value *> Nodes; - - if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) - return nullptr; - - // We know we can re-write this as - // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) - // Since we've only looked through inbouds GEPs we know that we - // can't have overflow on either side. We can therefore re-write - // this as: - // OFFSET1 cmp OFFSET2 - Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); - - // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written - // GEP having PtrBase as the pointer base, and has returned in NewRHS the - // offset. Since Index is the offset of LHS to the base pointer, we will now - // compare the offsets instead of comparing the pointers. - return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); -} - -/// Fold comparisons between a GEP instruction and something else. At this point -/// we know that the GEP is on the LHS of the comparison. -Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, - ICmpInst::Predicate Cond, - Instruction &I) { - // Don't transform signed compares of GEPs into index compares. Even if the - // GEP is inbounds, the final add of the base pointer can have signed overflow - // and would change the result of the icmp. - // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be - // the maximum signed value for the pointer type. - if (ICmpInst::isSigned(Cond)) - return nullptr; - - // Look through bitcasts and addrspacecasts. We do not however want to remove - // 0 GEPs. - if (!isa<GetElementPtrInst>(RHS)) - RHS = RHS->stripPointerCasts(); - - Value *PtrBase = GEPLHS->getOperand(0); - if (PtrBase == RHS && GEPLHS->isInBounds()) { - // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). - // This transformation (ignoring the base and scales) is valid because we - // know pointers can't overflow since the gep is inbounds. See if we can - // output an optimized form. - Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); - - // If not, synthesize the offset the hard way. - if (!Offset) - Offset = EmitGEPOffset(GEPLHS); - return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, - Constant::getNullValue(Offset->getType())); - } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { - // If the base pointers are different, but the indices are the same, just - // compare the base pointer. - if (PtrBase != GEPRHS->getOperand(0)) { - bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); - IndicesTheSame &= GEPLHS->getOperand(0)->getType() == - GEPRHS->getOperand(0)->getType(); - if (IndicesTheSame) - for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) - if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { - IndicesTheSame = false; - break; - } - - // If all indices are the same, just compare the base pointers. - Type *BaseType = GEPLHS->getOperand(0)->getType(); - if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) - return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); - - // If we're comparing GEPs with two base pointers that only differ in type - // and both GEPs have only constant indices or just one use, then fold - // the compare with the adjusted indices. - if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && - (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && - (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && - PtrBase->stripPointerCasts() == - GEPRHS->getOperand(0)->stripPointerCasts()) { - Value *LOffset = EmitGEPOffset(GEPLHS); - Value *ROffset = EmitGEPOffset(GEPRHS); - - // If we looked through an addrspacecast between different sized address - // spaces, the LHS and RHS pointers are different sized - // integers. Truncate to the smaller one. - Type *LHSIndexTy = LOffset->getType(); - Type *RHSIndexTy = ROffset->getType(); - if (LHSIndexTy != RHSIndexTy) { - if (LHSIndexTy->getPrimitiveSizeInBits() < - RHSIndexTy->getPrimitiveSizeInBits()) { - ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); - } else - LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); - } - - Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), - LOffset, ROffset); - return replaceInstUsesWith(I, Cmp); - } - - // Otherwise, the base pointers are different and the indices are - // different. Try convert this to an indexed compare by looking through - // PHIs/casts. - return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); - } - - // If one of the GEPs has all zero indices, recurse. - if (GEPLHS->hasAllZeroIndices()) - return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), - ICmpInst::getSwappedPredicate(Cond), I); - - // If the other GEP has all zero indices, recurse. - if (GEPRHS->hasAllZeroIndices()) - return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); - - bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); - if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { - // If the GEPs only differ by one index, compare it. - unsigned NumDifferences = 0; // Keep track of # differences. - unsigned DiffOperand = 0; // The operand that differs. - for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) - if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { - if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != - GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { - // Irreconcilable differences. - NumDifferences = 2; - break; - } else { - if (NumDifferences++) break; - DiffOperand = i; - } - } - - if (NumDifferences == 0) // SAME GEP? - return replaceInstUsesWith(I, // No comparison is needed here. - ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); - - else if (NumDifferences == 1 && GEPsInBounds) { - Value *LHSV = GEPLHS->getOperand(DiffOperand); - Value *RHSV = GEPRHS->getOperand(DiffOperand); - // Make sure we do a signed comparison here. - return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); - } - } - - // Only lower this if the icmp is the only user of the GEP or if we expect - // the result to fold to a constant! - if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && - (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { - // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) - Value *L = EmitGEPOffset(GEPLHS); - Value *R = EmitGEPOffset(GEPRHS); - return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); - } - } - - // Try convert this to an indexed compare by looking through PHIs/casts as a - // last resort. - return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); -} - -Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, - const AllocaInst *Alloca, - const Value *Other) { - assert(ICI.isEquality() && "Cannot fold non-equality comparison."); - - // It would be tempting to fold away comparisons between allocas and any - // pointer not based on that alloca (e.g. an argument). However, even - // though such pointers cannot alias, they can still compare equal. - // - // But LLVM doesn't specify where allocas get their memory, so if the alloca - // doesn't escape we can argue that it's impossible to guess its value, and we - // can therefore act as if any such guesses are wrong. - // - // The code below checks that the alloca doesn't escape, and that it's only - // used in a comparison once (the current instruction). The - // single-comparison-use condition ensures that we're trivially folding all - // comparisons against the alloca consistently, and avoids the risk of - // erroneously folding a comparison of the pointer with itself. - - unsigned MaxIter = 32; // Break cycles and bound to constant-time. - - SmallVector<const Use *, 32> Worklist; - for (const Use &U : Alloca->uses()) { - if (Worklist.size() >= MaxIter) - return nullptr; - Worklist.push_back(&U); - } - - unsigned NumCmps = 0; - while (!Worklist.empty()) { - assert(Worklist.size() <= MaxIter); - const Use *U = Worklist.pop_back_val(); - const Value *V = U->getUser(); - --MaxIter; - - if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || - isa<SelectInst>(V)) { - // Track the uses. - } else if (isa<LoadInst>(V)) { - // Loading from the pointer doesn't escape it. - continue; - } else if (const auto *SI = dyn_cast<StoreInst>(V)) { - // Storing *to* the pointer is fine, but storing the pointer escapes it. - if (SI->getValueOperand() == U->get()) - return nullptr; - continue; - } else if (isa<ICmpInst>(V)) { - if (NumCmps++) - return nullptr; // Found more than one cmp. - continue; - } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { - switch (Intrin->getIntrinsicID()) { - // These intrinsics don't escape or compare the pointer. Memset is safe - // because we don't allow ptrtoint. Memcpy and memmove are safe because - // we don't allow stores, so src cannot point to V. - case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: - case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: - continue; - default: - return nullptr; - } - } else { - return nullptr; - } - for (const Use &U : V->uses()) { - if (Worklist.size() >= MaxIter) - return nullptr; - Worklist.push_back(&U); - } - } - - Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); - return replaceInstUsesWith( - ICI, - ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); -} - -/// Fold "icmp pred (X+C), X". -Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, - ICmpInst::Predicate Pred) { - // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, - // so the values can never be equal. Similarly for all other "or equals" - // operators. - assert(!!C && "C should not be zero!"); - - // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 - // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 - // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 - if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { - Constant *R = ConstantInt::get(X->getType(), - APInt::getMaxValue(C.getBitWidth()) - C); - return new ICmpInst(ICmpInst::ICMP_UGT, X, R); - } - - // (X+1) >u X --> X <u (0-1) --> X != 255 - // (X+2) >u X --> X <u (0-2) --> X <u 254 - // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 - if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) - return new ICmpInst(ICmpInst::ICMP_ULT, X, - ConstantInt::get(X->getType(), -C)); - - APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); - - // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 - // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 - // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 - // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 - // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 - // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 - if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) - return new ICmpInst(ICmpInst::ICMP_SGT, X, - ConstantInt::get(X->getType(), SMax - C)); - - // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 - // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 - // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 - // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 - // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 - // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 - - assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); - return new ICmpInst(ICmpInst::ICMP_SLT, X, - ConstantInt::get(X->getType(), SMax - (C - 1))); -} - -/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> -/// (icmp eq/ne A, Log2(AP2/AP1)) -> -/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). -Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, - const APInt &AP1, - const APInt &AP2) { - assert(I.isEquality() && "Cannot fold icmp gt/lt"); - - auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { - if (I.getPredicate() == I.ICMP_NE) - Pred = CmpInst::getInversePredicate(Pred); - return new ICmpInst(Pred, LHS, RHS); - }; - - // Don't bother doing any work for cases which InstSimplify handles. - if (AP2.isNullValue()) - return nullptr; - - bool IsAShr = isa<AShrOperator>(I.getOperand(0)); - if (IsAShr) { - if (AP2.isAllOnesValue()) - return nullptr; - if (AP2.isNegative() != AP1.isNegative()) - return nullptr; - if (AP2.sgt(AP1)) - return nullptr; - } - - if (!AP1) - // 'A' must be large enough to shift out the highest set bit. - return getICmp(I.ICMP_UGT, A, - ConstantInt::get(A->getType(), AP2.logBase2())); - - if (AP1 == AP2) - return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); - - int Shift; - if (IsAShr && AP1.isNegative()) - Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); - else - Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); - - if (Shift > 0) { - if (IsAShr && AP1 == AP2.ashr(Shift)) { - // There are multiple solutions if we are comparing against -1 and the LHS - // of the ashr is not a power of two. - if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) - return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); - return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); - } else if (AP1 == AP2.lshr(Shift)) { - return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); - } - } - - // Shifting const2 will never be equal to const1. - // FIXME: This should always be handled by InstSimplify? - auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); - return replaceInstUsesWith(I, TorF); -} - -/// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> -/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). -Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, - const APInt &AP1, - const APInt &AP2) { - assert(I.isEquality() && "Cannot fold icmp gt/lt"); - - auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { - if (I.getPredicate() == I.ICMP_NE) - Pred = CmpInst::getInversePredicate(Pred); - return new ICmpInst(Pred, LHS, RHS); - }; - - // Don't bother doing any work for cases which InstSimplify handles. - if (AP2.isNullValue()) - return nullptr; - - unsigned AP2TrailingZeros = AP2.countTrailingZeros(); - - if (!AP1 && AP2TrailingZeros != 0) - return getICmp( - I.ICMP_UGE, A, - ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); - - if (AP1 == AP2) - return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); - - // Get the distance between the lowest bits that are set. - int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; - - if (Shift > 0 && AP2.shl(Shift) == AP1) - return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); - - // Shifting const2 will never be equal to const1. - // FIXME: This should always be handled by InstSimplify? - auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); - return replaceInstUsesWith(I, TorF); -} - -/// The caller has matched a pattern of the form: -/// I = icmp ugt (add (add A, B), CI2), CI1 -/// If this is of the form: -/// sum = a + b -/// if (sum+128 >u 255) -/// Then replace it with llvm.sadd.with.overflow.i8. -/// -static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, - ConstantInt *CI2, ConstantInt *CI1, - InstCombiner &IC) { - // The transformation we're trying to do here is to transform this into an - // llvm.sadd.with.overflow. To do this, we have to replace the original add - // with a narrower add, and discard the add-with-constant that is part of the - // range check (if we can't eliminate it, this isn't profitable). - - // In order to eliminate the add-with-constant, the compare can be its only - // use. - Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); - if (!AddWithCst->hasOneUse()) - return nullptr; - - // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. - if (!CI2->getValue().isPowerOf2()) - return nullptr; - unsigned NewWidth = CI2->getValue().countTrailingZeros(); - if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) - return nullptr; - - // The width of the new add formed is 1 more than the bias. - ++NewWidth; - - // Check to see that CI1 is an all-ones value with NewWidth bits. - if (CI1->getBitWidth() == NewWidth || - CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) - return nullptr; - - // This is only really a signed overflow check if the inputs have been - // sign-extended; check for that condition. For example, if CI2 is 2^31 and - // the operands of the add are 64 bits wide, we need at least 33 sign bits. - unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; - if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || - IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) - return nullptr; - - // In order to replace the original add with a narrower - // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant - // and truncates that discard the high bits of the add. Verify that this is - // the case. - Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); - for (User *U : OrigAdd->users()) { - if (U == AddWithCst) - continue; - - // Only accept truncates for now. We would really like a nice recursive - // predicate like SimplifyDemandedBits, but which goes downwards the use-def - // chain to see which bits of a value are actually demanded. If the - // original add had another add which was then immediately truncated, we - // could still do the transformation. - TruncInst *TI = dyn_cast<TruncInst>(U); - if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) - return nullptr; - } - - // If the pattern matches, truncate the inputs to the narrower type and - // use the sadd_with_overflow intrinsic to efficiently compute both the - // result and the overflow bit. - Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); - Value *F = Intrinsic::getDeclaration(I.getModule(), - Intrinsic::sadd_with_overflow, NewType); - - InstCombiner::BuilderTy &Builder = IC.Builder; - - // Put the new code above the original add, in case there are any uses of the - // add between the add and the compare. - Builder.SetInsertPoint(OrigAdd); - - Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); - Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); - CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); - Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); - Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); - - // The inner add was the result of the narrow add, zero extended to the - // wider type. Replace it with the result computed by the intrinsic. - IC.replaceInstUsesWith(*OrigAdd, ZExt); - - // The original icmp gets replaced with the overflow value. - return ExtractValueInst::Create(Call, 1, "sadd.overflow"); -} - -// Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) -Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { - CmpInst::Predicate Pred = Cmp.getPredicate(); - Value *X = Cmp.getOperand(0); - - if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { - Value *A, *B; - SelectPatternResult SPR = matchSelectPattern(X, A, B); - if (SPR.Flavor == SPF_SMIN) { - if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) - return new ICmpInst(Pred, B, Cmp.getOperand(1)); - if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) - return new ICmpInst(Pred, A, Cmp.getOperand(1)); - } - } - return nullptr; -} - -/// Fold icmp Pred X, C. -/// TODO: This code structure does not make sense. The saturating add fold -/// should be moved to some other helper and extended as noted below (it is also -/// possible that code has been made unnecessary - do we canonicalize IR to -/// overflow/saturating intrinsics or not?). -Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { - // Match the following pattern, which is a common idiom when writing - // overflow-safe integer arithmetic functions. The source performs an addition - // in wider type and explicitly checks for overflow using comparisons against - // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. - // - // TODO: This could probably be generalized to handle other overflow-safe - // operations if we worked out the formulas to compute the appropriate magic - // constants. - // - // sum = a + b - // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 - CmpInst::Predicate Pred = Cmp.getPredicate(); - Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); - Value *A, *B; - ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI - if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && - match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) - if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) - return Res; - - return nullptr; -} - -/// Canonicalize icmp instructions based on dominating conditions. -Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { - // This is a cheap/incomplete check for dominance - just match a single - // predecessor with a conditional branch. - BasicBlock *CmpBB = Cmp.getParent(); - BasicBlock *DomBB = CmpBB->getSinglePredecessor(); - if (!DomBB) - return nullptr; - - Value *DomCond; - BasicBlock *TrueBB, *FalseBB; - if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) - return nullptr; - - assert((TrueBB == CmpBB || FalseBB == CmpBB) && - "Predecessor block does not point to successor?"); - - // The branch should get simplified. Don't bother simplifying this condition. - if (TrueBB == FalseBB) - return nullptr; - - // Try to simplify this compare to T/F based on the dominating condition. - Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); - if (Imp) - return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); - - CmpInst::Predicate Pred = Cmp.getPredicate(); - Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); - ICmpInst::Predicate DomPred; - const APInt *C, *DomC; - if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && - match(Y, m_APInt(C))) { - // We have 2 compares of a variable with constants. Calculate the constant - // ranges of those compares to see if we can transform the 2nd compare: - // DomBB: - // DomCond = icmp DomPred X, DomC - // br DomCond, CmpBB, FalseBB - // CmpBB: - // Cmp = icmp Pred X, C - ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); - ConstantRange DominatingCR = - (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) - : ConstantRange::makeExactICmpRegion( - CmpInst::getInversePredicate(DomPred), *DomC); - ConstantRange Intersection = DominatingCR.intersectWith(CR); - ConstantRange Difference = DominatingCR.difference(CR); - if (Intersection.isEmptySet()) - return replaceInstUsesWith(Cmp, Builder.getFalse()); - if (Difference.isEmptySet()) - return replaceInstUsesWith(Cmp, Builder.getTrue()); - - // Canonicalizing a sign bit comparison that gets used in a branch, - // pessimizes codegen by generating branch on zero instruction instead - // of a test and branch. So we avoid canonicalizing in such situations - // because test and branch instruction has better branch displacement - // than compare and branch instruction. - bool UnusedBit; - bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); - if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) - return nullptr; - - if (const APInt *EqC = Intersection.getSingleElement()) - return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); - if (const APInt *NeC = Difference.getSingleElement()) - return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); - } - - return nullptr; -} - -/// Fold icmp (trunc X, Y), C. -Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, - TruncInst *Trunc, - const APInt &C) { - ICmpInst::Predicate Pred = Cmp.getPredicate(); - Value *X = Trunc->getOperand(0); - if (C.isOneValue() && C.getBitWidth() > 1) { - // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 - Value *V = nullptr; - if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) - return new ICmpInst(ICmpInst::ICMP_SLT, V, - ConstantInt::get(V->getType(), 1)); - } - - if (Cmp.isEquality() && Trunc->hasOneUse()) { - // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all - // of the high bits truncated out of x are known. - unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), - SrcBits = X->getType()->getScalarSizeInBits(); - KnownBits Known = computeKnownBits(X, 0, &Cmp); - - // If all the high bits are known, we can do this xform. - if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { - // Pull in the high bits from known-ones set. - APInt NewRHS = C.zext(SrcBits); - NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); - return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); - } - } - - return nullptr; -} - -/// Fold icmp (xor X, Y), C. -Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, - BinaryOperator *Xor, - const APInt &C) { - Value *X = Xor->getOperand(0); - Value *Y = Xor->getOperand(1); - const APInt *XorC; - if (!match(Y, m_APInt(XorC))) - return nullptr; - - // If this is a comparison that tests the signbit (X < 0) or (x > -1), - // fold the xor. - ICmpInst::Predicate Pred = Cmp.getPredicate(); - bool TrueIfSigned = false; - if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { - - // If the sign bit of the XorCst is not set, there is no change to - // the operation, just stop using the Xor. - if (!XorC->isNegative()) { - Cmp.setOperand(0, X); - Worklist.Add(Xor); - return &Cmp; - } - - // Emit the opposite comparison. - if (TrueIfSigned) - return new ICmpInst(ICmpInst::ICMP_SGT, X, - ConstantInt::getAllOnesValue(X->getType())); - else - return new ICmpInst(ICmpInst::ICMP_SLT, X, - ConstantInt::getNullValue(X->getType())); - } - - if (Xor->hasOneUse()) { - // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) - if (!Cmp.isEquality() && XorC->isSignMask()) { - Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() - : Cmp.getSignedPredicate(); - return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); - } - - // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) - if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { - Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() - : Cmp.getSignedPredicate(); - Pred = Cmp.getSwappedPredicate(Pred); - return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); - } - } - - // Mask constant magic can eliminate an 'xor' with unsigned compares. - if (Pred == ICmpInst::ICMP_UGT) { - // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) - if (*XorC == ~C && (C + 1).isPowerOf2()) - return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); - // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) - if (*XorC == C && (C + 1).isPowerOf2()) - return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); - } - if (Pred == ICmpInst::ICMP_ULT) { - // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) - if (*XorC == -C && C.isPowerOf2()) - return new ICmpInst(ICmpInst::ICMP_UGT, X, - ConstantInt::get(X->getType(), ~C)); - // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) - if (*XorC == C && (-C).isPowerOf2()) - return new ICmpInst(ICmpInst::ICMP_UGT, X, - ConstantInt::get(X->getType(), ~C)); - } - return nullptr; -} - -/// Fold icmp (and (sh X, Y), C2), C1. -Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, - const APInt &C1, const APInt &C2) { - BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); - if (!Shift || !Shift->isShift()) - return nullptr; - - // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could - // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in - // code produced by the clang front-end, for bitfield access. - // This seemingly simple opportunity to fold away a shift turns out to be - // rather complicated. See PR17827 for details. - unsigned ShiftOpcode = Shift->getOpcode(); - bool IsShl = ShiftOpcode == Instruction::Shl; - const APInt *C3; - if (match(Shift->getOperand(1), m_APInt(C3))) { - bool CanFold = false; - if (ShiftOpcode == Instruction::Shl) { - // For a left shift, we can fold if the comparison is not signed. We can - // also fold a signed comparison if the mask value and comparison value - // are not negative. These constraints may not be obvious, but we can - // prove that they are correct using an SMT solver. - if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) - CanFold = true; - } else { - bool IsAshr = ShiftOpcode == Instruction::AShr; - // For a logical right shift, we can fold if the comparison is not signed. - // We can also fold a signed comparison if the shifted mask value and the - // shifted comparison value are not negative. These constraints may not be - // obvious, but we can prove that they are correct using an SMT solver. - // For an arithmetic shift right we can do the same, if we ensure - // the And doesn't use any bits being shifted in. Normally these would - // be turned into lshr by SimplifyDemandedBits, but not if there is an - // additional user. - if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { - if (!Cmp.isSigned() || - (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) - CanFold = true; - } - } - - if (CanFold) { - APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); - APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); - // Check to see if we are shifting out any of the bits being compared. - if (SameAsC1 != C1) { - // If we shifted bits out, the fold is not going to work out. As a - // special case, check to see if this means that the result is always - // true or false now. - if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) - return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); - if (Cmp.getPredicate() == ICmpInst::ICMP_NE) - return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); - } else { - Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); - APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); - And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); - And->setOperand(0, Shift->getOperand(0)); - Worklist.Add(Shift); // Shift is dead. - return &Cmp; - } - } - } - - // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is - // preferable because it allows the C2 << Y expression to be hoisted out of a - // loop if Y is invariant and X is not. - if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && - !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { - // Compute C2 << Y. - Value *NewShift = - IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) - : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); - - // Compute X & (C2 << Y). - Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); - Cmp.setOperand(0, NewAnd); - return &Cmp; - } - - return nullptr; -} - -/// Fold icmp (and X, C2), C1. -Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, - BinaryOperator *And, - const APInt &C1) { - // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 - // TODO: We canonicalize to the longer form for scalars because we have - // better analysis/folds for icmp, and codegen may be better with icmp. - if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() && - C1.isNullValue() && match(And->getOperand(1), m_One())) - return new TruncInst(And->getOperand(0), Cmp.getType()); - - const APInt *C2; - if (!match(And->getOperand(1), m_APInt(C2))) - return nullptr; - - if (!And->hasOneUse()) - return nullptr; - - // If the LHS is an 'and' of a truncate and we can widen the and/compare to - // the input width without changing the value produced, eliminate the cast: - // - // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' - // - // We can do this transformation if the constants do not have their sign bits - // set or if it is an equality comparison. Extending a relational comparison - // when we're checking the sign bit would not work. - Value *W; - if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && - (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { - // TODO: Is this a good transform for vectors? Wider types may reduce - // throughput. Should this transform be limited (even for scalars) by using - // shouldChangeType()? - if (!Cmp.getType()->isVectorTy()) { - Type *WideType = W->getType(); - unsigned WideScalarBits = WideType->getScalarSizeInBits(); - Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); - Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); - Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); - return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); - } - } - - if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) - return I; - - // (icmp pred (and (or (lshr A, B), A), 1), 0) --> - // (icmp pred (and A, (or (shl 1, B), 1), 0)) - // - // iff pred isn't signed - if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && - match(And->getOperand(1), m_One())) { - Constant *One = cast<Constant>(And->getOperand(1)); - Value *Or = And->getOperand(0); - Value *A, *B, *LShr; - if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && - match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { - unsigned UsesRemoved = 0; - if (And->hasOneUse()) - ++UsesRemoved; - if (Or->hasOneUse()) - ++UsesRemoved; - if (LShr->hasOneUse()) - ++UsesRemoved; - - // Compute A & ((1 << B) | 1) - Value *NewOr = nullptr; - if (auto *C = dyn_cast<Constant>(B)) { - if (UsesRemoved >= 1) - NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); - } else { - if (UsesRemoved >= 3) - NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), - /*HasNUW=*/true), - One, Or->getName()); - } - if (NewOr) { - Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); - Cmp.setOperand(0, NewAnd); - return &Cmp; - } - } - } - - return nullptr; -} - -/// Fold icmp (and X, Y), C. -Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, - BinaryOperator *And, - const APInt &C) { - if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) - return I; - - // TODO: These all require that Y is constant too, so refactor with the above. - - // Try to optimize things like "A[i] & 42 == 0" to index computations. - Value *X = And->getOperand(0); - Value *Y = And->getOperand(1); - if (auto *LI = dyn_cast<LoadInst>(X)) - if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) - if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) - if (GV->isConstant() && GV->hasDefinitiveInitializer() && - !LI->isVolatile() && isa<ConstantInt>(Y)) { - ConstantInt *C2 = cast<ConstantInt>(Y); - if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) - return Res; - } - - if (!Cmp.isEquality()) - return nullptr; - - // X & -C == -C -> X > u ~C - // X & -C != -C -> X <= u ~C - // iff C is a power of 2 - if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { - auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT - : CmpInst::ICMP_ULE; - return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); - } - - // (X & C2) == 0 -> (trunc X) >= 0 - // (X & C2) != 0 -> (trunc X) < 0 - // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. - const APInt *C2; - if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { - int32_t ExactLogBase2 = C2->exactLogBase2(); - if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { - Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); - if (And->getType()->isVectorTy()) - NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); - Value *Trunc = Builder.CreateTrunc(X, NTy); - auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE - : CmpInst::ICMP_SLT; - return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); - } - } - - return nullptr; -} - -/// Fold icmp (or X, Y), C. -Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, - const APInt &C) { - ICmpInst::Predicate Pred = Cmp.getPredicate(); - if (C.isOneValue()) { - // icmp slt signum(V) 1 --> icmp slt V, 1 - Value *V = nullptr; - if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) - return new ICmpInst(ICmpInst::ICMP_SLT, V, - ConstantInt::get(V->getType(), 1)); - } - - // X | C == C --> X <=u C - // X | C != C --> X >u C - // iff C+1 is a power of 2 (C is a bitmask of the low bits) - if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) && - (C + 1).isPowerOf2()) { - Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; - return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1)); - } - - if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) - return nullptr; - - Value *P, *Q; - if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { - // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 - // -> and (icmp eq P, null), (icmp eq Q, null). - Value *CmpP = - Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); - Value *CmpQ = - Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); - auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; - return BinaryOperator::Create(BOpc, CmpP, CmpQ); - } - - // Are we using xors to bitwise check for a pair of (in)equalities? Convert to - // a shorter form that has more potential to be folded even further. - Value *X1, *X2, *X3, *X4; - if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && - match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { - // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) - // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) - Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); - Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); - auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; - return BinaryOperator::Create(BOpc, Cmp12, Cmp34); - } - - return nullptr; -} - -/// Fold icmp (mul X, Y), C. -Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, - BinaryOperator *Mul, - const APInt &C) { - const APInt *MulC; - if (!match(Mul->getOperand(1), m_APInt(MulC))) - return nullptr; - - // If this is a test of the sign bit and the multiply is sign-preserving with - // a constant operand, use the multiply LHS operand instead. - ICmpInst::Predicate Pred = Cmp.getPredicate(); - if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { - if (MulC->isNegative()) - Pred = ICmpInst::getSwappedPredicate(Pred); - return new ICmpInst(Pred, Mul->getOperand(0), - Constant::getNullValue(Mul->getType())); - } - - return nullptr; -} - -/// Fold icmp (shl 1, Y), C. -static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, - const APInt &C) { - Value *Y; - if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) - return nullptr; - - Type *ShiftType = Shl->getType(); - unsigned TypeBits = C.getBitWidth(); - bool CIsPowerOf2 = C.isPowerOf2(); - ICmpInst::Predicate Pred = Cmp.getPredicate(); - if (Cmp.isUnsigned()) { - // (1 << Y) pred C -> Y pred Log2(C) - if (!CIsPowerOf2) { - // (1 << Y) < 30 -> Y <= 4 - // (1 << Y) <= 30 -> Y <= 4 - // (1 << Y) >= 30 -> Y > 4 - // (1 << Y) > 30 -> Y > 4 - if (Pred == ICmpInst::ICMP_ULT) - Pred = ICmpInst::ICMP_ULE; - else if (Pred == ICmpInst::ICMP_UGE) - Pred = ICmpInst::ICMP_UGT; - } - - // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 - // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 - unsigned CLog2 = C.logBase2(); - if (CLog2 == TypeBits - 1) { - if (Pred == ICmpInst::ICMP_UGE) - Pred = ICmpInst::ICMP_EQ; - else if (Pred == ICmpInst::ICMP_ULT) - Pred = ICmpInst::ICMP_NE; - } - return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); - } else if (Cmp.isSigned()) { - Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); - if (C.isAllOnesValue()) { - // (1 << Y) <= -1 -> Y == 31 - if (Pred == ICmpInst::ICMP_SLE) - return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); - - // (1 << Y) > -1 -> Y != 31 - if (Pred == ICmpInst::ICMP_SGT) - return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); - } else if (!C) { - // (1 << Y) < 0 -> Y == 31 - // (1 << Y) <= 0 -> Y == 31 - if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) - return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); - - // (1 << Y) >= 0 -> Y != 31 - // (1 << Y) > 0 -> Y != 31 - if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) - return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); - } - } else if (Cmp.isEquality() && CIsPowerOf2) { - return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); - } - - return nullptr; -} - -/// Fold icmp (shl X, Y), C. -Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, - BinaryOperator *Shl, - const APInt &C) { - const APInt *ShiftVal; - if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) - return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); - - const APInt *ShiftAmt; - if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) - return foldICmpShlOne(Cmp, Shl, C); - - // Check that the shift amount is in range. If not, don't perform undefined - // shifts. When the shift is visited, it will be simplified. - unsigned TypeBits = C.getBitWidth(); - if (ShiftAmt->uge(TypeBits)) - return nullptr; - - ICmpInst::Predicate Pred = Cmp.getPredicate(); - Value *X = Shl->getOperand(0); - Type *ShType = Shl->getType(); - - // NSW guarantees that we are only shifting out sign bits from the high bits, - // so we can ASHR the compare constant without needing a mask and eliminate - // the shift. - if (Shl->hasNoSignedWrap()) { - if (Pred == ICmpInst::ICMP_SGT) { - // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) - APInt ShiftedC = C.ashr(*ShiftAmt); - return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); - } - if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && - C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { - APInt ShiftedC = C.ashr(*ShiftAmt); - return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); - } - if (Pred == ICmpInst::ICMP_SLT) { - // SLE is the same as above, but SLE is canonicalized to SLT, so convert: - // (X << S) <=s C is equiv to X <=s (C >> S) for all C - // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX - // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN - assert(!C.isMinSignedValue() && "Unexpected icmp slt"); - APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; - return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); - } - // If this is a signed comparison to 0 and the shift is sign preserving, - // use the shift LHS operand instead; isSignTest may change 'Pred', so only - // do that if we're sure to not continue on in this function. - if (isSignTest(Pred, C)) - return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); - } - - // NUW guarantees that we are only shifting out zero bits from the high bits, - // so we can LSHR the compare constant without needing a mask and eliminate - // the shift. - if (Shl->hasNoUnsignedWrap()) { - if (Pred == ICmpInst::ICMP_UGT) { - // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) - APInt ShiftedC = C.lshr(*ShiftAmt); - return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); - } - if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && - C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { - APInt ShiftedC = C.lshr(*ShiftAmt); - return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); - } - if (Pred == ICmpInst::ICMP_ULT) { - // ULE is the same as above, but ULE is canonicalized to ULT, so convert: - // (X << S) <=u C is equiv to X <=u (C >> S) for all C - // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u - // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 - assert(C.ugt(0) && "ult 0 should have been eliminated"); - APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; - return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); - } - } - - if (Cmp.isEquality() && Shl->hasOneUse()) { - // Strength-reduce the shift into an 'and'. - Constant *Mask = ConstantInt::get( - ShType, - APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); - Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); - Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); - return new ICmpInst(Pred, And, LShrC); - } - - // Otherwise, if this is a comparison of the sign bit, simplify to and/test. - bool TrueIfSigned = false; - if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { - // (X << 31) <s 0 --> (X & 1) != 0 - Constant *Mask = ConstantInt::get( - ShType, - APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); - Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); - return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, - And, Constant::getNullValue(ShType)); - } - - // Transform (icmp pred iM (shl iM %v, N), C) - // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) - // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. - // This enables us to get rid of the shift in favor of a trunc that may be - // free on the target. It has the additional benefit of comparing to a - // smaller constant that may be more target-friendly. - unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); - if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && - DL.isLegalInteger(TypeBits - Amt)) { - Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); - if (ShType->isVectorTy()) - TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); - Constant *NewC = - ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); - return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); - } - - return nullptr; -} - -/// Fold icmp ({al}shr X, Y), C. -Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, - BinaryOperator *Shr, - const APInt &C) { - // An exact shr only shifts out zero bits, so: - // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 - Value *X = Shr->getOperand(0); - CmpInst::Predicate Pred = Cmp.getPredicate(); - if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && - C.isNullValue()) - return new ICmpInst(Pred, X, Cmp.getOperand(1)); - - const APInt *ShiftVal; - if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) - return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); - - const APInt *ShiftAmt; - if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) - return nullptr; - - // Check that the shift amount is in range. If not, don't perform undefined - // shifts. When the shift is visited it will be simplified. - unsigned TypeBits = C.getBitWidth(); - unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); - if (ShAmtVal >= TypeBits || ShAmtVal == 0) - return nullptr; - - bool IsAShr = Shr->getOpcode() == Instruction::AShr; - bool IsExact = Shr->isExact(); - Type *ShrTy = Shr->getType(); - // TODO: If we could guarantee that InstSimplify would handle all of the - // constant-value-based preconditions in the folds below, then we could assert - // those conditions rather than checking them. This is difficult because of - // undef/poison (PR34838). - if (IsAShr) { - if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { - // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) - // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) - APInt ShiftedC = C.shl(ShAmtVal); - if (ShiftedC.ashr(ShAmtVal) == C) - return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); - } - if (Pred == CmpInst::ICMP_SGT) { - // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 - APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; - if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && - (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) - return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); - } - } else { - if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { - // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) - // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) - APInt ShiftedC = C.shl(ShAmtVal); - if (ShiftedC.lshr(ShAmtVal) == C) - return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); - } - if (Pred == CmpInst::ICMP_UGT) { - // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 - APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; - if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) - return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); - } - } - - if (!Cmp.isEquality()) - return nullptr; - - // Handle equality comparisons of shift-by-constant. - - // If the comparison constant changes with the shift, the comparison cannot - // succeed (bits of the comparison constant cannot match the shifted value). - // This should be known by InstSimplify and already be folded to true/false. - assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || - (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && - "Expected icmp+shr simplify did not occur."); - - // If the bits shifted out are known zero, compare the unshifted value: - // (X & 4) >> 1 == 2 --> (X & 4) == 4. - if (Shr->isExact()) - return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); - - if (Shr->hasOneUse()) { - // Canonicalize the shift into an 'and': - // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) - APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); - Constant *Mask = ConstantInt::get(ShrTy, Val); - Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); - return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); - } - - return nullptr; -} - -/// Fold icmp (udiv X, Y), C. -Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, - BinaryOperator *UDiv, - const APInt &C) { - const APInt *C2; - if (!match(UDiv->getOperand(0), m_APInt(C2))) - return nullptr; - - assert(*C2 != 0 && "udiv 0, X should have been simplified already."); - - // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) - Value *Y = UDiv->getOperand(1); - if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { - assert(!C.isMaxValue() && - "icmp ugt X, UINT_MAX should have been simplified already."); - return new ICmpInst(ICmpInst::ICMP_ULE, Y, - ConstantInt::get(Y->getType(), C2->udiv(C + 1))); - } - - // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) - if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { - assert(C != 0 && "icmp ult X, 0 should have been simplified already."); - return new ICmpInst(ICmpInst::ICMP_UGT, Y, - ConstantInt::get(Y->getType(), C2->udiv(C))); - } - - return nullptr; -} - -/// Fold icmp ({su}div X, Y), C. -Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, - BinaryOperator *Div, - const APInt &C) { - // Fold: icmp pred ([us]div X, C2), C -> range test - // Fold this div into the comparison, producing a range check. - // Determine, based on the divide type, what the range is being - // checked. If there is an overflow on the low or high side, remember - // it, otherwise compute the range [low, hi) bounding the new value. - // See: InsertRangeTest above for the kinds of replacements possible. - const APInt *C2; - if (!match(Div->getOperand(1), m_APInt(C2))) - return nullptr; - - // FIXME: If the operand types don't match the type of the divide - // then don't attempt this transform. The code below doesn't have the - // logic to deal with a signed divide and an unsigned compare (and - // vice versa). This is because (x /s C2) <s C produces different - // results than (x /s C2) <u C or (x /u C2) <s C or even - // (x /u C2) <u C. Simply casting the operands and result won't - // work. :( The if statement below tests that condition and bails - // if it finds it. - bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; - if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) - return nullptr; - - // The ProdOV computation fails on divide by 0 and divide by -1. Cases with - // INT_MIN will also fail if the divisor is 1. Although folds of all these - // division-by-constant cases should be present, we can not assert that they - // have happened before we reach this icmp instruction. - if (C2->isNullValue() || C2->isOneValue() || - (DivIsSigned && C2->isAllOnesValue())) - return nullptr; - - // Compute Prod = C * C2. We are essentially solving an equation of - // form X / C2 = C. We solve for X by multiplying C2 and C. - // By solving for X, we can turn this into a range check instead of computing - // a divide. - APInt Prod = C * *C2; - - // Determine if the product overflows by seeing if the product is not equal to - // the divide. Make sure we do the same kind of divide as in the LHS - // instruction that we're folding. - bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; - - ICmpInst::Predicate Pred = Cmp.getPredicate(); - - // If the division is known to be exact, then there is no remainder from the - // divide, so the covered range size is unit, otherwise it is the divisor. - APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; - - // Figure out the interval that is being checked. For example, a comparison - // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). - // Compute this interval based on the constants involved and the signedness of - // the compare/divide. This computes a half-open interval, keeping track of - // whether either value in the interval overflows. After analysis each - // overflow variable is set to 0 if it's corresponding bound variable is valid - // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. - int LoOverflow = 0, HiOverflow = 0; - APInt LoBound, HiBound; - - if (!DivIsSigned) { // udiv - // e.g. X/5 op 3 --> [15, 20) - LoBound = Prod; - HiOverflow = LoOverflow = ProdOV; - if (!HiOverflow) { - // If this is not an exact divide, then many values in the range collapse - // to the same result value. - HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); - } - } else if (C2->isStrictlyPositive()) { // Divisor is > 0. - if (C.isNullValue()) { // (X / pos) op 0 - // Can't overflow. e.g. X/2 op 0 --> [-1, 2) - LoBound = -(RangeSize - 1); - HiBound = RangeSize; - } else if (C.isStrictlyPositive()) { // (X / pos) op pos - LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) - HiOverflow = LoOverflow = ProdOV; - if (!HiOverflow) - HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); - } else { // (X / pos) op neg - // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) - HiBound = Prod + 1; - LoOverflow = HiOverflow = ProdOV ? -1 : 0; - if (!LoOverflow) { - APInt DivNeg = -RangeSize; - LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; - } - } - } else if (C2->isNegative()) { // Divisor is < 0. - if (Div->isExact()) - RangeSize.negate(); - if (C.isNullValue()) { // (X / neg) op 0 - // e.g. X/-5 op 0 --> [-4, 5) - LoBound = RangeSize + 1; - HiBound = -RangeSize; - if (HiBound == *C2) { // -INTMIN = INTMIN - HiOverflow = 1; // [INTMIN+1, overflow) - HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN - } - } else if (C.isStrictlyPositive()) { // (X / neg) op pos - // e.g. X/-5 op 3 --> [-19, -14) - HiBound = Prod + 1; - HiOverflow = LoOverflow = ProdOV ? -1 : 0; - if (!LoOverflow) - LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; - } else { // (X / neg) op neg - LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) - LoOverflow = HiOverflow = ProdOV; - if (!HiOverflow) - HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); - } - - // Dividing by a negative swaps the condition. LT <-> GT - Pred = ICmpInst::getSwappedPredicate(Pred); - } - - Value *X = Div->getOperand(0); - switch (Pred) { - default: llvm_unreachable("Unhandled icmp opcode!"); - case ICmpInst::ICMP_EQ: - if (LoOverflow && HiOverflow) - return replaceInstUsesWith(Cmp, Builder.getFalse()); - if (HiOverflow) - return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : - ICmpInst::ICMP_UGE, X, - ConstantInt::get(Div->getType(), LoBound)); - if (LoOverflow) - return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : - ICmpInst::ICMP_ULT, X, - ConstantInt::get(Div->getType(), HiBound)); - return replaceInstUsesWith( - Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); - case ICmpInst::ICMP_NE: - if (LoOverflow && HiOverflow) - return replaceInstUsesWith(Cmp, Builder.getTrue()); - if (HiOverflow) - return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : - ICmpInst::ICMP_ULT, X, - ConstantInt::get(Div->getType(), LoBound)); - if (LoOverflow) - return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : - ICmpInst::ICMP_UGE, X, - ConstantInt::get(Div->getType(), HiBound)); - return replaceInstUsesWith(Cmp, - insertRangeTest(X, LoBound, HiBound, - DivIsSigned, false)); - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_SLT: - if (LoOverflow == +1) // Low bound is greater than input range. - return replaceInstUsesWith(Cmp, Builder.getTrue()); - if (LoOverflow == -1) // Low bound is less than input range. - return replaceInstUsesWith(Cmp, Builder.getFalse()); - return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_SGT: - if (HiOverflow == +1) // High bound greater than input range. - return replaceInstUsesWith(Cmp, Builder.getFalse()); - if (HiOverflow == -1) // High bound less than input range. - return replaceInstUsesWith(Cmp, Builder.getTrue()); - if (Pred == ICmpInst::ICMP_UGT) - return new ICmpInst(ICmpInst::ICMP_UGE, X, - ConstantInt::get(Div->getType(), HiBound)); - return new ICmpInst(ICmpInst::ICMP_SGE, X, - ConstantInt::get(Div->getType(), HiBound)); - } - - return nullptr; -} - -/// Fold icmp (sub X, Y), C. -Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, - BinaryOperator *Sub, - const APInt &C) { - Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); - ICmpInst::Predicate Pred = Cmp.getPredicate(); - - // The following transforms are only worth it if the only user of the subtract - // is the icmp. - if (!Sub->hasOneUse()) - return nullptr; - - if (Sub->hasNoSignedWrap()) { - // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) - if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) - return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); - - // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) - if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) - return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); - - // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) - if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) - return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); - - // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) - if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) - return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); - } - - const APInt *C2; - if (!match(X, m_APInt(C2))) - return nullptr; - - // C2 - Y <u C -> (Y | (C - 1)) == C2 - // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 - if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && - (*C2 & (C - 1)) == (C - 1)) - return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); - - // C2 - Y >u C -> (Y | C) != C2 - // iff C2 & C == C and C + 1 is a power of 2 - if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) - return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); - - return nullptr; -} - -/// Fold icmp (add X, Y), C. -Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, - BinaryOperator *Add, - const APInt &C) { - Value *Y = Add->getOperand(1); - const APInt *C2; - if (Cmp.isEquality() || !match(Y, m_APInt(C2))) - return nullptr; - - // Fold icmp pred (add X, C2), C. - Value *X = Add->getOperand(0); - Type *Ty = Add->getType(); - CmpInst::Predicate Pred = Cmp.getPredicate(); - - if (!Add->hasOneUse()) - return nullptr; - - // If the add does not wrap, we can always adjust the compare by subtracting - // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE - // are canonicalized to SGT/SLT/UGT/ULT. - if ((Add->hasNoSignedWrap() && - (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || - (Add->hasNoUnsignedWrap() && - (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { - bool Overflow; - APInt NewC = - Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); - // If there is overflow, the result must be true or false. - // TODO: Can we assert there is no overflow because InstSimplify always - // handles those cases? - if (!Overflow) - // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) - return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); - } - - auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); - const APInt &Upper = CR.getUpper(); - const APInt &Lower = CR.getLower(); - if (Cmp.isSigned()) { - if (Lower.isSignMask()) - return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); - if (Upper.isSignMask()) - return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); - } else { - if (Lower.isMinValue()) - return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); - if (Upper.isMinValue()) - return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); - } - - // X+C <u C2 -> (X & -C2) == C - // iff C & (C2-1) == 0 - // C2 is a power of 2 - if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) - return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), - ConstantExpr::getNeg(cast<Constant>(Y))); - - // X+C >u C2 -> (X & ~C2) != C - // iff C & C2 == 0 - // C2+1 is a power of 2 - if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) - return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), - ConstantExpr::getNeg(cast<Constant>(Y))); - - return nullptr; -} - -bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, - Value *&RHS, ConstantInt *&Less, - ConstantInt *&Equal, - ConstantInt *&Greater) { - // TODO: Generalize this to work with other comparison idioms or ensure - // they get canonicalized into this form. - - // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 - // Greater), where Equal, Less and Greater are placeholders for any three - // constants. - ICmpInst::Predicate PredA, PredB; - if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && - match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && - PredA == ICmpInst::ICMP_EQ && - match(SI->getFalseValue(), - m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), - m_ConstantInt(Less), m_ConstantInt(Greater))) && - PredB == ICmpInst::ICMP_SLT) { - return true; - } - return false; -} - -Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, - SelectInst *Select, - ConstantInt *C) { - - assert(C && "Cmp RHS should be a constant int!"); - // If we're testing a constant value against the result of a three way - // comparison, the result can be expressed directly in terms of the - // original values being compared. Note: We could possibly be more - // aggressive here and remove the hasOneUse test. The original select is - // really likely to simplify or sink when we remove a test of the result. - Value *OrigLHS, *OrigRHS; - ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; - if (Cmp.hasOneUse() && - matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, - C3GreaterThan)) { - assert(C1LessThan && C2Equal && C3GreaterThan); - - bool TrueWhenLessThan = - ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) - ->isAllOnesValue(); - bool TrueWhenEqual = - ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) - ->isAllOnesValue(); - bool TrueWhenGreaterThan = - ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) - ->isAllOnesValue(); - - // This generates the new instruction that will replace the original Cmp - // Instruction. Instead of enumerating the various combinations when - // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus - // false, we rely on chaining of ORs and future passes of InstCombine to - // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). - - // When none of the three constants satisfy the predicate for the RHS (C), - // the entire original Cmp can be simplified to a false. - Value *Cond = Builder.getFalse(); - if (TrueWhenLessThan) - Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS)); - if (TrueWhenEqual) - Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS)); - if (TrueWhenGreaterThan) - Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS)); - - return replaceInstUsesWith(Cmp, Cond); - } - return nullptr; -} - -Instruction *InstCombiner::foldICmpBitCastConstant(ICmpInst &Cmp, - BitCastInst *Bitcast, - const APInt &C) { - // Folding: icmp <pred> iN X, C - // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN - // and C is a splat of a K-bit pattern - // and SC is a constant vector = <C', C', C', ..., C'> - // Into: - // %E = extractelement <M x iK> %vec, i32 C' - // icmp <pred> iK %E, trunc(C) - if (!Bitcast->getType()->isIntegerTy() || - !Bitcast->getSrcTy()->isIntOrIntVectorTy()) - return nullptr; - - Value *BCIOp = Bitcast->getOperand(0); - Value *Vec = nullptr; // 1st vector arg of the shufflevector - Constant *Mask = nullptr; // Mask arg of the shufflevector - if (match(BCIOp, - m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { - // Check whether every element of Mask is the same constant - if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { - auto *VecTy = cast<VectorType>(BCIOp->getType()); - auto *EltTy = cast<IntegerType>(VecTy->getElementType()); - auto Pred = Cmp.getPredicate(); - if (C.isSplat(EltTy->getBitWidth())) { - // Fold the icmp based on the value of C - // If C is M copies of an iK sized bit pattern, - // then: - // => %E = extractelement <N x iK> %vec, i32 Elem - // icmp <pred> iK %SplatVal, <pattern> - Value *Extract = Builder.CreateExtractElement(Vec, Elem); - Value *NewC = ConstantInt::get(EltTy, C.trunc(EltTy->getBitWidth())); - return new ICmpInst(Pred, Extract, NewC); - } - } - } - return nullptr; -} - -/// Try to fold integer comparisons with a constant operand: icmp Pred X, C -/// where X is some kind of instruction. -Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { - const APInt *C; - if (!match(Cmp.getOperand(1), m_APInt(C))) - return nullptr; - - if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { - switch (BO->getOpcode()) { - case Instruction::Xor: - if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::And: - if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::Or: - if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::Mul: - if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::Shl: - if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::LShr: - case Instruction::AShr: - if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::UDiv: - if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) - return I; - LLVM_FALLTHROUGH; - case Instruction::SDiv: - if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::Sub: - if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) - return I; - break; - case Instruction::Add: - if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) - return I; - break; - default: - break; - } - // TODO: These folds could be refactored to be part of the above calls. - if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) - return I; - } - - // Match against CmpInst LHS being instructions other than binary operators. - - if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { - // For now, we only support constant integers while folding the - // ICMP(SELECT)) pattern. We can extend this to support vector of integers - // similar to the cases handled by binary ops above. - if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) - if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) - return I; - } - - if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { - if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) - return I; - } - - if (auto *BCI = dyn_cast<BitCastInst>(Cmp.getOperand(0))) { - if (Instruction *I = foldICmpBitCastConstant(Cmp, BCI, *C)) - return I; - } - - if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, *C)) - return I; - - return nullptr; -} - -/// Fold an icmp equality instruction with binary operator LHS and constant RHS: -/// icmp eq/ne BO, C. -Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, - BinaryOperator *BO, - const APInt &C) { - // TODO: Some of these folds could work with arbitrary constants, but this - // function is limited to scalar and vector splat constants. - if (!Cmp.isEquality()) - return nullptr; - - ICmpInst::Predicate Pred = Cmp.getPredicate(); - bool isICMP_NE = Pred == ICmpInst::ICMP_NE; - Constant *RHS = cast<Constant>(Cmp.getOperand(1)); - Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); - - switch (BO->getOpcode()) { - case Instruction::SRem: - // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. - if (C.isNullValue() && BO->hasOneUse()) { - const APInt *BOC; - if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { - Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); - return new ICmpInst(Pred, NewRem, - Constant::getNullValue(BO->getType())); - } - } - break; - case Instruction::Add: { - // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. - const APInt *BOC; - if (match(BOp1, m_APInt(BOC))) { - if (BO->hasOneUse()) { - Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); - return new ICmpInst(Pred, BOp0, SubC); - } - } else if (C.isNullValue()) { - // Replace ((add A, B) != 0) with (A != -B) if A or B is - // efficiently invertible, or if the add has just this one use. - if (Value *NegVal = dyn_castNegVal(BOp1)) - return new ICmpInst(Pred, BOp0, NegVal); - if (Value *NegVal = dyn_castNegVal(BOp0)) - return new ICmpInst(Pred, NegVal, BOp1); - if (BO->hasOneUse()) { - Value *Neg = Builder.CreateNeg(BOp1); - Neg->takeName(BO); - return new ICmpInst(Pred, BOp0, Neg); - } - } - break; - } - case Instruction::Xor: - if (BO->hasOneUse()) { - if (Constant *BOC = dyn_cast<Constant>(BOp1)) { - // For the xor case, we can xor two constants together, eliminating - // the explicit xor. - return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); - } else if (C.isNullValue()) { - // Replace ((xor A, B) != 0) with (A != B) - return new ICmpInst(Pred, BOp0, BOp1); - } - } - break; - case Instruction::Sub: - if (BO->hasOneUse()) { - const APInt *BOC; - if (match(BOp0, m_APInt(BOC))) { - // Replace ((sub BOC, B) != C) with (B != BOC-C). - Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); - return new ICmpInst(Pred, BOp1, SubC); - } else if (C.isNullValue()) { - // Replace ((sub A, B) != 0) with (A != B). - return new ICmpInst(Pred, BOp0, BOp1); - } - } - break; - case Instruction::Or: { - const APInt *BOC; - if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { - // Comparing if all bits outside of a constant mask are set? - // Replace (X | C) == -1 with (X & ~C) == ~C. - // This removes the -1 constant. - Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); - Value *And = Builder.CreateAnd(BOp0, NotBOC); - return new ICmpInst(Pred, And, NotBOC); - } - break; - } - case Instruction::And: { - const APInt *BOC; - if (match(BOp1, m_APInt(BOC))) { - // If we have ((X & C) == C), turn it into ((X & C) != 0). - if (C == *BOC && C.isPowerOf2()) - return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, - BO, Constant::getNullValue(RHS->getType())); - - // Don't perform the following transforms if the AND has multiple uses - if (!BO->hasOneUse()) - break; - - // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 - if (BOC->isSignMask()) { - Constant *Zero = Constant::getNullValue(BOp0->getType()); - auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; - return new ICmpInst(NewPred, BOp0, Zero); - } - - // ((X & ~7) == 0) --> X < 8 - if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { - Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); - auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; - return new ICmpInst(NewPred, BOp0, NegBOC); - } - } - break; - } - case Instruction::Mul: - if (C.isNullValue() && BO->hasNoSignedWrap()) { - const APInt *BOC; - if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { - // The trivial case (mul X, 0) is handled by InstSimplify. - // General case : (mul X, C) != 0 iff X != 0 - // (mul X, C) == 0 iff X == 0 - return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); - } - } - break; - case Instruction::UDiv: - if (C.isNullValue()) { - // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) - auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; - return new ICmpInst(NewPred, BOp1, BOp0); - } - break; - default: - break; - } - return nullptr; -} - -/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. -Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, - const APInt &C) { - IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)); - if (!II || !Cmp.isEquality()) - return nullptr; - - // Handle icmp {eq|ne} <intrinsic>, Constant. - Type *Ty = II->getType(); - unsigned BitWidth = C.getBitWidth(); - switch (II->getIntrinsicID()) { - case Intrinsic::bswap: - Worklist.Add(II); - Cmp.setOperand(0, II->getArgOperand(0)); - Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); - return &Cmp; - - case Intrinsic::ctlz: - case Intrinsic::cttz: { - // ctz(A) == bitwidth(A) -> A == 0 and likewise for != - if (C == BitWidth) { - Worklist.Add(II); - Cmp.setOperand(0, II->getArgOperand(0)); - Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); - return &Cmp; - } - - // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set - // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. - // Limit to one use to ensure we don't increase instruction count. - unsigned Num = C.getLimitedValue(BitWidth); - if (Num != BitWidth && II->hasOneUse()) { - bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; - APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) - : APInt::getHighBitsSet(BitWidth, Num + 1); - APInt Mask2 = IsTrailing - ? APInt::getOneBitSet(BitWidth, Num) - : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); - Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); - Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); - Worklist.Add(II); - return &Cmp; - } - break; - } - - case Intrinsic::ctpop: { - // popcount(A) == 0 -> A == 0 and likewise for != - // popcount(A) == bitwidth(A) -> A == -1 and likewise for != - bool IsZero = C.isNullValue(); - if (IsZero || C == BitWidth) { - Worklist.Add(II); - Cmp.setOperand(0, II->getArgOperand(0)); - auto *NewOp = - IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); - Cmp.setOperand(1, NewOp); - return &Cmp; - } - break; - } - default: - break; - } - - return nullptr; -} - -/// Handle icmp with constant (but not simple integer constant) RHS. -Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - Constant *RHSC = dyn_cast<Constant>(Op1); - Instruction *LHSI = dyn_cast<Instruction>(Op0); - if (!RHSC || !LHSI) - return nullptr; - - switch (LHSI->getOpcode()) { - case Instruction::GetElementPtr: - // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null - if (RHSC->isNullValue() && - cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) - return new ICmpInst( - I.getPredicate(), LHSI->getOperand(0), - Constant::getNullValue(LHSI->getOperand(0)->getType())); - break; - case Instruction::PHI: - // Only fold icmp into the PHI if the phi and icmp are in the same - // block. If in the same block, we're encouraging jump threading. If - // not, we are just pessimizing the code by making an i1 phi. - if (LHSI->getParent() == I.getParent()) - if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) - return NV; - break; - case Instruction::Select: { - // If either operand of the select is a constant, we can fold the - // comparison into the select arms, which will cause one to be - // constant folded and the select turned into a bitwise or. - Value *Op1 = nullptr, *Op2 = nullptr; - ConstantInt *CI = nullptr; - if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { - Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); - CI = dyn_cast<ConstantInt>(Op1); - } - if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { - Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); - CI = dyn_cast<ConstantInt>(Op2); - } - - // We only want to perform this transformation if it will not lead to - // additional code. This is true if either both sides of the select - // fold to a constant (in which case the icmp is replaced with a select - // which will usually simplify) or this is the only user of the - // select (in which case we are trading a select+icmp for a simpler - // select+icmp) or all uses of the select can be replaced based on - // dominance information ("Global cases"). - bool Transform = false; - if (Op1 && Op2) - Transform = true; - else if (Op1 || Op2) { - // Local case - if (LHSI->hasOneUse()) - Transform = true; - // Global cases - else if (CI && !CI->isZero()) - // When Op1 is constant try replacing select with second operand. - // Otherwise Op2 is constant and try replacing select with first - // operand. - Transform = - replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); - } - if (Transform) { - if (!Op1) - Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, - I.getName()); - if (!Op2) - Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, - I.getName()); - return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); - } - break; - } - case Instruction::IntToPtr: - // icmp pred inttoptr(X), null -> icmp pred X, 0 - if (RHSC->isNullValue() && - DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) - return new ICmpInst( - I.getPredicate(), LHSI->getOperand(0), - Constant::getNullValue(LHSI->getOperand(0)->getType())); - break; - - case Instruction::Load: - // Try to optimize things like "A[i] > 4" to index computations. - if (GetElementPtrInst *GEP = - dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) - if (GV->isConstant() && GV->hasDefinitiveInitializer() && - !cast<LoadInst>(LHSI)->isVolatile()) - if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) - return Res; - } - break; - } - - return nullptr; -} - -/// Some comparisons can be simplified. -/// In this case, we are looking for comparisons that look like -/// a check for a lossy truncation. -/// Folds: -/// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask -/// Where Mask is some pattern that produces all-ones in low bits: -/// (-1 >> y) -/// ((-1 << y) >> y) <- non-canonical, has extra uses -/// ~(-1 << y) -/// ((1 << y) + (-1)) <- non-canonical, has extra uses -/// The Mask can be a constant, too. -/// For some predicates, the operands are commutative. -/// For others, x can only be on a specific side. -static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, - InstCombiner::BuilderTy &Builder) { - ICmpInst::Predicate SrcPred; - Value *X, *M, *Y; - auto m_VariableMask = m_CombineOr( - m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), - m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), - m_CombineOr(m_LShr(m_AllOnes(), m_Value()), - m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); - auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); - if (!match(&I, m_c_ICmp(SrcPred, - m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), - m_Deferred(X)))) - return nullptr; - - ICmpInst::Predicate DstPred; - switch (SrcPred) { - case ICmpInst::Predicate::ICMP_EQ: - // x & (-1 >> y) == x -> x u<= (-1 >> y) - DstPred = ICmpInst::Predicate::ICMP_ULE; - break; - case ICmpInst::Predicate::ICMP_NE: - // x & (-1 >> y) != x -> x u> (-1 >> y) - DstPred = ICmpInst::Predicate::ICMP_UGT; - break; - case ICmpInst::Predicate::ICMP_UGT: - // x u> x & (-1 >> y) -> x u> (-1 >> y) - assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); - DstPred = ICmpInst::Predicate::ICMP_UGT; - break; - case ICmpInst::Predicate::ICMP_UGE: - // x & (-1 >> y) u>= x -> x u<= (-1 >> y) - assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); - DstPred = ICmpInst::Predicate::ICMP_ULE; - break; - case ICmpInst::Predicate::ICMP_ULT: - // x & (-1 >> y) u< x -> x u> (-1 >> y) - assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); - DstPred = ICmpInst::Predicate::ICMP_UGT; - break; - case ICmpInst::Predicate::ICMP_ULE: - // x u<= x & (-1 >> y) -> x u<= (-1 >> y) - assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); - DstPred = ICmpInst::Predicate::ICMP_ULE; - break; - case ICmpInst::Predicate::ICMP_SGT: - // x s> x & (-1 >> y) -> x s> (-1 >> y) - if (X != I.getOperand(0)) // X must be on LHS of comparison! - return nullptr; // Ignore the other case. - DstPred = ICmpInst::Predicate::ICMP_SGT; - break; - case ICmpInst::Predicate::ICMP_SGE: - // x & (-1 >> y) s>= x -> x s<= (-1 >> y) - if (X != I.getOperand(1)) // X must be on RHS of comparison! - return nullptr; // Ignore the other case. - if (!match(M, m_Constant())) // Can not do this fold with non-constant. - return nullptr; - if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. - return nullptr; - DstPred = ICmpInst::Predicate::ICMP_SLE; - break; - case ICmpInst::Predicate::ICMP_SLT: - // x & (-1 >> y) s< x -> x s> (-1 >> y) - if (X != I.getOperand(1)) // X must be on RHS of comparison! - return nullptr; // Ignore the other case. - if (!match(M, m_Constant())) // Can not do this fold with non-constant. - return nullptr; - if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. - return nullptr; - DstPred = ICmpInst::Predicate::ICMP_SGT; - break; - case ICmpInst::Predicate::ICMP_SLE: - // x s<= x & (-1 >> y) -> x s<= (-1 >> y) - if (X != I.getOperand(0)) // X must be on LHS of comparison! - return nullptr; // Ignore the other case. - DstPred = ICmpInst::Predicate::ICMP_SLE; - break; - default: - llvm_unreachable("All possible folds are handled."); - } - - return Builder.CreateICmp(DstPred, X, M); -} - -/// Some comparisons can be simplified. -/// In this case, we are looking for comparisons that look like -/// a check for a lossy signed truncation. -/// Folds: (MaskedBits is a constant.) -/// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x -/// Into: -/// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) -/// Where KeptBits = bitwidth(%x) - MaskedBits -static Value * -foldICmpWithTruncSignExtendedVal(ICmpInst &I, - InstCombiner::BuilderTy &Builder) { - ICmpInst::Predicate SrcPred; - Value *X; - const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. - // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. - if (!match(&I, m_c_ICmp(SrcPred, - m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), - m_APInt(C1))), - m_Deferred(X)))) - return nullptr; - - // Potential handling of non-splats: for each element: - // * if both are undef, replace with constant 0. - // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. - // * if both are not undef, and are different, bailout. - // * else, only one is undef, then pick the non-undef one. - - // The shift amount must be equal. - if (*C0 != *C1) - return nullptr; - const APInt &MaskedBits = *C0; - assert(MaskedBits != 0 && "shift by zero should be folded away already."); - - ICmpInst::Predicate DstPred; - switch (SrcPred) { - case ICmpInst::Predicate::ICMP_EQ: - // ((%x << MaskedBits) a>> MaskedBits) == %x - // => - // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) - DstPred = ICmpInst::Predicate::ICMP_ULT; - break; - case ICmpInst::Predicate::ICMP_NE: - // ((%x << MaskedBits) a>> MaskedBits) != %x - // => - // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) - DstPred = ICmpInst::Predicate::ICMP_UGE; - break; - // FIXME: are more folds possible? - default: - return nullptr; - } - - auto *XType = X->getType(); - const unsigned XBitWidth = XType->getScalarSizeInBits(); - const APInt BitWidth = APInt(XBitWidth, XBitWidth); - assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); - - // KeptBits = bitwidth(%x) - MaskedBits - const APInt KeptBits = BitWidth - MaskedBits; - assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); - // ICmpCst = (1 << KeptBits) - const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); - assert(ICmpCst.isPowerOf2()); - // AddCst = (1 << (KeptBits-1)) - const APInt AddCst = ICmpCst.lshr(1); - assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); - - // T0 = add %x, AddCst - Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); - // T1 = T0 DstPred ICmpCst - Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); - - return T1; -} - -/// Try to fold icmp (binop), X or icmp X, (binop). -/// TODO: A large part of this logic is duplicated in InstSimplify's -/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code -/// duplication. -Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - - // Special logic for binary operators. - BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); - BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); - if (!BO0 && !BO1) - return nullptr; - - const CmpInst::Predicate Pred = I.getPredicate(); - Value *X; - - // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. - // (Op1 + X) <u Op1 --> ~Op1 <u X - // Op0 >u (Op0 + X) --> X >u ~Op0 - if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && - Pred == ICmpInst::ICMP_ULT) - return new ICmpInst(Pred, Builder.CreateNot(Op1), X); - if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && - Pred == ICmpInst::ICMP_UGT) - return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); - - bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; - if (BO0 && isa<OverflowingBinaryOperator>(BO0)) - NoOp0WrapProblem = - ICmpInst::isEquality(Pred) || - (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || - (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); - if (BO1 && isa<OverflowingBinaryOperator>(BO1)) - NoOp1WrapProblem = - ICmpInst::isEquality(Pred) || - (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || - (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); - - // Analyze the case when either Op0 or Op1 is an add instruction. - // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). - Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; - if (BO0 && BO0->getOpcode() == Instruction::Add) { - A = BO0->getOperand(0); - B = BO0->getOperand(1); - } - if (BO1 && BO1->getOpcode() == Instruction::Add) { - C = BO1->getOperand(0); - D = BO1->getOperand(1); - } - - // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. - if ((A == Op1 || B == Op1) && NoOp0WrapProblem) - return new ICmpInst(Pred, A == Op1 ? B : A, - Constant::getNullValue(Op1->getType())); - - // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. - if ((C == Op0 || D == Op0) && NoOp1WrapProblem) - return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), - C == Op0 ? D : C); - - // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. - if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && - NoOp1WrapProblem && - // Try not to increase register pressure. - BO0->hasOneUse() && BO1->hasOneUse()) { - // Determine Y and Z in the form icmp (X+Y), (X+Z). - Value *Y, *Z; - if (A == C) { - // C + B == C + D -> B == D - Y = B; - Z = D; - } else if (A == D) { - // D + B == C + D -> B == C - Y = B; - Z = C; - } else if (B == C) { - // A + C == C + D -> A == D - Y = A; - Z = D; - } else { - assert(B == D); - // A + D == C + D -> A == C - Y = A; - Z = C; - } - return new ICmpInst(Pred, Y, Z); - } - - // icmp slt (X + -1), Y -> icmp sle X, Y - if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && - match(B, m_AllOnes())) - return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); - - // icmp sge (X + -1), Y -> icmp sgt X, Y - if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && - match(B, m_AllOnes())) - return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); - - // icmp sle (X + 1), Y -> icmp slt X, Y - if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) - return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); - - // icmp sgt (X + 1), Y -> icmp sge X, Y - if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) - return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); - - // icmp sgt X, (Y + -1) -> icmp sge X, Y - if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && - match(D, m_AllOnes())) - return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); - - // icmp sle X, (Y + -1) -> icmp slt X, Y - if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && - match(D, m_AllOnes())) - return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); - - // icmp sge X, (Y + 1) -> icmp sgt X, Y - if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) - return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); - - // icmp slt X, (Y + 1) -> icmp sle X, Y - if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) - return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); - - // TODO: The subtraction-related identities shown below also hold, but - // canonicalization from (X -nuw 1) to (X + -1) means that the combinations - // wouldn't happen even if they were implemented. - // - // icmp ult (X - 1), Y -> icmp ule X, Y - // icmp uge (X - 1), Y -> icmp ugt X, Y - // icmp ugt X, (Y - 1) -> icmp uge X, Y - // icmp ule X, (Y - 1) -> icmp ult X, Y - - // icmp ule (X + 1), Y -> icmp ult X, Y - if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) - return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); - - // icmp ugt (X + 1), Y -> icmp uge X, Y - if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) - return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); - - // icmp uge X, (Y + 1) -> icmp ugt X, Y - if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) - return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); - - // icmp ult X, (Y + 1) -> icmp ule X, Y - if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) - return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); - - // if C1 has greater magnitude than C2: - // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y - // s.t. C3 = C1 - C2 - // - // if C2 has greater magnitude than C1: - // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) - // s.t. C3 = C2 - C1 - if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && - (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) - if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) - if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { - const APInt &AP1 = C1->getValue(); - const APInt &AP2 = C2->getValue(); - if (AP1.isNegative() == AP2.isNegative()) { - APInt AP1Abs = C1->getValue().abs(); - APInt AP2Abs = C2->getValue().abs(); - if (AP1Abs.uge(AP2Abs)) { - ConstantInt *C3 = Builder.getInt(AP1 - AP2); - Value *NewAdd = Builder.CreateNSWAdd(A, C3); - return new ICmpInst(Pred, NewAdd, C); - } else { - ConstantInt *C3 = Builder.getInt(AP2 - AP1); - Value *NewAdd = Builder.CreateNSWAdd(C, C3); - return new ICmpInst(Pred, A, NewAdd); - } - } - } - - // Analyze the case when either Op0 or Op1 is a sub instruction. - // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). - A = nullptr; - B = nullptr; - C = nullptr; - D = nullptr; - if (BO0 && BO0->getOpcode() == Instruction::Sub) { - A = BO0->getOperand(0); - B = BO0->getOperand(1); - } - if (BO1 && BO1->getOpcode() == Instruction::Sub) { - C = BO1->getOperand(0); - D = BO1->getOperand(1); - } - - // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. - if (A == Op1 && NoOp0WrapProblem) - return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); - // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. - if (C == Op0 && NoOp1WrapProblem) - return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); - - // (A - B) >u A --> A <u B - if (A == Op1 && Pred == ICmpInst::ICMP_UGT) - return new ICmpInst(ICmpInst::ICMP_ULT, A, B); - // C <u (C - D) --> C <u D - if (C == Op0 && Pred == ICmpInst::ICMP_ULT) - return new ICmpInst(ICmpInst::ICMP_ULT, C, D); - - // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. - if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && - // Try not to increase register pressure. - BO0->hasOneUse() && BO1->hasOneUse()) - return new ICmpInst(Pred, A, C); - // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. - if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && - // Try not to increase register pressure. - BO0->hasOneUse() && BO1->hasOneUse()) - return new ICmpInst(Pred, D, B); - - // icmp (0-X) < cst --> x > -cst - if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { - Value *X; - if (match(BO0, m_Neg(m_Value(X)))) - if (Constant *RHSC = dyn_cast<Constant>(Op1)) - if (RHSC->isNotMinSignedValue()) - return new ICmpInst(I.getSwappedPredicate(), X, - ConstantExpr::getNeg(RHSC)); - } - - BinaryOperator *SRem = nullptr; - // icmp (srem X, Y), Y - if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) - SRem = BO0; - // icmp Y, (srem X, Y) - else if (BO1 && BO1->getOpcode() == Instruction::SRem && - Op0 == BO1->getOperand(1)) - SRem = BO1; - if (SRem) { - // We don't check hasOneUse to avoid increasing register pressure because - // the value we use is the same value this instruction was already using. - switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { - default: - break; - case ICmpInst::ICMP_EQ: - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - case ICmpInst::ICMP_NE: - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), - Constant::getAllOnesValue(SRem->getType())); - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: - return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), - Constant::getNullValue(SRem->getType())); - } - } - - if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && - BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { - switch (BO0->getOpcode()) { - default: - break; - case Instruction::Add: - case Instruction::Sub: - case Instruction::Xor: { - if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b - return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); - - const APInt *C; - if (match(BO0->getOperand(1), m_APInt(C))) { - // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b - if (C->isSignMask()) { - ICmpInst::Predicate NewPred = - I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); - return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); - } - - // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b - if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { - ICmpInst::Predicate NewPred = - I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); - NewPred = I.getSwappedPredicate(NewPred); - return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); - } - } - break; - } - case Instruction::Mul: { - if (!I.isEquality()) - break; - - const APInt *C; - if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && - !C->isOneValue()) { - // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) - // Mask = -1 >> count-trailing-zeros(C). - if (unsigned TZs = C->countTrailingZeros()) { - Constant *Mask = ConstantInt::get( - BO0->getType(), - APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); - Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); - Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); - return new ICmpInst(Pred, And1, And2); - } - // If there are no trailing zeros in the multiplier, just eliminate - // the multiplies (no masking is needed): - // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y - return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); - } - break; - } - case Instruction::UDiv: - case Instruction::LShr: - if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) - break; - return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); - - case Instruction::SDiv: - if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) - break; - return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); - - case Instruction::AShr: - if (!BO0->isExact() || !BO1->isExact()) - break; - return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); - - case Instruction::Shl: { - bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); - bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); - if (!NUW && !NSW) - break; - if (!NSW && I.isSigned()) - break; - return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); - } - } - } - - if (BO0) { - // Transform A & (L - 1) `ult` L --> L != 0 - auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); - auto BitwiseAnd = m_c_And(m_Value(), LSubOne); - - if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { - auto *Zero = Constant::getNullValue(BO0->getType()); - return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); - } - } - - if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) - return replaceInstUsesWith(I, V); - - if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) - return replaceInstUsesWith(I, V); - - return nullptr; -} - -/// Fold icmp Pred min|max(X, Y), X. -static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { - ICmpInst::Predicate Pred = Cmp.getPredicate(); - Value *Op0 = Cmp.getOperand(0); - Value *X = Cmp.getOperand(1); - - // Canonicalize minimum or maximum operand to LHS of the icmp. - if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || - match(X, m_c_SMax(m_Specific(Op0), m_Value())) || - match(X, m_c_UMin(m_Specific(Op0), m_Value())) || - match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { - std::swap(Op0, X); - Pred = Cmp.getSwappedPredicate(); - } - - Value *Y; - if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { - // smin(X, Y) == X --> X s<= Y - // smin(X, Y) s>= X --> X s<= Y - if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) - return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); - - // smin(X, Y) != X --> X s> Y - // smin(X, Y) s< X --> X s> Y - if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) - return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); - - // These cases should be handled in InstSimplify: - // smin(X, Y) s<= X --> true - // smin(X, Y) s> X --> false - return nullptr; - } - - if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { - // smax(X, Y) == X --> X s>= Y - // smax(X, Y) s<= X --> X s>= Y - if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) - return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); - - // smax(X, Y) != X --> X s< Y - // smax(X, Y) s> X --> X s< Y - if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) - return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); - - // These cases should be handled in InstSimplify: - // smax(X, Y) s>= X --> true - // smax(X, Y) s< X --> false - return nullptr; - } - - if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { - // umin(X, Y) == X --> X u<= Y - // umin(X, Y) u>= X --> X u<= Y - if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) - return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); - - // umin(X, Y) != X --> X u> Y - // umin(X, Y) u< X --> X u> Y - if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) - return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); - - // These cases should be handled in InstSimplify: - // umin(X, Y) u<= X --> true - // umin(X, Y) u> X --> false - return nullptr; - } - - if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { - // umax(X, Y) == X --> X u>= Y - // umax(X, Y) u<= X --> X u>= Y - if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) - return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); - - // umax(X, Y) != X --> X u< Y - // umax(X, Y) u> X --> X u< Y - if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) - return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); - - // These cases should be handled in InstSimplify: - // umax(X, Y) u>= X --> true - // umax(X, Y) u< X --> false - return nullptr; - } - - return nullptr; -} - -Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { - if (!I.isEquality()) - return nullptr; - - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - const CmpInst::Predicate Pred = I.getPredicate(); - Value *A, *B, *C, *D; - if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { - if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 - Value *OtherVal = A == Op1 ? B : A; - return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); - } - - if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { - // A^c1 == C^c2 --> A == C^(c1^c2) - ConstantInt *C1, *C2; - if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && - Op1->hasOneUse()) { - Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); - Value *Xor = Builder.CreateXor(C, NC); - return new ICmpInst(Pred, A, Xor); - } - - // A^B == A^D -> B == D - if (A == C) - return new ICmpInst(Pred, B, D); - if (A == D) - return new ICmpInst(Pred, B, C); - if (B == C) - return new ICmpInst(Pred, A, D); - if (B == D) - return new ICmpInst(Pred, A, C); - } - } - - if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { - // A == (A^B) -> B == 0 - Value *OtherVal = A == Op0 ? B : A; - return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); - } - - // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 - if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && - match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { - Value *X = nullptr, *Y = nullptr, *Z = nullptr; - - if (A == C) { - X = B; - Y = D; - Z = A; - } else if (A == D) { - X = B; - Y = C; - Z = A; - } else if (B == C) { - X = A; - Y = D; - Z = B; - } else if (B == D) { - X = A; - Y = C; - Z = B; - } - - if (X) { // Build (X^Y) & Z - Op1 = Builder.CreateXor(X, Y); - Op1 = Builder.CreateAnd(Op1, Z); - I.setOperand(0, Op1); - I.setOperand(1, Constant::getNullValue(Op1->getType())); - return &I; - } - } - - // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) - // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) - ConstantInt *Cst1; - if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && - match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || - (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && - match(Op1, m_ZExt(m_Value(A))))) { - APInt Pow2 = Cst1->getValue() + 1; - if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && - Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) - return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); - } - - // (A >> C) == (B >> C) --> (A^B) u< (1 << C) - // For lshr and ashr pairs. - if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && - match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || - (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && - match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { - unsigned TypeBits = Cst1->getBitWidth(); - unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); - if (ShAmt < TypeBits && ShAmt != 0) { - ICmpInst::Predicate NewPred = - Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; - Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); - APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); - return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); - } - } - - // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 - if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && - match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { - unsigned TypeBits = Cst1->getBitWidth(); - unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); - if (ShAmt < TypeBits && ShAmt != 0) { - Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); - APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); - Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), - I.getName() + ".mask"); - return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); - } - } - - // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to - // "icmp (and X, mask), cst" - uint64_t ShAmt = 0; - if (Op0->hasOneUse() && - match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && - match(Op1, m_ConstantInt(Cst1)) && - // Only do this when A has multiple uses. This is most important to do - // when it exposes other optimizations. - !A->hasOneUse()) { - unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); - - if (ShAmt < ASize) { - APInt MaskV = - APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); - MaskV <<= ShAmt; - - APInt CmpV = Cst1->getValue().zext(ASize); - CmpV <<= ShAmt; - - Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); - return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); - } - } - - // If both operands are byte-swapped or bit-reversed, just compare the - // original values. - // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() - // and handle more intrinsics. - if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || - (match(Op0, m_BitReverse(m_Value(A))) && - match(Op1, m_BitReverse(m_Value(B))))) - return new ICmpInst(Pred, A, B); - - return nullptr; -} - -/// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so -/// far. -Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { - const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); - Value *LHSCIOp = LHSCI->getOperand(0); - Type *SrcTy = LHSCIOp->getType(); - Type *DestTy = LHSCI->getType(); - Value *RHSCIOp; - - // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the - // integer type is the same size as the pointer type. - const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { - if (isa<VectorType>(SrcTy)) { - SrcTy = cast<VectorType>(SrcTy)->getElementType(); - DestTy = cast<VectorType>(DestTy)->getElementType(); - } - return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); - }; - if (LHSCI->getOpcode() == Instruction::PtrToInt && - CompatibleSizes(SrcTy, DestTy)) { - Value *RHSOp = nullptr; - if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { - Value *RHSCIOp = RHSC->getOperand(0); - if (RHSCIOp->getType()->getPointerAddressSpace() == - LHSCIOp->getType()->getPointerAddressSpace()) { - RHSOp = RHSC->getOperand(0); - // If the pointer types don't match, insert a bitcast. - if (LHSCIOp->getType() != RHSOp->getType()) - RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); - } - } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { - RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); - } - - if (RHSOp) - return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); - } - - // The code below only handles extension cast instructions, so far. - // Enforce this. - if (LHSCI->getOpcode() != Instruction::ZExt && - LHSCI->getOpcode() != Instruction::SExt) - return nullptr; - - bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; - bool isSignedCmp = ICmp.isSigned(); - - if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { - // Not an extension from the same type? - RHSCIOp = CI->getOperand(0); - if (RHSCIOp->getType() != LHSCIOp->getType()) - return nullptr; - - // If the signedness of the two casts doesn't agree (i.e. one is a sext - // and the other is a zext), then we can't handle this. - if (CI->getOpcode() != LHSCI->getOpcode()) - return nullptr; - - // Deal with equality cases early. - if (ICmp.isEquality()) - return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); - - // A signed comparison of sign extended values simplifies into a - // signed comparison. - if (isSignedCmp && isSignedExt) - return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); - - // The other three cases all fold into an unsigned comparison. - return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); - } - - // If we aren't dealing with a constant on the RHS, exit early. - auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); - if (!C) - return nullptr; - - // Compute the constant that would happen if we truncated to SrcTy then - // re-extended to DestTy. - Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); - Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); - - // If the re-extended constant didn't change... - if (Res2 == C) { - // Deal with equality cases early. - if (ICmp.isEquality()) - return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); - - // A signed comparison of sign extended values simplifies into a - // signed comparison. - if (isSignedExt && isSignedCmp) - return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); - - // The other three cases all fold into an unsigned comparison. - return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); - } - - // The re-extended constant changed, partly changed (in the case of a vector), - // or could not be determined to be equal (in the case of a constant - // expression), so the constant cannot be represented in the shorter type. - // Consequently, we cannot emit a simple comparison. - // All the cases that fold to true or false will have already been handled - // by SimplifyICmpInst, so only deal with the tricky case. - - if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) - return nullptr; - - // Evaluate the comparison for LT (we invert for GT below). LE and GE cases - // should have been folded away previously and not enter in here. - - // We're performing an unsigned comp with a sign extended value. - // This is true if the input is >= 0. [aka >s -1] - Constant *NegOne = Constant::getAllOnesValue(SrcTy); - Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); - - // Finally, return the value computed. - if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) - return replaceInstUsesWith(ICmp, Result); - - assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); - return BinaryOperator::CreateNot(Result); -} - -bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, - Value *RHS, Instruction &OrigI, - Value *&Result, Constant *&Overflow) { - if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) - std::swap(LHS, RHS); - - auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { - Result = OpResult; - Overflow = OverflowVal; - if (ReuseName) - Result->takeName(&OrigI); - return true; - }; - - // If the overflow check was an add followed by a compare, the insertion point - // may be pointing to the compare. We want to insert the new instructions - // before the add in case there are uses of the add between the add and the - // compare. - Builder.SetInsertPoint(&OrigI); - - switch (OCF) { - case OCF_INVALID: - llvm_unreachable("bad overflow check kind!"); - - case OCF_UNSIGNED_ADD: { - OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); - if (OR == OverflowResult::NeverOverflows) - return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(), - true); - - if (OR == OverflowResult::AlwaysOverflows) - return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true); - - // Fall through uadd into sadd - LLVM_FALLTHROUGH; - } - case OCF_SIGNED_ADD: { - // X + 0 -> {X, false} - if (match(RHS, m_Zero())) - return SetResult(LHS, Builder.getFalse(), false); - - // We can strength reduce this signed add into a regular add if we can prove - // that it will never overflow. - if (OCF == OCF_SIGNED_ADD) - if (willNotOverflowSignedAdd(LHS, RHS, OrigI)) - return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(), - true); - break; - } - - case OCF_UNSIGNED_SUB: - case OCF_SIGNED_SUB: { - // X - 0 -> {X, false} - if (match(RHS, m_Zero())) - return SetResult(LHS, Builder.getFalse(), false); - - if (OCF == OCF_SIGNED_SUB) { - if (willNotOverflowSignedSub(LHS, RHS, OrigI)) - return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(), - true); - } else { - if (willNotOverflowUnsignedSub(LHS, RHS, OrigI)) - return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(), - true); - } - break; - } - - case OCF_UNSIGNED_MUL: { - OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); - if (OR == OverflowResult::NeverOverflows) - return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(), - true); - if (OR == OverflowResult::AlwaysOverflows) - return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true); - LLVM_FALLTHROUGH; - } - case OCF_SIGNED_MUL: - // X * undef -> undef - if (isa<UndefValue>(RHS)) - return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false); - - // X * 0 -> {0, false} - if (match(RHS, m_Zero())) - return SetResult(RHS, Builder.getFalse(), false); - - // X * 1 -> {X, false} - if (match(RHS, m_One())) - return SetResult(LHS, Builder.getFalse(), false); - - if (OCF == OCF_SIGNED_MUL) - if (willNotOverflowSignedMul(LHS, RHS, OrigI)) - return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(), - true); - break; - } - - return false; -} - -/// Recognize and process idiom involving test for multiplication -/// overflow. -/// -/// The caller has matched a pattern of the form: -/// I = cmp u (mul(zext A, zext B), V -/// The function checks if this is a test for overflow and if so replaces -/// multiplication with call to 'mul.with.overflow' intrinsic. -/// -/// \param I Compare instruction. -/// \param MulVal Result of 'mult' instruction. It is one of the arguments of -/// the compare instruction. Must be of integer type. -/// \param OtherVal The other argument of compare instruction. -/// \returns Instruction which must replace the compare instruction, NULL if no -/// replacement required. -static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, - Value *OtherVal, InstCombiner &IC) { - // Don't bother doing this transformation for pointers, don't do it for - // vectors. - if (!isa<IntegerType>(MulVal->getType())) - return nullptr; - - assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); - assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); - auto *MulInstr = dyn_cast<Instruction>(MulVal); - if (!MulInstr) - return nullptr; - assert(MulInstr->getOpcode() == Instruction::Mul); - - auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), - *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); - assert(LHS->getOpcode() == Instruction::ZExt); - assert(RHS->getOpcode() == Instruction::ZExt); - Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); - - // Calculate type and width of the result produced by mul.with.overflow. - Type *TyA = A->getType(), *TyB = B->getType(); - unsigned WidthA = TyA->getPrimitiveSizeInBits(), - WidthB = TyB->getPrimitiveSizeInBits(); - unsigned MulWidth; - Type *MulType; - if (WidthB > WidthA) { - MulWidth = WidthB; - MulType = TyB; - } else { - MulWidth = WidthA; - MulType = TyA; - } - - // In order to replace the original mul with a narrower mul.with.overflow, - // all uses must ignore upper bits of the product. The number of used low - // bits must be not greater than the width of mul.with.overflow. - if (MulVal->hasNUsesOrMore(2)) - for (User *U : MulVal->users()) { - if (U == &I) - continue; - if (TruncInst *TI = dyn_cast<TruncInst>(U)) { - // Check if truncation ignores bits above MulWidth. - unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); - if (TruncWidth > MulWidth) - return nullptr; - } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { - // Check if AND ignores bits above MulWidth. - if (BO->getOpcode() != Instruction::And) - return nullptr; - if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { - const APInt &CVal = CI->getValue(); - if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) - return nullptr; - } else { - // In this case we could have the operand of the binary operation - // being defined in another block, and performing the replacement - // could break the dominance relation. - return nullptr; - } - } else { - // Other uses prohibit this transformation. - return nullptr; - } - } - - // Recognize patterns - switch (I.getPredicate()) { - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_NE: - // Recognize pattern: - // mulval = mul(zext A, zext B) - // cmp eq/neq mulval, zext trunc mulval - if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) - if (Zext->hasOneUse()) { - Value *ZextArg = Zext->getOperand(0); - if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) - if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) - break; //Recognized - } - - // Recognize pattern: - // mulval = mul(zext A, zext B) - // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. - ConstantInt *CI; - Value *ValToMask; - if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { - if (ValToMask != MulVal) - return nullptr; - const APInt &CVal = CI->getValue() + 1; - if (CVal.isPowerOf2()) { - unsigned MaskWidth = CVal.logBase2(); - if (MaskWidth == MulWidth) - break; // Recognized - } - } - return nullptr; - - case ICmpInst::ICMP_UGT: - // Recognize pattern: - // mulval = mul(zext A, zext B) - // cmp ugt mulval, max - if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { - APInt MaxVal = APInt::getMaxValue(MulWidth); - MaxVal = MaxVal.zext(CI->getBitWidth()); - if (MaxVal.eq(CI->getValue())) - break; // Recognized - } - return nullptr; - - case ICmpInst::ICMP_UGE: - // Recognize pattern: - // mulval = mul(zext A, zext B) - // cmp uge mulval, max+1 - if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { - APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); - if (MaxVal.eq(CI->getValue())) - break; // Recognized - } - return nullptr; - - case ICmpInst::ICMP_ULE: - // Recognize pattern: - // mulval = mul(zext A, zext B) - // cmp ule mulval, max - if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { - APInt MaxVal = APInt::getMaxValue(MulWidth); - MaxVal = MaxVal.zext(CI->getBitWidth()); - if (MaxVal.eq(CI->getValue())) - break; // Recognized - } - return nullptr; - - case ICmpInst::ICMP_ULT: - // Recognize pattern: - // mulval = mul(zext A, zext B) - // cmp ule mulval, max + 1 - if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { - APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); - if (MaxVal.eq(CI->getValue())) - break; // Recognized - } - return nullptr; - - default: - return nullptr; - } - - InstCombiner::BuilderTy &Builder = IC.Builder; - Builder.SetInsertPoint(MulInstr); - - // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) - Value *MulA = A, *MulB = B; - if (WidthA < MulWidth) - MulA = Builder.CreateZExt(A, MulType); - if (WidthB < MulWidth) - MulB = Builder.CreateZExt(B, MulType); - Value *F = Intrinsic::getDeclaration(I.getModule(), - Intrinsic::umul_with_overflow, MulType); - CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); - IC.Worklist.Add(MulInstr); - - // If there are uses of mul result other than the comparison, we know that - // they are truncation or binary AND. Change them to use result of - // mul.with.overflow and adjust properly mask/size. - if (MulVal->hasNUsesOrMore(2)) { - Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); - for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { - User *U = *UI++; - if (U == &I || U == OtherVal) - continue; - if (TruncInst *TI = dyn_cast<TruncInst>(U)) { - if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) - IC.replaceInstUsesWith(*TI, Mul); - else - TI->setOperand(0, Mul); - } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { - assert(BO->getOpcode() == Instruction::And); - // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) - ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); - APInt ShortMask = CI->getValue().trunc(MulWidth); - Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); - Instruction *Zext = - cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); - IC.Worklist.Add(Zext); - IC.replaceInstUsesWith(*BO, Zext); - } else { - llvm_unreachable("Unexpected Binary operation"); - } - IC.Worklist.Add(cast<Instruction>(U)); - } - } - if (isa<Instruction>(OtherVal)) - IC.Worklist.Add(cast<Instruction>(OtherVal)); - - // The original icmp gets replaced with the overflow value, maybe inverted - // depending on predicate. - bool Inverse = false; - switch (I.getPredicate()) { - case ICmpInst::ICMP_NE: - break; - case ICmpInst::ICMP_EQ: - Inverse = true; - break; - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - if (I.getOperand(0) == MulVal) - break; - Inverse = true; - break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - if (I.getOperand(1) == MulVal) - break; - Inverse = true; - break; - default: - llvm_unreachable("Unexpected predicate"); - } - if (Inverse) { - Value *Res = Builder.CreateExtractValue(Call, 1); - return BinaryOperator::CreateNot(Res); - } - - return ExtractValueInst::Create(Call, 1); -} - -/// When performing a comparison against a constant, it is possible that not all -/// the bits in the LHS are demanded. This helper method computes the mask that -/// IS demanded. -static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { - const APInt *RHS; - if (!match(I.getOperand(1), m_APInt(RHS))) - return APInt::getAllOnesValue(BitWidth); - - // If this is a normal comparison, it demands all bits. If it is a sign bit - // comparison, it only demands the sign bit. - bool UnusedBit; - if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) - return APInt::getSignMask(BitWidth); - - switch (I.getPredicate()) { - // For a UGT comparison, we don't care about any bits that - // correspond to the trailing ones of the comparand. The value of these - // bits doesn't impact the outcome of the comparison, because any value - // greater than the RHS must differ in a bit higher than these due to carry. - case ICmpInst::ICMP_UGT: - return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); - - // Similarly, for a ULT comparison, we don't care about the trailing zeros. - // Any value less than the RHS must differ in a higher bit because of carries. - case ICmpInst::ICMP_ULT: - return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); - - default: - return APInt::getAllOnesValue(BitWidth); - } -} - -/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst -/// should be swapped. -/// The decision is based on how many times these two operands are reused -/// as subtract operands and their positions in those instructions. -/// The rationale is that several architectures use the same instruction for -/// both subtract and cmp. Thus, it is better if the order of those operands -/// match. -/// \return true if Op0 and Op1 should be swapped. -static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { - // Filter out pointer values as those cannot appear directly in subtract. - // FIXME: we may want to go through inttoptrs or bitcasts. - if (Op0->getType()->isPointerTy()) - return false; - // If a subtract already has the same operands as a compare, swapping would be - // bad. If a subtract has the same operands as a compare but in reverse order, - // then swapping is good. - int GoodToSwap = 0; - for (const User *U : Op0->users()) { - if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) - GoodToSwap++; - else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) - GoodToSwap--; - } - return GoodToSwap > 0; -} - -/// Check that one use is in the same block as the definition and all -/// other uses are in blocks dominated by a given block. -/// -/// \param DI Definition -/// \param UI Use -/// \param DB Block that must dominate all uses of \p DI outside -/// the parent block -/// \return true when \p UI is the only use of \p DI in the parent block -/// and all other uses of \p DI are in blocks dominated by \p DB. -/// -bool InstCombiner::dominatesAllUses(const Instruction *DI, - const Instruction *UI, - const BasicBlock *DB) const { - assert(DI && UI && "Instruction not defined\n"); - // Ignore incomplete definitions. - if (!DI->getParent()) - return false; - // DI and UI must be in the same block. - if (DI->getParent() != UI->getParent()) - return false; - // Protect from self-referencing blocks. - if (DI->getParent() == DB) - return false; - for (const User *U : DI->users()) { - auto *Usr = cast<Instruction>(U); - if (Usr != UI && !DT.dominates(DB, Usr->getParent())) - return false; - } - return true; -} - -/// Return true when the instruction sequence within a block is select-cmp-br. -static bool isChainSelectCmpBranch(const SelectInst *SI) { - const BasicBlock *BB = SI->getParent(); - if (!BB) - return false; - auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); - if (!BI || BI->getNumSuccessors() != 2) - return false; - auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); - if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) - return false; - return true; -} - -/// True when a select result is replaced by one of its operands -/// in select-icmp sequence. This will eventually result in the elimination -/// of the select. -/// -/// \param SI Select instruction -/// \param Icmp Compare instruction -/// \param SIOpd Operand that replaces the select -/// -/// Notes: -/// - The replacement is global and requires dominator information -/// - The caller is responsible for the actual replacement -/// -/// Example: -/// -/// entry: -/// %4 = select i1 %3, %C* %0, %C* null -/// %5 = icmp eq %C* %4, null -/// br i1 %5, label %9, label %7 -/// ... -/// ; <label>:7 ; preds = %entry -/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 -/// ... -/// -/// can be transformed to -/// -/// %5 = icmp eq %C* %0, null -/// %6 = select i1 %3, i1 %5, i1 true -/// br i1 %6, label %9, label %7 -/// ... -/// ; <label>:7 ; preds = %entry -/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! -/// -/// Similar when the first operand of the select is a constant or/and -/// the compare is for not equal rather than equal. -/// -/// NOTE: The function is only called when the select and compare constants -/// are equal, the optimization can work only for EQ predicates. This is not a -/// major restriction since a NE compare should be 'normalized' to an equal -/// compare, which usually happens in the combiner and test case -/// select-cmp-br.ll checks for it. -bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, - const ICmpInst *Icmp, - const unsigned SIOpd) { - assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); - if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { - BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); - // The check for the single predecessor is not the best that can be - // done. But it protects efficiently against cases like when SI's - // home block has two successors, Succ and Succ1, and Succ1 predecessor - // of Succ. Then SI can't be replaced by SIOpd because the use that gets - // replaced can be reached on either path. So the uniqueness check - // guarantees that the path all uses of SI (outside SI's parent) are on - // is disjoint from all other paths out of SI. But that information - // is more expensive to compute, and the trade-off here is in favor - // of compile-time. It should also be noticed that we check for a single - // predecessor and not only uniqueness. This to handle the situation when - // Succ and Succ1 points to the same basic block. - if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { - NumSel++; - SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); - return true; - } - } - return false; -} - -/// Try to fold the comparison based on range information we can get by checking -/// whether bits are known to be zero or one in the inputs. -Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - Type *Ty = Op0->getType(); - ICmpInst::Predicate Pred = I.getPredicate(); - - // Get scalar or pointer size. - unsigned BitWidth = Ty->isIntOrIntVectorTy() - ? Ty->getScalarSizeInBits() - : DL.getIndexTypeSizeInBits(Ty->getScalarType()); - - if (!BitWidth) - return nullptr; - - KnownBits Op0Known(BitWidth); - KnownBits Op1Known(BitWidth); - - if (SimplifyDemandedBits(&I, 0, - getDemandedBitsLHSMask(I, BitWidth), - Op0Known, 0)) - return &I; - - if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), - Op1Known, 0)) - return &I; - - // Given the known and unknown bits, compute a range that the LHS could be - // in. Compute the Min, Max and RHS values based on the known bits. For the - // EQ and NE we use unsigned values. - APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); - APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); - if (I.isSigned()) { - computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); - computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); - } else { - computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); - computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); - } - - // If Min and Max are known to be the same, then SimplifyDemandedBits figured - // out that the LHS or RHS is a constant. Constant fold this now, so that - // code below can assume that Min != Max. - if (!isa<Constant>(Op0) && Op0Min == Op0Max) - return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); - if (!isa<Constant>(Op1) && Op1Min == Op1Max) - return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); - - // Based on the range information we know about the LHS, see if we can - // simplify this comparison. For example, (x&4) < 8 is always true. - switch (Pred) { - default: - llvm_unreachable("Unknown icmp opcode!"); - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_NE: { - if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { - return Pred == CmpInst::ICMP_EQ - ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) - : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - } - - // If all bits are known zero except for one, then we know at most one bit - // is set. If the comparison is against zero, then this is a check to see if - // *that* bit is set. - APInt Op0KnownZeroInverted = ~Op0Known.Zero; - if (Op1Known.isZero()) { - // If the LHS is an AND with the same constant, look through it. - Value *LHS = nullptr; - const APInt *LHSC; - if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || - *LHSC != Op0KnownZeroInverted) - LHS = Op0; - - Value *X; - if (match(LHS, m_Shl(m_One(), m_Value(X)))) { - APInt ValToCheck = Op0KnownZeroInverted; - Type *XTy = X->getType(); - if (ValToCheck.isPowerOf2()) { - // ((1 << X) & 8) == 0 -> X != 3 - // ((1 << X) & 8) != 0 -> X == 3 - auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); - auto NewPred = ICmpInst::getInversePredicate(Pred); - return new ICmpInst(NewPred, X, CmpC); - } else if ((++ValToCheck).isPowerOf2()) { - // ((1 << X) & 7) == 0 -> X >= 3 - // ((1 << X) & 7) != 0 -> X < 3 - auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); - auto NewPred = - Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; - return new ICmpInst(NewPred, X, CmpC); - } - } - - // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. - const APInt *CI; - if (Op0KnownZeroInverted.isOneValue() && - match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { - // ((8 >>u X) & 1) == 0 -> X != 3 - // ((8 >>u X) & 1) != 0 -> X == 3 - unsigned CmpVal = CI->countTrailingZeros(); - auto NewPred = ICmpInst::getInversePredicate(Pred); - return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); - } - } - break; - } - case ICmpInst::ICMP_ULT: { - if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) - return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); - - const APInt *CmpC; - if (match(Op1, m_APInt(CmpC))) { - // A <u C -> A == C-1 if min(A)+1 == C - if (*CmpC == Op0Min + 1) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, - ConstantInt::get(Op1->getType(), *CmpC - 1)); - // X <u C --> X == 0, if the number of zero bits in the bottom of X - // exceeds the log2 of C. - if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, - Constant::getNullValue(Op1->getType())); - } - break; - } - case ICmpInst::ICMP_UGT: { - if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) - return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); - - const APInt *CmpC; - if (match(Op1, m_APInt(CmpC))) { - // A >u C -> A == C+1 if max(a)-1 == C - if (*CmpC == Op0Max - 1) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, - ConstantInt::get(Op1->getType(), *CmpC + 1)); - // X >u C --> X != 0, if the number of zero bits in the bottom of X - // exceeds the log2 of C. - if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) - return new ICmpInst(ICmpInst::ICMP_NE, Op0, - Constant::getNullValue(Op1->getType())); - } - break; - } - case ICmpInst::ICMP_SLT: { - if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) - return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); - const APInt *CmpC; - if (match(Op1, m_APInt(CmpC))) { - if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, - ConstantInt::get(Op1->getType(), *CmpC - 1)); - } - break; - } - case ICmpInst::ICMP_SGT: { - if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) - return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); - const APInt *CmpC; - if (match(Op1, m_APInt(CmpC))) { - if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, - ConstantInt::get(Op1->getType(), *CmpC + 1)); - } - break; - } - case ICmpInst::ICMP_SGE: - assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); - if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); - break; - case ICmpInst::ICMP_SLE: - assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); - if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); - break; - case ICmpInst::ICMP_UGE: - assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); - if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); - break; - case ICmpInst::ICMP_ULE: - assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); - if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) - return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) - return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) - return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); - break; - } - - // Turn a signed comparison into an unsigned one if both operands are known to - // have the same sign. - if (I.isSigned() && - ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || - (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) - return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); - - return nullptr; -} - -/// If we have an icmp le or icmp ge instruction with a constant operand, turn -/// it into the appropriate icmp lt or icmp gt instruction. This transform -/// allows them to be folded in visitICmpInst. -static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { - ICmpInst::Predicate Pred = I.getPredicate(); - if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && - Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) - return nullptr; - - Value *Op0 = I.getOperand(0); - Value *Op1 = I.getOperand(1); - auto *Op1C = dyn_cast<Constant>(Op1); - if (!Op1C) - return nullptr; - - // Check if the constant operand can be safely incremented/decremented without - // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled - // the edge cases for us, so we just assert on them. For vectors, we must - // handle the edge cases. - Type *Op1Type = Op1->getType(); - bool IsSigned = I.isSigned(); - bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); - auto *CI = dyn_cast<ConstantInt>(Op1C); - if (CI) { - // A <= MAX -> TRUE ; A >= MIN -> TRUE - assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); - } else if (Op1Type->isVectorTy()) { - // TODO? If the edge cases for vectors were guaranteed to be handled as they - // are for scalar, we could remove the min/max checks. However, to do that, - // we would have to use insertelement/shufflevector to replace edge values. - unsigned NumElts = Op1Type->getVectorNumElements(); - for (unsigned i = 0; i != NumElts; ++i) { - Constant *Elt = Op1C->getAggregateElement(i); - if (!Elt) - return nullptr; - - if (isa<UndefValue>(Elt)) - continue; - - // Bail out if we can't determine if this constant is min/max or if we - // know that this constant is min/max. - auto *CI = dyn_cast<ConstantInt>(Elt); - if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) - return nullptr; - } - } else { - // ConstantExpr? - return nullptr; - } - - // Increment or decrement the constant and set the new comparison predicate: - // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT - Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); - CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; - NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; - return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); -} - -/// Integer compare with boolean values can always be turned into bitwise ops. -static Instruction *canonicalizeICmpBool(ICmpInst &I, - InstCombiner::BuilderTy &Builder) { - Value *A = I.getOperand(0), *B = I.getOperand(1); - assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); - - // A boolean compared to true/false can be simplified to Op0/true/false in - // 14 out of the 20 (10 predicates * 2 constants) possible combinations. - // Cases not handled by InstSimplify are always 'not' of Op0. - if (match(B, m_Zero())) { - switch (I.getPredicate()) { - case CmpInst::ICMP_EQ: // A == 0 -> !A - case CmpInst::ICMP_ULE: // A <=u 0 -> !A - case CmpInst::ICMP_SGE: // A >=s 0 -> !A - return BinaryOperator::CreateNot(A); - default: - llvm_unreachable("ICmp i1 X, C not simplified as expected."); - } - } else if (match(B, m_One())) { - switch (I.getPredicate()) { - case CmpInst::ICMP_NE: // A != 1 -> !A - case CmpInst::ICMP_ULT: // A <u 1 -> !A - case CmpInst::ICMP_SGT: // A >s -1 -> !A - return BinaryOperator::CreateNot(A); - default: - llvm_unreachable("ICmp i1 X, C not simplified as expected."); - } - } - - switch (I.getPredicate()) { - default: - llvm_unreachable("Invalid icmp instruction!"); - case ICmpInst::ICMP_EQ: - // icmp eq i1 A, B -> ~(A ^ B) - return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); - - case ICmpInst::ICMP_NE: - // icmp ne i1 A, B -> A ^ B - return BinaryOperator::CreateXor(A, B); - - case ICmpInst::ICMP_UGT: - // icmp ugt -> icmp ult - std::swap(A, B); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_ULT: - // icmp ult i1 A, B -> ~A & B - return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); - - case ICmpInst::ICMP_SGT: - // icmp sgt -> icmp slt - std::swap(A, B); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SLT: - // icmp slt i1 A, B -> A & ~B - return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); - - case ICmpInst::ICMP_UGE: - // icmp uge -> icmp ule - std::swap(A, B); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_ULE: - // icmp ule i1 A, B -> ~A | B - return BinaryOperator::CreateOr(Builder.CreateNot(A), B); - - case ICmpInst::ICMP_SGE: - // icmp sge -> icmp sle - std::swap(A, B); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SLE: - // icmp sle i1 A, B -> A | ~B - return BinaryOperator::CreateOr(Builder.CreateNot(B), A); - } -} - -// Transform pattern like: -// (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X -// (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X -// Into: -// (X l>> Y) != 0 -// (X l>> Y) == 0 -static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, - InstCombiner::BuilderTy &Builder) { - ICmpInst::Predicate Pred, NewPred; - Value *X, *Y; - if (match(&Cmp, - m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { - // We want X to be the icmp's second operand, so swap predicate if it isn't. - if (Cmp.getOperand(0) == X) - Pred = Cmp.getSwappedPredicate(); - - switch (Pred) { - case ICmpInst::ICMP_ULE: - NewPred = ICmpInst::ICMP_NE; - break; - case ICmpInst::ICMP_UGT: - NewPred = ICmpInst::ICMP_EQ; - break; - default: - return nullptr; - } - } else if (match(&Cmp, m_c_ICmp(Pred, - m_OneUse(m_CombineOr( - m_Not(m_Shl(m_AllOnes(), m_Value(Y))), - m_Add(m_Shl(m_One(), m_Value(Y)), - m_AllOnes()))), - m_Value(X)))) { - // The variant with 'add' is not canonical, (the variant with 'not' is) - // we only get it because it has extra uses, and can't be canonicalized, - - // We want X to be the icmp's second operand, so swap predicate if it isn't. - if (Cmp.getOperand(0) == X) - Pred = Cmp.getSwappedPredicate(); - - switch (Pred) { - case ICmpInst::ICMP_ULT: - NewPred = ICmpInst::ICMP_NE; - break; - case ICmpInst::ICMP_UGE: - NewPred = ICmpInst::ICMP_EQ; - break; - default: - return nullptr; - } - } else - return nullptr; - - Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); - Constant *Zero = Constant::getNullValue(NewX->getType()); - return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); -} - -static Instruction *foldVectorCmp(CmpInst &Cmp, - InstCombiner::BuilderTy &Builder) { - // If both arguments of the cmp are shuffles that use the same mask and - // shuffle within a single vector, move the shuffle after the cmp. - Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); - Value *V1, *V2; - Constant *M; - if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && - match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && - V1->getType() == V2->getType() && - (LHS->hasOneUse() || RHS->hasOneUse())) { - // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M - CmpInst::Predicate P = Cmp.getPredicate(); - Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) - : Builder.CreateFCmp(P, V1, V2); - return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); - } - return nullptr; -} - -Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { - bool Changed = false; - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - unsigned Op0Cplxity = getComplexity(Op0); - unsigned Op1Cplxity = getComplexity(Op1); - - /// Orders the operands of the compare so that they are listed from most - /// complex to least complex. This puts constants before unary operators, - /// before binary operators. - if (Op0Cplxity < Op1Cplxity || - (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { - I.swapOperands(); - std::swap(Op0, Op1); - Changed = true; - } - - if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, - SQ.getWithInstruction(&I))) - return replaceInstUsesWith(I, V); - - // Comparing -val or val with non-zero is the same as just comparing val - // ie, abs(val) != 0 -> val != 0 - if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { - Value *Cond, *SelectTrue, *SelectFalse; - if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), - m_Value(SelectFalse)))) { - if (Value *V = dyn_castNegVal(SelectTrue)) { - if (V == SelectFalse) - return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); - } - else if (Value *V = dyn_castNegVal(SelectFalse)) { - if (V == SelectTrue) - return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); - } - } - } - - if (Op0->getType()->isIntOrIntVectorTy(1)) - if (Instruction *Res = canonicalizeICmpBool(I, Builder)) - return Res; - - if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) - return NewICmp; - - if (Instruction *Res = foldICmpWithConstant(I)) - return Res; - - if (Instruction *Res = foldICmpWithDominatingICmp(I)) - return Res; - - if (Instruction *Res = foldICmpUsingKnownBits(I)) - return Res; - - // Test if the ICmpInst instruction is used exclusively by a select as - // part of a minimum or maximum operation. If so, refrain from doing - // any other folding. This helps out other analyses which understand - // non-obfuscated minimum and maximum idioms, such as ScalarEvolution - // and CodeGen. And in this case, at least one of the comparison - // operands has at least one user besides the compare (the select), - // which would often largely negate the benefit of folding anyway. - // - // Do the same for the other patterns recognized by matchSelectPattern. - if (I.hasOneUse()) - if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { - Value *A, *B; - SelectPatternResult SPR = matchSelectPattern(SI, A, B); - if (SPR.Flavor != SPF_UNKNOWN) - return nullptr; - } - - // Do this after checking for min/max to prevent infinite looping. - if (Instruction *Res = foldICmpWithZero(I)) - return Res; - - // FIXME: We only do this after checking for min/max to prevent infinite - // looping caused by a reverse canonicalization of these patterns for min/max. - // FIXME: The organization of folds is a mess. These would naturally go into - // canonicalizeCmpWithConstant(), but we can't move all of the above folds - // down here after the min/max restriction. - ICmpInst::Predicate Pred = I.getPredicate(); - const APInt *C; - if (match(Op1, m_APInt(C))) { - // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set - if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { - Constant *Zero = Constant::getNullValue(Op0->getType()); - return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); - } - - // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear - if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { - Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); - return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); - } - } - - if (Instruction *Res = foldICmpInstWithConstant(I)) - return Res; - - if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) - return Res; - - // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. - if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) - if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) - return NI; - if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) - if (Instruction *NI = foldGEPICmp(GEP, Op0, - ICmpInst::getSwappedPredicate(I.getPredicate()), I)) - return NI; - - // Try to optimize equality comparisons against alloca-based pointers. - if (Op0->getType()->isPointerTy() && I.isEquality()) { - assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); - if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) - if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) - return New; - if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) - if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) - return New; - } - - // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. - Value *X; - if (match(Op0, m_BitCast(m_SIToFP(m_Value(X))))) { - // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 - // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 - // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 - // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 - if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || - Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && - match(Op1, m_Zero())) - return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); - - // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 - if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) - return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); - - // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 - if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) - return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType())); - } - - // Zero-equality checks are preserved through unsigned floating-point casts: - // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 - // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 - if (match(Op0, m_BitCast(m_UIToFP(m_Value(X))))) - if (I.isEquality() && match(Op1, m_Zero())) - return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); - - // Test to see if the operands of the icmp are casted versions of other - // values. If the ptr->ptr cast can be stripped off both arguments, we do so - // now. - if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { - if (Op0->getType()->isPointerTy() && - (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { - // We keep moving the cast from the left operand over to the right - // operand, where it can often be eliminated completely. - Op0 = CI->getOperand(0); - - // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast - // so eliminate it as well. - if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) - Op1 = CI2->getOperand(0); - - // If Op1 is a constant, we can fold the cast into the constant. - if (Op0->getType() != Op1->getType()) { - if (Constant *Op1C = dyn_cast<Constant>(Op1)) { - Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); - } else { - // Otherwise, cast the RHS right before the icmp - Op1 = Builder.CreateBitCast(Op1, Op0->getType()); - } - } - return new ICmpInst(I.getPredicate(), Op0, Op1); - } - } - - if (isa<CastInst>(Op0)) { - // Handle the special case of: icmp (cast bool to X), <cst> - // This comes up when you have code like - // int X = A < B; - // if (X) ... - // For generality, we handle any zero-extension of any operand comparison - // with a constant or another cast from the same type. - if (isa<Constant>(Op1) || isa<CastInst>(Op1)) - if (Instruction *R = foldICmpWithCastAndCast(I)) - return R; - } - - if (Instruction *Res = foldICmpBinOp(I)) - return Res; - - if (Instruction *Res = foldICmpWithMinMax(I)) - return Res; - - { - Value *A, *B; - // Transform (A & ~B) == 0 --> (A & B) != 0 - // and (A & ~B) != 0 --> (A & B) == 0 - // if A is a power of 2. - if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && - match(Op1, m_Zero()) && - isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) - return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), - Op1); - - // ~X < ~Y --> Y < X - // ~X < C --> X > ~C - if (match(Op0, m_Not(m_Value(A)))) { - if (match(Op1, m_Not(m_Value(B)))) - return new ICmpInst(I.getPredicate(), B, A); - - const APInt *C; - if (match(Op1, m_APInt(C))) - return new ICmpInst(I.getSwappedPredicate(), A, - ConstantInt::get(Op1->getType(), ~(*C))); - } - - Instruction *AddI = nullptr; - if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), - m_Instruction(AddI))) && - isa<IntegerType>(A->getType())) { - Value *Result; - Constant *Overflow; - if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, - Overflow)) { - replaceInstUsesWith(*AddI, Result); - return replaceInstUsesWith(I, Overflow); - } - } - - // (zext a) * (zext b) --> llvm.umul.with.overflow. - if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { - if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) - return R; - } - if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { - if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) - return R; - } - } - - if (Instruction *Res = foldICmpEquality(I)) - return Res; - - // The 'cmpxchg' instruction returns an aggregate containing the old value and - // an i1 which indicates whether or not we successfully did the swap. - // - // Replace comparisons between the old value and the expected value with the - // indicator that 'cmpxchg' returns. - // - // N.B. This transform is only valid when the 'cmpxchg' is not permitted to - // spuriously fail. In those cases, the old value may equal the expected - // value but it is possible for the swap to not occur. - if (I.getPredicate() == ICmpInst::ICMP_EQ) - if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) - if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) - if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && - !ACXI->isWeak()) - return ExtractValueInst::Create(ACXI, 1); - - { - Value *X; - const APInt *C; - // icmp X+Cst, X - if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) - return foldICmpAddOpConst(X, *C, I.getPredicate()); - - // icmp X, X+Cst - if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) - return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); - } - - if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) - return Res; - - if (I.getType()->isVectorTy()) - if (Instruction *Res = foldVectorCmp(I, Builder)) - return Res; - - return Changed ? &I : nullptr; -} - -/// Fold fcmp ([us]itofp x, cst) if possible. -Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, - Constant *RHSC) { - if (!isa<ConstantFP>(RHSC)) return nullptr; - const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); - - // Get the width of the mantissa. We don't want to hack on conversions that - // might lose information from the integer, e.g. "i64 -> float" - int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); - if (MantissaWidth == -1) return nullptr; // Unknown. - - IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); - - bool LHSUnsigned = isa<UIToFPInst>(LHSI); - - if (I.isEquality()) { - FCmpInst::Predicate P = I.getPredicate(); - bool IsExact = false; - APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); - RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); - - // If the floating point constant isn't an integer value, we know if we will - // ever compare equal / not equal to it. - if (!IsExact) { - // TODO: Can never be -0.0 and other non-representable values - APFloat RHSRoundInt(RHS); - RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); - if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { - if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) - return replaceInstUsesWith(I, Builder.getFalse()); - - assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); - return replaceInstUsesWith(I, Builder.getTrue()); - } - } - - // TODO: If the constant is exactly representable, is it always OK to do - // equality compares as integer? - } - - // Check to see that the input is converted from an integer type that is small - // enough that preserves all bits. TODO: check here for "known" sign bits. - // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. - unsigned InputSize = IntTy->getScalarSizeInBits(); - - // Following test does NOT adjust InputSize downwards for signed inputs, - // because the most negative value still requires all the mantissa bits - // to distinguish it from one less than that value. - if ((int)InputSize > MantissaWidth) { - // Conversion would lose accuracy. Check if loss can impact comparison. - int Exp = ilogb(RHS); - if (Exp == APFloat::IEK_Inf) { - int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); - if (MaxExponent < (int)InputSize - !LHSUnsigned) - // Conversion could create infinity. - return nullptr; - } else { - // Note that if RHS is zero or NaN, then Exp is negative - // and first condition is trivially false. - if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) - // Conversion could affect comparison. - return nullptr; - } - } - - // Otherwise, we can potentially simplify the comparison. We know that it - // will always come through as an integer value and we know the constant is - // not a NAN (it would have been previously simplified). - assert(!RHS.isNaN() && "NaN comparison not already folded!"); - - ICmpInst::Predicate Pred; - switch (I.getPredicate()) { - default: llvm_unreachable("Unexpected predicate!"); - case FCmpInst::FCMP_UEQ: - case FCmpInst::FCMP_OEQ: - Pred = ICmpInst::ICMP_EQ; - break; - case FCmpInst::FCMP_UGT: - case FCmpInst::FCMP_OGT: - Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; - break; - case FCmpInst::FCMP_UGE: - case FCmpInst::FCMP_OGE: - Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; - break; - case FCmpInst::FCMP_ULT: - case FCmpInst::FCMP_OLT: - Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; - break; - case FCmpInst::FCMP_ULE: - case FCmpInst::FCMP_OLE: - Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; - break; - case FCmpInst::FCMP_UNE: - case FCmpInst::FCMP_ONE: - Pred = ICmpInst::ICMP_NE; - break; - case FCmpInst::FCMP_ORD: - return replaceInstUsesWith(I, Builder.getTrue()); - case FCmpInst::FCMP_UNO: - return replaceInstUsesWith(I, Builder.getFalse()); - } - - // Now we know that the APFloat is a normal number, zero or inf. - - // See if the FP constant is too large for the integer. For example, - // comparing an i8 to 300.0. - unsigned IntWidth = IntTy->getScalarSizeInBits(); - - if (!LHSUnsigned) { - // If the RHS value is > SignedMax, fold the comparison. This handles +INF - // and large values. - APFloat SMax(RHS.getSemantics()); - SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, - APFloat::rmNearestTiesToEven); - if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 - if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || - Pred == ICmpInst::ICMP_SLE) - return replaceInstUsesWith(I, Builder.getTrue()); - return replaceInstUsesWith(I, Builder.getFalse()); - } - } else { - // If the RHS value is > UnsignedMax, fold the comparison. This handles - // +INF and large values. - APFloat UMax(RHS.getSemantics()); - UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, - APFloat::rmNearestTiesToEven); - if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 - if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || - Pred == ICmpInst::ICMP_ULE) - return replaceInstUsesWith(I, Builder.getTrue()); - return replaceInstUsesWith(I, Builder.getFalse()); - } - } - - if (!LHSUnsigned) { - // See if the RHS value is < SignedMin. - APFloat SMin(RHS.getSemantics()); - SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, - APFloat::rmNearestTiesToEven); - if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 - if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || - Pred == ICmpInst::ICMP_SGE) - return replaceInstUsesWith(I, Builder.getTrue()); - return replaceInstUsesWith(I, Builder.getFalse()); - } - } else { - // See if the RHS value is < UnsignedMin. - APFloat SMin(RHS.getSemantics()); - SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, - APFloat::rmNearestTiesToEven); - if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 - if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || - Pred == ICmpInst::ICMP_UGE) - return replaceInstUsesWith(I, Builder.getTrue()); - return replaceInstUsesWith(I, Builder.getFalse()); - } - } - - // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or - // [0, UMAX], but it may still be fractional. See if it is fractional by - // casting the FP value to the integer value and back, checking for equality. - // Don't do this for zero, because -0.0 is not fractional. - Constant *RHSInt = LHSUnsigned - ? ConstantExpr::getFPToUI(RHSC, IntTy) - : ConstantExpr::getFPToSI(RHSC, IntTy); - if (!RHS.isZero()) { - bool Equal = LHSUnsigned - ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC - : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; - if (!Equal) { - // If we had a comparison against a fractional value, we have to adjust - // the compare predicate and sometimes the value. RHSC is rounded towards - // zero at this point. - switch (Pred) { - default: llvm_unreachable("Unexpected integer comparison!"); - case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true - return replaceInstUsesWith(I, Builder.getTrue()); - case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false - return replaceInstUsesWith(I, Builder.getFalse()); - case ICmpInst::ICMP_ULE: - // (float)int <= 4.4 --> int <= 4 - // (float)int <= -4.4 --> false - if (RHS.isNegative()) - return replaceInstUsesWith(I, Builder.getFalse()); - break; - case ICmpInst::ICMP_SLE: - // (float)int <= 4.4 --> int <= 4 - // (float)int <= -4.4 --> int < -4 - if (RHS.isNegative()) - Pred = ICmpInst::ICMP_SLT; - break; - case ICmpInst::ICMP_ULT: - // (float)int < -4.4 --> false - // (float)int < 4.4 --> int <= 4 - if (RHS.isNegative()) - return replaceInstUsesWith(I, Builder.getFalse()); - Pred = ICmpInst::ICMP_ULE; - break; - case ICmpInst::ICMP_SLT: - // (float)int < -4.4 --> int < -4 - // (float)int < 4.4 --> int <= 4 - if (!RHS.isNegative()) - Pred = ICmpInst::ICMP_SLE; - break; - case ICmpInst::ICMP_UGT: - // (float)int > 4.4 --> int > 4 - // (float)int > -4.4 --> true - if (RHS.isNegative()) - return replaceInstUsesWith(I, Builder.getTrue()); - break; - case ICmpInst::ICMP_SGT: - // (float)int > 4.4 --> int > 4 - // (float)int > -4.4 --> int >= -4 - if (RHS.isNegative()) - Pred = ICmpInst::ICMP_SGE; - break; - case ICmpInst::ICMP_UGE: - // (float)int >= -4.4 --> true - // (float)int >= 4.4 --> int > 4 - if (RHS.isNegative()) - return replaceInstUsesWith(I, Builder.getTrue()); - Pred = ICmpInst::ICMP_UGT; - break; - case ICmpInst::ICMP_SGE: - // (float)int >= -4.4 --> int >= -4 - // (float)int >= 4.4 --> int > 4 - if (!RHS.isNegative()) - Pred = ICmpInst::ICMP_SGT; - break; - } - } - } - - // Lower this FP comparison into an appropriate integer version of the - // comparison. - return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); -} - -/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. -static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, - Constant *RHSC) { - // When C is not 0.0 and infinities are not allowed: - // (C / X) < 0.0 is a sign-bit test of X - // (C / X) < 0.0 --> X < 0.0 (if C is positive) - // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) - // - // Proof: - // Multiply (C / X) < 0.0 by X * X / C. - // - X is non zero, if it is the flag 'ninf' is violated. - // - C defines the sign of X * X * C. Thus it also defines whether to swap - // the predicate. C is also non zero by definition. - // - // Thus X * X / C is non zero and the transformation is valid. [qed] - - FCmpInst::Predicate Pred = I.getPredicate(); - - // Check that predicates are valid. - if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && - (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) - return nullptr; - - // Check that RHS operand is zero. - if (!match(RHSC, m_AnyZeroFP())) - return nullptr; - - // Check fastmath flags ('ninf'). - if (!LHSI->hasNoInfs() || !I.hasNoInfs()) - return nullptr; - - // Check the properties of the dividend. It must not be zero to avoid a - // division by zero (see Proof). - const APFloat *C; - if (!match(LHSI->getOperand(0), m_APFloat(C))) - return nullptr; - - if (C->isZero()) - return nullptr; - - // Get swapped predicate if necessary. - if (C->isNegative()) - Pred = I.getSwappedPredicate(); - - return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); -} - -/// Optimize fabs(X) compared with zero. -static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { - Value *X; - if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || - !match(I.getOperand(1), m_PosZeroFP())) - return nullptr; - - auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { - I->setPredicate(P); - I->setOperand(0, X); - return I; - }; - - switch (I.getPredicate()) { - case FCmpInst::FCMP_UGE: - case FCmpInst::FCMP_OLT: - // fabs(X) >= 0.0 --> true - // fabs(X) < 0.0 --> false - llvm_unreachable("fcmp should have simplified"); - - case FCmpInst::FCMP_OGT: - // fabs(X) > 0.0 --> X != 0.0 - return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); - - case FCmpInst::FCMP_UGT: - // fabs(X) u> 0.0 --> X u!= 0.0 - return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); - - case FCmpInst::FCMP_OLE: - // fabs(X) <= 0.0 --> X == 0.0 - return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); - - case FCmpInst::FCMP_ULE: - // fabs(X) u<= 0.0 --> X u== 0.0 - return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); - - case FCmpInst::FCMP_OGE: - // fabs(X) >= 0.0 --> !isnan(X) - assert(!I.hasNoNaNs() && "fcmp should have simplified"); - return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); - - case FCmpInst::FCMP_ULT: - // fabs(X) u< 0.0 --> isnan(X) - assert(!I.hasNoNaNs() && "fcmp should have simplified"); - return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); - - case FCmpInst::FCMP_OEQ: - case FCmpInst::FCMP_UEQ: - case FCmpInst::FCMP_ONE: - case FCmpInst::FCMP_UNE: - case FCmpInst::FCMP_ORD: - case FCmpInst::FCMP_UNO: - // Look through the fabs() because it doesn't change anything but the sign. - // fabs(X) == 0.0 --> X == 0.0, - // fabs(X) != 0.0 --> X != 0.0 - // isnan(fabs(X)) --> isnan(X) - // !isnan(fabs(X) --> !isnan(X) - return replacePredAndOp0(&I, I.getPredicate(), X); - - default: - return nullptr; - } -} - -Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { - bool Changed = false; - - /// Orders the operands of the compare so that they are listed from most - /// complex to least complex. This puts constants before unary operators, - /// before binary operators. - if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { - I.swapOperands(); - Changed = true; - } - - const CmpInst::Predicate Pred = I.getPredicate(); - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), - SQ.getWithInstruction(&I))) - return replaceInstUsesWith(I, V); - - // Simplify 'fcmp pred X, X' - if (Op0 == Op1) { - switch (Pred) { - default: break; - case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) - case FCmpInst::FCMP_ULT: // True if unordered or less than - case FCmpInst::FCMP_UGT: // True if unordered or greater than - case FCmpInst::FCMP_UNE: // True if unordered or not equal - // Canonicalize these to be 'fcmp uno %X, 0.0'. - I.setPredicate(FCmpInst::FCMP_UNO); - I.setOperand(1, Constant::getNullValue(Op0->getType())); - return &I; - - case FCmpInst::FCMP_ORD: // True if ordered (no nans) - case FCmpInst::FCMP_OEQ: // True if ordered and equal - case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal - case FCmpInst::FCMP_OLE: // True if ordered and less than or equal - // Canonicalize these to be 'fcmp ord %X, 0.0'. - I.setPredicate(FCmpInst::FCMP_ORD); - I.setOperand(1, Constant::getNullValue(Op0->getType())); - return &I; - } - } - - // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, - // then canonicalize the operand to 0.0. - if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { - if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { - I.setOperand(0, ConstantFP::getNullValue(Op0->getType())); - return &I; - } - if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { - I.setOperand(1, ConstantFP::getNullValue(Op0->getType())); - return &I; - } - } - - // Test if the FCmpInst instruction is used exclusively by a select as - // part of a minimum or maximum operation. If so, refrain from doing - // any other folding. This helps out other analyses which understand - // non-obfuscated minimum and maximum idioms, such as ScalarEvolution - // and CodeGen. And in this case, at least one of the comparison - // operands has at least one user besides the compare (the select), - // which would often largely negate the benefit of folding anyway. - if (I.hasOneUse()) - if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { - Value *A, *B; - SelectPatternResult SPR = matchSelectPattern(SI, A, B); - if (SPR.Flavor != SPF_UNKNOWN) - return nullptr; - } - - // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: - // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 - if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { - I.setOperand(1, ConstantFP::getNullValue(Op1->getType())); - return &I; - } - - // Handle fcmp with instruction LHS and constant RHS. - Instruction *LHSI; - Constant *RHSC; - if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { - switch (LHSI->getOpcode()) { - case Instruction::PHI: - // Only fold fcmp into the PHI if the phi and fcmp are in the same - // block. If in the same block, we're encouraging jump threading. If - // not, we are just pessimizing the code by making an i1 phi. - if (LHSI->getParent() == I.getParent()) - if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) - return NV; - break; - case Instruction::SIToFP: - case Instruction::UIToFP: - if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) - return NV; - break; - case Instruction::FDiv: - if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) - return NV; - break; - case Instruction::Load: - if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) - if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) - if (GV->isConstant() && GV->hasDefinitiveInitializer() && - !cast<LoadInst>(LHSI)->isVolatile()) - if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) - return Res; - break; - } - } - - if (Instruction *R = foldFabsWithFcmpZero(I)) - return R; - - Value *X, *Y; - if (match(Op0, m_FNeg(m_Value(X)))) { - // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y - if (match(Op1, m_FNeg(m_Value(Y)))) - return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); - - // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C - Constant *C; - if (match(Op1, m_Constant(C))) { - Constant *NegC = ConstantExpr::getFNeg(C); - return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); - } - } - - if (match(Op0, m_FPExt(m_Value(X)))) { - // fcmp (fpext X), (fpext Y) -> fcmp X, Y - if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) - return new FCmpInst(Pred, X, Y, "", &I); - - // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless - const APFloat *C; - if (match(Op1, m_APFloat(C))) { - const fltSemantics &FPSem = - X->getType()->getScalarType()->getFltSemantics(); - bool Lossy; - APFloat TruncC = *C; - TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); - - // Avoid lossy conversions and denormals. - // Zero is a special case that's OK to convert. - APFloat Fabs = TruncC; - Fabs.clearSign(); - if (!Lossy && - ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != - APFloat::cmpLessThan) || Fabs.isZero())) { - Constant *NewC = ConstantFP::get(X->getType(), TruncC); - return new FCmpInst(Pred, X, NewC, "", &I); - } - } - } - - if (I.getType()->isVectorTy()) - if (Instruction *Res = foldVectorCmp(I, Builder)) - return Res; - - return Changed ? &I : nullptr; -} |
