summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp1633
1 files changed, 0 insertions, 1633 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
deleted file mode 100644
index 76ab614090f..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ /dev/null
@@ -1,1633 +0,0 @@
-//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visit functions for load, store and alloca.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-STATISTIC(NumDeadStore, "Number of dead stores eliminated");
-STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
-
-/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
-/// some part of a constant global variable. This intentionally only accepts
-/// constant expressions because we can't rewrite arbitrary instructions.
-static bool pointsToConstantGlobal(Value *V) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return GV->isConstant();
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast ||
- CE->getOpcode() == Instruction::AddrSpaceCast ||
- CE->getOpcode() == Instruction::GetElementPtr)
- return pointsToConstantGlobal(CE->getOperand(0));
- }
- return false;
-}
-
-/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
-/// pointer to an alloca. Ignore any reads of the pointer, return false if we
-/// see any stores or other unknown uses. If we see pointer arithmetic, keep
-/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
-/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
-/// the alloca, and if the source pointer is a pointer to a constant global, we
-/// can optimize this.
-static bool
-isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
- SmallVectorImpl<Instruction *> &ToDelete) {
- // We track lifetime intrinsics as we encounter them. If we decide to go
- // ahead and replace the value with the global, this lets the caller quickly
- // eliminate the markers.
-
- SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
- ValuesToInspect.emplace_back(V, false);
- while (!ValuesToInspect.empty()) {
- auto ValuePair = ValuesToInspect.pop_back_val();
- const bool IsOffset = ValuePair.second;
- for (auto &U : ValuePair.first->uses()) {
- auto *I = cast<Instruction>(U.getUser());
-
- if (auto *LI = dyn_cast<LoadInst>(I)) {
- // Ignore non-volatile loads, they are always ok.
- if (!LI->isSimple()) return false;
- continue;
- }
-
- if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
- // If uses of the bitcast are ok, we are ok.
- ValuesToInspect.emplace_back(I, IsOffset);
- continue;
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- // If the GEP has all zero indices, it doesn't offset the pointer. If it
- // doesn't, it does.
- ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
- continue;
- }
-
- if (auto CS = CallSite(I)) {
- // If this is the function being called then we treat it like a load and
- // ignore it.
- if (CS.isCallee(&U))
- continue;
-
- unsigned DataOpNo = CS.getDataOperandNo(&U);
- bool IsArgOperand = CS.isArgOperand(&U);
-
- // Inalloca arguments are clobbered by the call.
- if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
- return false;
-
- // If this is a readonly/readnone call site, then we know it is just a
- // load (but one that potentially returns the value itself), so we can
- // ignore it if we know that the value isn't captured.
- if (CS.onlyReadsMemory() &&
- (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
- continue;
-
- // If this is being passed as a byval argument, the caller is making a
- // copy, so it is only a read of the alloca.
- if (IsArgOperand && CS.isByValArgument(DataOpNo))
- continue;
- }
-
- // Lifetime intrinsics can be handled by the caller.
- if (I->isLifetimeStartOrEnd()) {
- assert(I->use_empty() && "Lifetime markers have no result to use!");
- ToDelete.push_back(I);
- continue;
- }
-
- // If this is isn't our memcpy/memmove, reject it as something we can't
- // handle.
- MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
- if (!MI)
- return false;
-
- // If the transfer is using the alloca as a source of the transfer, then
- // ignore it since it is a load (unless the transfer is volatile).
- if (U.getOperandNo() == 1) {
- if (MI->isVolatile()) return false;
- continue;
- }
-
- // If we already have seen a copy, reject the second one.
- if (TheCopy) return false;
-
- // If the pointer has been offset from the start of the alloca, we can't
- // safely handle this.
- if (IsOffset) return false;
-
- // If the memintrinsic isn't using the alloca as the dest, reject it.
- if (U.getOperandNo() != 0) return false;
-
- // If the source of the memcpy/move is not a constant global, reject it.
- if (!pointsToConstantGlobal(MI->getSource()))
- return false;
-
- // Otherwise, the transform is safe. Remember the copy instruction.
- TheCopy = MI;
- }
- }
- return true;
-}
-
-/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
-/// modified by a copy from a constant global. If we can prove this, we can
-/// replace any uses of the alloca with uses of the global directly.
-static MemTransferInst *
-isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
- SmallVectorImpl<Instruction *> &ToDelete) {
- MemTransferInst *TheCopy = nullptr;
- if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
- return TheCopy;
- return nullptr;
-}
-
-/// Returns true if V is dereferenceable for size of alloca.
-static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
- const DataLayout &DL) {
- if (AI->isArrayAllocation())
- return false;
- uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
- if (!AllocaSize)
- return false;
- return isDereferenceableAndAlignedPointer(V, AI->getAlignment(),
- APInt(64, AllocaSize), DL);
-}
-
-static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
- // Check for array size of 1 (scalar allocation).
- if (!AI.isArrayAllocation()) {
- // i32 1 is the canonical array size for scalar allocations.
- if (AI.getArraySize()->getType()->isIntegerTy(32))
- return nullptr;
-
- // Canonicalize it.
- Value *V = IC.Builder.getInt32(1);
- AI.setOperand(0, V);
- return &AI;
- }
-
- // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
- if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
- if (C->getValue().getActiveBits() <= 64) {
- Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
- AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
- New->setAlignment(AI.getAlignment());
-
- // Scan to the end of the allocation instructions, to skip over a block of
- // allocas if possible...also skip interleaved debug info
- //
- BasicBlock::iterator It(New);
- while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
- ++It;
-
- // Now that I is pointing to the first non-allocation-inst in the block,
- // insert our getelementptr instruction...
- //
- Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
- Value *NullIdx = Constant::getNullValue(IdxTy);
- Value *Idx[2] = {NullIdx, NullIdx};
- Instruction *GEP =
- GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
- IC.InsertNewInstBefore(GEP, *It);
-
- // Now make everything use the getelementptr instead of the original
- // allocation.
- return IC.replaceInstUsesWith(AI, GEP);
- }
- }
-
- if (isa<UndefValue>(AI.getArraySize()))
- return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
-
- // Ensure that the alloca array size argument has type intptr_t, so that
- // any casting is exposed early.
- Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
- if (AI.getArraySize()->getType() != IntPtrTy) {
- Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
- AI.setOperand(0, V);
- return &AI;
- }
-
- return nullptr;
-}
-
-namespace {
-// If I and V are pointers in different address space, it is not allowed to
-// use replaceAllUsesWith since I and V have different types. A
-// non-target-specific transformation should not use addrspacecast on V since
-// the two address space may be disjoint depending on target.
-//
-// This class chases down uses of the old pointer until reaching the load
-// instructions, then replaces the old pointer in the load instructions with
-// the new pointer. If during the chasing it sees bitcast or GEP, it will
-// create new bitcast or GEP with the new pointer and use them in the load
-// instruction.
-class PointerReplacer {
-public:
- PointerReplacer(InstCombiner &IC) : IC(IC) {}
- void replacePointer(Instruction &I, Value *V);
-
-private:
- void findLoadAndReplace(Instruction &I);
- void replace(Instruction *I);
- Value *getReplacement(Value *I);
-
- SmallVector<Instruction *, 4> Path;
- MapVector<Value *, Value *> WorkMap;
- InstCombiner &IC;
-};
-} // end anonymous namespace
-
-void PointerReplacer::findLoadAndReplace(Instruction &I) {
- for (auto U : I.users()) {
- auto *Inst = dyn_cast<Instruction>(&*U);
- if (!Inst)
- return;
- LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
- if (isa<LoadInst>(Inst)) {
- for (auto P : Path)
- replace(P);
- replace(Inst);
- } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
- Path.push_back(Inst);
- findLoadAndReplace(*Inst);
- Path.pop_back();
- } else {
- return;
- }
- }
-}
-
-Value *PointerReplacer::getReplacement(Value *V) {
- auto Loc = WorkMap.find(V);
- if (Loc != WorkMap.end())
- return Loc->second;
- return nullptr;
-}
-
-void PointerReplacer::replace(Instruction *I) {
- if (getReplacement(I))
- return;
-
- if (auto *LT = dyn_cast<LoadInst>(I)) {
- auto *V = getReplacement(LT->getPointerOperand());
- assert(V && "Operand not replaced");
- auto *NewI = new LoadInst(V);
- NewI->takeName(LT);
- IC.InsertNewInstWith(NewI, *LT);
- IC.replaceInstUsesWith(*LT, NewI);
- WorkMap[LT] = NewI;
- } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- auto *V = getReplacement(GEP->getPointerOperand());
- assert(V && "Operand not replaced");
- SmallVector<Value *, 8> Indices;
- Indices.append(GEP->idx_begin(), GEP->idx_end());
- auto *NewI = GetElementPtrInst::Create(
- V->getType()->getPointerElementType(), V, Indices);
- IC.InsertNewInstWith(NewI, *GEP);
- NewI->takeName(GEP);
- WorkMap[GEP] = NewI;
- } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
- auto *V = getReplacement(BC->getOperand(0));
- assert(V && "Operand not replaced");
- auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
- V->getType()->getPointerAddressSpace());
- auto *NewI = new BitCastInst(V, NewT);
- IC.InsertNewInstWith(NewI, *BC);
- NewI->takeName(BC);
- WorkMap[BC] = NewI;
- } else {
- llvm_unreachable("should never reach here");
- }
-}
-
-void PointerReplacer::replacePointer(Instruction &I, Value *V) {
-#ifndef NDEBUG
- auto *PT = cast<PointerType>(I.getType());
- auto *NT = cast<PointerType>(V->getType());
- assert(PT != NT && PT->getElementType() == NT->getElementType() &&
- "Invalid usage");
-#endif
- WorkMap[&I] = V;
- findLoadAndReplace(I);
-}
-
-Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
- if (auto *I = simplifyAllocaArraySize(*this, AI))
- return I;
-
- if (AI.getAllocatedType()->isSized()) {
- // If the alignment is 0 (unspecified), assign it the preferred alignment.
- if (AI.getAlignment() == 0)
- AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
-
- // Move all alloca's of zero byte objects to the entry block and merge them
- // together. Note that we only do this for alloca's, because malloc should
- // allocate and return a unique pointer, even for a zero byte allocation.
- if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
- // For a zero sized alloca there is no point in doing an array allocation.
- // This is helpful if the array size is a complicated expression not used
- // elsewhere.
- if (AI.isArrayAllocation()) {
- AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
- return &AI;
- }
-
- // Get the first instruction in the entry block.
- BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
- Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
- if (FirstInst != &AI) {
- // If the entry block doesn't start with a zero-size alloca then move
- // this one to the start of the entry block. There is no problem with
- // dominance as the array size was forced to a constant earlier already.
- AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
- if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
- DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
- AI.moveBefore(FirstInst);
- return &AI;
- }
-
- // If the alignment of the entry block alloca is 0 (unspecified),
- // assign it the preferred alignment.
- if (EntryAI->getAlignment() == 0)
- EntryAI->setAlignment(
- DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
- // Replace this zero-sized alloca with the one at the start of the entry
- // block after ensuring that the address will be aligned enough for both
- // types.
- unsigned MaxAlign = std::max(EntryAI->getAlignment(),
- AI.getAlignment());
- EntryAI->setAlignment(MaxAlign);
- if (AI.getType() != EntryAI->getType())
- return new BitCastInst(EntryAI, AI.getType());
- return replaceInstUsesWith(AI, EntryAI);
- }
- }
- }
-
- if (AI.getAlignment()) {
- // Check to see if this allocation is only modified by a memcpy/memmove from
- // a constant global whose alignment is equal to or exceeds that of the
- // allocation. If this is the case, we can change all users to use
- // the constant global instead. This is commonly produced by the CFE by
- // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
- // is only subsequently read.
- SmallVector<Instruction *, 4> ToDelete;
- if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
- unsigned SourceAlign = getOrEnforceKnownAlignment(
- Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
- if (AI.getAlignment() <= SourceAlign &&
- isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
- LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
- LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
- for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
- eraseInstFromFunction(*ToDelete[i]);
- Constant *TheSrc = cast<Constant>(Copy->getSource());
- auto *SrcTy = TheSrc->getType();
- auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
- SrcTy->getPointerAddressSpace());
- Constant *Cast =
- ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
- if (AI.getType()->getPointerAddressSpace() ==
- SrcTy->getPointerAddressSpace()) {
- Instruction *NewI = replaceInstUsesWith(AI, Cast);
- eraseInstFromFunction(*Copy);
- ++NumGlobalCopies;
- return NewI;
- } else {
- PointerReplacer PtrReplacer(*this);
- PtrReplacer.replacePointer(AI, Cast);
- ++NumGlobalCopies;
- }
- }
- }
- }
-
- // At last, use the generic allocation site handler to aggressively remove
- // unused allocas.
- return visitAllocSite(AI);
-}
-
-// Are we allowed to form a atomic load or store of this type?
-static bool isSupportedAtomicType(Type *Ty) {
- return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
-}
-
-/// Helper to combine a load to a new type.
-///
-/// This just does the work of combining a load to a new type. It handles
-/// metadata, etc., and returns the new instruction. The \c NewTy should be the
-/// loaded *value* type. This will convert it to a pointer, cast the operand to
-/// that pointer type, load it, etc.
-///
-/// Note that this will create all of the instructions with whatever insert
-/// point the \c InstCombiner currently is using.
-static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
- const Twine &Suffix = "") {
- assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
- "can't fold an atomic load to requested type");
-
- Value *Ptr = LI.getPointerOperand();
- unsigned AS = LI.getPointerAddressSpace();
- SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
- LI.getAllMetadata(MD);
-
- Value *NewPtr = nullptr;
- if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
- NewPtr->getType()->getPointerElementType() == NewTy &&
- NewPtr->getType()->getPointerAddressSpace() == AS))
- NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
-
- LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
- NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
- NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
- MDBuilder MDB(NewLoad->getContext());
- for (const auto &MDPair : MD) {
- unsigned ID = MDPair.first;
- MDNode *N = MDPair.second;
- // Note, essentially every kind of metadata should be preserved here! This
- // routine is supposed to clone a load instruction changing *only its type*.
- // The only metadata it makes sense to drop is metadata which is invalidated
- // when the pointer type changes. This should essentially never be the case
- // in LLVM, but we explicitly switch over only known metadata to be
- // conservatively correct. If you are adding metadata to LLVM which pertains
- // to loads, you almost certainly want to add it here.
- switch (ID) {
- case LLVMContext::MD_dbg:
- case LLVMContext::MD_tbaa:
- case LLVMContext::MD_prof:
- case LLVMContext::MD_fpmath:
- case LLVMContext::MD_tbaa_struct:
- case LLVMContext::MD_invariant_load:
- case LLVMContext::MD_alias_scope:
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_nontemporal:
- case LLVMContext::MD_mem_parallel_loop_access:
- case LLVMContext::MD_access_group:
- // All of these directly apply.
- NewLoad->setMetadata(ID, N);
- break;
-
- case LLVMContext::MD_nonnull:
- copyNonnullMetadata(LI, N, *NewLoad);
- break;
- case LLVMContext::MD_align:
- case LLVMContext::MD_dereferenceable:
- case LLVMContext::MD_dereferenceable_or_null:
- // These only directly apply if the new type is also a pointer.
- if (NewTy->isPointerTy())
- NewLoad->setMetadata(ID, N);
- break;
- case LLVMContext::MD_range:
- copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad);
- break;
- }
- }
- return NewLoad;
-}
-
-/// Combine a store to a new type.
-///
-/// Returns the newly created store instruction.
-static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
- assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
- "can't fold an atomic store of requested type");
-
- Value *Ptr = SI.getPointerOperand();
- unsigned AS = SI.getPointerAddressSpace();
- SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
- SI.getAllMetadata(MD);
-
- StoreInst *NewStore = IC.Builder.CreateAlignedStore(
- V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
- SI.getAlignment(), SI.isVolatile());
- NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
- for (const auto &MDPair : MD) {
- unsigned ID = MDPair.first;
- MDNode *N = MDPair.second;
- // Note, essentially every kind of metadata should be preserved here! This
- // routine is supposed to clone a store instruction changing *only its
- // type*. The only metadata it makes sense to drop is metadata which is
- // invalidated when the pointer type changes. This should essentially
- // never be the case in LLVM, but we explicitly switch over only known
- // metadata to be conservatively correct. If you are adding metadata to
- // LLVM which pertains to stores, you almost certainly want to add it
- // here.
- switch (ID) {
- case LLVMContext::MD_dbg:
- case LLVMContext::MD_tbaa:
- case LLVMContext::MD_prof:
- case LLVMContext::MD_fpmath:
- case LLVMContext::MD_tbaa_struct:
- case LLVMContext::MD_alias_scope:
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_nontemporal:
- case LLVMContext::MD_mem_parallel_loop_access:
- case LLVMContext::MD_access_group:
- // All of these directly apply.
- NewStore->setMetadata(ID, N);
- break;
- case LLVMContext::MD_invariant_load:
- case LLVMContext::MD_nonnull:
- case LLVMContext::MD_range:
- case LLVMContext::MD_align:
- case LLVMContext::MD_dereferenceable:
- case LLVMContext::MD_dereferenceable_or_null:
- // These don't apply for stores.
- break;
- }
- }
-
- return NewStore;
-}
-
-/// Returns true if instruction represent minmax pattern like:
-/// select ((cmp load V1, load V2), V1, V2).
-static bool isMinMaxWithLoads(Value *V) {
- assert(V->getType()->isPointerTy() && "Expected pointer type.");
- // Ignore possible ty* to ixx* bitcast.
- V = peekThroughBitcast(V);
- // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
- // pattern.
- CmpInst::Predicate Pred;
- Instruction *L1;
- Instruction *L2;
- Value *LHS;
- Value *RHS;
- if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
- m_Value(LHS), m_Value(RHS))))
- return false;
- return (match(L1, m_Load(m_Specific(LHS))) &&
- match(L2, m_Load(m_Specific(RHS)))) ||
- (match(L1, m_Load(m_Specific(RHS))) &&
- match(L2, m_Load(m_Specific(LHS))));
-}
-
-/// Combine loads to match the type of their uses' value after looking
-/// through intervening bitcasts.
-///
-/// The core idea here is that if the result of a load is used in an operation,
-/// we should load the type most conducive to that operation. For example, when
-/// loading an integer and converting that immediately to a pointer, we should
-/// instead directly load a pointer.
-///
-/// However, this routine must never change the width of a load or the number of
-/// loads as that would introduce a semantic change. This combine is expected to
-/// be a semantic no-op which just allows loads to more closely model the types
-/// of their consuming operations.
-///
-/// Currently, we also refuse to change the precise type used for an atomic load
-/// or a volatile load. This is debatable, and might be reasonable to change
-/// later. However, it is risky in case some backend or other part of LLVM is
-/// relying on the exact type loaded to select appropriate atomic operations.
-static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
- // FIXME: We could probably with some care handle both volatile and ordered
- // atomic loads here but it isn't clear that this is important.
- if (!LI.isUnordered())
- return nullptr;
-
- if (LI.use_empty())
- return nullptr;
-
- // swifterror values can't be bitcasted.
- if (LI.getPointerOperand()->isSwiftError())
- return nullptr;
-
- Type *Ty = LI.getType();
- const DataLayout &DL = IC.getDataLayout();
-
- // Try to canonicalize loads which are only ever stored to operate over
- // integers instead of any other type. We only do this when the loaded type
- // is sized and has a size exactly the same as its store size and the store
- // size is a legal integer type.
- // Do not perform canonicalization if minmax pattern is found (to avoid
- // infinite loop).
- if (!Ty->isIntegerTy() && Ty->isSized() &&
- DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
- DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
- !DL.isNonIntegralPointerType(Ty) &&
- !isMinMaxWithLoads(
- peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
- if (all_of(LI.users(), [&LI](User *U) {
- auto *SI = dyn_cast<StoreInst>(U);
- return SI && SI->getPointerOperand() != &LI &&
- !SI->getPointerOperand()->isSwiftError();
- })) {
- LoadInst *NewLoad = combineLoadToNewType(
- IC, LI,
- Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
- // Replace all the stores with stores of the newly loaded value.
- for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
- auto *SI = cast<StoreInst>(*UI++);
- IC.Builder.SetInsertPoint(SI);
- combineStoreToNewValue(IC, *SI, NewLoad);
- IC.eraseInstFromFunction(*SI);
- }
- assert(LI.use_empty() && "Failed to remove all users of the load!");
- // Return the old load so the combiner can delete it safely.
- return &LI;
- }
- }
-
- // Fold away bit casts of the loaded value by loading the desired type.
- // We can do this for BitCastInsts as well as casts from and to pointer types,
- // as long as those are noops (i.e., the source or dest type have the same
- // bitwidth as the target's pointers).
- if (LI.hasOneUse())
- if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
- if (CI->isNoopCast(DL))
- if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
- LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
- CI->replaceAllUsesWith(NewLoad);
- IC.eraseInstFromFunction(*CI);
- return &LI;
- }
-
- // FIXME: We should also canonicalize loads of vectors when their elements are
- // cast to other types.
- return nullptr;
-}
-
-static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
- // FIXME: We could probably with some care handle both volatile and atomic
- // stores here but it isn't clear that this is important.
- if (!LI.isSimple())
- return nullptr;
-
- Type *T = LI.getType();
- if (!T->isAggregateType())
- return nullptr;
-
- StringRef Name = LI.getName();
- assert(LI.getAlignment() && "Alignment must be set at this point");
-
- if (auto *ST = dyn_cast<StructType>(T)) {
- // If the struct only have one element, we unpack.
- auto NumElements = ST->getNumElements();
- if (NumElements == 1) {
- LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
- ".unpack");
- AAMDNodes AAMD;
- LI.getAAMetadata(AAMD);
- NewLoad->setAAMetadata(AAMD);
- return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
- UndefValue::get(T), NewLoad, 0, Name));
- }
-
- // We don't want to break loads with padding here as we'd loose
- // the knowledge that padding exists for the rest of the pipeline.
- const DataLayout &DL = IC.getDataLayout();
- auto *SL = DL.getStructLayout(ST);
- if (SL->hasPadding())
- return nullptr;
-
- auto Align = LI.getAlignment();
- if (!Align)
- Align = DL.getABITypeAlignment(ST);
-
- auto *Addr = LI.getPointerOperand();
- auto *IdxType = Type::getInt32Ty(T->getContext());
- auto *Zero = ConstantInt::get(IdxType, 0);
-
- Value *V = UndefValue::get(T);
- for (unsigned i = 0; i < NumElements; i++) {
- Value *Indices[2] = {
- Zero,
- ConstantInt::get(IdxType, i),
- };
- auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
- Name + ".elt");
- auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
- auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
- // Propagate AA metadata. It'll still be valid on the narrowed load.
- AAMDNodes AAMD;
- LI.getAAMetadata(AAMD);
- L->setAAMetadata(AAMD);
- V = IC.Builder.CreateInsertValue(V, L, i);
- }
-
- V->setName(Name);
- return IC.replaceInstUsesWith(LI, V);
- }
-
- if (auto *AT = dyn_cast<ArrayType>(T)) {
- auto *ET = AT->getElementType();
- auto NumElements = AT->getNumElements();
- if (NumElements == 1) {
- LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
- AAMDNodes AAMD;
- LI.getAAMetadata(AAMD);
- NewLoad->setAAMetadata(AAMD);
- return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
- UndefValue::get(T), NewLoad, 0, Name));
- }
-
- // Bail out if the array is too large. Ideally we would like to optimize
- // arrays of arbitrary size but this has a terrible impact on compile time.
- // The threshold here is chosen arbitrarily, maybe needs a little bit of
- // tuning.
- if (NumElements > IC.MaxArraySizeForCombine)
- return nullptr;
-
- const DataLayout &DL = IC.getDataLayout();
- auto EltSize = DL.getTypeAllocSize(ET);
- auto Align = LI.getAlignment();
- if (!Align)
- Align = DL.getABITypeAlignment(T);
-
- auto *Addr = LI.getPointerOperand();
- auto *IdxType = Type::getInt64Ty(T->getContext());
- auto *Zero = ConstantInt::get(IdxType, 0);
-
- Value *V = UndefValue::get(T);
- uint64_t Offset = 0;
- for (uint64_t i = 0; i < NumElements; i++) {
- Value *Indices[2] = {
- Zero,
- ConstantInt::get(IdxType, i),
- };
- auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
- Name + ".elt");
- auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
- Name + ".unpack");
- AAMDNodes AAMD;
- LI.getAAMetadata(AAMD);
- L->setAAMetadata(AAMD);
- V = IC.Builder.CreateInsertValue(V, L, i);
- Offset += EltSize;
- }
-
- V->setName(Name);
- return IC.replaceInstUsesWith(LI, V);
- }
-
- return nullptr;
-}
-
-// If we can determine that all possible objects pointed to by the provided
-// pointer value are, not only dereferenceable, but also definitively less than
-// or equal to the provided maximum size, then return true. Otherwise, return
-// false (constant global values and allocas fall into this category).
-//
-// FIXME: This should probably live in ValueTracking (or similar).
-static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
- const DataLayout &DL) {
- SmallPtrSet<Value *, 4> Visited;
- SmallVector<Value *, 4> Worklist(1, V);
-
- do {
- Value *P = Worklist.pop_back_val();
- P = P->stripPointerCasts();
-
- if (!Visited.insert(P).second)
- continue;
-
- if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
-
- if (PHINode *PN = dyn_cast<PHINode>(P)) {
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
-
- if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
- if (GA->isInterposable())
- return false;
- Worklist.push_back(GA->getAliasee());
- continue;
- }
-
- // If we know how big this object is, and it is less than MaxSize, continue
- // searching. Otherwise, return false.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
- if (!AI->getAllocatedType()->isSized())
- return false;
-
- ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
- if (!CS)
- return false;
-
- uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
- // Make sure that, even if the multiplication below would wrap as an
- // uint64_t, we still do the right thing.
- if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
- return false;
- continue;
- }
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
- if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
- return false;
-
- uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
- if (InitSize > MaxSize)
- return false;
- continue;
- }
-
- return false;
- } while (!Worklist.empty());
-
- return true;
-}
-
-// If we're indexing into an object of a known size, and the outer index is
-// not a constant, but having any value but zero would lead to undefined
-// behavior, replace it with zero.
-//
-// For example, if we have:
-// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
-// ...
-// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
-// ... = load i32* %arrayidx, align 4
-// Then we know that we can replace %x in the GEP with i64 0.
-//
-// FIXME: We could fold any GEP index to zero that would cause UB if it were
-// not zero. Currently, we only handle the first such index. Also, we could
-// also search through non-zero constant indices if we kept track of the
-// offsets those indices implied.
-static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
- Instruction *MemI, unsigned &Idx) {
- if (GEPI->getNumOperands() < 2)
- return false;
-
- // Find the first non-zero index of a GEP. If all indices are zero, return
- // one past the last index.
- auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
- unsigned I = 1;
- for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
- Value *V = GEPI->getOperand(I);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
- if (CI->isZero())
- continue;
-
- break;
- }
-
- return I;
- };
-
- // Skip through initial 'zero' indices, and find the corresponding pointer
- // type. See if the next index is not a constant.
- Idx = FirstNZIdx(GEPI);
- if (Idx == GEPI->getNumOperands())
- return false;
- if (isa<Constant>(GEPI->getOperand(Idx)))
- return false;
-
- SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
- Type *AllocTy =
- GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
- if (!AllocTy || !AllocTy->isSized())
- return false;
- const DataLayout &DL = IC.getDataLayout();
- uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
-
- // If there are more indices after the one we might replace with a zero, make
- // sure they're all non-negative. If any of them are negative, the overall
- // address being computed might be before the base address determined by the
- // first non-zero index.
- auto IsAllNonNegative = [&]() {
- for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
- KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
- if (Known.isNonNegative())
- continue;
- return false;
- }
-
- return true;
- };
-
- // FIXME: If the GEP is not inbounds, and there are extra indices after the
- // one we'll replace, those could cause the address computation to wrap
- // (rendering the IsAllNonNegative() check below insufficient). We can do
- // better, ignoring zero indices (and other indices we can prove small
- // enough not to wrap).
- if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
- return false;
-
- // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
- // also known to be dereferenceable.
- return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
- IsAllNonNegative();
-}
-
-// If we're indexing into an object with a variable index for the memory
-// access, but the object has only one element, we can assume that the index
-// will always be zero. If we replace the GEP, return it.
-template <typename T>
-static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
- T &MemI) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
- unsigned Idx;
- if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
- Instruction *NewGEPI = GEPI->clone();
- NewGEPI->setOperand(Idx,
- ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
- NewGEPI->insertBefore(GEPI);
- MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
- return NewGEPI;
- }
- }
-
- return nullptr;
-}
-
-static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
- if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
- return false;
-
- auto *Ptr = SI.getPointerOperand();
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
- Ptr = GEPI->getOperand(0);
- return (isa<ConstantPointerNull>(Ptr) &&
- !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
-}
-
-static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
- const Value *GEPI0 = GEPI->getOperand(0);
- if (isa<ConstantPointerNull>(GEPI0) &&
- !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
- return true;
- }
- if (isa<UndefValue>(Op) ||
- (isa<ConstantPointerNull>(Op) &&
- !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
- return true;
- return false;
-}
-
-Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
- Value *Op = LI.getOperand(0);
-
- // Try to canonicalize the loaded type.
- if (Instruction *Res = combineLoadToOperationType(*this, LI))
- return Res;
-
- // Attempt to improve the alignment.
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
- unsigned LoadAlign = LI.getAlignment();
- unsigned EffectiveLoadAlign =
- LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
-
- if (KnownAlign > EffectiveLoadAlign)
- LI.setAlignment(KnownAlign);
- else if (LoadAlign == 0)
- LI.setAlignment(EffectiveLoadAlign);
-
- // Replace GEP indices if possible.
- if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
- Worklist.Add(NewGEPI);
- return &LI;
- }
-
- if (Instruction *Res = unpackLoadToAggregate(*this, LI))
- return Res;
-
- // Do really simple store-to-load forwarding and load CSE, to catch cases
- // where there are several consecutive memory accesses to the same location,
- // separated by a few arithmetic operations.
- BasicBlock::iterator BBI(LI);
- bool IsLoadCSE = false;
- if (Value *AvailableVal = FindAvailableLoadedValue(
- &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
- if (IsLoadCSE)
- combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
-
- return replaceInstUsesWith(
- LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
- LI.getName() + ".cast"));
- }
-
- // None of the following transforms are legal for volatile/ordered atomic
- // loads. Most of them do apply for unordered atomics.
- if (!LI.isUnordered()) return nullptr;
-
- // load(gep null, ...) -> unreachable
- // load null/undef -> unreachable
- // TODO: Consider a target hook for valid address spaces for this xforms.
- if (canSimplifyNullLoadOrGEP(LI, Op)) {
- // Insert a new store to null instruction before the load to indicate
- // that this code is not reachable. We do this instead of inserting
- // an unreachable instruction directly because we cannot modify the
- // CFG.
- StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
- Constant::getNullValue(Op->getType()), &LI);
- SI->setDebugLoc(LI.getDebugLoc());
- return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
- }
-
- if (Op->hasOneUse()) {
- // Change select and PHI nodes to select values instead of addresses: this
- // helps alias analysis out a lot, allows many others simplifications, and
- // exposes redundancy in the code.
- //
- // Note that we cannot do the transformation unless we know that the
- // introduced loads cannot trap! Something like this is valid as long as
- // the condition is always false: load (select bool %C, int* null, int* %G),
- // but it would not be valid if we transformed it to load from null
- // unconditionally.
- //
- if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
- // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
- unsigned Align = LI.getAlignment();
- if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
- isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
- LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1),
- SI->getOperand(1)->getName()+".val");
- LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2),
- SI->getOperand(2)->getName()+".val");
- assert(LI.isUnordered() && "implied by above");
- V1->setAlignment(Align);
- V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
- V2->setAlignment(Align);
- V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
- return SelectInst::Create(SI->getCondition(), V1, V2);
- }
-
- // load (select (cond, null, P)) -> load P
- if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
- !NullPointerIsDefined(SI->getFunction(),
- LI.getPointerAddressSpace())) {
- LI.setOperand(0, SI->getOperand(2));
- return &LI;
- }
-
- // load (select (cond, P, null)) -> load P
- if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
- !NullPointerIsDefined(SI->getFunction(),
- LI.getPointerAddressSpace())) {
- LI.setOperand(0, SI->getOperand(1));
- return &LI;
- }
- }
- }
- return nullptr;
-}
-
-/// Look for extractelement/insertvalue sequence that acts like a bitcast.
-///
-/// \returns underlying value that was "cast", or nullptr otherwise.
-///
-/// For example, if we have:
-///
-/// %E0 = extractelement <2 x double> %U, i32 0
-/// %V0 = insertvalue [2 x double] undef, double %E0, 0
-/// %E1 = extractelement <2 x double> %U, i32 1
-/// %V1 = insertvalue [2 x double] %V0, double %E1, 1
-///
-/// and the layout of a <2 x double> is isomorphic to a [2 x double],
-/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
-/// Note that %U may contain non-undef values where %V1 has undef.
-static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
- Value *U = nullptr;
- while (auto *IV = dyn_cast<InsertValueInst>(V)) {
- auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
- if (!E)
- return nullptr;
- auto *W = E->getVectorOperand();
- if (!U)
- U = W;
- else if (U != W)
- return nullptr;
- auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
- if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
- return nullptr;
- V = IV->getAggregateOperand();
- }
- if (!isa<UndefValue>(V) ||!U)
- return nullptr;
-
- auto *UT = cast<VectorType>(U->getType());
- auto *VT = V->getType();
- // Check that types UT and VT are bitwise isomorphic.
- const auto &DL = IC.getDataLayout();
- if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
- return nullptr;
- }
- if (auto *AT = dyn_cast<ArrayType>(VT)) {
- if (AT->getNumElements() != UT->getNumElements())
- return nullptr;
- } else {
- auto *ST = cast<StructType>(VT);
- if (ST->getNumElements() != UT->getNumElements())
- return nullptr;
- for (const auto *EltT : ST->elements()) {
- if (EltT != UT->getElementType())
- return nullptr;
- }
- }
- return U;
-}
-
-/// Combine stores to match the type of value being stored.
-///
-/// The core idea here is that the memory does not have any intrinsic type and
-/// where we can we should match the type of a store to the type of value being
-/// stored.
-///
-/// However, this routine must never change the width of a store or the number of
-/// stores as that would introduce a semantic change. This combine is expected to
-/// be a semantic no-op which just allows stores to more closely model the types
-/// of their incoming values.
-///
-/// Currently, we also refuse to change the precise type used for an atomic or
-/// volatile store. This is debatable, and might be reasonable to change later.
-/// However, it is risky in case some backend or other part of LLVM is relying
-/// on the exact type stored to select appropriate atomic operations.
-///
-/// \returns true if the store was successfully combined away. This indicates
-/// the caller must erase the store instruction. We have to let the caller erase
-/// the store instruction as otherwise there is no way to signal whether it was
-/// combined or not: IC.EraseInstFromFunction returns a null pointer.
-static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
- // FIXME: We could probably with some care handle both volatile and ordered
- // atomic stores here but it isn't clear that this is important.
- if (!SI.isUnordered())
- return false;
-
- // swifterror values can't be bitcasted.
- if (SI.getPointerOperand()->isSwiftError())
- return false;
-
- Value *V = SI.getValueOperand();
-
- // Fold away bit casts of the stored value by storing the original type.
- if (auto *BC = dyn_cast<BitCastInst>(V)) {
- V = BC->getOperand(0);
- if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
- combineStoreToNewValue(IC, SI, V);
- return true;
- }
- }
-
- if (Value *U = likeBitCastFromVector(IC, V))
- if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
- combineStoreToNewValue(IC, SI, U);
- return true;
- }
-
- // FIXME: We should also canonicalize stores of vectors when their elements
- // are cast to other types.
- return false;
-}
-
-static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
- // FIXME: We could probably with some care handle both volatile and atomic
- // stores here but it isn't clear that this is important.
- if (!SI.isSimple())
- return false;
-
- Value *V = SI.getValueOperand();
- Type *T = V->getType();
-
- if (!T->isAggregateType())
- return false;
-
- if (auto *ST = dyn_cast<StructType>(T)) {
- // If the struct only have one element, we unpack.
- unsigned Count = ST->getNumElements();
- if (Count == 1) {
- V = IC.Builder.CreateExtractValue(V, 0);
- combineStoreToNewValue(IC, SI, V);
- return true;
- }
-
- // We don't want to break loads with padding here as we'd loose
- // the knowledge that padding exists for the rest of the pipeline.
- const DataLayout &DL = IC.getDataLayout();
- auto *SL = DL.getStructLayout(ST);
- if (SL->hasPadding())
- return false;
-
- auto Align = SI.getAlignment();
- if (!Align)
- Align = DL.getABITypeAlignment(ST);
-
- SmallString<16> EltName = V->getName();
- EltName += ".elt";
- auto *Addr = SI.getPointerOperand();
- SmallString<16> AddrName = Addr->getName();
- AddrName += ".repack";
-
- auto *IdxType = Type::getInt32Ty(ST->getContext());
- auto *Zero = ConstantInt::get(IdxType, 0);
- for (unsigned i = 0; i < Count; i++) {
- Value *Indices[2] = {
- Zero,
- ConstantInt::get(IdxType, i),
- };
- auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
- AddrName);
- auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
- auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
- llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
- AAMDNodes AAMD;
- SI.getAAMetadata(AAMD);
- NS->setAAMetadata(AAMD);
- }
-
- return true;
- }
-
- if (auto *AT = dyn_cast<ArrayType>(T)) {
- // If the array only have one element, we unpack.
- auto NumElements = AT->getNumElements();
- if (NumElements == 1) {
- V = IC.Builder.CreateExtractValue(V, 0);
- combineStoreToNewValue(IC, SI, V);
- return true;
- }
-
- // Bail out if the array is too large. Ideally we would like to optimize
- // arrays of arbitrary size but this has a terrible impact on compile time.
- // The threshold here is chosen arbitrarily, maybe needs a little bit of
- // tuning.
- if (NumElements > IC.MaxArraySizeForCombine)
- return false;
-
- const DataLayout &DL = IC.getDataLayout();
- auto EltSize = DL.getTypeAllocSize(AT->getElementType());
- auto Align = SI.getAlignment();
- if (!Align)
- Align = DL.getABITypeAlignment(T);
-
- SmallString<16> EltName = V->getName();
- EltName += ".elt";
- auto *Addr = SI.getPointerOperand();
- SmallString<16> AddrName = Addr->getName();
- AddrName += ".repack";
-
- auto *IdxType = Type::getInt64Ty(T->getContext());
- auto *Zero = ConstantInt::get(IdxType, 0);
-
- uint64_t Offset = 0;
- for (uint64_t i = 0; i < NumElements; i++) {
- Value *Indices[2] = {
- Zero,
- ConstantInt::get(IdxType, i),
- };
- auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
- AddrName);
- auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
- auto EltAlign = MinAlign(Align, Offset);
- Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
- AAMDNodes AAMD;
- SI.getAAMetadata(AAMD);
- NS->setAAMetadata(AAMD);
- Offset += EltSize;
- }
-
- return true;
- }
-
- return false;
-}
-
-/// equivalentAddressValues - Test if A and B will obviously have the same
-/// value. This includes recognizing that %t0 and %t1 will have the same
-/// value in code like this:
-/// %t0 = getelementptr \@a, 0, 3
-/// store i32 0, i32* %t0
-/// %t1 = getelementptr \@a, 0, 3
-/// %t2 = load i32* %t1
-///
-static bool equivalentAddressValues(Value *A, Value *B) {
- // Test if the values are trivially equivalent.
- if (A == B) return true;
-
- // Test if the values come form identical arithmetic instructions.
- // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
- // its only used to compare two uses within the same basic block, which
- // means that they'll always either have the same value or one of them
- // will have an undefined value.
- if (isa<BinaryOperator>(A) ||
- isa<CastInst>(A) ||
- isa<PHINode>(A) ||
- isa<GetElementPtrInst>(A))
- if (Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
- return true;
-
- // Otherwise they may not be equivalent.
- return false;
-}
-
-/// Converts store (bitcast (load (bitcast (select ...)))) to
-/// store (load (select ...)), where select is minmax:
-/// select ((cmp load V1, load V2), V1, V2).
-static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
- StoreInst &SI) {
- // bitcast?
- if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
- return false;
- // load? integer?
- Value *LoadAddr;
- if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
- return false;
- auto *LI = cast<LoadInst>(SI.getValueOperand());
- if (!LI->getType()->isIntegerTy())
- return false;
- if (!isMinMaxWithLoads(LoadAddr))
- return false;
-
- if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
- auto *SI = dyn_cast<StoreInst>(U);
- return SI && SI->getPointerOperand() != LI &&
- peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
- !SI->getPointerOperand()->isSwiftError();
- }))
- return false;
-
- IC.Builder.SetInsertPoint(LI);
- LoadInst *NewLI = combineLoadToNewType(
- IC, *LI, LoadAddr->getType()->getPointerElementType());
- // Replace all the stores with stores of the newly loaded value.
- for (auto *UI : LI->users()) {
- auto *USI = cast<StoreInst>(UI);
- IC.Builder.SetInsertPoint(USI);
- combineStoreToNewValue(IC, *USI, NewLI);
- }
- IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
- IC.eraseInstFromFunction(*LI);
- return true;
-}
-
-Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
- Value *Val = SI.getOperand(0);
- Value *Ptr = SI.getOperand(1);
-
- // Try to canonicalize the stored type.
- if (combineStoreToValueType(*this, SI))
- return eraseInstFromFunction(SI);
-
- // Attempt to improve the alignment.
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
- unsigned StoreAlign = SI.getAlignment();
- unsigned EffectiveStoreAlign =
- StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
-
- if (KnownAlign > EffectiveStoreAlign)
- SI.setAlignment(KnownAlign);
- else if (StoreAlign == 0)
- SI.setAlignment(EffectiveStoreAlign);
-
- // Try to canonicalize the stored type.
- if (unpackStoreToAggregate(*this, SI))
- return eraseInstFromFunction(SI);
-
- if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
- return eraseInstFromFunction(SI);
-
- // Replace GEP indices if possible.
- if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
- Worklist.Add(NewGEPI);
- return &SI;
- }
-
- // Don't hack volatile/ordered stores.
- // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
- if (!SI.isUnordered()) return nullptr;
-
- // If the RHS is an alloca with a single use, zapify the store, making the
- // alloca dead.
- if (Ptr->hasOneUse()) {
- if (isa<AllocaInst>(Ptr))
- return eraseInstFromFunction(SI);
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
- if (isa<AllocaInst>(GEP->getOperand(0))) {
- if (GEP->getOperand(0)->hasOneUse())
- return eraseInstFromFunction(SI);
- }
- }
- }
-
- // Do really simple DSE, to catch cases where there are several consecutive
- // stores to the same location, separated by a few arithmetic operations. This
- // situation often occurs with bitfield accesses.
- BasicBlock::iterator BBI(SI);
- for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
- --ScanInsts) {
- --BBI;
- // Don't count debug info directives, lest they affect codegen,
- // and we skip pointer-to-pointer bitcasts, which are NOPs.
- if (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
- ScanInsts++;
- continue;
- }
-
- if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
- // Prev store isn't volatile, and stores to the same location?
- if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
- SI.getOperand(1))) {
- ++NumDeadStore;
- ++BBI;
- eraseInstFromFunction(*PrevSI);
- continue;
- }
- break;
- }
-
- // If this is a load, we have to stop. However, if the loaded value is from
- // the pointer we're loading and is producing the pointer we're storing,
- // then *this* store is dead (X = load P; store X -> P).
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
- assert(SI.isUnordered() && "can't eliminate ordering operation");
- return eraseInstFromFunction(SI);
- }
-
- // Otherwise, this is a load from some other location. Stores before it
- // may not be dead.
- break;
- }
-
- // Don't skip over loads, throws or things that can modify memory.
- if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
- break;
- }
-
- // store X, null -> turns into 'unreachable' in SimplifyCFG
- // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
- if (canSimplifyNullStoreOrGEP(SI)) {
- if (!isa<UndefValue>(Val)) {
- SI.setOperand(0, UndefValue::get(Val->getType()));
- if (Instruction *U = dyn_cast<Instruction>(Val))
- Worklist.Add(U); // Dropped a use.
- }
- return nullptr; // Do not modify these!
- }
-
- // store undef, Ptr -> noop
- if (isa<UndefValue>(Val))
- return eraseInstFromFunction(SI);
-
- // If this store is the second-to-last instruction in the basic block
- // (excluding debug info and bitcasts of pointers) and if the block ends with
- // an unconditional branch, try to move the store to the successor block.
- BBI = SI.getIterator();
- do {
- ++BBI;
- } while (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
-
- if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
- if (BI->isUnconditional())
- mergeStoreIntoSuccessor(SI);
-
- return nullptr;
-}
-
-/// Try to transform:
-/// if () { *P = v1; } else { *P = v2 }
-/// or:
-/// *P = v1; if () { *P = v2; }
-/// into a phi node with a store in the successor.
-bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
- assert(SI.isUnordered() &&
- "This code has not been audited for volatile or ordered store case.");
-
- // Check if the successor block has exactly 2 incoming edges.
- BasicBlock *StoreBB = SI.getParent();
- BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
- if (!DestBB->hasNPredecessors(2))
- return false;
-
- // Capture the other block (the block that doesn't contain our store).
- pred_iterator PredIter = pred_begin(DestBB);
- if (*PredIter == StoreBB)
- ++PredIter;
- BasicBlock *OtherBB = *PredIter;
-
- // Bail out if all of the relevant blocks aren't distinct. This can happen,
- // for example, if SI is in an infinite loop.
- if (StoreBB == DestBB || OtherBB == DestBB)
- return false;
-
- // Verify that the other block ends in a branch and is not otherwise empty.
- BasicBlock::iterator BBI(OtherBB->getTerminator());
- BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
- if (!OtherBr || BBI == OtherBB->begin())
- return false;
-
- // If the other block ends in an unconditional branch, check for the 'if then
- // else' case. There is an instruction before the branch.
- StoreInst *OtherStore = nullptr;
- if (OtherBr->isUnconditional()) {
- --BBI;
- // Skip over debugging info.
- while (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
- if (BBI==OtherBB->begin())
- return false;
- --BBI;
- }
- // If this isn't a store, isn't a store to the same location, or is not the
- // right kind of store, bail out.
- OtherStore = dyn_cast<StoreInst>(BBI);
- if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
- !SI.isSameOperationAs(OtherStore))
- return false;
- } else {
- // Otherwise, the other block ended with a conditional branch. If one of the
- // destinations is StoreBB, then we have the if/then case.
- if (OtherBr->getSuccessor(0) != StoreBB &&
- OtherBr->getSuccessor(1) != StoreBB)
- return false;
-
- // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
- // if/then triangle. See if there is a store to the same ptr as SI that
- // lives in OtherBB.
- for (;; --BBI) {
- // Check to see if we find the matching store.
- if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
- if (OtherStore->getOperand(1) != SI.getOperand(1) ||
- !SI.isSameOperationAs(OtherStore))
- return false;
- break;
- }
- // If we find something that may be using or overwriting the stored
- // value, or if we run out of instructions, we can't do the transform.
- if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
- BBI->mayWriteToMemory() || BBI == OtherBB->begin())
- return false;
- }
-
- // In order to eliminate the store in OtherBr, we have to make sure nothing
- // reads or overwrites the stored value in StoreBB.
- for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
- // FIXME: This should really be AA driven.
- if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
- return false;
- }
- }
-
- // Insert a PHI node now if we need it.
- Value *MergedVal = OtherStore->getOperand(0);
- // The debug locations of the original instructions might differ. Merge them.
- DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
- OtherStore->getDebugLoc());
- if (MergedVal != SI.getOperand(0)) {
- PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
- PN->addIncoming(SI.getOperand(0), SI.getParent());
- PN->addIncoming(OtherStore->getOperand(0), OtherBB);
- MergedVal = InsertNewInstBefore(PN, DestBB->front());
- PN->setDebugLoc(MergedLoc);
- }
-
- // Advance to a place where it is safe to insert the new store and insert it.
- BBI = DestBB->getFirstInsertionPt();
- StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
- SI.isVolatile(), SI.getAlignment(),
- SI.getOrdering(), SI.getSyncScopeID());
- InsertNewInstBefore(NewSI, *BBI);
- NewSI->setDebugLoc(MergedLoc);
-
- // If the two stores had AA tags, merge them.
- AAMDNodes AATags;
- SI.getAAMetadata(AATags);
- if (AATags) {
- OtherStore->getAAMetadata(AATags, /* Merge = */ true);
- NewSI->setAAMetadata(AATags);
- }
-
- // Nuke the old stores.
- eraseInstFromFunction(SI);
- eraseInstFromFunction(*OtherStore);
- return true;
-}