diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp | 1633 |
1 files changed, 0 insertions, 1633 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp deleted file mode 100644 index 76ab614090f..00000000000 --- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp +++ /dev/null @@ -1,1633 +0,0 @@ -//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the visit functions for load, store and alloca. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "instcombine" - -STATISTIC(NumDeadStore, "Number of dead stores eliminated"); -STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); - -/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to -/// some part of a constant global variable. This intentionally only accepts -/// constant expressions because we can't rewrite arbitrary instructions. -static bool pointsToConstantGlobal(Value *V) { - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) - return GV->isConstant(); - - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { - if (CE->getOpcode() == Instruction::BitCast || - CE->getOpcode() == Instruction::AddrSpaceCast || - CE->getOpcode() == Instruction::GetElementPtr) - return pointsToConstantGlobal(CE->getOperand(0)); - } - return false; -} - -/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) -/// pointer to an alloca. Ignore any reads of the pointer, return false if we -/// see any stores or other unknown uses. If we see pointer arithmetic, keep -/// track of whether it moves the pointer (with IsOffset) but otherwise traverse -/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to -/// the alloca, and if the source pointer is a pointer to a constant global, we -/// can optimize this. -static bool -isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, - SmallVectorImpl<Instruction *> &ToDelete) { - // We track lifetime intrinsics as we encounter them. If we decide to go - // ahead and replace the value with the global, this lets the caller quickly - // eliminate the markers. - - SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; - ValuesToInspect.emplace_back(V, false); - while (!ValuesToInspect.empty()) { - auto ValuePair = ValuesToInspect.pop_back_val(); - const bool IsOffset = ValuePair.second; - for (auto &U : ValuePair.first->uses()) { - auto *I = cast<Instruction>(U.getUser()); - - if (auto *LI = dyn_cast<LoadInst>(I)) { - // Ignore non-volatile loads, they are always ok. - if (!LI->isSimple()) return false; - continue; - } - - if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { - // If uses of the bitcast are ok, we are ok. - ValuesToInspect.emplace_back(I, IsOffset); - continue; - } - if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { - // If the GEP has all zero indices, it doesn't offset the pointer. If it - // doesn't, it does. - ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); - continue; - } - - if (auto CS = CallSite(I)) { - // If this is the function being called then we treat it like a load and - // ignore it. - if (CS.isCallee(&U)) - continue; - - unsigned DataOpNo = CS.getDataOperandNo(&U); - bool IsArgOperand = CS.isArgOperand(&U); - - // Inalloca arguments are clobbered by the call. - if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) - return false; - - // If this is a readonly/readnone call site, then we know it is just a - // load (but one that potentially returns the value itself), so we can - // ignore it if we know that the value isn't captured. - if (CS.onlyReadsMemory() && - (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) - continue; - - // If this is being passed as a byval argument, the caller is making a - // copy, so it is only a read of the alloca. - if (IsArgOperand && CS.isByValArgument(DataOpNo)) - continue; - } - - // Lifetime intrinsics can be handled by the caller. - if (I->isLifetimeStartOrEnd()) { - assert(I->use_empty() && "Lifetime markers have no result to use!"); - ToDelete.push_back(I); - continue; - } - - // If this is isn't our memcpy/memmove, reject it as something we can't - // handle. - MemTransferInst *MI = dyn_cast<MemTransferInst>(I); - if (!MI) - return false; - - // If the transfer is using the alloca as a source of the transfer, then - // ignore it since it is a load (unless the transfer is volatile). - if (U.getOperandNo() == 1) { - if (MI->isVolatile()) return false; - continue; - } - - // If we already have seen a copy, reject the second one. - if (TheCopy) return false; - - // If the pointer has been offset from the start of the alloca, we can't - // safely handle this. - if (IsOffset) return false; - - // If the memintrinsic isn't using the alloca as the dest, reject it. - if (U.getOperandNo() != 0) return false; - - // If the source of the memcpy/move is not a constant global, reject it. - if (!pointsToConstantGlobal(MI->getSource())) - return false; - - // Otherwise, the transform is safe. Remember the copy instruction. - TheCopy = MI; - } - } - return true; -} - -/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only -/// modified by a copy from a constant global. If we can prove this, we can -/// replace any uses of the alloca with uses of the global directly. -static MemTransferInst * -isOnlyCopiedFromConstantGlobal(AllocaInst *AI, - SmallVectorImpl<Instruction *> &ToDelete) { - MemTransferInst *TheCopy = nullptr; - if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) - return TheCopy; - return nullptr; -} - -/// Returns true if V is dereferenceable for size of alloca. -static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, - const DataLayout &DL) { - if (AI->isArrayAllocation()) - return false; - uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); - if (!AllocaSize) - return false; - return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), - APInt(64, AllocaSize), DL); -} - -static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { - // Check for array size of 1 (scalar allocation). - if (!AI.isArrayAllocation()) { - // i32 1 is the canonical array size for scalar allocations. - if (AI.getArraySize()->getType()->isIntegerTy(32)) - return nullptr; - - // Canonicalize it. - Value *V = IC.Builder.getInt32(1); - AI.setOperand(0, V); - return &AI; - } - - // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 - if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { - if (C->getValue().getActiveBits() <= 64) { - Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); - AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); - New->setAlignment(AI.getAlignment()); - - // Scan to the end of the allocation instructions, to skip over a block of - // allocas if possible...also skip interleaved debug info - // - BasicBlock::iterator It(New); - while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) - ++It; - - // Now that I is pointing to the first non-allocation-inst in the block, - // insert our getelementptr instruction... - // - Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); - Value *NullIdx = Constant::getNullValue(IdxTy); - Value *Idx[2] = {NullIdx, NullIdx}; - Instruction *GEP = - GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); - IC.InsertNewInstBefore(GEP, *It); - - // Now make everything use the getelementptr instead of the original - // allocation. - return IC.replaceInstUsesWith(AI, GEP); - } - } - - if (isa<UndefValue>(AI.getArraySize())) - return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); - - // Ensure that the alloca array size argument has type intptr_t, so that - // any casting is exposed early. - Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); - if (AI.getArraySize()->getType() != IntPtrTy) { - Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); - AI.setOperand(0, V); - return &AI; - } - - return nullptr; -} - -namespace { -// If I and V are pointers in different address space, it is not allowed to -// use replaceAllUsesWith since I and V have different types. A -// non-target-specific transformation should not use addrspacecast on V since -// the two address space may be disjoint depending on target. -// -// This class chases down uses of the old pointer until reaching the load -// instructions, then replaces the old pointer in the load instructions with -// the new pointer. If during the chasing it sees bitcast or GEP, it will -// create new bitcast or GEP with the new pointer and use them in the load -// instruction. -class PointerReplacer { -public: - PointerReplacer(InstCombiner &IC) : IC(IC) {} - void replacePointer(Instruction &I, Value *V); - -private: - void findLoadAndReplace(Instruction &I); - void replace(Instruction *I); - Value *getReplacement(Value *I); - - SmallVector<Instruction *, 4> Path; - MapVector<Value *, Value *> WorkMap; - InstCombiner &IC; -}; -} // end anonymous namespace - -void PointerReplacer::findLoadAndReplace(Instruction &I) { - for (auto U : I.users()) { - auto *Inst = dyn_cast<Instruction>(&*U); - if (!Inst) - return; - LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); - if (isa<LoadInst>(Inst)) { - for (auto P : Path) - replace(P); - replace(Inst); - } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { - Path.push_back(Inst); - findLoadAndReplace(*Inst); - Path.pop_back(); - } else { - return; - } - } -} - -Value *PointerReplacer::getReplacement(Value *V) { - auto Loc = WorkMap.find(V); - if (Loc != WorkMap.end()) - return Loc->second; - return nullptr; -} - -void PointerReplacer::replace(Instruction *I) { - if (getReplacement(I)) - return; - - if (auto *LT = dyn_cast<LoadInst>(I)) { - auto *V = getReplacement(LT->getPointerOperand()); - assert(V && "Operand not replaced"); - auto *NewI = new LoadInst(V); - NewI->takeName(LT); - IC.InsertNewInstWith(NewI, *LT); - IC.replaceInstUsesWith(*LT, NewI); - WorkMap[LT] = NewI; - } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { - auto *V = getReplacement(GEP->getPointerOperand()); - assert(V && "Operand not replaced"); - SmallVector<Value *, 8> Indices; - Indices.append(GEP->idx_begin(), GEP->idx_end()); - auto *NewI = GetElementPtrInst::Create( - V->getType()->getPointerElementType(), V, Indices); - IC.InsertNewInstWith(NewI, *GEP); - NewI->takeName(GEP); - WorkMap[GEP] = NewI; - } else if (auto *BC = dyn_cast<BitCastInst>(I)) { - auto *V = getReplacement(BC->getOperand(0)); - assert(V && "Operand not replaced"); - auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), - V->getType()->getPointerAddressSpace()); - auto *NewI = new BitCastInst(V, NewT); - IC.InsertNewInstWith(NewI, *BC); - NewI->takeName(BC); - WorkMap[BC] = NewI; - } else { - llvm_unreachable("should never reach here"); - } -} - -void PointerReplacer::replacePointer(Instruction &I, Value *V) { -#ifndef NDEBUG - auto *PT = cast<PointerType>(I.getType()); - auto *NT = cast<PointerType>(V->getType()); - assert(PT != NT && PT->getElementType() == NT->getElementType() && - "Invalid usage"); -#endif - WorkMap[&I] = V; - findLoadAndReplace(I); -} - -Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { - if (auto *I = simplifyAllocaArraySize(*this, AI)) - return I; - - if (AI.getAllocatedType()->isSized()) { - // If the alignment is 0 (unspecified), assign it the preferred alignment. - if (AI.getAlignment() == 0) - AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); - - // Move all alloca's of zero byte objects to the entry block and merge them - // together. Note that we only do this for alloca's, because malloc should - // allocate and return a unique pointer, even for a zero byte allocation. - if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { - // For a zero sized alloca there is no point in doing an array allocation. - // This is helpful if the array size is a complicated expression not used - // elsewhere. - if (AI.isArrayAllocation()) { - AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); - return &AI; - } - - // Get the first instruction in the entry block. - BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); - Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); - if (FirstInst != &AI) { - // If the entry block doesn't start with a zero-size alloca then move - // this one to the start of the entry block. There is no problem with - // dominance as the array size was forced to a constant earlier already. - AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); - if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || - DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { - AI.moveBefore(FirstInst); - return &AI; - } - - // If the alignment of the entry block alloca is 0 (unspecified), - // assign it the preferred alignment. - if (EntryAI->getAlignment() == 0) - EntryAI->setAlignment( - DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); - // Replace this zero-sized alloca with the one at the start of the entry - // block after ensuring that the address will be aligned enough for both - // types. - unsigned MaxAlign = std::max(EntryAI->getAlignment(), - AI.getAlignment()); - EntryAI->setAlignment(MaxAlign); - if (AI.getType() != EntryAI->getType()) - return new BitCastInst(EntryAI, AI.getType()); - return replaceInstUsesWith(AI, EntryAI); - } - } - } - - if (AI.getAlignment()) { - // Check to see if this allocation is only modified by a memcpy/memmove from - // a constant global whose alignment is equal to or exceeds that of the - // allocation. If this is the case, we can change all users to use - // the constant global instead. This is commonly produced by the CFE by - // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' - // is only subsequently read. - SmallVector<Instruction *, 4> ToDelete; - if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { - unsigned SourceAlign = getOrEnforceKnownAlignment( - Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); - if (AI.getAlignment() <= SourceAlign && - isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { - LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); - LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); - for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) - eraseInstFromFunction(*ToDelete[i]); - Constant *TheSrc = cast<Constant>(Copy->getSource()); - auto *SrcTy = TheSrc->getType(); - auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), - SrcTy->getPointerAddressSpace()); - Constant *Cast = - ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); - if (AI.getType()->getPointerAddressSpace() == - SrcTy->getPointerAddressSpace()) { - Instruction *NewI = replaceInstUsesWith(AI, Cast); - eraseInstFromFunction(*Copy); - ++NumGlobalCopies; - return NewI; - } else { - PointerReplacer PtrReplacer(*this); - PtrReplacer.replacePointer(AI, Cast); - ++NumGlobalCopies; - } - } - } - } - - // At last, use the generic allocation site handler to aggressively remove - // unused allocas. - return visitAllocSite(AI); -} - -// Are we allowed to form a atomic load or store of this type? -static bool isSupportedAtomicType(Type *Ty) { - return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); -} - -/// Helper to combine a load to a new type. -/// -/// This just does the work of combining a load to a new type. It handles -/// metadata, etc., and returns the new instruction. The \c NewTy should be the -/// loaded *value* type. This will convert it to a pointer, cast the operand to -/// that pointer type, load it, etc. -/// -/// Note that this will create all of the instructions with whatever insert -/// point the \c InstCombiner currently is using. -static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, - const Twine &Suffix = "") { - assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && - "can't fold an atomic load to requested type"); - - Value *Ptr = LI.getPointerOperand(); - unsigned AS = LI.getPointerAddressSpace(); - SmallVector<std::pair<unsigned, MDNode *>, 8> MD; - LI.getAllMetadata(MD); - - Value *NewPtr = nullptr; - if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && - NewPtr->getType()->getPointerElementType() == NewTy && - NewPtr->getType()->getPointerAddressSpace() == AS)) - NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); - - LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( - NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); - NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); - MDBuilder MDB(NewLoad->getContext()); - for (const auto &MDPair : MD) { - unsigned ID = MDPair.first; - MDNode *N = MDPair.second; - // Note, essentially every kind of metadata should be preserved here! This - // routine is supposed to clone a load instruction changing *only its type*. - // The only metadata it makes sense to drop is metadata which is invalidated - // when the pointer type changes. This should essentially never be the case - // in LLVM, but we explicitly switch over only known metadata to be - // conservatively correct. If you are adding metadata to LLVM which pertains - // to loads, you almost certainly want to add it here. - switch (ID) { - case LLVMContext::MD_dbg: - case LLVMContext::MD_tbaa: - case LLVMContext::MD_prof: - case LLVMContext::MD_fpmath: - case LLVMContext::MD_tbaa_struct: - case LLVMContext::MD_invariant_load: - case LLVMContext::MD_alias_scope: - case LLVMContext::MD_noalias: - case LLVMContext::MD_nontemporal: - case LLVMContext::MD_mem_parallel_loop_access: - case LLVMContext::MD_access_group: - // All of these directly apply. - NewLoad->setMetadata(ID, N); - break; - - case LLVMContext::MD_nonnull: - copyNonnullMetadata(LI, N, *NewLoad); - break; - case LLVMContext::MD_align: - case LLVMContext::MD_dereferenceable: - case LLVMContext::MD_dereferenceable_or_null: - // These only directly apply if the new type is also a pointer. - if (NewTy->isPointerTy()) - NewLoad->setMetadata(ID, N); - break; - case LLVMContext::MD_range: - copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); - break; - } - } - return NewLoad; -} - -/// Combine a store to a new type. -/// -/// Returns the newly created store instruction. -static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { - assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && - "can't fold an atomic store of requested type"); - - Value *Ptr = SI.getPointerOperand(); - unsigned AS = SI.getPointerAddressSpace(); - SmallVector<std::pair<unsigned, MDNode *>, 8> MD; - SI.getAllMetadata(MD); - - StoreInst *NewStore = IC.Builder.CreateAlignedStore( - V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), - SI.getAlignment(), SI.isVolatile()); - NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); - for (const auto &MDPair : MD) { - unsigned ID = MDPair.first; - MDNode *N = MDPair.second; - // Note, essentially every kind of metadata should be preserved here! This - // routine is supposed to clone a store instruction changing *only its - // type*. The only metadata it makes sense to drop is metadata which is - // invalidated when the pointer type changes. This should essentially - // never be the case in LLVM, but we explicitly switch over only known - // metadata to be conservatively correct. If you are adding metadata to - // LLVM which pertains to stores, you almost certainly want to add it - // here. - switch (ID) { - case LLVMContext::MD_dbg: - case LLVMContext::MD_tbaa: - case LLVMContext::MD_prof: - case LLVMContext::MD_fpmath: - case LLVMContext::MD_tbaa_struct: - case LLVMContext::MD_alias_scope: - case LLVMContext::MD_noalias: - case LLVMContext::MD_nontemporal: - case LLVMContext::MD_mem_parallel_loop_access: - case LLVMContext::MD_access_group: - // All of these directly apply. - NewStore->setMetadata(ID, N); - break; - case LLVMContext::MD_invariant_load: - case LLVMContext::MD_nonnull: - case LLVMContext::MD_range: - case LLVMContext::MD_align: - case LLVMContext::MD_dereferenceable: - case LLVMContext::MD_dereferenceable_or_null: - // These don't apply for stores. - break; - } - } - - return NewStore; -} - -/// Returns true if instruction represent minmax pattern like: -/// select ((cmp load V1, load V2), V1, V2). -static bool isMinMaxWithLoads(Value *V) { - assert(V->getType()->isPointerTy() && "Expected pointer type."); - // Ignore possible ty* to ixx* bitcast. - V = peekThroughBitcast(V); - // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax - // pattern. - CmpInst::Predicate Pred; - Instruction *L1; - Instruction *L2; - Value *LHS; - Value *RHS; - if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), - m_Value(LHS), m_Value(RHS)))) - return false; - return (match(L1, m_Load(m_Specific(LHS))) && - match(L2, m_Load(m_Specific(RHS)))) || - (match(L1, m_Load(m_Specific(RHS))) && - match(L2, m_Load(m_Specific(LHS)))); -} - -/// Combine loads to match the type of their uses' value after looking -/// through intervening bitcasts. -/// -/// The core idea here is that if the result of a load is used in an operation, -/// we should load the type most conducive to that operation. For example, when -/// loading an integer and converting that immediately to a pointer, we should -/// instead directly load a pointer. -/// -/// However, this routine must never change the width of a load or the number of -/// loads as that would introduce a semantic change. This combine is expected to -/// be a semantic no-op which just allows loads to more closely model the types -/// of their consuming operations. -/// -/// Currently, we also refuse to change the precise type used for an atomic load -/// or a volatile load. This is debatable, and might be reasonable to change -/// later. However, it is risky in case some backend or other part of LLVM is -/// relying on the exact type loaded to select appropriate atomic operations. -static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { - // FIXME: We could probably with some care handle both volatile and ordered - // atomic loads here but it isn't clear that this is important. - if (!LI.isUnordered()) - return nullptr; - - if (LI.use_empty()) - return nullptr; - - // swifterror values can't be bitcasted. - if (LI.getPointerOperand()->isSwiftError()) - return nullptr; - - Type *Ty = LI.getType(); - const DataLayout &DL = IC.getDataLayout(); - - // Try to canonicalize loads which are only ever stored to operate over - // integers instead of any other type. We only do this when the loaded type - // is sized and has a size exactly the same as its store size and the store - // size is a legal integer type. - // Do not perform canonicalization if minmax pattern is found (to avoid - // infinite loop). - if (!Ty->isIntegerTy() && Ty->isSized() && - DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && - DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && - !DL.isNonIntegralPointerType(Ty) && - !isMinMaxWithLoads( - peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { - if (all_of(LI.users(), [&LI](User *U) { - auto *SI = dyn_cast<StoreInst>(U); - return SI && SI->getPointerOperand() != &LI && - !SI->getPointerOperand()->isSwiftError(); - })) { - LoadInst *NewLoad = combineLoadToNewType( - IC, LI, - Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); - // Replace all the stores with stores of the newly loaded value. - for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { - auto *SI = cast<StoreInst>(*UI++); - IC.Builder.SetInsertPoint(SI); - combineStoreToNewValue(IC, *SI, NewLoad); - IC.eraseInstFromFunction(*SI); - } - assert(LI.use_empty() && "Failed to remove all users of the load!"); - // Return the old load so the combiner can delete it safely. - return &LI; - } - } - - // Fold away bit casts of the loaded value by loading the desired type. - // We can do this for BitCastInsts as well as casts from and to pointer types, - // as long as those are noops (i.e., the source or dest type have the same - // bitwidth as the target's pointers). - if (LI.hasOneUse()) - if (auto* CI = dyn_cast<CastInst>(LI.user_back())) - if (CI->isNoopCast(DL)) - if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { - LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); - CI->replaceAllUsesWith(NewLoad); - IC.eraseInstFromFunction(*CI); - return &LI; - } - - // FIXME: We should also canonicalize loads of vectors when their elements are - // cast to other types. - return nullptr; -} - -static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { - // FIXME: We could probably with some care handle both volatile and atomic - // stores here but it isn't clear that this is important. - if (!LI.isSimple()) - return nullptr; - - Type *T = LI.getType(); - if (!T->isAggregateType()) - return nullptr; - - StringRef Name = LI.getName(); - assert(LI.getAlignment() && "Alignment must be set at this point"); - - if (auto *ST = dyn_cast<StructType>(T)) { - // If the struct only have one element, we unpack. - auto NumElements = ST->getNumElements(); - if (NumElements == 1) { - LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), - ".unpack"); - AAMDNodes AAMD; - LI.getAAMetadata(AAMD); - NewLoad->setAAMetadata(AAMD); - return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( - UndefValue::get(T), NewLoad, 0, Name)); - } - - // We don't want to break loads with padding here as we'd loose - // the knowledge that padding exists for the rest of the pipeline. - const DataLayout &DL = IC.getDataLayout(); - auto *SL = DL.getStructLayout(ST); - if (SL->hasPadding()) - return nullptr; - - auto Align = LI.getAlignment(); - if (!Align) - Align = DL.getABITypeAlignment(ST); - - auto *Addr = LI.getPointerOperand(); - auto *IdxType = Type::getInt32Ty(T->getContext()); - auto *Zero = ConstantInt::get(IdxType, 0); - - Value *V = UndefValue::get(T); - for (unsigned i = 0; i < NumElements; i++) { - Value *Indices[2] = { - Zero, - ConstantInt::get(IdxType, i), - }; - auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), - Name + ".elt"); - auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); - auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); - // Propagate AA metadata. It'll still be valid on the narrowed load. - AAMDNodes AAMD; - LI.getAAMetadata(AAMD); - L->setAAMetadata(AAMD); - V = IC.Builder.CreateInsertValue(V, L, i); - } - - V->setName(Name); - return IC.replaceInstUsesWith(LI, V); - } - - if (auto *AT = dyn_cast<ArrayType>(T)) { - auto *ET = AT->getElementType(); - auto NumElements = AT->getNumElements(); - if (NumElements == 1) { - LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); - AAMDNodes AAMD; - LI.getAAMetadata(AAMD); - NewLoad->setAAMetadata(AAMD); - return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( - UndefValue::get(T), NewLoad, 0, Name)); - } - - // Bail out if the array is too large. Ideally we would like to optimize - // arrays of arbitrary size but this has a terrible impact on compile time. - // The threshold here is chosen arbitrarily, maybe needs a little bit of - // tuning. - if (NumElements > IC.MaxArraySizeForCombine) - return nullptr; - - const DataLayout &DL = IC.getDataLayout(); - auto EltSize = DL.getTypeAllocSize(ET); - auto Align = LI.getAlignment(); - if (!Align) - Align = DL.getABITypeAlignment(T); - - auto *Addr = LI.getPointerOperand(); - auto *IdxType = Type::getInt64Ty(T->getContext()); - auto *Zero = ConstantInt::get(IdxType, 0); - - Value *V = UndefValue::get(T); - uint64_t Offset = 0; - for (uint64_t i = 0; i < NumElements; i++) { - Value *Indices[2] = { - Zero, - ConstantInt::get(IdxType, i), - }; - auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), - Name + ".elt"); - auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), - Name + ".unpack"); - AAMDNodes AAMD; - LI.getAAMetadata(AAMD); - L->setAAMetadata(AAMD); - V = IC.Builder.CreateInsertValue(V, L, i); - Offset += EltSize; - } - - V->setName(Name); - return IC.replaceInstUsesWith(LI, V); - } - - return nullptr; -} - -// If we can determine that all possible objects pointed to by the provided -// pointer value are, not only dereferenceable, but also definitively less than -// or equal to the provided maximum size, then return true. Otherwise, return -// false (constant global values and allocas fall into this category). -// -// FIXME: This should probably live in ValueTracking (or similar). -static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, - const DataLayout &DL) { - SmallPtrSet<Value *, 4> Visited; - SmallVector<Value *, 4> Worklist(1, V); - - do { - Value *P = Worklist.pop_back_val(); - P = P->stripPointerCasts(); - - if (!Visited.insert(P).second) - continue; - - if (SelectInst *SI = dyn_cast<SelectInst>(P)) { - Worklist.push_back(SI->getTrueValue()); - Worklist.push_back(SI->getFalseValue()); - continue; - } - - if (PHINode *PN = dyn_cast<PHINode>(P)) { - for (Value *IncValue : PN->incoming_values()) - Worklist.push_back(IncValue); - continue; - } - - if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { - if (GA->isInterposable()) - return false; - Worklist.push_back(GA->getAliasee()); - continue; - } - - // If we know how big this object is, and it is less than MaxSize, continue - // searching. Otherwise, return false. - if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { - if (!AI->getAllocatedType()->isSized()) - return false; - - ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); - if (!CS) - return false; - - uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); - // Make sure that, even if the multiplication below would wrap as an - // uint64_t, we still do the right thing. - if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) - return false; - continue; - } - - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { - if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) - return false; - - uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); - if (InitSize > MaxSize) - return false; - continue; - } - - return false; - } while (!Worklist.empty()); - - return true; -} - -// If we're indexing into an object of a known size, and the outer index is -// not a constant, but having any value but zero would lead to undefined -// behavior, replace it with zero. -// -// For example, if we have: -// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 -// ... -// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x -// ... = load i32* %arrayidx, align 4 -// Then we know that we can replace %x in the GEP with i64 0. -// -// FIXME: We could fold any GEP index to zero that would cause UB if it were -// not zero. Currently, we only handle the first such index. Also, we could -// also search through non-zero constant indices if we kept track of the -// offsets those indices implied. -static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, - Instruction *MemI, unsigned &Idx) { - if (GEPI->getNumOperands() < 2) - return false; - - // Find the first non-zero index of a GEP. If all indices are zero, return - // one past the last index. - auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { - unsigned I = 1; - for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { - Value *V = GEPI->getOperand(I); - if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) - if (CI->isZero()) - continue; - - break; - } - - return I; - }; - - // Skip through initial 'zero' indices, and find the corresponding pointer - // type. See if the next index is not a constant. - Idx = FirstNZIdx(GEPI); - if (Idx == GEPI->getNumOperands()) - return false; - if (isa<Constant>(GEPI->getOperand(Idx))) - return false; - - SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); - Type *AllocTy = - GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); - if (!AllocTy || !AllocTy->isSized()) - return false; - const DataLayout &DL = IC.getDataLayout(); - uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); - - // If there are more indices after the one we might replace with a zero, make - // sure they're all non-negative. If any of them are negative, the overall - // address being computed might be before the base address determined by the - // first non-zero index. - auto IsAllNonNegative = [&]() { - for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { - KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); - if (Known.isNonNegative()) - continue; - return false; - } - - return true; - }; - - // FIXME: If the GEP is not inbounds, and there are extra indices after the - // one we'll replace, those could cause the address computation to wrap - // (rendering the IsAllNonNegative() check below insufficient). We can do - // better, ignoring zero indices (and other indices we can prove small - // enough not to wrap). - if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) - return false; - - // Note that isObjectSizeLessThanOrEq will return true only if the pointer is - // also known to be dereferenceable. - return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && - IsAllNonNegative(); -} - -// If we're indexing into an object with a variable index for the memory -// access, but the object has only one element, we can assume that the index -// will always be zero. If we replace the GEP, return it. -template <typename T> -static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, - T &MemI) { - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { - unsigned Idx; - if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { - Instruction *NewGEPI = GEPI->clone(); - NewGEPI->setOperand(Idx, - ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); - NewGEPI->insertBefore(GEPI); - MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); - return NewGEPI; - } - } - - return nullptr; -} - -static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { - if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) - return false; - - auto *Ptr = SI.getPointerOperand(); - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) - Ptr = GEPI->getOperand(0); - return (isa<ConstantPointerNull>(Ptr) && - !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); -} - -static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { - const Value *GEPI0 = GEPI->getOperand(0); - if (isa<ConstantPointerNull>(GEPI0) && - !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) - return true; - } - if (isa<UndefValue>(Op) || - (isa<ConstantPointerNull>(Op) && - !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) - return true; - return false; -} - -Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { - Value *Op = LI.getOperand(0); - - // Try to canonicalize the loaded type. - if (Instruction *Res = combineLoadToOperationType(*this, LI)) - return Res; - - // Attempt to improve the alignment. - unsigned KnownAlign = getOrEnforceKnownAlignment( - Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); - unsigned LoadAlign = LI.getAlignment(); - unsigned EffectiveLoadAlign = - LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); - - if (KnownAlign > EffectiveLoadAlign) - LI.setAlignment(KnownAlign); - else if (LoadAlign == 0) - LI.setAlignment(EffectiveLoadAlign); - - // Replace GEP indices if possible. - if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { - Worklist.Add(NewGEPI); - return &LI; - } - - if (Instruction *Res = unpackLoadToAggregate(*this, LI)) - return Res; - - // Do really simple store-to-load forwarding and load CSE, to catch cases - // where there are several consecutive memory accesses to the same location, - // separated by a few arithmetic operations. - BasicBlock::iterator BBI(LI); - bool IsLoadCSE = false; - if (Value *AvailableVal = FindAvailableLoadedValue( - &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { - if (IsLoadCSE) - combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); - - return replaceInstUsesWith( - LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), - LI.getName() + ".cast")); - } - - // None of the following transforms are legal for volatile/ordered atomic - // loads. Most of them do apply for unordered atomics. - if (!LI.isUnordered()) return nullptr; - - // load(gep null, ...) -> unreachable - // load null/undef -> unreachable - // TODO: Consider a target hook for valid address spaces for this xforms. - if (canSimplifyNullLoadOrGEP(LI, Op)) { - // Insert a new store to null instruction before the load to indicate - // that this code is not reachable. We do this instead of inserting - // an unreachable instruction directly because we cannot modify the - // CFG. - StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), - Constant::getNullValue(Op->getType()), &LI); - SI->setDebugLoc(LI.getDebugLoc()); - return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); - } - - if (Op->hasOneUse()) { - // Change select and PHI nodes to select values instead of addresses: this - // helps alias analysis out a lot, allows many others simplifications, and - // exposes redundancy in the code. - // - // Note that we cannot do the transformation unless we know that the - // introduced loads cannot trap! Something like this is valid as long as - // the condition is always false: load (select bool %C, int* null, int* %G), - // but it would not be valid if we transformed it to load from null - // unconditionally. - // - if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { - // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). - unsigned Align = LI.getAlignment(); - if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && - isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { - LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), - SI->getOperand(1)->getName()+".val"); - LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), - SI->getOperand(2)->getName()+".val"); - assert(LI.isUnordered() && "implied by above"); - V1->setAlignment(Align); - V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); - V2->setAlignment(Align); - V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); - return SelectInst::Create(SI->getCondition(), V1, V2); - } - - // load (select (cond, null, P)) -> load P - if (isa<ConstantPointerNull>(SI->getOperand(1)) && - !NullPointerIsDefined(SI->getFunction(), - LI.getPointerAddressSpace())) { - LI.setOperand(0, SI->getOperand(2)); - return &LI; - } - - // load (select (cond, P, null)) -> load P - if (isa<ConstantPointerNull>(SI->getOperand(2)) && - !NullPointerIsDefined(SI->getFunction(), - LI.getPointerAddressSpace())) { - LI.setOperand(0, SI->getOperand(1)); - return &LI; - } - } - } - return nullptr; -} - -/// Look for extractelement/insertvalue sequence that acts like a bitcast. -/// -/// \returns underlying value that was "cast", or nullptr otherwise. -/// -/// For example, if we have: -/// -/// %E0 = extractelement <2 x double> %U, i32 0 -/// %V0 = insertvalue [2 x double] undef, double %E0, 0 -/// %E1 = extractelement <2 x double> %U, i32 1 -/// %V1 = insertvalue [2 x double] %V0, double %E1, 1 -/// -/// and the layout of a <2 x double> is isomorphic to a [2 x double], -/// then %V1 can be safely approximated by a conceptual "bitcast" of %U. -/// Note that %U may contain non-undef values where %V1 has undef. -static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { - Value *U = nullptr; - while (auto *IV = dyn_cast<InsertValueInst>(V)) { - auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); - if (!E) - return nullptr; - auto *W = E->getVectorOperand(); - if (!U) - U = W; - else if (U != W) - return nullptr; - auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); - if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) - return nullptr; - V = IV->getAggregateOperand(); - } - if (!isa<UndefValue>(V) ||!U) - return nullptr; - - auto *UT = cast<VectorType>(U->getType()); - auto *VT = V->getType(); - // Check that types UT and VT are bitwise isomorphic. - const auto &DL = IC.getDataLayout(); - if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { - return nullptr; - } - if (auto *AT = dyn_cast<ArrayType>(VT)) { - if (AT->getNumElements() != UT->getNumElements()) - return nullptr; - } else { - auto *ST = cast<StructType>(VT); - if (ST->getNumElements() != UT->getNumElements()) - return nullptr; - for (const auto *EltT : ST->elements()) { - if (EltT != UT->getElementType()) - return nullptr; - } - } - return U; -} - -/// Combine stores to match the type of value being stored. -/// -/// The core idea here is that the memory does not have any intrinsic type and -/// where we can we should match the type of a store to the type of value being -/// stored. -/// -/// However, this routine must never change the width of a store or the number of -/// stores as that would introduce a semantic change. This combine is expected to -/// be a semantic no-op which just allows stores to more closely model the types -/// of their incoming values. -/// -/// Currently, we also refuse to change the precise type used for an atomic or -/// volatile store. This is debatable, and might be reasonable to change later. -/// However, it is risky in case some backend or other part of LLVM is relying -/// on the exact type stored to select appropriate atomic operations. -/// -/// \returns true if the store was successfully combined away. This indicates -/// the caller must erase the store instruction. We have to let the caller erase -/// the store instruction as otherwise there is no way to signal whether it was -/// combined or not: IC.EraseInstFromFunction returns a null pointer. -static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { - // FIXME: We could probably with some care handle both volatile and ordered - // atomic stores here but it isn't clear that this is important. - if (!SI.isUnordered()) - return false; - - // swifterror values can't be bitcasted. - if (SI.getPointerOperand()->isSwiftError()) - return false; - - Value *V = SI.getValueOperand(); - - // Fold away bit casts of the stored value by storing the original type. - if (auto *BC = dyn_cast<BitCastInst>(V)) { - V = BC->getOperand(0); - if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { - combineStoreToNewValue(IC, SI, V); - return true; - } - } - - if (Value *U = likeBitCastFromVector(IC, V)) - if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { - combineStoreToNewValue(IC, SI, U); - return true; - } - - // FIXME: We should also canonicalize stores of vectors when their elements - // are cast to other types. - return false; -} - -static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { - // FIXME: We could probably with some care handle both volatile and atomic - // stores here but it isn't clear that this is important. - if (!SI.isSimple()) - return false; - - Value *V = SI.getValueOperand(); - Type *T = V->getType(); - - if (!T->isAggregateType()) - return false; - - if (auto *ST = dyn_cast<StructType>(T)) { - // If the struct only have one element, we unpack. - unsigned Count = ST->getNumElements(); - if (Count == 1) { - V = IC.Builder.CreateExtractValue(V, 0); - combineStoreToNewValue(IC, SI, V); - return true; - } - - // We don't want to break loads with padding here as we'd loose - // the knowledge that padding exists for the rest of the pipeline. - const DataLayout &DL = IC.getDataLayout(); - auto *SL = DL.getStructLayout(ST); - if (SL->hasPadding()) - return false; - - auto Align = SI.getAlignment(); - if (!Align) - Align = DL.getABITypeAlignment(ST); - - SmallString<16> EltName = V->getName(); - EltName += ".elt"; - auto *Addr = SI.getPointerOperand(); - SmallString<16> AddrName = Addr->getName(); - AddrName += ".repack"; - - auto *IdxType = Type::getInt32Ty(ST->getContext()); - auto *Zero = ConstantInt::get(IdxType, 0); - for (unsigned i = 0; i < Count; i++) { - Value *Indices[2] = { - Zero, - ConstantInt::get(IdxType, i), - }; - auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), - AddrName); - auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); - auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); - llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); - AAMDNodes AAMD; - SI.getAAMetadata(AAMD); - NS->setAAMetadata(AAMD); - } - - return true; - } - - if (auto *AT = dyn_cast<ArrayType>(T)) { - // If the array only have one element, we unpack. - auto NumElements = AT->getNumElements(); - if (NumElements == 1) { - V = IC.Builder.CreateExtractValue(V, 0); - combineStoreToNewValue(IC, SI, V); - return true; - } - - // Bail out if the array is too large. Ideally we would like to optimize - // arrays of arbitrary size but this has a terrible impact on compile time. - // The threshold here is chosen arbitrarily, maybe needs a little bit of - // tuning. - if (NumElements > IC.MaxArraySizeForCombine) - return false; - - const DataLayout &DL = IC.getDataLayout(); - auto EltSize = DL.getTypeAllocSize(AT->getElementType()); - auto Align = SI.getAlignment(); - if (!Align) - Align = DL.getABITypeAlignment(T); - - SmallString<16> EltName = V->getName(); - EltName += ".elt"; - auto *Addr = SI.getPointerOperand(); - SmallString<16> AddrName = Addr->getName(); - AddrName += ".repack"; - - auto *IdxType = Type::getInt64Ty(T->getContext()); - auto *Zero = ConstantInt::get(IdxType, 0); - - uint64_t Offset = 0; - for (uint64_t i = 0; i < NumElements; i++) { - Value *Indices[2] = { - Zero, - ConstantInt::get(IdxType, i), - }; - auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), - AddrName); - auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); - auto EltAlign = MinAlign(Align, Offset); - Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); - AAMDNodes AAMD; - SI.getAAMetadata(AAMD); - NS->setAAMetadata(AAMD); - Offset += EltSize; - } - - return true; - } - - return false; -} - -/// equivalentAddressValues - Test if A and B will obviously have the same -/// value. This includes recognizing that %t0 and %t1 will have the same -/// value in code like this: -/// %t0 = getelementptr \@a, 0, 3 -/// store i32 0, i32* %t0 -/// %t1 = getelementptr \@a, 0, 3 -/// %t2 = load i32* %t1 -/// -static bool equivalentAddressValues(Value *A, Value *B) { - // Test if the values are trivially equivalent. - if (A == B) return true; - - // Test if the values come form identical arithmetic instructions. - // This uses isIdenticalToWhenDefined instead of isIdenticalTo because - // its only used to compare two uses within the same basic block, which - // means that they'll always either have the same value or one of them - // will have an undefined value. - if (isa<BinaryOperator>(A) || - isa<CastInst>(A) || - isa<PHINode>(A) || - isa<GetElementPtrInst>(A)) - if (Instruction *BI = dyn_cast<Instruction>(B)) - if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) - return true; - - // Otherwise they may not be equivalent. - return false; -} - -/// Converts store (bitcast (load (bitcast (select ...)))) to -/// store (load (select ...)), where select is minmax: -/// select ((cmp load V1, load V2), V1, V2). -static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, - StoreInst &SI) { - // bitcast? - if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) - return false; - // load? integer? - Value *LoadAddr; - if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) - return false; - auto *LI = cast<LoadInst>(SI.getValueOperand()); - if (!LI->getType()->isIntegerTy()) - return false; - if (!isMinMaxWithLoads(LoadAddr)) - return false; - - if (!all_of(LI->users(), [LI, LoadAddr](User *U) { - auto *SI = dyn_cast<StoreInst>(U); - return SI && SI->getPointerOperand() != LI && - peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && - !SI->getPointerOperand()->isSwiftError(); - })) - return false; - - IC.Builder.SetInsertPoint(LI); - LoadInst *NewLI = combineLoadToNewType( - IC, *LI, LoadAddr->getType()->getPointerElementType()); - // Replace all the stores with stores of the newly loaded value. - for (auto *UI : LI->users()) { - auto *USI = cast<StoreInst>(UI); - IC.Builder.SetInsertPoint(USI); - combineStoreToNewValue(IC, *USI, NewLI); - } - IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); - IC.eraseInstFromFunction(*LI); - return true; -} - -Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { - Value *Val = SI.getOperand(0); - Value *Ptr = SI.getOperand(1); - - // Try to canonicalize the stored type. - if (combineStoreToValueType(*this, SI)) - return eraseInstFromFunction(SI); - - // Attempt to improve the alignment. - unsigned KnownAlign = getOrEnforceKnownAlignment( - Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); - unsigned StoreAlign = SI.getAlignment(); - unsigned EffectiveStoreAlign = - StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); - - if (KnownAlign > EffectiveStoreAlign) - SI.setAlignment(KnownAlign); - else if (StoreAlign == 0) - SI.setAlignment(EffectiveStoreAlign); - - // Try to canonicalize the stored type. - if (unpackStoreToAggregate(*this, SI)) - return eraseInstFromFunction(SI); - - if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) - return eraseInstFromFunction(SI); - - // Replace GEP indices if possible. - if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { - Worklist.Add(NewGEPI); - return &SI; - } - - // Don't hack volatile/ordered stores. - // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. - if (!SI.isUnordered()) return nullptr; - - // If the RHS is an alloca with a single use, zapify the store, making the - // alloca dead. - if (Ptr->hasOneUse()) { - if (isa<AllocaInst>(Ptr)) - return eraseInstFromFunction(SI); - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { - if (isa<AllocaInst>(GEP->getOperand(0))) { - if (GEP->getOperand(0)->hasOneUse()) - return eraseInstFromFunction(SI); - } - } - } - - // Do really simple DSE, to catch cases where there are several consecutive - // stores to the same location, separated by a few arithmetic operations. This - // situation often occurs with bitfield accesses. - BasicBlock::iterator BBI(SI); - for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; - --ScanInsts) { - --BBI; - // Don't count debug info directives, lest they affect codegen, - // and we skip pointer-to-pointer bitcasts, which are NOPs. - if (isa<DbgInfoIntrinsic>(BBI) || - (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { - ScanInsts++; - continue; - } - - if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { - // Prev store isn't volatile, and stores to the same location? - if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), - SI.getOperand(1))) { - ++NumDeadStore; - ++BBI; - eraseInstFromFunction(*PrevSI); - continue; - } - break; - } - - // If this is a load, we have to stop. However, if the loaded value is from - // the pointer we're loading and is producing the pointer we're storing, - // then *this* store is dead (X = load P; store X -> P). - if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { - if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { - assert(SI.isUnordered() && "can't eliminate ordering operation"); - return eraseInstFromFunction(SI); - } - - // Otherwise, this is a load from some other location. Stores before it - // may not be dead. - break; - } - - // Don't skip over loads, throws or things that can modify memory. - if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) - break; - } - - // store X, null -> turns into 'unreachable' in SimplifyCFG - // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG - if (canSimplifyNullStoreOrGEP(SI)) { - if (!isa<UndefValue>(Val)) { - SI.setOperand(0, UndefValue::get(Val->getType())); - if (Instruction *U = dyn_cast<Instruction>(Val)) - Worklist.Add(U); // Dropped a use. - } - return nullptr; // Do not modify these! - } - - // store undef, Ptr -> noop - if (isa<UndefValue>(Val)) - return eraseInstFromFunction(SI); - - // If this store is the second-to-last instruction in the basic block - // (excluding debug info and bitcasts of pointers) and if the block ends with - // an unconditional branch, try to move the store to the successor block. - BBI = SI.getIterator(); - do { - ++BBI; - } while (isa<DbgInfoIntrinsic>(BBI) || - (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); - - if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) - if (BI->isUnconditional()) - mergeStoreIntoSuccessor(SI); - - return nullptr; -} - -/// Try to transform: -/// if () { *P = v1; } else { *P = v2 } -/// or: -/// *P = v1; if () { *P = v2; } -/// into a phi node with a store in the successor. -bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { - assert(SI.isUnordered() && - "This code has not been audited for volatile or ordered store case."); - - // Check if the successor block has exactly 2 incoming edges. - BasicBlock *StoreBB = SI.getParent(); - BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); - if (!DestBB->hasNPredecessors(2)) - return false; - - // Capture the other block (the block that doesn't contain our store). - pred_iterator PredIter = pred_begin(DestBB); - if (*PredIter == StoreBB) - ++PredIter; - BasicBlock *OtherBB = *PredIter; - - // Bail out if all of the relevant blocks aren't distinct. This can happen, - // for example, if SI is in an infinite loop. - if (StoreBB == DestBB || OtherBB == DestBB) - return false; - - // Verify that the other block ends in a branch and is not otherwise empty. - BasicBlock::iterator BBI(OtherBB->getTerminator()); - BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); - if (!OtherBr || BBI == OtherBB->begin()) - return false; - - // If the other block ends in an unconditional branch, check for the 'if then - // else' case. There is an instruction before the branch. - StoreInst *OtherStore = nullptr; - if (OtherBr->isUnconditional()) { - --BBI; - // Skip over debugging info. - while (isa<DbgInfoIntrinsic>(BBI) || - (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { - if (BBI==OtherBB->begin()) - return false; - --BBI; - } - // If this isn't a store, isn't a store to the same location, or is not the - // right kind of store, bail out. - OtherStore = dyn_cast<StoreInst>(BBI); - if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || - !SI.isSameOperationAs(OtherStore)) - return false; - } else { - // Otherwise, the other block ended with a conditional branch. If one of the - // destinations is StoreBB, then we have the if/then case. - if (OtherBr->getSuccessor(0) != StoreBB && - OtherBr->getSuccessor(1) != StoreBB) - return false; - - // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an - // if/then triangle. See if there is a store to the same ptr as SI that - // lives in OtherBB. - for (;; --BBI) { - // Check to see if we find the matching store. - if ((OtherStore = dyn_cast<StoreInst>(BBI))) { - if (OtherStore->getOperand(1) != SI.getOperand(1) || - !SI.isSameOperationAs(OtherStore)) - return false; - break; - } - // If we find something that may be using or overwriting the stored - // value, or if we run out of instructions, we can't do the transform. - if (BBI->mayReadFromMemory() || BBI->mayThrow() || - BBI->mayWriteToMemory() || BBI == OtherBB->begin()) - return false; - } - - // In order to eliminate the store in OtherBr, we have to make sure nothing - // reads or overwrites the stored value in StoreBB. - for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { - // FIXME: This should really be AA driven. - if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) - return false; - } - } - - // Insert a PHI node now if we need it. - Value *MergedVal = OtherStore->getOperand(0); - // The debug locations of the original instructions might differ. Merge them. - DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), - OtherStore->getDebugLoc()); - if (MergedVal != SI.getOperand(0)) { - PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); - PN->addIncoming(SI.getOperand(0), SI.getParent()); - PN->addIncoming(OtherStore->getOperand(0), OtherBB); - MergedVal = InsertNewInstBefore(PN, DestBB->front()); - PN->setDebugLoc(MergedLoc); - } - - // Advance to a place where it is safe to insert the new store and insert it. - BBI = DestBB->getFirstInsertionPt(); - StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), - SI.isVolatile(), SI.getAlignment(), - SI.getOrdering(), SI.getSyncScopeID()); - InsertNewInstBefore(NewSI, *BBI); - NewSI->setDebugLoc(MergedLoc); - - // If the two stores had AA tags, merge them. - AAMDNodes AATags; - SI.getAAMetadata(AATags); - if (AATags) { - OtherStore->getAAMetadata(AATags, /* Merge = */ true); - NewSI->setAAMetadata(AATags); - } - - // Nuke the old stores. - eraseInstFromFunction(SI); - eraseInstFromFunction(*OtherStore); - return true; -} |
