summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp1261
1 files changed, 0 insertions, 1261 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
deleted file mode 100644
index 7603cf4d795..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ /dev/null
@@ -1,1261 +0,0 @@
-//===- InstCombinePHI.cpp -------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visitPHINode function.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/PatternMatch.h"
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-static cl::opt<unsigned>
-MaxNumPhis("instcombine-max-num-phis", cl::init(512),
- cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
-
-/// The PHI arguments will be folded into a single operation with a PHI node
-/// as input. The debug location of the single operation will be the merged
-/// locations of the original PHI node arguments.
-void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
- auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- Inst->setDebugLoc(FirstInst->getDebugLoc());
- // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
- // will be inefficient.
- assert(!isa<CallInst>(Inst));
-
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- auto *I = cast<Instruction>(PN.getIncomingValue(i));
- Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
- }
-}
-
-// Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
-// If there is an existing pointer typed PHI that produces the same value as PN,
-// replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
-// PHI node:
-//
-// Case-1:
-// bb1:
-// int_init = PtrToInt(ptr_init)
-// br label %bb2
-// bb2:
-// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
-// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
-// ptr_val2 = IntToPtr(int_val)
-// ...
-// use(ptr_val2)
-// ptr_val_inc = ...
-// inc_val_inc = PtrToInt(ptr_val_inc)
-//
-// ==>
-// bb1:
-// br label %bb2
-// bb2:
-// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
-// ...
-// use(ptr_val)
-// ptr_val_inc = ...
-//
-// Case-2:
-// bb1:
-// int_ptr = BitCast(ptr_ptr)
-// int_init = Load(int_ptr)
-// br label %bb2
-// bb2:
-// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
-// ptr_val2 = IntToPtr(int_val)
-// ...
-// use(ptr_val2)
-// ptr_val_inc = ...
-// inc_val_inc = PtrToInt(ptr_val_inc)
-// ==>
-// bb1:
-// ptr_init = Load(ptr_ptr)
-// br label %bb2
-// bb2:
-// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
-// ...
-// use(ptr_val)
-// ptr_val_inc = ...
-// ...
-//
-Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
- if (!PN.getType()->isIntegerTy())
- return nullptr;
- if (!PN.hasOneUse())
- return nullptr;
-
- auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
- if (!IntToPtr)
- return nullptr;
-
- // Check if the pointer is actually used as pointer:
- auto HasPointerUse = [](Instruction *IIP) {
- for (User *U : IIP->users()) {
- Value *Ptr = nullptr;
- if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
- Ptr = LoadI->getPointerOperand();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- Ptr = SI->getPointerOperand();
- } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
- Ptr = GI->getPointerOperand();
- }
-
- if (Ptr && Ptr == IIP)
- return true;
- }
- return false;
- };
-
- if (!HasPointerUse(IntToPtr))
- return nullptr;
-
- if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
- DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
- return nullptr;
-
- SmallVector<Value *, 4> AvailablePtrVals;
- for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
- Value *Arg = PN.getIncomingValue(i);
-
- // First look backward:
- if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
- AvailablePtrVals.emplace_back(PI->getOperand(0));
- continue;
- }
-
- // Next look forward:
- Value *ArgIntToPtr = nullptr;
- for (User *U : Arg->users()) {
- if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
- (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
- cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
- ArgIntToPtr = U;
- break;
- }
- }
-
- if (ArgIntToPtr) {
- AvailablePtrVals.emplace_back(ArgIntToPtr);
- continue;
- }
-
- // If Arg is defined by a PHI, allow it. This will also create
- // more opportunities iteratively.
- if (isa<PHINode>(Arg)) {
- AvailablePtrVals.emplace_back(Arg);
- continue;
- }
-
- // For a single use integer load:
- auto *LoadI = dyn_cast<LoadInst>(Arg);
- if (!LoadI)
- return nullptr;
-
- if (!LoadI->hasOneUse())
- return nullptr;
-
- // Push the integer typed Load instruction into the available
- // value set, and fix it up later when the pointer typed PHI
- // is synthesized.
- AvailablePtrVals.emplace_back(LoadI);
- }
-
- // Now search for a matching PHI
- auto *BB = PN.getParent();
- assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
- "Not enough available ptr typed incoming values");
- PHINode *MatchingPtrPHI = nullptr;
- unsigned NumPhis = 0;
- for (auto II = BB->begin(), EI = BasicBlock::iterator(BB->getFirstNonPHI());
- II != EI; II++, NumPhis++) {
- // FIXME: consider handling this in AggressiveInstCombine
- if (NumPhis > MaxNumPhis)
- return nullptr;
- PHINode *PtrPHI = dyn_cast<PHINode>(II);
- if (!PtrPHI || PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
- continue;
- MatchingPtrPHI = PtrPHI;
- for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
- if (AvailablePtrVals[i] !=
- PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
- MatchingPtrPHI = nullptr;
- break;
- }
- }
-
- if (MatchingPtrPHI)
- break;
- }
-
- if (MatchingPtrPHI) {
- assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
- "Phi's Type does not match with IntToPtr");
- // The PtrToCast + IntToPtr will be simplified later
- return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
- IntToPtr->getOperand(0)->getType());
- }
-
- // If it requires a conversion for every PHI operand, do not do it.
- if (all_of(AvailablePtrVals, [&](Value *V) {
- return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
- }))
- return nullptr;
-
- // If any of the operand that requires casting is a terminator
- // instruction, do not do it.
- if (any_of(AvailablePtrVals, [&](Value *V) {
- if (V->getType() == IntToPtr->getType())
- return false;
-
- auto *Inst = dyn_cast<Instruction>(V);
- return Inst && Inst->isTerminator();
- }))
- return nullptr;
-
- PHINode *NewPtrPHI = PHINode::Create(
- IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
-
- InsertNewInstBefore(NewPtrPHI, PN);
- SmallDenseMap<Value *, Instruction *> Casts;
- for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
- auto *IncomingBB = PN.getIncomingBlock(i);
- auto *IncomingVal = AvailablePtrVals[i];
-
- if (IncomingVal->getType() == IntToPtr->getType()) {
- NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
- continue;
- }
-
-#ifndef NDEBUG
- LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
- assert((isa<PHINode>(IncomingVal) ||
- IncomingVal->getType()->isPointerTy() ||
- (LoadI && LoadI->hasOneUse())) &&
- "Can not replace LoadInst with multiple uses");
-#endif
- // Need to insert a BitCast.
- // For an integer Load instruction with a single use, the load + IntToPtr
- // cast will be simplified into a pointer load:
- // %v = load i64, i64* %a.ip, align 8
- // %v.cast = inttoptr i64 %v to float **
- // ==>
- // %v.ptrp = bitcast i64 * %a.ip to float **
- // %v.cast = load float *, float ** %v.ptrp, align 8
- Instruction *&CI = Casts[IncomingVal];
- if (!CI) {
- CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
- IncomingVal->getName() + ".ptr");
- if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
- BasicBlock::iterator InsertPos(IncomingI);
- InsertPos++;
- if (isa<PHINode>(IncomingI))
- InsertPos = IncomingI->getParent()->getFirstInsertionPt();
- InsertNewInstBefore(CI, *InsertPos);
- } else {
- auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
- InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
- }
- }
- NewPtrPHI->addIncoming(CI, IncomingBB);
- }
-
- // The PtrToCast + IntToPtr will be simplified later
- return CastInst::CreateBitOrPointerCast(NewPtrPHI,
- IntToPtr->getOperand(0)->getType());
-}
-
-/// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
-/// adds all have a single use, turn this into a phi and a single binop.
-Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
- unsigned Opc = FirstInst->getOpcode();
- Value *LHSVal = FirstInst->getOperand(0);
- Value *RHSVal = FirstInst->getOperand(1);
-
- Type *LHSType = LHSVal->getType();
- Type *RHSType = RHSVal->getType();
-
- // Scan to see if all operands are the same opcode, and all have one use.
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
- if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
- // Verify type of the LHS matches so we don't fold cmp's of different
- // types.
- I->getOperand(0)->getType() != LHSType ||
- I->getOperand(1)->getType() != RHSType)
- return nullptr;
-
- // If they are CmpInst instructions, check their predicates
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
- return nullptr;
-
- // Keep track of which operand needs a phi node.
- if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
- if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
- }
-
- // If both LHS and RHS would need a PHI, don't do this transformation,
- // because it would increase the number of PHIs entering the block,
- // which leads to higher register pressure. This is especially
- // bad when the PHIs are in the header of a loop.
- if (!LHSVal && !RHSVal)
- return nullptr;
-
- // Otherwise, this is safe to transform!
-
- Value *InLHS = FirstInst->getOperand(0);
- Value *InRHS = FirstInst->getOperand(1);
- PHINode *NewLHS = nullptr, *NewRHS = nullptr;
- if (!LHSVal) {
- NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
- FirstInst->getOperand(0)->getName() + ".pn");
- NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewLHS, PN);
- LHSVal = NewLHS;
- }
-
- if (!RHSVal) {
- NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
- FirstInst->getOperand(1)->getName() + ".pn");
- NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewRHS, PN);
- RHSVal = NewRHS;
- }
-
- // Add all operands to the new PHIs.
- if (NewLHS || NewRHS) {
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
- if (NewLHS) {
- Value *NewInLHS = InInst->getOperand(0);
- NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
- }
- if (NewRHS) {
- Value *NewInRHS = InInst->getOperand(1);
- NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
- }
- }
- }
-
- if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
- CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- LHSVal, RHSVal);
- PHIArgMergedDebugLoc(NewCI, PN);
- return NewCI;
- }
-
- BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
- BinaryOperator *NewBinOp =
- BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
-
- NewBinOp->copyIRFlags(PN.getIncomingValue(0));
-
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
- NewBinOp->andIRFlags(PN.getIncomingValue(i));
-
- PHIArgMergedDebugLoc(NewBinOp, PN);
- return NewBinOp;
-}
-
-Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
- GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
-
- SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
- FirstInst->op_end());
- // This is true if all GEP bases are allocas and if all indices into them are
- // constants.
- bool AllBasePointersAreAllocas = true;
-
- // We don't want to replace this phi if the replacement would require
- // more than one phi, which leads to higher register pressure. This is
- // especially bad when the PHIs are in the header of a loop.
- bool NeededPhi = false;
-
- bool AllInBounds = true;
-
- // Scan to see if all operands are the same opcode, and all have one use.
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
- if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
- GEP->getNumOperands() != FirstInst->getNumOperands())
- return nullptr;
-
- AllInBounds &= GEP->isInBounds();
-
- // Keep track of whether or not all GEPs are of alloca pointers.
- if (AllBasePointersAreAllocas &&
- (!isa<AllocaInst>(GEP->getOperand(0)) ||
- !GEP->hasAllConstantIndices()))
- AllBasePointersAreAllocas = false;
-
- // Compare the operand lists.
- for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
- if (FirstInst->getOperand(op) == GEP->getOperand(op))
- continue;
-
- // Don't merge two GEPs when two operands differ (introducing phi nodes)
- // if one of the PHIs has a constant for the index. The index may be
- // substantially cheaper to compute for the constants, so making it a
- // variable index could pessimize the path. This also handles the case
- // for struct indices, which must always be constant.
- if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
- isa<ConstantInt>(GEP->getOperand(op)))
- return nullptr;
-
- if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
- return nullptr;
-
- // If we already needed a PHI for an earlier operand, and another operand
- // also requires a PHI, we'd be introducing more PHIs than we're
- // eliminating, which increases register pressure on entry to the PHI's
- // block.
- if (NeededPhi)
- return nullptr;
-
- FixedOperands[op] = nullptr; // Needs a PHI.
- NeededPhi = true;
- }
- }
-
- // If all of the base pointers of the PHI'd GEPs are from allocas, don't
- // bother doing this transformation. At best, this will just save a bit of
- // offset calculation, but all the predecessors will have to materialize the
- // stack address into a register anyway. We'd actually rather *clone* the
- // load up into the predecessors so that we have a load of a gep of an alloca,
- // which can usually all be folded into the load.
- if (AllBasePointersAreAllocas)
- return nullptr;
-
- // Otherwise, this is safe to transform. Insert PHI nodes for each operand
- // that is variable.
- SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
-
- bool HasAnyPHIs = false;
- for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
- if (FixedOperands[i]) continue; // operand doesn't need a phi.
- Value *FirstOp = FirstInst->getOperand(i);
- PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
- FirstOp->getName()+".pn");
- InsertNewInstBefore(NewPN, PN);
-
- NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
- OperandPhis[i] = NewPN;
- FixedOperands[i] = NewPN;
- HasAnyPHIs = true;
- }
-
-
- // Add all operands to the new PHIs.
- if (HasAnyPHIs) {
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
- BasicBlock *InBB = PN.getIncomingBlock(i);
-
- for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
- if (PHINode *OpPhi = OperandPhis[op])
- OpPhi->addIncoming(InGEP->getOperand(op), InBB);
- }
- }
-
- Value *Base = FixedOperands[0];
- GetElementPtrInst *NewGEP =
- GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
- makeArrayRef(FixedOperands).slice(1));
- if (AllInBounds) NewGEP->setIsInBounds();
- PHIArgMergedDebugLoc(NewGEP, PN);
- return NewGEP;
-}
-
-
-/// Return true if we know that it is safe to sink the load out of the block
-/// that defines it. This means that it must be obvious the value of the load is
-/// not changed from the point of the load to the end of the block it is in.
-///
-/// Finally, it is safe, but not profitable, to sink a load targeting a
-/// non-address-taken alloca. Doing so will cause us to not promote the alloca
-/// to a register.
-static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
- BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
-
- for (++BBI; BBI != E; ++BBI)
- if (BBI->mayWriteToMemory())
- return false;
-
- // Check for non-address taken alloca. If not address-taken already, it isn't
- // profitable to do this xform.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
- bool isAddressTaken = false;
- for (User *U : AI->users()) {
- if (isa<LoadInst>(U)) continue;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // If storing TO the alloca, then the address isn't taken.
- if (SI->getOperand(1) == AI) continue;
- }
- isAddressTaken = true;
- break;
- }
-
- if (!isAddressTaken && AI->isStaticAlloca())
- return false;
- }
-
- // If this load is a load from a GEP with a constant offset from an alloca,
- // then we don't want to sink it. In its present form, it will be
- // load [constant stack offset]. Sinking it will cause us to have to
- // materialize the stack addresses in each predecessor in a register only to
- // do a shared load from register in the successor.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
- if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
- if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
- return false;
-
- return true;
-}
-
-Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
- LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
-
- // FIXME: This is overconservative; this transform is allowed in some cases
- // for atomic operations.
- if (FirstLI->isAtomic())
- return nullptr;
-
- // When processing loads, we need to propagate two bits of information to the
- // sunk load: whether it is volatile, and what its alignment is. We currently
- // don't sink loads when some have their alignment specified and some don't.
- // visitLoadInst will propagate an alignment onto the load when TD is around,
- // and if TD isn't around, we can't handle the mixed case.
- bool isVolatile = FirstLI->isVolatile();
- unsigned LoadAlignment = FirstLI->getAlignment();
- unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
-
- // We can't sink the load if the loaded value could be modified between the
- // load and the PHI.
- if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
- !isSafeAndProfitableToSinkLoad(FirstLI))
- return nullptr;
-
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (isVolatile &&
- FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
-
- // Check to see if all arguments are the same operation.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
- if (!LI || !LI->hasOneUse())
- return nullptr;
-
- // We can't sink the load if the loaded value could be modified between
- // the load and the PHI.
- if (LI->isVolatile() != isVolatile ||
- LI->getParent() != PN.getIncomingBlock(i) ||
- LI->getPointerAddressSpace() != LoadAddrSpace ||
- !isSafeAndProfitableToSinkLoad(LI))
- return nullptr;
-
- // If some of the loads have an alignment specified but not all of them,
- // we can't do the transformation.
- if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
- return nullptr;
-
- LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
-
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (isVolatile &&
- LI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- }
-
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
- PN.getNumIncomingValues(),
- PN.getName()+".in");
-
- Value *InVal = FirstLI->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
- LoadInst *NewLI = new LoadInst(NewPN, "", isVolatile, LoadAlignment);
-
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_invariant_load,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- LLVMContext::MD_nonnull,
- LLVMContext::MD_align,
- LLVMContext::MD_dereferenceable,
- LLVMContext::MD_dereferenceable_or_null,
- LLVMContext::MD_access_group,
- };
-
- for (unsigned ID : KnownIDs)
- NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
-
- // Add all operands to the new PHI and combine TBAA metadata.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
- combineMetadata(NewLI, LI, KnownIDs, true);
- Value *NewInVal = LI->getOperand(0);
- if (NewInVal != InVal)
- InVal = nullptr;
- NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
- }
-
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- NewLI->setOperand(0, InVal);
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- }
-
- // If this was a volatile load that we are merging, make sure to loop through
- // and mark all the input loads as non-volatile. If we don't do this, we will
- // insert a new volatile load and the old ones will not be deletable.
- if (isVolatile)
- for (Value *IncValue : PN.incoming_values())
- cast<LoadInst>(IncValue)->setVolatile(false);
-
- PHIArgMergedDebugLoc(NewLI, PN);
- return NewLI;
-}
-
-/// TODO: This function could handle other cast types, but then it might
-/// require special-casing a cast from the 'i1' type. See the comment in
-/// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
-Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
- // We cannot create a new instruction after the PHI if the terminator is an
- // EHPad because there is no valid insertion point.
- if (Instruction *TI = Phi.getParent()->getTerminator())
- if (TI->isEHPad())
- return nullptr;
-
- // Early exit for the common case of a phi with two operands. These are
- // handled elsewhere. See the comment below where we check the count of zexts
- // and constants for more details.
- unsigned NumIncomingValues = Phi.getNumIncomingValues();
- if (NumIncomingValues < 3)
- return nullptr;
-
- // Find the narrower type specified by the first zext.
- Type *NarrowType = nullptr;
- for (Value *V : Phi.incoming_values()) {
- if (auto *Zext = dyn_cast<ZExtInst>(V)) {
- NarrowType = Zext->getSrcTy();
- break;
- }
- }
- if (!NarrowType)
- return nullptr;
-
- // Walk the phi operands checking that we only have zexts or constants that
- // we can shrink for free. Store the new operands for the new phi.
- SmallVector<Value *, 4> NewIncoming;
- unsigned NumZexts = 0;
- unsigned NumConsts = 0;
- for (Value *V : Phi.incoming_values()) {
- if (auto *Zext = dyn_cast<ZExtInst>(V)) {
- // All zexts must be identical and have one use.
- if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
- return nullptr;
- NewIncoming.push_back(Zext->getOperand(0));
- NumZexts++;
- } else if (auto *C = dyn_cast<Constant>(V)) {
- // Make sure that constants can fit in the new type.
- Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
- if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
- return nullptr;
- NewIncoming.push_back(Trunc);
- NumConsts++;
- } else {
- // If it's not a cast or a constant, bail out.
- return nullptr;
- }
- }
-
- // The more common cases of a phi with no constant operands or just one
- // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
- // respectively. foldOpIntoPhi() wants to do the opposite transform that is
- // performed here. It tries to replicate a cast in the phi operand's basic
- // block to expose other folding opportunities. Thus, InstCombine will
- // infinite loop without this check.
- if (NumConsts == 0 || NumZexts < 2)
- return nullptr;
-
- // All incoming values are zexts or constants that are safe to truncate.
- // Create a new phi node of the narrow type, phi together all of the new
- // operands, and zext the result back to the original type.
- PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
- Phi.getName() + ".shrunk");
- for (unsigned i = 0; i != NumIncomingValues; ++i)
- NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
-
- InsertNewInstBefore(NewPhi, Phi);
- return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
-}
-
-/// If all operands to a PHI node are the same "unary" operator and they all are
-/// only used by the PHI, PHI together their inputs, and do the operation once,
-/// to the result of the PHI.
-Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
- // We cannot create a new instruction after the PHI if the terminator is an
- // EHPad because there is no valid insertion point.
- if (Instruction *TI = PN.getParent()->getTerminator())
- if (TI->isEHPad())
- return nullptr;
-
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
-
- if (isa<GetElementPtrInst>(FirstInst))
- return FoldPHIArgGEPIntoPHI(PN);
- if (isa<LoadInst>(FirstInst))
- return FoldPHIArgLoadIntoPHI(PN);
-
- // Scan the instruction, looking for input operations that can be folded away.
- // If all input operands to the phi are the same instruction (e.g. a cast from
- // the same type or "+42") we can pull the operation through the PHI, reducing
- // code size and simplifying code.
- Constant *ConstantOp = nullptr;
- Type *CastSrcTy = nullptr;
-
- if (isa<CastInst>(FirstInst)) {
- CastSrcTy = FirstInst->getOperand(0)->getType();
-
- // Be careful about transforming integer PHIs. We don't want to pessimize
- // the code by turning an i32 into an i1293.
- if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
- if (!shouldChangeType(PN.getType(), CastSrcTy))
- return nullptr;
- }
- } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
- // Can fold binop, compare or shift here if the RHS is a constant,
- // otherwise call FoldPHIArgBinOpIntoPHI.
- ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
- if (!ConstantOp)
- return FoldPHIArgBinOpIntoPHI(PN);
- } else {
- return nullptr; // Cannot fold this operation.
- }
-
- // Check to see if all arguments are the same operation.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
- if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
- return nullptr;
- if (CastSrcTy) {
- if (I->getOperand(0)->getType() != CastSrcTy)
- return nullptr; // Cast operation must match.
- } else if (I->getOperand(1) != ConstantOp) {
- return nullptr;
- }
- }
-
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
- PN.getNumIncomingValues(),
- PN.getName()+".in");
-
- Value *InVal = FirstInst->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
-
- // Add all operands to the new PHI.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
- if (NewInVal != InVal)
- InVal = nullptr;
- NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
- }
-
- Value *PhiVal;
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- PhiVal = InVal;
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- PhiVal = NewPN;
- }
-
- // Insert and return the new operation.
- if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
- CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
- PN.getType());
- PHIArgMergedDebugLoc(NewCI, PN);
- return NewCI;
- }
-
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
- BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
- BinOp->copyIRFlags(PN.getIncomingValue(0));
-
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
- BinOp->andIRFlags(PN.getIncomingValue(i));
-
- PHIArgMergedDebugLoc(BinOp, PN);
- return BinOp;
- }
-
- CmpInst *CIOp = cast<CmpInst>(FirstInst);
- CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- PhiVal, ConstantOp);
- PHIArgMergedDebugLoc(NewCI, PN);
- return NewCI;
-}
-
-/// Return true if this PHI node is only used by a PHI node cycle that is dead.
-static bool DeadPHICycle(PHINode *PN,
- SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
- if (PN->use_empty()) return true;
- if (!PN->hasOneUse()) return false;
-
- // Remember this node, and if we find the cycle, return.
- if (!PotentiallyDeadPHIs.insert(PN).second)
- return true;
-
- // Don't scan crazily complex things.
- if (PotentiallyDeadPHIs.size() == 16)
- return false;
-
- if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
- return DeadPHICycle(PU, PotentiallyDeadPHIs);
-
- return false;
-}
-
-/// Return true if this phi node is always equal to NonPhiInVal.
-/// This happens with mutually cyclic phi nodes like:
-/// z = some value; x = phi (y, z); y = phi (x, z)
-static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
- SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
- // See if we already saw this PHI node.
- if (!ValueEqualPHIs.insert(PN).second)
- return true;
-
- // Don't scan crazily complex things.
- if (ValueEqualPHIs.size() == 16)
- return false;
-
- // Scan the operands to see if they are either phi nodes or are equal to
- // the value.
- for (Value *Op : PN->incoming_values()) {
- if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
- if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
- return false;
- } else if (Op != NonPhiInVal)
- return false;
- }
-
- return true;
-}
-
-/// Return an existing non-zero constant if this phi node has one, otherwise
-/// return constant 1.
-static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
- assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
- for (Value *V : PN.operands())
- if (auto *ConstVA = dyn_cast<ConstantInt>(V))
- if (!ConstVA->isZero())
- return ConstVA;
- return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
-}
-
-namespace {
-struct PHIUsageRecord {
- unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
- unsigned Shift; // The amount shifted.
- Instruction *Inst; // The trunc instruction.
-
- PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
- : PHIId(pn), Shift(Sh), Inst(User) {}
-
- bool operator<(const PHIUsageRecord &RHS) const {
- if (PHIId < RHS.PHIId) return true;
- if (PHIId > RHS.PHIId) return false;
- if (Shift < RHS.Shift) return true;
- if (Shift > RHS.Shift) return false;
- return Inst->getType()->getPrimitiveSizeInBits() <
- RHS.Inst->getType()->getPrimitiveSizeInBits();
- }
-};
-
-struct LoweredPHIRecord {
- PHINode *PN; // The PHI that was lowered.
- unsigned Shift; // The amount shifted.
- unsigned Width; // The width extracted.
-
- LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
- : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
-
- // Ctor form used by DenseMap.
- LoweredPHIRecord(PHINode *pn, unsigned Sh)
- : PN(pn), Shift(Sh), Width(0) {}
-};
-}
-
-namespace llvm {
- template<>
- struct DenseMapInfo<LoweredPHIRecord> {
- static inline LoweredPHIRecord getEmptyKey() {
- return LoweredPHIRecord(nullptr, 0);
- }
- static inline LoweredPHIRecord getTombstoneKey() {
- return LoweredPHIRecord(nullptr, 1);
- }
- static unsigned getHashValue(const LoweredPHIRecord &Val) {
- return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
- (Val.Width>>3);
- }
- static bool isEqual(const LoweredPHIRecord &LHS,
- const LoweredPHIRecord &RHS) {
- return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
- LHS.Width == RHS.Width;
- }
- };
-}
-
-
-/// This is an integer PHI and we know that it has an illegal type: see if it is
-/// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
-/// the various pieces being extracted. This sort of thing is introduced when
-/// SROA promotes an aggregate to large integer values.
-///
-/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
-/// inttoptr. We should produce new PHIs in the right type.
-///
-Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
- // PHIUsers - Keep track of all of the truncated values extracted from a set
- // of PHIs, along with their offset. These are the things we want to rewrite.
- SmallVector<PHIUsageRecord, 16> PHIUsers;
-
- // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
- // nodes which are extracted from. PHIsToSlice is a set we use to avoid
- // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
- // check the uses of (to ensure they are all extracts).
- SmallVector<PHINode*, 8> PHIsToSlice;
- SmallPtrSet<PHINode*, 8> PHIsInspected;
-
- PHIsToSlice.push_back(&FirstPhi);
- PHIsInspected.insert(&FirstPhi);
-
- for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
- PHINode *PN = PHIsToSlice[PHIId];
-
- // Scan the input list of the PHI. If any input is an invoke, and if the
- // input is defined in the predecessor, then we won't be split the critical
- // edge which is required to insert a truncate. Because of this, we have to
- // bail out.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
- if (!II) continue;
- if (II->getParent() != PN->getIncomingBlock(i))
- continue;
-
- // If we have a phi, and if it's directly in the predecessor, then we have
- // a critical edge where we need to put the truncate. Since we can't
- // split the edge in instcombine, we have to bail out.
- return nullptr;
- }
-
- for (User *U : PN->users()) {
- Instruction *UserI = cast<Instruction>(U);
-
- // If the user is a PHI, inspect its uses recursively.
- if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
- if (PHIsInspected.insert(UserPN).second)
- PHIsToSlice.push_back(UserPN);
- continue;
- }
-
- // Truncates are always ok.
- if (isa<TruncInst>(UserI)) {
- PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
- continue;
- }
-
- // Otherwise it must be a lshr which can only be used by one trunc.
- if (UserI->getOpcode() != Instruction::LShr ||
- !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
- !isa<ConstantInt>(UserI->getOperand(1)))
- return nullptr;
-
- unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
- PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
- }
- }
-
- // If we have no users, they must be all self uses, just nuke the PHI.
- if (PHIUsers.empty())
- return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
-
- // If this phi node is transformable, create new PHIs for all the pieces
- // extracted out of it. First, sort the users by their offset and size.
- array_pod_sort(PHIUsers.begin(), PHIUsers.end());
-
- LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
- for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
- << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
-
- // PredValues - This is a temporary used when rewriting PHI nodes. It is
- // hoisted out here to avoid construction/destruction thrashing.
- DenseMap<BasicBlock*, Value*> PredValues;
-
- // ExtractedVals - Each new PHI we introduce is saved here so we don't
- // introduce redundant PHIs.
- DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
-
- for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
- unsigned PHIId = PHIUsers[UserI].PHIId;
- PHINode *PN = PHIsToSlice[PHIId];
- unsigned Offset = PHIUsers[UserI].Shift;
- Type *Ty = PHIUsers[UserI].Inst->getType();
-
- PHINode *EltPHI;
-
- // If we've already lowered a user like this, reuse the previously lowered
- // value.
- if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
-
- // Otherwise, Create the new PHI node for this user.
- EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
- PN->getName()+".off"+Twine(Offset), PN);
- assert(EltPHI->getType() != PN->getType() &&
- "Truncate didn't shrink phi?");
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = PN->getIncomingBlock(i);
- Value *&PredVal = PredValues[Pred];
-
- // If we already have a value for this predecessor, reuse it.
- if (PredVal) {
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
-
- // Handle the PHI self-reuse case.
- Value *InVal = PN->getIncomingValue(i);
- if (InVal == PN) {
- PredVal = EltPHI;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
-
- if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
- // If the incoming value was a PHI, and if it was one of the PHIs we
- // already rewrote it, just use the lowered value.
- if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
- PredVal = Res;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- }
-
- // Otherwise, do an extract in the predecessor.
- Builder.SetInsertPoint(Pred->getTerminator());
- Value *Res = InVal;
- if (Offset)
- Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
- Offset), "extract");
- Res = Builder.CreateTrunc(Res, Ty, "extract.t");
- PredVal = Res;
- EltPHI->addIncoming(Res, Pred);
-
- // If the incoming value was a PHI, and if it was one of the PHIs we are
- // rewriting, we will ultimately delete the code we inserted. This
- // means we need to revisit that PHI to make sure we extract out the
- // needed piece.
- if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
- if (PHIsInspected.count(OldInVal)) {
- unsigned RefPHIId =
- find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
- PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
- cast<Instruction>(Res)));
- ++UserE;
- }
- }
- PredValues.clear();
-
- LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
- << *EltPHI << '\n');
- ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
- }
-
- // Replace the use of this piece with the PHI node.
- replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
- }
-
- // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
- // with undefs.
- Value *Undef = UndefValue::get(FirstPhi.getType());
- for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
- replaceInstUsesWith(*PHIsToSlice[i], Undef);
- return replaceInstUsesWith(FirstPhi, Undef);
-}
-
-// PHINode simplification
-//
-Instruction *InstCombiner::visitPHINode(PHINode &PN) {
- if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
- return replaceInstUsesWith(PN, V);
-
- if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
- return Result;
-
- // If all PHI operands are the same operation, pull them through the PHI,
- // reducing code size.
- if (isa<Instruction>(PN.getIncomingValue(0)) &&
- isa<Instruction>(PN.getIncomingValue(1)) &&
- cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
- cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
- // FIXME: The hasOneUse check will fail for PHIs that use the value more
- // than themselves more than once.
- PN.getIncomingValue(0)->hasOneUse())
- if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
- return Result;
-
- // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
- // this PHI only has a single use (a PHI), and if that PHI only has one use (a
- // PHI)... break the cycle.
- if (PN.hasOneUse()) {
- if (Instruction *Result = FoldIntegerTypedPHI(PN))
- return Result;
-
- Instruction *PHIUser = cast<Instruction>(PN.user_back());
- if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
- SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
- PotentiallyDeadPHIs.insert(&PN);
- if (DeadPHICycle(PU, PotentiallyDeadPHIs))
- return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
- }
-
- // If this phi has a single use, and if that use just computes a value for
- // the next iteration of a loop, delete the phi. This occurs with unused
- // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
- // common case here is good because the only other things that catch this
- // are induction variable analysis (sometimes) and ADCE, which is only run
- // late.
- if (PHIUser->hasOneUse() &&
- (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
- PHIUser->user_back() == &PN) {
- return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
- }
- // When a PHI is used only to be compared with zero, it is safe to replace
- // an incoming value proved as known nonzero with any non-zero constant.
- // For example, in the code below, the incoming value %v can be replaced
- // with any non-zero constant based on the fact that the PHI is only used to
- // be compared with zero and %v is a known non-zero value:
- // %v = select %cond, 1, 2
- // %p = phi [%v, BB] ...
- // icmp eq, %p, 0
- auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
- // FIXME: To be simple, handle only integer type for now.
- if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
- match(CmpInst->getOperand(1), m_Zero())) {
- ConstantInt *NonZeroConst = nullptr;
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
- Value *VA = PN.getIncomingValue(i);
- if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
- if (!NonZeroConst)
- NonZeroConst = GetAnyNonZeroConstInt(PN);
- PN.setIncomingValue(i, NonZeroConst);
- }
- }
- }
- }
-
- // We sometimes end up with phi cycles that non-obviously end up being the
- // same value, for example:
- // z = some value; x = phi (y, z); y = phi (x, z)
- // where the phi nodes don't necessarily need to be in the same block. Do a
- // quick check to see if the PHI node only contains a single non-phi value, if
- // so, scan to see if the phi cycle is actually equal to that value.
- {
- unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
- // Scan for the first non-phi operand.
- while (InValNo != NumIncomingVals &&
- isa<PHINode>(PN.getIncomingValue(InValNo)))
- ++InValNo;
-
- if (InValNo != NumIncomingVals) {
- Value *NonPhiInVal = PN.getIncomingValue(InValNo);
-
- // Scan the rest of the operands to see if there are any conflicts, if so
- // there is no need to recursively scan other phis.
- for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
- Value *OpVal = PN.getIncomingValue(InValNo);
- if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
- break;
- }
-
- // If we scanned over all operands, then we have one unique value plus
- // phi values. Scan PHI nodes to see if they all merge in each other or
- // the value.
- if (InValNo == NumIncomingVals) {
- SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
- if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
- return replaceInstUsesWith(PN, NonPhiInVal);
- }
- }
- }
-
- // If there are multiple PHIs, sort their operands so that they all list
- // the blocks in the same order. This will help identical PHIs be eliminated
- // by other passes. Other passes shouldn't depend on this for correctness
- // however.
- PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
- if (&PN != FirstPN)
- for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BBA = PN.getIncomingBlock(i);
- BasicBlock *BBB = FirstPN->getIncomingBlock(i);
- if (BBA != BBB) {
- Value *VA = PN.getIncomingValue(i);
- unsigned j = PN.getBasicBlockIndex(BBB);
- Value *VB = PN.getIncomingValue(j);
- PN.setIncomingBlock(i, BBB);
- PN.setIncomingValue(i, VB);
- PN.setIncomingBlock(j, BBA);
- PN.setIncomingValue(j, VA);
- // NOTE: Instcombine normally would want us to "return &PN" if we
- // modified any of the operands of an instruction. However, since we
- // aren't adding or removing uses (just rearranging them) we don't do
- // this in this case.
- }
- }
-
- // If this is an integer PHI and we know that it has an illegal type, see if
- // it is only used by trunc or trunc(lshr) operations. If so, we split the
- // PHI into the various pieces being extracted. This sort of thing is
- // introduced when SROA promotes an aggregate to a single large integer type.
- if (PN.getType()->isIntegerTy() &&
- !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
- if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
- return Res;
-
- return nullptr;
-}