diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp | 2053 |
1 files changed, 0 insertions, 2053 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp deleted file mode 100644 index faf58a08976..00000000000 --- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp +++ /dev/null @@ -1,2053 +0,0 @@ -//===- InstCombineSelect.cpp ----------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the visitSelect function. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/CmpInstAnalysis.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" -#include <cassert> -#include <utility> - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "instcombine" - -static Value *createMinMax(InstCombiner::BuilderTy &Builder, - SelectPatternFlavor SPF, Value *A, Value *B) { - CmpInst::Predicate Pred = getMinMaxPred(SPF); - assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); - return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); -} - -/// Replace a select operand based on an equality comparison with the identity -/// constant of a binop. -static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, - const TargetLibraryInfo &TLI) { - // The select condition must be an equality compare with a constant operand. - Value *X; - Constant *C; - CmpInst::Predicate Pred; - if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) - return nullptr; - - bool IsEq; - if (ICmpInst::isEquality(Pred)) - IsEq = Pred == ICmpInst::ICMP_EQ; - else if (Pred == FCmpInst::FCMP_OEQ) - IsEq = true; - else if (Pred == FCmpInst::FCMP_UNE) - IsEq = false; - else - return nullptr; - - // A select operand must be a binop. - BinaryOperator *BO; - if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) - return nullptr; - - // The compare constant must be the identity constant for that binop. - // If this a floating-point compare with 0.0, any zero constant will do. - Type *Ty = BO->getType(); - Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); - if (IdC != C) { - if (!IdC || !CmpInst::isFPPredicate(Pred)) - return nullptr; - if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) - return nullptr; - } - - // Last, match the compare variable operand with a binop operand. - Value *Y; - if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) - return nullptr; - if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) - return nullptr; - - // +0.0 compares equal to -0.0, and so it does not behave as required for this - // transform. Bail out if we can not exclude that possibility. - if (isa<FPMathOperator>(BO)) - if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) - return nullptr; - - // BO = binop Y, X - // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } - // => - // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } - Sel.setOperand(IsEq ? 1 : 2, Y); - return &Sel; -} - -/// This folds: -/// select (icmp eq (and X, C1)), TC, FC -/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. -/// To something like: -/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC -/// Or: -/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC -/// With some variations depending if FC is larger than TC, or the shift -/// isn't needed, or the bit widths don't match. -static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, - InstCombiner::BuilderTy &Builder) { - const APInt *SelTC, *SelFC; - if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || - !match(Sel.getFalseValue(), m_APInt(SelFC))) - return nullptr; - - // If this is a vector select, we need a vector compare. - Type *SelType = Sel.getType(); - if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) - return nullptr; - - Value *V; - APInt AndMask; - bool CreateAnd = false; - ICmpInst::Predicate Pred = Cmp->getPredicate(); - if (ICmpInst::isEquality(Pred)) { - if (!match(Cmp->getOperand(1), m_Zero())) - return nullptr; - - V = Cmp->getOperand(0); - const APInt *AndRHS; - if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) - return nullptr; - - AndMask = *AndRHS; - } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), - Pred, V, AndMask)) { - assert(ICmpInst::isEquality(Pred) && "Not equality test?"); - if (!AndMask.isPowerOf2()) - return nullptr; - - CreateAnd = true; - } else { - return nullptr; - } - - // In general, when both constants are non-zero, we would need an offset to - // replace the select. This would require more instructions than we started - // with. But there's one special-case that we handle here because it can - // simplify/reduce the instructions. - APInt TC = *SelTC; - APInt FC = *SelFC; - if (!TC.isNullValue() && !FC.isNullValue()) { - // If the select constants differ by exactly one bit and that's the same - // bit that is masked and checked by the select condition, the select can - // be replaced by bitwise logic to set/clear one bit of the constant result. - if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) - return nullptr; - if (CreateAnd) { - // If we have to create an 'and', then we must kill the cmp to not - // increase the instruction count. - if (!Cmp->hasOneUse()) - return nullptr; - V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); - } - bool ExtraBitInTC = TC.ugt(FC); - if (Pred == ICmpInst::ICMP_EQ) { - // If the masked bit in V is clear, clear or set the bit in the result: - // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC - // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC - Constant *C = ConstantInt::get(SelType, TC); - return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); - } - if (Pred == ICmpInst::ICMP_NE) { - // If the masked bit in V is set, set or clear the bit in the result: - // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC - // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC - Constant *C = ConstantInt::get(SelType, FC); - return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); - } - llvm_unreachable("Only expecting equality predicates"); - } - - // Make sure one of the select arms is a power-of-2. - if (!TC.isPowerOf2() && !FC.isPowerOf2()) - return nullptr; - - // Determine which shift is needed to transform result of the 'and' into the - // desired result. - const APInt &ValC = !TC.isNullValue() ? TC : FC; - unsigned ValZeros = ValC.logBase2(); - unsigned AndZeros = AndMask.logBase2(); - - // Insert the 'and' instruction on the input to the truncate. - if (CreateAnd) - V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); - - // If types don't match, we can still convert the select by introducing a zext - // or a trunc of the 'and'. - if (ValZeros > AndZeros) { - V = Builder.CreateZExtOrTrunc(V, SelType); - V = Builder.CreateShl(V, ValZeros - AndZeros); - } else if (ValZeros < AndZeros) { - V = Builder.CreateLShr(V, AndZeros - ValZeros); - V = Builder.CreateZExtOrTrunc(V, SelType); - } else { - V = Builder.CreateZExtOrTrunc(V, SelType); - } - - // Okay, now we know that everything is set up, we just don't know whether we - // have a icmp_ne or icmp_eq and whether the true or false val is the zero. - bool ShouldNotVal = !TC.isNullValue(); - ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; - if (ShouldNotVal) - V = Builder.CreateXor(V, ValC); - - return V; -} - -/// We want to turn code that looks like this: -/// %C = or %A, %B -/// %D = select %cond, %C, %A -/// into: -/// %C = select %cond, %B, 0 -/// %D = or %A, %C -/// -/// Assuming that the specified instruction is an operand to the select, return -/// a bitmask indicating which operands of this instruction are foldable if they -/// equal the other incoming value of the select. -static unsigned getSelectFoldableOperands(BinaryOperator *I) { - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::Mul: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - return 3; // Can fold through either operand. - case Instruction::Sub: // Can only fold on the amount subtracted. - case Instruction::Shl: // Can only fold on the shift amount. - case Instruction::LShr: - case Instruction::AShr: - return 1; - default: - return 0; // Cannot fold - } -} - -/// For the same transformation as the previous function, return the identity -/// constant that goes into the select. -static APInt getSelectFoldableConstant(BinaryOperator *I) { - switch (I->getOpcode()) { - default: llvm_unreachable("This cannot happen!"); - case Instruction::Add: - case Instruction::Sub: - case Instruction::Or: - case Instruction::Xor: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - return APInt::getNullValue(I->getType()->getScalarSizeInBits()); - case Instruction::And: - return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); - case Instruction::Mul: - return APInt(I->getType()->getScalarSizeInBits(), 1); - } -} - -/// We have (select c, TI, FI), and we know that TI and FI have the same opcode. -Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, - Instruction *FI) { - // Don't break up min/max patterns. The hasOneUse checks below prevent that - // for most cases, but vector min/max with bitcasts can be transformed. If the - // one-use restrictions are eased for other patterns, we still don't want to - // obfuscate min/max. - if ((match(&SI, m_SMin(m_Value(), m_Value())) || - match(&SI, m_SMax(m_Value(), m_Value())) || - match(&SI, m_UMin(m_Value(), m_Value())) || - match(&SI, m_UMax(m_Value(), m_Value())))) - return nullptr; - - // If this is a cast from the same type, merge. - if (TI->getNumOperands() == 1 && TI->isCast()) { - Type *FIOpndTy = FI->getOperand(0)->getType(); - if (TI->getOperand(0)->getType() != FIOpndTy) - return nullptr; - - // The select condition may be a vector. We may only change the operand - // type if the vector width remains the same (and matches the condition). - Type *CondTy = SI.getCondition()->getType(); - if (CondTy->isVectorTy()) { - if (!FIOpndTy->isVectorTy()) - return nullptr; - if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) - return nullptr; - - // TODO: If the backend knew how to deal with casts better, we could - // remove this limitation. For now, there's too much potential to create - // worse codegen by promoting the select ahead of size-altering casts - // (PR28160). - // - // Note that ValueTracking's matchSelectPattern() looks through casts - // without checking 'hasOneUse' when it matches min/max patterns, so this - // transform may end up happening anyway. - if (TI->getOpcode() != Instruction::BitCast && - (!TI->hasOneUse() || !FI->hasOneUse())) - return nullptr; - } else if (!TI->hasOneUse() || !FI->hasOneUse()) { - // TODO: The one-use restrictions for a scalar select could be eased if - // the fold of a select in visitLoadInst() was enhanced to match a pattern - // that includes a cast. - return nullptr; - } - - // Fold this by inserting a select from the input values. - Value *NewSI = - Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), - FI->getOperand(0), SI.getName() + ".v", &SI); - return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, - TI->getType()); - } - - // Only handle binary operators (including two-operand getelementptr) with - // one-use here. As with the cast case above, it may be possible to relax the - // one-use constraint, but that needs be examined carefully since it may not - // reduce the total number of instructions. - if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || - (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || - !TI->hasOneUse() || !FI->hasOneUse()) - return nullptr; - - // Figure out if the operations have any operands in common. - Value *MatchOp, *OtherOpT, *OtherOpF; - bool MatchIsOpZero; - if (TI->getOperand(0) == FI->getOperand(0)) { - MatchOp = TI->getOperand(0); - OtherOpT = TI->getOperand(1); - OtherOpF = FI->getOperand(1); - MatchIsOpZero = true; - } else if (TI->getOperand(1) == FI->getOperand(1)) { - MatchOp = TI->getOperand(1); - OtherOpT = TI->getOperand(0); - OtherOpF = FI->getOperand(0); - MatchIsOpZero = false; - } else if (!TI->isCommutative()) { - return nullptr; - } else if (TI->getOperand(0) == FI->getOperand(1)) { - MatchOp = TI->getOperand(0); - OtherOpT = TI->getOperand(1); - OtherOpF = FI->getOperand(0); - MatchIsOpZero = true; - } else if (TI->getOperand(1) == FI->getOperand(0)) { - MatchOp = TI->getOperand(1); - OtherOpT = TI->getOperand(0); - OtherOpF = FI->getOperand(1); - MatchIsOpZero = true; - } else { - return nullptr; - } - - // If the select condition is a vector, the operands of the original select's - // operands also must be vectors. This may not be the case for getelementptr - // for example. - if (SI.getCondition()->getType()->isVectorTy() && - (!OtherOpT->getType()->isVectorTy() || - !OtherOpF->getType()->isVectorTy())) - return nullptr; - - // If we reach here, they do have operations in common. - Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, - SI.getName() + ".v", &SI); - Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; - Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; - if (auto *BO = dyn_cast<BinaryOperator>(TI)) { - BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); - NewBO->copyIRFlags(TI); - NewBO->andIRFlags(FI); - return NewBO; - } - if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { - auto *FGEP = cast<GetElementPtrInst>(FI); - Type *ElementType = TGEP->getResultElementType(); - return TGEP->isInBounds() && FGEP->isInBounds() - ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) - : GetElementPtrInst::Create(ElementType, Op0, {Op1}); - } - llvm_unreachable("Expected BinaryOperator or GEP"); - return nullptr; -} - -static bool isSelect01(const APInt &C1I, const APInt &C2I) { - if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. - return false; - return C1I.isOneValue() || C1I.isAllOnesValue() || - C2I.isOneValue() || C2I.isAllOnesValue(); -} - -/// Try to fold the select into one of the operands to allow further -/// optimization. -Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, - Value *FalseVal) { - // See the comment above GetSelectFoldableOperands for a description of the - // transformation we are doing here. - if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { - if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { - if (unsigned SFO = getSelectFoldableOperands(TVI)) { - unsigned OpToFold = 0; - if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { - OpToFold = 1; - } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { - OpToFold = 2; - } - - if (OpToFold) { - APInt CI = getSelectFoldableConstant(TVI); - Value *OOp = TVI->getOperand(2-OpToFold); - // Avoid creating select between 2 constants unless it's selecting - // between 0, 1 and -1. - const APInt *OOpC; - bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); - if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { - Value *C = ConstantInt::get(OOp->getType(), CI); - Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); - NewSel->takeName(TVI); - BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), - FalseVal, NewSel); - BO->copyIRFlags(TVI); - return BO; - } - } - } - } - } - - if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { - if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { - if (unsigned SFO = getSelectFoldableOperands(FVI)) { - unsigned OpToFold = 0; - if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { - OpToFold = 1; - } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { - OpToFold = 2; - } - - if (OpToFold) { - APInt CI = getSelectFoldableConstant(FVI); - Value *OOp = FVI->getOperand(2-OpToFold); - // Avoid creating select between 2 constants unless it's selecting - // between 0, 1 and -1. - const APInt *OOpC; - bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); - if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { - Value *C = ConstantInt::get(OOp->getType(), CI); - Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); - NewSel->takeName(FVI); - BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), - TrueVal, NewSel); - BO->copyIRFlags(FVI); - return BO; - } - } - } - } - } - - return nullptr; -} - -/// We want to turn: -/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) -/// into: -/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) -/// Note: -/// Z may be 0 if lshr is missing. -/// Worst-case scenario is that we will replace 5 instructions with 5 different -/// instructions, but we got rid of select. -static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, - Value *TVal, Value *FVal, - InstCombiner::BuilderTy &Builder) { - if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && - Cmp->getPredicate() == ICmpInst::ICMP_EQ && - match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) - return nullptr; - - // The TrueVal has general form of: and %B, 1 - Value *B; - if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) - return nullptr; - - // Where %B may be optionally shifted: lshr %X, %Z. - Value *X, *Z; - const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); - if (!HasShift) - X = B; - - Value *Y; - if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) - return nullptr; - - // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 - // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 - Constant *One = ConstantInt::get(SelType, 1); - Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; - Value *FullMask = Builder.CreateOr(Y, MaskB); - Value *MaskedX = Builder.CreateAnd(X, FullMask); - Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); - return new ZExtInst(ICmpNeZero, SelType); -} - -/// We want to turn: -/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) -/// into: -/// (or (shl (and X, C1), C3), Y) -/// iff: -/// C1 and C2 are both powers of 2 -/// where: -/// C3 = Log(C2) - Log(C1) -/// -/// This transform handles cases where: -/// 1. The icmp predicate is inverted -/// 2. The select operands are reversed -/// 3. The magnitude of C2 and C1 are flipped -static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, - Value *FalseVal, - InstCombiner::BuilderTy &Builder) { - // Only handle integer compares. Also, if this is a vector select, we need a - // vector compare. - if (!TrueVal->getType()->isIntOrIntVectorTy() || - TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) - return nullptr; - - Value *CmpLHS = IC->getOperand(0); - Value *CmpRHS = IC->getOperand(1); - - Value *V; - unsigned C1Log; - bool IsEqualZero; - bool NeedAnd = false; - if (IC->isEquality()) { - if (!match(CmpRHS, m_Zero())) - return nullptr; - - const APInt *C1; - if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) - return nullptr; - - V = CmpLHS; - C1Log = C1->logBase2(); - IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; - } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || - IC->getPredicate() == ICmpInst::ICMP_SGT) { - // We also need to recognize (icmp slt (trunc (X)), 0) and - // (icmp sgt (trunc (X)), -1). - IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; - if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || - (!IsEqualZero && !match(CmpRHS, m_Zero()))) - return nullptr; - - if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) - return nullptr; - - C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; - NeedAnd = true; - } else { - return nullptr; - } - - const APInt *C2; - bool OrOnTrueVal = false; - bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); - if (!OrOnFalseVal) - OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); - - if (!OrOnFalseVal && !OrOnTrueVal) - return nullptr; - - Value *Y = OrOnFalseVal ? TrueVal : FalseVal; - - unsigned C2Log = C2->logBase2(); - - bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); - bool NeedShift = C1Log != C2Log; - bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != - V->getType()->getScalarSizeInBits(); - - // Make sure we don't create more instructions than we save. - Value *Or = OrOnFalseVal ? FalseVal : TrueVal; - if ((NeedShift + NeedXor + NeedZExtTrunc) > - (IC->hasOneUse() + Or->hasOneUse())) - return nullptr; - - if (NeedAnd) { - // Insert the AND instruction on the input to the truncate. - APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); - V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); - } - - if (C2Log > C1Log) { - V = Builder.CreateZExtOrTrunc(V, Y->getType()); - V = Builder.CreateShl(V, C2Log - C1Log); - } else if (C1Log > C2Log) { - V = Builder.CreateLShr(V, C1Log - C2Log); - V = Builder.CreateZExtOrTrunc(V, Y->getType()); - } else - V = Builder.CreateZExtOrTrunc(V, Y->getType()); - - if (NeedXor) - V = Builder.CreateXor(V, *C2); - - return Builder.CreateOr(V, Y); -} - -/// Transform patterns such as: (a > b) ? a - b : 0 -/// into: ((a > b) ? a : b) - b) -/// This produces a canonical max pattern that is more easily recognized by the -/// backend and converted into saturated subtraction instructions if those -/// exist. -/// There are 8 commuted/swapped variants of this pattern. -/// TODO: Also support a - UMIN(a,b) patterns. -static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, - const Value *TrueVal, - const Value *FalseVal, - InstCombiner::BuilderTy &Builder) { - ICmpInst::Predicate Pred = ICI->getPredicate(); - if (!ICmpInst::isUnsigned(Pred)) - return nullptr; - - // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 - if (match(TrueVal, m_Zero())) { - Pred = ICmpInst::getInversePredicate(Pred); - std::swap(TrueVal, FalseVal); - } - if (!match(FalseVal, m_Zero())) - return nullptr; - - Value *A = ICI->getOperand(0); - Value *B = ICI->getOperand(1); - if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { - // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 - std::swap(A, B); - Pred = ICmpInst::getSwappedPredicate(Pred); - } - - assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && - "Unexpected isUnsigned predicate!"); - - // Account for swapped form of subtraction: ((a > b) ? b - a : 0). - bool IsNegative = false; - if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) - IsNegative = true; - else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) - return nullptr; - - // If sub is used anywhere else, we wouldn't be able to eliminate it - // afterwards. - if (!TrueVal->hasOneUse()) - return nullptr; - - // All checks passed, convert to canonical unsigned saturated subtraction - // form: sub(max()). - // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) - Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); - return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); -} - -/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single -/// call to cttz/ctlz with flag 'is_zero_undef' cleared. -/// -/// For example, we can fold the following code sequence: -/// \code -/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) -/// %1 = icmp ne i32 %x, 0 -/// %2 = select i1 %1, i32 %0, i32 32 -/// \code -/// -/// into: -/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) -static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, - InstCombiner::BuilderTy &Builder) { - ICmpInst::Predicate Pred = ICI->getPredicate(); - Value *CmpLHS = ICI->getOperand(0); - Value *CmpRHS = ICI->getOperand(1); - - // Check if the condition value compares a value for equality against zero. - if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) - return nullptr; - - Value *Count = FalseVal; - Value *ValueOnZero = TrueVal; - if (Pred == ICmpInst::ICMP_NE) - std::swap(Count, ValueOnZero); - - // Skip zero extend/truncate. - Value *V = nullptr; - if (match(Count, m_ZExt(m_Value(V))) || - match(Count, m_Trunc(m_Value(V)))) - Count = V; - - // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the - // input to the cttz/ctlz is used as LHS for the compare instruction. - if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && - !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) - return nullptr; - - IntrinsicInst *II = cast<IntrinsicInst>(Count); - - // Check if the value propagated on zero is a constant number equal to the - // sizeof in bits of 'Count'. - unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); - if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { - // Explicitly clear the 'undef_on_zero' flag. - IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); - NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); - Builder.Insert(NewI); - return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); - } - - // If the ValueOnZero is not the bitwidth, we can at least make use of the - // fact that the cttz/ctlz result will not be used if the input is zero, so - // it's okay to relax it to undef for that case. - if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) - II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); - - return nullptr; -} - -/// Return true if we find and adjust an icmp+select pattern where the compare -/// is with a constant that can be incremented or decremented to match the -/// minimum or maximum idiom. -static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { - ICmpInst::Predicate Pred = Cmp.getPredicate(); - Value *CmpLHS = Cmp.getOperand(0); - Value *CmpRHS = Cmp.getOperand(1); - Value *TrueVal = Sel.getTrueValue(); - Value *FalseVal = Sel.getFalseValue(); - - // We may move or edit the compare, so make sure the select is the only user. - const APInt *CmpC; - if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) - return false; - - // These transforms only work for selects of integers or vector selects of - // integer vectors. - Type *SelTy = Sel.getType(); - auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); - if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) - return false; - - Constant *AdjustedRHS; - if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) - AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); - else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) - AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); - else - return false; - - // X > C ? X : C+1 --> X < C+1 ? C+1 : X - // X < C ? X : C-1 --> X > C-1 ? C-1 : X - if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || - (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { - ; // Nothing to do here. Values match without any sign/zero extension. - } - // Types do not match. Instead of calculating this with mixed types, promote - // all to the larger type. This enables scalar evolution to analyze this - // expression. - else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { - Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); - - // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X - // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X - // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X - // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X - if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { - CmpLHS = TrueVal; - AdjustedRHS = SextRHS; - } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && - SextRHS == TrueVal) { - CmpLHS = FalseVal; - AdjustedRHS = SextRHS; - } else if (Cmp.isUnsigned()) { - Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); - // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X - // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X - // zext + signed compare cannot be changed: - // 0xff <s 0x00, but 0x00ff >s 0x0000 - if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { - CmpLHS = TrueVal; - AdjustedRHS = ZextRHS; - } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && - ZextRHS == TrueVal) { - CmpLHS = FalseVal; - AdjustedRHS = ZextRHS; - } else { - return false; - } - } else { - return false; - } - } else { - return false; - } - - Pred = ICmpInst::getSwappedPredicate(Pred); - CmpRHS = AdjustedRHS; - std::swap(FalseVal, TrueVal); - Cmp.setPredicate(Pred); - Cmp.setOperand(0, CmpLHS); - Cmp.setOperand(1, CmpRHS); - Sel.setOperand(1, TrueVal); - Sel.setOperand(2, FalseVal); - Sel.swapProfMetadata(); - - // Move the compare instruction right before the select instruction. Otherwise - // the sext/zext value may be defined after the compare instruction uses it. - Cmp.moveBefore(&Sel); - - return true; -} - -/// If this is an integer min/max (icmp + select) with a constant operand, -/// create the canonical icmp for the min/max operation and canonicalize the -/// constant to the 'false' operand of the select: -/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 -/// Note: if C1 != C2, this will change the icmp constant to the existing -/// constant operand of the select. -static Instruction * -canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, - InstCombiner::BuilderTy &Builder) { - if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) - return nullptr; - - // Canonicalize the compare predicate based on whether we have min or max. - Value *LHS, *RHS; - SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); - if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) - return nullptr; - - // Is this already canonical? - ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); - if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && - Cmp.getPredicate() == CanonicalPred) - return nullptr; - - // Create the canonical compare and plug it into the select. - Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); - - // If the select operands did not change, we're done. - if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) - return &Sel; - - // If we are swapping the select operands, swap the metadata too. - assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && - "Unexpected results from matchSelectPattern"); - Sel.setTrueValue(LHS); - Sel.setFalseValue(RHS); - Sel.swapProfMetadata(); - return &Sel; -} - -/// There are many select variants for each of ABS/NABS. -/// In matchSelectPattern(), there are different compare constants, compare -/// predicates/operands and select operands. -/// In isKnownNegation(), there are different formats of negated operands. -/// Canonicalize all these variants to 1 pattern. -/// This makes CSE more likely. -static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, - InstCombiner::BuilderTy &Builder) { - if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) - return nullptr; - - // Choose a sign-bit check for the compare (likely simpler for codegen). - // ABS: (X <s 0) ? -X : X - // NABS: (X <s 0) ? X : -X - Value *LHS, *RHS; - SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; - if (SPF != SelectPatternFlavor::SPF_ABS && - SPF != SelectPatternFlavor::SPF_NABS) - return nullptr; - - Value *TVal = Sel.getTrueValue(); - Value *FVal = Sel.getFalseValue(); - assert(isKnownNegation(TVal, FVal) && - "Unexpected result from matchSelectPattern"); - - // The compare may use the negated abs()/nabs() operand, or it may use - // negation in non-canonical form such as: sub A, B. - bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || - match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); - - bool CmpCanonicalized = !CmpUsesNegatedOp && - match(Cmp.getOperand(1), m_ZeroInt()) && - Cmp.getPredicate() == ICmpInst::ICMP_SLT; - bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); - - // Is this already canonical? - if (CmpCanonicalized && RHSCanonicalized) - return nullptr; - - // If RHS is used by other instructions except compare and select, don't - // canonicalize it to not increase the instruction count. - if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) - return nullptr; - - // Create the canonical compare: icmp slt LHS 0. - if (!CmpCanonicalized) { - Cmp.setPredicate(ICmpInst::ICMP_SLT); - Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); - if (CmpUsesNegatedOp) - Cmp.setOperand(0, LHS); - } - - // Create the canonical RHS: RHS = sub (0, LHS). - if (!RHSCanonicalized) { - assert(RHS->hasOneUse() && "RHS use number is not right"); - RHS = Builder.CreateNeg(LHS); - if (TVal == LHS) { - Sel.setFalseValue(RHS); - FVal = RHS; - } else { - Sel.setTrueValue(RHS); - TVal = RHS; - } - } - - // If the select operands do not change, we're done. - if (SPF == SelectPatternFlavor::SPF_NABS) { - if (TVal == LHS) - return &Sel; - assert(FVal == LHS && "Unexpected results from matchSelectPattern"); - } else { - if (FVal == LHS) - return &Sel; - assert(TVal == LHS && "Unexpected results from matchSelectPattern"); - } - - // We are swapping the select operands, so swap the metadata too. - Sel.setTrueValue(FVal); - Sel.setFalseValue(TVal); - Sel.swapProfMetadata(); - return &Sel; -} - -/// Visit a SelectInst that has an ICmpInst as its first operand. -Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, - ICmpInst *ICI) { - Value *TrueVal = SI.getTrueValue(); - Value *FalseVal = SI.getFalseValue(); - - if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) - return NewSel; - - if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) - return NewAbs; - - bool Changed = adjustMinMax(SI, *ICI); - - if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) - return replaceInstUsesWith(SI, V); - - // NOTE: if we wanted to, this is where to detect integer MIN/MAX - ICmpInst::Predicate Pred = ICI->getPredicate(); - Value *CmpLHS = ICI->getOperand(0); - Value *CmpRHS = ICI->getOperand(1); - if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { - if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { - // Transform (X == C) ? X : Y -> (X == C) ? C : Y - SI.setOperand(1, CmpRHS); - Changed = true; - } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { - // Transform (X != C) ? Y : X -> (X != C) ? Y : C - SI.setOperand(2, CmpRHS); - Changed = true; - } - } - - // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring - // decomposeBitTestICmp() might help. - { - unsigned BitWidth = - DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); - APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); - Value *X; - const APInt *Y, *C; - bool TrueWhenUnset; - bool IsBitTest = false; - if (ICmpInst::isEquality(Pred) && - match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && - match(CmpRHS, m_Zero())) { - IsBitTest = true; - TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; - } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { - X = CmpLHS; - Y = &MinSignedValue; - IsBitTest = true; - TrueWhenUnset = false; - } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { - X = CmpLHS; - Y = &MinSignedValue; - IsBitTest = true; - TrueWhenUnset = true; - } - if (IsBitTest) { - Value *V = nullptr; - // (X & Y) == 0 ? X : X ^ Y --> X & ~Y - if (TrueWhenUnset && TrueVal == X && - match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) - V = Builder.CreateAnd(X, ~(*Y)); - // (X & Y) != 0 ? X ^ Y : X --> X & ~Y - else if (!TrueWhenUnset && FalseVal == X && - match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) - V = Builder.CreateAnd(X, ~(*Y)); - // (X & Y) == 0 ? X ^ Y : X --> X | Y - else if (TrueWhenUnset && FalseVal == X && - match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) - V = Builder.CreateOr(X, *Y); - // (X & Y) != 0 ? X : X ^ Y --> X | Y - else if (!TrueWhenUnset && TrueVal == X && - match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) - V = Builder.CreateOr(X, *Y); - - if (V) - return replaceInstUsesWith(SI, V); - } - } - - if (Instruction *V = - foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) - return V; - - if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) - return replaceInstUsesWith(SI, V); - - if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) - return replaceInstUsesWith(SI, V); - - if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) - return replaceInstUsesWith(SI, V); - - return Changed ? &SI : nullptr; -} - -/// SI is a select whose condition is a PHI node (but the two may be in -/// different blocks). See if the true/false values (V) are live in all of the -/// predecessor blocks of the PHI. For example, cases like this can't be mapped: -/// -/// X = phi [ C1, BB1], [C2, BB2] -/// Y = add -/// Z = select X, Y, 0 -/// -/// because Y is not live in BB1/BB2. -static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, - const SelectInst &SI) { - // If the value is a non-instruction value like a constant or argument, it - // can always be mapped. - const Instruction *I = dyn_cast<Instruction>(V); - if (!I) return true; - - // If V is a PHI node defined in the same block as the condition PHI, we can - // map the arguments. - const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); - - if (const PHINode *VP = dyn_cast<PHINode>(I)) - if (VP->getParent() == CondPHI->getParent()) - return true; - - // Otherwise, if the PHI and select are defined in the same block and if V is - // defined in a different block, then we can transform it. - if (SI.getParent() == CondPHI->getParent() && - I->getParent() != CondPHI->getParent()) - return true; - - // Otherwise we have a 'hard' case and we can't tell without doing more - // detailed dominator based analysis, punt. - return false; -} - -/// We have an SPF (e.g. a min or max) of an SPF of the form: -/// SPF2(SPF1(A, B), C) -Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, - SelectPatternFlavor SPF1, - Value *A, Value *B, - Instruction &Outer, - SelectPatternFlavor SPF2, Value *C) { - if (Outer.getType() != Inner->getType()) - return nullptr; - - if (C == A || C == B) { - // MAX(MAX(A, B), B) -> MAX(A, B) - // MIN(MIN(a, b), a) -> MIN(a, b) - // TODO: This could be done in instsimplify. - if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) - return replaceInstUsesWith(Outer, Inner); - - // MAX(MIN(a, b), a) -> a - // MIN(MAX(a, b), a) -> a - // TODO: This could be done in instsimplify. - if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || - (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || - (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || - (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) - return replaceInstUsesWith(Outer, C); - } - - if (SPF1 == SPF2) { - const APInt *CB, *CC; - if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { - // MIN(MIN(A, 23), 97) -> MIN(A, 23) - // MAX(MAX(A, 97), 23) -> MAX(A, 97) - // TODO: This could be done in instsimplify. - if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || - (SPF1 == SPF_SMIN && CB->sle(*CC)) || - (SPF1 == SPF_UMAX && CB->uge(*CC)) || - (SPF1 == SPF_SMAX && CB->sge(*CC))) - return replaceInstUsesWith(Outer, Inner); - - // MIN(MIN(A, 97), 23) -> MIN(A, 23) - // MAX(MAX(A, 23), 97) -> MAX(A, 97) - if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || - (SPF1 == SPF_SMIN && CB->sgt(*CC)) || - (SPF1 == SPF_UMAX && CB->ult(*CC)) || - (SPF1 == SPF_SMAX && CB->slt(*CC))) { - Outer.replaceUsesOfWith(Inner, A); - return &Outer; - } - } - } - - // ABS(ABS(X)) -> ABS(X) - // NABS(NABS(X)) -> NABS(X) - // TODO: This could be done in instsimplify. - if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { - return replaceInstUsesWith(Outer, Inner); - } - - // ABS(NABS(X)) -> ABS(X) - // NABS(ABS(X)) -> NABS(X) - if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || - (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { - SelectInst *SI = cast<SelectInst>(Inner); - Value *NewSI = - Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), - SI->getTrueValue(), SI->getName(), SI); - return replaceInstUsesWith(Outer, NewSI); - } - - auto IsFreeOrProfitableToInvert = - [&](Value *V, Value *&NotV, bool &ElidesXor) { - if (match(V, m_Not(m_Value(NotV)))) { - // If V has at most 2 uses then we can get rid of the xor operation - // entirely. - ElidesXor |= !V->hasNUsesOrMore(3); - return true; - } - - if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { - NotV = nullptr; - return true; - } - - return false; - }; - - Value *NotA, *NotB, *NotC; - bool ElidesXor = false; - - // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) - // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) - // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) - // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) - // - // This transform is performance neutral if we can elide at least one xor from - // the set of three operands, since we'll be tacking on an xor at the very - // end. - if (SelectPatternResult::isMinOrMax(SPF1) && - SelectPatternResult::isMinOrMax(SPF2) && - IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && - IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && - IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { - if (!NotA) - NotA = Builder.CreateNot(A); - if (!NotB) - NotB = Builder.CreateNot(B); - if (!NotC) - NotC = Builder.CreateNot(C); - - Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, - NotB); - Value *NewOuter = Builder.CreateNot( - createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); - return replaceInstUsesWith(Outer, NewOuter); - } - - return nullptr; -} - -/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). -/// This is even legal for FP. -static Instruction *foldAddSubSelect(SelectInst &SI, - InstCombiner::BuilderTy &Builder) { - Value *CondVal = SI.getCondition(); - Value *TrueVal = SI.getTrueValue(); - Value *FalseVal = SI.getFalseValue(); - auto *TI = dyn_cast<Instruction>(TrueVal); - auto *FI = dyn_cast<Instruction>(FalseVal); - if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) - return nullptr; - - Instruction *AddOp = nullptr, *SubOp = nullptr; - if ((TI->getOpcode() == Instruction::Sub && - FI->getOpcode() == Instruction::Add) || - (TI->getOpcode() == Instruction::FSub && - FI->getOpcode() == Instruction::FAdd)) { - AddOp = FI; - SubOp = TI; - } else if ((FI->getOpcode() == Instruction::Sub && - TI->getOpcode() == Instruction::Add) || - (FI->getOpcode() == Instruction::FSub && - TI->getOpcode() == Instruction::FAdd)) { - AddOp = TI; - SubOp = FI; - } - - if (AddOp) { - Value *OtherAddOp = nullptr; - if (SubOp->getOperand(0) == AddOp->getOperand(0)) { - OtherAddOp = AddOp->getOperand(1); - } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { - OtherAddOp = AddOp->getOperand(0); - } - - if (OtherAddOp) { - // So at this point we know we have (Y -> OtherAddOp): - // select C, (add X, Y), (sub X, Z) - Value *NegVal; // Compute -Z - if (SI.getType()->isFPOrFPVectorTy()) { - NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); - if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { - FastMathFlags Flags = AddOp->getFastMathFlags(); - Flags &= SubOp->getFastMathFlags(); - NegInst->setFastMathFlags(Flags); - } - } else { - NegVal = Builder.CreateNeg(SubOp->getOperand(1)); - } - - Value *NewTrueOp = OtherAddOp; - Value *NewFalseOp = NegVal; - if (AddOp != TI) - std::swap(NewTrueOp, NewFalseOp); - Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, - SI.getName() + ".p", &SI); - - if (SI.getType()->isFPOrFPVectorTy()) { - Instruction *RI = - BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); - - FastMathFlags Flags = AddOp->getFastMathFlags(); - Flags &= SubOp->getFastMathFlags(); - RI->setFastMathFlags(Flags); - return RI; - } else - return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); - } - } - return nullptr; -} - -Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { - Constant *C; - if (!match(Sel.getTrueValue(), m_Constant(C)) && - !match(Sel.getFalseValue(), m_Constant(C))) - return nullptr; - - Instruction *ExtInst; - if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && - !match(Sel.getFalseValue(), m_Instruction(ExtInst))) - return nullptr; - - auto ExtOpcode = ExtInst->getOpcode(); - if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) - return nullptr; - - // If we are extending from a boolean type or if we can create a select that - // has the same size operands as its condition, try to narrow the select. - Value *X = ExtInst->getOperand(0); - Type *SmallType = X->getType(); - Value *Cond = Sel.getCondition(); - auto *Cmp = dyn_cast<CmpInst>(Cond); - if (!SmallType->isIntOrIntVectorTy(1) && - (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) - return nullptr; - - // If the constant is the same after truncation to the smaller type and - // extension to the original type, we can narrow the select. - Type *SelType = Sel.getType(); - Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); - Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); - if (ExtC == C) { - Value *TruncCVal = cast<Value>(TruncC); - if (ExtInst == Sel.getFalseValue()) - std::swap(X, TruncCVal); - - // select Cond, (ext X), C --> ext(select Cond, X, C') - // select Cond, C, (ext X) --> ext(select Cond, C', X) - Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); - return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); - } - - // If one arm of the select is the extend of the condition, replace that arm - // with the extension of the appropriate known bool value. - if (Cond == X) { - if (ExtInst == Sel.getTrueValue()) { - // select X, (sext X), C --> select X, -1, C - // select X, (zext X), C --> select X, 1, C - Constant *One = ConstantInt::getTrue(SmallType); - Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); - return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); - } else { - // select X, C, (sext X) --> select X, C, 0 - // select X, C, (zext X) --> select X, C, 0 - Constant *Zero = ConstantInt::getNullValue(SelType); - return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); - } - } - - return nullptr; -} - -/// Try to transform a vector select with a constant condition vector into a -/// shuffle for easier combining with other shuffles and insert/extract. -static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { - Value *CondVal = SI.getCondition(); - Constant *CondC; - if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) - return nullptr; - - unsigned NumElts = CondVal->getType()->getVectorNumElements(); - SmallVector<Constant *, 16> Mask; - Mask.reserve(NumElts); - Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); - for (unsigned i = 0; i != NumElts; ++i) { - Constant *Elt = CondC->getAggregateElement(i); - if (!Elt) - return nullptr; - - if (Elt->isOneValue()) { - // If the select condition element is true, choose from the 1st vector. - Mask.push_back(ConstantInt::get(Int32Ty, i)); - } else if (Elt->isNullValue()) { - // If the select condition element is false, choose from the 2nd vector. - Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); - } else if (isa<UndefValue>(Elt)) { - // Undef in a select condition (choose one of the operands) does not mean - // the same thing as undef in a shuffle mask (any value is acceptable), so - // give up. - return nullptr; - } else { - // Bail out on a constant expression. - return nullptr; - } - } - - return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), - ConstantVector::get(Mask)); -} - -/// Reuse bitcasted operands between a compare and select: -/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> -/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) -static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, - InstCombiner::BuilderTy &Builder) { - Value *Cond = Sel.getCondition(); - Value *TVal = Sel.getTrueValue(); - Value *FVal = Sel.getFalseValue(); - - CmpInst::Predicate Pred; - Value *A, *B; - if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) - return nullptr; - - // The select condition is a compare instruction. If the select's true/false - // values are already the same as the compare operands, there's nothing to do. - if (TVal == A || TVal == B || FVal == A || FVal == B) - return nullptr; - - Value *C, *D; - if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) - return nullptr; - - // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) - Value *TSrc, *FSrc; - if (!match(TVal, m_BitCast(m_Value(TSrc))) || - !match(FVal, m_BitCast(m_Value(FSrc)))) - return nullptr; - - // If the select true/false values are *different bitcasts* of the same source - // operands, make the select operands the same as the compare operands and - // cast the result. This is the canonical select form for min/max. - Value *NewSel; - if (TSrc == C && FSrc == D) { - // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> - // bitcast (select (cmp A, B), A, B) - NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); - } else if (TSrc == D && FSrc == C) { - // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> - // bitcast (select (cmp A, B), B, A) - NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); - } else { - return nullptr; - } - return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); -} - -/// Try to eliminate select instructions that test the returned flag of cmpxchg -/// instructions. -/// -/// If a select instruction tests the returned flag of a cmpxchg instruction and -/// selects between the returned value of the cmpxchg instruction its compare -/// operand, the result of the select will always be equal to its false value. -/// For example: -/// -/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst -/// %1 = extractvalue { i64, i1 } %0, 1 -/// %2 = extractvalue { i64, i1 } %0, 0 -/// %3 = select i1 %1, i64 %compare, i64 %2 -/// ret i64 %3 -/// -/// The returned value of the cmpxchg instruction (%2) is the original value -/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 -/// must have been equal to %compare. Thus, the result of the select is always -/// equal to %2, and the code can be simplified to: -/// -/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst -/// %1 = extractvalue { i64, i1 } %0, 0 -/// ret i64 %1 -/// -static Instruction *foldSelectCmpXchg(SelectInst &SI) { - // A helper that determines if V is an extractvalue instruction whose - // aggregate operand is a cmpxchg instruction and whose single index is equal - // to I. If such conditions are true, the helper returns the cmpxchg - // instruction; otherwise, a nullptr is returned. - auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { - auto *Extract = dyn_cast<ExtractValueInst>(V); - if (!Extract) - return nullptr; - if (Extract->getIndices()[0] != I) - return nullptr; - return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); - }; - - // If the select has a single user, and this user is a select instruction that - // we can simplify, skip the cmpxchg simplification for now. - if (SI.hasOneUse()) - if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) - if (Select->getCondition() == SI.getCondition()) - if (Select->getFalseValue() == SI.getTrueValue() || - Select->getTrueValue() == SI.getFalseValue()) - return nullptr; - - // Ensure the select condition is the returned flag of a cmpxchg instruction. - auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); - if (!CmpXchg) - return nullptr; - - // Check the true value case: The true value of the select is the returned - // value of the same cmpxchg used by the condition, and the false value is the - // cmpxchg instruction's compare operand. - if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) - if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { - SI.setTrueValue(SI.getFalseValue()); - return &SI; - } - - // Check the false value case: The false value of the select is the returned - // value of the same cmpxchg used by the condition, and the true value is the - // cmpxchg instruction's compare operand. - if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) - if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { - SI.setTrueValue(SI.getFalseValue()); - return &SI; - } - - return nullptr; -} - -/// Reduce a sequence of min/max with a common operand. -static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, - Value *RHS, - InstCombiner::BuilderTy &Builder) { - assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); - // TODO: Allow FP min/max with nnan/nsz. - if (!LHS->getType()->isIntOrIntVectorTy()) - return nullptr; - - // Match 3 of the same min/max ops. Example: umin(umin(), umin()). - Value *A, *B, *C, *D; - SelectPatternResult L = matchSelectPattern(LHS, A, B); - SelectPatternResult R = matchSelectPattern(RHS, C, D); - if (SPF != L.Flavor || L.Flavor != R.Flavor) - return nullptr; - - // Look for a common operand. The use checks are different than usual because - // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by - // the select. - Value *MinMaxOp = nullptr; - Value *ThirdOp = nullptr; - if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { - // If the LHS is only used in this chain and the RHS is used outside of it, - // reuse the RHS min/max because that will eliminate the LHS. - if (D == A || C == A) { - // min(min(a, b), min(c, a)) --> min(min(c, a), b) - // min(min(a, b), min(a, d)) --> min(min(a, d), b) - MinMaxOp = RHS; - ThirdOp = B; - } else if (D == B || C == B) { - // min(min(a, b), min(c, b)) --> min(min(c, b), a) - // min(min(a, b), min(b, d)) --> min(min(b, d), a) - MinMaxOp = RHS; - ThirdOp = A; - } - } else if (!RHS->hasNUsesOrMore(3)) { - // Reuse the LHS. This will eliminate the RHS. - if (D == A || D == B) { - // min(min(a, b), min(c, a)) --> min(min(a, b), c) - // min(min(a, b), min(c, b)) --> min(min(a, b), c) - MinMaxOp = LHS; - ThirdOp = C; - } else if (C == A || C == B) { - // min(min(a, b), min(b, d)) --> min(min(a, b), d) - // min(min(a, b), min(c, b)) --> min(min(a, b), d) - MinMaxOp = LHS; - ThirdOp = D; - } - } - if (!MinMaxOp || !ThirdOp) - return nullptr; - - CmpInst::Predicate P = getMinMaxPred(SPF); - Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); - return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); -} - -/// Try to reduce a rotate pattern that includes a compare and select into a -/// funnel shift intrinsic. Example: -/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) -/// --> call llvm.fshl.i32(a, a, b) -static Instruction *foldSelectRotate(SelectInst &Sel) { - // The false value of the select must be a rotate of the true value. - Value *Or0, *Or1; - if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) - return nullptr; - - Value *TVal = Sel.getTrueValue(); - Value *SA0, *SA1; - if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || - !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) - return nullptr; - - auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); - auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); - if (ShiftOpcode0 == ShiftOpcode1) - return nullptr; - - // We have one of these patterns so far: - // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) - // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) - // This must be a power-of-2 rotate for a bitmasking transform to be valid. - unsigned Width = Sel.getType()->getScalarSizeInBits(); - if (!isPowerOf2_32(Width)) - return nullptr; - - // Check the shift amounts to see if they are an opposite pair. - Value *ShAmt; - if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) - ShAmt = SA0; - else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) - ShAmt = SA1; - else - return nullptr; - - // Finally, see if the select is filtering out a shift-by-zero. - Value *Cond = Sel.getCondition(); - ICmpInst::Predicate Pred; - if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || - Pred != ICmpInst::ICMP_EQ) - return nullptr; - - // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. - // Convert to funnel shift intrinsic. - bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || - (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); - Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; - Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); - return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); -} - -Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { - Value *CondVal = SI.getCondition(); - Value *TrueVal = SI.getTrueValue(); - Value *FalseVal = SI.getFalseValue(); - Type *SelType = SI.getType(); - - // FIXME: Remove this workaround when freeze related patches are done. - // For select with undef operand which feeds into an equality comparison, - // don't simplify it so loop unswitch can know the equality comparison - // may have an undef operand. This is a workaround for PR31652 caused by - // descrepancy about branch on undef between LoopUnswitch and GVN. - if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { - if (llvm::any_of(SI.users(), [&](User *U) { - ICmpInst *CI = dyn_cast<ICmpInst>(U); - if (CI && CI->isEquality()) - return true; - return false; - })) { - return nullptr; - } - } - - if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, - SQ.getWithInstruction(&SI))) - return replaceInstUsesWith(SI, V); - - if (Instruction *I = canonicalizeSelectToShuffle(SI)) - return I; - - // Canonicalize a one-use integer compare with a non-canonical predicate by - // inverting the predicate and swapping the select operands. This matches a - // compare canonicalization for conditional branches. - // TODO: Should we do the same for FP compares? - CmpInst::Predicate Pred; - if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && - !isCanonicalPredicate(Pred)) { - // Swap true/false values and condition. - CmpInst *Cond = cast<CmpInst>(CondVal); - Cond->setPredicate(CmpInst::getInversePredicate(Pred)); - SI.setOperand(1, FalseVal); - SI.setOperand(2, TrueVal); - SI.swapProfMetadata(); - Worklist.Add(Cond); - return &SI; - } - - if (SelType->isIntOrIntVectorTy(1) && - TrueVal->getType() == CondVal->getType()) { - if (match(TrueVal, m_One())) { - // Change: A = select B, true, C --> A = or B, C - return BinaryOperator::CreateOr(CondVal, FalseVal); - } - if (match(TrueVal, m_Zero())) { - // Change: A = select B, false, C --> A = and !B, C - Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); - return BinaryOperator::CreateAnd(NotCond, FalseVal); - } - if (match(FalseVal, m_Zero())) { - // Change: A = select B, C, false --> A = and B, C - return BinaryOperator::CreateAnd(CondVal, TrueVal); - } - if (match(FalseVal, m_One())) { - // Change: A = select B, C, true --> A = or !B, C - Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); - return BinaryOperator::CreateOr(NotCond, TrueVal); - } - - // select a, a, b -> a | b - // select a, b, a -> a & b - if (CondVal == TrueVal) - return BinaryOperator::CreateOr(CondVal, FalseVal); - if (CondVal == FalseVal) - return BinaryOperator::CreateAnd(CondVal, TrueVal); - - // select a, ~a, b -> (~a) & b - // select a, b, ~a -> (~a) | b - if (match(TrueVal, m_Not(m_Specific(CondVal)))) - return BinaryOperator::CreateAnd(TrueVal, FalseVal); - if (match(FalseVal, m_Not(m_Specific(CondVal)))) - return BinaryOperator::CreateOr(TrueVal, FalseVal); - } - - // Selecting between two integer or vector splat integer constants? - // - // Note that we don't handle a scalar select of vectors: - // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> - // because that may need 3 instructions to splat the condition value: - // extend, insertelement, shufflevector. - if (SelType->isIntOrIntVectorTy() && - CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { - // select C, 1, 0 -> zext C to int - if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) - return new ZExtInst(CondVal, SelType); - - // select C, -1, 0 -> sext C to int - if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) - return new SExtInst(CondVal, SelType); - - // select C, 0, 1 -> zext !C to int - if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { - Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); - return new ZExtInst(NotCond, SelType); - } - - // select C, 0, -1 -> sext !C to int - if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { - Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); - return new SExtInst(NotCond, SelType); - } - } - - // See if we are selecting two values based on a comparison of the two values. - if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { - if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { - // Canonicalize to use ordered comparisons by swapping the select - // operands. - // - // e.g. - // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X - if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { - FCmpInst::Predicate InvPred = FCI->getInversePredicate(); - IRBuilder<>::FastMathFlagGuard FMFG(Builder); - Builder.setFastMathFlags(FCI->getFastMathFlags()); - Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, - FCI->getName() + ".inv"); - - return SelectInst::Create(NewCond, FalseVal, TrueVal, - SI.getName() + ".p"); - } - - // NOTE: if we wanted to, this is where to detect MIN/MAX - } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ - // Canonicalize to use ordered comparisons by swapping the select - // operands. - // - // e.g. - // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y - if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { - FCmpInst::Predicate InvPred = FCI->getInversePredicate(); - IRBuilder<>::FastMathFlagGuard FMFG(Builder); - Builder.setFastMathFlags(FCI->getFastMathFlags()); - Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, - FCI->getName() + ".inv"); - - return SelectInst::Create(NewCond, FalseVal, TrueVal, - SI.getName() + ".p"); - } - - // NOTE: if we wanted to, this is where to detect MIN/MAX - } - - // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need - // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We - // also require nnan because we do not want to unintentionally change the - // sign of a NaN value. - Value *X = FCI->getOperand(0); - FCmpInst::Predicate Pred = FCI->getPredicate(); - if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { - // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) - // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) - if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && - match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || - (X == TrueVal && Pred == FCmpInst::FCMP_OGT && - match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { - Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); - return replaceInstUsesWith(SI, Fabs); - } - // With nsz: - // (X < +/-0.0) ? -X : X --> fabs(X) - // (X <= +/-0.0) ? -X : X --> fabs(X) - // (X > +/-0.0) ? X : -X --> fabs(X) - // (X >= +/-0.0) ? X : -X --> fabs(X) - if (FCI->hasNoSignedZeros() && - ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && - (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || - (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && - (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { - Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); - return replaceInstUsesWith(SI, Fabs); - } - } - } - - // See if we are selecting two values based on a comparison of the two values. - if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) - if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) - return Result; - - if (Instruction *Add = foldAddSubSelect(SI, Builder)) - return Add; - - // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) - auto *TI = dyn_cast<Instruction>(TrueVal); - auto *FI = dyn_cast<Instruction>(FalseVal); - if (TI && FI && TI->getOpcode() == FI->getOpcode()) - if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) - return IV; - - if (Instruction *I = foldSelectExtConst(SI)) - return I; - - // See if we can fold the select into one of our operands. - if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { - if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) - return FoldI; - - Value *LHS, *RHS; - Instruction::CastOps CastOp; - SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); - auto SPF = SPR.Flavor; - if (SPF) { - Value *LHS2, *RHS2; - if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) - if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, - RHS2, SI, SPF, RHS)) - return R; - if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) - if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, - RHS2, SI, SPF, LHS)) - return R; - // TODO. - // ABS(-X) -> ABS(X) - } - - if (SelectPatternResult::isMinOrMax(SPF)) { - // Canonicalize so that - // - type casts are outside select patterns. - // - float clamp is transformed to min/max pattern - - bool IsCastNeeded = LHS->getType() != SelType; - Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); - Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); - if (IsCastNeeded || - (LHS->getType()->isFPOrFPVectorTy() && - ((CmpLHS != LHS && CmpLHS != RHS) || - (CmpRHS != LHS && CmpRHS != RHS)))) { - CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); - - Value *Cmp; - if (CmpInst::isIntPredicate(Pred)) { - Cmp = Builder.CreateICmp(Pred, LHS, RHS); - } else { - IRBuilder<>::FastMathFlagGuard FMFG(Builder); - auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); - Builder.setFastMathFlags(FMF); - Cmp = Builder.CreateFCmp(Pred, LHS, RHS); - } - - Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); - if (!IsCastNeeded) - return replaceInstUsesWith(SI, NewSI); - - Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); - return replaceInstUsesWith(SI, NewCast); - } - - // MAX(~a, ~b) -> ~MIN(a, b) - // MAX(~a, C) -> ~MIN(a, ~C) - // MIN(~a, ~b) -> ~MAX(a, b) - // MIN(~a, C) -> ~MAX(a, ~C) - auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { - Value *A; - if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && - !IsFreeToInvert(A, A->hasOneUse()) && - // Passing false to only consider m_Not and constants. - IsFreeToInvert(Y, false)) { - Value *B = Builder.CreateNot(Y); - Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), - A, B); - // Copy the profile metadata. - if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { - cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); - // Swap the metadata if the operands are swapped. - if (X == SI.getFalseValue() && Y == SI.getTrueValue()) - cast<SelectInst>(NewMinMax)->swapProfMetadata(); - } - - return BinaryOperator::CreateNot(NewMinMax); - } - - return nullptr; - }; - - if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) - return I; - if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) - return I; - - if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) - return I; - } - } - - // See if we can fold the select into a phi node if the condition is a select. - if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) - // The true/false values have to be live in the PHI predecessor's blocks. - if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && - canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) - if (Instruction *NV = foldOpIntoPhi(SI, PN)) - return NV; - - if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { - if (TrueSI->getCondition()->getType() == CondVal->getType()) { - // select(C, select(C, a, b), c) -> select(C, a, c) - if (TrueSI->getCondition() == CondVal) { - if (SI.getTrueValue() == TrueSI->getTrueValue()) - return nullptr; - SI.setOperand(1, TrueSI->getTrueValue()); - return &SI; - } - // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) - // We choose this as normal form to enable folding on the And and shortening - // paths for the values (this helps GetUnderlyingObjects() for example). - if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { - Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); - SI.setOperand(0, And); - SI.setOperand(1, TrueSI->getTrueValue()); - return &SI; - } - } - } - if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { - if (FalseSI->getCondition()->getType() == CondVal->getType()) { - // select(C, a, select(C, b, c)) -> select(C, a, c) - if (FalseSI->getCondition() == CondVal) { - if (SI.getFalseValue() == FalseSI->getFalseValue()) - return nullptr; - SI.setOperand(2, FalseSI->getFalseValue()); - return &SI; - } - // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) - if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { - Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); - SI.setOperand(0, Or); - SI.setOperand(2, FalseSI->getFalseValue()); - return &SI; - } - } - } - - auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { - // The select might be preventing a division by 0. - switch (BO->getOpcode()) { - default: - return true; - case Instruction::SRem: - case Instruction::URem: - case Instruction::SDiv: - case Instruction::UDiv: - return false; - } - }; - - // Try to simplify a binop sandwiched between 2 selects with the same - // condition. - // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) - BinaryOperator *TrueBO; - if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && - canMergeSelectThroughBinop(TrueBO)) { - if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { - if (TrueBOSI->getCondition() == CondVal) { - TrueBO->setOperand(0, TrueBOSI->getTrueValue()); - Worklist.Add(TrueBO); - return &SI; - } - } - if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { - if (TrueBOSI->getCondition() == CondVal) { - TrueBO->setOperand(1, TrueBOSI->getTrueValue()); - Worklist.Add(TrueBO); - return &SI; - } - } - } - - // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) - BinaryOperator *FalseBO; - if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && - canMergeSelectThroughBinop(FalseBO)) { - if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { - if (FalseBOSI->getCondition() == CondVal) { - FalseBO->setOperand(0, FalseBOSI->getFalseValue()); - Worklist.Add(FalseBO); - return &SI; - } - } - if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { - if (FalseBOSI->getCondition() == CondVal) { - FalseBO->setOperand(1, FalseBOSI->getFalseValue()); - Worklist.Add(FalseBO); - return &SI; - } - } - } - - Value *NotCond; - if (match(CondVal, m_Not(m_Value(NotCond)))) { - SI.setOperand(0, NotCond); - SI.setOperand(1, FalseVal); - SI.setOperand(2, TrueVal); - SI.swapProfMetadata(); - return &SI; - } - - if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { - unsigned VWidth = VecTy->getNumElements(); - APInt UndefElts(VWidth, 0); - APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); - if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { - if (V != &SI) - return replaceInstUsesWith(SI, V); - return &SI; - } - } - - // If we can compute the condition, there's no need for a select. - // Like the above fold, we are attempting to reduce compile-time cost by - // putting this fold here with limitations rather than in InstSimplify. - // The motivation for this call into value tracking is to take advantage of - // the assumption cache, so make sure that is populated. - if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { - KnownBits Known(1); - computeKnownBits(CondVal, Known, 0, &SI); - if (Known.One.isOneValue()) - return replaceInstUsesWith(SI, TrueVal); - if (Known.Zero.isOneValue()) - return replaceInstUsesWith(SI, FalseVal); - } - - if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) - return BitCastSel; - - // Simplify selects that test the returned flag of cmpxchg instructions. - if (Instruction *Select = foldSelectCmpXchg(SI)) - return Select; - - if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) - return Select; - - if (Instruction *Rot = foldSelectRotate(SI)) - return Rot; - - return nullptr; -} |
