diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Scalar/GVN.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/GVN.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/GVN.cpp | 2601 |
1 files changed, 0 insertions, 2601 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/GVN.cpp b/gnu/llvm/lib/Transforms/Scalar/GVN.cpp deleted file mode 100644 index 9861948c829..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/GVN.cpp +++ /dev/null @@ -1,2601 +0,0 @@ -//===- GVN.cpp - Eliminate redundant values and loads ---------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass performs global value numbering to eliminate fully redundant -// instructions. It also performs simple dead load elimination. -// -// Note that this pass does the value numbering itself; it does not use the -// ValueNumbering analysis passes. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/GVN.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/PointerIntPair.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/CFG.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/MemoryDependenceAnalysis.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/PHITransAddr.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DomTreeUpdater.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/SSAUpdater.h" -#include "llvm/Transforms/Utils/VNCoercion.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace llvm::gvn; -using namespace llvm::VNCoercion; -using namespace PatternMatch; - -#define DEBUG_TYPE "gvn" - -STATISTIC(NumGVNInstr, "Number of instructions deleted"); -STATISTIC(NumGVNLoad, "Number of loads deleted"); -STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); -STATISTIC(NumGVNBlocks, "Number of blocks merged"); -STATISTIC(NumGVNSimpl, "Number of instructions simplified"); -STATISTIC(NumGVNEqProp, "Number of equalities propagated"); -STATISTIC(NumPRELoad, "Number of loads PRE'd"); - -static cl::opt<bool> EnablePRE("enable-pre", - cl::init(true), cl::Hidden); -static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); -static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true)); - -// Maximum allowed recursion depth. -static cl::opt<uint32_t> -MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, - cl::desc("Max recurse depth in GVN (default = 1000)")); - -static cl::opt<uint32_t> MaxNumDeps( - "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, - cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); - -struct llvm::GVN::Expression { - uint32_t opcode; - Type *type; - bool commutative = false; - SmallVector<uint32_t, 4> varargs; - - Expression(uint32_t o = ~2U) : opcode(o) {} - - bool operator==(const Expression &other) const { - if (opcode != other.opcode) - return false; - if (opcode == ~0U || opcode == ~1U) - return true; - if (type != other.type) - return false; - if (varargs != other.varargs) - return false; - return true; - } - - friend hash_code hash_value(const Expression &Value) { - return hash_combine( - Value.opcode, Value.type, - hash_combine_range(Value.varargs.begin(), Value.varargs.end())); - } -}; - -namespace llvm { - -template <> struct DenseMapInfo<GVN::Expression> { - static inline GVN::Expression getEmptyKey() { return ~0U; } - static inline GVN::Expression getTombstoneKey() { return ~1U; } - - static unsigned getHashValue(const GVN::Expression &e) { - using llvm::hash_value; - - return static_cast<unsigned>(hash_value(e)); - } - - static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { - return LHS == RHS; - } -}; - -} // end namespace llvm - -/// Represents a particular available value that we know how to materialize. -/// Materialization of an AvailableValue never fails. An AvailableValue is -/// implicitly associated with a rematerialization point which is the -/// location of the instruction from which it was formed. -struct llvm::gvn::AvailableValue { - enum ValType { - SimpleVal, // A simple offsetted value that is accessed. - LoadVal, // A value produced by a load. - MemIntrin, // A memory intrinsic which is loaded from. - UndefVal // A UndefValue representing a value from dead block (which - // is not yet physically removed from the CFG). - }; - - /// V - The value that is live out of the block. - PointerIntPair<Value *, 2, ValType> Val; - - /// Offset - The byte offset in Val that is interesting for the load query. - unsigned Offset; - - static AvailableValue get(Value *V, unsigned Offset = 0) { - AvailableValue Res; - Res.Val.setPointer(V); - Res.Val.setInt(SimpleVal); - Res.Offset = Offset; - return Res; - } - - static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { - AvailableValue Res; - Res.Val.setPointer(MI); - Res.Val.setInt(MemIntrin); - Res.Offset = Offset; - return Res; - } - - static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { - AvailableValue Res; - Res.Val.setPointer(LI); - Res.Val.setInt(LoadVal); - Res.Offset = Offset; - return Res; - } - - static AvailableValue getUndef() { - AvailableValue Res; - Res.Val.setPointer(nullptr); - Res.Val.setInt(UndefVal); - Res.Offset = 0; - return Res; - } - - bool isSimpleValue() const { return Val.getInt() == SimpleVal; } - bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } - bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } - bool isUndefValue() const { return Val.getInt() == UndefVal; } - - Value *getSimpleValue() const { - assert(isSimpleValue() && "Wrong accessor"); - return Val.getPointer(); - } - - LoadInst *getCoercedLoadValue() const { - assert(isCoercedLoadValue() && "Wrong accessor"); - return cast<LoadInst>(Val.getPointer()); - } - - MemIntrinsic *getMemIntrinValue() const { - assert(isMemIntrinValue() && "Wrong accessor"); - return cast<MemIntrinsic>(Val.getPointer()); - } - - /// Emit code at the specified insertion point to adjust the value defined - /// here to the specified type. This handles various coercion cases. - Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, - GVN &gvn) const; -}; - -/// Represents an AvailableValue which can be rematerialized at the end of -/// the associated BasicBlock. -struct llvm::gvn::AvailableValueInBlock { - /// BB - The basic block in question. - BasicBlock *BB; - - /// AV - The actual available value - AvailableValue AV; - - static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { - AvailableValueInBlock Res; - Res.BB = BB; - Res.AV = std::move(AV); - return Res; - } - - static AvailableValueInBlock get(BasicBlock *BB, Value *V, - unsigned Offset = 0) { - return get(BB, AvailableValue::get(V, Offset)); - } - - static AvailableValueInBlock getUndef(BasicBlock *BB) { - return get(BB, AvailableValue::getUndef()); - } - - /// Emit code at the end of this block to adjust the value defined here to - /// the specified type. This handles various coercion cases. - Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { - return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); - } -}; - -//===----------------------------------------------------------------------===// -// ValueTable Internal Functions -//===----------------------------------------------------------------------===// - -GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { - Expression e; - e.type = I->getType(); - e.opcode = I->getOpcode(); - for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); - OI != OE; ++OI) - e.varargs.push_back(lookupOrAdd(*OI)); - if (I->isCommutative()) { - // Ensure that commutative instructions that only differ by a permutation - // of their operands get the same value number by sorting the operand value - // numbers. Since all commutative instructions have two operands it is more - // efficient to sort by hand rather than using, say, std::sort. - assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); - if (e.varargs[0] > e.varargs[1]) - std::swap(e.varargs[0], e.varargs[1]); - e.commutative = true; - } - - if (CmpInst *C = dyn_cast<CmpInst>(I)) { - // Sort the operand value numbers so x<y and y>x get the same value number. - CmpInst::Predicate Predicate = C->getPredicate(); - if (e.varargs[0] > e.varargs[1]) { - std::swap(e.varargs[0], e.varargs[1]); - Predicate = CmpInst::getSwappedPredicate(Predicate); - } - e.opcode = (C->getOpcode() << 8) | Predicate; - e.commutative = true; - } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { - for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); - II != IE; ++II) - e.varargs.push_back(*II); - } - - return e; -} - -GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, - CmpInst::Predicate Predicate, - Value *LHS, Value *RHS) { - assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && - "Not a comparison!"); - Expression e; - e.type = CmpInst::makeCmpResultType(LHS->getType()); - e.varargs.push_back(lookupOrAdd(LHS)); - e.varargs.push_back(lookupOrAdd(RHS)); - - // Sort the operand value numbers so x<y and y>x get the same value number. - if (e.varargs[0] > e.varargs[1]) { - std::swap(e.varargs[0], e.varargs[1]); - Predicate = CmpInst::getSwappedPredicate(Predicate); - } - e.opcode = (Opcode << 8) | Predicate; - e.commutative = true; - return e; -} - -GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { - assert(EI && "Not an ExtractValueInst?"); - Expression e; - e.type = EI->getType(); - e.opcode = 0; - - IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); - if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { - // EI might be an extract from one of our recognised intrinsics. If it - // is we'll synthesize a semantically equivalent expression instead on - // an extract value expression. - switch (I->getIntrinsicID()) { - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: - e.opcode = Instruction::Add; - break; - case Intrinsic::ssub_with_overflow: - case Intrinsic::usub_with_overflow: - e.opcode = Instruction::Sub; - break; - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: - e.opcode = Instruction::Mul; - break; - default: - break; - } - - if (e.opcode != 0) { - // Intrinsic recognized. Grab its args to finish building the expression. - assert(I->getNumArgOperands() == 2 && - "Expect two args for recognised intrinsics."); - e.varargs.push_back(lookupOrAdd(I->getArgOperand(0))); - e.varargs.push_back(lookupOrAdd(I->getArgOperand(1))); - return e; - } - } - - // Not a recognised intrinsic. Fall back to producing an extract value - // expression. - e.opcode = EI->getOpcode(); - for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); - OI != OE; ++OI) - e.varargs.push_back(lookupOrAdd(*OI)); - - for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); - II != IE; ++II) - e.varargs.push_back(*II); - - return e; -} - -//===----------------------------------------------------------------------===// -// ValueTable External Functions -//===----------------------------------------------------------------------===// - -GVN::ValueTable::ValueTable() = default; -GVN::ValueTable::ValueTable(const ValueTable &) = default; -GVN::ValueTable::ValueTable(ValueTable &&) = default; -GVN::ValueTable::~ValueTable() = default; - -/// add - Insert a value into the table with a specified value number. -void GVN::ValueTable::add(Value *V, uint32_t num) { - valueNumbering.insert(std::make_pair(V, num)); - if (PHINode *PN = dyn_cast<PHINode>(V)) - NumberingPhi[num] = PN; -} - -uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { - if (AA->doesNotAccessMemory(C)) { - Expression exp = createExpr(C); - uint32_t e = assignExpNewValueNum(exp).first; - valueNumbering[C] = e; - return e; - } else if (MD && AA->onlyReadsMemory(C)) { - Expression exp = createExpr(C); - auto ValNum = assignExpNewValueNum(exp); - if (ValNum.second) { - valueNumbering[C] = ValNum.first; - return ValNum.first; - } - - MemDepResult local_dep = MD->getDependency(C); - - if (!local_dep.isDef() && !local_dep.isNonLocal()) { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } - - if (local_dep.isDef()) { - CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); - - if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } - - for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { - uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); - uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); - if (c_vn != cd_vn) { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } - } - - uint32_t v = lookupOrAdd(local_cdep); - valueNumbering[C] = v; - return v; - } - - // Non-local case. - const MemoryDependenceResults::NonLocalDepInfo &deps = - MD->getNonLocalCallDependency(C); - // FIXME: Move the checking logic to MemDep! - CallInst* cdep = nullptr; - - // Check to see if we have a single dominating call instruction that is - // identical to C. - for (unsigned i = 0, e = deps.size(); i != e; ++i) { - const NonLocalDepEntry *I = &deps[i]; - if (I->getResult().isNonLocal()) - continue; - - // We don't handle non-definitions. If we already have a call, reject - // instruction dependencies. - if (!I->getResult().isDef() || cdep != nullptr) { - cdep = nullptr; - break; - } - - CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); - // FIXME: All duplicated with non-local case. - if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ - cdep = NonLocalDepCall; - continue; - } - - cdep = nullptr; - break; - } - - if (!cdep) { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } - - if (cdep->getNumArgOperands() != C->getNumArgOperands()) { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } - for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { - uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); - uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); - if (c_vn != cd_vn) { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } - } - - uint32_t v = lookupOrAdd(cdep); - valueNumbering[C] = v; - return v; - } else { - valueNumbering[C] = nextValueNumber; - return nextValueNumber++; - } -} - -/// Returns true if a value number exists for the specified value. -bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } - -/// lookup_or_add - Returns the value number for the specified value, assigning -/// it a new number if it did not have one before. -uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { - DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); - if (VI != valueNumbering.end()) - return VI->second; - - if (!isa<Instruction>(V)) { - valueNumbering[V] = nextValueNumber; - return nextValueNumber++; - } - - Instruction* I = cast<Instruction>(V); - Expression exp; - switch (I->getOpcode()) { - case Instruction::Call: - return lookupOrAddCall(cast<CallInst>(I)); - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - case Instruction::ICmp: - case Instruction::FCmp: - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - case Instruction::Select: - case Instruction::ExtractElement: - case Instruction::InsertElement: - case Instruction::ShuffleVector: - case Instruction::InsertValue: - case Instruction::GetElementPtr: - exp = createExpr(I); - break; - case Instruction::ExtractValue: - exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); - break; - case Instruction::PHI: - valueNumbering[V] = nextValueNumber; - NumberingPhi[nextValueNumber] = cast<PHINode>(V); - return nextValueNumber++; - default: - valueNumbering[V] = nextValueNumber; - return nextValueNumber++; - } - - uint32_t e = assignExpNewValueNum(exp).first; - valueNumbering[V] = e; - return e; -} - -/// Returns the value number of the specified value. Fails if -/// the value has not yet been numbered. -uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { - DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); - if (Verify) { - assert(VI != valueNumbering.end() && "Value not numbered?"); - return VI->second; - } - return (VI != valueNumbering.end()) ? VI->second : 0; -} - -/// Returns the value number of the given comparison, -/// assigning it a new number if it did not have one before. Useful when -/// we deduced the result of a comparison, but don't immediately have an -/// instruction realizing that comparison to hand. -uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, - CmpInst::Predicate Predicate, - Value *LHS, Value *RHS) { - Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); - return assignExpNewValueNum(exp).first; -} - -/// Remove all entries from the ValueTable. -void GVN::ValueTable::clear() { - valueNumbering.clear(); - expressionNumbering.clear(); - NumberingPhi.clear(); - PhiTranslateTable.clear(); - nextValueNumber = 1; - Expressions.clear(); - ExprIdx.clear(); - nextExprNumber = 0; -} - -/// Remove a value from the value numbering. -void GVN::ValueTable::erase(Value *V) { - uint32_t Num = valueNumbering.lookup(V); - valueNumbering.erase(V); - // If V is PHINode, V <--> value number is an one-to-one mapping. - if (isa<PHINode>(V)) - NumberingPhi.erase(Num); -} - -/// verifyRemoved - Verify that the value is removed from all internal data -/// structures. -void GVN::ValueTable::verifyRemoved(const Value *V) const { - for (DenseMap<Value*, uint32_t>::const_iterator - I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { - assert(I->first != V && "Inst still occurs in value numbering map!"); - } -} - -//===----------------------------------------------------------------------===// -// GVN Pass -//===----------------------------------------------------------------------===// - -PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { - // FIXME: The order of evaluation of these 'getResult' calls is very - // significant! Re-ordering these variables will cause GVN when run alone to - // be less effective! We should fix memdep and basic-aa to not exhibit this - // behavior, but until then don't change the order here. - auto &AC = AM.getResult<AssumptionAnalysis>(F); - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); - auto &AA = AM.getResult<AAManager>(F); - auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F); - auto *LI = AM.getCachedResult<LoopAnalysis>(F); - auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); - bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE); - if (!Changed) - return PreservedAnalyses::all(); - PreservedAnalyses PA; - PA.preserve<DominatorTreeAnalysis>(); - PA.preserve<GlobalsAA>(); - PA.preserve<TargetLibraryAnalysis>(); - return PA; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { - errs() << "{\n"; - for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), - E = d.end(); I != E; ++I) { - errs() << I->first << "\n"; - I->second->dump(); - } - errs() << "}\n"; -} -#endif - -/// Return true if we can prove that the value -/// we're analyzing is fully available in the specified block. As we go, keep -/// track of which blocks we know are fully alive in FullyAvailableBlocks. This -/// map is actually a tri-state map with the following values: -/// 0) we know the block *is not* fully available. -/// 1) we know the block *is* fully available. -/// 2) we do not know whether the block is fully available or not, but we are -/// currently speculating that it will be. -/// 3) we are speculating for this block and have used that to speculate for -/// other blocks. -static bool IsValueFullyAvailableInBlock(BasicBlock *BB, - DenseMap<BasicBlock*, char> &FullyAvailableBlocks, - uint32_t RecurseDepth) { - if (RecurseDepth > MaxRecurseDepth) - return false; - - // Optimistically assume that the block is fully available and check to see - // if we already know about this block in one lookup. - std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV = - FullyAvailableBlocks.insert(std::make_pair(BB, 2)); - - // If the entry already existed for this block, return the precomputed value. - if (!IV.second) { - // If this is a speculative "available" value, mark it as being used for - // speculation of other blocks. - if (IV.first->second == 2) - IV.first->second = 3; - return IV.first->second != 0; - } - - // Otherwise, see if it is fully available in all predecessors. - pred_iterator PI = pred_begin(BB), PE = pred_end(BB); - - // If this block has no predecessors, it isn't live-in here. - if (PI == PE) - goto SpeculationFailure; - - for (; PI != PE; ++PI) - // If the value isn't fully available in one of our predecessors, then it - // isn't fully available in this block either. Undo our previous - // optimistic assumption and bail out. - if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) - goto SpeculationFailure; - - return true; - -// If we get here, we found out that this is not, after -// all, a fully-available block. We have a problem if we speculated on this and -// used the speculation to mark other blocks as available. -SpeculationFailure: - char &BBVal = FullyAvailableBlocks[BB]; - - // If we didn't speculate on this, just return with it set to false. - if (BBVal == 2) { - BBVal = 0; - return false; - } - - // If we did speculate on this value, we could have blocks set to 1 that are - // incorrect. Walk the (transitive) successors of this block and mark them as - // 0 if set to one. - SmallVector<BasicBlock*, 32> BBWorklist; - BBWorklist.push_back(BB); - - do { - BasicBlock *Entry = BBWorklist.pop_back_val(); - // Note that this sets blocks to 0 (unavailable) if they happen to not - // already be in FullyAvailableBlocks. This is safe. - char &EntryVal = FullyAvailableBlocks[Entry]; - if (EntryVal == 0) continue; // Already unavailable. - - // Mark as unavailable. - EntryVal = 0; - - BBWorklist.append(succ_begin(Entry), succ_end(Entry)); - } while (!BBWorklist.empty()); - - return false; -} - -/// Given a set of loads specified by ValuesPerBlock, -/// construct SSA form, allowing us to eliminate LI. This returns the value -/// that should be used at LI's definition site. -static Value *ConstructSSAForLoadSet(LoadInst *LI, - SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, - GVN &gvn) { - // Check for the fully redundant, dominating load case. In this case, we can - // just use the dominating value directly. - if (ValuesPerBlock.size() == 1 && - gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, - LI->getParent())) { - assert(!ValuesPerBlock[0].AV.isUndefValue() && - "Dead BB dominate this block"); - return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); - } - - // Otherwise, we have to construct SSA form. - SmallVector<PHINode*, 8> NewPHIs; - SSAUpdater SSAUpdate(&NewPHIs); - SSAUpdate.Initialize(LI->getType(), LI->getName()); - - for (const AvailableValueInBlock &AV : ValuesPerBlock) { - BasicBlock *BB = AV.BB; - - if (SSAUpdate.HasValueForBlock(BB)) - continue; - - // If the value is the load that we will be eliminating, and the block it's - // available in is the block that the load is in, then don't add it as - // SSAUpdater will resolve the value to the relevant phi which may let it - // avoid phi construction entirely if there's actually only one value. - if (BB == LI->getParent() && - ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) || - (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI))) - continue; - - SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); - } - - // Perform PHI construction. - return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); -} - -Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, - Instruction *InsertPt, - GVN &gvn) const { - Value *Res; - Type *LoadTy = LI->getType(); - const DataLayout &DL = LI->getModule()->getDataLayout(); - if (isSimpleValue()) { - Res = getSimpleValue(); - if (Res->getType() != LoadTy) { - Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); - - LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset - << " " << *getSimpleValue() << '\n' - << *Res << '\n' - << "\n\n\n"); - } - } else if (isCoercedLoadValue()) { - LoadInst *Load = getCoercedLoadValue(); - if (Load->getType() == LoadTy && Offset == 0) { - Res = Load; - } else { - Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); - // We would like to use gvn.markInstructionForDeletion here, but we can't - // because the load is already memoized into the leader map table that GVN - // tracks. It is potentially possible to remove the load from the table, - // but then there all of the operations based on it would need to be - // rehashed. Just leave the dead load around. - gvn.getMemDep().removeInstruction(Load); - LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset - << " " << *getCoercedLoadValue() << '\n' - << *Res << '\n' - << "\n\n\n"); - } - } else if (isMemIntrinValue()) { - Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, - InsertPt, DL); - LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset - << " " << *getMemIntrinValue() << '\n' - << *Res << '\n' - << "\n\n\n"); - } else { - assert(isUndefValue() && "Should be UndefVal"); - LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); - return UndefValue::get(LoadTy); - } - assert(Res && "failed to materialize?"); - return Res; -} - -static bool isLifetimeStart(const Instruction *Inst) { - if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) - return II->getIntrinsicID() == Intrinsic::lifetime_start; - return false; -} - -/// Try to locate the three instruction involved in a missed -/// load-elimination case that is due to an intervening store. -static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, - DominatorTree *DT, - OptimizationRemarkEmitter *ORE) { - using namespace ore; - - User *OtherAccess = nullptr; - - OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); - R << "load of type " << NV("Type", LI->getType()) << " not eliminated" - << setExtraArgs(); - - for (auto *U : LI->getPointerOperand()->users()) - if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && - DT->dominates(cast<Instruction>(U), LI)) { - // FIXME: for now give up if there are multiple memory accesses that - // dominate the load. We need further analysis to decide which one is - // that we're forwarding from. - if (OtherAccess) - OtherAccess = nullptr; - else - OtherAccess = U; - } - - if (OtherAccess) - R << " in favor of " << NV("OtherAccess", OtherAccess); - - R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); - - ORE->emit(R); -} - -bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, - Value *Address, AvailableValue &Res) { - assert((DepInfo.isDef() || DepInfo.isClobber()) && - "expected a local dependence"); - assert(LI->isUnordered() && "rules below are incorrect for ordered access"); - - const DataLayout &DL = LI->getModule()->getDataLayout(); - - if (DepInfo.isClobber()) { - // If the dependence is to a store that writes to a superset of the bits - // read by the load, we can extract the bits we need for the load from the - // stored value. - if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { - // Can't forward from non-atomic to atomic without violating memory model. - if (Address && LI->isAtomic() <= DepSI->isAtomic()) { - int Offset = - analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); - if (Offset != -1) { - Res = AvailableValue::get(DepSI->getValueOperand(), Offset); - return true; - } - } - } - - // Check to see if we have something like this: - // load i32* P - // load i8* (P+1) - // if we have this, replace the later with an extraction from the former. - if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) { - // If this is a clobber and L is the first instruction in its block, then - // we have the first instruction in the entry block. - // Can't forward from non-atomic to atomic without violating memory model. - if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { - int Offset = - analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); - - if (Offset != -1) { - Res = AvailableValue::getLoad(DepLI, Offset); - return true; - } - } - } - - // If the clobbering value is a memset/memcpy/memmove, see if we can - // forward a value on from it. - if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) { - if (Address && !LI->isAtomic()) { - int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, - DepMI, DL); - if (Offset != -1) { - Res = AvailableValue::getMI(DepMI, Offset); - return true; - } - } - } - // Nothing known about this clobber, have to be conservative - LLVM_DEBUG( - // fast print dep, using operator<< on instruction is too slow. - dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); - Instruction *I = DepInfo.getInst(); - dbgs() << " is clobbered by " << *I << '\n';); - if (ORE->allowExtraAnalysis(DEBUG_TYPE)) - reportMayClobberedLoad(LI, DepInfo, DT, ORE); - - return false; - } - assert(DepInfo.isDef() && "follows from above"); - - Instruction *DepInst = DepInfo.getInst(); - - // Loading the allocation -> undef. - if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || - // Loading immediately after lifetime begin -> undef. - isLifetimeStart(DepInst)) { - Res = AvailableValue::get(UndefValue::get(LI->getType())); - return true; - } - - // Loading from calloc (which zero initializes memory) -> zero - if (isCallocLikeFn(DepInst, TLI)) { - Res = AvailableValue::get(Constant::getNullValue(LI->getType())); - return true; - } - - if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { - // Reject loads and stores that are to the same address but are of - // different types if we have to. If the stored value is larger or equal to - // the loaded value, we can reuse it. - if (S->getValueOperand()->getType() != LI->getType() && - !canCoerceMustAliasedValueToLoad(S->getValueOperand(), - LI->getType(), DL)) - return false; - - // Can't forward from non-atomic to atomic without violating memory model. - if (S->isAtomic() < LI->isAtomic()) - return false; - - Res = AvailableValue::get(S->getValueOperand()); - return true; - } - - if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { - // If the types mismatch and we can't handle it, reject reuse of the load. - // If the stored value is larger or equal to the loaded value, we can reuse - // it. - if (LD->getType() != LI->getType() && - !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) - return false; - - // Can't forward from non-atomic to atomic without violating memory model. - if (LD->isAtomic() < LI->isAtomic()) - return false; - - Res = AvailableValue::getLoad(LD); - return true; - } - - // Unknown def - must be conservative - LLVM_DEBUG( - // fast print dep, using operator<< on instruction is too slow. - dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); - dbgs() << " has unknown def " << *DepInst << '\n';); - return false; -} - -void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, - AvailValInBlkVect &ValuesPerBlock, - UnavailBlkVect &UnavailableBlocks) { - // Filter out useless results (non-locals, etc). Keep track of the blocks - // where we have a value available in repl, also keep track of whether we see - // dependencies that produce an unknown value for the load (such as a call - // that could potentially clobber the load). - unsigned NumDeps = Deps.size(); - for (unsigned i = 0, e = NumDeps; i != e; ++i) { - BasicBlock *DepBB = Deps[i].getBB(); - MemDepResult DepInfo = Deps[i].getResult(); - - if (DeadBlocks.count(DepBB)) { - // Dead dependent mem-op disguise as a load evaluating the same value - // as the load in question. - ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); - continue; - } - - if (!DepInfo.isDef() && !DepInfo.isClobber()) { - UnavailableBlocks.push_back(DepBB); - continue; - } - - // The address being loaded in this non-local block may not be the same as - // the pointer operand of the load if PHI translation occurs. Make sure - // to consider the right address. - Value *Address = Deps[i].getAddress(); - - AvailableValue AV; - if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { - // subtlety: because we know this was a non-local dependency, we know - // it's safe to materialize anywhere between the instruction within - // DepInfo and the end of it's block. - ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, - std::move(AV))); - } else { - UnavailableBlocks.push_back(DepBB); - } - } - - assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && - "post condition violation"); -} - -bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, - UnavailBlkVect &UnavailableBlocks) { - // Okay, we have *some* definitions of the value. This means that the value - // is available in some of our (transitive) predecessors. Lets think about - // doing PRE of this load. This will involve inserting a new load into the - // predecessor when it's not available. We could do this in general, but - // prefer to not increase code size. As such, we only do this when we know - // that we only have to insert *one* load (which means we're basically moving - // the load, not inserting a new one). - - SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), - UnavailableBlocks.end()); - - // Let's find the first basic block with more than one predecessor. Walk - // backwards through predecessors if needed. - BasicBlock *LoadBB = LI->getParent(); - BasicBlock *TmpBB = LoadBB; - bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI); - - // Check that there is no implicit control flow instructions above our load in - // its block. If there is an instruction that doesn't always pass the - // execution to the following instruction, then moving through it may become - // invalid. For example: - // - // int arr[LEN]; - // int index = ???; - // ... - // guard(0 <= index && index < LEN); - // use(arr[index]); - // - // It is illegal to move the array access to any point above the guard, - // because if the index is out of bounds we should deoptimize rather than - // access the array. - // Check that there is no guard in this block above our instruction. - if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI)) - return false; - while (TmpBB->getSinglePredecessor()) { - TmpBB = TmpBB->getSinglePredecessor(); - if (TmpBB == LoadBB) // Infinite (unreachable) loop. - return false; - if (Blockers.count(TmpBB)) - return false; - - // If any of these blocks has more than one successor (i.e. if the edge we - // just traversed was critical), then there are other paths through this - // block along which the load may not be anticipated. Hoisting the load - // above this block would be adding the load to execution paths along - // which it was not previously executed. - if (TmpBB->getTerminator()->getNumSuccessors() != 1) - return false; - - // Check that there is no implicit control flow in a block above. - if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB)) - return false; - } - - assert(TmpBB); - LoadBB = TmpBB; - - // Check to see how many predecessors have the loaded value fully - // available. - MapVector<BasicBlock *, Value *> PredLoads; - DenseMap<BasicBlock*, char> FullyAvailableBlocks; - for (const AvailableValueInBlock &AV : ValuesPerBlock) - FullyAvailableBlocks[AV.BB] = true; - for (BasicBlock *UnavailableBB : UnavailableBlocks) - FullyAvailableBlocks[UnavailableBB] = false; - - SmallVector<BasicBlock *, 4> CriticalEdgePred; - for (BasicBlock *Pred : predecessors(LoadBB)) { - // If any predecessor block is an EH pad that does not allow non-PHI - // instructions before the terminator, we can't PRE the load. - if (Pred->getTerminator()->isEHPad()) { - LLVM_DEBUG( - dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" - << Pred->getName() << "': " << *LI << '\n'); - return false; - } - - if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { - continue; - } - - if (Pred->getTerminator()->getNumSuccessors() != 1) { - if (isa<IndirectBrInst>(Pred->getTerminator())) { - LLVM_DEBUG( - dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" - << Pred->getName() << "': " << *LI << '\n'); - return false; - } - - if (LoadBB->isEHPad()) { - LLVM_DEBUG( - dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" - << Pred->getName() << "': " << *LI << '\n'); - return false; - } - - CriticalEdgePred.push_back(Pred); - } else { - // Only add the predecessors that will not be split for now. - PredLoads[Pred] = nullptr; - } - } - - // Decide whether PRE is profitable for this load. - unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); - assert(NumUnavailablePreds != 0 && - "Fully available value should already be eliminated!"); - - // If this load is unavailable in multiple predecessors, reject it. - // FIXME: If we could restructure the CFG, we could make a common pred with - // all the preds that don't have an available LI and insert a new load into - // that one block. - if (NumUnavailablePreds != 1) - return false; - - // Split critical edges, and update the unavailable predecessors accordingly. - for (BasicBlock *OrigPred : CriticalEdgePred) { - BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); - assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); - PredLoads[NewPred] = nullptr; - LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" - << LoadBB->getName() << '\n'); - } - - // Check if the load can safely be moved to all the unavailable predecessors. - bool CanDoPRE = true; - const DataLayout &DL = LI->getModule()->getDataLayout(); - SmallVector<Instruction*, 8> NewInsts; - for (auto &PredLoad : PredLoads) { - BasicBlock *UnavailablePred = PredLoad.first; - - // Do PHI translation to get its value in the predecessor if necessary. The - // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. - - // If all preds have a single successor, then we know it is safe to insert - // the load on the pred (?!?), so we can insert code to materialize the - // pointer if it is not available. - PHITransAddr Address(LI->getPointerOperand(), DL, AC); - Value *LoadPtr = nullptr; - LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, - *DT, NewInsts); - - // If we couldn't find or insert a computation of this phi translated value, - // we fail PRE. - if (!LoadPtr) { - LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " - << *LI->getPointerOperand() << "\n"); - CanDoPRE = false; - break; - } - - PredLoad.second = LoadPtr; - } - - if (!CanDoPRE) { - while (!NewInsts.empty()) { - Instruction *I = NewInsts.pop_back_val(); - markInstructionForDeletion(I); - } - // HINT: Don't revert the edge-splitting as following transformation may - // also need to split these critical edges. - return !CriticalEdgePred.empty(); - } - - // Okay, we can eliminate this load by inserting a reload in the predecessor - // and using PHI construction to get the value in the other predecessors, do - // it. - LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); - LLVM_DEBUG(if (!NewInsts.empty()) dbgs() - << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() - << '\n'); - - // Assign value numbers to the new instructions. - for (Instruction *I : NewInsts) { - // Instructions that have been inserted in predecessor(s) to materialize - // the load address do not retain their original debug locations. Doing - // so could lead to confusing (but correct) source attributions. - // FIXME: How do we retain source locations without causing poor debugging - // behavior? - I->setDebugLoc(DebugLoc()); - - // FIXME: We really _ought_ to insert these value numbers into their - // parent's availability map. However, in doing so, we risk getting into - // ordering issues. If a block hasn't been processed yet, we would be - // marking a value as AVAIL-IN, which isn't what we intend. - VN.lookupOrAdd(I); - } - - for (const auto &PredLoad : PredLoads) { - BasicBlock *UnavailablePred = PredLoad.first; - Value *LoadPtr = PredLoad.second; - - auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", - LI->isVolatile(), LI->getAlignment(), - LI->getOrdering(), LI->getSyncScopeID(), - UnavailablePred->getTerminator()); - NewLoad->setDebugLoc(LI->getDebugLoc()); - - // Transfer the old load's AA tags to the new load. - AAMDNodes Tags; - LI->getAAMetadata(Tags); - if (Tags) - NewLoad->setAAMetadata(Tags); - - if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) - NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); - if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) - NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); - if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) - NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); - - // We do not propagate the old load's debug location, because the new - // load now lives in a different BB, and we want to avoid a jumpy line - // table. - // FIXME: How do we retain source locations without causing poor debugging - // behavior? - - // Add the newly created load. - ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, - NewLoad)); - MD->invalidateCachedPointerInfo(LoadPtr); - LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); - } - - // Perform PHI construction. - Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); - LI->replaceAllUsesWith(V); - if (isa<PHINode>(V)) - V->takeName(LI); - if (Instruction *I = dyn_cast<Instruction>(V)) - I->setDebugLoc(LI->getDebugLoc()); - if (V->getType()->isPtrOrPtrVectorTy()) - MD->invalidateCachedPointerInfo(V); - markInstructionForDeletion(LI); - ORE->emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) - << "load eliminated by PRE"; - }); - ++NumPRELoad; - return true; -} - -static void reportLoadElim(LoadInst *LI, Value *AvailableValue, - OptimizationRemarkEmitter *ORE) { - using namespace ore; - - ORE->emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) - << "load of type " << NV("Type", LI->getType()) << " eliminated" - << setExtraArgs() << " in favor of " - << NV("InfavorOfValue", AvailableValue); - }); -} - -/// Attempt to eliminate a load whose dependencies are -/// non-local by performing PHI construction. -bool GVN::processNonLocalLoad(LoadInst *LI) { - // non-local speculations are not allowed under asan. - if (LI->getParent()->getParent()->hasFnAttribute( - Attribute::SanitizeAddress) || - LI->getParent()->getParent()->hasFnAttribute( - Attribute::SanitizeHWAddress)) - return false; - - // Step 1: Find the non-local dependencies of the load. - LoadDepVect Deps; - MD->getNonLocalPointerDependency(LI, Deps); - - // If we had to process more than one hundred blocks to find the - // dependencies, this load isn't worth worrying about. Optimizing - // it will be too expensive. - unsigned NumDeps = Deps.size(); - if (NumDeps > MaxNumDeps) - return false; - - // If we had a phi translation failure, we'll have a single entry which is a - // clobber in the current block. Reject this early. - if (NumDeps == 1 && - !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { - LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); - dbgs() << " has unknown dependencies\n";); - return false; - } - - // If this load follows a GEP, see if we can PRE the indices before analyzing. - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { - for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), - OE = GEP->idx_end(); - OI != OE; ++OI) - if (Instruction *I = dyn_cast<Instruction>(OI->get())) - performScalarPRE(I); - } - - // Step 2: Analyze the availability of the load - AvailValInBlkVect ValuesPerBlock; - UnavailBlkVect UnavailableBlocks; - AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); - - // If we have no predecessors that produce a known value for this load, exit - // early. - if (ValuesPerBlock.empty()) - return false; - - // Step 3: Eliminate fully redundancy. - // - // If all of the instructions we depend on produce a known value for this - // load, then it is fully redundant and we can use PHI insertion to compute - // its value. Insert PHIs and remove the fully redundant value now. - if (UnavailableBlocks.empty()) { - LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); - - // Perform PHI construction. - Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); - LI->replaceAllUsesWith(V); - - if (isa<PHINode>(V)) - V->takeName(LI); - if (Instruction *I = dyn_cast<Instruction>(V)) - // If instruction I has debug info, then we should not update it. - // Also, if I has a null DebugLoc, then it is still potentially incorrect - // to propagate LI's DebugLoc because LI may not post-dominate I. - if (LI->getDebugLoc() && LI->getParent() == I->getParent()) - I->setDebugLoc(LI->getDebugLoc()); - if (V->getType()->isPtrOrPtrVectorTy()) - MD->invalidateCachedPointerInfo(V); - markInstructionForDeletion(LI); - ++NumGVNLoad; - reportLoadElim(LI, V, ORE); - return true; - } - - // Step 4: Eliminate partial redundancy. - if (!EnablePRE || !EnableLoadPRE) - return false; - - return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); -} - -bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { - assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && - "This function can only be called with llvm.assume intrinsic"); - Value *V = IntrinsicI->getArgOperand(0); - - if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { - if (Cond->isZero()) { - Type *Int8Ty = Type::getInt8Ty(V->getContext()); - // Insert a new store to null instruction before the load to indicate that - // this code is not reachable. FIXME: We could insert unreachable - // instruction directly because we can modify the CFG. - new StoreInst(UndefValue::get(Int8Ty), - Constant::getNullValue(Int8Ty->getPointerTo()), - IntrinsicI); - } - markInstructionForDeletion(IntrinsicI); - return false; - } else if (isa<Constant>(V)) { - // If it's not false, and constant, it must evaluate to true. This means our - // assume is assume(true), and thus, pointless, and we don't want to do - // anything more here. - return false; - } - - Constant *True = ConstantInt::getTrue(V->getContext()); - bool Changed = false; - - for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { - BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); - - // This property is only true in dominated successors, propagateEquality - // will check dominance for us. - Changed |= propagateEquality(V, True, Edge, false); - } - - // We can replace assume value with true, which covers cases like this: - // call void @llvm.assume(i1 %cmp) - // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true - ReplaceWithConstMap[V] = True; - - // If one of *cmp *eq operand is const, adding it to map will cover this: - // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen - // call void @llvm.assume(i1 %cmp) - // ret float %0 ; will change it to ret float 3.000000e+00 - if (auto *CmpI = dyn_cast<CmpInst>(V)) { - if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || - CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || - (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && - CmpI->getFastMathFlags().noNaNs())) { - Value *CmpLHS = CmpI->getOperand(0); - Value *CmpRHS = CmpI->getOperand(1); - if (isa<Constant>(CmpLHS)) - std::swap(CmpLHS, CmpRHS); - auto *RHSConst = dyn_cast<Constant>(CmpRHS); - - // If only one operand is constant. - if (RHSConst != nullptr && !isa<Constant>(CmpLHS)) - ReplaceWithConstMap[CmpLHS] = RHSConst; - } - } - return Changed; -} - -static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { - patchReplacementInstruction(I, Repl); - I->replaceAllUsesWith(Repl); -} - -/// Attempt to eliminate a load, first by eliminating it -/// locally, and then attempting non-local elimination if that fails. -bool GVN::processLoad(LoadInst *L) { - if (!MD) - return false; - - // This code hasn't been audited for ordered or volatile memory access - if (!L->isUnordered()) - return false; - - if (L->use_empty()) { - markInstructionForDeletion(L); - return true; - } - - // ... to a pointer that has been loaded from before... - MemDepResult Dep = MD->getDependency(L); - - // If it is defined in another block, try harder. - if (Dep.isNonLocal()) - return processNonLocalLoad(L); - - // Only handle the local case below - if (!Dep.isDef() && !Dep.isClobber()) { - // This might be a NonFuncLocal or an Unknown - LLVM_DEBUG( - // fast print dep, using operator<< on instruction is too slow. - dbgs() << "GVN: load "; L->printAsOperand(dbgs()); - dbgs() << " has unknown dependence\n";); - return false; - } - - AvailableValue AV; - if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { - Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); - - // Replace the load! - patchAndReplaceAllUsesWith(L, AvailableValue); - markInstructionForDeletion(L); - ++NumGVNLoad; - reportLoadElim(L, AvailableValue, ORE); - // Tell MDA to rexamine the reused pointer since we might have more - // information after forwarding it. - if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) - MD->invalidateCachedPointerInfo(AvailableValue); - return true; - } - - return false; -} - -/// Return a pair the first field showing the value number of \p Exp and the -/// second field showing whether it is a value number newly created. -std::pair<uint32_t, bool> -GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { - uint32_t &e = expressionNumbering[Exp]; - bool CreateNewValNum = !e; - if (CreateNewValNum) { - Expressions.push_back(Exp); - if (ExprIdx.size() < nextValueNumber + 1) - ExprIdx.resize(nextValueNumber * 2); - e = nextValueNumber; - ExprIdx[nextValueNumber++] = nextExprNumber++; - } - return {e, CreateNewValNum}; -} - -/// Return whether all the values related with the same \p num are -/// defined in \p BB. -bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, - GVN &Gvn) { - LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; - while (Vals && Vals->BB == BB) - Vals = Vals->Next; - return !Vals; -} - -/// Wrap phiTranslateImpl to provide caching functionality. -uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, - const BasicBlock *PhiBlock, uint32_t Num, - GVN &Gvn) { - auto FindRes = PhiTranslateTable.find({Num, Pred}); - if (FindRes != PhiTranslateTable.end()) - return FindRes->second; - uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); - PhiTranslateTable.insert({{Num, Pred}, NewNum}); - return NewNum; -} - -/// Translate value number \p Num using phis, so that it has the values of -/// the phis in BB. -uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, - const BasicBlock *PhiBlock, - uint32_t Num, GVN &Gvn) { - if (PHINode *PN = NumberingPhi[Num]) { - for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { - if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) - if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) - return TransVal; - } - return Num; - } - - // If there is any value related with Num is defined in a BB other than - // PhiBlock, it cannot depend on a phi in PhiBlock without going through - // a backedge. We can do an early exit in that case to save compile time. - if (!areAllValsInBB(Num, PhiBlock, Gvn)) - return Num; - - if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) - return Num; - Expression Exp = Expressions[ExprIdx[Num]]; - - for (unsigned i = 0; i < Exp.varargs.size(); i++) { - // For InsertValue and ExtractValue, some varargs are index numbers - // instead of value numbers. Those index numbers should not be - // translated. - if ((i > 1 && Exp.opcode == Instruction::InsertValue) || - (i > 0 && Exp.opcode == Instruction::ExtractValue)) - continue; - Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); - } - - if (Exp.commutative) { - assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!"); - if (Exp.varargs[0] > Exp.varargs[1]) { - std::swap(Exp.varargs[0], Exp.varargs[1]); - uint32_t Opcode = Exp.opcode >> 8; - if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) - Exp.opcode = (Opcode << 8) | - CmpInst::getSwappedPredicate( - static_cast<CmpInst::Predicate>(Exp.opcode & 255)); - } - } - - if (uint32_t NewNum = expressionNumbering[Exp]) - return NewNum; - return Num; -} - -/// Erase stale entry from phiTranslate cache so phiTranslate can be computed -/// again. -void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, - const BasicBlock &CurrBlock) { - for (const BasicBlock *Pred : predecessors(&CurrBlock)) { - auto FindRes = PhiTranslateTable.find({Num, Pred}); - if (FindRes != PhiTranslateTable.end()) - PhiTranslateTable.erase(FindRes); - } -} - -// In order to find a leader for a given value number at a -// specific basic block, we first obtain the list of all Values for that number, -// and then scan the list to find one whose block dominates the block in -// question. This is fast because dominator tree queries consist of only -// a few comparisons of DFS numbers. -Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { - LeaderTableEntry Vals = LeaderTable[num]; - if (!Vals.Val) return nullptr; - - Value *Val = nullptr; - if (DT->dominates(Vals.BB, BB)) { - Val = Vals.Val; - if (isa<Constant>(Val)) return Val; - } - - LeaderTableEntry* Next = Vals.Next; - while (Next) { - if (DT->dominates(Next->BB, BB)) { - if (isa<Constant>(Next->Val)) return Next->Val; - if (!Val) Val = Next->Val; - } - - Next = Next->Next; - } - - return Val; -} - -/// There is an edge from 'Src' to 'Dst'. Return -/// true if every path from the entry block to 'Dst' passes via this edge. In -/// particular 'Dst' must not be reachable via another edge from 'Src'. -static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, - DominatorTree *DT) { - // While in theory it is interesting to consider the case in which Dst has - // more than one predecessor, because Dst might be part of a loop which is - // only reachable from Src, in practice it is pointless since at the time - // GVN runs all such loops have preheaders, which means that Dst will have - // been changed to have only one predecessor, namely Src. - const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); - assert((!Pred || Pred == E.getStart()) && - "No edge between these basic blocks!"); - return Pred != nullptr; -} - -void GVN::assignBlockRPONumber(Function &F) { - BlockRPONumber.clear(); - uint32_t NextBlockNumber = 1; - ReversePostOrderTraversal<Function *> RPOT(&F); - for (BasicBlock *BB : RPOT) - BlockRPONumber[BB] = NextBlockNumber++; - InvalidBlockRPONumbers = false; -} - -// Tries to replace instruction with const, using information from -// ReplaceWithConstMap. -bool GVN::replaceOperandsWithConsts(Instruction *Instr) const { - bool Changed = false; - for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { - Value *Operand = Instr->getOperand(OpNum); - auto it = ReplaceWithConstMap.find(Operand); - if (it != ReplaceWithConstMap.end()) { - assert(!isa<Constant>(Operand) && - "Replacing constants with constants is invalid"); - LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " - << *it->second << " in instruction " << *Instr << '\n'); - Instr->setOperand(OpNum, it->second); - Changed = true; - } - } - return Changed; -} - -/// The given values are known to be equal in every block -/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with -/// 'RHS' everywhere in the scope. Returns whether a change was made. -/// If DominatesByEdge is false, then it means that we will propagate the RHS -/// value starting from the end of Root.Start. -bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, - bool DominatesByEdge) { - SmallVector<std::pair<Value*, Value*>, 4> Worklist; - Worklist.push_back(std::make_pair(LHS, RHS)); - bool Changed = false; - // For speed, compute a conservative fast approximation to - // DT->dominates(Root, Root.getEnd()); - const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); - - while (!Worklist.empty()) { - std::pair<Value*, Value*> Item = Worklist.pop_back_val(); - LHS = Item.first; RHS = Item.second; - - if (LHS == RHS) - continue; - assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); - - // Don't try to propagate equalities between constants. - if (isa<Constant>(LHS) && isa<Constant>(RHS)) - continue; - - // Prefer a constant on the right-hand side, or an Argument if no constants. - if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) - std::swap(LHS, RHS); - assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); - - // If there is no obvious reason to prefer the left-hand side over the - // right-hand side, ensure the longest lived term is on the right-hand side, - // so the shortest lived term will be replaced by the longest lived. - // This tends to expose more simplifications. - uint32_t LVN = VN.lookupOrAdd(LHS); - if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || - (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { - // Move the 'oldest' value to the right-hand side, using the value number - // as a proxy for age. - uint32_t RVN = VN.lookupOrAdd(RHS); - if (LVN < RVN) { - std::swap(LHS, RHS); - LVN = RVN; - } - } - - // If value numbering later sees that an instruction in the scope is equal - // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve - // the invariant that instructions only occur in the leader table for their - // own value number (this is used by removeFromLeaderTable), do not do this - // if RHS is an instruction (if an instruction in the scope is morphed into - // LHS then it will be turned into RHS by the next GVN iteration anyway, so - // using the leader table is about compiling faster, not optimizing better). - // The leader table only tracks basic blocks, not edges. Only add to if we - // have the simple case where the edge dominates the end. - if (RootDominatesEnd && !isa<Instruction>(RHS)) - addToLeaderTable(LVN, RHS, Root.getEnd()); - - // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As - // LHS always has at least one use that is not dominated by Root, this will - // never do anything if LHS has only one use. - if (!LHS->hasOneUse()) { - unsigned NumReplacements = - DominatesByEdge - ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) - : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); - - Changed |= NumReplacements > 0; - NumGVNEqProp += NumReplacements; - // Cached information for anything that uses LHS will be invalid. - if (MD) - MD->invalidateCachedPointerInfo(LHS); - } - - // Now try to deduce additional equalities from this one. For example, if - // the known equality was "(A != B)" == "false" then it follows that A and B - // are equal in the scope. Only boolean equalities with an explicit true or - // false RHS are currently supported. - if (!RHS->getType()->isIntegerTy(1)) - // Not a boolean equality - bail out. - continue; - ConstantInt *CI = dyn_cast<ConstantInt>(RHS); - if (!CI) - // RHS neither 'true' nor 'false' - bail out. - continue; - // Whether RHS equals 'true'. Otherwise it equals 'false'. - bool isKnownTrue = CI->isMinusOne(); - bool isKnownFalse = !isKnownTrue; - - // If "A && B" is known true then both A and B are known true. If "A || B" - // is known false then both A and B are known false. - Value *A, *B; - if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || - (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { - Worklist.push_back(std::make_pair(A, RHS)); - Worklist.push_back(std::make_pair(B, RHS)); - continue; - } - - // If we are propagating an equality like "(A == B)" == "true" then also - // propagate the equality A == B. When propagating a comparison such as - // "(A >= B)" == "true", replace all instances of "A < B" with "false". - if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { - Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); - - // If "A == B" is known true, or "A != B" is known false, then replace - // A with B everywhere in the scope. - if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || - (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) - Worklist.push_back(std::make_pair(Op0, Op1)); - - // Handle the floating point versions of equality comparisons too. - if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || - (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { - - // Floating point -0.0 and 0.0 compare equal, so we can only - // propagate values if we know that we have a constant and that - // its value is non-zero. - - // FIXME: We should do this optimization if 'no signed zeros' is - // applicable via an instruction-level fast-math-flag or some other - // indicator that relaxed FP semantics are being used. - - if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero()) - Worklist.push_back(std::make_pair(Op0, Op1)); - } - - // If "A >= B" is known true, replace "A < B" with false everywhere. - CmpInst::Predicate NotPred = Cmp->getInversePredicate(); - Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); - // Since we don't have the instruction "A < B" immediately to hand, work - // out the value number that it would have and use that to find an - // appropriate instruction (if any). - uint32_t NextNum = VN.getNextUnusedValueNumber(); - uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); - // If the number we were assigned was brand new then there is no point in - // looking for an instruction realizing it: there cannot be one! - if (Num < NextNum) { - Value *NotCmp = findLeader(Root.getEnd(), Num); - if (NotCmp && isa<Instruction>(NotCmp)) { - unsigned NumReplacements = - DominatesByEdge - ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) - : replaceDominatedUsesWith(NotCmp, NotVal, *DT, - Root.getStart()); - Changed |= NumReplacements > 0; - NumGVNEqProp += NumReplacements; - // Cached information for anything that uses NotCmp will be invalid. - if (MD) - MD->invalidateCachedPointerInfo(NotCmp); - } - } - // Ensure that any instruction in scope that gets the "A < B" value number - // is replaced with false. - // The leader table only tracks basic blocks, not edges. Only add to if we - // have the simple case where the edge dominates the end. - if (RootDominatesEnd) - addToLeaderTable(Num, NotVal, Root.getEnd()); - - continue; - } - } - - return Changed; -} - -/// When calculating availability, handle an instruction -/// by inserting it into the appropriate sets -bool GVN::processInstruction(Instruction *I) { - // Ignore dbg info intrinsics. - if (isa<DbgInfoIntrinsic>(I)) - return false; - - // If the instruction can be easily simplified then do so now in preference - // to value numbering it. Value numbering often exposes redundancies, for - // example if it determines that %y is equal to %x then the instruction - // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. - const DataLayout &DL = I->getModule()->getDataLayout(); - if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { - bool Changed = false; - if (!I->use_empty()) { - I->replaceAllUsesWith(V); - Changed = true; - } - if (isInstructionTriviallyDead(I, TLI)) { - markInstructionForDeletion(I); - Changed = true; - } - if (Changed) { - if (MD && V->getType()->isPtrOrPtrVectorTy()) - MD->invalidateCachedPointerInfo(V); - ++NumGVNSimpl; - return true; - } - } - - if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) - if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) - return processAssumeIntrinsic(IntrinsicI); - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (processLoad(LI)) - return true; - - unsigned Num = VN.lookupOrAdd(LI); - addToLeaderTable(Num, LI, LI->getParent()); - return false; - } - - // For conditional branches, we can perform simple conditional propagation on - // the condition value itself. - if (BranchInst *BI = dyn_cast<BranchInst>(I)) { - if (!BI->isConditional()) - return false; - - if (isa<Constant>(BI->getCondition())) - return processFoldableCondBr(BI); - - Value *BranchCond = BI->getCondition(); - BasicBlock *TrueSucc = BI->getSuccessor(0); - BasicBlock *FalseSucc = BI->getSuccessor(1); - // Avoid multiple edges early. - if (TrueSucc == FalseSucc) - return false; - - BasicBlock *Parent = BI->getParent(); - bool Changed = false; - - Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); - BasicBlockEdge TrueE(Parent, TrueSucc); - Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); - - Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); - BasicBlockEdge FalseE(Parent, FalseSucc); - Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); - - return Changed; - } - - // For switches, propagate the case values into the case destinations. - if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { - Value *SwitchCond = SI->getCondition(); - BasicBlock *Parent = SI->getParent(); - bool Changed = false; - - // Remember how many outgoing edges there are to every successor. - SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; - for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) - ++SwitchEdges[SI->getSuccessor(i)]; - - for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); - i != e; ++i) { - BasicBlock *Dst = i->getCaseSuccessor(); - // If there is only a single edge, propagate the case value into it. - if (SwitchEdges.lookup(Dst) == 1) { - BasicBlockEdge E(Parent, Dst); - Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); - } - } - return Changed; - } - - // Instructions with void type don't return a value, so there's - // no point in trying to find redundancies in them. - if (I->getType()->isVoidTy()) - return false; - - uint32_t NextNum = VN.getNextUnusedValueNumber(); - unsigned Num = VN.lookupOrAdd(I); - - // Allocations are always uniquely numbered, so we can save time and memory - // by fast failing them. - if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { - addToLeaderTable(Num, I, I->getParent()); - return false; - } - - // If the number we were assigned was a brand new VN, then we don't - // need to do a lookup to see if the number already exists - // somewhere in the domtree: it can't! - if (Num >= NextNum) { - addToLeaderTable(Num, I, I->getParent()); - return false; - } - - // Perform fast-path value-number based elimination of values inherited from - // dominators. - Value *Repl = findLeader(I->getParent(), Num); - if (!Repl) { - // Failure, just remember this instance for future use. - addToLeaderTable(Num, I, I->getParent()); - return false; - } else if (Repl == I) { - // If I was the result of a shortcut PRE, it might already be in the table - // and the best replacement for itself. Nothing to do. - return false; - } - - // Remove it! - patchAndReplaceAllUsesWith(I, Repl); - if (MD && Repl->getType()->isPtrOrPtrVectorTy()) - MD->invalidateCachedPointerInfo(Repl); - markInstructionForDeletion(I); - return true; -} - -/// runOnFunction - This is the main transformation entry point for a function. -bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, - const TargetLibraryInfo &RunTLI, AAResults &RunAA, - MemoryDependenceResults *RunMD, LoopInfo *LI, - OptimizationRemarkEmitter *RunORE) { - AC = &RunAC; - DT = &RunDT; - VN.setDomTree(DT); - TLI = &RunTLI; - VN.setAliasAnalysis(&RunAA); - MD = RunMD; - ImplicitControlFlowTracking ImplicitCFT(DT); - ICF = &ImplicitCFT; - VN.setMemDep(MD); - ORE = RunORE; - InvalidBlockRPONumbers = true; - - bool Changed = false; - bool ShouldContinue = true; - - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - // Merge unconditional branches, allowing PRE to catch more - // optimization opportunities. - for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { - BasicBlock *BB = &*FI++; - - bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD); - if (removedBlock) - ++NumGVNBlocks; - - Changed |= removedBlock; - } - - unsigned Iteration = 0; - while (ShouldContinue) { - LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); - ShouldContinue = iterateOnFunction(F); - Changed |= ShouldContinue; - ++Iteration; - } - - if (EnablePRE) { - // Fabricate val-num for dead-code in order to suppress assertion in - // performPRE(). - assignValNumForDeadCode(); - bool PREChanged = true; - while (PREChanged) { - PREChanged = performPRE(F); - Changed |= PREChanged; - } - } - - // FIXME: Should perform GVN again after PRE does something. PRE can move - // computations into blocks where they become fully redundant. Note that - // we can't do this until PRE's critical edge splitting updates memdep. - // Actually, when this happens, we should just fully integrate PRE into GVN. - - cleanupGlobalSets(); - // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each - // iteration. - DeadBlocks.clear(); - - return Changed; -} - -bool GVN::processBlock(BasicBlock *BB) { - // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function - // (and incrementing BI before processing an instruction). - assert(InstrsToErase.empty() && - "We expect InstrsToErase to be empty across iterations"); - if (DeadBlocks.count(BB)) - return false; - - // Clearing map before every BB because it can be used only for single BB. - ReplaceWithConstMap.clear(); - bool ChangedFunction = false; - - for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); - BI != BE;) { - if (!ReplaceWithConstMap.empty()) - ChangedFunction |= replaceOperandsWithConsts(&*BI); - ChangedFunction |= processInstruction(&*BI); - - if (InstrsToErase.empty()) { - ++BI; - continue; - } - - // If we need some instructions deleted, do it now. - NumGVNInstr += InstrsToErase.size(); - - // Avoid iterator invalidation. - bool AtStart = BI == BB->begin(); - if (!AtStart) - --BI; - - for (auto *I : InstrsToErase) { - assert(I->getParent() == BB && "Removing instruction from wrong block?"); - LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); - salvageDebugInfo(*I); - if (MD) MD->removeInstruction(I); - LLVM_DEBUG(verifyRemoved(I)); - ICF->removeInstruction(I); - I->eraseFromParent(); - } - InstrsToErase.clear(); - - if (AtStart) - BI = BB->begin(); - else - ++BI; - } - - return ChangedFunction; -} - -// Instantiate an expression in a predecessor that lacked it. -bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, - BasicBlock *Curr, unsigned int ValNo) { - // Because we are going top-down through the block, all value numbers - // will be available in the predecessor by the time we need them. Any - // that weren't originally present will have been instantiated earlier - // in this loop. - bool success = true; - for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { - Value *Op = Instr->getOperand(i); - if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) - continue; - // This could be a newly inserted instruction, in which case, we won't - // find a value number, and should give up before we hurt ourselves. - // FIXME: Rewrite the infrastructure to let it easier to value number - // and process newly inserted instructions. - if (!VN.exists(Op)) { - success = false; - break; - } - uint32_t TValNo = - VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); - if (Value *V = findLeader(Pred, TValNo)) { - Instr->setOperand(i, V); - } else { - success = false; - break; - } - } - - // Fail out if we encounter an operand that is not available in - // the PRE predecessor. This is typically because of loads which - // are not value numbered precisely. - if (!success) - return false; - - Instr->insertBefore(Pred->getTerminator()); - Instr->setName(Instr->getName() + ".pre"); - Instr->setDebugLoc(Instr->getDebugLoc()); - - unsigned Num = VN.lookupOrAdd(Instr); - VN.add(Instr, Num); - - // Update the availability map to include the new instruction. - addToLeaderTable(Num, Instr, Pred); - return true; -} - -bool GVN::performScalarPRE(Instruction *CurInst) { - if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || - isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || - CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || - isa<DbgInfoIntrinsic>(CurInst)) - return false; - - // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from - // sinking the compare again, and it would force the code generator to - // move the i1 from processor flags or predicate registers into a general - // purpose register. - if (isa<CmpInst>(CurInst)) - return false; - - // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from - // sinking the addressing mode computation back to its uses. Extending the - // GEP's live range increases the register pressure, and therefore it can - // introduce unnecessary spills. - // - // This doesn't prevent Load PRE. PHI translation will make the GEP available - // to the load by moving it to the predecessor block if necessary. - if (isa<GetElementPtrInst>(CurInst)) - return false; - - // We don't currently value number ANY inline asm calls. - if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) - if (CallI->isInlineAsm()) - return false; - - uint32_t ValNo = VN.lookup(CurInst); - - // Look for the predecessors for PRE opportunities. We're - // only trying to solve the basic diamond case, where - // a value is computed in the successor and one predecessor, - // but not the other. We also explicitly disallow cases - // where the successor is its own predecessor, because they're - // more complicated to get right. - unsigned NumWith = 0; - unsigned NumWithout = 0; - BasicBlock *PREPred = nullptr; - BasicBlock *CurrentBlock = CurInst->getParent(); - - // Update the RPO numbers for this function. - if (InvalidBlockRPONumbers) - assignBlockRPONumber(*CurrentBlock->getParent()); - - SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; - for (BasicBlock *P : predecessors(CurrentBlock)) { - // We're not interested in PRE where blocks with predecessors that are - // not reachable. - if (!DT->isReachableFromEntry(P)) { - NumWithout = 2; - break; - } - // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and - // when CurInst has operand defined in CurrentBlock (so it may be defined - // by phi in the loop header). - assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && - "Invalid BlockRPONumber map."); - if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && - llvm::any_of(CurInst->operands(), [&](const Use &U) { - if (auto *Inst = dyn_cast<Instruction>(U.get())) - return Inst->getParent() == CurrentBlock; - return false; - })) { - NumWithout = 2; - break; - } - - uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); - Value *predV = findLeader(P, TValNo); - if (!predV) { - predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); - PREPred = P; - ++NumWithout; - } else if (predV == CurInst) { - /* CurInst dominates this predecessor. */ - NumWithout = 2; - break; - } else { - predMap.push_back(std::make_pair(predV, P)); - ++NumWith; - } - } - - // Don't do PRE when it might increase code size, i.e. when - // we would need to insert instructions in more than one pred. - if (NumWithout > 1 || NumWith == 0) - return false; - - // We may have a case where all predecessors have the instruction, - // and we just need to insert a phi node. Otherwise, perform - // insertion. - Instruction *PREInstr = nullptr; - - if (NumWithout != 0) { - if (!isSafeToSpeculativelyExecute(CurInst)) { - // It is only valid to insert a new instruction if the current instruction - // is always executed. An instruction with implicit control flow could - // prevent us from doing it. If we cannot speculate the execution, then - // PRE should be prohibited. - if (ICF->isDominatedByICFIFromSameBlock(CurInst)) - return false; - } - - // Don't do PRE across indirect branch. - if (isa<IndirectBrInst>(PREPred->getTerminator())) - return false; - - // We can't do PRE safely on a critical edge, so instead we schedule - // the edge to be split and perform the PRE the next time we iterate - // on the function. - unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); - if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { - toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); - return false; - } - // We need to insert somewhere, so let's give it a shot - PREInstr = CurInst->clone(); - if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { - // If we failed insertion, make sure we remove the instruction. - LLVM_DEBUG(verifyRemoved(PREInstr)); - PREInstr->deleteValue(); - return false; - } - } - - // Either we should have filled in the PRE instruction, or we should - // not have needed insertions. - assert(PREInstr != nullptr || NumWithout == 0); - - ++NumGVNPRE; - - // Create a PHI to make the value available in this block. - PHINode *Phi = - PHINode::Create(CurInst->getType(), predMap.size(), - CurInst->getName() + ".pre-phi", &CurrentBlock->front()); - for (unsigned i = 0, e = predMap.size(); i != e; ++i) { - if (Value *V = predMap[i].first) { - // If we use an existing value in this phi, we have to patch the original - // value because the phi will be used to replace a later value. - patchReplacementInstruction(CurInst, V); - Phi->addIncoming(V, predMap[i].second); - } else - Phi->addIncoming(PREInstr, PREPred); - } - - VN.add(Phi, ValNo); - // After creating a new PHI for ValNo, the phi translate result for ValNo will - // be changed, so erase the related stale entries in phi translate cache. - VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); - addToLeaderTable(ValNo, Phi, CurrentBlock); - Phi->setDebugLoc(CurInst->getDebugLoc()); - CurInst->replaceAllUsesWith(Phi); - if (MD && Phi->getType()->isPtrOrPtrVectorTy()) - MD->invalidateCachedPointerInfo(Phi); - VN.erase(CurInst); - removeFromLeaderTable(ValNo, CurInst, CurrentBlock); - - LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); - if (MD) - MD->removeInstruction(CurInst); - LLVM_DEBUG(verifyRemoved(CurInst)); - // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes - // some assertion failures. - ICF->removeInstruction(CurInst); - CurInst->eraseFromParent(); - ++NumGVNInstr; - - return true; -} - -/// Perform a purely local form of PRE that looks for diamond -/// control flow patterns and attempts to perform simple PRE at the join point. -bool GVN::performPRE(Function &F) { - bool Changed = false; - for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { - // Nothing to PRE in the entry block. - if (CurrentBlock == &F.getEntryBlock()) - continue; - - // Don't perform PRE on an EH pad. - if (CurrentBlock->isEHPad()) - continue; - - for (BasicBlock::iterator BI = CurrentBlock->begin(), - BE = CurrentBlock->end(); - BI != BE;) { - Instruction *CurInst = &*BI++; - Changed |= performScalarPRE(CurInst); - } - } - - if (splitCriticalEdges()) - Changed = true; - - return Changed; -} - -/// Split the critical edge connecting the given two blocks, and return -/// the block inserted to the critical edge. -BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { - BasicBlock *BB = - SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT)); - if (MD) - MD->invalidateCachedPredecessors(); - InvalidBlockRPONumbers = true; - return BB; -} - -/// Split critical edges found during the previous -/// iteration that may enable further optimization. -bool GVN::splitCriticalEdges() { - if (toSplit.empty()) - return false; - do { - std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); - SplitCriticalEdge(Edge.first, Edge.second, - CriticalEdgeSplittingOptions(DT)); - } while (!toSplit.empty()); - if (MD) MD->invalidateCachedPredecessors(); - InvalidBlockRPONumbers = true; - return true; -} - -/// Executes one iteration of GVN -bool GVN::iterateOnFunction(Function &F) { - cleanupGlobalSets(); - - // Top-down walk of the dominator tree - bool Changed = false; - // Needed for value numbering with phi construction to work. - // RPOT walks the graph in its constructor and will not be invalidated during - // processBlock. - ReversePostOrderTraversal<Function *> RPOT(&F); - - for (BasicBlock *BB : RPOT) - Changed |= processBlock(BB); - - return Changed; -} - -void GVN::cleanupGlobalSets() { - VN.clear(); - LeaderTable.clear(); - BlockRPONumber.clear(); - TableAllocator.Reset(); - ICF->clear(); - InvalidBlockRPONumbers = true; -} - -/// Verify that the specified instruction does not occur in our -/// internal data structures. -void GVN::verifyRemoved(const Instruction *Inst) const { - VN.verifyRemoved(Inst); - - // Walk through the value number scope to make sure the instruction isn't - // ferreted away in it. - for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator - I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { - const LeaderTableEntry *Node = &I->second; - assert(Node->Val != Inst && "Inst still in value numbering scope!"); - - while (Node->Next) { - Node = Node->Next; - assert(Node->Val != Inst && "Inst still in value numbering scope!"); - } - } -} - -/// BB is declared dead, which implied other blocks become dead as well. This -/// function is to add all these blocks to "DeadBlocks". For the dead blocks' -/// live successors, update their phi nodes by replacing the operands -/// corresponding to dead blocks with UndefVal. -void GVN::addDeadBlock(BasicBlock *BB) { - SmallVector<BasicBlock *, 4> NewDead; - SmallSetVector<BasicBlock *, 4> DF; - - NewDead.push_back(BB); - while (!NewDead.empty()) { - BasicBlock *D = NewDead.pop_back_val(); - if (DeadBlocks.count(D)) - continue; - - // All blocks dominated by D are dead. - SmallVector<BasicBlock *, 8> Dom; - DT->getDescendants(D, Dom); - DeadBlocks.insert(Dom.begin(), Dom.end()); - - // Figure out the dominance-frontier(D). - for (BasicBlock *B : Dom) { - for (BasicBlock *S : successors(B)) { - if (DeadBlocks.count(S)) - continue; - - bool AllPredDead = true; - for (BasicBlock *P : predecessors(S)) - if (!DeadBlocks.count(P)) { - AllPredDead = false; - break; - } - - if (!AllPredDead) { - // S could be proved dead later on. That is why we don't update phi - // operands at this moment. - DF.insert(S); - } else { - // While S is not dominated by D, it is dead by now. This could take - // place if S already have a dead predecessor before D is declared - // dead. - NewDead.push_back(S); - } - } - } - } - - // For the dead blocks' live successors, update their phi nodes by replacing - // the operands corresponding to dead blocks with UndefVal. - for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); - I != E; I++) { - BasicBlock *B = *I; - if (DeadBlocks.count(B)) - continue; - - SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); - for (BasicBlock *P : Preds) { - if (!DeadBlocks.count(P)) - continue; - - if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) { - if (BasicBlock *S = splitCriticalEdges(P, B)) - DeadBlocks.insert(P = S); - } - - for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) { - PHINode &Phi = cast<PHINode>(*II); - Phi.setIncomingValue(Phi.getBasicBlockIndex(P), - UndefValue::get(Phi.getType())); - if (MD) - MD->invalidateCachedPointerInfo(&Phi); - } - } - } -} - -// If the given branch is recognized as a foldable branch (i.e. conditional -// branch with constant condition), it will perform following analyses and -// transformation. -// 1) If the dead out-coming edge is a critical-edge, split it. Let -// R be the target of the dead out-coming edge. -// 1) Identify the set of dead blocks implied by the branch's dead outcoming -// edge. The result of this step will be {X| X is dominated by R} -// 2) Identify those blocks which haves at least one dead predecessor. The -// result of this step will be dominance-frontier(R). -// 3) Update the PHIs in DF(R) by replacing the operands corresponding to -// dead blocks with "UndefVal" in an hope these PHIs will optimized away. -// -// Return true iff *NEW* dead code are found. -bool GVN::processFoldableCondBr(BranchInst *BI) { - if (!BI || BI->isUnconditional()) - return false; - - // If a branch has two identical successors, we cannot declare either dead. - if (BI->getSuccessor(0) == BI->getSuccessor(1)) - return false; - - ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); - if (!Cond) - return false; - - BasicBlock *DeadRoot = - Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); - if (DeadBlocks.count(DeadRoot)) - return false; - - if (!DeadRoot->getSinglePredecessor()) - DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); - - addDeadBlock(DeadRoot); - return true; -} - -// performPRE() will trigger assert if it comes across an instruction without -// associated val-num. As it normally has far more live instructions than dead -// instructions, it makes more sense just to "fabricate" a val-number for the -// dead code than checking if instruction involved is dead or not. -void GVN::assignValNumForDeadCode() { - for (BasicBlock *BB : DeadBlocks) { - for (Instruction &Inst : *BB) { - unsigned ValNum = VN.lookupOrAdd(&Inst); - addToLeaderTable(ValNum, &Inst, BB); - } - } -} - -class llvm::gvn::GVNLegacyPass : public FunctionPass { -public: - static char ID; // Pass identification, replacement for typeid - - explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep) - : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) { - initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); - - return Impl.runImpl( - F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), - getAnalysis<DominatorTreeWrapperPass>().getDomTree(), - getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), - getAnalysis<AAResultsWrapperPass>().getAAResults(), - NoMemDepAnalysis ? nullptr - : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(), - LIWP ? &LIWP->getLoopInfo() : nullptr, - &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - if (!NoMemDepAnalysis) - AU.addRequired<MemoryDependenceWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<TargetLibraryInfoWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - } - -private: - bool NoMemDepAnalysis; - GVN Impl; -}; - -char GVNLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) -INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) - -// The public interface to this file... -FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { - return new GVNLegacyPass(NoMemDepAnalysis); -} |
