summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/GVN.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Scalar/GVN.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/GVN.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/GVN.cpp2601
1 files changed, 0 insertions, 2601 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/GVN.cpp b/gnu/llvm/lib/Transforms/Scalar/GVN.cpp
deleted file mode 100644
index 9861948c829..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/GVN.cpp
+++ /dev/null
@@ -1,2601 +0,0 @@
-//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass performs global value numbering to eliminate fully redundant
-// instructions. It also performs simple dead load elimination.
-//
-// Note that this pass does the value numbering itself; it does not use the
-// ValueNumbering analysis passes.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/GVN.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/PointerIntPair.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/PHITransAddr.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DomTreeUpdater.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/Transforms/Utils/VNCoercion.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::gvn;
-using namespace llvm::VNCoercion;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "gvn"
-
-STATISTIC(NumGVNInstr, "Number of instructions deleted");
-STATISTIC(NumGVNLoad, "Number of loads deleted");
-STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
-STATISTIC(NumGVNBlocks, "Number of blocks merged");
-STATISTIC(NumGVNSimpl, "Number of instructions simplified");
-STATISTIC(NumGVNEqProp, "Number of equalities propagated");
-STATISTIC(NumPRELoad, "Number of loads PRE'd");
-
-static cl::opt<bool> EnablePRE("enable-pre",
- cl::init(true), cl::Hidden);
-static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
-static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
-
-// Maximum allowed recursion depth.
-static cl::opt<uint32_t>
-MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
- cl::desc("Max recurse depth in GVN (default = 1000)"));
-
-static cl::opt<uint32_t> MaxNumDeps(
- "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
- cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
-
-struct llvm::GVN::Expression {
- uint32_t opcode;
- Type *type;
- bool commutative = false;
- SmallVector<uint32_t, 4> varargs;
-
- Expression(uint32_t o = ~2U) : opcode(o) {}
-
- bool operator==(const Expression &other) const {
- if (opcode != other.opcode)
- return false;
- if (opcode == ~0U || opcode == ~1U)
- return true;
- if (type != other.type)
- return false;
- if (varargs != other.varargs)
- return false;
- return true;
- }
-
- friend hash_code hash_value(const Expression &Value) {
- return hash_combine(
- Value.opcode, Value.type,
- hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
- }
-};
-
-namespace llvm {
-
-template <> struct DenseMapInfo<GVN::Expression> {
- static inline GVN::Expression getEmptyKey() { return ~0U; }
- static inline GVN::Expression getTombstoneKey() { return ~1U; }
-
- static unsigned getHashValue(const GVN::Expression &e) {
- using llvm::hash_value;
-
- return static_cast<unsigned>(hash_value(e));
- }
-
- static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
- return LHS == RHS;
- }
-};
-
-} // end namespace llvm
-
-/// Represents a particular available value that we know how to materialize.
-/// Materialization of an AvailableValue never fails. An AvailableValue is
-/// implicitly associated with a rematerialization point which is the
-/// location of the instruction from which it was formed.
-struct llvm::gvn::AvailableValue {
- enum ValType {
- SimpleVal, // A simple offsetted value that is accessed.
- LoadVal, // A value produced by a load.
- MemIntrin, // A memory intrinsic which is loaded from.
- UndefVal // A UndefValue representing a value from dead block (which
- // is not yet physically removed from the CFG).
- };
-
- /// V - The value that is live out of the block.
- PointerIntPair<Value *, 2, ValType> Val;
-
- /// Offset - The byte offset in Val that is interesting for the load query.
- unsigned Offset;
-
- static AvailableValue get(Value *V, unsigned Offset = 0) {
- AvailableValue Res;
- Res.Val.setPointer(V);
- Res.Val.setInt(SimpleVal);
- Res.Offset = Offset;
- return Res;
- }
-
- static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
- AvailableValue Res;
- Res.Val.setPointer(MI);
- Res.Val.setInt(MemIntrin);
- Res.Offset = Offset;
- return Res;
- }
-
- static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
- AvailableValue Res;
- Res.Val.setPointer(LI);
- Res.Val.setInt(LoadVal);
- Res.Offset = Offset;
- return Res;
- }
-
- static AvailableValue getUndef() {
- AvailableValue Res;
- Res.Val.setPointer(nullptr);
- Res.Val.setInt(UndefVal);
- Res.Offset = 0;
- return Res;
- }
-
- bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
- bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
- bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
- bool isUndefValue() const { return Val.getInt() == UndefVal; }
-
- Value *getSimpleValue() const {
- assert(isSimpleValue() && "Wrong accessor");
- return Val.getPointer();
- }
-
- LoadInst *getCoercedLoadValue() const {
- assert(isCoercedLoadValue() && "Wrong accessor");
- return cast<LoadInst>(Val.getPointer());
- }
-
- MemIntrinsic *getMemIntrinValue() const {
- assert(isMemIntrinValue() && "Wrong accessor");
- return cast<MemIntrinsic>(Val.getPointer());
- }
-
- /// Emit code at the specified insertion point to adjust the value defined
- /// here to the specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
- GVN &gvn) const;
-};
-
-/// Represents an AvailableValue which can be rematerialized at the end of
-/// the associated BasicBlock.
-struct llvm::gvn::AvailableValueInBlock {
- /// BB - The basic block in question.
- BasicBlock *BB;
-
- /// AV - The actual available value
- AvailableValue AV;
-
- static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
- AvailableValueInBlock Res;
- Res.BB = BB;
- Res.AV = std::move(AV);
- return Res;
- }
-
- static AvailableValueInBlock get(BasicBlock *BB, Value *V,
- unsigned Offset = 0) {
- return get(BB, AvailableValue::get(V, Offset));
- }
-
- static AvailableValueInBlock getUndef(BasicBlock *BB) {
- return get(BB, AvailableValue::getUndef());
- }
-
- /// Emit code at the end of this block to adjust the value defined here to
- /// the specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
- return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
- }
-};
-
-//===----------------------------------------------------------------------===//
-// ValueTable Internal Functions
-//===----------------------------------------------------------------------===//
-
-GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
- Expression e;
- e.type = I->getType();
- e.opcode = I->getOpcode();
- for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- e.varargs.push_back(lookupOrAdd(*OI));
- if (I->isCommutative()) {
- // Ensure that commutative instructions that only differ by a permutation
- // of their operands get the same value number by sorting the operand value
- // numbers. Since all commutative instructions have two operands it is more
- // efficient to sort by hand rather than using, say, std::sort.
- assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
- if (e.varargs[0] > e.varargs[1])
- std::swap(e.varargs[0], e.varargs[1]);
- e.commutative = true;
- }
-
- if (CmpInst *C = dyn_cast<CmpInst>(I)) {
- // Sort the operand value numbers so x<y and y>x get the same value number.
- CmpInst::Predicate Predicate = C->getPredicate();
- if (e.varargs[0] > e.varargs[1]) {
- std::swap(e.varargs[0], e.varargs[1]);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- e.opcode = (C->getOpcode() << 8) | Predicate;
- e.commutative = true;
- } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
- for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
- II != IE; ++II)
- e.varargs.push_back(*II);
- }
-
- return e;
-}
-
-GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
- CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS) {
- assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- "Not a comparison!");
- Expression e;
- e.type = CmpInst::makeCmpResultType(LHS->getType());
- e.varargs.push_back(lookupOrAdd(LHS));
- e.varargs.push_back(lookupOrAdd(RHS));
-
- // Sort the operand value numbers so x<y and y>x get the same value number.
- if (e.varargs[0] > e.varargs[1]) {
- std::swap(e.varargs[0], e.varargs[1]);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- e.opcode = (Opcode << 8) | Predicate;
- e.commutative = true;
- return e;
-}
-
-GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
- assert(EI && "Not an ExtractValueInst?");
- Expression e;
- e.type = EI->getType();
- e.opcode = 0;
-
- IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
- if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
- // EI might be an extract from one of our recognised intrinsics. If it
- // is we'll synthesize a semantically equivalent expression instead on
- // an extract value expression.
- switch (I->getIntrinsicID()) {
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- e.opcode = Instruction::Add;
- break;
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- e.opcode = Instruction::Sub;
- break;
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- e.opcode = Instruction::Mul;
- break;
- default:
- break;
- }
-
- if (e.opcode != 0) {
- // Intrinsic recognized. Grab its args to finish building the expression.
- assert(I->getNumArgOperands() == 2 &&
- "Expect two args for recognised intrinsics.");
- e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
- e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
- return e;
- }
- }
-
- // Not a recognised intrinsic. Fall back to producing an extract value
- // expression.
- e.opcode = EI->getOpcode();
- for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
- OI != OE; ++OI)
- e.varargs.push_back(lookupOrAdd(*OI));
-
- for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
- II != IE; ++II)
- e.varargs.push_back(*II);
-
- return e;
-}
-
-//===----------------------------------------------------------------------===//
-// ValueTable External Functions
-//===----------------------------------------------------------------------===//
-
-GVN::ValueTable::ValueTable() = default;
-GVN::ValueTable::ValueTable(const ValueTable &) = default;
-GVN::ValueTable::ValueTable(ValueTable &&) = default;
-GVN::ValueTable::~ValueTable() = default;
-
-/// add - Insert a value into the table with a specified value number.
-void GVN::ValueTable::add(Value *V, uint32_t num) {
- valueNumbering.insert(std::make_pair(V, num));
- if (PHINode *PN = dyn_cast<PHINode>(V))
- NumberingPhi[num] = PN;
-}
-
-uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
- if (AA->doesNotAccessMemory(C)) {
- Expression exp = createExpr(C);
- uint32_t e = assignExpNewValueNum(exp).first;
- valueNumbering[C] = e;
- return e;
- } else if (MD && AA->onlyReadsMemory(C)) {
- Expression exp = createExpr(C);
- auto ValNum = assignExpNewValueNum(exp);
- if (ValNum.second) {
- valueNumbering[C] = ValNum.first;
- return ValNum.first;
- }
-
- MemDepResult local_dep = MD->getDependency(C);
-
- if (!local_dep.isDef() && !local_dep.isNonLocal()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
-
- if (local_dep.isDef()) {
- CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
-
- if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
-
- for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
- uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
- uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
- if (c_vn != cd_vn) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
-
- uint32_t v = lookupOrAdd(local_cdep);
- valueNumbering[C] = v;
- return v;
- }
-
- // Non-local case.
- const MemoryDependenceResults::NonLocalDepInfo &deps =
- MD->getNonLocalCallDependency(C);
- // FIXME: Move the checking logic to MemDep!
- CallInst* cdep = nullptr;
-
- // Check to see if we have a single dominating call instruction that is
- // identical to C.
- for (unsigned i = 0, e = deps.size(); i != e; ++i) {
- const NonLocalDepEntry *I = &deps[i];
- if (I->getResult().isNonLocal())
- continue;
-
- // We don't handle non-definitions. If we already have a call, reject
- // instruction dependencies.
- if (!I->getResult().isDef() || cdep != nullptr) {
- cdep = nullptr;
- break;
- }
-
- CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
- // FIXME: All duplicated with non-local case.
- if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
- cdep = NonLocalDepCall;
- continue;
- }
-
- cdep = nullptr;
- break;
- }
-
- if (!cdep) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
-
- if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
- uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
- uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
- if (c_vn != cd_vn) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
-
- uint32_t v = lookupOrAdd(cdep);
- valueNumbering[C] = v;
- return v;
- } else {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
-}
-
-/// Returns true if a value number exists for the specified value.
-bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
-
-/// lookup_or_add - Returns the value number for the specified value, assigning
-/// it a new number if it did not have one before.
-uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
- DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
- if (VI != valueNumbering.end())
- return VI->second;
-
- if (!isa<Instruction>(V)) {
- valueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
-
- Instruction* I = cast<Instruction>(V);
- Expression exp;
- switch (I->getOpcode()) {
- case Instruction::Call:
- return lookupOrAddCall(cast<CallInst>(I));
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- case Instruction::Select:
- case Instruction::ExtractElement:
- case Instruction::InsertElement:
- case Instruction::ShuffleVector:
- case Instruction::InsertValue:
- case Instruction::GetElementPtr:
- exp = createExpr(I);
- break;
- case Instruction::ExtractValue:
- exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
- break;
- case Instruction::PHI:
- valueNumbering[V] = nextValueNumber;
- NumberingPhi[nextValueNumber] = cast<PHINode>(V);
- return nextValueNumber++;
- default:
- valueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
-
- uint32_t e = assignExpNewValueNum(exp).first;
- valueNumbering[V] = e;
- return e;
-}
-
-/// Returns the value number of the specified value. Fails if
-/// the value has not yet been numbered.
-uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
- DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
- if (Verify) {
- assert(VI != valueNumbering.end() && "Value not numbered?");
- return VI->second;
- }
- return (VI != valueNumbering.end()) ? VI->second : 0;
-}
-
-/// Returns the value number of the given comparison,
-/// assigning it a new number if it did not have one before. Useful when
-/// we deduced the result of a comparison, but don't immediately have an
-/// instruction realizing that comparison to hand.
-uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
- CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS) {
- Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
- return assignExpNewValueNum(exp).first;
-}
-
-/// Remove all entries from the ValueTable.
-void GVN::ValueTable::clear() {
- valueNumbering.clear();
- expressionNumbering.clear();
- NumberingPhi.clear();
- PhiTranslateTable.clear();
- nextValueNumber = 1;
- Expressions.clear();
- ExprIdx.clear();
- nextExprNumber = 0;
-}
-
-/// Remove a value from the value numbering.
-void GVN::ValueTable::erase(Value *V) {
- uint32_t Num = valueNumbering.lookup(V);
- valueNumbering.erase(V);
- // If V is PHINode, V <--> value number is an one-to-one mapping.
- if (isa<PHINode>(V))
- NumberingPhi.erase(Num);
-}
-
-/// verifyRemoved - Verify that the value is removed from all internal data
-/// structures.
-void GVN::ValueTable::verifyRemoved(const Value *V) const {
- for (DenseMap<Value*, uint32_t>::const_iterator
- I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
- assert(I->first != V && "Inst still occurs in value numbering map!");
- }
-}
-
-//===----------------------------------------------------------------------===//
-// GVN Pass
-//===----------------------------------------------------------------------===//
-
-PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
- // FIXME: The order of evaluation of these 'getResult' calls is very
- // significant! Re-ordering these variables will cause GVN when run alone to
- // be less effective! We should fix memdep and basic-aa to not exhibit this
- // behavior, but until then don't change the order here.
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
- auto *LI = AM.getCachedResult<LoopAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<GlobalsAA>();
- PA.preserve<TargetLibraryAnalysis>();
- return PA;
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
- errs() << "{\n";
- for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
- E = d.end(); I != E; ++I) {
- errs() << I->first << "\n";
- I->second->dump();
- }
- errs() << "}\n";
-}
-#endif
-
-/// Return true if we can prove that the value
-/// we're analyzing is fully available in the specified block. As we go, keep
-/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
-/// map is actually a tri-state map with the following values:
-/// 0) we know the block *is not* fully available.
-/// 1) we know the block *is* fully available.
-/// 2) we do not know whether the block is fully available or not, but we are
-/// currently speculating that it will be.
-/// 3) we are speculating for this block and have used that to speculate for
-/// other blocks.
-static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
- DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
- uint32_t RecurseDepth) {
- if (RecurseDepth > MaxRecurseDepth)
- return false;
-
- // Optimistically assume that the block is fully available and check to see
- // if we already know about this block in one lookup.
- std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
- FullyAvailableBlocks.insert(std::make_pair(BB, 2));
-
- // If the entry already existed for this block, return the precomputed value.
- if (!IV.second) {
- // If this is a speculative "available" value, mark it as being used for
- // speculation of other blocks.
- if (IV.first->second == 2)
- IV.first->second = 3;
- return IV.first->second != 0;
- }
-
- // Otherwise, see if it is fully available in all predecessors.
- pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
-
- // If this block has no predecessors, it isn't live-in here.
- if (PI == PE)
- goto SpeculationFailure;
-
- for (; PI != PE; ++PI)
- // If the value isn't fully available in one of our predecessors, then it
- // isn't fully available in this block either. Undo our previous
- // optimistic assumption and bail out.
- if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
- goto SpeculationFailure;
-
- return true;
-
-// If we get here, we found out that this is not, after
-// all, a fully-available block. We have a problem if we speculated on this and
-// used the speculation to mark other blocks as available.
-SpeculationFailure:
- char &BBVal = FullyAvailableBlocks[BB];
-
- // If we didn't speculate on this, just return with it set to false.
- if (BBVal == 2) {
- BBVal = 0;
- return false;
- }
-
- // If we did speculate on this value, we could have blocks set to 1 that are
- // incorrect. Walk the (transitive) successors of this block and mark them as
- // 0 if set to one.
- SmallVector<BasicBlock*, 32> BBWorklist;
- BBWorklist.push_back(BB);
-
- do {
- BasicBlock *Entry = BBWorklist.pop_back_val();
- // Note that this sets blocks to 0 (unavailable) if they happen to not
- // already be in FullyAvailableBlocks. This is safe.
- char &EntryVal = FullyAvailableBlocks[Entry];
- if (EntryVal == 0) continue; // Already unavailable.
-
- // Mark as unavailable.
- EntryVal = 0;
-
- BBWorklist.append(succ_begin(Entry), succ_end(Entry));
- } while (!BBWorklist.empty());
-
- return false;
-}
-
-/// Given a set of loads specified by ValuesPerBlock,
-/// construct SSA form, allowing us to eliminate LI. This returns the value
-/// that should be used at LI's definition site.
-static Value *ConstructSSAForLoadSet(LoadInst *LI,
- SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
- GVN &gvn) {
- // Check for the fully redundant, dominating load case. In this case, we can
- // just use the dominating value directly.
- if (ValuesPerBlock.size() == 1 &&
- gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
- LI->getParent())) {
- assert(!ValuesPerBlock[0].AV.isUndefValue() &&
- "Dead BB dominate this block");
- return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
- }
-
- // Otherwise, we have to construct SSA form.
- SmallVector<PHINode*, 8> NewPHIs;
- SSAUpdater SSAUpdate(&NewPHIs);
- SSAUpdate.Initialize(LI->getType(), LI->getName());
-
- for (const AvailableValueInBlock &AV : ValuesPerBlock) {
- BasicBlock *BB = AV.BB;
-
- if (SSAUpdate.HasValueForBlock(BB))
- continue;
-
- // If the value is the load that we will be eliminating, and the block it's
- // available in is the block that the load is in, then don't add it as
- // SSAUpdater will resolve the value to the relevant phi which may let it
- // avoid phi construction entirely if there's actually only one value.
- if (BB == LI->getParent() &&
- ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
- (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
- continue;
-
- SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
- }
-
- // Perform PHI construction.
- return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
-}
-
-Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
- Instruction *InsertPt,
- GVN &gvn) const {
- Value *Res;
- Type *LoadTy = LI->getType();
- const DataLayout &DL = LI->getModule()->getDataLayout();
- if (isSimpleValue()) {
- Res = getSimpleValue();
- if (Res->getType() != LoadTy) {
- Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
-
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
- << " " << *getSimpleValue() << '\n'
- << *Res << '\n'
- << "\n\n\n");
- }
- } else if (isCoercedLoadValue()) {
- LoadInst *Load = getCoercedLoadValue();
- if (Load->getType() == LoadTy && Offset == 0) {
- Res = Load;
- } else {
- Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
- // We would like to use gvn.markInstructionForDeletion here, but we can't
- // because the load is already memoized into the leader map table that GVN
- // tracks. It is potentially possible to remove the load from the table,
- // but then there all of the operations based on it would need to be
- // rehashed. Just leave the dead load around.
- gvn.getMemDep().removeInstruction(Load);
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
- << " " << *getCoercedLoadValue() << '\n'
- << *Res << '\n'
- << "\n\n\n");
- }
- } else if (isMemIntrinValue()) {
- Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
- InsertPt, DL);
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
- << " " << *getMemIntrinValue() << '\n'
- << *Res << '\n'
- << "\n\n\n");
- } else {
- assert(isUndefValue() && "Should be UndefVal");
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
- return UndefValue::get(LoadTy);
- }
- assert(Res && "failed to materialize?");
- return Res;
-}
-
-static bool isLifetimeStart(const Instruction *Inst) {
- if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
- return II->getIntrinsicID() == Intrinsic::lifetime_start;
- return false;
-}
-
-/// Try to locate the three instruction involved in a missed
-/// load-elimination case that is due to an intervening store.
-static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
- DominatorTree *DT,
- OptimizationRemarkEmitter *ORE) {
- using namespace ore;
-
- User *OtherAccess = nullptr;
-
- OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
- R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
- << setExtraArgs();
-
- for (auto *U : LI->getPointerOperand()->users())
- if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
- DT->dominates(cast<Instruction>(U), LI)) {
- // FIXME: for now give up if there are multiple memory accesses that
- // dominate the load. We need further analysis to decide which one is
- // that we're forwarding from.
- if (OtherAccess)
- OtherAccess = nullptr;
- else
- OtherAccess = U;
- }
-
- if (OtherAccess)
- R << " in favor of " << NV("OtherAccess", OtherAccess);
-
- R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
-
- ORE->emit(R);
-}
-
-bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
- Value *Address, AvailableValue &Res) {
- assert((DepInfo.isDef() || DepInfo.isClobber()) &&
- "expected a local dependence");
- assert(LI->isUnordered() && "rules below are incorrect for ordered access");
-
- const DataLayout &DL = LI->getModule()->getDataLayout();
-
- if (DepInfo.isClobber()) {
- // If the dependence is to a store that writes to a superset of the bits
- // read by the load, we can extract the bits we need for the load from the
- // stored value.
- if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
- // Can't forward from non-atomic to atomic without violating memory model.
- if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
- int Offset =
- analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
- if (Offset != -1) {
- Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
- return true;
- }
- }
- }
-
- // Check to see if we have something like this:
- // load i32* P
- // load i8* (P+1)
- // if we have this, replace the later with an extraction from the former.
- if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
- // If this is a clobber and L is the first instruction in its block, then
- // we have the first instruction in the entry block.
- // Can't forward from non-atomic to atomic without violating memory model.
- if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
- int Offset =
- analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
-
- if (Offset != -1) {
- Res = AvailableValue::getLoad(DepLI, Offset);
- return true;
- }
- }
- }
-
- // If the clobbering value is a memset/memcpy/memmove, see if we can
- // forward a value on from it.
- if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
- if (Address && !LI->isAtomic()) {
- int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
- DepMI, DL);
- if (Offset != -1) {
- Res = AvailableValue::getMI(DepMI, Offset);
- return true;
- }
- }
- }
- // Nothing known about this clobber, have to be conservative
- LLVM_DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
- Instruction *I = DepInfo.getInst();
- dbgs() << " is clobbered by " << *I << '\n';);
- if (ORE->allowExtraAnalysis(DEBUG_TYPE))
- reportMayClobberedLoad(LI, DepInfo, DT, ORE);
-
- return false;
- }
- assert(DepInfo.isDef() && "follows from above");
-
- Instruction *DepInst = DepInfo.getInst();
-
- // Loading the allocation -> undef.
- if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
- // Loading immediately after lifetime begin -> undef.
- isLifetimeStart(DepInst)) {
- Res = AvailableValue::get(UndefValue::get(LI->getType()));
- return true;
- }
-
- // Loading from calloc (which zero initializes memory) -> zero
- if (isCallocLikeFn(DepInst, TLI)) {
- Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
- return true;
- }
-
- if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
- // Reject loads and stores that are to the same address but are of
- // different types if we have to. If the stored value is larger or equal to
- // the loaded value, we can reuse it.
- if (S->getValueOperand()->getType() != LI->getType() &&
- !canCoerceMustAliasedValueToLoad(S->getValueOperand(),
- LI->getType(), DL))
- return false;
-
- // Can't forward from non-atomic to atomic without violating memory model.
- if (S->isAtomic() < LI->isAtomic())
- return false;
-
- Res = AvailableValue::get(S->getValueOperand());
- return true;
- }
-
- if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
- // If the types mismatch and we can't handle it, reject reuse of the load.
- // If the stored value is larger or equal to the loaded value, we can reuse
- // it.
- if (LD->getType() != LI->getType() &&
- !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
- return false;
-
- // Can't forward from non-atomic to atomic without violating memory model.
- if (LD->isAtomic() < LI->isAtomic())
- return false;
-
- Res = AvailableValue::getLoad(LD);
- return true;
- }
-
- // Unknown def - must be conservative
- LLVM_DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
- dbgs() << " has unknown def " << *DepInst << '\n';);
- return false;
-}
-
-void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
- AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- // Filter out useless results (non-locals, etc). Keep track of the blocks
- // where we have a value available in repl, also keep track of whether we see
- // dependencies that produce an unknown value for the load (such as a call
- // that could potentially clobber the load).
- unsigned NumDeps = Deps.size();
- for (unsigned i = 0, e = NumDeps; i != e; ++i) {
- BasicBlock *DepBB = Deps[i].getBB();
- MemDepResult DepInfo = Deps[i].getResult();
-
- if (DeadBlocks.count(DepBB)) {
- // Dead dependent mem-op disguise as a load evaluating the same value
- // as the load in question.
- ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
- continue;
- }
-
- if (!DepInfo.isDef() && !DepInfo.isClobber()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
- }
-
- // The address being loaded in this non-local block may not be the same as
- // the pointer operand of the load if PHI translation occurs. Make sure
- // to consider the right address.
- Value *Address = Deps[i].getAddress();
-
- AvailableValue AV;
- if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
- // subtlety: because we know this was a non-local dependency, we know
- // it's safe to materialize anywhere between the instruction within
- // DepInfo and the end of it's block.
- ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
- std::move(AV)));
- } else {
- UnavailableBlocks.push_back(DepBB);
- }
- }
-
- assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
- "post condition violation");
-}
-
-bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- // Okay, we have *some* definitions of the value. This means that the value
- // is available in some of our (transitive) predecessors. Lets think about
- // doing PRE of this load. This will involve inserting a new load into the
- // predecessor when it's not available. We could do this in general, but
- // prefer to not increase code size. As such, we only do this when we know
- // that we only have to insert *one* load (which means we're basically moving
- // the load, not inserting a new one).
-
- SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
- UnavailableBlocks.end());
-
- // Let's find the first basic block with more than one predecessor. Walk
- // backwards through predecessors if needed.
- BasicBlock *LoadBB = LI->getParent();
- BasicBlock *TmpBB = LoadBB;
- bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
-
- // Check that there is no implicit control flow instructions above our load in
- // its block. If there is an instruction that doesn't always pass the
- // execution to the following instruction, then moving through it may become
- // invalid. For example:
- //
- // int arr[LEN];
- // int index = ???;
- // ...
- // guard(0 <= index && index < LEN);
- // use(arr[index]);
- //
- // It is illegal to move the array access to any point above the guard,
- // because if the index is out of bounds we should deoptimize rather than
- // access the array.
- // Check that there is no guard in this block above our instruction.
- if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
- return false;
- while (TmpBB->getSinglePredecessor()) {
- TmpBB = TmpBB->getSinglePredecessor();
- if (TmpBB == LoadBB) // Infinite (unreachable) loop.
- return false;
- if (Blockers.count(TmpBB))
- return false;
-
- // If any of these blocks has more than one successor (i.e. if the edge we
- // just traversed was critical), then there are other paths through this
- // block along which the load may not be anticipated. Hoisting the load
- // above this block would be adding the load to execution paths along
- // which it was not previously executed.
- if (TmpBB->getTerminator()->getNumSuccessors() != 1)
- return false;
-
- // Check that there is no implicit control flow in a block above.
- if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
- return false;
- }
-
- assert(TmpBB);
- LoadBB = TmpBB;
-
- // Check to see how many predecessors have the loaded value fully
- // available.
- MapVector<BasicBlock *, Value *> PredLoads;
- DenseMap<BasicBlock*, char> FullyAvailableBlocks;
- for (const AvailableValueInBlock &AV : ValuesPerBlock)
- FullyAvailableBlocks[AV.BB] = true;
- for (BasicBlock *UnavailableBB : UnavailableBlocks)
- FullyAvailableBlocks[UnavailableBB] = false;
-
- SmallVector<BasicBlock *, 4> CriticalEdgePred;
- for (BasicBlock *Pred : predecessors(LoadBB)) {
- // If any predecessor block is an EH pad that does not allow non-PHI
- // instructions before the terminator, we can't PRE the load.
- if (Pred->getTerminator()->isEHPad()) {
- LLVM_DEBUG(
- dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
- << Pred->getName() << "': " << *LI << '\n');
- return false;
- }
-
- if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
- continue;
- }
-
- if (Pred->getTerminator()->getNumSuccessors() != 1) {
- if (isa<IndirectBrInst>(Pred->getTerminator())) {
- LLVM_DEBUG(
- dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
- << Pred->getName() << "': " << *LI << '\n');
- return false;
- }
-
- if (LoadBB->isEHPad()) {
- LLVM_DEBUG(
- dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
- << Pred->getName() << "': " << *LI << '\n');
- return false;
- }
-
- CriticalEdgePred.push_back(Pred);
- } else {
- // Only add the predecessors that will not be split for now.
- PredLoads[Pred] = nullptr;
- }
- }
-
- // Decide whether PRE is profitable for this load.
- unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
- assert(NumUnavailablePreds != 0 &&
- "Fully available value should already be eliminated!");
-
- // If this load is unavailable in multiple predecessors, reject it.
- // FIXME: If we could restructure the CFG, we could make a common pred with
- // all the preds that don't have an available LI and insert a new load into
- // that one block.
- if (NumUnavailablePreds != 1)
- return false;
-
- // Split critical edges, and update the unavailable predecessors accordingly.
- for (BasicBlock *OrigPred : CriticalEdgePred) {
- BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
- assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
- PredLoads[NewPred] = nullptr;
- LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
- << LoadBB->getName() << '\n');
- }
-
- // Check if the load can safely be moved to all the unavailable predecessors.
- bool CanDoPRE = true;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- SmallVector<Instruction*, 8> NewInsts;
- for (auto &PredLoad : PredLoads) {
- BasicBlock *UnavailablePred = PredLoad.first;
-
- // Do PHI translation to get its value in the predecessor if necessary. The
- // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
-
- // If all preds have a single successor, then we know it is safe to insert
- // the load on the pred (?!?), so we can insert code to materialize the
- // pointer if it is not available.
- PHITransAddr Address(LI->getPointerOperand(), DL, AC);
- Value *LoadPtr = nullptr;
- LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
- *DT, NewInsts);
-
- // If we couldn't find or insert a computation of this phi translated value,
- // we fail PRE.
- if (!LoadPtr) {
- LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
- << *LI->getPointerOperand() << "\n");
- CanDoPRE = false;
- break;
- }
-
- PredLoad.second = LoadPtr;
- }
-
- if (!CanDoPRE) {
- while (!NewInsts.empty()) {
- Instruction *I = NewInsts.pop_back_val();
- markInstructionForDeletion(I);
- }
- // HINT: Don't revert the edge-splitting as following transformation may
- // also need to split these critical edges.
- return !CriticalEdgePred.empty();
- }
-
- // Okay, we can eliminate this load by inserting a reload in the predecessor
- // and using PHI construction to get the value in the other predecessors, do
- // it.
- LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
- LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
- << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
- << '\n');
-
- // Assign value numbers to the new instructions.
- for (Instruction *I : NewInsts) {
- // Instructions that have been inserted in predecessor(s) to materialize
- // the load address do not retain their original debug locations. Doing
- // so could lead to confusing (but correct) source attributions.
- // FIXME: How do we retain source locations without causing poor debugging
- // behavior?
- I->setDebugLoc(DebugLoc());
-
- // FIXME: We really _ought_ to insert these value numbers into their
- // parent's availability map. However, in doing so, we risk getting into
- // ordering issues. If a block hasn't been processed yet, we would be
- // marking a value as AVAIL-IN, which isn't what we intend.
- VN.lookupOrAdd(I);
- }
-
- for (const auto &PredLoad : PredLoads) {
- BasicBlock *UnavailablePred = PredLoad.first;
- Value *LoadPtr = PredLoad.second;
-
- auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
- LI->isVolatile(), LI->getAlignment(),
- LI->getOrdering(), LI->getSyncScopeID(),
- UnavailablePred->getTerminator());
- NewLoad->setDebugLoc(LI->getDebugLoc());
-
- // Transfer the old load's AA tags to the new load.
- AAMDNodes Tags;
- LI->getAAMetadata(Tags);
- if (Tags)
- NewLoad->setAAMetadata(Tags);
-
- if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
- NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
- if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
- NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
- if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
- NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
-
- // We do not propagate the old load's debug location, because the new
- // load now lives in a different BB, and we want to avoid a jumpy line
- // table.
- // FIXME: How do we retain source locations without causing poor debugging
- // behavior?
-
- // Add the newly created load.
- ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
- NewLoad));
- MD->invalidateCachedPointerInfo(LoadPtr);
- LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
- }
-
- // Perform PHI construction.
- Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
- LI->replaceAllUsesWith(V);
- if (isa<PHINode>(V))
- V->takeName(LI);
- if (Instruction *I = dyn_cast<Instruction>(V))
- I->setDebugLoc(LI->getDebugLoc());
- if (V->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(LI);
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
- << "load eliminated by PRE";
- });
- ++NumPRELoad;
- return true;
-}
-
-static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
- OptimizationRemarkEmitter *ORE) {
- using namespace ore;
-
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
- << "load of type " << NV("Type", LI->getType()) << " eliminated"
- << setExtraArgs() << " in favor of "
- << NV("InfavorOfValue", AvailableValue);
- });
-}
-
-/// Attempt to eliminate a load whose dependencies are
-/// non-local by performing PHI construction.
-bool GVN::processNonLocalLoad(LoadInst *LI) {
- // non-local speculations are not allowed under asan.
- if (LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeAddress) ||
- LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeHWAddress))
- return false;
-
- // Step 1: Find the non-local dependencies of the load.
- LoadDepVect Deps;
- MD->getNonLocalPointerDependency(LI, Deps);
-
- // If we had to process more than one hundred blocks to find the
- // dependencies, this load isn't worth worrying about. Optimizing
- // it will be too expensive.
- unsigned NumDeps = Deps.size();
- if (NumDeps > MaxNumDeps)
- return false;
-
- // If we had a phi translation failure, we'll have a single entry which is a
- // clobber in the current block. Reject this early.
- if (NumDeps == 1 &&
- !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
- LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
- dbgs() << " has unknown dependencies\n";);
- return false;
- }
-
- // If this load follows a GEP, see if we can PRE the indices before analyzing.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
- for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
- OE = GEP->idx_end();
- OI != OE; ++OI)
- if (Instruction *I = dyn_cast<Instruction>(OI->get()))
- performScalarPRE(I);
- }
-
- // Step 2: Analyze the availability of the load
- AvailValInBlkVect ValuesPerBlock;
- UnavailBlkVect UnavailableBlocks;
- AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
-
- // If we have no predecessors that produce a known value for this load, exit
- // early.
- if (ValuesPerBlock.empty())
- return false;
-
- // Step 3: Eliminate fully redundancy.
- //
- // If all of the instructions we depend on produce a known value for this
- // load, then it is fully redundant and we can use PHI insertion to compute
- // its value. Insert PHIs and remove the fully redundant value now.
- if (UnavailableBlocks.empty()) {
- LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
-
- // Perform PHI construction.
- Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
- LI->replaceAllUsesWith(V);
-
- if (isa<PHINode>(V))
- V->takeName(LI);
- if (Instruction *I = dyn_cast<Instruction>(V))
- // If instruction I has debug info, then we should not update it.
- // Also, if I has a null DebugLoc, then it is still potentially incorrect
- // to propagate LI's DebugLoc because LI may not post-dominate I.
- if (LI->getDebugLoc() && LI->getParent() == I->getParent())
- I->setDebugLoc(LI->getDebugLoc());
- if (V->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(LI);
- ++NumGVNLoad;
- reportLoadElim(LI, V, ORE);
- return true;
- }
-
- // Step 4: Eliminate partial redundancy.
- if (!EnablePRE || !EnableLoadPRE)
- return false;
-
- return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
-}
-
-bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
- assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
- "This function can only be called with llvm.assume intrinsic");
- Value *V = IntrinsicI->getArgOperand(0);
-
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
- if (Cond->isZero()) {
- Type *Int8Ty = Type::getInt8Ty(V->getContext());
- // Insert a new store to null instruction before the load to indicate that
- // this code is not reachable. FIXME: We could insert unreachable
- // instruction directly because we can modify the CFG.
- new StoreInst(UndefValue::get(Int8Ty),
- Constant::getNullValue(Int8Ty->getPointerTo()),
- IntrinsicI);
- }
- markInstructionForDeletion(IntrinsicI);
- return false;
- } else if (isa<Constant>(V)) {
- // If it's not false, and constant, it must evaluate to true. This means our
- // assume is assume(true), and thus, pointless, and we don't want to do
- // anything more here.
- return false;
- }
-
- Constant *True = ConstantInt::getTrue(V->getContext());
- bool Changed = false;
-
- for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
- BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
-
- // This property is only true in dominated successors, propagateEquality
- // will check dominance for us.
- Changed |= propagateEquality(V, True, Edge, false);
- }
-
- // We can replace assume value with true, which covers cases like this:
- // call void @llvm.assume(i1 %cmp)
- // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
- ReplaceWithConstMap[V] = True;
-
- // If one of *cmp *eq operand is const, adding it to map will cover this:
- // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
- // call void @llvm.assume(i1 %cmp)
- // ret float %0 ; will change it to ret float 3.000000e+00
- if (auto *CmpI = dyn_cast<CmpInst>(V)) {
- if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
- CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
- (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
- CmpI->getFastMathFlags().noNaNs())) {
- Value *CmpLHS = CmpI->getOperand(0);
- Value *CmpRHS = CmpI->getOperand(1);
- if (isa<Constant>(CmpLHS))
- std::swap(CmpLHS, CmpRHS);
- auto *RHSConst = dyn_cast<Constant>(CmpRHS);
-
- // If only one operand is constant.
- if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
- ReplaceWithConstMap[CmpLHS] = RHSConst;
- }
- }
- return Changed;
-}
-
-static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
- patchReplacementInstruction(I, Repl);
- I->replaceAllUsesWith(Repl);
-}
-
-/// Attempt to eliminate a load, first by eliminating it
-/// locally, and then attempting non-local elimination if that fails.
-bool GVN::processLoad(LoadInst *L) {
- if (!MD)
- return false;
-
- // This code hasn't been audited for ordered or volatile memory access
- if (!L->isUnordered())
- return false;
-
- if (L->use_empty()) {
- markInstructionForDeletion(L);
- return true;
- }
-
- // ... to a pointer that has been loaded from before...
- MemDepResult Dep = MD->getDependency(L);
-
- // If it is defined in another block, try harder.
- if (Dep.isNonLocal())
- return processNonLocalLoad(L);
-
- // Only handle the local case below
- if (!Dep.isDef() && !Dep.isClobber()) {
- // This might be a NonFuncLocal or an Unknown
- LLVM_DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load "; L->printAsOperand(dbgs());
- dbgs() << " has unknown dependence\n";);
- return false;
- }
-
- AvailableValue AV;
- if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
- Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
-
- // Replace the load!
- patchAndReplaceAllUsesWith(L, AvailableValue);
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- reportLoadElim(L, AvailableValue, ORE);
- // Tell MDA to rexamine the reused pointer since we might have more
- // information after forwarding it.
- if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(AvailableValue);
- return true;
- }
-
- return false;
-}
-
-/// Return a pair the first field showing the value number of \p Exp and the
-/// second field showing whether it is a value number newly created.
-std::pair<uint32_t, bool>
-GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
- uint32_t &e = expressionNumbering[Exp];
- bool CreateNewValNum = !e;
- if (CreateNewValNum) {
- Expressions.push_back(Exp);
- if (ExprIdx.size() < nextValueNumber + 1)
- ExprIdx.resize(nextValueNumber * 2);
- e = nextValueNumber;
- ExprIdx[nextValueNumber++] = nextExprNumber++;
- }
- return {e, CreateNewValNum};
-}
-
-/// Return whether all the values related with the same \p num are
-/// defined in \p BB.
-bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
- GVN &Gvn) {
- LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
- while (Vals && Vals->BB == BB)
- Vals = Vals->Next;
- return !Vals;
-}
-
-/// Wrap phiTranslateImpl to provide caching functionality.
-uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
- const BasicBlock *PhiBlock, uint32_t Num,
- GVN &Gvn) {
- auto FindRes = PhiTranslateTable.find({Num, Pred});
- if (FindRes != PhiTranslateTable.end())
- return FindRes->second;
- uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
- PhiTranslateTable.insert({{Num, Pred}, NewNum});
- return NewNum;
-}
-
-/// Translate value number \p Num using phis, so that it has the values of
-/// the phis in BB.
-uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
- const BasicBlock *PhiBlock,
- uint32_t Num, GVN &Gvn) {
- if (PHINode *PN = NumberingPhi[Num]) {
- for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
- if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
- if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
- return TransVal;
- }
- return Num;
- }
-
- // If there is any value related with Num is defined in a BB other than
- // PhiBlock, it cannot depend on a phi in PhiBlock without going through
- // a backedge. We can do an early exit in that case to save compile time.
- if (!areAllValsInBB(Num, PhiBlock, Gvn))
- return Num;
-
- if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
- return Num;
- Expression Exp = Expressions[ExprIdx[Num]];
-
- for (unsigned i = 0; i < Exp.varargs.size(); i++) {
- // For InsertValue and ExtractValue, some varargs are index numbers
- // instead of value numbers. Those index numbers should not be
- // translated.
- if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
- (i > 0 && Exp.opcode == Instruction::ExtractValue))
- continue;
- Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
- }
-
- if (Exp.commutative) {
- assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
- if (Exp.varargs[0] > Exp.varargs[1]) {
- std::swap(Exp.varargs[0], Exp.varargs[1]);
- uint32_t Opcode = Exp.opcode >> 8;
- if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
- Exp.opcode = (Opcode << 8) |
- CmpInst::getSwappedPredicate(
- static_cast<CmpInst::Predicate>(Exp.opcode & 255));
- }
- }
-
- if (uint32_t NewNum = expressionNumbering[Exp])
- return NewNum;
- return Num;
-}
-
-/// Erase stale entry from phiTranslate cache so phiTranslate can be computed
-/// again.
-void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
- const BasicBlock &CurrBlock) {
- for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
- auto FindRes = PhiTranslateTable.find({Num, Pred});
- if (FindRes != PhiTranslateTable.end())
- PhiTranslateTable.erase(FindRes);
- }
-}
-
-// In order to find a leader for a given value number at a
-// specific basic block, we first obtain the list of all Values for that number,
-// and then scan the list to find one whose block dominates the block in
-// question. This is fast because dominator tree queries consist of only
-// a few comparisons of DFS numbers.
-Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
- LeaderTableEntry Vals = LeaderTable[num];
- if (!Vals.Val) return nullptr;
-
- Value *Val = nullptr;
- if (DT->dominates(Vals.BB, BB)) {
- Val = Vals.Val;
- if (isa<Constant>(Val)) return Val;
- }
-
- LeaderTableEntry* Next = Vals.Next;
- while (Next) {
- if (DT->dominates(Next->BB, BB)) {
- if (isa<Constant>(Next->Val)) return Next->Val;
- if (!Val) Val = Next->Val;
- }
-
- Next = Next->Next;
- }
-
- return Val;
-}
-
-/// There is an edge from 'Src' to 'Dst'. Return
-/// true if every path from the entry block to 'Dst' passes via this edge. In
-/// particular 'Dst' must not be reachable via another edge from 'Src'.
-static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
- DominatorTree *DT) {
- // While in theory it is interesting to consider the case in which Dst has
- // more than one predecessor, because Dst might be part of a loop which is
- // only reachable from Src, in practice it is pointless since at the time
- // GVN runs all such loops have preheaders, which means that Dst will have
- // been changed to have only one predecessor, namely Src.
- const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
- assert((!Pred || Pred == E.getStart()) &&
- "No edge between these basic blocks!");
- return Pred != nullptr;
-}
-
-void GVN::assignBlockRPONumber(Function &F) {
- BlockRPONumber.clear();
- uint32_t NextBlockNumber = 1;
- ReversePostOrderTraversal<Function *> RPOT(&F);
- for (BasicBlock *BB : RPOT)
- BlockRPONumber[BB] = NextBlockNumber++;
- InvalidBlockRPONumbers = false;
-}
-
-// Tries to replace instruction with const, using information from
-// ReplaceWithConstMap.
-bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
- bool Changed = false;
- for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
- Value *Operand = Instr->getOperand(OpNum);
- auto it = ReplaceWithConstMap.find(Operand);
- if (it != ReplaceWithConstMap.end()) {
- assert(!isa<Constant>(Operand) &&
- "Replacing constants with constants is invalid");
- LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
- << *it->second << " in instruction " << *Instr << '\n');
- Instr->setOperand(OpNum, it->second);
- Changed = true;
- }
- }
- return Changed;
-}
-
-/// The given values are known to be equal in every block
-/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
-/// 'RHS' everywhere in the scope. Returns whether a change was made.
-/// If DominatesByEdge is false, then it means that we will propagate the RHS
-/// value starting from the end of Root.Start.
-bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
- bool DominatesByEdge) {
- SmallVector<std::pair<Value*, Value*>, 4> Worklist;
- Worklist.push_back(std::make_pair(LHS, RHS));
- bool Changed = false;
- // For speed, compute a conservative fast approximation to
- // DT->dominates(Root, Root.getEnd());
- const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
-
- while (!Worklist.empty()) {
- std::pair<Value*, Value*> Item = Worklist.pop_back_val();
- LHS = Item.first; RHS = Item.second;
-
- if (LHS == RHS)
- continue;
- assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
-
- // Don't try to propagate equalities between constants.
- if (isa<Constant>(LHS) && isa<Constant>(RHS))
- continue;
-
- // Prefer a constant on the right-hand side, or an Argument if no constants.
- if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
- std::swap(LHS, RHS);
- assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
-
- // If there is no obvious reason to prefer the left-hand side over the
- // right-hand side, ensure the longest lived term is on the right-hand side,
- // so the shortest lived term will be replaced by the longest lived.
- // This tends to expose more simplifications.
- uint32_t LVN = VN.lookupOrAdd(LHS);
- if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
- (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
- // Move the 'oldest' value to the right-hand side, using the value number
- // as a proxy for age.
- uint32_t RVN = VN.lookupOrAdd(RHS);
- if (LVN < RVN) {
- std::swap(LHS, RHS);
- LVN = RVN;
- }
- }
-
- // If value numbering later sees that an instruction in the scope is equal
- // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
- // the invariant that instructions only occur in the leader table for their
- // own value number (this is used by removeFromLeaderTable), do not do this
- // if RHS is an instruction (if an instruction in the scope is morphed into
- // LHS then it will be turned into RHS by the next GVN iteration anyway, so
- // using the leader table is about compiling faster, not optimizing better).
- // The leader table only tracks basic blocks, not edges. Only add to if we
- // have the simple case where the edge dominates the end.
- if (RootDominatesEnd && !isa<Instruction>(RHS))
- addToLeaderTable(LVN, RHS, Root.getEnd());
-
- // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
- // LHS always has at least one use that is not dominated by Root, this will
- // never do anything if LHS has only one use.
- if (!LHS->hasOneUse()) {
- unsigned NumReplacements =
- DominatesByEdge
- ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
- : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
-
- Changed |= NumReplacements > 0;
- NumGVNEqProp += NumReplacements;
- // Cached information for anything that uses LHS will be invalid.
- if (MD)
- MD->invalidateCachedPointerInfo(LHS);
- }
-
- // Now try to deduce additional equalities from this one. For example, if
- // the known equality was "(A != B)" == "false" then it follows that A and B
- // are equal in the scope. Only boolean equalities with an explicit true or
- // false RHS are currently supported.
- if (!RHS->getType()->isIntegerTy(1))
- // Not a boolean equality - bail out.
- continue;
- ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
- if (!CI)
- // RHS neither 'true' nor 'false' - bail out.
- continue;
- // Whether RHS equals 'true'. Otherwise it equals 'false'.
- bool isKnownTrue = CI->isMinusOne();
- bool isKnownFalse = !isKnownTrue;
-
- // If "A && B" is known true then both A and B are known true. If "A || B"
- // is known false then both A and B are known false.
- Value *A, *B;
- if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
- (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
- Worklist.push_back(std::make_pair(A, RHS));
- Worklist.push_back(std::make_pair(B, RHS));
- continue;
- }
-
- // If we are propagating an equality like "(A == B)" == "true" then also
- // propagate the equality A == B. When propagating a comparison such as
- // "(A >= B)" == "true", replace all instances of "A < B" with "false".
- if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
- Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
-
- // If "A == B" is known true, or "A != B" is known false, then replace
- // A with B everywhere in the scope.
- if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
- (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
- Worklist.push_back(std::make_pair(Op0, Op1));
-
- // Handle the floating point versions of equality comparisons too.
- if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
- (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
-
- // Floating point -0.0 and 0.0 compare equal, so we can only
- // propagate values if we know that we have a constant and that
- // its value is non-zero.
-
- // FIXME: We should do this optimization if 'no signed zeros' is
- // applicable via an instruction-level fast-math-flag or some other
- // indicator that relaxed FP semantics are being used.
-
- if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
- Worklist.push_back(std::make_pair(Op0, Op1));
- }
-
- // If "A >= B" is known true, replace "A < B" with false everywhere.
- CmpInst::Predicate NotPred = Cmp->getInversePredicate();
- Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
- // Since we don't have the instruction "A < B" immediately to hand, work
- // out the value number that it would have and use that to find an
- // appropriate instruction (if any).
- uint32_t NextNum = VN.getNextUnusedValueNumber();
- uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
- // If the number we were assigned was brand new then there is no point in
- // looking for an instruction realizing it: there cannot be one!
- if (Num < NextNum) {
- Value *NotCmp = findLeader(Root.getEnd(), Num);
- if (NotCmp && isa<Instruction>(NotCmp)) {
- unsigned NumReplacements =
- DominatesByEdge
- ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
- : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
- Root.getStart());
- Changed |= NumReplacements > 0;
- NumGVNEqProp += NumReplacements;
- // Cached information for anything that uses NotCmp will be invalid.
- if (MD)
- MD->invalidateCachedPointerInfo(NotCmp);
- }
- }
- // Ensure that any instruction in scope that gets the "A < B" value number
- // is replaced with false.
- // The leader table only tracks basic blocks, not edges. Only add to if we
- // have the simple case where the edge dominates the end.
- if (RootDominatesEnd)
- addToLeaderTable(Num, NotVal, Root.getEnd());
-
- continue;
- }
- }
-
- return Changed;
-}
-
-/// When calculating availability, handle an instruction
-/// by inserting it into the appropriate sets
-bool GVN::processInstruction(Instruction *I) {
- // Ignore dbg info intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
-
- // If the instruction can be easily simplified then do so now in preference
- // to value numbering it. Value numbering often exposes redundancies, for
- // example if it determines that %y is equal to %x then the instruction
- // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
- const DataLayout &DL = I->getModule()->getDataLayout();
- if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
- bool Changed = false;
- if (!I->use_empty()) {
- I->replaceAllUsesWith(V);
- Changed = true;
- }
- if (isInstructionTriviallyDead(I, TLI)) {
- markInstructionForDeletion(I);
- Changed = true;
- }
- if (Changed) {
- if (MD && V->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(V);
- ++NumGVNSimpl;
- return true;
- }
- }
-
- if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
- if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
- return processAssumeIntrinsic(IntrinsicI);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (processLoad(LI))
- return true;
-
- unsigned Num = VN.lookupOrAdd(LI);
- addToLeaderTable(Num, LI, LI->getParent());
- return false;
- }
-
- // For conditional branches, we can perform simple conditional propagation on
- // the condition value itself.
- if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- if (!BI->isConditional())
- return false;
-
- if (isa<Constant>(BI->getCondition()))
- return processFoldableCondBr(BI);
-
- Value *BranchCond = BI->getCondition();
- BasicBlock *TrueSucc = BI->getSuccessor(0);
- BasicBlock *FalseSucc = BI->getSuccessor(1);
- // Avoid multiple edges early.
- if (TrueSucc == FalseSucc)
- return false;
-
- BasicBlock *Parent = BI->getParent();
- bool Changed = false;
-
- Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
- BasicBlockEdge TrueE(Parent, TrueSucc);
- Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
-
- Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
- BasicBlockEdge FalseE(Parent, FalseSucc);
- Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
-
- return Changed;
- }
-
- // For switches, propagate the case values into the case destinations.
- if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
- Value *SwitchCond = SI->getCondition();
- BasicBlock *Parent = SI->getParent();
- bool Changed = false;
-
- // Remember how many outgoing edges there are to every successor.
- SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
- for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
- ++SwitchEdges[SI->getSuccessor(i)];
-
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- BasicBlock *Dst = i->getCaseSuccessor();
- // If there is only a single edge, propagate the case value into it.
- if (SwitchEdges.lookup(Dst) == 1) {
- BasicBlockEdge E(Parent, Dst);
- Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
- }
- }
- return Changed;
- }
-
- // Instructions with void type don't return a value, so there's
- // no point in trying to find redundancies in them.
- if (I->getType()->isVoidTy())
- return false;
-
- uint32_t NextNum = VN.getNextUnusedValueNumber();
- unsigned Num = VN.lookupOrAdd(I);
-
- // Allocations are always uniquely numbered, so we can save time and memory
- // by fast failing them.
- if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
-
- // If the number we were assigned was a brand new VN, then we don't
- // need to do a lookup to see if the number already exists
- // somewhere in the domtree: it can't!
- if (Num >= NextNum) {
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
-
- // Perform fast-path value-number based elimination of values inherited from
- // dominators.
- Value *Repl = findLeader(I->getParent(), Num);
- if (!Repl) {
- // Failure, just remember this instance for future use.
- addToLeaderTable(Num, I, I->getParent());
- return false;
- } else if (Repl == I) {
- // If I was the result of a shortcut PRE, it might already be in the table
- // and the best replacement for itself. Nothing to do.
- return false;
- }
-
- // Remove it!
- patchAndReplaceAllUsesWith(I, Repl);
- if (MD && Repl->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(Repl);
- markInstructionForDeletion(I);
- return true;
-}
-
-/// runOnFunction - This is the main transformation entry point for a function.
-bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
- const TargetLibraryInfo &RunTLI, AAResults &RunAA,
- MemoryDependenceResults *RunMD, LoopInfo *LI,
- OptimizationRemarkEmitter *RunORE) {
- AC = &RunAC;
- DT = &RunDT;
- VN.setDomTree(DT);
- TLI = &RunTLI;
- VN.setAliasAnalysis(&RunAA);
- MD = RunMD;
- ImplicitControlFlowTracking ImplicitCFT(DT);
- ICF = &ImplicitCFT;
- VN.setMemDep(MD);
- ORE = RunORE;
- InvalidBlockRPONumbers = true;
-
- bool Changed = false;
- bool ShouldContinue = true;
-
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- // Merge unconditional branches, allowing PRE to catch more
- // optimization opportunities.
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
- BasicBlock *BB = &*FI++;
-
- bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
- if (removedBlock)
- ++NumGVNBlocks;
-
- Changed |= removedBlock;
- }
-
- unsigned Iteration = 0;
- while (ShouldContinue) {
- LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
- ShouldContinue = iterateOnFunction(F);
- Changed |= ShouldContinue;
- ++Iteration;
- }
-
- if (EnablePRE) {
- // Fabricate val-num for dead-code in order to suppress assertion in
- // performPRE().
- assignValNumForDeadCode();
- bool PREChanged = true;
- while (PREChanged) {
- PREChanged = performPRE(F);
- Changed |= PREChanged;
- }
- }
-
- // FIXME: Should perform GVN again after PRE does something. PRE can move
- // computations into blocks where they become fully redundant. Note that
- // we can't do this until PRE's critical edge splitting updates memdep.
- // Actually, when this happens, we should just fully integrate PRE into GVN.
-
- cleanupGlobalSets();
- // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
- // iteration.
- DeadBlocks.clear();
-
- return Changed;
-}
-
-bool GVN::processBlock(BasicBlock *BB) {
- // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
- // (and incrementing BI before processing an instruction).
- assert(InstrsToErase.empty() &&
- "We expect InstrsToErase to be empty across iterations");
- if (DeadBlocks.count(BB))
- return false;
-
- // Clearing map before every BB because it can be used only for single BB.
- ReplaceWithConstMap.clear();
- bool ChangedFunction = false;
-
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
- BI != BE;) {
- if (!ReplaceWithConstMap.empty())
- ChangedFunction |= replaceOperandsWithConsts(&*BI);
- ChangedFunction |= processInstruction(&*BI);
-
- if (InstrsToErase.empty()) {
- ++BI;
- continue;
- }
-
- // If we need some instructions deleted, do it now.
- NumGVNInstr += InstrsToErase.size();
-
- // Avoid iterator invalidation.
- bool AtStart = BI == BB->begin();
- if (!AtStart)
- --BI;
-
- for (auto *I : InstrsToErase) {
- assert(I->getParent() == BB && "Removing instruction from wrong block?");
- LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
- salvageDebugInfo(*I);
- if (MD) MD->removeInstruction(I);
- LLVM_DEBUG(verifyRemoved(I));
- ICF->removeInstruction(I);
- I->eraseFromParent();
- }
- InstrsToErase.clear();
-
- if (AtStart)
- BI = BB->begin();
- else
- ++BI;
- }
-
- return ChangedFunction;
-}
-
-// Instantiate an expression in a predecessor that lacked it.
-bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
- BasicBlock *Curr, unsigned int ValNo) {
- // Because we are going top-down through the block, all value numbers
- // will be available in the predecessor by the time we need them. Any
- // that weren't originally present will have been instantiated earlier
- // in this loop.
- bool success = true;
- for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
- Value *Op = Instr->getOperand(i);
- if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
- continue;
- // This could be a newly inserted instruction, in which case, we won't
- // find a value number, and should give up before we hurt ourselves.
- // FIXME: Rewrite the infrastructure to let it easier to value number
- // and process newly inserted instructions.
- if (!VN.exists(Op)) {
- success = false;
- break;
- }
- uint32_t TValNo =
- VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
- if (Value *V = findLeader(Pred, TValNo)) {
- Instr->setOperand(i, V);
- } else {
- success = false;
- break;
- }
- }
-
- // Fail out if we encounter an operand that is not available in
- // the PRE predecessor. This is typically because of loads which
- // are not value numbered precisely.
- if (!success)
- return false;
-
- Instr->insertBefore(Pred->getTerminator());
- Instr->setName(Instr->getName() + ".pre");
- Instr->setDebugLoc(Instr->getDebugLoc());
-
- unsigned Num = VN.lookupOrAdd(Instr);
- VN.add(Instr, Num);
-
- // Update the availability map to include the new instruction.
- addToLeaderTable(Num, Instr, Pred);
- return true;
-}
-
-bool GVN::performScalarPRE(Instruction *CurInst) {
- if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
- isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
- CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
- isa<DbgInfoIntrinsic>(CurInst))
- return false;
-
- // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
- // sinking the compare again, and it would force the code generator to
- // move the i1 from processor flags or predicate registers into a general
- // purpose register.
- if (isa<CmpInst>(CurInst))
- return false;
-
- // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
- // sinking the addressing mode computation back to its uses. Extending the
- // GEP's live range increases the register pressure, and therefore it can
- // introduce unnecessary spills.
- //
- // This doesn't prevent Load PRE. PHI translation will make the GEP available
- // to the load by moving it to the predecessor block if necessary.
- if (isa<GetElementPtrInst>(CurInst))
- return false;
-
- // We don't currently value number ANY inline asm calls.
- if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
- if (CallI->isInlineAsm())
- return false;
-
- uint32_t ValNo = VN.lookup(CurInst);
-
- // Look for the predecessors for PRE opportunities. We're
- // only trying to solve the basic diamond case, where
- // a value is computed in the successor and one predecessor,
- // but not the other. We also explicitly disallow cases
- // where the successor is its own predecessor, because they're
- // more complicated to get right.
- unsigned NumWith = 0;
- unsigned NumWithout = 0;
- BasicBlock *PREPred = nullptr;
- BasicBlock *CurrentBlock = CurInst->getParent();
-
- // Update the RPO numbers for this function.
- if (InvalidBlockRPONumbers)
- assignBlockRPONumber(*CurrentBlock->getParent());
-
- SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
- for (BasicBlock *P : predecessors(CurrentBlock)) {
- // We're not interested in PRE where blocks with predecessors that are
- // not reachable.
- if (!DT->isReachableFromEntry(P)) {
- NumWithout = 2;
- break;
- }
- // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
- // when CurInst has operand defined in CurrentBlock (so it may be defined
- // by phi in the loop header).
- assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
- "Invalid BlockRPONumber map.");
- if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
- llvm::any_of(CurInst->operands(), [&](const Use &U) {
- if (auto *Inst = dyn_cast<Instruction>(U.get()))
- return Inst->getParent() == CurrentBlock;
- return false;
- })) {
- NumWithout = 2;
- break;
- }
-
- uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
- Value *predV = findLeader(P, TValNo);
- if (!predV) {
- predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
- PREPred = P;
- ++NumWithout;
- } else if (predV == CurInst) {
- /* CurInst dominates this predecessor. */
- NumWithout = 2;
- break;
- } else {
- predMap.push_back(std::make_pair(predV, P));
- ++NumWith;
- }
- }
-
- // Don't do PRE when it might increase code size, i.e. when
- // we would need to insert instructions in more than one pred.
- if (NumWithout > 1 || NumWith == 0)
- return false;
-
- // We may have a case where all predecessors have the instruction,
- // and we just need to insert a phi node. Otherwise, perform
- // insertion.
- Instruction *PREInstr = nullptr;
-
- if (NumWithout != 0) {
- if (!isSafeToSpeculativelyExecute(CurInst)) {
- // It is only valid to insert a new instruction if the current instruction
- // is always executed. An instruction with implicit control flow could
- // prevent us from doing it. If we cannot speculate the execution, then
- // PRE should be prohibited.
- if (ICF->isDominatedByICFIFromSameBlock(CurInst))
- return false;
- }
-
- // Don't do PRE across indirect branch.
- if (isa<IndirectBrInst>(PREPred->getTerminator()))
- return false;
-
- // We can't do PRE safely on a critical edge, so instead we schedule
- // the edge to be split and perform the PRE the next time we iterate
- // on the function.
- unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
- if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
- toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
- return false;
- }
- // We need to insert somewhere, so let's give it a shot
- PREInstr = CurInst->clone();
- if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
- // If we failed insertion, make sure we remove the instruction.
- LLVM_DEBUG(verifyRemoved(PREInstr));
- PREInstr->deleteValue();
- return false;
- }
- }
-
- // Either we should have filled in the PRE instruction, or we should
- // not have needed insertions.
- assert(PREInstr != nullptr || NumWithout == 0);
-
- ++NumGVNPRE;
-
- // Create a PHI to make the value available in this block.
- PHINode *Phi =
- PHINode::Create(CurInst->getType(), predMap.size(),
- CurInst->getName() + ".pre-phi", &CurrentBlock->front());
- for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
- if (Value *V = predMap[i].first) {
- // If we use an existing value in this phi, we have to patch the original
- // value because the phi will be used to replace a later value.
- patchReplacementInstruction(CurInst, V);
- Phi->addIncoming(V, predMap[i].second);
- } else
- Phi->addIncoming(PREInstr, PREPred);
- }
-
- VN.add(Phi, ValNo);
- // After creating a new PHI for ValNo, the phi translate result for ValNo will
- // be changed, so erase the related stale entries in phi translate cache.
- VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
- addToLeaderTable(ValNo, Phi, CurrentBlock);
- Phi->setDebugLoc(CurInst->getDebugLoc());
- CurInst->replaceAllUsesWith(Phi);
- if (MD && Phi->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(Phi);
- VN.erase(CurInst);
- removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
-
- LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
- if (MD)
- MD->removeInstruction(CurInst);
- LLVM_DEBUG(verifyRemoved(CurInst));
- // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
- // some assertion failures.
- ICF->removeInstruction(CurInst);
- CurInst->eraseFromParent();
- ++NumGVNInstr;
-
- return true;
-}
-
-/// Perform a purely local form of PRE that looks for diamond
-/// control flow patterns and attempts to perform simple PRE at the join point.
-bool GVN::performPRE(Function &F) {
- bool Changed = false;
- for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
- // Nothing to PRE in the entry block.
- if (CurrentBlock == &F.getEntryBlock())
- continue;
-
- // Don't perform PRE on an EH pad.
- if (CurrentBlock->isEHPad())
- continue;
-
- for (BasicBlock::iterator BI = CurrentBlock->begin(),
- BE = CurrentBlock->end();
- BI != BE;) {
- Instruction *CurInst = &*BI++;
- Changed |= performScalarPRE(CurInst);
- }
- }
-
- if (splitCriticalEdges())
- Changed = true;
-
- return Changed;
-}
-
-/// Split the critical edge connecting the given two blocks, and return
-/// the block inserted to the critical edge.
-BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
- BasicBlock *BB =
- SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
- if (MD)
- MD->invalidateCachedPredecessors();
- InvalidBlockRPONumbers = true;
- return BB;
-}
-
-/// Split critical edges found during the previous
-/// iteration that may enable further optimization.
-bool GVN::splitCriticalEdges() {
- if (toSplit.empty())
- return false;
- do {
- std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
- SplitCriticalEdge(Edge.first, Edge.second,
- CriticalEdgeSplittingOptions(DT));
- } while (!toSplit.empty());
- if (MD) MD->invalidateCachedPredecessors();
- InvalidBlockRPONumbers = true;
- return true;
-}
-
-/// Executes one iteration of GVN
-bool GVN::iterateOnFunction(Function &F) {
- cleanupGlobalSets();
-
- // Top-down walk of the dominator tree
- bool Changed = false;
- // Needed for value numbering with phi construction to work.
- // RPOT walks the graph in its constructor and will not be invalidated during
- // processBlock.
- ReversePostOrderTraversal<Function *> RPOT(&F);
-
- for (BasicBlock *BB : RPOT)
- Changed |= processBlock(BB);
-
- return Changed;
-}
-
-void GVN::cleanupGlobalSets() {
- VN.clear();
- LeaderTable.clear();
- BlockRPONumber.clear();
- TableAllocator.Reset();
- ICF->clear();
- InvalidBlockRPONumbers = true;
-}
-
-/// Verify that the specified instruction does not occur in our
-/// internal data structures.
-void GVN::verifyRemoved(const Instruction *Inst) const {
- VN.verifyRemoved(Inst);
-
- // Walk through the value number scope to make sure the instruction isn't
- // ferreted away in it.
- for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
- I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
- const LeaderTableEntry *Node = &I->second;
- assert(Node->Val != Inst && "Inst still in value numbering scope!");
-
- while (Node->Next) {
- Node = Node->Next;
- assert(Node->Val != Inst && "Inst still in value numbering scope!");
- }
- }
-}
-
-/// BB is declared dead, which implied other blocks become dead as well. This
-/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
-/// live successors, update their phi nodes by replacing the operands
-/// corresponding to dead blocks with UndefVal.
-void GVN::addDeadBlock(BasicBlock *BB) {
- SmallVector<BasicBlock *, 4> NewDead;
- SmallSetVector<BasicBlock *, 4> DF;
-
- NewDead.push_back(BB);
- while (!NewDead.empty()) {
- BasicBlock *D = NewDead.pop_back_val();
- if (DeadBlocks.count(D))
- continue;
-
- // All blocks dominated by D are dead.
- SmallVector<BasicBlock *, 8> Dom;
- DT->getDescendants(D, Dom);
- DeadBlocks.insert(Dom.begin(), Dom.end());
-
- // Figure out the dominance-frontier(D).
- for (BasicBlock *B : Dom) {
- for (BasicBlock *S : successors(B)) {
- if (DeadBlocks.count(S))
- continue;
-
- bool AllPredDead = true;
- for (BasicBlock *P : predecessors(S))
- if (!DeadBlocks.count(P)) {
- AllPredDead = false;
- break;
- }
-
- if (!AllPredDead) {
- // S could be proved dead later on. That is why we don't update phi
- // operands at this moment.
- DF.insert(S);
- } else {
- // While S is not dominated by D, it is dead by now. This could take
- // place if S already have a dead predecessor before D is declared
- // dead.
- NewDead.push_back(S);
- }
- }
- }
- }
-
- // For the dead blocks' live successors, update their phi nodes by replacing
- // the operands corresponding to dead blocks with UndefVal.
- for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
- I != E; I++) {
- BasicBlock *B = *I;
- if (DeadBlocks.count(B))
- continue;
-
- SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
- for (BasicBlock *P : Preds) {
- if (!DeadBlocks.count(P))
- continue;
-
- if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
- if (BasicBlock *S = splitCriticalEdges(P, B))
- DeadBlocks.insert(P = S);
- }
-
- for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
- PHINode &Phi = cast<PHINode>(*II);
- Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
- UndefValue::get(Phi.getType()));
- if (MD)
- MD->invalidateCachedPointerInfo(&Phi);
- }
- }
- }
-}
-
-// If the given branch is recognized as a foldable branch (i.e. conditional
-// branch with constant condition), it will perform following analyses and
-// transformation.
-// 1) If the dead out-coming edge is a critical-edge, split it. Let
-// R be the target of the dead out-coming edge.
-// 1) Identify the set of dead blocks implied by the branch's dead outcoming
-// edge. The result of this step will be {X| X is dominated by R}
-// 2) Identify those blocks which haves at least one dead predecessor. The
-// result of this step will be dominance-frontier(R).
-// 3) Update the PHIs in DF(R) by replacing the operands corresponding to
-// dead blocks with "UndefVal" in an hope these PHIs will optimized away.
-//
-// Return true iff *NEW* dead code are found.
-bool GVN::processFoldableCondBr(BranchInst *BI) {
- if (!BI || BI->isUnconditional())
- return false;
-
- // If a branch has two identical successors, we cannot declare either dead.
- if (BI->getSuccessor(0) == BI->getSuccessor(1))
- return false;
-
- ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
- if (!Cond)
- return false;
-
- BasicBlock *DeadRoot =
- Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
- if (DeadBlocks.count(DeadRoot))
- return false;
-
- if (!DeadRoot->getSinglePredecessor())
- DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
-
- addDeadBlock(DeadRoot);
- return true;
-}
-
-// performPRE() will trigger assert if it comes across an instruction without
-// associated val-num. As it normally has far more live instructions than dead
-// instructions, it makes more sense just to "fabricate" a val-number for the
-// dead code than checking if instruction involved is dead or not.
-void GVN::assignValNumForDeadCode() {
- for (BasicBlock *BB : DeadBlocks) {
- for (Instruction &Inst : *BB) {
- unsigned ValNum = VN.lookupOrAdd(&Inst);
- addToLeaderTable(ValNum, &Inst, BB);
- }
- }
-}
-
-class llvm::gvn::GVNLegacyPass : public FunctionPass {
-public:
- static char ID; // Pass identification, replacement for typeid
-
- explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
- : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
- initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
-
- return Impl.runImpl(
- F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
- getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
- getAnalysis<AAResultsWrapperPass>().getAAResults(),
- NoMemDepAnalysis ? nullptr
- : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
- LIWP ? &LIWP->getLoopInfo() : nullptr,
- &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- if (!NoMemDepAnalysis)
- AU.addRequired<MemoryDependenceWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
-
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<TargetLibraryInfoWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- }
-
-private:
- bool NoMemDepAnalysis;
- GVN Impl;
-};
-
-char GVNLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
-INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
-
-// The public interface to this file...
-FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
- return new GVNLegacyPass(NoMemDepAnalysis);
-}