summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp1879
1 files changed, 0 insertions, 1879 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp b/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
deleted file mode 100644
index 1c701bbee18..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
+++ /dev/null
@@ -1,1879 +0,0 @@
-//===- InductiveRangeCheckElimination.cpp - -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// The InductiveRangeCheckElimination pass splits a loop's iteration space into
-// three disjoint ranges. It does that in a way such that the loop running in
-// the middle loop provably does not need range checks. As an example, it will
-// convert
-//
-// len = < known positive >
-// for (i = 0; i < n; i++) {
-// if (0 <= i && i < len) {
-// do_something();
-// } else {
-// throw_out_of_bounds();
-// }
-// }
-//
-// to
-//
-// len = < known positive >
-// limit = smin(n, len)
-// // no first segment
-// for (i = 0; i < limit; i++) {
-// if (0 <= i && i < len) { // this check is fully redundant
-// do_something();
-// } else {
-// throw_out_of_bounds();
-// }
-// }
-// for (i = limit; i < n; i++) {
-// if (0 <= i && i < len) {
-// do_something();
-// } else {
-// throw_out_of_bounds();
-// }
-// }
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/BranchProbabilityInfo.h"
-#include "llvm/Analysis/LoopAnalysisManager.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/BranchProbability.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/LoopSimplify.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/ValueMapper.h"
-#include <algorithm>
-#include <cassert>
-#include <iterator>
-#include <limits>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
- cl::init(64));
-
-static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
- cl::init(false));
-
-static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
- cl::init(false));
-
-static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
- cl::Hidden, cl::init(10));
-
-static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
- cl::Hidden, cl::init(false));
-
-static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
- cl::Hidden, cl::init(true));
-
-static const char *ClonedLoopTag = "irce.loop.clone";
-
-#define DEBUG_TYPE "irce"
-
-namespace {
-
-/// An inductive range check is conditional branch in a loop with
-///
-/// 1. a very cold successor (i.e. the branch jumps to that successor very
-/// rarely)
-///
-/// and
-///
-/// 2. a condition that is provably true for some contiguous range of values
-/// taken by the containing loop's induction variable.
-///
-class InductiveRangeCheck {
-
- const SCEV *Begin = nullptr;
- const SCEV *Step = nullptr;
- const SCEV *End = nullptr;
- Use *CheckUse = nullptr;
- bool IsSigned = true;
-
- static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
- Value *&Index, Value *&Length,
- bool &IsSigned);
-
- static void
- extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
- SmallVectorImpl<InductiveRangeCheck> &Checks,
- SmallPtrSetImpl<Value *> &Visited);
-
-public:
- const SCEV *getBegin() const { return Begin; }
- const SCEV *getStep() const { return Step; }
- const SCEV *getEnd() const { return End; }
- bool isSigned() const { return IsSigned; }
-
- void print(raw_ostream &OS) const {
- OS << "InductiveRangeCheck:\n";
- OS << " Begin: ";
- Begin->print(OS);
- OS << " Step: ";
- Step->print(OS);
- OS << " End: ";
- End->print(OS);
- OS << "\n CheckUse: ";
- getCheckUse()->getUser()->print(OS);
- OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
- }
-
- LLVM_DUMP_METHOD
- void dump() {
- print(dbgs());
- }
-
- Use *getCheckUse() const { return CheckUse; }
-
- /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
- /// R.getEnd() le R.getBegin(), then R denotes the empty range.
-
- class Range {
- const SCEV *Begin;
- const SCEV *End;
-
- public:
- Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
- assert(Begin->getType() == End->getType() && "ill-typed range!");
- }
-
- Type *getType() const { return Begin->getType(); }
- const SCEV *getBegin() const { return Begin; }
- const SCEV *getEnd() const { return End; }
- bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
- if (Begin == End)
- return true;
- if (IsSigned)
- return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
- else
- return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
- }
- };
-
- /// This is the value the condition of the branch needs to evaluate to for the
- /// branch to take the hot successor (see (1) above).
- bool getPassingDirection() { return true; }
-
- /// Computes a range for the induction variable (IndVar) in which the range
- /// check is redundant and can be constant-folded away. The induction
- /// variable is not required to be the canonical {0,+,1} induction variable.
- Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
- const SCEVAddRecExpr *IndVar,
- bool IsLatchSigned) const;
-
- /// Parse out a set of inductive range checks from \p BI and append them to \p
- /// Checks.
- ///
- /// NB! There may be conditions feeding into \p BI that aren't inductive range
- /// checks, and hence don't end up in \p Checks.
- static void
- extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
- BranchProbabilityInfo *BPI,
- SmallVectorImpl<InductiveRangeCheck> &Checks);
-};
-
-class InductiveRangeCheckElimination {
- ScalarEvolution &SE;
- BranchProbabilityInfo *BPI;
- DominatorTree &DT;
- LoopInfo &LI;
-
-public:
- InductiveRangeCheckElimination(ScalarEvolution &SE,
- BranchProbabilityInfo *BPI, DominatorTree &DT,
- LoopInfo &LI)
- : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
-
- bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
-};
-
-class IRCELegacyPass : public LoopPass {
-public:
- static char ID;
-
- IRCELegacyPass() : LoopPass(ID) {
- initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<BranchProbabilityInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
-};
-
-} // end anonymous namespace
-
-char IRCELegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
- "Inductive range check elimination", false, false)
-INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
- false, false)
-
-/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
-/// be interpreted as a range check, return false and set `Index` and `Length`
-/// to `nullptr`. Otherwise set `Index` to the value being range checked, and
-/// set `Length` to the upper limit `Index` is being range checked.
-bool
-InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
- ScalarEvolution &SE, Value *&Index,
- Value *&Length, bool &IsSigned) {
- auto IsLoopInvariant = [&SE, L](Value *V) {
- return SE.isLoopInvariant(SE.getSCEV(V), L);
- };
-
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
-
- switch (Pred) {
- default:
- return false;
-
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SGE:
- IsSigned = true;
- if (match(RHS, m_ConstantInt<0>())) {
- Index = LHS;
- return true; // Lower.
- }
- return false;
-
- case ICmpInst::ICMP_SLT:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SGT:
- IsSigned = true;
- if (match(RHS, m_ConstantInt<-1>())) {
- Index = LHS;
- return true; // Lower.
- }
-
- if (IsLoopInvariant(LHS)) {
- Index = RHS;
- Length = LHS;
- return true; // Upper.
- }
- return false;
-
- case ICmpInst::ICMP_ULT:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_UGT:
- IsSigned = false;
- if (IsLoopInvariant(LHS)) {
- Index = RHS;
- Length = LHS;
- return true; // Both lower and upper.
- }
- return false;
- }
-
- llvm_unreachable("default clause returns!");
-}
-
-void InductiveRangeCheck::extractRangeChecksFromCond(
- Loop *L, ScalarEvolution &SE, Use &ConditionUse,
- SmallVectorImpl<InductiveRangeCheck> &Checks,
- SmallPtrSetImpl<Value *> &Visited) {
- Value *Condition = ConditionUse.get();
- if (!Visited.insert(Condition).second)
- return;
-
- // TODO: Do the same for OR, XOR, NOT etc?
- if (match(Condition, m_And(m_Value(), m_Value()))) {
- extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
- Checks, Visited);
- extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
- Checks, Visited);
- return;
- }
-
- ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
- if (!ICI)
- return;
-
- Value *Length = nullptr, *Index;
- bool IsSigned;
- if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
- return;
-
- const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
- bool IsAffineIndex =
- IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
-
- if (!IsAffineIndex)
- return;
-
- const SCEV *End = nullptr;
- // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
- // We can potentially do much better here.
- if (Length)
- End = SE.getSCEV(Length);
- else {
- // So far we can only reach this point for Signed range check. This may
- // change in future. In this case we will need to pick Unsigned max for the
- // unsigned range check.
- unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
- const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
- End = SIntMax;
- }
-
- InductiveRangeCheck IRC;
- IRC.End = End;
- IRC.Begin = IndexAddRec->getStart();
- IRC.Step = IndexAddRec->getStepRecurrence(SE);
- IRC.CheckUse = &ConditionUse;
- IRC.IsSigned = IsSigned;
- Checks.push_back(IRC);
-}
-
-void InductiveRangeCheck::extractRangeChecksFromBranch(
- BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
- SmallVectorImpl<InductiveRangeCheck> &Checks) {
- if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
- return;
-
- BranchProbability LikelyTaken(15, 16);
-
- if (!SkipProfitabilityChecks && BPI &&
- BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
- return;
-
- SmallPtrSet<Value *, 8> Visited;
- InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
- Checks, Visited);
-}
-
-// Add metadata to the loop L to disable loop optimizations. Callers need to
-// confirm that optimizing loop L is not beneficial.
-static void DisableAllLoopOptsOnLoop(Loop &L) {
- // We do not care about any existing loopID related metadata for L, since we
- // are setting all loop metadata to false.
- LLVMContext &Context = L.getHeader()->getContext();
- // Reserve first location for self reference to the LoopID metadata node.
- MDNode *Dummy = MDNode::get(Context, {});
- MDNode *DisableUnroll = MDNode::get(
- Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
- Metadata *FalseVal =
- ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
- MDNode *DisableVectorize = MDNode::get(
- Context,
- {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
- MDNode *DisableLICMVersioning = MDNode::get(
- Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
- MDNode *DisableDistribution= MDNode::get(
- Context,
- {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
- MDNode *NewLoopID =
- MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
- DisableLICMVersioning, DisableDistribution});
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L.setLoopID(NewLoopID);
-}
-
-namespace {
-
-// Keeps track of the structure of a loop. This is similar to llvm::Loop,
-// except that it is more lightweight and can track the state of a loop through
-// changing and potentially invalid IR. This structure also formalizes the
-// kinds of loops we can deal with -- ones that have a single latch that is also
-// an exiting block *and* have a canonical induction variable.
-struct LoopStructure {
- const char *Tag = "";
-
- BasicBlock *Header = nullptr;
- BasicBlock *Latch = nullptr;
-
- // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
- // successor is `LatchExit', the exit block of the loop.
- BranchInst *LatchBr = nullptr;
- BasicBlock *LatchExit = nullptr;
- unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
-
- // The loop represented by this instance of LoopStructure is semantically
- // equivalent to:
- //
- // intN_ty inc = IndVarIncreasing ? 1 : -1;
- // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
- //
- // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
- // ... body ...
-
- Value *IndVarBase = nullptr;
- Value *IndVarStart = nullptr;
- Value *IndVarStep = nullptr;
- Value *LoopExitAt = nullptr;
- bool IndVarIncreasing = false;
- bool IsSignedPredicate = true;
-
- LoopStructure() = default;
-
- template <typename M> LoopStructure map(M Map) const {
- LoopStructure Result;
- Result.Tag = Tag;
- Result.Header = cast<BasicBlock>(Map(Header));
- Result.Latch = cast<BasicBlock>(Map(Latch));
- Result.LatchBr = cast<BranchInst>(Map(LatchBr));
- Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.IndVarBase = Map(IndVarBase);
- Result.IndVarStart = Map(IndVarStart);
- Result.IndVarStep = Map(IndVarStep);
- Result.LoopExitAt = Map(LoopExitAt);
- Result.IndVarIncreasing = IndVarIncreasing;
- Result.IsSignedPredicate = IsSignedPredicate;
- return Result;
- }
-
- static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
- BranchProbabilityInfo *BPI,
- Loop &, const char *&);
-};
-
-/// This class is used to constrain loops to run within a given iteration space.
-/// The algorithm this class implements is given a Loop and a range [Begin,
-/// End). The algorithm then tries to break out a "main loop" out of the loop
-/// it is given in a way that the "main loop" runs with the induction variable
-/// in a subset of [Begin, End). The algorithm emits appropriate pre and post
-/// loops to run any remaining iterations. The pre loop runs any iterations in
-/// which the induction variable is < Begin, and the post loop runs any
-/// iterations in which the induction variable is >= End.
-class LoopConstrainer {
- // The representation of a clone of the original loop we started out with.
- struct ClonedLoop {
- // The cloned blocks
- std::vector<BasicBlock *> Blocks;
-
- // `Map` maps values in the clonee into values in the cloned version
- ValueToValueMapTy Map;
-
- // An instance of `LoopStructure` for the cloned loop
- LoopStructure Structure;
- };
-
- // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
- // more details on what these fields mean.
- struct RewrittenRangeInfo {
- BasicBlock *PseudoExit = nullptr;
- BasicBlock *ExitSelector = nullptr;
- std::vector<PHINode *> PHIValuesAtPseudoExit;
- PHINode *IndVarEnd = nullptr;
-
- RewrittenRangeInfo() = default;
- };
-
- // Calculated subranges we restrict the iteration space of the main loop to.
- // See the implementation of `calculateSubRanges' for more details on how
- // these fields are computed. `LowLimit` is None if there is no restriction
- // on low end of the restricted iteration space of the main loop. `HighLimit`
- // is None if there is no restriction on high end of the restricted iteration
- // space of the main loop.
-
- struct SubRanges {
- Optional<const SCEV *> LowLimit;
- Optional<const SCEV *> HighLimit;
- };
-
- // A utility function that does a `replaceUsesOfWith' on the incoming block
- // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
- // incoming block list with `ReplaceBy'.
- static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
- BasicBlock *ReplaceBy);
-
- // Compute a safe set of limits for the main loop to run in -- effectively the
- // intersection of `Range' and the iteration space of the original loop.
- // Return None if unable to compute the set of subranges.
- Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
-
- // Clone `OriginalLoop' and return the result in CLResult. The IR after
- // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
- // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
- // but there is no such edge.
- void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
-
- // Create the appropriate loop structure needed to describe a cloned copy of
- // `Original`. The clone is described by `VM`.
- Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
- ValueToValueMapTy &VM, bool IsSubloop);
-
- // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
- // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
- // iteration space is not changed. `ExitLoopAt' is assumed to be slt
- // `OriginalHeaderCount'.
- //
- // If there are iterations left to execute, control is made to jump to
- // `ContinuationBlock', otherwise they take the normal loop exit. The
- // returned `RewrittenRangeInfo' object is populated as follows:
- //
- // .PseudoExit is a basic block that unconditionally branches to
- // `ContinuationBlock'.
- //
- // .ExitSelector is a basic block that decides, on exit from the loop,
- // whether to branch to the "true" exit or to `PseudoExit'.
- //
- // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
- // for each PHINode in the loop header on taking the pseudo exit.
- //
- // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
- // preheader because it is made to branch to the loop header only
- // conditionally.
- RewrittenRangeInfo
- changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
- Value *ExitLoopAt,
- BasicBlock *ContinuationBlock) const;
-
- // The loop denoted by `LS' has `OldPreheader' as its preheader. This
- // function creates a new preheader for `LS' and returns it.
- BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
- const char *Tag) const;
-
- // `ContinuationBlockAndPreheader' was the continuation block for some call to
- // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
- // This function rewrites the PHI nodes in `LS.Header' to start with the
- // correct value.
- void rewriteIncomingValuesForPHIs(
- LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const;
-
- // Even though we do not preserve any passes at this time, we at least need to
- // keep the parent loop structure consistent. The `LPPassManager' seems to
- // verify this after running a loop pass. This function adds the list of
- // blocks denoted by BBs to this loops parent loop if required.
- void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
-
- // Some global state.
- Function &F;
- LLVMContext &Ctx;
- ScalarEvolution &SE;
- DominatorTree &DT;
- LoopInfo &LI;
- function_ref<void(Loop *, bool)> LPMAddNewLoop;
-
- // Information about the original loop we started out with.
- Loop &OriginalLoop;
-
- const SCEV *LatchTakenCount = nullptr;
- BasicBlock *OriginalPreheader = nullptr;
-
- // The preheader of the main loop. This may or may not be different from
- // `OriginalPreheader'.
- BasicBlock *MainLoopPreheader = nullptr;
-
- // The range we need to run the main loop in.
- InductiveRangeCheck::Range Range;
-
- // The structure of the main loop (see comment at the beginning of this class
- // for a definition)
- LoopStructure MainLoopStructure;
-
-public:
- LoopConstrainer(Loop &L, LoopInfo &LI,
- function_ref<void(Loop *, bool)> LPMAddNewLoop,
- const LoopStructure &LS, ScalarEvolution &SE,
- DominatorTree &DT, InductiveRangeCheck::Range R)
- : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
- SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
- Range(R), MainLoopStructure(LS) {}
-
- // Entry point for the algorithm. Returns true on success.
- bool run();
-};
-
-} // end anonymous namespace
-
-void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
- BasicBlock *ReplaceBy) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingBlock(i) == Block)
- PN->setIncomingBlock(i, ReplaceBy);
-}
-
-/// Given a loop with an deccreasing induction variable, is it possible to
-/// safely calculate the bounds of a new loop using the given Predicate.
-static bool isSafeDecreasingBound(const SCEV *Start,
- const SCEV *BoundSCEV, const SCEV *Step,
- ICmpInst::Predicate Pred,
- unsigned LatchBrExitIdx,
- Loop *L, ScalarEvolution &SE) {
- if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
- Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
- return false;
-
- if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
- return false;
-
- assert(SE.isKnownNegative(Step) && "expecting negative step");
-
- LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
- LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
- LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
- LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
- LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
- << "\n");
- LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
-
- bool IsSigned = ICmpInst::isSigned(Pred);
- // The predicate that we need to check that the induction variable lies
- // within bounds.
- ICmpInst::Predicate BoundPred =
- IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
-
- if (LatchBrExitIdx == 1)
- return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
-
- assert(LatchBrExitIdx == 0 &&
- "LatchBrExitIdx should be either 0 or 1");
-
- const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
- unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
- APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
- APInt::getMinValue(BitWidth);
- const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
-
- const SCEV *MinusOne =
- SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
-
- return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
- SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
-
-}
-
-/// Given a loop with an increasing induction variable, is it possible to
-/// safely calculate the bounds of a new loop using the given Predicate.
-static bool isSafeIncreasingBound(const SCEV *Start,
- const SCEV *BoundSCEV, const SCEV *Step,
- ICmpInst::Predicate Pred,
- unsigned LatchBrExitIdx,
- Loop *L, ScalarEvolution &SE) {
- if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
- Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
- return false;
-
- if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
- return false;
-
- LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
- LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
- LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
- LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
- LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
- << "\n");
- LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
-
- bool IsSigned = ICmpInst::isSigned(Pred);
- // The predicate that we need to check that the induction variable lies
- // within bounds.
- ICmpInst::Predicate BoundPred =
- IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
-
- if (LatchBrExitIdx == 1)
- return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
-
- assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
-
- const SCEV *StepMinusOne =
- SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
- unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
- APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
- APInt::getMaxValue(BitWidth);
- const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
-
- return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
- SE.getAddExpr(BoundSCEV, Step)) &&
- SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
-}
-
-Optional<LoopStructure>
-LoopStructure::parseLoopStructure(ScalarEvolution &SE,
- BranchProbabilityInfo *BPI, Loop &L,
- const char *&FailureReason) {
- if (!L.isLoopSimplifyForm()) {
- FailureReason = "loop not in LoopSimplify form";
- return None;
- }
-
- BasicBlock *Latch = L.getLoopLatch();
- assert(Latch && "Simplified loops only have one latch!");
-
- if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
- FailureReason = "loop has already been cloned";
- return None;
- }
-
- if (!L.isLoopExiting(Latch)) {
- FailureReason = "no loop latch";
- return None;
- }
-
- BasicBlock *Header = L.getHeader();
- BasicBlock *Preheader = L.getLoopPreheader();
- if (!Preheader) {
- FailureReason = "no preheader";
- return None;
- }
-
- BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBr || LatchBr->isUnconditional()) {
- FailureReason = "latch terminator not conditional branch";
- return None;
- }
-
- unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
-
- BranchProbability ExitProbability =
- BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
- : BranchProbability::getZero();
-
- if (!SkipProfitabilityChecks &&
- ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
- FailureReason = "short running loop, not profitable";
- return None;
- }
-
- ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
- if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
- FailureReason = "latch terminator branch not conditional on integral icmp";
- return None;
- }
-
- const SCEV *LatchCount = SE.getExitCount(&L, Latch);
- if (isa<SCEVCouldNotCompute>(LatchCount)) {
- FailureReason = "could not compute latch count";
- return None;
- }
-
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *LeftValue = ICI->getOperand(0);
- const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
- IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
-
- Value *RightValue = ICI->getOperand(1);
- const SCEV *RightSCEV = SE.getSCEV(RightValue);
-
- // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
- if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
- if (isa<SCEVAddRecExpr>(RightSCEV)) {
- std::swap(LeftSCEV, RightSCEV);
- std::swap(LeftValue, RightValue);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- } else {
- FailureReason = "no add recurrences in the icmp";
- return None;
- }
- }
-
- auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
- if (AR->getNoWrapFlags(SCEV::FlagNSW))
- return true;
-
- IntegerType *Ty = cast<IntegerType>(AR->getType());
- IntegerType *WideTy =
- IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
-
- const SCEVAddRecExpr *ExtendAfterOp =
- dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
- if (ExtendAfterOp) {
- const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
- const SCEV *ExtendedStep =
- SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
-
- bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
- ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
-
- if (NoSignedWrap)
- return true;
- }
-
- // We may have proved this when computing the sign extension above.
- return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
- };
-
- // `ICI` is interpreted as taking the backedge if the *next* value of the
- // induction variable satisfies some constraint.
-
- const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
- if (!IndVarBase->isAffine()) {
- FailureReason = "LHS in icmp not induction variable";
- return None;
- }
- const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
- if (!isa<SCEVConstant>(StepRec)) {
- FailureReason = "LHS in icmp not induction variable";
- return None;
- }
- ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
-
- if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
- FailureReason = "LHS in icmp needs nsw for equality predicates";
- return None;
- }
-
- assert(!StepCI->isZero() && "Zero step?");
- bool IsIncreasing = !StepCI->isNegative();
- bool IsSignedPredicate = ICmpInst::isSigned(Pred);
- const SCEV *StartNext = IndVarBase->getStart();
- const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
- const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
- const SCEV *Step = SE.getSCEV(StepCI);
-
- ConstantInt *One = ConstantInt::get(IndVarTy, 1);
- if (IsIncreasing) {
- bool DecreasedRightValueByOne = false;
- if (StepCI->isOne()) {
- // Try to turn eq/ne predicates to those we can work with.
- if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
- // while (++i != len) { while (++i < len) {
- // ... ---> ...
- // } }
- // If both parts are known non-negative, it is profitable to use
- // unsigned comparison in increasing loop. This allows us to make the
- // comparison check against "RightSCEV + 1" more optimistic.
- if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
- isKnownNonNegativeInLoop(RightSCEV, &L, SE))
- Pred = ICmpInst::ICMP_ULT;
- else
- Pred = ICmpInst::ICMP_SLT;
- else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
- // while (true) { while (true) {
- // if (++i == len) ---> if (++i > len - 1)
- // break; break;
- // ... ...
- // } }
- if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
- cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
- Pred = ICmpInst::ICMP_UGT;
- RightSCEV = SE.getMinusSCEV(RightSCEV,
- SE.getOne(RightSCEV->getType()));
- DecreasedRightValueByOne = true;
- } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
- Pred = ICmpInst::ICMP_SGT;
- RightSCEV = SE.getMinusSCEV(RightSCEV,
- SE.getOne(RightSCEV->getType()));
- DecreasedRightValueByOne = true;
- }
- }
- }
-
- bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
- bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
- bool FoundExpectedPred =
- (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
-
- if (!FoundExpectedPred) {
- FailureReason = "expected icmp slt semantically, found something else";
- return None;
- }
-
- IsSignedPredicate = ICmpInst::isSigned(Pred);
- if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
- FailureReason = "unsigned latch conditions are explicitly prohibited";
- return None;
- }
-
- if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
- LatchBrExitIdx, &L, SE)) {
- FailureReason = "Unsafe loop bounds";
- return None;
- }
- if (LatchBrExitIdx == 0) {
- // We need to increase the right value unless we have already decreased
- // it virtually when we replaced EQ with SGT.
- if (!DecreasedRightValueByOne) {
- IRBuilder<> B(Preheader->getTerminator());
- RightValue = B.CreateAdd(RightValue, One);
- }
- } else {
- assert(!DecreasedRightValueByOne &&
- "Right value can be decreased only for LatchBrExitIdx == 0!");
- }
- } else {
- bool IncreasedRightValueByOne = false;
- if (StepCI->isMinusOne()) {
- // Try to turn eq/ne predicates to those we can work with.
- if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
- // while (--i != len) { while (--i > len) {
- // ... ---> ...
- // } }
- // We intentionally don't turn the predicate into UGT even if we know
- // that both operands are non-negative, because it will only pessimize
- // our check against "RightSCEV - 1".
- Pred = ICmpInst::ICMP_SGT;
- else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
- // while (true) { while (true) {
- // if (--i == len) ---> if (--i < len + 1)
- // break; break;
- // ... ...
- // } }
- if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
- cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
- Pred = ICmpInst::ICMP_ULT;
- RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
- IncreasedRightValueByOne = true;
- } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
- Pred = ICmpInst::ICMP_SLT;
- RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
- IncreasedRightValueByOne = true;
- }
- }
- }
-
- bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
- bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
-
- bool FoundExpectedPred =
- (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
-
- if (!FoundExpectedPred) {
- FailureReason = "expected icmp sgt semantically, found something else";
- return None;
- }
-
- IsSignedPredicate =
- Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
-
- if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
- FailureReason = "unsigned latch conditions are explicitly prohibited";
- return None;
- }
-
- if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
- LatchBrExitIdx, &L, SE)) {
- FailureReason = "Unsafe bounds";
- return None;
- }
-
- if (LatchBrExitIdx == 0) {
- // We need to decrease the right value unless we have already increased
- // it virtually when we replaced EQ with SLT.
- if (!IncreasedRightValueByOne) {
- IRBuilder<> B(Preheader->getTerminator());
- RightValue = B.CreateSub(RightValue, One);
- }
- } else {
- assert(!IncreasedRightValueByOne &&
- "Right value can be increased only for LatchBrExitIdx == 0!");
- }
- }
- BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
-
- assert(SE.getLoopDisposition(LatchCount, &L) ==
- ScalarEvolution::LoopInvariant &&
- "loop variant exit count doesn't make sense!");
-
- assert(!L.contains(LatchExit) && "expected an exit block!");
- const DataLayout &DL = Preheader->getModule()->getDataLayout();
- Value *IndVarStartV =
- SCEVExpander(SE, DL, "irce")
- .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
- IndVarStartV->setName("indvar.start");
-
- LoopStructure Result;
-
- Result.Tag = "main";
- Result.Header = Header;
- Result.Latch = Latch;
- Result.LatchBr = LatchBr;
- Result.LatchExit = LatchExit;
- Result.LatchBrExitIdx = LatchBrExitIdx;
- Result.IndVarStart = IndVarStartV;
- Result.IndVarStep = StepCI;
- Result.IndVarBase = LeftValue;
- Result.IndVarIncreasing = IsIncreasing;
- Result.LoopExitAt = RightValue;
- Result.IsSignedPredicate = IsSignedPredicate;
-
- FailureReason = nullptr;
-
- return Result;
-}
-
-Optional<LoopConstrainer::SubRanges>
-LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
- IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
-
- if (Range.getType() != Ty)
- return None;
-
- LoopConstrainer::SubRanges Result;
-
- // I think we can be more aggressive here and make this nuw / nsw if the
- // addition that feeds into the icmp for the latch's terminating branch is nuw
- // / nsw. In any case, a wrapping 2's complement addition is safe.
- const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
- const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
-
- bool Increasing = MainLoopStructure.IndVarIncreasing;
-
- // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
- // [Smallest, GreatestSeen] is the range of values the induction variable
- // takes.
-
- const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
-
- const SCEV *One = SE.getOne(Ty);
- if (Increasing) {
- Smallest = Start;
- Greatest = End;
- // No overflow, because the range [Smallest, GreatestSeen] is not empty.
- GreatestSeen = SE.getMinusSCEV(End, One);
- } else {
- // These two computations may sign-overflow. Here is why that is okay:
- //
- // We know that the induction variable does not sign-overflow on any
- // iteration except the last one, and it starts at `Start` and ends at
- // `End`, decrementing by one every time.
- //
- // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
- // induction variable is decreasing we know that that the smallest value
- // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
- //
- // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
- // that case, `Clamp` will always return `Smallest` and
- // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
- // will be an empty range. Returning an empty range is always safe.
-
- Smallest = SE.getAddExpr(End, One);
- Greatest = SE.getAddExpr(Start, One);
- GreatestSeen = Start;
- }
-
- auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
- return IsSignedPredicate
- ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
- : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
- };
-
- // In some cases we can prove that we don't need a pre or post loop.
- ICmpInst::Predicate PredLE =
- IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
- ICmpInst::Predicate PredLT =
- IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
-
- bool ProvablyNoPreloop =
- SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
- if (!ProvablyNoPreloop)
- Result.LowLimit = Clamp(Range.getBegin());
-
- bool ProvablyNoPostLoop =
- SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
- if (!ProvablyNoPostLoop)
- Result.HighLimit = Clamp(Range.getEnd());
-
- return Result;
-}
-
-void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
- const char *Tag) const {
- for (BasicBlock *BB : OriginalLoop.getBlocks()) {
- BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
- Result.Blocks.push_back(Clone);
- Result.Map[BB] = Clone;
- }
-
- auto GetClonedValue = [&Result](Value *V) {
- assert(V && "null values not in domain!");
- auto It = Result.Map.find(V);
- if (It == Result.Map.end())
- return V;
- return static_cast<Value *>(It->second);
- };
-
- auto *ClonedLatch =
- cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
- ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
- MDNode::get(Ctx, {}));
-
- Result.Structure = MainLoopStructure.map(GetClonedValue);
- Result.Structure.Tag = Tag;
-
- for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
- BasicBlock *ClonedBB = Result.Blocks[i];
- BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
-
- assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
-
- for (Instruction &I : *ClonedBB)
- RemapInstruction(&I, Result.Map,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
-
- // Exit blocks will now have one more predecessor and their PHI nodes need
- // to be edited to reflect that. No phi nodes need to be introduced because
- // the loop is in LCSSA.
-
- for (auto *SBB : successors(OriginalBB)) {
- if (OriginalLoop.contains(SBB))
- continue; // not an exit block
-
- for (PHINode &PN : SBB->phis()) {
- Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
- PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
- }
- }
- }
-}
-
-LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
- const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
- BasicBlock *ContinuationBlock) const {
- // We start with a loop with a single latch:
- //
- // +--------------------+
- // | |
- // | preheader |
- // | |
- // +--------+-----------+
- // | ----------------\
- // | / |
- // +--------v----v------+ |
- // | | |
- // | header | |
- // | | |
- // +--------------------+ |
- // |
- // ..... |
- // |
- // +--------------------+ |
- // | | |
- // | latch >----------/
- // | |
- // +-------v------------+
- // |
- // |
- // | +--------------------+
- // | | |
- // +---> original exit |
- // | |
- // +--------------------+
- //
- // We change the control flow to look like
- //
- //
- // +--------------------+
- // | |
- // | preheader >-------------------------+
- // | | |
- // +--------v-----------+ |
- // | /-------------+ |
- // | / | |
- // +--------v--v--------+ | |
- // | | | |
- // | header | | +--------+ |
- // | | | | | |
- // +--------------------+ | | +-----v-----v-----------+
- // | | | |
- // | | | .pseudo.exit |
- // | | | |
- // | | +-----------v-----------+
- // | | |
- // ..... | | |
- // | | +--------v-------------+
- // +--------------------+ | | | |
- // | | | | | ContinuationBlock |
- // | latch >------+ | | |
- // | | | +----------------------+
- // +---------v----------+ |
- // | |
- // | |
- // | +---------------^-----+
- // | | |
- // +-----> .exit.selector |
- // | |
- // +----------v----------+
- // |
- // +--------------------+ |
- // | | |
- // | original exit <----+
- // | |
- // +--------------------+
-
- RewrittenRangeInfo RRI;
-
- BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
- RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
- &F, BBInsertLocation);
- RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
- BBInsertLocation);
-
- BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
- bool Increasing = LS.IndVarIncreasing;
- bool IsSignedPredicate = LS.IsSignedPredicate;
-
- IRBuilder<> B(PreheaderJump);
-
- // EnterLoopCond - is it okay to start executing this `LS'?
- Value *EnterLoopCond = nullptr;
- auto Pred =
- Increasing
- ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
- : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
- EnterLoopCond = B.CreateICmp(Pred, LS.IndVarStart, ExitSubloopAt);
-
- B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
- PreheaderJump->eraseFromParent();
-
- LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
- B.SetInsertPoint(LS.LatchBr);
- Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, LS.IndVarBase,
- ExitSubloopAt);
-
- Value *CondForBranch = LS.LatchBrExitIdx == 1
- ? TakeBackedgeLoopCond
- : B.CreateNot(TakeBackedgeLoopCond);
-
- LS.LatchBr->setCondition(CondForBranch);
-
- B.SetInsertPoint(RRI.ExitSelector);
-
- // IterationsLeft - are there any more iterations left, given the original
- // upper bound on the induction variable? If not, we branch to the "real"
- // exit.
- Value *IterationsLeft = B.CreateICmp(Pred, LS.IndVarBase, LS.LoopExitAt);
- B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
-
- BranchInst *BranchToContinuation =
- BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
-
- // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
- // each of the PHI nodes in the loop header. This feeds into the initial
- // value of the same PHI nodes if/when we continue execution.
- for (PHINode &PN : LS.Header->phis()) {
- PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
- BranchToContinuation);
-
- NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
- NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
- RRI.ExitSelector);
- RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
- }
-
- RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end",
- BranchToContinuation);
- RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
- RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector);
-
- // The latch exit now has a branch from `RRI.ExitSelector' instead of
- // `LS.Latch'. The PHI nodes need to be updated to reflect that.
- for (PHINode &PN : LS.LatchExit->phis())
- replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector);
-
- return RRI;
-}
-
-void LoopConstrainer::rewriteIncomingValuesForPHIs(
- LoopStructure &LS, BasicBlock *ContinuationBlock,
- const LoopConstrainer::RewrittenRangeInfo &RRI) const {
- unsigned PHIIndex = 0;
- for (PHINode &PN : LS.Header->phis())
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
- if (PN.getIncomingBlock(i) == ContinuationBlock)
- PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
-
- LS.IndVarStart = RRI.IndVarEnd;
-}
-
-BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
- BasicBlock *OldPreheader,
- const char *Tag) const {
- BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
- BranchInst::Create(LS.Header, Preheader);
-
- for (PHINode &PN : LS.Header->phis())
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
- replacePHIBlock(&PN, OldPreheader, Preheader);
-
- return Preheader;
-}
-
-void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
- Loop *ParentLoop = OriginalLoop.getParentLoop();
- if (!ParentLoop)
- return;
-
- for (BasicBlock *BB : BBs)
- ParentLoop->addBasicBlockToLoop(BB, LI);
-}
-
-Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
- ValueToValueMapTy &VM,
- bool IsSubloop) {
- Loop &New = *LI.AllocateLoop();
- if (Parent)
- Parent->addChildLoop(&New);
- else
- LI.addTopLevelLoop(&New);
- LPMAddNewLoop(&New, IsSubloop);
-
- // Add all of the blocks in Original to the new loop.
- for (auto *BB : Original->blocks())
- if (LI.getLoopFor(BB) == Original)
- New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
-
- // Add all of the subloops to the new loop.
- for (Loop *SubLoop : *Original)
- createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
-
- return &New;
-}
-
-bool LoopConstrainer::run() {
- BasicBlock *Preheader = nullptr;
- LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
- Preheader = OriginalLoop.getLoopPreheader();
- assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
- "preconditions!");
-
- OriginalPreheader = Preheader;
- MainLoopPreheader = Preheader;
-
- bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
- Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
- if (!MaybeSR.hasValue()) {
- LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
- return false;
- }
-
- SubRanges SR = MaybeSR.getValue();
- bool Increasing = MainLoopStructure.IndVarIncreasing;
- IntegerType *IVTy =
- cast<IntegerType>(MainLoopStructure.IndVarBase->getType());
-
- SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
- Instruction *InsertPt = OriginalPreheader->getTerminator();
-
- // It would have been better to make `PreLoop' and `PostLoop'
- // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
- // constructor.
- ClonedLoop PreLoop, PostLoop;
- bool NeedsPreLoop =
- Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
- bool NeedsPostLoop =
- Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
-
- Value *ExitPreLoopAt = nullptr;
- Value *ExitMainLoopAt = nullptr;
- const SCEVConstant *MinusOneS =
- cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
-
- if (NeedsPreLoop) {
- const SCEV *ExitPreLoopAtSCEV = nullptr;
-
- if (Increasing)
- ExitPreLoopAtSCEV = *SR.LowLimit;
- else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
- IsSignedPredicate))
- ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
- else {
- LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
- << "preloop exit limit. HighLimit = "
- << *(*SR.HighLimit) << "\n");
- return false;
- }
-
- if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
- LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
- << " preloop exit limit " << *ExitPreLoopAtSCEV
- << " at block " << InsertPt->getParent()->getName()
- << "\n");
- return false;
- }
-
- ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
- ExitPreLoopAt->setName("exit.preloop.at");
- }
-
- if (NeedsPostLoop) {
- const SCEV *ExitMainLoopAtSCEV = nullptr;
-
- if (Increasing)
- ExitMainLoopAtSCEV = *SR.HighLimit;
- else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
- IsSignedPredicate))
- ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
- else {
- LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
- << "mainloop exit limit. LowLimit = "
- << *(*SR.LowLimit) << "\n");
- return false;
- }
-
- if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
- LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
- << " main loop exit limit " << *ExitMainLoopAtSCEV
- << " at block " << InsertPt->getParent()->getName()
- << "\n");
- return false;
- }
-
- ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
- ExitMainLoopAt->setName("exit.mainloop.at");
- }
-
- // We clone these ahead of time so that we don't have to deal with changing
- // and temporarily invalid IR as we transform the loops.
- if (NeedsPreLoop)
- cloneLoop(PreLoop, "preloop");
- if (NeedsPostLoop)
- cloneLoop(PostLoop, "postloop");
-
- RewrittenRangeInfo PreLoopRRI;
-
- if (NeedsPreLoop) {
- Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
- PreLoop.Structure.Header);
-
- MainLoopPreheader =
- createPreheader(MainLoopStructure, Preheader, "mainloop");
- PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
- ExitPreLoopAt, MainLoopPreheader);
- rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
- PreLoopRRI);
- }
-
- BasicBlock *PostLoopPreheader = nullptr;
- RewrittenRangeInfo PostLoopRRI;
-
- if (NeedsPostLoop) {
- PostLoopPreheader =
- createPreheader(PostLoop.Structure, Preheader, "postloop");
- PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
- ExitMainLoopAt, PostLoopPreheader);
- rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
- PostLoopRRI);
- }
-
- BasicBlock *NewMainLoopPreheader =
- MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
- BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
- PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
- PostLoopRRI.ExitSelector, NewMainLoopPreheader};
-
- // Some of the above may be nullptr, filter them out before passing to
- // addToParentLoopIfNeeded.
- auto NewBlocksEnd =
- std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
-
- addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
-
- DT.recalculate(F);
-
- // We need to first add all the pre and post loop blocks into the loop
- // structures (as part of createClonedLoopStructure), and then update the
- // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
- // LI when LoopSimplifyForm is generated.
- Loop *PreL = nullptr, *PostL = nullptr;
- if (!PreLoop.Blocks.empty()) {
- PreL = createClonedLoopStructure(&OriginalLoop,
- OriginalLoop.getParentLoop(), PreLoop.Map,
- /* IsSubLoop */ false);
- }
-
- if (!PostLoop.Blocks.empty()) {
- PostL =
- createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
- PostLoop.Map, /* IsSubLoop */ false);
- }
-
- // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
- auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
- formLCSSARecursively(*L, DT, &LI, &SE);
- simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
- // Pre/post loops are slow paths, we do not need to perform any loop
- // optimizations on them.
- if (!IsOriginalLoop)
- DisableAllLoopOptsOnLoop(*L);
- };
- if (PreL)
- CanonicalizeLoop(PreL, false);
- if (PostL)
- CanonicalizeLoop(PostL, false);
- CanonicalizeLoop(&OriginalLoop, true);
-
- return true;
-}
-
-/// Computes and returns a range of values for the induction variable (IndVar)
-/// in which the range check can be safely elided. If it cannot compute such a
-/// range, returns None.
-Optional<InductiveRangeCheck::Range>
-InductiveRangeCheck::computeSafeIterationSpace(
- ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
- bool IsLatchSigned) const {
- // IndVar is of the form "A + B * I" (where "I" is the canonical induction
- // variable, that may or may not exist as a real llvm::Value in the loop) and
- // this inductive range check is a range check on the "C + D * I" ("C" is
- // getBegin() and "D" is getStep()). We rewrite the value being range
- // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
- //
- // The actual inequalities we solve are of the form
- //
- // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
- //
- // Here L stands for upper limit of the safe iteration space.
- // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
- // overflows when calculating (0 - M) and (L - M) we, depending on type of
- // IV's iteration space, limit the calculations by borders of the iteration
- // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
- // If we figured out that "anything greater than (-M) is safe", we strengthen
- // this to "everything greater than 0 is safe", assuming that values between
- // -M and 0 just do not exist in unsigned iteration space, and we don't want
- // to deal with overflown values.
-
- if (!IndVar->isAffine())
- return None;
-
- const SCEV *A = IndVar->getStart();
- const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
- if (!B)
- return None;
- assert(!B->isZero() && "Recurrence with zero step?");
-
- const SCEV *C = getBegin();
- const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
- if (D != B)
- return None;
-
- assert(!D->getValue()->isZero() && "Recurrence with zero step?");
- unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
- const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
-
- // Subtract Y from X so that it does not go through border of the IV
- // iteration space. Mathematically, it is equivalent to:
- //
- // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
- //
- // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
- // any width of bit grid). But after we take min/max, the result is
- // guaranteed to be within [INT_MIN, INT_MAX].
- //
- // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
- // values, depending on type of latch condition that defines IV iteration
- // space.
- auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
- // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
- // This is required to ensure that SINT_MAX - X does not overflow signed and
- // that X - Y does not overflow unsigned if Y is negative. Can we lift this
- // restriction and make it work for negative X either?
- if (IsLatchSigned) {
- // X is a number from signed range, Y is interpreted as signed.
- // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
- // thing we should care about is that we didn't cross SINT_MAX.
- // So, if Y is positive, we subtract Y safely.
- // Rule 1: Y > 0 ---> Y.
- // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
- // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
- // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
- // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
- // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
- const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
- return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
- SCEV::FlagNSW);
- } else
- // X is a number from unsigned range, Y is interpreted as signed.
- // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
- // thing we should care about is that we didn't cross zero.
- // So, if Y is negative, we subtract Y safely.
- // Rule 1: Y <s 0 ---> Y.
- // If 0 <= Y <= X, we subtract Y safely.
- // Rule 2: Y <=s X ---> Y.
- // If 0 <= X < Y, we should stop at 0 and can only subtract X.
- // Rule 3: Y >s X ---> X.
- // It gives us smin(X, Y) to subtract in all cases.
- return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
- };
- const SCEV *M = SE.getMinusSCEV(C, A);
- const SCEV *Zero = SE.getZero(M->getType());
-
- // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
- auto SCEVCheckNonNegative = [&](const SCEV *X) {
- const Loop *L = IndVar->getLoop();
- const SCEV *One = SE.getOne(X->getType());
- // Can we trivially prove that X is a non-negative or negative value?
- if (isKnownNonNegativeInLoop(X, L, SE))
- return One;
- else if (isKnownNegativeInLoop(X, L, SE))
- return Zero;
- // If not, we will have to figure it out during the execution.
- // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
- const SCEV *NegOne = SE.getNegativeSCEV(One);
- return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
- };
- // FIXME: Current implementation of ClampedSubtract implicitly assumes that
- // X is non-negative (in sense of a signed value). We need to re-implement
- // this function in a way that it will correctly handle negative X as well.
- // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
- // end up with a negative X and produce wrong results. So currently we ensure
- // that if getEnd() is negative then both ends of the safe range are zero.
- // Note that this may pessimize elimination of unsigned range checks against
- // negative values.
- const SCEV *REnd = getEnd();
- const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
-
- const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
- const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
- return InductiveRangeCheck::Range(Begin, End);
-}
-
-static Optional<InductiveRangeCheck::Range>
-IntersectSignedRange(ScalarEvolution &SE,
- const Optional<InductiveRangeCheck::Range> &R1,
- const InductiveRangeCheck::Range &R2) {
- if (R2.isEmpty(SE, /* IsSigned */ true))
- return None;
- if (!R1.hasValue())
- return R2;
- auto &R1Value = R1.getValue();
- // We never return empty ranges from this function, and R1 is supposed to be
- // a result of intersection. Thus, R1 is never empty.
- assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
- "We should never have empty R1!");
-
- // TODO: we could widen the smaller range and have this work; but for now we
- // bail out to keep things simple.
- if (R1Value.getType() != R2.getType())
- return None;
-
- const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
- const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
-
- // If the resulting range is empty, just return None.
- auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
- if (Ret.isEmpty(SE, /* IsSigned */ true))
- return None;
- return Ret;
-}
-
-static Optional<InductiveRangeCheck::Range>
-IntersectUnsignedRange(ScalarEvolution &SE,
- const Optional<InductiveRangeCheck::Range> &R1,
- const InductiveRangeCheck::Range &R2) {
- if (R2.isEmpty(SE, /* IsSigned */ false))
- return None;
- if (!R1.hasValue())
- return R2;
- auto &R1Value = R1.getValue();
- // We never return empty ranges from this function, and R1 is supposed to be
- // a result of intersection. Thus, R1 is never empty.
- assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
- "We should never have empty R1!");
-
- // TODO: we could widen the smaller range and have this work; but for now we
- // bail out to keep things simple.
- if (R1Value.getType() != R2.getType())
- return None;
-
- const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
- const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
-
- // If the resulting range is empty, just return None.
- auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
- if (Ret.isEmpty(SE, /* IsSigned */ false))
- return None;
- return Ret;
-}
-
-PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- Function *F = L.getHeader()->getParent();
- const auto &FAM =
- AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
- auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
- InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI);
- auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) {
- if (!IsSubloop)
- U.addSiblingLoops(NL);
- };
- bool Changed = IRCE.run(&L, LPMAddNewLoop);
- if (!Changed)
- return PreservedAnalyses::all();
-
- return getLoopPassPreservedAnalyses();
-}
-
-bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipLoop(L))
- return false;
-
- ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- BranchProbabilityInfo &BPI =
- getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
- auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) {
- LPM.addLoop(*NL);
- };
- return IRCE.run(L, LPMAddNewLoop);
-}
-
-bool InductiveRangeCheckElimination::run(
- Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
- if (L->getBlocks().size() >= LoopSizeCutoff) {
- LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
- return false;
- }
-
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
- return false;
- }
-
- LLVMContext &Context = Preheader->getContext();
- SmallVector<InductiveRangeCheck, 16> RangeChecks;
-
- for (auto BBI : L->getBlocks())
- if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
- InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
- RangeChecks);
-
- if (RangeChecks.empty())
- return false;
-
- auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
- OS << "irce: looking at loop "; L->print(OS);
- OS << "irce: loop has " << RangeChecks.size()
- << " inductive range checks: \n";
- for (InductiveRangeCheck &IRC : RangeChecks)
- IRC.print(OS);
- };
-
- LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
-
- if (PrintRangeChecks)
- PrintRecognizedRangeChecks(errs());
-
- const char *FailureReason = nullptr;
- Optional<LoopStructure> MaybeLoopStructure =
- LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
- if (!MaybeLoopStructure.hasValue()) {
- LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
- << FailureReason << "\n";);
- return false;
- }
- LoopStructure LS = MaybeLoopStructure.getValue();
- const SCEVAddRecExpr *IndVar =
- cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
-
- Optional<InductiveRangeCheck::Range> SafeIterRange;
- Instruction *ExprInsertPt = Preheader->getTerminator();
-
- SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
- // Basing on the type of latch predicate, we interpret the IV iteration range
- // as signed or unsigned range. We use different min/max functions (signed or
- // unsigned) when intersecting this range with safe iteration ranges implied
- // by range checks.
- auto IntersectRange =
- LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
-
- IRBuilder<> B(ExprInsertPt);
- for (InductiveRangeCheck &IRC : RangeChecks) {
- auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
- LS.IsSignedPredicate);
- if (Result.hasValue()) {
- auto MaybeSafeIterRange =
- IntersectRange(SE, SafeIterRange, Result.getValue());
- if (MaybeSafeIterRange.hasValue()) {
- assert(
- !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
- "We should never return empty ranges!");
- RangeChecksToEliminate.push_back(IRC);
- SafeIterRange = MaybeSafeIterRange.getValue();
- }
- }
- }
-
- if (!SafeIterRange.hasValue())
- return false;
-
- LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
- SafeIterRange.getValue());
- bool Changed = LC.run();
-
- if (Changed) {
- auto PrintConstrainedLoopInfo = [L]() {
- dbgs() << "irce: in function ";
- dbgs() << L->getHeader()->getParent()->getName() << ": ";
- dbgs() << "constrained ";
- L->print(dbgs());
- };
-
- LLVM_DEBUG(PrintConstrainedLoopInfo());
-
- if (PrintChangedLoops)
- PrintConstrainedLoopInfo();
-
- // Optimize away the now-redundant range checks.
-
- for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
- ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
- ? ConstantInt::getTrue(Context)
- : ConstantInt::getFalse(Context);
- IRC.getCheckUse()->set(FoldedRangeCheck);
- }
- }
-
- return Changed;
-}
-
-Pass *llvm::createInductiveRangeCheckEliminationPass() {
- return new IRCELegacyPass();
-}