diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp | 1879 |
1 files changed, 0 insertions, 1879 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp b/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp deleted file mode 100644 index 1c701bbee18..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp +++ /dev/null @@ -1,1879 +0,0 @@ -//===- InductiveRangeCheckElimination.cpp - -------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// The InductiveRangeCheckElimination pass splits a loop's iteration space into -// three disjoint ranges. It does that in a way such that the loop running in -// the middle loop provably does not need range checks. As an example, it will -// convert -// -// len = < known positive > -// for (i = 0; i < n; i++) { -// if (0 <= i && i < len) { -// do_something(); -// } else { -// throw_out_of_bounds(); -// } -// } -// -// to -// -// len = < known positive > -// limit = smin(n, len) -// // no first segment -// for (i = 0; i < limit; i++) { -// if (0 <= i && i < len) { // this check is fully redundant -// do_something(); -// } else { -// throw_out_of_bounds(); -// } -// } -// for (i = limit; i < n; i++) { -// if (0 <= i && i < len) { -// do_something(); -// } else { -// throw_out_of_bounds(); -// } -// } -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/LoopAnalysisManager.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/LoopSimplify.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Utils/ValueMapper.h" -#include <algorithm> -#include <cassert> -#include <iterator> -#include <limits> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace llvm::PatternMatch; - -static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, - cl::init(64)); - -static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, - cl::init(false)); - -static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, - cl::init(false)); - -static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", - cl::Hidden, cl::init(10)); - -static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", - cl::Hidden, cl::init(false)); - -static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", - cl::Hidden, cl::init(true)); - -static const char *ClonedLoopTag = "irce.loop.clone"; - -#define DEBUG_TYPE "irce" - -namespace { - -/// An inductive range check is conditional branch in a loop with -/// -/// 1. a very cold successor (i.e. the branch jumps to that successor very -/// rarely) -/// -/// and -/// -/// 2. a condition that is provably true for some contiguous range of values -/// taken by the containing loop's induction variable. -/// -class InductiveRangeCheck { - - const SCEV *Begin = nullptr; - const SCEV *Step = nullptr; - const SCEV *End = nullptr; - Use *CheckUse = nullptr; - bool IsSigned = true; - - static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, - Value *&Index, Value *&Length, - bool &IsSigned); - - static void - extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, - SmallVectorImpl<InductiveRangeCheck> &Checks, - SmallPtrSetImpl<Value *> &Visited); - -public: - const SCEV *getBegin() const { return Begin; } - const SCEV *getStep() const { return Step; } - const SCEV *getEnd() const { return End; } - bool isSigned() const { return IsSigned; } - - void print(raw_ostream &OS) const { - OS << "InductiveRangeCheck:\n"; - OS << " Begin: "; - Begin->print(OS); - OS << " Step: "; - Step->print(OS); - OS << " End: "; - End->print(OS); - OS << "\n CheckUse: "; - getCheckUse()->getUser()->print(OS); - OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; - } - - LLVM_DUMP_METHOD - void dump() { - print(dbgs()); - } - - Use *getCheckUse() const { return CheckUse; } - - /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If - /// R.getEnd() le R.getBegin(), then R denotes the empty range. - - class Range { - const SCEV *Begin; - const SCEV *End; - - public: - Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { - assert(Begin->getType() == End->getType() && "ill-typed range!"); - } - - Type *getType() const { return Begin->getType(); } - const SCEV *getBegin() const { return Begin; } - const SCEV *getEnd() const { return End; } - bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { - if (Begin == End) - return true; - if (IsSigned) - return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); - else - return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); - } - }; - - /// This is the value the condition of the branch needs to evaluate to for the - /// branch to take the hot successor (see (1) above). - bool getPassingDirection() { return true; } - - /// Computes a range for the induction variable (IndVar) in which the range - /// check is redundant and can be constant-folded away. The induction - /// variable is not required to be the canonical {0,+,1} induction variable. - Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, - const SCEVAddRecExpr *IndVar, - bool IsLatchSigned) const; - - /// Parse out a set of inductive range checks from \p BI and append them to \p - /// Checks. - /// - /// NB! There may be conditions feeding into \p BI that aren't inductive range - /// checks, and hence don't end up in \p Checks. - static void - extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, - BranchProbabilityInfo *BPI, - SmallVectorImpl<InductiveRangeCheck> &Checks); -}; - -class InductiveRangeCheckElimination { - ScalarEvolution &SE; - BranchProbabilityInfo *BPI; - DominatorTree &DT; - LoopInfo &LI; - -public: - InductiveRangeCheckElimination(ScalarEvolution &SE, - BranchProbabilityInfo *BPI, DominatorTree &DT, - LoopInfo &LI) - : SE(SE), BPI(BPI), DT(DT), LI(LI) {} - - bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); -}; - -class IRCELegacyPass : public LoopPass { -public: - static char ID; - - IRCELegacyPass() : LoopPass(ID) { - initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<BranchProbabilityInfoWrapperPass>(); - getLoopAnalysisUsage(AU); - } - - bool runOnLoop(Loop *L, LPPassManager &LPM) override; -}; - -} // end anonymous namespace - -char IRCELegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", - "Inductive range check elimination", false, false) -INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopPass) -INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", - false, false) - -/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot -/// be interpreted as a range check, return false and set `Index` and `Length` -/// to `nullptr`. Otherwise set `Index` to the value being range checked, and -/// set `Length` to the upper limit `Index` is being range checked. -bool -InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, - ScalarEvolution &SE, Value *&Index, - Value *&Length, bool &IsSigned) { - auto IsLoopInvariant = [&SE, L](Value *V) { - return SE.isLoopInvariant(SE.getSCEV(V), L); - }; - - ICmpInst::Predicate Pred = ICI->getPredicate(); - Value *LHS = ICI->getOperand(0); - Value *RHS = ICI->getOperand(1); - - switch (Pred) { - default: - return false; - - case ICmpInst::ICMP_SLE: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SGE: - IsSigned = true; - if (match(RHS, m_ConstantInt<0>())) { - Index = LHS; - return true; // Lower. - } - return false; - - case ICmpInst::ICMP_SLT: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SGT: - IsSigned = true; - if (match(RHS, m_ConstantInt<-1>())) { - Index = LHS; - return true; // Lower. - } - - if (IsLoopInvariant(LHS)) { - Index = RHS; - Length = LHS; - return true; // Upper. - } - return false; - - case ICmpInst::ICMP_ULT: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_UGT: - IsSigned = false; - if (IsLoopInvariant(LHS)) { - Index = RHS; - Length = LHS; - return true; // Both lower and upper. - } - return false; - } - - llvm_unreachable("default clause returns!"); -} - -void InductiveRangeCheck::extractRangeChecksFromCond( - Loop *L, ScalarEvolution &SE, Use &ConditionUse, - SmallVectorImpl<InductiveRangeCheck> &Checks, - SmallPtrSetImpl<Value *> &Visited) { - Value *Condition = ConditionUse.get(); - if (!Visited.insert(Condition).second) - return; - - // TODO: Do the same for OR, XOR, NOT etc? - if (match(Condition, m_And(m_Value(), m_Value()))) { - extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), - Checks, Visited); - extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), - Checks, Visited); - return; - } - - ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); - if (!ICI) - return; - - Value *Length = nullptr, *Index; - bool IsSigned; - if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned)) - return; - - const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); - bool IsAffineIndex = - IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); - - if (!IsAffineIndex) - return; - - const SCEV *End = nullptr; - // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". - // We can potentially do much better here. - if (Length) - End = SE.getSCEV(Length); - else { - // So far we can only reach this point for Signed range check. This may - // change in future. In this case we will need to pick Unsigned max for the - // unsigned range check. - unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); - const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); - End = SIntMax; - } - - InductiveRangeCheck IRC; - IRC.End = End; - IRC.Begin = IndexAddRec->getStart(); - IRC.Step = IndexAddRec->getStepRecurrence(SE); - IRC.CheckUse = &ConditionUse; - IRC.IsSigned = IsSigned; - Checks.push_back(IRC); -} - -void InductiveRangeCheck::extractRangeChecksFromBranch( - BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, - SmallVectorImpl<InductiveRangeCheck> &Checks) { - if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) - return; - - BranchProbability LikelyTaken(15, 16); - - if (!SkipProfitabilityChecks && BPI && - BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) - return; - - SmallPtrSet<Value *, 8> Visited; - InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), - Checks, Visited); -} - -// Add metadata to the loop L to disable loop optimizations. Callers need to -// confirm that optimizing loop L is not beneficial. -static void DisableAllLoopOptsOnLoop(Loop &L) { - // We do not care about any existing loopID related metadata for L, since we - // are setting all loop metadata to false. - LLVMContext &Context = L.getHeader()->getContext(); - // Reserve first location for self reference to the LoopID metadata node. - MDNode *Dummy = MDNode::get(Context, {}); - MDNode *DisableUnroll = MDNode::get( - Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); - Metadata *FalseVal = - ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); - MDNode *DisableVectorize = MDNode::get( - Context, - {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); - MDNode *DisableLICMVersioning = MDNode::get( - Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); - MDNode *DisableDistribution= MDNode::get( - Context, - {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); - MDNode *NewLoopID = - MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, - DisableLICMVersioning, DisableDistribution}); - // Set operand 0 to refer to the loop id itself. - NewLoopID->replaceOperandWith(0, NewLoopID); - L.setLoopID(NewLoopID); -} - -namespace { - -// Keeps track of the structure of a loop. This is similar to llvm::Loop, -// except that it is more lightweight and can track the state of a loop through -// changing and potentially invalid IR. This structure also formalizes the -// kinds of loops we can deal with -- ones that have a single latch that is also -// an exiting block *and* have a canonical induction variable. -struct LoopStructure { - const char *Tag = ""; - - BasicBlock *Header = nullptr; - BasicBlock *Latch = nullptr; - - // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th - // successor is `LatchExit', the exit block of the loop. - BranchInst *LatchBr = nullptr; - BasicBlock *LatchExit = nullptr; - unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); - - // The loop represented by this instance of LoopStructure is semantically - // equivalent to: - // - // intN_ty inc = IndVarIncreasing ? 1 : -1; - // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; - // - // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) - // ... body ... - - Value *IndVarBase = nullptr; - Value *IndVarStart = nullptr; - Value *IndVarStep = nullptr; - Value *LoopExitAt = nullptr; - bool IndVarIncreasing = false; - bool IsSignedPredicate = true; - - LoopStructure() = default; - - template <typename M> LoopStructure map(M Map) const { - LoopStructure Result; - Result.Tag = Tag; - Result.Header = cast<BasicBlock>(Map(Header)); - Result.Latch = cast<BasicBlock>(Map(Latch)); - Result.LatchBr = cast<BranchInst>(Map(LatchBr)); - Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); - Result.LatchBrExitIdx = LatchBrExitIdx; - Result.IndVarBase = Map(IndVarBase); - Result.IndVarStart = Map(IndVarStart); - Result.IndVarStep = Map(IndVarStep); - Result.LoopExitAt = Map(LoopExitAt); - Result.IndVarIncreasing = IndVarIncreasing; - Result.IsSignedPredicate = IsSignedPredicate; - return Result; - } - - static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, - BranchProbabilityInfo *BPI, - Loop &, const char *&); -}; - -/// This class is used to constrain loops to run within a given iteration space. -/// The algorithm this class implements is given a Loop and a range [Begin, -/// End). The algorithm then tries to break out a "main loop" out of the loop -/// it is given in a way that the "main loop" runs with the induction variable -/// in a subset of [Begin, End). The algorithm emits appropriate pre and post -/// loops to run any remaining iterations. The pre loop runs any iterations in -/// which the induction variable is < Begin, and the post loop runs any -/// iterations in which the induction variable is >= End. -class LoopConstrainer { - // The representation of a clone of the original loop we started out with. - struct ClonedLoop { - // The cloned blocks - std::vector<BasicBlock *> Blocks; - - // `Map` maps values in the clonee into values in the cloned version - ValueToValueMapTy Map; - - // An instance of `LoopStructure` for the cloned loop - LoopStructure Structure; - }; - - // Result of rewriting the range of a loop. See changeIterationSpaceEnd for - // more details on what these fields mean. - struct RewrittenRangeInfo { - BasicBlock *PseudoExit = nullptr; - BasicBlock *ExitSelector = nullptr; - std::vector<PHINode *> PHIValuesAtPseudoExit; - PHINode *IndVarEnd = nullptr; - - RewrittenRangeInfo() = default; - }; - - // Calculated subranges we restrict the iteration space of the main loop to. - // See the implementation of `calculateSubRanges' for more details on how - // these fields are computed. `LowLimit` is None if there is no restriction - // on low end of the restricted iteration space of the main loop. `HighLimit` - // is None if there is no restriction on high end of the restricted iteration - // space of the main loop. - - struct SubRanges { - Optional<const SCEV *> LowLimit; - Optional<const SCEV *> HighLimit; - }; - - // A utility function that does a `replaceUsesOfWith' on the incoming block - // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's - // incoming block list with `ReplaceBy'. - static void replacePHIBlock(PHINode *PN, BasicBlock *Block, - BasicBlock *ReplaceBy); - - // Compute a safe set of limits for the main loop to run in -- effectively the - // intersection of `Range' and the iteration space of the original loop. - // Return None if unable to compute the set of subranges. - Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; - - // Clone `OriginalLoop' and return the result in CLResult. The IR after - // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- - // the PHI nodes say that there is an incoming edge from `OriginalPreheader` - // but there is no such edge. - void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; - - // Create the appropriate loop structure needed to describe a cloned copy of - // `Original`. The clone is described by `VM`. - Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, - ValueToValueMapTy &VM, bool IsSubloop); - - // Rewrite the iteration space of the loop denoted by (LS, Preheader). The - // iteration space of the rewritten loop ends at ExitLoopAt. The start of the - // iteration space is not changed. `ExitLoopAt' is assumed to be slt - // `OriginalHeaderCount'. - // - // If there are iterations left to execute, control is made to jump to - // `ContinuationBlock', otherwise they take the normal loop exit. The - // returned `RewrittenRangeInfo' object is populated as follows: - // - // .PseudoExit is a basic block that unconditionally branches to - // `ContinuationBlock'. - // - // .ExitSelector is a basic block that decides, on exit from the loop, - // whether to branch to the "true" exit or to `PseudoExit'. - // - // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value - // for each PHINode in the loop header on taking the pseudo exit. - // - // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate - // preheader because it is made to branch to the loop header only - // conditionally. - RewrittenRangeInfo - changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, - Value *ExitLoopAt, - BasicBlock *ContinuationBlock) const; - - // The loop denoted by `LS' has `OldPreheader' as its preheader. This - // function creates a new preheader for `LS' and returns it. - BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, - const char *Tag) const; - - // `ContinuationBlockAndPreheader' was the continuation block for some call to - // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. - // This function rewrites the PHI nodes in `LS.Header' to start with the - // correct value. - void rewriteIncomingValuesForPHIs( - LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, - const LoopConstrainer::RewrittenRangeInfo &RRI) const; - - // Even though we do not preserve any passes at this time, we at least need to - // keep the parent loop structure consistent. The `LPPassManager' seems to - // verify this after running a loop pass. This function adds the list of - // blocks denoted by BBs to this loops parent loop if required. - void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); - - // Some global state. - Function &F; - LLVMContext &Ctx; - ScalarEvolution &SE; - DominatorTree &DT; - LoopInfo &LI; - function_ref<void(Loop *, bool)> LPMAddNewLoop; - - // Information about the original loop we started out with. - Loop &OriginalLoop; - - const SCEV *LatchTakenCount = nullptr; - BasicBlock *OriginalPreheader = nullptr; - - // The preheader of the main loop. This may or may not be different from - // `OriginalPreheader'. - BasicBlock *MainLoopPreheader = nullptr; - - // The range we need to run the main loop in. - InductiveRangeCheck::Range Range; - - // The structure of the main loop (see comment at the beginning of this class - // for a definition) - LoopStructure MainLoopStructure; - -public: - LoopConstrainer(Loop &L, LoopInfo &LI, - function_ref<void(Loop *, bool)> LPMAddNewLoop, - const LoopStructure &LS, ScalarEvolution &SE, - DominatorTree &DT, InductiveRangeCheck::Range R) - : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), - SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), - Range(R), MainLoopStructure(LS) {} - - // Entry point for the algorithm. Returns true on success. - bool run(); -}; - -} // end anonymous namespace - -void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, - BasicBlock *ReplaceBy) { - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - if (PN->getIncomingBlock(i) == Block) - PN->setIncomingBlock(i, ReplaceBy); -} - -/// Given a loop with an deccreasing induction variable, is it possible to -/// safely calculate the bounds of a new loop using the given Predicate. -static bool isSafeDecreasingBound(const SCEV *Start, - const SCEV *BoundSCEV, const SCEV *Step, - ICmpInst::Predicate Pred, - unsigned LatchBrExitIdx, - Loop *L, ScalarEvolution &SE) { - if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && - Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) - return false; - - if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) - return false; - - assert(SE.isKnownNegative(Step) && "expecting negative step"); - - LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); - LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); - LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); - LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); - LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) - << "\n"); - LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); - - bool IsSigned = ICmpInst::isSigned(Pred); - // The predicate that we need to check that the induction variable lies - // within bounds. - ICmpInst::Predicate BoundPred = - IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; - - if (LatchBrExitIdx == 1) - return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); - - assert(LatchBrExitIdx == 0 && - "LatchBrExitIdx should be either 0 or 1"); - - const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); - unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); - APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : - APInt::getMinValue(BitWidth); - const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); - - const SCEV *MinusOne = - SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); - - return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && - SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); - -} - -/// Given a loop with an increasing induction variable, is it possible to -/// safely calculate the bounds of a new loop using the given Predicate. -static bool isSafeIncreasingBound(const SCEV *Start, - const SCEV *BoundSCEV, const SCEV *Step, - ICmpInst::Predicate Pred, - unsigned LatchBrExitIdx, - Loop *L, ScalarEvolution &SE) { - if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && - Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) - return false; - - if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) - return false; - - LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); - LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); - LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); - LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); - LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) - << "\n"); - LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); - - bool IsSigned = ICmpInst::isSigned(Pred); - // The predicate that we need to check that the induction variable lies - // within bounds. - ICmpInst::Predicate BoundPred = - IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; - - if (LatchBrExitIdx == 1) - return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); - - assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); - - const SCEV *StepMinusOne = - SE.getMinusSCEV(Step, SE.getOne(Step->getType())); - unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); - APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : - APInt::getMaxValue(BitWidth); - const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); - - return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, - SE.getAddExpr(BoundSCEV, Step)) && - SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); -} - -Optional<LoopStructure> -LoopStructure::parseLoopStructure(ScalarEvolution &SE, - BranchProbabilityInfo *BPI, Loop &L, - const char *&FailureReason) { - if (!L.isLoopSimplifyForm()) { - FailureReason = "loop not in LoopSimplify form"; - return None; - } - - BasicBlock *Latch = L.getLoopLatch(); - assert(Latch && "Simplified loops only have one latch!"); - - if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { - FailureReason = "loop has already been cloned"; - return None; - } - - if (!L.isLoopExiting(Latch)) { - FailureReason = "no loop latch"; - return None; - } - - BasicBlock *Header = L.getHeader(); - BasicBlock *Preheader = L.getLoopPreheader(); - if (!Preheader) { - FailureReason = "no preheader"; - return None; - } - - BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); - if (!LatchBr || LatchBr->isUnconditional()) { - FailureReason = "latch terminator not conditional branch"; - return None; - } - - unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; - - BranchProbability ExitProbability = - BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx) - : BranchProbability::getZero(); - - if (!SkipProfitabilityChecks && - ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { - FailureReason = "short running loop, not profitable"; - return None; - } - - ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); - if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { - FailureReason = "latch terminator branch not conditional on integral icmp"; - return None; - } - - const SCEV *LatchCount = SE.getExitCount(&L, Latch); - if (isa<SCEVCouldNotCompute>(LatchCount)) { - FailureReason = "could not compute latch count"; - return None; - } - - ICmpInst::Predicate Pred = ICI->getPredicate(); - Value *LeftValue = ICI->getOperand(0); - const SCEV *LeftSCEV = SE.getSCEV(LeftValue); - IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); - - Value *RightValue = ICI->getOperand(1); - const SCEV *RightSCEV = SE.getSCEV(RightValue); - - // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. - if (!isa<SCEVAddRecExpr>(LeftSCEV)) { - if (isa<SCEVAddRecExpr>(RightSCEV)) { - std::swap(LeftSCEV, RightSCEV); - std::swap(LeftValue, RightValue); - Pred = ICmpInst::getSwappedPredicate(Pred); - } else { - FailureReason = "no add recurrences in the icmp"; - return None; - } - } - - auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { - if (AR->getNoWrapFlags(SCEV::FlagNSW)) - return true; - - IntegerType *Ty = cast<IntegerType>(AR->getType()); - IntegerType *WideTy = - IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); - - const SCEVAddRecExpr *ExtendAfterOp = - dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); - if (ExtendAfterOp) { - const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); - const SCEV *ExtendedStep = - SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); - - bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && - ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; - - if (NoSignedWrap) - return true; - } - - // We may have proved this when computing the sign extension above. - return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; - }; - - // `ICI` is interpreted as taking the backedge if the *next* value of the - // induction variable satisfies some constraint. - - const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); - if (!IndVarBase->isAffine()) { - FailureReason = "LHS in icmp not induction variable"; - return None; - } - const SCEV* StepRec = IndVarBase->getStepRecurrence(SE); - if (!isa<SCEVConstant>(StepRec)) { - FailureReason = "LHS in icmp not induction variable"; - return None; - } - ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue(); - - if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { - FailureReason = "LHS in icmp needs nsw for equality predicates"; - return None; - } - - assert(!StepCI->isZero() && "Zero step?"); - bool IsIncreasing = !StepCI->isNegative(); - bool IsSignedPredicate = ICmpInst::isSigned(Pred); - const SCEV *StartNext = IndVarBase->getStart(); - const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); - const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); - const SCEV *Step = SE.getSCEV(StepCI); - - ConstantInt *One = ConstantInt::get(IndVarTy, 1); - if (IsIncreasing) { - bool DecreasedRightValueByOne = false; - if (StepCI->isOne()) { - // Try to turn eq/ne predicates to those we can work with. - if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) - // while (++i != len) { while (++i < len) { - // ... ---> ... - // } } - // If both parts are known non-negative, it is profitable to use - // unsigned comparison in increasing loop. This allows us to make the - // comparison check against "RightSCEV + 1" more optimistic. - if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && - isKnownNonNegativeInLoop(RightSCEV, &L, SE)) - Pred = ICmpInst::ICMP_ULT; - else - Pred = ICmpInst::ICMP_SLT; - else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { - // while (true) { while (true) { - // if (++i == len) ---> if (++i > len - 1) - // break; break; - // ... ... - // } } - if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && - cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { - Pred = ICmpInst::ICMP_UGT; - RightSCEV = SE.getMinusSCEV(RightSCEV, - SE.getOne(RightSCEV->getType())); - DecreasedRightValueByOne = true; - } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { - Pred = ICmpInst::ICMP_SGT; - RightSCEV = SE.getMinusSCEV(RightSCEV, - SE.getOne(RightSCEV->getType())); - DecreasedRightValueByOne = true; - } - } - } - - bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); - bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); - bool FoundExpectedPred = - (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); - - if (!FoundExpectedPred) { - FailureReason = "expected icmp slt semantically, found something else"; - return None; - } - - IsSignedPredicate = ICmpInst::isSigned(Pred); - if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { - FailureReason = "unsigned latch conditions are explicitly prohibited"; - return None; - } - - if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, - LatchBrExitIdx, &L, SE)) { - FailureReason = "Unsafe loop bounds"; - return None; - } - if (LatchBrExitIdx == 0) { - // We need to increase the right value unless we have already decreased - // it virtually when we replaced EQ with SGT. - if (!DecreasedRightValueByOne) { - IRBuilder<> B(Preheader->getTerminator()); - RightValue = B.CreateAdd(RightValue, One); - } - } else { - assert(!DecreasedRightValueByOne && - "Right value can be decreased only for LatchBrExitIdx == 0!"); - } - } else { - bool IncreasedRightValueByOne = false; - if (StepCI->isMinusOne()) { - // Try to turn eq/ne predicates to those we can work with. - if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) - // while (--i != len) { while (--i > len) { - // ... ---> ... - // } } - // We intentionally don't turn the predicate into UGT even if we know - // that both operands are non-negative, because it will only pessimize - // our check against "RightSCEV - 1". - Pred = ICmpInst::ICMP_SGT; - else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { - // while (true) { while (true) { - // if (--i == len) ---> if (--i < len + 1) - // break; break; - // ... ... - // } } - if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && - cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { - Pred = ICmpInst::ICMP_ULT; - RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); - IncreasedRightValueByOne = true; - } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { - Pred = ICmpInst::ICMP_SLT; - RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); - IncreasedRightValueByOne = true; - } - } - } - - bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); - bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); - - bool FoundExpectedPred = - (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); - - if (!FoundExpectedPred) { - FailureReason = "expected icmp sgt semantically, found something else"; - return None; - } - - IsSignedPredicate = - Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; - - if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { - FailureReason = "unsigned latch conditions are explicitly prohibited"; - return None; - } - - if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, - LatchBrExitIdx, &L, SE)) { - FailureReason = "Unsafe bounds"; - return None; - } - - if (LatchBrExitIdx == 0) { - // We need to decrease the right value unless we have already increased - // it virtually when we replaced EQ with SLT. - if (!IncreasedRightValueByOne) { - IRBuilder<> B(Preheader->getTerminator()); - RightValue = B.CreateSub(RightValue, One); - } - } else { - assert(!IncreasedRightValueByOne && - "Right value can be increased only for LatchBrExitIdx == 0!"); - } - } - BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); - - assert(SE.getLoopDisposition(LatchCount, &L) == - ScalarEvolution::LoopInvariant && - "loop variant exit count doesn't make sense!"); - - assert(!L.contains(LatchExit) && "expected an exit block!"); - const DataLayout &DL = Preheader->getModule()->getDataLayout(); - Value *IndVarStartV = - SCEVExpander(SE, DL, "irce") - .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); - IndVarStartV->setName("indvar.start"); - - LoopStructure Result; - - Result.Tag = "main"; - Result.Header = Header; - Result.Latch = Latch; - Result.LatchBr = LatchBr; - Result.LatchExit = LatchExit; - Result.LatchBrExitIdx = LatchBrExitIdx; - Result.IndVarStart = IndVarStartV; - Result.IndVarStep = StepCI; - Result.IndVarBase = LeftValue; - Result.IndVarIncreasing = IsIncreasing; - Result.LoopExitAt = RightValue; - Result.IsSignedPredicate = IsSignedPredicate; - - FailureReason = nullptr; - - return Result; -} - -Optional<LoopConstrainer::SubRanges> -LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { - IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); - - if (Range.getType() != Ty) - return None; - - LoopConstrainer::SubRanges Result; - - // I think we can be more aggressive here and make this nuw / nsw if the - // addition that feeds into the icmp for the latch's terminating branch is nuw - // / nsw. In any case, a wrapping 2's complement addition is safe. - const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); - const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); - - bool Increasing = MainLoopStructure.IndVarIncreasing; - - // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or - // [Smallest, GreatestSeen] is the range of values the induction variable - // takes. - - const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; - - const SCEV *One = SE.getOne(Ty); - if (Increasing) { - Smallest = Start; - Greatest = End; - // No overflow, because the range [Smallest, GreatestSeen] is not empty. - GreatestSeen = SE.getMinusSCEV(End, One); - } else { - // These two computations may sign-overflow. Here is why that is okay: - // - // We know that the induction variable does not sign-overflow on any - // iteration except the last one, and it starts at `Start` and ends at - // `End`, decrementing by one every time. - // - // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the - // induction variable is decreasing we know that that the smallest value - // the loop body is actually executed with is `INT_SMIN` == `Smallest`. - // - // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In - // that case, `Clamp` will always return `Smallest` and - // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) - // will be an empty range. Returning an empty range is always safe. - - Smallest = SE.getAddExpr(End, One); - Greatest = SE.getAddExpr(Start, One); - GreatestSeen = Start; - } - - auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { - return IsSignedPredicate - ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) - : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); - }; - - // In some cases we can prove that we don't need a pre or post loop. - ICmpInst::Predicate PredLE = - IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; - ICmpInst::Predicate PredLT = - IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; - - bool ProvablyNoPreloop = - SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); - if (!ProvablyNoPreloop) - Result.LowLimit = Clamp(Range.getBegin()); - - bool ProvablyNoPostLoop = - SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); - if (!ProvablyNoPostLoop) - Result.HighLimit = Clamp(Range.getEnd()); - - return Result; -} - -void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, - const char *Tag) const { - for (BasicBlock *BB : OriginalLoop.getBlocks()) { - BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); - Result.Blocks.push_back(Clone); - Result.Map[BB] = Clone; - } - - auto GetClonedValue = [&Result](Value *V) { - assert(V && "null values not in domain!"); - auto It = Result.Map.find(V); - if (It == Result.Map.end()) - return V; - return static_cast<Value *>(It->second); - }; - - auto *ClonedLatch = - cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); - ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, - MDNode::get(Ctx, {})); - - Result.Structure = MainLoopStructure.map(GetClonedValue); - Result.Structure.Tag = Tag; - - for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { - BasicBlock *ClonedBB = Result.Blocks[i]; - BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; - - assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); - - for (Instruction &I : *ClonedBB) - RemapInstruction(&I, Result.Map, - RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); - - // Exit blocks will now have one more predecessor and their PHI nodes need - // to be edited to reflect that. No phi nodes need to be introduced because - // the loop is in LCSSA. - - for (auto *SBB : successors(OriginalBB)) { - if (OriginalLoop.contains(SBB)) - continue; // not an exit block - - for (PHINode &PN : SBB->phis()) { - Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); - PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); - } - } - } -} - -LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( - const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, - BasicBlock *ContinuationBlock) const { - // We start with a loop with a single latch: - // - // +--------------------+ - // | | - // | preheader | - // | | - // +--------+-----------+ - // | ----------------\ - // | / | - // +--------v----v------+ | - // | | | - // | header | | - // | | | - // +--------------------+ | - // | - // ..... | - // | - // +--------------------+ | - // | | | - // | latch >----------/ - // | | - // +-------v------------+ - // | - // | - // | +--------------------+ - // | | | - // +---> original exit | - // | | - // +--------------------+ - // - // We change the control flow to look like - // - // - // +--------------------+ - // | | - // | preheader >-------------------------+ - // | | | - // +--------v-----------+ | - // | /-------------+ | - // | / | | - // +--------v--v--------+ | | - // | | | | - // | header | | +--------+ | - // | | | | | | - // +--------------------+ | | +-----v-----v-----------+ - // | | | | - // | | | .pseudo.exit | - // | | | | - // | | +-----------v-----------+ - // | | | - // ..... | | | - // | | +--------v-------------+ - // +--------------------+ | | | | - // | | | | | ContinuationBlock | - // | latch >------+ | | | - // | | | +----------------------+ - // +---------v----------+ | - // | | - // | | - // | +---------------^-----+ - // | | | - // +-----> .exit.selector | - // | | - // +----------v----------+ - // | - // +--------------------+ | - // | | | - // | original exit <----+ - // | | - // +--------------------+ - - RewrittenRangeInfo RRI; - - BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); - RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", - &F, BBInsertLocation); - RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, - BBInsertLocation); - - BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); - bool Increasing = LS.IndVarIncreasing; - bool IsSignedPredicate = LS.IsSignedPredicate; - - IRBuilder<> B(PreheaderJump); - - // EnterLoopCond - is it okay to start executing this `LS'? - Value *EnterLoopCond = nullptr; - auto Pred = - Increasing - ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) - : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); - EnterLoopCond = B.CreateICmp(Pred, LS.IndVarStart, ExitSubloopAt); - - B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); - PreheaderJump->eraseFromParent(); - - LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); - B.SetInsertPoint(LS.LatchBr); - Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, LS.IndVarBase, - ExitSubloopAt); - - Value *CondForBranch = LS.LatchBrExitIdx == 1 - ? TakeBackedgeLoopCond - : B.CreateNot(TakeBackedgeLoopCond); - - LS.LatchBr->setCondition(CondForBranch); - - B.SetInsertPoint(RRI.ExitSelector); - - // IterationsLeft - are there any more iterations left, given the original - // upper bound on the induction variable? If not, we branch to the "real" - // exit. - Value *IterationsLeft = B.CreateICmp(Pred, LS.IndVarBase, LS.LoopExitAt); - B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); - - BranchInst *BranchToContinuation = - BranchInst::Create(ContinuationBlock, RRI.PseudoExit); - - // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of - // each of the PHI nodes in the loop header. This feeds into the initial - // value of the same PHI nodes if/when we continue execution. - for (PHINode &PN : LS.Header->phis()) { - PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", - BranchToContinuation); - - NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); - NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), - RRI.ExitSelector); - RRI.PHIValuesAtPseudoExit.push_back(NewPHI); - } - - RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", - BranchToContinuation); - RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); - RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); - - // The latch exit now has a branch from `RRI.ExitSelector' instead of - // `LS.Latch'. The PHI nodes need to be updated to reflect that. - for (PHINode &PN : LS.LatchExit->phis()) - replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector); - - return RRI; -} - -void LoopConstrainer::rewriteIncomingValuesForPHIs( - LoopStructure &LS, BasicBlock *ContinuationBlock, - const LoopConstrainer::RewrittenRangeInfo &RRI) const { - unsigned PHIIndex = 0; - for (PHINode &PN : LS.Header->phis()) - for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) - if (PN.getIncomingBlock(i) == ContinuationBlock) - PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); - - LS.IndVarStart = RRI.IndVarEnd; -} - -BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, - BasicBlock *OldPreheader, - const char *Tag) const { - BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); - BranchInst::Create(LS.Header, Preheader); - - for (PHINode &PN : LS.Header->phis()) - for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) - replacePHIBlock(&PN, OldPreheader, Preheader); - - return Preheader; -} - -void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { - Loop *ParentLoop = OriginalLoop.getParentLoop(); - if (!ParentLoop) - return; - - for (BasicBlock *BB : BBs) - ParentLoop->addBasicBlockToLoop(BB, LI); -} - -Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, - ValueToValueMapTy &VM, - bool IsSubloop) { - Loop &New = *LI.AllocateLoop(); - if (Parent) - Parent->addChildLoop(&New); - else - LI.addTopLevelLoop(&New); - LPMAddNewLoop(&New, IsSubloop); - - // Add all of the blocks in Original to the new loop. - for (auto *BB : Original->blocks()) - if (LI.getLoopFor(BB) == Original) - New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); - - // Add all of the subloops to the new loop. - for (Loop *SubLoop : *Original) - createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); - - return &New; -} - -bool LoopConstrainer::run() { - BasicBlock *Preheader = nullptr; - LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); - Preheader = OriginalLoop.getLoopPreheader(); - assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && - "preconditions!"); - - OriginalPreheader = Preheader; - MainLoopPreheader = Preheader; - - bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; - Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); - if (!MaybeSR.hasValue()) { - LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); - return false; - } - - SubRanges SR = MaybeSR.getValue(); - bool Increasing = MainLoopStructure.IndVarIncreasing; - IntegerType *IVTy = - cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); - - SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); - Instruction *InsertPt = OriginalPreheader->getTerminator(); - - // It would have been better to make `PreLoop' and `PostLoop' - // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy - // constructor. - ClonedLoop PreLoop, PostLoop; - bool NeedsPreLoop = - Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); - bool NeedsPostLoop = - Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); - - Value *ExitPreLoopAt = nullptr; - Value *ExitMainLoopAt = nullptr; - const SCEVConstant *MinusOneS = - cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); - - if (NeedsPreLoop) { - const SCEV *ExitPreLoopAtSCEV = nullptr; - - if (Increasing) - ExitPreLoopAtSCEV = *SR.LowLimit; - else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, - IsSignedPredicate)) - ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); - else { - LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " - << "preloop exit limit. HighLimit = " - << *(*SR.HighLimit) << "\n"); - return false; - } - - if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { - LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" - << " preloop exit limit " << *ExitPreLoopAtSCEV - << " at block " << InsertPt->getParent()->getName() - << "\n"); - return false; - } - - ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); - ExitPreLoopAt->setName("exit.preloop.at"); - } - - if (NeedsPostLoop) { - const SCEV *ExitMainLoopAtSCEV = nullptr; - - if (Increasing) - ExitMainLoopAtSCEV = *SR.HighLimit; - else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, - IsSignedPredicate)) - ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); - else { - LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " - << "mainloop exit limit. LowLimit = " - << *(*SR.LowLimit) << "\n"); - return false; - } - - if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { - LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" - << " main loop exit limit " << *ExitMainLoopAtSCEV - << " at block " << InsertPt->getParent()->getName() - << "\n"); - return false; - } - - ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); - ExitMainLoopAt->setName("exit.mainloop.at"); - } - - // We clone these ahead of time so that we don't have to deal with changing - // and temporarily invalid IR as we transform the loops. - if (NeedsPreLoop) - cloneLoop(PreLoop, "preloop"); - if (NeedsPostLoop) - cloneLoop(PostLoop, "postloop"); - - RewrittenRangeInfo PreLoopRRI; - - if (NeedsPreLoop) { - Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, - PreLoop.Structure.Header); - - MainLoopPreheader = - createPreheader(MainLoopStructure, Preheader, "mainloop"); - PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, - ExitPreLoopAt, MainLoopPreheader); - rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, - PreLoopRRI); - } - - BasicBlock *PostLoopPreheader = nullptr; - RewrittenRangeInfo PostLoopRRI; - - if (NeedsPostLoop) { - PostLoopPreheader = - createPreheader(PostLoop.Structure, Preheader, "postloop"); - PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, - ExitMainLoopAt, PostLoopPreheader); - rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, - PostLoopRRI); - } - - BasicBlock *NewMainLoopPreheader = - MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; - BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, - PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, - PostLoopRRI.ExitSelector, NewMainLoopPreheader}; - - // Some of the above may be nullptr, filter them out before passing to - // addToParentLoopIfNeeded. - auto NewBlocksEnd = - std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); - - addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); - - DT.recalculate(F); - - // We need to first add all the pre and post loop blocks into the loop - // structures (as part of createClonedLoopStructure), and then update the - // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating - // LI when LoopSimplifyForm is generated. - Loop *PreL = nullptr, *PostL = nullptr; - if (!PreLoop.Blocks.empty()) { - PreL = createClonedLoopStructure(&OriginalLoop, - OriginalLoop.getParentLoop(), PreLoop.Map, - /* IsSubLoop */ false); - } - - if (!PostLoop.Blocks.empty()) { - PostL = - createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), - PostLoop.Map, /* IsSubLoop */ false); - } - - // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. - auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { - formLCSSARecursively(*L, DT, &LI, &SE); - simplifyLoop(L, &DT, &LI, &SE, nullptr, true); - // Pre/post loops are slow paths, we do not need to perform any loop - // optimizations on them. - if (!IsOriginalLoop) - DisableAllLoopOptsOnLoop(*L); - }; - if (PreL) - CanonicalizeLoop(PreL, false); - if (PostL) - CanonicalizeLoop(PostL, false); - CanonicalizeLoop(&OriginalLoop, true); - - return true; -} - -/// Computes and returns a range of values for the induction variable (IndVar) -/// in which the range check can be safely elided. If it cannot compute such a -/// range, returns None. -Optional<InductiveRangeCheck::Range> -InductiveRangeCheck::computeSafeIterationSpace( - ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, - bool IsLatchSigned) const { - // IndVar is of the form "A + B * I" (where "I" is the canonical induction - // variable, that may or may not exist as a real llvm::Value in the loop) and - // this inductive range check is a range check on the "C + D * I" ("C" is - // getBegin() and "D" is getStep()). We rewrite the value being range - // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". - // - // The actual inequalities we solve are of the form - // - // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) - // - // Here L stands for upper limit of the safe iteration space. - // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid - // overflows when calculating (0 - M) and (L - M) we, depending on type of - // IV's iteration space, limit the calculations by borders of the iteration - // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. - // If we figured out that "anything greater than (-M) is safe", we strengthen - // this to "everything greater than 0 is safe", assuming that values between - // -M and 0 just do not exist in unsigned iteration space, and we don't want - // to deal with overflown values. - - if (!IndVar->isAffine()) - return None; - - const SCEV *A = IndVar->getStart(); - const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); - if (!B) - return None; - assert(!B->isZero() && "Recurrence with zero step?"); - - const SCEV *C = getBegin(); - const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); - if (D != B) - return None; - - assert(!D->getValue()->isZero() && "Recurrence with zero step?"); - unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); - const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); - - // Subtract Y from X so that it does not go through border of the IV - // iteration space. Mathematically, it is equivalent to: - // - // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] - // - // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to - // any width of bit grid). But after we take min/max, the result is - // guaranteed to be within [INT_MIN, INT_MAX]. - // - // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min - // values, depending on type of latch condition that defines IV iteration - // space. - auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { - // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. - // This is required to ensure that SINT_MAX - X does not overflow signed and - // that X - Y does not overflow unsigned if Y is negative. Can we lift this - // restriction and make it work for negative X either? - if (IsLatchSigned) { - // X is a number from signed range, Y is interpreted as signed. - // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only - // thing we should care about is that we didn't cross SINT_MAX. - // So, if Y is positive, we subtract Y safely. - // Rule 1: Y > 0 ---> Y. - // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. - // Rule 2: Y >=s (X - SINT_MAX) ---> Y. - // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). - // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). - // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. - const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); - return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), - SCEV::FlagNSW); - } else - // X is a number from unsigned range, Y is interpreted as signed. - // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only - // thing we should care about is that we didn't cross zero. - // So, if Y is negative, we subtract Y safely. - // Rule 1: Y <s 0 ---> Y. - // If 0 <= Y <= X, we subtract Y safely. - // Rule 2: Y <=s X ---> Y. - // If 0 <= X < Y, we should stop at 0 and can only subtract X. - // Rule 3: Y >s X ---> X. - // It gives us smin(X, Y) to subtract in all cases. - return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); - }; - const SCEV *M = SE.getMinusSCEV(C, A); - const SCEV *Zero = SE.getZero(M->getType()); - - // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. - auto SCEVCheckNonNegative = [&](const SCEV *X) { - const Loop *L = IndVar->getLoop(); - const SCEV *One = SE.getOne(X->getType()); - // Can we trivially prove that X is a non-negative or negative value? - if (isKnownNonNegativeInLoop(X, L, SE)) - return One; - else if (isKnownNegativeInLoop(X, L, SE)) - return Zero; - // If not, we will have to figure it out during the execution. - // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. - const SCEV *NegOne = SE.getNegativeSCEV(One); - return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); - }; - // FIXME: Current implementation of ClampedSubtract implicitly assumes that - // X is non-negative (in sense of a signed value). We need to re-implement - // this function in a way that it will correctly handle negative X as well. - // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can - // end up with a negative X and produce wrong results. So currently we ensure - // that if getEnd() is negative then both ends of the safe range are zero. - // Note that this may pessimize elimination of unsigned range checks against - // negative values. - const SCEV *REnd = getEnd(); - const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd); - - const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative); - const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative); - return InductiveRangeCheck::Range(Begin, End); -} - -static Optional<InductiveRangeCheck::Range> -IntersectSignedRange(ScalarEvolution &SE, - const Optional<InductiveRangeCheck::Range> &R1, - const InductiveRangeCheck::Range &R2) { - if (R2.isEmpty(SE, /* IsSigned */ true)) - return None; - if (!R1.hasValue()) - return R2; - auto &R1Value = R1.getValue(); - // We never return empty ranges from this function, and R1 is supposed to be - // a result of intersection. Thus, R1 is never empty. - assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && - "We should never have empty R1!"); - - // TODO: we could widen the smaller range and have this work; but for now we - // bail out to keep things simple. - if (R1Value.getType() != R2.getType()) - return None; - - const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); - const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); - - // If the resulting range is empty, just return None. - auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); - if (Ret.isEmpty(SE, /* IsSigned */ true)) - return None; - return Ret; -} - -static Optional<InductiveRangeCheck::Range> -IntersectUnsignedRange(ScalarEvolution &SE, - const Optional<InductiveRangeCheck::Range> &R1, - const InductiveRangeCheck::Range &R2) { - if (R2.isEmpty(SE, /* IsSigned */ false)) - return None; - if (!R1.hasValue()) - return R2; - auto &R1Value = R1.getValue(); - // We never return empty ranges from this function, and R1 is supposed to be - // a result of intersection. Thus, R1 is never empty. - assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && - "We should never have empty R1!"); - - // TODO: we could widen the smaller range and have this work; but for now we - // bail out to keep things simple. - if (R1Value.getType() != R2.getType()) - return None; - - const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); - const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); - - // If the resulting range is empty, just return None. - auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); - if (Ret.isEmpty(SE, /* IsSigned */ false)) - return None; - return Ret; -} - -PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM, - LoopStandardAnalysisResults &AR, - LPMUpdater &U) { - Function *F = L.getHeader()->getParent(); - const auto &FAM = - AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); - auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); - InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI); - auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) { - if (!IsSubloop) - U.addSiblingLoops(NL); - }; - bool Changed = IRCE.run(&L, LPMAddNewLoop); - if (!Changed) - return PreservedAnalyses::all(); - - return getLoopPassPreservedAnalyses(); -} - -bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { - if (skipLoop(L)) - return false; - - ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - BranchProbabilityInfo &BPI = - getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); - auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) { - LPM.addLoop(*NL); - }; - return IRCE.run(L, LPMAddNewLoop); -} - -bool InductiveRangeCheckElimination::run( - Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { - if (L->getBlocks().size() >= LoopSizeCutoff) { - LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); - return false; - } - - BasicBlock *Preheader = L->getLoopPreheader(); - if (!Preheader) { - LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); - return false; - } - - LLVMContext &Context = Preheader->getContext(); - SmallVector<InductiveRangeCheck, 16> RangeChecks; - - for (auto BBI : L->getBlocks()) - if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) - InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, - RangeChecks); - - if (RangeChecks.empty()) - return false; - - auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { - OS << "irce: looking at loop "; L->print(OS); - OS << "irce: loop has " << RangeChecks.size() - << " inductive range checks: \n"; - for (InductiveRangeCheck &IRC : RangeChecks) - IRC.print(OS); - }; - - LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); - - if (PrintRangeChecks) - PrintRecognizedRangeChecks(errs()); - - const char *FailureReason = nullptr; - Optional<LoopStructure> MaybeLoopStructure = - LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); - if (!MaybeLoopStructure.hasValue()) { - LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " - << FailureReason << "\n";); - return false; - } - LoopStructure LS = MaybeLoopStructure.getValue(); - const SCEVAddRecExpr *IndVar = - cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); - - Optional<InductiveRangeCheck::Range> SafeIterRange; - Instruction *ExprInsertPt = Preheader->getTerminator(); - - SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; - // Basing on the type of latch predicate, we interpret the IV iteration range - // as signed or unsigned range. We use different min/max functions (signed or - // unsigned) when intersecting this range with safe iteration ranges implied - // by range checks. - auto IntersectRange = - LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; - - IRBuilder<> B(ExprInsertPt); - for (InductiveRangeCheck &IRC : RangeChecks) { - auto Result = IRC.computeSafeIterationSpace(SE, IndVar, - LS.IsSignedPredicate); - if (Result.hasValue()) { - auto MaybeSafeIterRange = - IntersectRange(SE, SafeIterRange, Result.getValue()); - if (MaybeSafeIterRange.hasValue()) { - assert( - !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && - "We should never return empty ranges!"); - RangeChecksToEliminate.push_back(IRC); - SafeIterRange = MaybeSafeIterRange.getValue(); - } - } - } - - if (!SafeIterRange.hasValue()) - return false; - - LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, - SafeIterRange.getValue()); - bool Changed = LC.run(); - - if (Changed) { - auto PrintConstrainedLoopInfo = [L]() { - dbgs() << "irce: in function "; - dbgs() << L->getHeader()->getParent()->getName() << ": "; - dbgs() << "constrained "; - L->print(dbgs()); - }; - - LLVM_DEBUG(PrintConstrainedLoopInfo()); - - if (PrintChangedLoops) - PrintConstrainedLoopInfo(); - - // Optimize away the now-redundant range checks. - - for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { - ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() - ? ConstantInt::getTrue(Context) - : ConstantInt::getFalse(Context); - IRC.getCheckUse()->set(FoldedRangeCheck); - } - } - - return Changed; -} - -Pass *llvm::createInductiveRangeCheckEliminationPass() { - return new IRCELegacyPass(); -} |
