summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp1781
1 files changed, 0 insertions, 1781 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
deleted file mode 100644
index 10073457f6b..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ /dev/null
@@ -1,1781 +0,0 @@
-//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass implements an idiom recognizer that transforms simple loops into a
-// non-loop form. In cases that this kicks in, it can be a significant
-// performance win.
-//
-// If compiling for code size we avoid idiom recognition if the resulting
-// code could be larger than the code for the original loop. One way this could
-// happen is if the loop is not removable after idiom recognition due to the
-// presence of non-idiom instructions. The initial implementation of the
-// heuristics applies to idioms in multi-block loops.
-//
-//===----------------------------------------------------------------------===//
-//
-// TODO List:
-//
-// Future loop memory idioms to recognize:
-// memcmp, memmove, strlen, etc.
-// Future floating point idioms to recognize in -ffast-math mode:
-// fpowi
-// Future integer operation idioms to recognize:
-// ctpop
-//
-// Beware that isel's default lowering for ctpop is highly inefficient for
-// i64 and larger types when i64 is legal and the value has few bits set. It
-// would be good to enhance isel to emit a loop for ctpop in this case.
-//
-// This could recognize common matrix multiplies and dot product idioms and
-// replace them with calls to BLAS (if linked in??).
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/LoopAccessAnalysis.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
-#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-idiom"
-
-STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
-STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
-
-static cl::opt<bool> UseLIRCodeSizeHeurs(
- "use-lir-code-size-heurs",
- cl::desc("Use loop idiom recognition code size heuristics when compiling"
- "with -Os/-Oz"),
- cl::init(true), cl::Hidden);
-
-namespace {
-
-class LoopIdiomRecognize {
- Loop *CurLoop = nullptr;
- AliasAnalysis *AA;
- DominatorTree *DT;
- LoopInfo *LI;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
- const DataLayout *DL;
- bool ApplyCodeSizeHeuristics;
-
-public:
- explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
- LoopInfo *LI, ScalarEvolution *SE,
- TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI,
- const DataLayout *DL)
- : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {}
-
- bool runOnLoop(Loop *L);
-
-private:
- using StoreList = SmallVector<StoreInst *, 8>;
- using StoreListMap = MapVector<Value *, StoreList>;
-
- StoreListMap StoreRefsForMemset;
- StoreListMap StoreRefsForMemsetPattern;
- StoreList StoreRefsForMemcpy;
- bool HasMemset;
- bool HasMemsetPattern;
- bool HasMemcpy;
-
- /// Return code for isLegalStore()
- enum LegalStoreKind {
- None = 0,
- Memset,
- MemsetPattern,
- Memcpy,
- UnorderedAtomicMemcpy,
- DontUse // Dummy retval never to be used. Allows catching errors in retval
- // handling.
- };
-
- /// \name Countable Loop Idiom Handling
- /// @{
-
- bool runOnCountableLoop();
- bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock *> &ExitBlocks);
-
- void collectStores(BasicBlock *BB);
- LegalStoreKind isLegalStore(StoreInst *SI);
- enum class ForMemset { No, Yes };
- bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
- ForMemset For);
- bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
-
- bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
- unsigned StoreAlignment, Value *StoredVal,
- Instruction *TheStore,
- SmallPtrSetImpl<Instruction *> &Stores,
- const SCEVAddRecExpr *Ev, const SCEV *BECount,
- bool NegStride, bool IsLoopMemset = false);
- bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
- bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
- bool IsLoopMemset = false);
-
- /// @}
- /// \name Noncountable Loop Idiom Handling
- /// @{
-
- bool runOnNoncountableLoop();
-
- bool recognizePopcount();
- void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
- PHINode *CntPhi, Value *Var);
- bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
- void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
- Instruction *CntInst, PHINode *CntPhi,
- Value *Var, Instruction *DefX,
- const DebugLoc &DL, bool ZeroCheck,
- bool IsCntPhiUsedOutsideLoop);
-
- /// @}
-};
-
-class LoopIdiomRecognizeLegacyPass : public LoopPass {
-public:
- static char ID;
-
- explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
- initializeLoopIdiomRecognizeLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
-
- AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- const TargetTransformInfo *TTI =
- &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent());
- const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
-
- LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
- return LIR.runOnLoop(L);
- }
-
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-};
-
-} // end anonymous namespace
-
-char LoopIdiomRecognizeLegacyPass::ID = 0;
-
-PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- const auto *DL = &L.getHeader()->getModule()->getDataLayout();
-
- LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL);
- if (!LIR.runOnLoop(&L))
- return PreservedAnalyses::all();
-
- return getLoopPassPreservedAnalyses();
-}
-
-INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
- "Recognize loop idioms", false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
- "Recognize loop idioms", false, false)
-
-Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
-
-static void deleteDeadInstruction(Instruction *I) {
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- I->eraseFromParent();
-}
-
-//===----------------------------------------------------------------------===//
-//
-// Implementation of LoopIdiomRecognize
-//
-//===----------------------------------------------------------------------===//
-
-bool LoopIdiomRecognize::runOnLoop(Loop *L) {
- CurLoop = L;
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!L->getLoopPreheader())
- return false;
-
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
- return false;
- if (Name == "_libc_memset" || Name == "_libc_memcpy")
- return false;
-
- // Determine if code size heuristics need to be applied.
- ApplyCodeSizeHeuristics =
- L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs;
-
- HasMemset = TLI->has(LibFunc_memset);
- HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
- HasMemcpy = TLI->has(LibFunc_memcpy);
-
- if (HasMemset || HasMemsetPattern || HasMemcpy)
- if (SE->hasLoopInvariantBackedgeTakenCount(L))
- return runOnCountableLoop();
-
- return runOnNoncountableLoop();
-}
-
-bool LoopIdiomRecognize::runOnCountableLoop() {
- const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
- assert(!isa<SCEVCouldNotCompute>(BECount) &&
- "runOnCountableLoop() called on a loop without a predictable"
- "backedge-taken count");
-
- // If this loop executes exactly one time, then it should be peeled, not
- // optimized by this pass.
- if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- if (BECst->getAPInt() == 0)
- return false;
-
- SmallVector<BasicBlock *, 8> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
-
- LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F["
- << CurLoop->getHeader()->getParent()->getName()
- << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
-
- bool MadeChange = false;
-
- // The following transforms hoist stores/memsets into the loop pre-header.
- // Give up if the loop has instructions may throw.
- SimpleLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(CurLoop);
- if (SafetyInfo.anyBlockMayThrow())
- return MadeChange;
-
- // Scan all the blocks in the loop that are not in subloops.
- for (auto *BB : CurLoop->getBlocks()) {
- // Ignore blocks in subloops.
- if (LI->getLoopFor(BB) != CurLoop)
- continue;
-
- MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
- }
- return MadeChange;
-}
-
-static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
- const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
- return ConstStride->getAPInt();
-}
-
-/// getMemSetPatternValue - If a strided store of the specified value is safe to
-/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
-/// be passed in. Otherwise, return null.
-///
-/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
-/// just replicate their input array and then pass on to memset_pattern16.
-static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
- // FIXME: This could check for UndefValue because it can be merged into any
- // other valid pattern.
-
- // If the value isn't a constant, we can't promote it to being in a constant
- // array. We could theoretically do a store to an alloca or something, but
- // that doesn't seem worthwhile.
- Constant *C = dyn_cast<Constant>(V);
- if (!C)
- return nullptr;
-
- // Only handle simple values that are a power of two bytes in size.
- uint64_t Size = DL->getTypeSizeInBits(V->getType());
- if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
- return nullptr;
-
- // Don't care enough about darwin/ppc to implement this.
- if (DL->isBigEndian())
- return nullptr;
-
- // Convert to size in bytes.
- Size /= 8;
-
- // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
- // if the top and bottom are the same (e.g. for vectors and large integers).
- if (Size > 16)
- return nullptr;
-
- // If the constant is exactly 16 bytes, just use it.
- if (Size == 16)
- return C;
-
- // Otherwise, we'll use an array of the constants.
- unsigned ArraySize = 16 / Size;
- ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
- return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
-}
-
-LoopIdiomRecognize::LegalStoreKind
-LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
- // Don't touch volatile stores.
- if (SI->isVolatile())
- return LegalStoreKind::None;
- // We only want simple or unordered-atomic stores.
- if (!SI->isUnordered())
- return LegalStoreKind::None;
-
- // Don't convert stores of non-integral pointer types to memsets (which stores
- // integers).
- if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
- return LegalStoreKind::None;
-
- // Avoid merging nontemporal stores.
- if (SI->getMetadata(LLVMContext::MD_nontemporal))
- return LegalStoreKind::None;
-
- Value *StoredVal = SI->getValueOperand();
- Value *StorePtr = SI->getPointerOperand();
-
- // Reject stores that are so large that they overflow an unsigned.
- uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
- if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
- return LegalStoreKind::None;
-
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *StoreEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
- return LegalStoreKind::None;
-
- // Check to see if we have a constant stride.
- if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
- return LegalStoreKind::None;
-
- // See if the store can be turned into a memset.
-
- // If the stored value is a byte-wise value (like i32 -1), then it may be
- // turned into a memset of i8 -1, assuming that all the consecutive bytes
- // are stored. A store of i32 0x01020304 can never be turned into a memset,
- // but it can be turned into memset_pattern if the target supports it.
- Value *SplatValue = isBytewiseValue(StoredVal);
- Constant *PatternValue = nullptr;
-
- // Note: memset and memset_pattern on unordered-atomic is yet not supported
- bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
-
- // If we're allowed to form a memset, and the stored value would be
- // acceptable for memset, use it.
- if (!UnorderedAtomic && HasMemset && SplatValue &&
- // Verify that the stored value is loop invariant. If not, we can't
- // promote the memset.
- CurLoop->isLoopInvariant(SplatValue)) {
- // It looks like we can use SplatValue.
- return LegalStoreKind::Memset;
- } else if (!UnorderedAtomic && HasMemsetPattern &&
- // Don't create memset_pattern16s with address spaces.
- StorePtr->getType()->getPointerAddressSpace() == 0 &&
- (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
- // It looks like we can use PatternValue!
- return LegalStoreKind::MemsetPattern;
- }
-
- // Otherwise, see if the store can be turned into a memcpy.
- if (HasMemcpy) {
- // Check to see if the stride matches the size of the store. If so, then we
- // know that every byte is touched in the loop.
- APInt Stride = getStoreStride(StoreEv);
- unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
- if (StoreSize != Stride && StoreSize != -Stride)
- return LegalStoreKind::None;
-
- // The store must be feeding a non-volatile load.
- LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
-
- // Only allow non-volatile loads
- if (!LI || LI->isVolatile())
- return LegalStoreKind::None;
- // Only allow simple or unordered-atomic loads
- if (!LI->isUnordered())
- return LegalStoreKind::None;
-
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided load. If we have something else, it's a
- // random load we can't handle.
- const SCEVAddRecExpr *LoadEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
- if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
- return LegalStoreKind::None;
-
- // The store and load must share the same stride.
- if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
- return LegalStoreKind::None;
-
- // Success. This store can be converted into a memcpy.
- UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
- return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
- : LegalStoreKind::Memcpy;
- }
- // This store can't be transformed into a memset/memcpy.
- return LegalStoreKind::None;
-}
-
-void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
- StoreRefsForMemset.clear();
- StoreRefsForMemsetPattern.clear();
- StoreRefsForMemcpy.clear();
- for (Instruction &I : *BB) {
- StoreInst *SI = dyn_cast<StoreInst>(&I);
- if (!SI)
- continue;
-
- // Make sure this is a strided store with a constant stride.
- switch (isLegalStore(SI)) {
- case LegalStoreKind::None:
- // Nothing to do
- break;
- case LegalStoreKind::Memset: {
- // Find the base pointer.
- Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
- StoreRefsForMemset[Ptr].push_back(SI);
- } break;
- case LegalStoreKind::MemsetPattern: {
- // Find the base pointer.
- Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
- StoreRefsForMemsetPattern[Ptr].push_back(SI);
- } break;
- case LegalStoreKind::Memcpy:
- case LegalStoreKind::UnorderedAtomicMemcpy:
- StoreRefsForMemcpy.push_back(SI);
- break;
- default:
- assert(false && "unhandled return value");
- break;
- }
- }
-}
-
-/// runOnLoopBlock - Process the specified block, which lives in a counted loop
-/// with the specified backedge count. This block is known to be in the current
-/// loop and not in any subloops.
-bool LoopIdiomRecognize::runOnLoopBlock(
- BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock *> &ExitBlocks) {
- // We can only promote stores in this block if they are unconditionally
- // executed in the loop. For a block to be unconditionally executed, it has
- // to dominate all the exit blocks of the loop. Verify this now.
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (!DT->dominates(BB, ExitBlocks[i]))
- return false;
-
- bool MadeChange = false;
- // Look for store instructions, which may be optimized to memset/memcpy.
- collectStores(BB);
-
- // Look for a single store or sets of stores with a common base, which can be
- // optimized into a memset (memset_pattern). The latter most commonly happens
- // with structs and handunrolled loops.
- for (auto &SL : StoreRefsForMemset)
- MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
-
- for (auto &SL : StoreRefsForMemsetPattern)
- MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
-
- // Optimize the store into a memcpy, if it feeds an similarly strided load.
- for (auto &SI : StoreRefsForMemcpy)
- MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
-
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *Inst = &*I++;
- // Look for memset instructions, which may be optimized to a larger memset.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
- WeakTrackingVH InstPtr(&*I);
- if (!processLoopMemSet(MSI, BECount))
- continue;
- MadeChange = true;
-
- // If processing the memset invalidated our iterator, start over from the
- // top of the block.
- if (!InstPtr)
- I = BB->begin();
- continue;
- }
- }
-
- return MadeChange;
-}
-
-/// See if this store(s) can be promoted to a memset.
-bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
- const SCEV *BECount, ForMemset For) {
- // Try to find consecutive stores that can be transformed into memsets.
- SetVector<StoreInst *> Heads, Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
-
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of stores that follow each other.
- SmallVector<unsigned, 16> IndexQueue;
- for (unsigned i = 0, e = SL.size(); i < e; ++i) {
- assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
-
- Value *FirstStoredVal = SL[i]->getValueOperand();
- Value *FirstStorePtr = SL[i]->getPointerOperand();
- const SCEVAddRecExpr *FirstStoreEv =
- cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
- APInt FirstStride = getStoreStride(FirstStoreEv);
- unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
-
- // See if we can optimize just this store in isolation.
- if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
- Heads.insert(SL[i]);
- continue;
- }
-
- Value *FirstSplatValue = nullptr;
- Constant *FirstPatternValue = nullptr;
-
- if (For == ForMemset::Yes)
- FirstSplatValue = isBytewiseValue(FirstStoredVal);
- else
- FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
-
- assert((FirstSplatValue || FirstPatternValue) &&
- "Expected either splat value or pattern value.");
-
- IndexQueue.clear();
- // If a store has multiple consecutive store candidates, search Stores
- // array according to the sequence: from i+1 to e, then from i-1 to 0.
- // This is because usually pairing with immediate succeeding or preceding
- // candidate create the best chance to find memset opportunity.
- unsigned j = 0;
- for (j = i + 1; j < e; ++j)
- IndexQueue.push_back(j);
- for (j = i; j > 0; --j)
- IndexQueue.push_back(j - 1);
-
- for (auto &k : IndexQueue) {
- assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
- Value *SecondStorePtr = SL[k]->getPointerOperand();
- const SCEVAddRecExpr *SecondStoreEv =
- cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
- APInt SecondStride = getStoreStride(SecondStoreEv);
-
- if (FirstStride != SecondStride)
- continue;
-
- Value *SecondStoredVal = SL[k]->getValueOperand();
- Value *SecondSplatValue = nullptr;
- Constant *SecondPatternValue = nullptr;
-
- if (For == ForMemset::Yes)
- SecondSplatValue = isBytewiseValue(SecondStoredVal);
- else
- SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
-
- assert((SecondSplatValue || SecondPatternValue) &&
- "Expected either splat value or pattern value.");
-
- if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
- if (For == ForMemset::Yes) {
- if (isa<UndefValue>(FirstSplatValue))
- FirstSplatValue = SecondSplatValue;
- if (FirstSplatValue != SecondSplatValue)
- continue;
- } else {
- if (isa<UndefValue>(FirstPatternValue))
- FirstPatternValue = SecondPatternValue;
- if (FirstPatternValue != SecondPatternValue)
- continue;
- }
- Tails.insert(SL[k]);
- Heads.insert(SL[i]);
- ConsecutiveChain[SL[i]] = SL[k];
- break;
- }
- }
- }
-
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we transformed so that we don't visit the same store twice.
- SmallPtrSet<Value *, 16> TransformedStores;
- bool Changed = false;
-
- // For stores that start but don't end a link in the chain:
- for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
- it != e; ++it) {
- if (Tails.count(*it))
- continue;
-
- // We found a store instr that starts a chain. Now follow the chain and try
- // to transform it.
- SmallPtrSet<Instruction *, 8> AdjacentStores;
- StoreInst *I = *it;
-
- StoreInst *HeadStore = I;
- unsigned StoreSize = 0;
-
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (TransformedStores.count(I))
- break;
- AdjacentStores.insert(I);
-
- StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
-
- Value *StoredVal = HeadStore->getValueOperand();
- Value *StorePtr = HeadStore->getPointerOperand();
- const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- APInt Stride = getStoreStride(StoreEv);
-
- // Check to see if the stride matches the size of the stores. If so, then
- // we know that every byte is touched in the loop.
- if (StoreSize != Stride && StoreSize != -Stride)
- continue;
-
- bool NegStride = StoreSize == -Stride;
-
- if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
- StoredVal, HeadStore, AdjacentStores, StoreEv,
- BECount, NegStride)) {
- TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
- Changed = true;
- }
- }
-
- return Changed;
-}
-
-/// processLoopMemSet - See if this memset can be promoted to a large memset.
-bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
- const SCEV *BECount) {
- // We can only handle non-volatile memsets with a constant size.
- if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
- return false;
-
- // If we're not allowed to hack on memset, we fail.
- if (!HasMemset)
- return false;
-
- Value *Pointer = MSI->getDest();
-
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
- if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
- return false;
-
- // Reject memsets that are so large that they overflow an unsigned.
- uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
- if ((SizeInBytes >> 32) != 0)
- return false;
-
- // Check to see if the stride matches the size of the memset. If so, then we
- // know that every byte is touched in the loop.
- const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
- if (!ConstStride)
- return false;
-
- APInt Stride = ConstStride->getAPInt();
- if (SizeInBytes != Stride && SizeInBytes != -Stride)
- return false;
-
- // Verify that the memset value is loop invariant. If not, we can't promote
- // the memset.
- Value *SplatValue = MSI->getValue();
- if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
- return false;
-
- SmallPtrSet<Instruction *, 1> MSIs;
- MSIs.insert(MSI);
- bool NegStride = SizeInBytes == -Stride;
- return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
- MSI->getDestAlignment(), SplatValue, MSI, MSIs,
- Ev, BECount, NegStride, /*IsLoopMemset=*/true);
-}
-
-/// mayLoopAccessLocation - Return true if the specified loop might access the
-/// specified pointer location, which is a loop-strided access. The 'Access'
-/// argument specifies what the verboten forms of access are (read or write).
-static bool
-mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
- const SCEV *BECount, unsigned StoreSize,
- AliasAnalysis &AA,
- SmallPtrSetImpl<Instruction *> &IgnoredStores) {
- // Get the location that may be stored across the loop. Since the access is
- // strided positively through memory, we say that the modified location starts
- // at the pointer and has infinite size.
- LocationSize AccessSize = LocationSize::unknown();
-
- // If the loop iterates a fixed number of times, we can refine the access size
- // to be exactly the size of the memset, which is (BECount+1)*StoreSize
- if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
- StoreSize);
-
- // TODO: For this to be really effective, we have to dive into the pointer
- // operand in the store. Store to &A[i] of 100 will always return may alias
- // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
- // which will then no-alias a store to &A[100].
- MemoryLocation StoreLoc(Ptr, AccessSize);
-
- for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
- ++BI)
- for (Instruction &I : **BI)
- if (IgnoredStores.count(&I) == 0 &&
- isModOrRefSet(
- intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
- return true;
-
- return false;
-}
-
-// If we have a negative stride, Start refers to the end of the memory location
-// we're trying to memset. Therefore, we need to recompute the base pointer,
-// which is just Start - BECount*Size.
-static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
- Type *IntPtr, unsigned StoreSize,
- ScalarEvolution *SE) {
- const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
- if (StoreSize != 1)
- Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
- SCEV::FlagNUW);
- return SE->getMinusSCEV(Start, Index);
-}
-
-/// Compute the number of bytes as a SCEV from the backedge taken count.
-///
-/// This also maps the SCEV into the provided type and tries to handle the
-/// computation in a way that will fold cleanly.
-static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
- unsigned StoreSize, Loop *CurLoop,
- const DataLayout *DL, ScalarEvolution *SE) {
- const SCEV *NumBytesS;
- // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
- // pointer size if it isn't already.
- //
- // If we're going to need to zero extend the BE count, check if we can add
- // one to it prior to zero extending without overflow. Provided this is safe,
- // it allows better simplification of the +1.
- if (DL->getTypeSizeInBits(BECount->getType()) <
- DL->getTypeSizeInBits(IntPtr) &&
- SE->isLoopEntryGuardedByCond(
- CurLoop, ICmpInst::ICMP_NE, BECount,
- SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
- NumBytesS = SE->getZeroExtendExpr(
- SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
- IntPtr);
- } else {
- NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
- SE->getOne(IntPtr), SCEV::FlagNUW);
- }
-
- // And scale it based on the store size.
- if (StoreSize != 1) {
- NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
- SCEV::FlagNUW);
- }
- return NumBytesS;
-}
-
-/// processLoopStridedStore - We see a strided store of some value. If we can
-/// transform this into a memset or memset_pattern in the loop preheader, do so.
-bool LoopIdiomRecognize::processLoopStridedStore(
- Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
- Value *StoredVal, Instruction *TheStore,
- SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
- const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
- Value *SplatValue = isBytewiseValue(StoredVal);
- Constant *PatternValue = nullptr;
-
- if (!SplatValue)
- PatternValue = getMemSetPatternValue(StoredVal, DL);
-
- assert((SplatValue || PatternValue) &&
- "Expected either splat value or pattern value.");
-
- // The trip count of the loop and the base pointer of the addrec SCEV is
- // guaranteed to be loop invariant, which means that it should dominate the
- // header. This allows us to insert code for it in the preheader.
- unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, *DL, "loop-idiom");
-
- Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
- Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
-
- const SCEV *Start = Ev->getStart();
- // Handle negative strided loops.
- if (NegStride)
- Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
-
- // TODO: ideally we should still be able to generate memset if SCEV expander
- // is taught to generate the dependencies at the latest point.
- if (!isSafeToExpand(Start, *SE))
- return false;
-
- // Okay, we have a strided store "p[i]" of a splattable value. We can turn
- // this into a memset in the loop preheader now if we want. However, this
- // would be unsafe to do if there is anything else in the loop that may read
- // or write to the aliased location. Check for any overlap by generating the
- // base pointer and checking the region.
- Value *BasePtr =
- Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
- if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
- StoreSize, *AA, Stores)) {
- Expander.clear();
- // If we generated new code for the base pointer, clean up.
- RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
- return false;
- }
-
- if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
- return false;
-
- // Okay, everything looks good, insert the memset.
-
- const SCEV *NumBytesS =
- getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
-
- // TODO: ideally we should still be able to generate memset if SCEV expander
- // is taught to generate the dependencies at the latest point.
- if (!isSafeToExpand(NumBytesS, *SE))
- return false;
-
- Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
-
- CallInst *NewCall;
- if (SplatValue) {
- NewCall =
- Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
- } else {
- // Everything is emitted in default address space
- Type *Int8PtrTy = DestInt8PtrTy;
-
- Module *M = TheStore->getModule();
- StringRef FuncName = "memset_pattern16";
- Value *MSP =
- M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
- Int8PtrTy, Int8PtrTy, IntPtr);
- inferLibFuncAttributes(M, FuncName, *TLI);
-
- // Otherwise we should form a memset_pattern16. PatternValue is known to be
- // an constant array of 16-bytes. Plop the value into a mergable global.
- GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
- GlobalValue::PrivateLinkage,
- PatternValue, ".memset_pattern");
- GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
- GV->setAlignment(16);
- Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
- NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
- }
-
- LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
- << " from store to: " << *Ev << " at: " << *TheStore
- << "\n");
- NewCall->setDebugLoc(TheStore->getDebugLoc());
-
- // Okay, the memset has been formed. Zap the original store and anything that
- // feeds into it.
- for (auto *I : Stores)
- deleteDeadInstruction(I);
- ++NumMemSet;
- return true;
-}
-
-/// If the stored value is a strided load in the same loop with the same stride
-/// this may be transformable into a memcpy. This kicks in for stuff like
-/// for (i) A[i] = B[i];
-bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
- const SCEV *BECount) {
- assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
-
- Value *StorePtr = SI->getPointerOperand();
- const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- APInt Stride = getStoreStride(StoreEv);
- unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
- bool NegStride = StoreSize == -Stride;
-
- // The store must be feeding a non-volatile load.
- LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
- assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
-
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided load. If we have something else, it's a
- // random load we can't handle.
- const SCEVAddRecExpr *LoadEv =
- cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
-
- // The trip count of the loop and the base pointer of the addrec SCEV is
- // guaranteed to be loop invariant, which means that it should dominate the
- // header. This allows us to insert code for it in the preheader.
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, *DL, "loop-idiom");
-
- const SCEV *StrStart = StoreEv->getStart();
- unsigned StrAS = SI->getPointerAddressSpace();
- Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
-
- // Handle negative strided loops.
- if (NegStride)
- StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
-
- // Okay, we have a strided store "p[i]" of a loaded value. We can turn
- // this into a memcpy in the loop preheader now if we want. However, this
- // would be unsafe to do if there is anything else in the loop that may read
- // or write the memory region we're storing to. This includes the load that
- // feeds the stores. Check for an alias by generating the base address and
- // checking everything.
- Value *StoreBasePtr = Expander.expandCodeFor(
- StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
-
- SmallPtrSet<Instruction *, 1> Stores;
- Stores.insert(SI);
- if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
- StoreSize, *AA, Stores)) {
- Expander.clear();
- // If we generated new code for the base pointer, clean up.
- RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
- return false;
- }
-
- const SCEV *LdStart = LoadEv->getStart();
- unsigned LdAS = LI->getPointerAddressSpace();
-
- // Handle negative strided loops.
- if (NegStride)
- LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
-
- // For a memcpy, we have to make sure that the input array is not being
- // mutated by the loop.
- Value *LoadBasePtr = Expander.expandCodeFor(
- LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
-
- if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
- StoreSize, *AA, Stores)) {
- Expander.clear();
- // If we generated new code for the base pointer, clean up.
- RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
- RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
- return false;
- }
-
- if (avoidLIRForMultiBlockLoop())
- return false;
-
- // Okay, everything is safe, we can transform this!
-
- const SCEV *NumBytesS =
- getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
-
- Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
-
- CallInst *NewCall = nullptr;
- // Check whether to generate an unordered atomic memcpy:
- // If the load or store are atomic, then they must necessarily be unordered
- // by previous checks.
- if (!SI->isAtomic() && !LI->isAtomic())
- NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
- LoadBasePtr, LI->getAlignment(), NumBytes);
- else {
- // We cannot allow unaligned ops for unordered load/store, so reject
- // anything where the alignment isn't at least the element size.
- unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
- if (Align < StoreSize)
- return false;
-
- // If the element.atomic memcpy is not lowered into explicit
- // loads/stores later, then it will be lowered into an element-size
- // specific lib call. If the lib call doesn't exist for our store size, then
- // we shouldn't generate the memcpy.
- if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
- return false;
-
- // Create the call.
- // Note that unordered atomic loads/stores are *required* by the spec to
- // have an alignment but non-atomic loads/stores may not.
- NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
- StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
- NumBytes, StoreSize);
- }
- NewCall->setDebugLoc(SI->getDebugLoc());
-
- LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
- << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
- << " from store ptr=" << *StoreEv << " at: " << *SI
- << "\n");
-
- // Okay, the memcpy has been formed. Zap the original store and anything that
- // feeds into it.
- deleteDeadInstruction(SI);
- ++NumMemCpy;
- return true;
-}
-
-// When compiling for codesize we avoid idiom recognition for a multi-block loop
-// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
-//
-bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
- bool IsLoopMemset) {
- if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
- if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
- LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
- << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
- << " avoided: multi-block top-level loop\n");
- return true;
- }
- }
-
- return false;
-}
-
-bool LoopIdiomRecognize::runOnNoncountableLoop() {
- return recognizePopcount() || recognizeAndInsertFFS();
-}
-
-/// Check if the given conditional branch is based on the comparison between
-/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
-/// true), the control yields to the loop entry. If the branch matches the
-/// behavior, the variable involved in the comparison is returned. This function
-/// will be called to see if the precondition and postcondition of the loop are
-/// in desirable form.
-static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
- bool JmpOnZero = false) {
- if (!BI || !BI->isConditional())
- return nullptr;
-
- ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
- if (!Cond)
- return nullptr;
-
- ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
- if (!CmpZero || !CmpZero->isZero())
- return nullptr;
-
- BasicBlock *TrueSucc = BI->getSuccessor(0);
- BasicBlock *FalseSucc = BI->getSuccessor(1);
- if (JmpOnZero)
- std::swap(TrueSucc, FalseSucc);
-
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
- (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
- return Cond->getOperand(0);
-
- return nullptr;
-}
-
-// Check if the recurrence variable `VarX` is in the right form to create
-// the idiom. Returns the value coerced to a PHINode if so.
-static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
- BasicBlock *LoopEntry) {
- auto *PhiX = dyn_cast<PHINode>(VarX);
- if (PhiX && PhiX->getParent() == LoopEntry &&
- (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
- return PhiX;
- return nullptr;
-}
-
-/// Return true iff the idiom is detected in the loop.
-///
-/// Additionally:
-/// 1) \p CntInst is set to the instruction counting the population bit.
-/// 2) \p CntPhi is set to the corresponding phi node.
-/// 3) \p Var is set to the value whose population bits are being counted.
-///
-/// The core idiom we are trying to detect is:
-/// \code
-/// if (x0 != 0)
-/// goto loop-exit // the precondition of the loop
-/// cnt0 = init-val;
-/// do {
-/// x1 = phi (x0, x2);
-/// cnt1 = phi(cnt0, cnt2);
-///
-/// cnt2 = cnt1 + 1;
-/// ...
-/// x2 = x1 & (x1 - 1);
-/// ...
-/// } while(x != 0);
-///
-/// loop-exit:
-/// \endcode
-static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
- Instruction *&CntInst, PHINode *&CntPhi,
- Value *&Var) {
- // step 1: Check to see if the look-back branch match this pattern:
- // "if (a!=0) goto loop-entry".
- BasicBlock *LoopEntry;
- Instruction *DefX2, *CountInst;
- Value *VarX1, *VarX0;
- PHINode *PhiX, *CountPhi;
-
- DefX2 = CountInst = nullptr;
- VarX1 = VarX0 = nullptr;
- PhiX = CountPhi = nullptr;
- LoopEntry = *(CurLoop->block_begin());
-
- // step 1: Check if the loop-back branch is in desirable form.
- {
- if (Value *T = matchCondition(
- dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
- DefX2 = dyn_cast<Instruction>(T);
- else
- return false;
- }
-
- // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
- {
- if (!DefX2 || DefX2->getOpcode() != Instruction::And)
- return false;
-
- BinaryOperator *SubOneOp;
-
- if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
- VarX1 = DefX2->getOperand(1);
- else {
- VarX1 = DefX2->getOperand(0);
- SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
- }
- if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
- return false;
-
- ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
- if (!Dec ||
- !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
- (SubOneOp->getOpcode() == Instruction::Add &&
- Dec->isMinusOne()))) {
- return false;
- }
- }
-
- // step 3: Check the recurrence of variable X
- PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
- if (!PhiX)
- return false;
-
- // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
- {
- CountInst = nullptr;
- for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
- IterE = LoopEntry->end();
- Iter != IterE; Iter++) {
- Instruction *Inst = &*Iter;
- if (Inst->getOpcode() != Instruction::Add)
- continue;
-
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
- if (!Inc || !Inc->isOne())
- continue;
-
- PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
- if (!Phi)
- continue;
-
- // Check if the result of the instruction is live of the loop.
- bool LiveOutLoop = false;
- for (User *U : Inst->users()) {
- if ((cast<Instruction>(U))->getParent() != LoopEntry) {
- LiveOutLoop = true;
- break;
- }
- }
-
- if (LiveOutLoop) {
- CountInst = Inst;
- CountPhi = Phi;
- break;
- }
- }
-
- if (!CountInst)
- return false;
- }
-
- // step 5: check if the precondition is in this form:
- // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
- {
- auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
- Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
- if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
- return false;
-
- CntInst = CountInst;
- CntPhi = CountPhi;
- Var = T;
- }
-
- return true;
-}
-
-/// Return true if the idiom is detected in the loop.
-///
-/// Additionally:
-/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
-/// or nullptr if there is no such.
-/// 2) \p CntPhi is set to the corresponding phi node
-/// or nullptr if there is no such.
-/// 3) \p Var is set to the value whose CTLZ could be used.
-/// 4) \p DefX is set to the instruction calculating Loop exit condition.
-///
-/// The core idiom we are trying to detect is:
-/// \code
-/// if (x0 == 0)
-/// goto loop-exit // the precondition of the loop
-/// cnt0 = init-val;
-/// do {
-/// x = phi (x0, x.next); //PhiX
-/// cnt = phi(cnt0, cnt.next);
-///
-/// cnt.next = cnt + 1;
-/// ...
-/// x.next = x >> 1; // DefX
-/// ...
-/// } while(x.next != 0);
-///
-/// loop-exit:
-/// \endcode
-static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
- Intrinsic::ID &IntrinID, Value *&InitX,
- Instruction *&CntInst, PHINode *&CntPhi,
- Instruction *&DefX) {
- BasicBlock *LoopEntry;
- Value *VarX = nullptr;
-
- DefX = nullptr;
- CntInst = nullptr;
- CntPhi = nullptr;
- LoopEntry = *(CurLoop->block_begin());
-
- // step 1: Check if the loop-back branch is in desirable form.
- if (Value *T = matchCondition(
- dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
- DefX = dyn_cast<Instruction>(T);
- else
- return false;
-
- // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
- if (!DefX || !DefX->isShift())
- return false;
- IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
- Intrinsic::ctlz;
- ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
- if (!Shft || !Shft->isOne())
- return false;
- VarX = DefX->getOperand(0);
-
- // step 3: Check the recurrence of variable X
- PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
- if (!PhiX)
- return false;
-
- InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
-
- // Make sure the initial value can't be negative otherwise the ashr in the
- // loop might never reach zero which would make the loop infinite.
- if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
- return false;
-
- // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
- // TODO: We can skip the step. If loop trip count is known (CTLZ),
- // then all uses of "cnt.next" could be optimized to the trip count
- // plus "cnt0". Currently it is not optimized.
- // This step could be used to detect POPCNT instruction:
- // cnt.next = cnt + (x.next & 1)
- for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
- IterE = LoopEntry->end();
- Iter != IterE; Iter++) {
- Instruction *Inst = &*Iter;
- if (Inst->getOpcode() != Instruction::Add)
- continue;
-
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
- if (!Inc || !Inc->isOne())
- continue;
-
- PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
- if (!Phi)
- continue;
-
- CntInst = Inst;
- CntPhi = Phi;
- break;
- }
- if (!CntInst)
- return false;
-
- return true;
-}
-
-/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
-/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
-/// trip count returns true; otherwise, returns false.
-bool LoopIdiomRecognize::recognizeAndInsertFFS() {
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
-
- Intrinsic::ID IntrinID;
- Value *InitX;
- Instruction *DefX = nullptr;
- PHINode *CntPhi = nullptr;
- Instruction *CntInst = nullptr;
- // Help decide if transformation is profitable. For ShiftUntilZero idiom,
- // this is always 6.
- size_t IdiomCanonicalSize = 6;
-
- if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
- CntInst, CntPhi, DefX))
- return false;
-
- bool IsCntPhiUsedOutsideLoop = false;
- for (User *U : CntPhi->users())
- if (!CurLoop->contains(cast<Instruction>(U))) {
- IsCntPhiUsedOutsideLoop = true;
- break;
- }
- bool IsCntInstUsedOutsideLoop = false;
- for (User *U : CntInst->users())
- if (!CurLoop->contains(cast<Instruction>(U))) {
- IsCntInstUsedOutsideLoop = true;
- break;
- }
- // If both CntInst and CntPhi are used outside the loop the profitability
- // is questionable.
- if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
- return false;
-
- // For some CPUs result of CTLZ(X) intrinsic is undefined
- // when X is 0. If we can not guarantee X != 0, we need to check this
- // when expand.
- bool ZeroCheck = false;
- // It is safe to assume Preheader exist as it was checked in
- // parent function RunOnLoop.
- BasicBlock *PH = CurLoop->getLoopPreheader();
-
- // If we are using the count instruction outside the loop, make sure we
- // have a zero check as a precondition. Without the check the loop would run
- // one iteration for before any check of the input value. This means 0 and 1
- // would have identical behavior in the original loop and thus
- if (!IsCntPhiUsedOutsideLoop) {
- auto *PreCondBB = PH->getSinglePredecessor();
- if (!PreCondBB)
- return false;
- auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
- if (!PreCondBI)
- return false;
- if (matchCondition(PreCondBI, PH) != InitX)
- return false;
- ZeroCheck = true;
- }
-
- // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
- // profitable if we delete the loop.
-
- // the loop has only 6 instructions:
- // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
- // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
- // %shr = ashr %n.addr.0, 1
- // %tobool = icmp eq %shr, 0
- // %inc = add nsw %i.0, 1
- // br i1 %tobool
-
- const Value *Args[] =
- {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
- : ConstantInt::getFalse(InitX->getContext())};
- if (CurLoop->getHeader()->size() != IdiomCanonicalSize &&
- TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
- TargetTransformInfo::TCC_Basic)
- return false;
-
- transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
- DefX->getDebugLoc(), ZeroCheck,
- IsCntPhiUsedOutsideLoop);
- return true;
-}
-
-/// Recognizes a population count idiom in a non-countable loop.
-///
-/// If detected, transforms the relevant code to issue the popcount intrinsic
-/// function call, and returns true; otherwise, returns false.
-bool LoopIdiomRecognize::recognizePopcount() {
- if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
- return false;
-
- // Counting population are usually conducted by few arithmetic instructions.
- // Such instructions can be easily "absorbed" by vacant slots in a
- // non-compact loop. Therefore, recognizing popcount idiom only makes sense
- // in a compact loop.
-
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
-
- BasicBlock *LoopBody = *(CurLoop->block_begin());
- if (LoopBody->size() >= 20) {
- // The loop is too big, bail out.
- return false;
- }
-
- // It should have a preheader containing nothing but an unconditional branch.
- BasicBlock *PH = CurLoop->getLoopPreheader();
- if (!PH || &PH->front() != PH->getTerminator())
- return false;
- auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
- if (!EntryBI || EntryBI->isConditional())
- return false;
-
- // It should have a precondition block where the generated popcount intrinsic
- // function can be inserted.
- auto *PreCondBB = PH->getSinglePredecessor();
- if (!PreCondBB)
- return false;
- auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
- if (!PreCondBI || PreCondBI->isUnconditional())
- return false;
-
- Instruction *CntInst;
- PHINode *CntPhi;
- Value *Val;
- if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
- return false;
-
- transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
- return true;
-}
-
-static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
- const DebugLoc &DL) {
- Value *Ops[] = {Val};
- Type *Tys[] = {Val->getType()};
-
- Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
- Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
-
- return CI;
-}
-
-static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
- const DebugLoc &DL, bool ZeroCheck,
- Intrinsic::ID IID) {
- Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
- Type *Tys[] = {Val->getType()};
-
- Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
- Value *Func = Intrinsic::getDeclaration(M, IID, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
-
- return CI;
-}
-
-/// Transform the following loop (Using CTLZ, CTTZ is similar):
-/// loop:
-/// CntPhi = PHI [Cnt0, CntInst]
-/// PhiX = PHI [InitX, DefX]
-/// CntInst = CntPhi + 1
-/// DefX = PhiX >> 1
-/// LOOP_BODY
-/// Br: loop if (DefX != 0)
-/// Use(CntPhi) or Use(CntInst)
-///
-/// Into:
-/// If CntPhi used outside the loop:
-/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
-/// Count = CountPrev + 1
-/// else
-/// Count = BitWidth(InitX) - CTLZ(InitX)
-/// loop:
-/// CntPhi = PHI [Cnt0, CntInst]
-/// PhiX = PHI [InitX, DefX]
-/// PhiCount = PHI [Count, Dec]
-/// CntInst = CntPhi + 1
-/// DefX = PhiX >> 1
-/// Dec = PhiCount - 1
-/// LOOP_BODY
-/// Br: loop if (Dec != 0)
-/// Use(CountPrev + Cnt0) // Use(CntPhi)
-/// or
-/// Use(Count + Cnt0) // Use(CntInst)
-///
-/// If LOOP_BODY is empty the loop will be deleted.
-/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
-void LoopIdiomRecognize::transformLoopToCountable(
- Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
- PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
- bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
- BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
-
- // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
- IRBuilder<> Builder(PreheaderBr);
- Builder.SetCurrentDebugLocation(DL);
- Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
-
- // Count = BitWidth - CTLZ(InitX);
- // If there are uses of CntPhi create:
- // CountPrev = BitWidth - CTLZ(InitX >> 1);
- if (IsCntPhiUsedOutsideLoop) {
- if (DefX->getOpcode() == Instruction::AShr)
- InitXNext =
- Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
- else if (DefX->getOpcode() == Instruction::LShr)
- InitXNext =
- Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
- else if (DefX->getOpcode() == Instruction::Shl) // cttz
- InitXNext =
- Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
- else
- llvm_unreachable("Unexpected opcode!");
- } else
- InitXNext = InitX;
- FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
- Count = Builder.CreateSub(
- ConstantInt::get(FFS->getType(),
- FFS->getType()->getIntegerBitWidth()),
- FFS);
- if (IsCntPhiUsedOutsideLoop) {
- CountPrev = Count;
- Count = Builder.CreateAdd(
- CountPrev,
- ConstantInt::get(CountPrev->getType(), 1));
- }
-
- NewCount = Builder.CreateZExtOrTrunc(
- IsCntPhiUsedOutsideLoop ? CountPrev : Count,
- cast<IntegerType>(CntInst->getType()));
-
- // If the counter's initial value is not zero, insert Add Inst.
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero())
- NewCount = Builder.CreateAdd(NewCount, CntInitVal);
-
- // Step 2: Insert new IV and loop condition:
- // loop:
- // ...
- // PhiCount = PHI [Count, Dec]
- // ...
- // Dec = PhiCount - 1
- // ...
- // Br: loop if (Dec != 0)
- BasicBlock *Body = *(CurLoop->block_begin());
- auto *LbBr = cast<BranchInst>(Body->getTerminator());
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- Type *Ty = Count->getType();
-
- PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
-
- Builder.SetInsertPoint(LbCond);
- Instruction *TcDec = cast<Instruction>(
- Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
- "tcdec", false, true));
-
- TcPhi->addIncoming(Count, Preheader);
- TcPhi->addIncoming(TcDec, Body);
-
- CmpInst::Predicate Pred =
- (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, ConstantInt::get(Ty, 0));
-
- // Step 3: All the references to the original counter outside
- // the loop are replaced with the NewCount
- if (IsCntPhiUsedOutsideLoop)
- CntPhi->replaceUsesOutsideBlock(NewCount, Body);
- else
- CntInst->replaceUsesOutsideBlock(NewCount, Body);
-
- // step 4: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
-}
-
-void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
- Instruction *CntInst,
- PHINode *CntPhi, Value *Var) {
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
- const DebugLoc &DL = CntInst->getDebugLoc();
-
- // Assuming before transformation, the loop is following:
- // if (x) // the precondition
- // do { cnt++; x &= x - 1; } while(x);
-
- // Step 1: Insert the ctpop instruction at the end of the precondition block
- IRBuilder<> Builder(PreCondBr);
- Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
- {
- PopCnt = createPopcntIntrinsic(Builder, Var, DL);
- NewCount = PopCntZext =
- Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
-
- if (NewCount != PopCnt)
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
-
- // TripCnt is exactly the number of iterations the loop has
- TripCnt = NewCount;
-
- // If the population counter's initial value is not zero, insert Add Inst.
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero()) {
- NewCount = Builder.CreateAdd(NewCount, CntInitVal);
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- }
- }
-
- // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
- // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
- // function would be partial dead code, and downstream passes will drag
- // it back from the precondition block to the preheader.
- {
- ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
-
- Value *Opnd0 = PopCntZext;
- Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
- if (PreCond->getOperand(0) != Var)
- std::swap(Opnd0, Opnd1);
-
- ICmpInst *NewPreCond = cast<ICmpInst>(
- Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
- PreCondBr->setCondition(NewPreCond);
-
- RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
- }
-
- // Step 3: Note that the population count is exactly the trip count of the
- // loop in question, which enable us to convert the loop from noncountable
- // loop into a countable one. The benefit is twofold:
- //
- // - If the loop only counts population, the entire loop becomes dead after
- // the transformation. It is a lot easier to prove a countable loop dead
- // than to prove a noncountable one. (In some C dialects, an infinite loop
- // isn't dead even if it computes nothing useful. In general, DCE needs
- // to prove a noncountable loop finite before safely delete it.)
- //
- // - If the loop also performs something else, it remains alive.
- // Since it is transformed to countable form, it can be aggressively
- // optimized by some optimizations which are in general not applicable
- // to a noncountable loop.
- //
- // After this step, this loop (conceptually) would look like following:
- // newcnt = __builtin_ctpop(x);
- // t = newcnt;
- // if (x)
- // do { cnt++; x &= x-1; t--) } while (t > 0);
- BasicBlock *Body = *(CurLoop->block_begin());
- {
- auto *LbBr = cast<BranchInst>(Body->getTerminator());
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- Type *Ty = TripCnt->getType();
-
- PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
-
- Builder.SetInsertPoint(LbCond);
- Instruction *TcDec = cast<Instruction>(
- Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
- "tcdec", false, true));
-
- TcPhi->addIncoming(TripCnt, PreHead);
- TcPhi->addIncoming(TcDec, Body);
-
- CmpInst::Predicate Pred =
- (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, ConstantInt::get(Ty, 0));
- }
-
- // Step 4: All the references to the original population counter outside
- // the loop are replaced with the NewCount -- the value returned from
- // __builtin_ctpop().
- CntInst->replaceUsesOutsideBlock(NewCount, Body);
-
- // step 5: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
-}