diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp | 1781 |
1 files changed, 0 insertions, 1781 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp deleted file mode 100644 index 10073457f6b..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp +++ /dev/null @@ -1,1781 +0,0 @@ -//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass implements an idiom recognizer that transforms simple loops into a -// non-loop form. In cases that this kicks in, it can be a significant -// performance win. -// -// If compiling for code size we avoid idiom recognition if the resulting -// code could be larger than the code for the original loop. One way this could -// happen is if the loop is not removable after idiom recognition due to the -// presence of non-idiom instructions. The initial implementation of the -// heuristics applies to idioms in multi-block loops. -// -//===----------------------------------------------------------------------===// -// -// TODO List: -// -// Future loop memory idioms to recognize: -// memcmp, memmove, strlen, etc. -// Future floating point idioms to recognize in -ffast-math mode: -// fpowi -// Future integer operation idioms to recognize: -// ctpop -// -// Beware that isel's default lowering for ctpop is highly inefficient for -// i64 and larger types when i64 is legal and the value has few bits set. It -// would be good to enhance isel to emit a loop for ctpop in this case. -// -// This could recognize common matrix multiplies and dot product idioms and -// replace them with calls to BLAS (if linked in??). -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/LoopAccessAnalysis.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" -#include "llvm/Transforms/Utils/BuildLibCalls.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "loop-idiom" - -STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); -STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); - -static cl::opt<bool> UseLIRCodeSizeHeurs( - "use-lir-code-size-heurs", - cl::desc("Use loop idiom recognition code size heuristics when compiling" - "with -Os/-Oz"), - cl::init(true), cl::Hidden); - -namespace { - -class LoopIdiomRecognize { - Loop *CurLoop = nullptr; - AliasAnalysis *AA; - DominatorTree *DT; - LoopInfo *LI; - ScalarEvolution *SE; - TargetLibraryInfo *TLI; - const TargetTransformInfo *TTI; - const DataLayout *DL; - bool ApplyCodeSizeHeuristics; - -public: - explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, - LoopInfo *LI, ScalarEvolution *SE, - TargetLibraryInfo *TLI, - const TargetTransformInfo *TTI, - const DataLayout *DL) - : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {} - - bool runOnLoop(Loop *L); - -private: - using StoreList = SmallVector<StoreInst *, 8>; - using StoreListMap = MapVector<Value *, StoreList>; - - StoreListMap StoreRefsForMemset; - StoreListMap StoreRefsForMemsetPattern; - StoreList StoreRefsForMemcpy; - bool HasMemset; - bool HasMemsetPattern; - bool HasMemcpy; - - /// Return code for isLegalStore() - enum LegalStoreKind { - None = 0, - Memset, - MemsetPattern, - Memcpy, - UnorderedAtomicMemcpy, - DontUse // Dummy retval never to be used. Allows catching errors in retval - // handling. - }; - - /// \name Countable Loop Idiom Handling - /// @{ - - bool runOnCountableLoop(); - bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, - SmallVectorImpl<BasicBlock *> &ExitBlocks); - - void collectStores(BasicBlock *BB); - LegalStoreKind isLegalStore(StoreInst *SI); - enum class ForMemset { No, Yes }; - bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, - ForMemset For); - bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); - - bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, - unsigned StoreAlignment, Value *StoredVal, - Instruction *TheStore, - SmallPtrSetImpl<Instruction *> &Stores, - const SCEVAddRecExpr *Ev, const SCEV *BECount, - bool NegStride, bool IsLoopMemset = false); - bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); - bool avoidLIRForMultiBlockLoop(bool IsMemset = false, - bool IsLoopMemset = false); - - /// @} - /// \name Noncountable Loop Idiom Handling - /// @{ - - bool runOnNoncountableLoop(); - - bool recognizePopcount(); - void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, - PHINode *CntPhi, Value *Var); - bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz - void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, - Instruction *CntInst, PHINode *CntPhi, - Value *Var, Instruction *DefX, - const DebugLoc &DL, bool ZeroCheck, - bool IsCntPhiUsedOutsideLoop); - - /// @} -}; - -class LoopIdiomRecognizeLegacyPass : public LoopPass { -public: - static char ID; - - explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { - initializeLoopIdiomRecognizeLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - bool runOnLoop(Loop *L, LPPassManager &LPM) override { - if (skipLoop(L)) - return false; - - AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); - DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - TargetLibraryInfo *TLI = - &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - const TargetTransformInfo *TTI = - &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( - *L->getHeader()->getParent()); - const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); - - LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); - return LIR.runOnLoop(L); - } - - /// This transformation requires natural loop information & requires that - /// loop preheaders be inserted into the CFG. - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - getLoopAnalysisUsage(AU); - } -}; - -} // end anonymous namespace - -char LoopIdiomRecognizeLegacyPass::ID = 0; - -PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, - LoopStandardAnalysisResults &AR, - LPMUpdater &) { - const auto *DL = &L.getHeader()->getModule()->getDataLayout(); - - LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL); - if (!LIR.runOnLoop(&L)) - return PreservedAnalyses::all(); - - return getLoopPassPreservedAnalyses(); -} - -INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", - "Recognize loop idioms", false, false) -INITIALIZE_PASS_DEPENDENCY(LoopPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", - "Recognize loop idioms", false, false) - -Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } - -static void deleteDeadInstruction(Instruction *I) { - I->replaceAllUsesWith(UndefValue::get(I->getType())); - I->eraseFromParent(); -} - -//===----------------------------------------------------------------------===// -// -// Implementation of LoopIdiomRecognize -// -//===----------------------------------------------------------------------===// - -bool LoopIdiomRecognize::runOnLoop(Loop *L) { - CurLoop = L; - // If the loop could not be converted to canonical form, it must have an - // indirectbr in it, just give up. - if (!L->getLoopPreheader()) - return false; - - // Disable loop idiom recognition if the function's name is a common idiom. - StringRef Name = L->getHeader()->getParent()->getName(); - if (Name == "memset" || Name == "memcpy") - return false; - if (Name == "_libc_memset" || Name == "_libc_memcpy") - return false; - - // Determine if code size heuristics need to be applied. - ApplyCodeSizeHeuristics = - L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs; - - HasMemset = TLI->has(LibFunc_memset); - HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); - HasMemcpy = TLI->has(LibFunc_memcpy); - - if (HasMemset || HasMemsetPattern || HasMemcpy) - if (SE->hasLoopInvariantBackedgeTakenCount(L)) - return runOnCountableLoop(); - - return runOnNoncountableLoop(); -} - -bool LoopIdiomRecognize::runOnCountableLoop() { - const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); - assert(!isa<SCEVCouldNotCompute>(BECount) && - "runOnCountableLoop() called on a loop without a predictable" - "backedge-taken count"); - - // If this loop executes exactly one time, then it should be peeled, not - // optimized by this pass. - if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) - if (BECst->getAPInt() == 0) - return false; - - SmallVector<BasicBlock *, 8> ExitBlocks; - CurLoop->getUniqueExitBlocks(ExitBlocks); - - LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F[" - << CurLoop->getHeader()->getParent()->getName() - << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); - - bool MadeChange = false; - - // The following transforms hoist stores/memsets into the loop pre-header. - // Give up if the loop has instructions may throw. - SimpleLoopSafetyInfo SafetyInfo; - SafetyInfo.computeLoopSafetyInfo(CurLoop); - if (SafetyInfo.anyBlockMayThrow()) - return MadeChange; - - // Scan all the blocks in the loop that are not in subloops. - for (auto *BB : CurLoop->getBlocks()) { - // Ignore blocks in subloops. - if (LI->getLoopFor(BB) != CurLoop) - continue; - - MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); - } - return MadeChange; -} - -static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { - const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); - return ConstStride->getAPInt(); -} - -/// getMemSetPatternValue - If a strided store of the specified value is safe to -/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should -/// be passed in. Otherwise, return null. -/// -/// Note that we don't ever attempt to use memset_pattern8 or 4, because these -/// just replicate their input array and then pass on to memset_pattern16. -static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { - // FIXME: This could check for UndefValue because it can be merged into any - // other valid pattern. - - // If the value isn't a constant, we can't promote it to being in a constant - // array. We could theoretically do a store to an alloca or something, but - // that doesn't seem worthwhile. - Constant *C = dyn_cast<Constant>(V); - if (!C) - return nullptr; - - // Only handle simple values that are a power of two bytes in size. - uint64_t Size = DL->getTypeSizeInBits(V->getType()); - if (Size == 0 || (Size & 7) || (Size & (Size - 1))) - return nullptr; - - // Don't care enough about darwin/ppc to implement this. - if (DL->isBigEndian()) - return nullptr; - - // Convert to size in bytes. - Size /= 8; - - // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see - // if the top and bottom are the same (e.g. for vectors and large integers). - if (Size > 16) - return nullptr; - - // If the constant is exactly 16 bytes, just use it. - if (Size == 16) - return C; - - // Otherwise, we'll use an array of the constants. - unsigned ArraySize = 16 / Size; - ArrayType *AT = ArrayType::get(V->getType(), ArraySize); - return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); -} - -LoopIdiomRecognize::LegalStoreKind -LoopIdiomRecognize::isLegalStore(StoreInst *SI) { - // Don't touch volatile stores. - if (SI->isVolatile()) - return LegalStoreKind::None; - // We only want simple or unordered-atomic stores. - if (!SI->isUnordered()) - return LegalStoreKind::None; - - // Don't convert stores of non-integral pointer types to memsets (which stores - // integers). - if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) - return LegalStoreKind::None; - - // Avoid merging nontemporal stores. - if (SI->getMetadata(LLVMContext::MD_nontemporal)) - return LegalStoreKind::None; - - Value *StoredVal = SI->getValueOperand(); - Value *StorePtr = SI->getPointerOperand(); - - // Reject stores that are so large that they overflow an unsigned. - uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); - if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) - return LegalStoreKind::None; - - // See if the pointer expression is an AddRec like {base,+,1} on the current - // loop, which indicates a strided store. If we have something else, it's a - // random store we can't handle. - const SCEVAddRecExpr *StoreEv = - dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); - if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) - return LegalStoreKind::None; - - // Check to see if we have a constant stride. - if (!isa<SCEVConstant>(StoreEv->getOperand(1))) - return LegalStoreKind::None; - - // See if the store can be turned into a memset. - - // If the stored value is a byte-wise value (like i32 -1), then it may be - // turned into a memset of i8 -1, assuming that all the consecutive bytes - // are stored. A store of i32 0x01020304 can never be turned into a memset, - // but it can be turned into memset_pattern if the target supports it. - Value *SplatValue = isBytewiseValue(StoredVal); - Constant *PatternValue = nullptr; - - // Note: memset and memset_pattern on unordered-atomic is yet not supported - bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); - - // If we're allowed to form a memset, and the stored value would be - // acceptable for memset, use it. - if (!UnorderedAtomic && HasMemset && SplatValue && - // Verify that the stored value is loop invariant. If not, we can't - // promote the memset. - CurLoop->isLoopInvariant(SplatValue)) { - // It looks like we can use SplatValue. - return LegalStoreKind::Memset; - } else if (!UnorderedAtomic && HasMemsetPattern && - // Don't create memset_pattern16s with address spaces. - StorePtr->getType()->getPointerAddressSpace() == 0 && - (PatternValue = getMemSetPatternValue(StoredVal, DL))) { - // It looks like we can use PatternValue! - return LegalStoreKind::MemsetPattern; - } - - // Otherwise, see if the store can be turned into a memcpy. - if (HasMemcpy) { - // Check to see if the stride matches the size of the store. If so, then we - // know that every byte is touched in the loop. - APInt Stride = getStoreStride(StoreEv); - unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); - if (StoreSize != Stride && StoreSize != -Stride) - return LegalStoreKind::None; - - // The store must be feeding a non-volatile load. - LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); - - // Only allow non-volatile loads - if (!LI || LI->isVolatile()) - return LegalStoreKind::None; - // Only allow simple or unordered-atomic loads - if (!LI->isUnordered()) - return LegalStoreKind::None; - - // See if the pointer expression is an AddRec like {base,+,1} on the current - // loop, which indicates a strided load. If we have something else, it's a - // random load we can't handle. - const SCEVAddRecExpr *LoadEv = - dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); - if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) - return LegalStoreKind::None; - - // The store and load must share the same stride. - if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) - return LegalStoreKind::None; - - // Success. This store can be converted into a memcpy. - UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); - return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy - : LegalStoreKind::Memcpy; - } - // This store can't be transformed into a memset/memcpy. - return LegalStoreKind::None; -} - -void LoopIdiomRecognize::collectStores(BasicBlock *BB) { - StoreRefsForMemset.clear(); - StoreRefsForMemsetPattern.clear(); - StoreRefsForMemcpy.clear(); - for (Instruction &I : *BB) { - StoreInst *SI = dyn_cast<StoreInst>(&I); - if (!SI) - continue; - - // Make sure this is a strided store with a constant stride. - switch (isLegalStore(SI)) { - case LegalStoreKind::None: - // Nothing to do - break; - case LegalStoreKind::Memset: { - // Find the base pointer. - Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); - StoreRefsForMemset[Ptr].push_back(SI); - } break; - case LegalStoreKind::MemsetPattern: { - // Find the base pointer. - Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); - StoreRefsForMemsetPattern[Ptr].push_back(SI); - } break; - case LegalStoreKind::Memcpy: - case LegalStoreKind::UnorderedAtomicMemcpy: - StoreRefsForMemcpy.push_back(SI); - break; - default: - assert(false && "unhandled return value"); - break; - } - } -} - -/// runOnLoopBlock - Process the specified block, which lives in a counted loop -/// with the specified backedge count. This block is known to be in the current -/// loop and not in any subloops. -bool LoopIdiomRecognize::runOnLoopBlock( - BasicBlock *BB, const SCEV *BECount, - SmallVectorImpl<BasicBlock *> &ExitBlocks) { - // We can only promote stores in this block if they are unconditionally - // executed in the loop. For a block to be unconditionally executed, it has - // to dominate all the exit blocks of the loop. Verify this now. - for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) - if (!DT->dominates(BB, ExitBlocks[i])) - return false; - - bool MadeChange = false; - // Look for store instructions, which may be optimized to memset/memcpy. - collectStores(BB); - - // Look for a single store or sets of stores with a common base, which can be - // optimized into a memset (memset_pattern). The latter most commonly happens - // with structs and handunrolled loops. - for (auto &SL : StoreRefsForMemset) - MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); - - for (auto &SL : StoreRefsForMemsetPattern) - MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); - - // Optimize the store into a memcpy, if it feeds an similarly strided load. - for (auto &SI : StoreRefsForMemcpy) - MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); - - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { - Instruction *Inst = &*I++; - // Look for memset instructions, which may be optimized to a larger memset. - if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { - WeakTrackingVH InstPtr(&*I); - if (!processLoopMemSet(MSI, BECount)) - continue; - MadeChange = true; - - // If processing the memset invalidated our iterator, start over from the - // top of the block. - if (!InstPtr) - I = BB->begin(); - continue; - } - } - - return MadeChange; -} - -/// See if this store(s) can be promoted to a memset. -bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, - const SCEV *BECount, ForMemset For) { - // Try to find consecutive stores that can be transformed into memsets. - SetVector<StoreInst *> Heads, Tails; - SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; - - // Do a quadratic search on all of the given stores and find - // all of the pairs of stores that follow each other. - SmallVector<unsigned, 16> IndexQueue; - for (unsigned i = 0, e = SL.size(); i < e; ++i) { - assert(SL[i]->isSimple() && "Expected only non-volatile stores."); - - Value *FirstStoredVal = SL[i]->getValueOperand(); - Value *FirstStorePtr = SL[i]->getPointerOperand(); - const SCEVAddRecExpr *FirstStoreEv = - cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); - APInt FirstStride = getStoreStride(FirstStoreEv); - unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); - - // See if we can optimize just this store in isolation. - if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { - Heads.insert(SL[i]); - continue; - } - - Value *FirstSplatValue = nullptr; - Constant *FirstPatternValue = nullptr; - - if (For == ForMemset::Yes) - FirstSplatValue = isBytewiseValue(FirstStoredVal); - else - FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); - - assert((FirstSplatValue || FirstPatternValue) && - "Expected either splat value or pattern value."); - - IndexQueue.clear(); - // If a store has multiple consecutive store candidates, search Stores - // array according to the sequence: from i+1 to e, then from i-1 to 0. - // This is because usually pairing with immediate succeeding or preceding - // candidate create the best chance to find memset opportunity. - unsigned j = 0; - for (j = i + 1; j < e; ++j) - IndexQueue.push_back(j); - for (j = i; j > 0; --j) - IndexQueue.push_back(j - 1); - - for (auto &k : IndexQueue) { - assert(SL[k]->isSimple() && "Expected only non-volatile stores."); - Value *SecondStorePtr = SL[k]->getPointerOperand(); - const SCEVAddRecExpr *SecondStoreEv = - cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); - APInt SecondStride = getStoreStride(SecondStoreEv); - - if (FirstStride != SecondStride) - continue; - - Value *SecondStoredVal = SL[k]->getValueOperand(); - Value *SecondSplatValue = nullptr; - Constant *SecondPatternValue = nullptr; - - if (For == ForMemset::Yes) - SecondSplatValue = isBytewiseValue(SecondStoredVal); - else - SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); - - assert((SecondSplatValue || SecondPatternValue) && - "Expected either splat value or pattern value."); - - if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { - if (For == ForMemset::Yes) { - if (isa<UndefValue>(FirstSplatValue)) - FirstSplatValue = SecondSplatValue; - if (FirstSplatValue != SecondSplatValue) - continue; - } else { - if (isa<UndefValue>(FirstPatternValue)) - FirstPatternValue = SecondPatternValue; - if (FirstPatternValue != SecondPatternValue) - continue; - } - Tails.insert(SL[k]); - Heads.insert(SL[i]); - ConsecutiveChain[SL[i]] = SL[k]; - break; - } - } - } - - // We may run into multiple chains that merge into a single chain. We mark the - // stores that we transformed so that we don't visit the same store twice. - SmallPtrSet<Value *, 16> TransformedStores; - bool Changed = false; - - // For stores that start but don't end a link in the chain: - for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); - it != e; ++it) { - if (Tails.count(*it)) - continue; - - // We found a store instr that starts a chain. Now follow the chain and try - // to transform it. - SmallPtrSet<Instruction *, 8> AdjacentStores; - StoreInst *I = *it; - - StoreInst *HeadStore = I; - unsigned StoreSize = 0; - - // Collect the chain into a list. - while (Tails.count(I) || Heads.count(I)) { - if (TransformedStores.count(I)) - break; - AdjacentStores.insert(I); - - StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); - // Move to the next value in the chain. - I = ConsecutiveChain[I]; - } - - Value *StoredVal = HeadStore->getValueOperand(); - Value *StorePtr = HeadStore->getPointerOperand(); - const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); - APInt Stride = getStoreStride(StoreEv); - - // Check to see if the stride matches the size of the stores. If so, then - // we know that every byte is touched in the loop. - if (StoreSize != Stride && StoreSize != -Stride) - continue; - - bool NegStride = StoreSize == -Stride; - - if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), - StoredVal, HeadStore, AdjacentStores, StoreEv, - BECount, NegStride)) { - TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); - Changed = true; - } - } - - return Changed; -} - -/// processLoopMemSet - See if this memset can be promoted to a large memset. -bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, - const SCEV *BECount) { - // We can only handle non-volatile memsets with a constant size. - if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) - return false; - - // If we're not allowed to hack on memset, we fail. - if (!HasMemset) - return false; - - Value *Pointer = MSI->getDest(); - - // See if the pointer expression is an AddRec like {base,+,1} on the current - // loop, which indicates a strided store. If we have something else, it's a - // random store we can't handle. - const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); - if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) - return false; - - // Reject memsets that are so large that they overflow an unsigned. - uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); - if ((SizeInBytes >> 32) != 0) - return false; - - // Check to see if the stride matches the size of the memset. If so, then we - // know that every byte is touched in the loop. - const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); - if (!ConstStride) - return false; - - APInt Stride = ConstStride->getAPInt(); - if (SizeInBytes != Stride && SizeInBytes != -Stride) - return false; - - // Verify that the memset value is loop invariant. If not, we can't promote - // the memset. - Value *SplatValue = MSI->getValue(); - if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) - return false; - - SmallPtrSet<Instruction *, 1> MSIs; - MSIs.insert(MSI); - bool NegStride = SizeInBytes == -Stride; - return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, - MSI->getDestAlignment(), SplatValue, MSI, MSIs, - Ev, BECount, NegStride, /*IsLoopMemset=*/true); -} - -/// mayLoopAccessLocation - Return true if the specified loop might access the -/// specified pointer location, which is a loop-strided access. The 'Access' -/// argument specifies what the verboten forms of access are (read or write). -static bool -mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, - const SCEV *BECount, unsigned StoreSize, - AliasAnalysis &AA, - SmallPtrSetImpl<Instruction *> &IgnoredStores) { - // Get the location that may be stored across the loop. Since the access is - // strided positively through memory, we say that the modified location starts - // at the pointer and has infinite size. - LocationSize AccessSize = LocationSize::unknown(); - - // If the loop iterates a fixed number of times, we can refine the access size - // to be exactly the size of the memset, which is (BECount+1)*StoreSize - if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) - AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * - StoreSize); - - // TODO: For this to be really effective, we have to dive into the pointer - // operand in the store. Store to &A[i] of 100 will always return may alias - // with store of &A[100], we need to StoreLoc to be "A" with size of 100, - // which will then no-alias a store to &A[100]. - MemoryLocation StoreLoc(Ptr, AccessSize); - - for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; - ++BI) - for (Instruction &I : **BI) - if (IgnoredStores.count(&I) == 0 && - isModOrRefSet( - intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) - return true; - - return false; -} - -// If we have a negative stride, Start refers to the end of the memory location -// we're trying to memset. Therefore, we need to recompute the base pointer, -// which is just Start - BECount*Size. -static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, - Type *IntPtr, unsigned StoreSize, - ScalarEvolution *SE) { - const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); - if (StoreSize != 1) - Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), - SCEV::FlagNUW); - return SE->getMinusSCEV(Start, Index); -} - -/// Compute the number of bytes as a SCEV from the backedge taken count. -/// -/// This also maps the SCEV into the provided type and tries to handle the -/// computation in a way that will fold cleanly. -static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, - unsigned StoreSize, Loop *CurLoop, - const DataLayout *DL, ScalarEvolution *SE) { - const SCEV *NumBytesS; - // The # stored bytes is (BECount+1)*Size. Expand the trip count out to - // pointer size if it isn't already. - // - // If we're going to need to zero extend the BE count, check if we can add - // one to it prior to zero extending without overflow. Provided this is safe, - // it allows better simplification of the +1. - if (DL->getTypeSizeInBits(BECount->getType()) < - DL->getTypeSizeInBits(IntPtr) && - SE->isLoopEntryGuardedByCond( - CurLoop, ICmpInst::ICMP_NE, BECount, - SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { - NumBytesS = SE->getZeroExtendExpr( - SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), - IntPtr); - } else { - NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), - SE->getOne(IntPtr), SCEV::FlagNUW); - } - - // And scale it based on the store size. - if (StoreSize != 1) { - NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), - SCEV::FlagNUW); - } - return NumBytesS; -} - -/// processLoopStridedStore - We see a strided store of some value. If we can -/// transform this into a memset or memset_pattern in the loop preheader, do so. -bool LoopIdiomRecognize::processLoopStridedStore( - Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, - Value *StoredVal, Instruction *TheStore, - SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, - const SCEV *BECount, bool NegStride, bool IsLoopMemset) { - Value *SplatValue = isBytewiseValue(StoredVal); - Constant *PatternValue = nullptr; - - if (!SplatValue) - PatternValue = getMemSetPatternValue(StoredVal, DL); - - assert((SplatValue || PatternValue) && - "Expected either splat value or pattern value."); - - // The trip count of the loop and the base pointer of the addrec SCEV is - // guaranteed to be loop invariant, which means that it should dominate the - // header. This allows us to insert code for it in the preheader. - unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); - BasicBlock *Preheader = CurLoop->getLoopPreheader(); - IRBuilder<> Builder(Preheader->getTerminator()); - SCEVExpander Expander(*SE, *DL, "loop-idiom"); - - Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); - Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); - - const SCEV *Start = Ev->getStart(); - // Handle negative strided loops. - if (NegStride) - Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); - - // TODO: ideally we should still be able to generate memset if SCEV expander - // is taught to generate the dependencies at the latest point. - if (!isSafeToExpand(Start, *SE)) - return false; - - // Okay, we have a strided store "p[i]" of a splattable value. We can turn - // this into a memset in the loop preheader now if we want. However, this - // would be unsafe to do if there is anything else in the loop that may read - // or write to the aliased location. Check for any overlap by generating the - // base pointer and checking the region. - Value *BasePtr = - Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); - if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, - StoreSize, *AA, Stores)) { - Expander.clear(); - // If we generated new code for the base pointer, clean up. - RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); - return false; - } - - if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) - return false; - - // Okay, everything looks good, insert the memset. - - const SCEV *NumBytesS = - getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); - - // TODO: ideally we should still be able to generate memset if SCEV expander - // is taught to generate the dependencies at the latest point. - if (!isSafeToExpand(NumBytesS, *SE)) - return false; - - Value *NumBytes = - Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); - - CallInst *NewCall; - if (SplatValue) { - NewCall = - Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); - } else { - // Everything is emitted in default address space - Type *Int8PtrTy = DestInt8PtrTy; - - Module *M = TheStore->getModule(); - StringRef FuncName = "memset_pattern16"; - Value *MSP = - M->getOrInsertFunction(FuncName, Builder.getVoidTy(), - Int8PtrTy, Int8PtrTy, IntPtr); - inferLibFuncAttributes(M, FuncName, *TLI); - - // Otherwise we should form a memset_pattern16. PatternValue is known to be - // an constant array of 16-bytes. Plop the value into a mergable global. - GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, - GlobalValue::PrivateLinkage, - PatternValue, ".memset_pattern"); - GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. - GV->setAlignment(16); - Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); - NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); - } - - LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" - << " from store to: " << *Ev << " at: " << *TheStore - << "\n"); - NewCall->setDebugLoc(TheStore->getDebugLoc()); - - // Okay, the memset has been formed. Zap the original store and anything that - // feeds into it. - for (auto *I : Stores) - deleteDeadInstruction(I); - ++NumMemSet; - return true; -} - -/// If the stored value is a strided load in the same loop with the same stride -/// this may be transformable into a memcpy. This kicks in for stuff like -/// for (i) A[i] = B[i]; -bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, - const SCEV *BECount) { - assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); - - Value *StorePtr = SI->getPointerOperand(); - const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); - APInt Stride = getStoreStride(StoreEv); - unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); - bool NegStride = StoreSize == -Stride; - - // The store must be feeding a non-volatile load. - LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); - assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); - - // See if the pointer expression is an AddRec like {base,+,1} on the current - // loop, which indicates a strided load. If we have something else, it's a - // random load we can't handle. - const SCEVAddRecExpr *LoadEv = - cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); - - // The trip count of the loop and the base pointer of the addrec SCEV is - // guaranteed to be loop invariant, which means that it should dominate the - // header. This allows us to insert code for it in the preheader. - BasicBlock *Preheader = CurLoop->getLoopPreheader(); - IRBuilder<> Builder(Preheader->getTerminator()); - SCEVExpander Expander(*SE, *DL, "loop-idiom"); - - const SCEV *StrStart = StoreEv->getStart(); - unsigned StrAS = SI->getPointerAddressSpace(); - Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); - - // Handle negative strided loops. - if (NegStride) - StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); - - // Okay, we have a strided store "p[i]" of a loaded value. We can turn - // this into a memcpy in the loop preheader now if we want. However, this - // would be unsafe to do if there is anything else in the loop that may read - // or write the memory region we're storing to. This includes the load that - // feeds the stores. Check for an alias by generating the base address and - // checking everything. - Value *StoreBasePtr = Expander.expandCodeFor( - StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); - - SmallPtrSet<Instruction *, 1> Stores; - Stores.insert(SI); - if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, - StoreSize, *AA, Stores)) { - Expander.clear(); - // If we generated new code for the base pointer, clean up. - RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); - return false; - } - - const SCEV *LdStart = LoadEv->getStart(); - unsigned LdAS = LI->getPointerAddressSpace(); - - // Handle negative strided loops. - if (NegStride) - LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); - - // For a memcpy, we have to make sure that the input array is not being - // mutated by the loop. - Value *LoadBasePtr = Expander.expandCodeFor( - LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); - - if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, - StoreSize, *AA, Stores)) { - Expander.clear(); - // If we generated new code for the base pointer, clean up. - RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); - RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); - return false; - } - - if (avoidLIRForMultiBlockLoop()) - return false; - - // Okay, everything is safe, we can transform this! - - const SCEV *NumBytesS = - getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); - - Value *NumBytes = - Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); - - CallInst *NewCall = nullptr; - // Check whether to generate an unordered atomic memcpy: - // If the load or store are atomic, then they must necessarily be unordered - // by previous checks. - if (!SI->isAtomic() && !LI->isAtomic()) - NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), - LoadBasePtr, LI->getAlignment(), NumBytes); - else { - // We cannot allow unaligned ops for unordered load/store, so reject - // anything where the alignment isn't at least the element size. - unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); - if (Align < StoreSize) - return false; - - // If the element.atomic memcpy is not lowered into explicit - // loads/stores later, then it will be lowered into an element-size - // specific lib call. If the lib call doesn't exist for our store size, then - // we shouldn't generate the memcpy. - if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) - return false; - - // Create the call. - // Note that unordered atomic loads/stores are *required* by the spec to - // have an alignment but non-atomic loads/stores may not. - NewCall = Builder.CreateElementUnorderedAtomicMemCpy( - StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), - NumBytes, StoreSize); - } - NewCall->setDebugLoc(SI->getDebugLoc()); - - LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" - << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" - << " from store ptr=" << *StoreEv << " at: " << *SI - << "\n"); - - // Okay, the memcpy has been formed. Zap the original store and anything that - // feeds into it. - deleteDeadInstruction(SI); - ++NumMemCpy; - return true; -} - -// When compiling for codesize we avoid idiom recognition for a multi-block loop -// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. -// -bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, - bool IsLoopMemset) { - if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { - if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { - LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() - << " : LIR " << (IsMemset ? "Memset" : "Memcpy") - << " avoided: multi-block top-level loop\n"); - return true; - } - } - - return false; -} - -bool LoopIdiomRecognize::runOnNoncountableLoop() { - return recognizePopcount() || recognizeAndInsertFFS(); -} - -/// Check if the given conditional branch is based on the comparison between -/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is -/// true), the control yields to the loop entry. If the branch matches the -/// behavior, the variable involved in the comparison is returned. This function -/// will be called to see if the precondition and postcondition of the loop are -/// in desirable form. -static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, - bool JmpOnZero = false) { - if (!BI || !BI->isConditional()) - return nullptr; - - ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); - if (!Cond) - return nullptr; - - ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); - if (!CmpZero || !CmpZero->isZero()) - return nullptr; - - BasicBlock *TrueSucc = BI->getSuccessor(0); - BasicBlock *FalseSucc = BI->getSuccessor(1); - if (JmpOnZero) - std::swap(TrueSucc, FalseSucc); - - ICmpInst::Predicate Pred = Cond->getPredicate(); - if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || - (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) - return Cond->getOperand(0); - - return nullptr; -} - -// Check if the recurrence variable `VarX` is in the right form to create -// the idiom. Returns the value coerced to a PHINode if so. -static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, - BasicBlock *LoopEntry) { - auto *PhiX = dyn_cast<PHINode>(VarX); - if (PhiX && PhiX->getParent() == LoopEntry && - (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) - return PhiX; - return nullptr; -} - -/// Return true iff the idiom is detected in the loop. -/// -/// Additionally: -/// 1) \p CntInst is set to the instruction counting the population bit. -/// 2) \p CntPhi is set to the corresponding phi node. -/// 3) \p Var is set to the value whose population bits are being counted. -/// -/// The core idiom we are trying to detect is: -/// \code -/// if (x0 != 0) -/// goto loop-exit // the precondition of the loop -/// cnt0 = init-val; -/// do { -/// x1 = phi (x0, x2); -/// cnt1 = phi(cnt0, cnt2); -/// -/// cnt2 = cnt1 + 1; -/// ... -/// x2 = x1 & (x1 - 1); -/// ... -/// } while(x != 0); -/// -/// loop-exit: -/// \endcode -static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, - Instruction *&CntInst, PHINode *&CntPhi, - Value *&Var) { - // step 1: Check to see if the look-back branch match this pattern: - // "if (a!=0) goto loop-entry". - BasicBlock *LoopEntry; - Instruction *DefX2, *CountInst; - Value *VarX1, *VarX0; - PHINode *PhiX, *CountPhi; - - DefX2 = CountInst = nullptr; - VarX1 = VarX0 = nullptr; - PhiX = CountPhi = nullptr; - LoopEntry = *(CurLoop->block_begin()); - - // step 1: Check if the loop-back branch is in desirable form. - { - if (Value *T = matchCondition( - dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) - DefX2 = dyn_cast<Instruction>(T); - else - return false; - } - - // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" - { - if (!DefX2 || DefX2->getOpcode() != Instruction::And) - return false; - - BinaryOperator *SubOneOp; - - if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) - VarX1 = DefX2->getOperand(1); - else { - VarX1 = DefX2->getOperand(0); - SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); - } - if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) - return false; - - ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); - if (!Dec || - !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || - (SubOneOp->getOpcode() == Instruction::Add && - Dec->isMinusOne()))) { - return false; - } - } - - // step 3: Check the recurrence of variable X - PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); - if (!PhiX) - return false; - - // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 - { - CountInst = nullptr; - for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), - IterE = LoopEntry->end(); - Iter != IterE; Iter++) { - Instruction *Inst = &*Iter; - if (Inst->getOpcode() != Instruction::Add) - continue; - - ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); - if (!Inc || !Inc->isOne()) - continue; - - PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); - if (!Phi) - continue; - - // Check if the result of the instruction is live of the loop. - bool LiveOutLoop = false; - for (User *U : Inst->users()) { - if ((cast<Instruction>(U))->getParent() != LoopEntry) { - LiveOutLoop = true; - break; - } - } - - if (LiveOutLoop) { - CountInst = Inst; - CountPhi = Phi; - break; - } - } - - if (!CountInst) - return false; - } - - // step 5: check if the precondition is in this form: - // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" - { - auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); - Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); - if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) - return false; - - CntInst = CountInst; - CntPhi = CountPhi; - Var = T; - } - - return true; -} - -/// Return true if the idiom is detected in the loop. -/// -/// Additionally: -/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) -/// or nullptr if there is no such. -/// 2) \p CntPhi is set to the corresponding phi node -/// or nullptr if there is no such. -/// 3) \p Var is set to the value whose CTLZ could be used. -/// 4) \p DefX is set to the instruction calculating Loop exit condition. -/// -/// The core idiom we are trying to detect is: -/// \code -/// if (x0 == 0) -/// goto loop-exit // the precondition of the loop -/// cnt0 = init-val; -/// do { -/// x = phi (x0, x.next); //PhiX -/// cnt = phi(cnt0, cnt.next); -/// -/// cnt.next = cnt + 1; -/// ... -/// x.next = x >> 1; // DefX -/// ... -/// } while(x.next != 0); -/// -/// loop-exit: -/// \endcode -static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, - Intrinsic::ID &IntrinID, Value *&InitX, - Instruction *&CntInst, PHINode *&CntPhi, - Instruction *&DefX) { - BasicBlock *LoopEntry; - Value *VarX = nullptr; - - DefX = nullptr; - CntInst = nullptr; - CntPhi = nullptr; - LoopEntry = *(CurLoop->block_begin()); - - // step 1: Check if the loop-back branch is in desirable form. - if (Value *T = matchCondition( - dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) - DefX = dyn_cast<Instruction>(T); - else - return false; - - // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" - if (!DefX || !DefX->isShift()) - return false; - IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : - Intrinsic::ctlz; - ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); - if (!Shft || !Shft->isOne()) - return false; - VarX = DefX->getOperand(0); - - // step 3: Check the recurrence of variable X - PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); - if (!PhiX) - return false; - - InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); - - // Make sure the initial value can't be negative otherwise the ashr in the - // loop might never reach zero which would make the loop infinite. - if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) - return false; - - // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 - // TODO: We can skip the step. If loop trip count is known (CTLZ), - // then all uses of "cnt.next" could be optimized to the trip count - // plus "cnt0". Currently it is not optimized. - // This step could be used to detect POPCNT instruction: - // cnt.next = cnt + (x.next & 1) - for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), - IterE = LoopEntry->end(); - Iter != IterE; Iter++) { - Instruction *Inst = &*Iter; - if (Inst->getOpcode() != Instruction::Add) - continue; - - ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); - if (!Inc || !Inc->isOne()) - continue; - - PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); - if (!Phi) - continue; - - CntInst = Inst; - CntPhi = Phi; - break; - } - if (!CntInst) - return false; - - return true; -} - -/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop -/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new -/// trip count returns true; otherwise, returns false. -bool LoopIdiomRecognize::recognizeAndInsertFFS() { - // Give up if the loop has multiple blocks or multiple backedges. - if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) - return false; - - Intrinsic::ID IntrinID; - Value *InitX; - Instruction *DefX = nullptr; - PHINode *CntPhi = nullptr; - Instruction *CntInst = nullptr; - // Help decide if transformation is profitable. For ShiftUntilZero idiom, - // this is always 6. - size_t IdiomCanonicalSize = 6; - - if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, - CntInst, CntPhi, DefX)) - return false; - - bool IsCntPhiUsedOutsideLoop = false; - for (User *U : CntPhi->users()) - if (!CurLoop->contains(cast<Instruction>(U))) { - IsCntPhiUsedOutsideLoop = true; - break; - } - bool IsCntInstUsedOutsideLoop = false; - for (User *U : CntInst->users()) - if (!CurLoop->contains(cast<Instruction>(U))) { - IsCntInstUsedOutsideLoop = true; - break; - } - // If both CntInst and CntPhi are used outside the loop the profitability - // is questionable. - if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) - return false; - - // For some CPUs result of CTLZ(X) intrinsic is undefined - // when X is 0. If we can not guarantee X != 0, we need to check this - // when expand. - bool ZeroCheck = false; - // It is safe to assume Preheader exist as it was checked in - // parent function RunOnLoop. - BasicBlock *PH = CurLoop->getLoopPreheader(); - - // If we are using the count instruction outside the loop, make sure we - // have a zero check as a precondition. Without the check the loop would run - // one iteration for before any check of the input value. This means 0 and 1 - // would have identical behavior in the original loop and thus - if (!IsCntPhiUsedOutsideLoop) { - auto *PreCondBB = PH->getSinglePredecessor(); - if (!PreCondBB) - return false; - auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); - if (!PreCondBI) - return false; - if (matchCondition(PreCondBI, PH) != InitX) - return false; - ZeroCheck = true; - } - - // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always - // profitable if we delete the loop. - - // the loop has only 6 instructions: - // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] - // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] - // %shr = ashr %n.addr.0, 1 - // %tobool = icmp eq %shr, 0 - // %inc = add nsw %i.0, 1 - // br i1 %tobool - - const Value *Args[] = - {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) - : ConstantInt::getFalse(InitX->getContext())}; - if (CurLoop->getHeader()->size() != IdiomCanonicalSize && - TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > - TargetTransformInfo::TCC_Basic) - return false; - - transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, - DefX->getDebugLoc(), ZeroCheck, - IsCntPhiUsedOutsideLoop); - return true; -} - -/// Recognizes a population count idiom in a non-countable loop. -/// -/// If detected, transforms the relevant code to issue the popcount intrinsic -/// function call, and returns true; otherwise, returns false. -bool LoopIdiomRecognize::recognizePopcount() { - if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) - return false; - - // Counting population are usually conducted by few arithmetic instructions. - // Such instructions can be easily "absorbed" by vacant slots in a - // non-compact loop. Therefore, recognizing popcount idiom only makes sense - // in a compact loop. - - // Give up if the loop has multiple blocks or multiple backedges. - if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) - return false; - - BasicBlock *LoopBody = *(CurLoop->block_begin()); - if (LoopBody->size() >= 20) { - // The loop is too big, bail out. - return false; - } - - // It should have a preheader containing nothing but an unconditional branch. - BasicBlock *PH = CurLoop->getLoopPreheader(); - if (!PH || &PH->front() != PH->getTerminator()) - return false; - auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); - if (!EntryBI || EntryBI->isConditional()) - return false; - - // It should have a precondition block where the generated popcount intrinsic - // function can be inserted. - auto *PreCondBB = PH->getSinglePredecessor(); - if (!PreCondBB) - return false; - auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); - if (!PreCondBI || PreCondBI->isUnconditional()) - return false; - - Instruction *CntInst; - PHINode *CntPhi; - Value *Val; - if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) - return false; - - transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); - return true; -} - -static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, - const DebugLoc &DL) { - Value *Ops[] = {Val}; - Type *Tys[] = {Val->getType()}; - - Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); - Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); - CallInst *CI = IRBuilder.CreateCall(Func, Ops); - CI->setDebugLoc(DL); - - return CI; -} - -static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, - const DebugLoc &DL, bool ZeroCheck, - Intrinsic::ID IID) { - Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; - Type *Tys[] = {Val->getType()}; - - Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); - Value *Func = Intrinsic::getDeclaration(M, IID, Tys); - CallInst *CI = IRBuilder.CreateCall(Func, Ops); - CI->setDebugLoc(DL); - - return CI; -} - -/// Transform the following loop (Using CTLZ, CTTZ is similar): -/// loop: -/// CntPhi = PHI [Cnt0, CntInst] -/// PhiX = PHI [InitX, DefX] -/// CntInst = CntPhi + 1 -/// DefX = PhiX >> 1 -/// LOOP_BODY -/// Br: loop if (DefX != 0) -/// Use(CntPhi) or Use(CntInst) -/// -/// Into: -/// If CntPhi used outside the loop: -/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) -/// Count = CountPrev + 1 -/// else -/// Count = BitWidth(InitX) - CTLZ(InitX) -/// loop: -/// CntPhi = PHI [Cnt0, CntInst] -/// PhiX = PHI [InitX, DefX] -/// PhiCount = PHI [Count, Dec] -/// CntInst = CntPhi + 1 -/// DefX = PhiX >> 1 -/// Dec = PhiCount - 1 -/// LOOP_BODY -/// Br: loop if (Dec != 0) -/// Use(CountPrev + Cnt0) // Use(CntPhi) -/// or -/// Use(Count + Cnt0) // Use(CntInst) -/// -/// If LOOP_BODY is empty the loop will be deleted. -/// If CntInst and DefX are not used in LOOP_BODY they will be removed. -void LoopIdiomRecognize::transformLoopToCountable( - Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, - PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, - bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { - BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); - - // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block - IRBuilder<> Builder(PreheaderBr); - Builder.SetCurrentDebugLocation(DL); - Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; - - // Count = BitWidth - CTLZ(InitX); - // If there are uses of CntPhi create: - // CountPrev = BitWidth - CTLZ(InitX >> 1); - if (IsCntPhiUsedOutsideLoop) { - if (DefX->getOpcode() == Instruction::AShr) - InitXNext = - Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); - else if (DefX->getOpcode() == Instruction::LShr) - InitXNext = - Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); - else if (DefX->getOpcode() == Instruction::Shl) // cttz - InitXNext = - Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); - else - llvm_unreachable("Unexpected opcode!"); - } else - InitXNext = InitX; - FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); - Count = Builder.CreateSub( - ConstantInt::get(FFS->getType(), - FFS->getType()->getIntegerBitWidth()), - FFS); - if (IsCntPhiUsedOutsideLoop) { - CountPrev = Count; - Count = Builder.CreateAdd( - CountPrev, - ConstantInt::get(CountPrev->getType(), 1)); - } - - NewCount = Builder.CreateZExtOrTrunc( - IsCntPhiUsedOutsideLoop ? CountPrev : Count, - cast<IntegerType>(CntInst->getType())); - - // If the counter's initial value is not zero, insert Add Inst. - Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); - ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); - if (!InitConst || !InitConst->isZero()) - NewCount = Builder.CreateAdd(NewCount, CntInitVal); - - // Step 2: Insert new IV and loop condition: - // loop: - // ... - // PhiCount = PHI [Count, Dec] - // ... - // Dec = PhiCount - 1 - // ... - // Br: loop if (Dec != 0) - BasicBlock *Body = *(CurLoop->block_begin()); - auto *LbBr = cast<BranchInst>(Body->getTerminator()); - ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); - Type *Ty = Count->getType(); - - PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); - - Builder.SetInsertPoint(LbCond); - Instruction *TcDec = cast<Instruction>( - Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), - "tcdec", false, true)); - - TcPhi->addIncoming(Count, Preheader); - TcPhi->addIncoming(TcDec, Body); - - CmpInst::Predicate Pred = - (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; - LbCond->setPredicate(Pred); - LbCond->setOperand(0, TcDec); - LbCond->setOperand(1, ConstantInt::get(Ty, 0)); - - // Step 3: All the references to the original counter outside - // the loop are replaced with the NewCount - if (IsCntPhiUsedOutsideLoop) - CntPhi->replaceUsesOutsideBlock(NewCount, Body); - else - CntInst->replaceUsesOutsideBlock(NewCount, Body); - - // step 4: Forget the "non-computable" trip-count SCEV associated with the - // loop. The loop would otherwise not be deleted even if it becomes empty. - SE->forgetLoop(CurLoop); -} - -void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, - Instruction *CntInst, - PHINode *CntPhi, Value *Var) { - BasicBlock *PreHead = CurLoop->getLoopPreheader(); - auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); - const DebugLoc &DL = CntInst->getDebugLoc(); - - // Assuming before transformation, the loop is following: - // if (x) // the precondition - // do { cnt++; x &= x - 1; } while(x); - - // Step 1: Insert the ctpop instruction at the end of the precondition block - IRBuilder<> Builder(PreCondBr); - Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; - { - PopCnt = createPopcntIntrinsic(Builder, Var, DL); - NewCount = PopCntZext = - Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); - - if (NewCount != PopCnt) - (cast<Instruction>(NewCount))->setDebugLoc(DL); - - // TripCnt is exactly the number of iterations the loop has - TripCnt = NewCount; - - // If the population counter's initial value is not zero, insert Add Inst. - Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); - ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); - if (!InitConst || !InitConst->isZero()) { - NewCount = Builder.CreateAdd(NewCount, CntInitVal); - (cast<Instruction>(NewCount))->setDebugLoc(DL); - } - } - - // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to - // "if (NewCount == 0) loop-exit". Without this change, the intrinsic - // function would be partial dead code, and downstream passes will drag - // it back from the precondition block to the preheader. - { - ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); - - Value *Opnd0 = PopCntZext; - Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); - if (PreCond->getOperand(0) != Var) - std::swap(Opnd0, Opnd1); - - ICmpInst *NewPreCond = cast<ICmpInst>( - Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); - PreCondBr->setCondition(NewPreCond); - - RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); - } - - // Step 3: Note that the population count is exactly the trip count of the - // loop in question, which enable us to convert the loop from noncountable - // loop into a countable one. The benefit is twofold: - // - // - If the loop only counts population, the entire loop becomes dead after - // the transformation. It is a lot easier to prove a countable loop dead - // than to prove a noncountable one. (In some C dialects, an infinite loop - // isn't dead even if it computes nothing useful. In general, DCE needs - // to prove a noncountable loop finite before safely delete it.) - // - // - If the loop also performs something else, it remains alive. - // Since it is transformed to countable form, it can be aggressively - // optimized by some optimizations which are in general not applicable - // to a noncountable loop. - // - // After this step, this loop (conceptually) would look like following: - // newcnt = __builtin_ctpop(x); - // t = newcnt; - // if (x) - // do { cnt++; x &= x-1; t--) } while (t > 0); - BasicBlock *Body = *(CurLoop->block_begin()); - { - auto *LbBr = cast<BranchInst>(Body->getTerminator()); - ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); - Type *Ty = TripCnt->getType(); - - PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); - - Builder.SetInsertPoint(LbCond); - Instruction *TcDec = cast<Instruction>( - Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), - "tcdec", false, true)); - - TcPhi->addIncoming(TripCnt, PreHead); - TcPhi->addIncoming(TcDec, Body); - - CmpInst::Predicate Pred = - (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; - LbCond->setPredicate(Pred); - LbCond->setOperand(0, TcDec); - LbCond->setOperand(1, ConstantInt::get(Ty, 0)); - } - - // Step 4: All the references to the original population counter outside - // the loop are replaced with the NewCount -- the value returned from - // __builtin_ctpop(). - CntInst->replaceUsesOutsideBlock(NewCount, Body); - - // step 5: Forget the "non-computable" trip-count SCEV associated with the - // loop. The loop would otherwise not be deleted even if it becomes empty. - SE->forgetLoop(CurLoop); -} |
