summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
diff options
context:
space:
mode:
authorpascal <pascal@openbsd.org>2016-09-03 22:46:54 +0000
committerpascal <pascal@openbsd.org>2016-09-03 22:46:54 +0000
commitb5500b9ca0102f1ccaf32f0e77e96d0739aded9b (patch)
treee1b7ebb5a0231f9e6d8d3f6f719582cebd64dc98 /gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
parentclarify purpose of src/gnu/ directory. (diff)
downloadwireguard-openbsd-b5500b9ca0102f1ccaf32f0e77e96d0739aded9b.tar.xz
wireguard-openbsd-b5500b9ca0102f1ccaf32f0e77e96d0739aded9b.zip
Use the space freed up by sparc and zaurus to import LLVM.
ok hackroom@
Diffstat (limited to 'gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp993
1 files changed, 993 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
new file mode 100644
index 00000000000..c4f9b9f6140
--- /dev/null
+++ b/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -0,0 +1,993 @@
+//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file promotes memory references to be register references. It promotes
+// alloca instructions which only have loads and stores as uses. An alloca is
+// transformed by using iterated dominator frontiers to place PHI nodes, then
+// traversing the function in depth-first order to rewrite loads and stores as
+// appropriate.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/IteratedDominanceFrontier.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "mem2reg"
+
+STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
+STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
+STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
+STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
+
+bool llvm::isAllocaPromotable(const AllocaInst *AI) {
+ // FIXME: If the memory unit is of pointer or integer type, we can permit
+ // assignments to subsections of the memory unit.
+ unsigned AS = AI->getType()->getAddressSpace();
+
+ // Only allow direct and non-volatile loads and stores...
+ for (const User *U : AI->users()) {
+ if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ // Note that atomic loads can be transformed; atomic semantics do
+ // not have any meaning for a local alloca.
+ if (LI->isVolatile())
+ return false;
+ } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (SI->getOperand(0) == AI)
+ return false; // Don't allow a store OF the AI, only INTO the AI.
+ // Note that atomic stores can be transformed; atomic semantics do
+ // not have any meaning for a local alloca.
+ if (SI->isVolatile())
+ return false;
+ } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
+ if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+ II->getIntrinsicID() != Intrinsic::lifetime_end)
+ return false;
+ } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
+ if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
+ return false;
+ if (!onlyUsedByLifetimeMarkers(BCI))
+ return false;
+ } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
+ if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
+ return false;
+ if (!GEPI->hasAllZeroIndices())
+ return false;
+ if (!onlyUsedByLifetimeMarkers(GEPI))
+ return false;
+ } else {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+namespace {
+
+struct AllocaInfo {
+ SmallVector<BasicBlock *, 32> DefiningBlocks;
+ SmallVector<BasicBlock *, 32> UsingBlocks;
+
+ StoreInst *OnlyStore;
+ BasicBlock *OnlyBlock;
+ bool OnlyUsedInOneBlock;
+
+ Value *AllocaPointerVal;
+ DbgDeclareInst *DbgDeclare;
+
+ void clear() {
+ DefiningBlocks.clear();
+ UsingBlocks.clear();
+ OnlyStore = nullptr;
+ OnlyBlock = nullptr;
+ OnlyUsedInOneBlock = true;
+ AllocaPointerVal = nullptr;
+ DbgDeclare = nullptr;
+ }
+
+ /// Scan the uses of the specified alloca, filling in the AllocaInfo used
+ /// by the rest of the pass to reason about the uses of this alloca.
+ void AnalyzeAlloca(AllocaInst *AI) {
+ clear();
+
+ // As we scan the uses of the alloca instruction, keep track of stores,
+ // and decide whether all of the loads and stores to the alloca are within
+ // the same basic block.
+ for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
+ Instruction *User = cast<Instruction>(*UI++);
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ // Remember the basic blocks which define new values for the alloca
+ DefiningBlocks.push_back(SI->getParent());
+ AllocaPointerVal = SI->getOperand(0);
+ OnlyStore = SI;
+ } else {
+ LoadInst *LI = cast<LoadInst>(User);
+ // Otherwise it must be a load instruction, keep track of variable
+ // reads.
+ UsingBlocks.push_back(LI->getParent());
+ AllocaPointerVal = LI;
+ }
+
+ if (OnlyUsedInOneBlock) {
+ if (!OnlyBlock)
+ OnlyBlock = User->getParent();
+ else if (OnlyBlock != User->getParent())
+ OnlyUsedInOneBlock = false;
+ }
+ }
+
+ DbgDeclare = FindAllocaDbgDeclare(AI);
+ }
+};
+
+// Data package used by RenamePass()
+class RenamePassData {
+public:
+ typedef std::vector<Value *> ValVector;
+
+ RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
+ RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
+ : BB(B), Pred(P), Values(V) {}
+ BasicBlock *BB;
+ BasicBlock *Pred;
+ ValVector Values;
+
+ void swap(RenamePassData &RHS) {
+ std::swap(BB, RHS.BB);
+ std::swap(Pred, RHS.Pred);
+ Values.swap(RHS.Values);
+ }
+};
+
+/// \brief This assigns and keeps a per-bb relative ordering of load/store
+/// instructions in the block that directly load or store an alloca.
+///
+/// This functionality is important because it avoids scanning large basic
+/// blocks multiple times when promoting many allocas in the same block.
+class LargeBlockInfo {
+ /// \brief For each instruction that we track, keep the index of the
+ /// instruction.
+ ///
+ /// The index starts out as the number of the instruction from the start of
+ /// the block.
+ DenseMap<const Instruction *, unsigned> InstNumbers;
+
+public:
+
+ /// This code only looks at accesses to allocas.
+ static bool isInterestingInstruction(const Instruction *I) {
+ return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
+ (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
+ }
+
+ /// Get or calculate the index of the specified instruction.
+ unsigned getInstructionIndex(const Instruction *I) {
+ assert(isInterestingInstruction(I) &&
+ "Not a load/store to/from an alloca?");
+
+ // If we already have this instruction number, return it.
+ DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
+ if (It != InstNumbers.end())
+ return It->second;
+
+ // Scan the whole block to get the instruction. This accumulates
+ // information for every interesting instruction in the block, in order to
+ // avoid gratuitus rescans.
+ const BasicBlock *BB = I->getParent();
+ unsigned InstNo = 0;
+ for (const Instruction &BBI : *BB)
+ if (isInterestingInstruction(&BBI))
+ InstNumbers[&BBI] = InstNo++;
+ It = InstNumbers.find(I);
+
+ assert(It != InstNumbers.end() && "Didn't insert instruction?");
+ return It->second;
+ }
+
+ void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
+
+ void clear() { InstNumbers.clear(); }
+};
+
+struct PromoteMem2Reg {
+ /// The alloca instructions being promoted.
+ std::vector<AllocaInst *> Allocas;
+ DominatorTree &DT;
+ DIBuilder DIB;
+
+ /// An AliasSetTracker object to update. If null, don't update it.
+ AliasSetTracker *AST;
+
+ /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
+ AssumptionCache *AC;
+
+ /// Reverse mapping of Allocas.
+ DenseMap<AllocaInst *, unsigned> AllocaLookup;
+
+ /// \brief The PhiNodes we're adding.
+ ///
+ /// That map is used to simplify some Phi nodes as we iterate over it, so
+ /// it should have deterministic iterators. We could use a MapVector, but
+ /// since we already maintain a map from BasicBlock* to a stable numbering
+ /// (BBNumbers), the DenseMap is more efficient (also supports removal).
+ DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
+
+ /// For each PHI node, keep track of which entry in Allocas it corresponds
+ /// to.
+ DenseMap<PHINode *, unsigned> PhiToAllocaMap;
+
+ /// If we are updating an AliasSetTracker, then for each alloca that is of
+ /// pointer type, we keep track of what to copyValue to the inserted PHI
+ /// nodes here.
+ std::vector<Value *> PointerAllocaValues;
+
+ /// For each alloca, we keep track of the dbg.declare intrinsic that
+ /// describes it, if any, so that we can convert it to a dbg.value
+ /// intrinsic if the alloca gets promoted.
+ SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
+
+ /// The set of basic blocks the renamer has already visited.
+ ///
+ SmallPtrSet<BasicBlock *, 16> Visited;
+
+ /// Contains a stable numbering of basic blocks to avoid non-determinstic
+ /// behavior.
+ DenseMap<BasicBlock *, unsigned> BBNumbers;
+
+ /// Lazily compute the number of predecessors a block has.
+ DenseMap<const BasicBlock *, unsigned> BBNumPreds;
+
+public:
+ PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
+ AliasSetTracker *AST, AssumptionCache *AC)
+ : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
+ DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
+ AST(AST), AC(AC) {}
+
+ void run();
+
+private:
+ void RemoveFromAllocasList(unsigned &AllocaIdx) {
+ Allocas[AllocaIdx] = Allocas.back();
+ Allocas.pop_back();
+ --AllocaIdx;
+ }
+
+ unsigned getNumPreds(const BasicBlock *BB) {
+ unsigned &NP = BBNumPreds[BB];
+ if (NP == 0)
+ NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
+ return NP - 1;
+ }
+
+ void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
+ const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
+ SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
+ void RenamePass(BasicBlock *BB, BasicBlock *Pred,
+ RenamePassData::ValVector &IncVals,
+ std::vector<RenamePassData> &Worklist);
+ bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
+};
+
+} // end of anonymous namespace
+
+static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
+ // Knowing that this alloca is promotable, we know that it's safe to kill all
+ // instructions except for load and store.
+
+ for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
+ Instruction *I = cast<Instruction>(*UI);
+ ++UI;
+ if (isa<LoadInst>(I) || isa<StoreInst>(I))
+ continue;
+
+ if (!I->getType()->isVoidTy()) {
+ // The only users of this bitcast/GEP instruction are lifetime intrinsics.
+ // Follow the use/def chain to erase them now instead of leaving it for
+ // dead code elimination later.
+ for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
+ Instruction *Inst = cast<Instruction>(*UUI);
+ ++UUI;
+ Inst->eraseFromParent();
+ }
+ }
+ I->eraseFromParent();
+ }
+}
+
+/// \brief Rewrite as many loads as possible given a single store.
+///
+/// When there is only a single store, we can use the domtree to trivially
+/// replace all of the dominated loads with the stored value. Do so, and return
+/// true if this has successfully promoted the alloca entirely. If this returns
+/// false there were some loads which were not dominated by the single store
+/// and thus must be phi-ed with undef. We fall back to the standard alloca
+/// promotion algorithm in that case.
+static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
+ LargeBlockInfo &LBI,
+ DominatorTree &DT,
+ AliasSetTracker *AST) {
+ StoreInst *OnlyStore = Info.OnlyStore;
+ bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
+ BasicBlock *StoreBB = OnlyStore->getParent();
+ int StoreIndex = -1;
+
+ // Clear out UsingBlocks. We will reconstruct it here if needed.
+ Info.UsingBlocks.clear();
+
+ for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
+ Instruction *UserInst = cast<Instruction>(*UI++);
+ if (!isa<LoadInst>(UserInst)) {
+ assert(UserInst == OnlyStore && "Should only have load/stores");
+ continue;
+ }
+ LoadInst *LI = cast<LoadInst>(UserInst);
+
+ // Okay, if we have a load from the alloca, we want to replace it with the
+ // only value stored to the alloca. We can do this if the value is
+ // dominated by the store. If not, we use the rest of the mem2reg machinery
+ // to insert the phi nodes as needed.
+ if (!StoringGlobalVal) { // Non-instructions are always dominated.
+ if (LI->getParent() == StoreBB) {
+ // If we have a use that is in the same block as the store, compare the
+ // indices of the two instructions to see which one came first. If the
+ // load came before the store, we can't handle it.
+ if (StoreIndex == -1)
+ StoreIndex = LBI.getInstructionIndex(OnlyStore);
+
+ if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
+ // Can't handle this load, bail out.
+ Info.UsingBlocks.push_back(StoreBB);
+ continue;
+ }
+
+ } else if (LI->getParent() != StoreBB &&
+ !DT.dominates(StoreBB, LI->getParent())) {
+ // If the load and store are in different blocks, use BB dominance to
+ // check their relationships. If the store doesn't dom the use, bail
+ // out.
+ Info.UsingBlocks.push_back(LI->getParent());
+ continue;
+ }
+ }
+
+ // Otherwise, we *can* safely rewrite this load.
+ Value *ReplVal = OnlyStore->getOperand(0);
+ // If the replacement value is the load, this must occur in unreachable
+ // code.
+ if (ReplVal == LI)
+ ReplVal = UndefValue::get(LI->getType());
+ LI->replaceAllUsesWith(ReplVal);
+ if (AST && LI->getType()->isPointerTy())
+ AST->deleteValue(LI);
+ LI->eraseFromParent();
+ LBI.deleteValue(LI);
+ }
+
+ // Finally, after the scan, check to see if the store is all that is left.
+ if (!Info.UsingBlocks.empty())
+ return false; // If not, we'll have to fall back for the remainder.
+
+ // Record debuginfo for the store and remove the declaration's
+ // debuginfo.
+ if (DbgDeclareInst *DDI = Info.DbgDeclare) {
+ DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
+ ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
+ DDI->eraseFromParent();
+ LBI.deleteValue(DDI);
+ }
+ // Remove the (now dead) store and alloca.
+ Info.OnlyStore->eraseFromParent();
+ LBI.deleteValue(Info.OnlyStore);
+
+ if (AST)
+ AST->deleteValue(AI);
+ AI->eraseFromParent();
+ LBI.deleteValue(AI);
+ return true;
+}
+
+/// Many allocas are only used within a single basic block. If this is the
+/// case, avoid traversing the CFG and inserting a lot of potentially useless
+/// PHI nodes by just performing a single linear pass over the basic block
+/// using the Alloca.
+///
+/// If we cannot promote this alloca (because it is read before it is written),
+/// return false. This is necessary in cases where, due to control flow, the
+/// alloca is undefined only on some control flow paths. e.g. code like
+/// this is correct in LLVM IR:
+/// // A is an alloca with no stores so far
+/// for (...) {
+/// int t = *A;
+/// if (!first_iteration)
+/// use(t);
+/// *A = 42;
+/// }
+static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
+ LargeBlockInfo &LBI,
+ AliasSetTracker *AST) {
+ // The trickiest case to handle is when we have large blocks. Because of this,
+ // this code is optimized assuming that large blocks happen. This does not
+ // significantly pessimize the small block case. This uses LargeBlockInfo to
+ // make it efficient to get the index of various operations in the block.
+
+ // Walk the use-def list of the alloca, getting the locations of all stores.
+ typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
+ StoresByIndexTy StoresByIndex;
+
+ for (User *U : AI->users())
+ if (StoreInst *SI = dyn_cast<StoreInst>(U))
+ StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
+
+ // Sort the stores by their index, making it efficient to do a lookup with a
+ // binary search.
+ std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
+
+ // Walk all of the loads from this alloca, replacing them with the nearest
+ // store above them, if any.
+ for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
+ LoadInst *LI = dyn_cast<LoadInst>(*UI++);
+ if (!LI)
+ continue;
+
+ unsigned LoadIdx = LBI.getInstructionIndex(LI);
+
+ // Find the nearest store that has a lower index than this load.
+ StoresByIndexTy::iterator I =
+ std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
+ std::make_pair(LoadIdx,
+ static_cast<StoreInst *>(nullptr)),
+ less_first());
+ if (I == StoresByIndex.begin()) {
+ if (StoresByIndex.empty())
+ // If there are no stores, the load takes the undef value.
+ LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
+ else
+ // There is no store before this load, bail out (load may be affected
+ // by the following stores - see main comment).
+ return false;
+ }
+ else
+ // Otherwise, there was a store before this load, the load takes its value.
+ LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
+
+ if (AST && LI->getType()->isPointerTy())
+ AST->deleteValue(LI);
+ LI->eraseFromParent();
+ LBI.deleteValue(LI);
+ }
+
+ // Remove the (now dead) stores and alloca.
+ while (!AI->use_empty()) {
+ StoreInst *SI = cast<StoreInst>(AI->user_back());
+ // Record debuginfo for the store before removing it.
+ if (DbgDeclareInst *DDI = Info.DbgDeclare) {
+ DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
+ ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
+ }
+ SI->eraseFromParent();
+ LBI.deleteValue(SI);
+ }
+
+ if (AST)
+ AST->deleteValue(AI);
+ AI->eraseFromParent();
+ LBI.deleteValue(AI);
+
+ // The alloca's debuginfo can be removed as well.
+ if (DbgDeclareInst *DDI = Info.DbgDeclare) {
+ DDI->eraseFromParent();
+ LBI.deleteValue(DDI);
+ }
+
+ ++NumLocalPromoted;
+ return true;
+}
+
+void PromoteMem2Reg::run() {
+ Function &F = *DT.getRoot()->getParent();
+
+ if (AST)
+ PointerAllocaValues.resize(Allocas.size());
+ AllocaDbgDeclares.resize(Allocas.size());
+
+ AllocaInfo Info;
+ LargeBlockInfo LBI;
+ IDFCalculator IDF(DT);
+
+ for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
+ AllocaInst *AI = Allocas[AllocaNum];
+
+ assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
+ assert(AI->getParent()->getParent() == &F &&
+ "All allocas should be in the same function, which is same as DF!");
+
+ removeLifetimeIntrinsicUsers(AI);
+
+ if (AI->use_empty()) {
+ // If there are no uses of the alloca, just delete it now.
+ if (AST)
+ AST->deleteValue(AI);
+ AI->eraseFromParent();
+
+ // Remove the alloca from the Allocas list, since it has been processed
+ RemoveFromAllocasList(AllocaNum);
+ ++NumDeadAlloca;
+ continue;
+ }
+
+ // Calculate the set of read and write-locations for each alloca. This is
+ // analogous to finding the 'uses' and 'definitions' of each variable.
+ Info.AnalyzeAlloca(AI);
+
+ // If there is only a single store to this value, replace any loads of
+ // it that are directly dominated by the definition with the value stored.
+ if (Info.DefiningBlocks.size() == 1) {
+ if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
+ // The alloca has been processed, move on.
+ RemoveFromAllocasList(AllocaNum);
+ ++NumSingleStore;
+ continue;
+ }
+ }
+
+ // If the alloca is only read and written in one basic block, just perform a
+ // linear sweep over the block to eliminate it.
+ if (Info.OnlyUsedInOneBlock &&
+ promoteSingleBlockAlloca(AI, Info, LBI, AST)) {
+ // The alloca has been processed, move on.
+ RemoveFromAllocasList(AllocaNum);
+ continue;
+ }
+
+ // If we haven't computed a numbering for the BB's in the function, do so
+ // now.
+ if (BBNumbers.empty()) {
+ unsigned ID = 0;
+ for (auto &BB : F)
+ BBNumbers[&BB] = ID++;
+ }
+
+ // If we have an AST to keep updated, remember some pointer value that is
+ // stored into the alloca.
+ if (AST)
+ PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
+
+ // Remember the dbg.declare intrinsic describing this alloca, if any.
+ if (Info.DbgDeclare)
+ AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
+
+ // Keep the reverse mapping of the 'Allocas' array for the rename pass.
+ AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
+
+ // At this point, we're committed to promoting the alloca using IDF's, and
+ // the standard SSA construction algorithm. Determine which blocks need PHI
+ // nodes and see if we can optimize out some work by avoiding insertion of
+ // dead phi nodes.
+
+
+ // Unique the set of defining blocks for efficient lookup.
+ SmallPtrSet<BasicBlock *, 32> DefBlocks;
+ DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
+
+ // Determine which blocks the value is live in. These are blocks which lead
+ // to uses.
+ SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
+ ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
+
+ // At this point, we're committed to promoting the alloca using IDF's, and
+ // the standard SSA construction algorithm. Determine which blocks need phi
+ // nodes and see if we can optimize out some work by avoiding insertion of
+ // dead phi nodes.
+ IDF.setLiveInBlocks(LiveInBlocks);
+ IDF.setDefiningBlocks(DefBlocks);
+ SmallVector<BasicBlock *, 32> PHIBlocks;
+ IDF.calculate(PHIBlocks);
+ if (PHIBlocks.size() > 1)
+ std::sort(PHIBlocks.begin(), PHIBlocks.end(),
+ [this](BasicBlock *A, BasicBlock *B) {
+ return BBNumbers.lookup(A) < BBNumbers.lookup(B);
+ });
+
+ unsigned CurrentVersion = 0;
+ for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i)
+ QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion);
+ }
+
+ if (Allocas.empty())
+ return; // All of the allocas must have been trivial!
+
+ LBI.clear();
+
+ // Set the incoming values for the basic block to be null values for all of
+ // the alloca's. We do this in case there is a load of a value that has not
+ // been stored yet. In this case, it will get this null value.
+ //
+ RenamePassData::ValVector Values(Allocas.size());
+ for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
+ Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
+
+ // Walks all basic blocks in the function performing the SSA rename algorithm
+ // and inserting the phi nodes we marked as necessary
+ //
+ std::vector<RenamePassData> RenamePassWorkList;
+ RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values));
+ do {
+ RenamePassData RPD;
+ RPD.swap(RenamePassWorkList.back());
+ RenamePassWorkList.pop_back();
+ // RenamePass may add new worklist entries.
+ RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
+ } while (!RenamePassWorkList.empty());
+
+ // The renamer uses the Visited set to avoid infinite loops. Clear it now.
+ Visited.clear();
+
+ // Remove the allocas themselves from the function.
+ for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
+ Instruction *A = Allocas[i];
+
+ // If there are any uses of the alloca instructions left, they must be in
+ // unreachable basic blocks that were not processed by walking the dominator
+ // tree. Just delete the users now.
+ if (!A->use_empty())
+ A->replaceAllUsesWith(UndefValue::get(A->getType()));
+ if (AST)
+ AST->deleteValue(A);
+ A->eraseFromParent();
+ }
+
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ // Remove alloca's dbg.declare instrinsics from the function.
+ for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
+ if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
+ DDI->eraseFromParent();
+
+ // Loop over all of the PHI nodes and see if there are any that we can get
+ // rid of because they merge all of the same incoming values. This can
+ // happen due to undef values coming into the PHI nodes. This process is
+ // iterative, because eliminating one PHI node can cause others to be removed.
+ bool EliminatedAPHI = true;
+ while (EliminatedAPHI) {
+ EliminatedAPHI = false;
+
+ // Iterating over NewPhiNodes is deterministic, so it is safe to try to
+ // simplify and RAUW them as we go. If it was not, we could add uses to
+ // the values we replace with in a non-deterministic order, thus creating
+ // non-deterministic def->use chains.
+ for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
+ I = NewPhiNodes.begin(),
+ E = NewPhiNodes.end();
+ I != E;) {
+ PHINode *PN = I->second;
+
+ // If this PHI node merges one value and/or undefs, get the value.
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
+ if (AST && PN->getType()->isPointerTy())
+ AST->deleteValue(PN);
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ NewPhiNodes.erase(I++);
+ EliminatedAPHI = true;
+ continue;
+ }
+ ++I;
+ }
+ }
+
+ // At this point, the renamer has added entries to PHI nodes for all reachable
+ // code. Unfortunately, there may be unreachable blocks which the renamer
+ // hasn't traversed. If this is the case, the PHI nodes may not
+ // have incoming values for all predecessors. Loop over all PHI nodes we have
+ // created, inserting undef values if they are missing any incoming values.
+ //
+ for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
+ I = NewPhiNodes.begin(),
+ E = NewPhiNodes.end();
+ I != E; ++I) {
+ // We want to do this once per basic block. As such, only process a block
+ // when we find the PHI that is the first entry in the block.
+ PHINode *SomePHI = I->second;
+ BasicBlock *BB = SomePHI->getParent();
+ if (&BB->front() != SomePHI)
+ continue;
+
+ // Only do work here if there the PHI nodes are missing incoming values. We
+ // know that all PHI nodes that were inserted in a block will have the same
+ // number of incoming values, so we can just check any of them.
+ if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
+ continue;
+
+ // Get the preds for BB.
+ SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
+
+ // Ok, now we know that all of the PHI nodes are missing entries for some
+ // basic blocks. Start by sorting the incoming predecessors for efficient
+ // access.
+ std::sort(Preds.begin(), Preds.end());
+
+ // Now we loop through all BB's which have entries in SomePHI and remove
+ // them from the Preds list.
+ for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
+ // Do a log(n) search of the Preds list for the entry we want.
+ SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
+ Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
+ assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
+ "PHI node has entry for a block which is not a predecessor!");
+
+ // Remove the entry
+ Preds.erase(EntIt);
+ }
+
+ // At this point, the blocks left in the preds list must have dummy
+ // entries inserted into every PHI nodes for the block. Update all the phi
+ // nodes in this block that we are inserting (there could be phis before
+ // mem2reg runs).
+ unsigned NumBadPreds = SomePHI->getNumIncomingValues();
+ BasicBlock::iterator BBI = BB->begin();
+ while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
+ SomePHI->getNumIncomingValues() == NumBadPreds) {
+ Value *UndefVal = UndefValue::get(SomePHI->getType());
+ for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
+ SomePHI->addIncoming(UndefVal, Preds[pred]);
+ }
+ }
+
+ NewPhiNodes.clear();
+}
+
+/// \brief Determine which blocks the value is live in.
+///
+/// These are blocks which lead to uses. Knowing this allows us to avoid
+/// inserting PHI nodes into blocks which don't lead to uses (thus, the
+/// inserted phi nodes would be dead).
+void PromoteMem2Reg::ComputeLiveInBlocks(
+ AllocaInst *AI, AllocaInfo &Info,
+ const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
+ SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
+
+ // To determine liveness, we must iterate through the predecessors of blocks
+ // where the def is live. Blocks are added to the worklist if we need to
+ // check their predecessors. Start with all the using blocks.
+ SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
+ Info.UsingBlocks.end());
+
+ // If any of the using blocks is also a definition block, check to see if the
+ // definition occurs before or after the use. If it happens before the use,
+ // the value isn't really live-in.
+ for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
+ BasicBlock *BB = LiveInBlockWorklist[i];
+ if (!DefBlocks.count(BB))
+ continue;
+
+ // Okay, this is a block that both uses and defines the value. If the first
+ // reference to the alloca is a def (store), then we know it isn't live-in.
+ for (BasicBlock::iterator I = BB->begin();; ++I) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ if (SI->getOperand(1) != AI)
+ continue;
+
+ // We found a store to the alloca before a load. The alloca is not
+ // actually live-in here.
+ LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
+ LiveInBlockWorklist.pop_back();
+ --i, --e;
+ break;
+ }
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (LI->getOperand(0) != AI)
+ continue;
+
+ // Okay, we found a load before a store to the alloca. It is actually
+ // live into this block.
+ break;
+ }
+ }
+ }
+
+ // Now that we have a set of blocks where the phi is live-in, recursively add
+ // their predecessors until we find the full region the value is live.
+ while (!LiveInBlockWorklist.empty()) {
+ BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
+
+ // The block really is live in here, insert it into the set. If already in
+ // the set, then it has already been processed.
+ if (!LiveInBlocks.insert(BB).second)
+ continue;
+
+ // Since the value is live into BB, it is either defined in a predecessor or
+ // live into it to. Add the preds to the worklist unless they are a
+ // defining block.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *P = *PI;
+
+ // The value is not live into a predecessor if it defines the value.
+ if (DefBlocks.count(P))
+ continue;
+
+ // Otherwise it is, add to the worklist.
+ LiveInBlockWorklist.push_back(P);
+ }
+ }
+}
+
+/// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
+///
+/// Returns true if there wasn't already a phi-node for that variable
+bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
+ unsigned &Version) {
+ // Look up the basic-block in question.
+ PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
+
+ // If the BB already has a phi node added for the i'th alloca then we're done!
+ if (PN)
+ return false;
+
+ // Create a PhiNode using the dereferenced type... and add the phi-node to the
+ // BasicBlock.
+ PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
+ Allocas[AllocaNo]->getName() + "." + Twine(Version++),
+ &BB->front());
+ ++NumPHIInsert;
+ PhiToAllocaMap[PN] = AllocaNo;
+
+ if (AST && PN->getType()->isPointerTy())
+ AST->copyValue(PointerAllocaValues[AllocaNo], PN);
+
+ return true;
+}
+
+/// \brief Recursively traverse the CFG of the function, renaming loads and
+/// stores to the allocas which we are promoting.
+///
+/// IncomingVals indicates what value each Alloca contains on exit from the
+/// predecessor block Pred.
+void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
+ RenamePassData::ValVector &IncomingVals,
+ std::vector<RenamePassData> &Worklist) {
+NextIteration:
+ // If we are inserting any phi nodes into this BB, they will already be in the
+ // block.
+ if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
+ // If we have PHI nodes to update, compute the number of edges from Pred to
+ // BB.
+ if (PhiToAllocaMap.count(APN)) {
+ // We want to be able to distinguish between PHI nodes being inserted by
+ // this invocation of mem2reg from those phi nodes that already existed in
+ // the IR before mem2reg was run. We determine that APN is being inserted
+ // because it is missing incoming edges. All other PHI nodes being
+ // inserted by this pass of mem2reg will have the same number of incoming
+ // operands so far. Remember this count.
+ unsigned NewPHINumOperands = APN->getNumOperands();
+
+ unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
+ assert(NumEdges && "Must be at least one edge from Pred to BB!");
+
+ // Add entries for all the phis.
+ BasicBlock::iterator PNI = BB->begin();
+ do {
+ unsigned AllocaNo = PhiToAllocaMap[APN];
+
+ // Add N incoming values to the PHI node.
+ for (unsigned i = 0; i != NumEdges; ++i)
+ APN->addIncoming(IncomingVals[AllocaNo], Pred);
+
+ // The currently active variable for this block is now the PHI.
+ IncomingVals[AllocaNo] = APN;
+
+ // Get the next phi node.
+ ++PNI;
+ APN = dyn_cast<PHINode>(PNI);
+ if (!APN)
+ break;
+
+ // Verify that it is missing entries. If not, it is not being inserted
+ // by this mem2reg invocation so we want to ignore it.
+ } while (APN->getNumOperands() == NewPHINumOperands);
+ }
+ }
+
+ // Don't revisit blocks.
+ if (!Visited.insert(BB).second)
+ return;
+
+ for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
+ Instruction *I = &*II++; // get the instruction, increment iterator
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
+ if (!Src)
+ continue;
+
+ DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
+ if (AI == AllocaLookup.end())
+ continue;
+
+ Value *V = IncomingVals[AI->second];
+
+ // Anything using the load now uses the current value.
+ LI->replaceAllUsesWith(V);
+ if (AST && LI->getType()->isPointerTy())
+ AST->deleteValue(LI);
+ BB->getInstList().erase(LI);
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ // Delete this instruction and mark the name as the current holder of the
+ // value
+ AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
+ if (!Dest)
+ continue;
+
+ DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
+ if (ai == AllocaLookup.end())
+ continue;
+
+ // what value were we writing?
+ IncomingVals[ai->second] = SI->getOperand(0);
+ // Record debuginfo for the store before removing it.
+ if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
+ ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
+ BB->getInstList().erase(SI);
+ }
+ }
+
+ // 'Recurse' to our successors.
+ succ_iterator I = succ_begin(BB), E = succ_end(BB);
+ if (I == E)
+ return;
+
+ // Keep track of the successors so we don't visit the same successor twice
+ SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
+
+ // Handle the first successor without using the worklist.
+ VisitedSuccs.insert(*I);
+ Pred = BB;
+ BB = *I;
+ ++I;
+
+ for (; I != E; ++I)
+ if (VisitedSuccs.insert(*I).second)
+ Worklist.emplace_back(*I, Pred, IncomingVals);
+
+ goto NextIteration;
+}
+
+void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
+ AliasSetTracker *AST, AssumptionCache *AC) {
+ // If there is nothing to do, bail out...
+ if (Allocas.empty())
+ return;
+
+ PromoteMem2Reg(Allocas, DT, AST, AC).run();
+}