diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp | 1031 |
1 files changed, 0 insertions, 1031 deletions
diff --git a/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp deleted file mode 100644 index 91e4f4254b3..00000000000 --- a/gnu/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp +++ /dev/null @@ -1,1031 +0,0 @@ -//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file promotes memory references to be register references. It promotes -// alloca instructions which only have loads and stores as uses. An alloca is -// transformed by using iterated dominator frontiers to place PHI nodes, then -// traversing the function in depth-first order to rewrite loads and stores as -// appropriate. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/TinyPtrVector.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/IteratedDominanceFrontier.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/Support/Casting.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include <algorithm> -#include <cassert> -#include <iterator> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "mem2reg" - -STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); -STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); -STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); -STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); - -bool llvm::isAllocaPromotable(const AllocaInst *AI) { - // FIXME: If the memory unit is of pointer or integer type, we can permit - // assignments to subsections of the memory unit. - unsigned AS = AI->getType()->getAddressSpace(); - - // Only allow direct and non-volatile loads and stores... - for (const User *U : AI->users()) { - if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { - // Note that atomic loads can be transformed; atomic semantics do - // not have any meaning for a local alloca. - if (LI->isVolatile()) - return false; - } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { - if (SI->getOperand(0) == AI) - return false; // Don't allow a store OF the AI, only INTO the AI. - // Note that atomic stores can be transformed; atomic semantics do - // not have any meaning for a local alloca. - if (SI->isVolatile()) - return false; - } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { - if (!II->isLifetimeStartOrEnd()) - return false; - } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { - if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) - return false; - if (!onlyUsedByLifetimeMarkers(BCI)) - return false; - } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { - if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) - return false; - if (!GEPI->hasAllZeroIndices()) - return false; - if (!onlyUsedByLifetimeMarkers(GEPI)) - return false; - } else { - return false; - } - } - - return true; -} - -namespace { - -struct AllocaInfo { - SmallVector<BasicBlock *, 32> DefiningBlocks; - SmallVector<BasicBlock *, 32> UsingBlocks; - - StoreInst *OnlyStore; - BasicBlock *OnlyBlock; - bool OnlyUsedInOneBlock; - - Value *AllocaPointerVal; - TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; - - void clear() { - DefiningBlocks.clear(); - UsingBlocks.clear(); - OnlyStore = nullptr; - OnlyBlock = nullptr; - OnlyUsedInOneBlock = true; - AllocaPointerVal = nullptr; - DbgDeclares.clear(); - } - - /// Scan the uses of the specified alloca, filling in the AllocaInfo used - /// by the rest of the pass to reason about the uses of this alloca. - void AnalyzeAlloca(AllocaInst *AI) { - clear(); - - // As we scan the uses of the alloca instruction, keep track of stores, - // and decide whether all of the loads and stores to the alloca are within - // the same basic block. - for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { - Instruction *User = cast<Instruction>(*UI++); - - if (StoreInst *SI = dyn_cast<StoreInst>(User)) { - // Remember the basic blocks which define new values for the alloca - DefiningBlocks.push_back(SI->getParent()); - AllocaPointerVal = SI->getOperand(0); - OnlyStore = SI; - } else { - LoadInst *LI = cast<LoadInst>(User); - // Otherwise it must be a load instruction, keep track of variable - // reads. - UsingBlocks.push_back(LI->getParent()); - AllocaPointerVal = LI; - } - - if (OnlyUsedInOneBlock) { - if (!OnlyBlock) - OnlyBlock = User->getParent(); - else if (OnlyBlock != User->getParent()) - OnlyUsedInOneBlock = false; - } - } - - DbgDeclares = FindDbgAddrUses(AI); - } -}; - -/// Data package used by RenamePass(). -struct RenamePassData { - using ValVector = std::vector<Value *>; - using LocationVector = std::vector<DebugLoc>; - - RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) - : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} - - BasicBlock *BB; - BasicBlock *Pred; - ValVector Values; - LocationVector Locations; -}; - -/// This assigns and keeps a per-bb relative ordering of load/store -/// instructions in the block that directly load or store an alloca. -/// -/// This functionality is important because it avoids scanning large basic -/// blocks multiple times when promoting many allocas in the same block. -class LargeBlockInfo { - /// For each instruction that we track, keep the index of the - /// instruction. - /// - /// The index starts out as the number of the instruction from the start of - /// the block. - DenseMap<const Instruction *, unsigned> InstNumbers; - -public: - - /// This code only looks at accesses to allocas. - static bool isInterestingInstruction(const Instruction *I) { - return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || - (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); - } - - /// Get or calculate the index of the specified instruction. - unsigned getInstructionIndex(const Instruction *I) { - assert(isInterestingInstruction(I) && - "Not a load/store to/from an alloca?"); - - // If we already have this instruction number, return it. - DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); - if (It != InstNumbers.end()) - return It->second; - - // Scan the whole block to get the instruction. This accumulates - // information for every interesting instruction in the block, in order to - // avoid gratuitus rescans. - const BasicBlock *BB = I->getParent(); - unsigned InstNo = 0; - for (const Instruction &BBI : *BB) - if (isInterestingInstruction(&BBI)) - InstNumbers[&BBI] = InstNo++; - It = InstNumbers.find(I); - - assert(It != InstNumbers.end() && "Didn't insert instruction?"); - return It->second; - } - - void deleteValue(const Instruction *I) { InstNumbers.erase(I); } - - void clear() { InstNumbers.clear(); } -}; - -struct PromoteMem2Reg { - /// The alloca instructions being promoted. - std::vector<AllocaInst *> Allocas; - - DominatorTree &DT; - DIBuilder DIB; - - /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. - AssumptionCache *AC; - - const SimplifyQuery SQ; - - /// Reverse mapping of Allocas. - DenseMap<AllocaInst *, unsigned> AllocaLookup; - - /// The PhiNodes we're adding. - /// - /// That map is used to simplify some Phi nodes as we iterate over it, so - /// it should have deterministic iterators. We could use a MapVector, but - /// since we already maintain a map from BasicBlock* to a stable numbering - /// (BBNumbers), the DenseMap is more efficient (also supports removal). - DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; - - /// For each PHI node, keep track of which entry in Allocas it corresponds - /// to. - DenseMap<PHINode *, unsigned> PhiToAllocaMap; - - /// If we are updating an AliasSetTracker, then for each alloca that is of - /// pointer type, we keep track of what to copyValue to the inserted PHI - /// nodes here. - std::vector<Value *> PointerAllocaValues; - - /// For each alloca, we keep track of the dbg.declare intrinsic that - /// describes it, if any, so that we can convert it to a dbg.value - /// intrinsic if the alloca gets promoted. - SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; - - /// The set of basic blocks the renamer has already visited. - SmallPtrSet<BasicBlock *, 16> Visited; - - /// Contains a stable numbering of basic blocks to avoid non-determinstic - /// behavior. - DenseMap<BasicBlock *, unsigned> BBNumbers; - - /// Lazily compute the number of predecessors a block has. - DenseMap<const BasicBlock *, unsigned> BBNumPreds; - -public: - PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, - AssumptionCache *AC) - : Allocas(Allocas.begin(), Allocas.end()), DT(DT), - DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), - AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), - nullptr, &DT, AC) {} - - void run(); - -private: - void RemoveFromAllocasList(unsigned &AllocaIdx) { - Allocas[AllocaIdx] = Allocas.back(); - Allocas.pop_back(); - --AllocaIdx; - } - - unsigned getNumPreds(const BasicBlock *BB) { - unsigned &NP = BBNumPreds[BB]; - if (NP == 0) - NP = pred_size(BB) + 1; - return NP - 1; - } - - void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, - const SmallPtrSetImpl<BasicBlock *> &DefBlocks, - SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); - void RenamePass(BasicBlock *BB, BasicBlock *Pred, - RenamePassData::ValVector &IncVals, - RenamePassData::LocationVector &IncLocs, - std::vector<RenamePassData> &Worklist); - bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); -}; - -} // end anonymous namespace - -/// Given a LoadInst LI this adds assume(LI != null) after it. -static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { - Function *AssumeIntrinsic = - Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); - ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, - Constant::getNullValue(LI->getType())); - LoadNotNull->insertAfter(LI); - CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); - CI->insertAfter(LoadNotNull); - AC->registerAssumption(CI); -} - -static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { - // Knowing that this alloca is promotable, we know that it's safe to kill all - // instructions except for load and store. - - for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { - Instruction *I = cast<Instruction>(*UI); - ++UI; - if (isa<LoadInst>(I) || isa<StoreInst>(I)) - continue; - - if (!I->getType()->isVoidTy()) { - // The only users of this bitcast/GEP instruction are lifetime intrinsics. - // Follow the use/def chain to erase them now instead of leaving it for - // dead code elimination later. - for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { - Instruction *Inst = cast<Instruction>(*UUI); - ++UUI; - Inst->eraseFromParent(); - } - } - I->eraseFromParent(); - } -} - -/// Rewrite as many loads as possible given a single store. -/// -/// When there is only a single store, we can use the domtree to trivially -/// replace all of the dominated loads with the stored value. Do so, and return -/// true if this has successfully promoted the alloca entirely. If this returns -/// false there were some loads which were not dominated by the single store -/// and thus must be phi-ed with undef. We fall back to the standard alloca -/// promotion algorithm in that case. -static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, - LargeBlockInfo &LBI, const DataLayout &DL, - DominatorTree &DT, AssumptionCache *AC) { - StoreInst *OnlyStore = Info.OnlyStore; - bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); - BasicBlock *StoreBB = OnlyStore->getParent(); - int StoreIndex = -1; - - // Clear out UsingBlocks. We will reconstruct it here if needed. - Info.UsingBlocks.clear(); - - for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { - Instruction *UserInst = cast<Instruction>(*UI++); - if (!isa<LoadInst>(UserInst)) { - assert(UserInst == OnlyStore && "Should only have load/stores"); - continue; - } - LoadInst *LI = cast<LoadInst>(UserInst); - - // Okay, if we have a load from the alloca, we want to replace it with the - // only value stored to the alloca. We can do this if the value is - // dominated by the store. If not, we use the rest of the mem2reg machinery - // to insert the phi nodes as needed. - if (!StoringGlobalVal) { // Non-instructions are always dominated. - if (LI->getParent() == StoreBB) { - // If we have a use that is in the same block as the store, compare the - // indices of the two instructions to see which one came first. If the - // load came before the store, we can't handle it. - if (StoreIndex == -1) - StoreIndex = LBI.getInstructionIndex(OnlyStore); - - if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { - // Can't handle this load, bail out. - Info.UsingBlocks.push_back(StoreBB); - continue; - } - } else if (LI->getParent() != StoreBB && - !DT.dominates(StoreBB, LI->getParent())) { - // If the load and store are in different blocks, use BB dominance to - // check their relationships. If the store doesn't dom the use, bail - // out. - Info.UsingBlocks.push_back(LI->getParent()); - continue; - } - } - - // Otherwise, we *can* safely rewrite this load. - Value *ReplVal = OnlyStore->getOperand(0); - // If the replacement value is the load, this must occur in unreachable - // code. - if (ReplVal == LI) - ReplVal = UndefValue::get(LI->getType()); - - // If the load was marked as nonnull we don't want to lose - // that information when we erase this Load. So we preserve - // it with an assume. - if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && - !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) - addAssumeNonNull(AC, LI); - - LI->replaceAllUsesWith(ReplVal); - LI->eraseFromParent(); - LBI.deleteValue(LI); - } - - // Finally, after the scan, check to see if the store is all that is left. - if (!Info.UsingBlocks.empty()) - return false; // If not, we'll have to fall back for the remainder. - - // Record debuginfo for the store and remove the declaration's - // debuginfo. - for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { - DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); - ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); - DII->eraseFromParent(); - LBI.deleteValue(DII); - } - // Remove the (now dead) store and alloca. - Info.OnlyStore->eraseFromParent(); - LBI.deleteValue(Info.OnlyStore); - - AI->eraseFromParent(); - LBI.deleteValue(AI); - return true; -} - -/// Many allocas are only used within a single basic block. If this is the -/// case, avoid traversing the CFG and inserting a lot of potentially useless -/// PHI nodes by just performing a single linear pass over the basic block -/// using the Alloca. -/// -/// If we cannot promote this alloca (because it is read before it is written), -/// return false. This is necessary in cases where, due to control flow, the -/// alloca is undefined only on some control flow paths. e.g. code like -/// this is correct in LLVM IR: -/// // A is an alloca with no stores so far -/// for (...) { -/// int t = *A; -/// if (!first_iteration) -/// use(t); -/// *A = 42; -/// } -static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, - LargeBlockInfo &LBI, - const DataLayout &DL, - DominatorTree &DT, - AssumptionCache *AC) { - // The trickiest case to handle is when we have large blocks. Because of this, - // this code is optimized assuming that large blocks happen. This does not - // significantly pessimize the small block case. This uses LargeBlockInfo to - // make it efficient to get the index of various operations in the block. - - // Walk the use-def list of the alloca, getting the locations of all stores. - using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; - StoresByIndexTy StoresByIndex; - - for (User *U : AI->users()) - if (StoreInst *SI = dyn_cast<StoreInst>(U)) - StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); - - // Sort the stores by their index, making it efficient to do a lookup with a - // binary search. - llvm::sort(StoresByIndex, less_first()); - - // Walk all of the loads from this alloca, replacing them with the nearest - // store above them, if any. - for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { - LoadInst *LI = dyn_cast<LoadInst>(*UI++); - if (!LI) - continue; - - unsigned LoadIdx = LBI.getInstructionIndex(LI); - - // Find the nearest store that has a lower index than this load. - StoresByIndexTy::iterator I = - std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), - std::make_pair(LoadIdx, - static_cast<StoreInst *>(nullptr)), - less_first()); - if (I == StoresByIndex.begin()) { - if (StoresByIndex.empty()) - // If there are no stores, the load takes the undef value. - LI->replaceAllUsesWith(UndefValue::get(LI->getType())); - else - // There is no store before this load, bail out (load may be affected - // by the following stores - see main comment). - return false; - } else { - // Otherwise, there was a store before this load, the load takes its value. - // Note, if the load was marked as nonnull we don't want to lose that - // information when we erase it. So we preserve it with an assume. - Value *ReplVal = std::prev(I)->second->getOperand(0); - if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && - !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) - addAssumeNonNull(AC, LI); - - // If the replacement value is the load, this must occur in unreachable - // code. - if (ReplVal == LI) - ReplVal = UndefValue::get(LI->getType()); - - LI->replaceAllUsesWith(ReplVal); - } - - LI->eraseFromParent(); - LBI.deleteValue(LI); - } - - // Remove the (now dead) stores and alloca. - while (!AI->use_empty()) { - StoreInst *SI = cast<StoreInst>(AI->user_back()); - // Record debuginfo for the store before removing it. - for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { - DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); - ConvertDebugDeclareToDebugValue(DII, SI, DIB); - } - SI->eraseFromParent(); - LBI.deleteValue(SI); - } - - AI->eraseFromParent(); - LBI.deleteValue(AI); - - // The alloca's debuginfo can be removed as well. - for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { - DII->eraseFromParent(); - LBI.deleteValue(DII); - } - - ++NumLocalPromoted; - return true; -} - -void PromoteMem2Reg::run() { - Function &F = *DT.getRoot()->getParent(); - - AllocaDbgDeclares.resize(Allocas.size()); - - AllocaInfo Info; - LargeBlockInfo LBI; - ForwardIDFCalculator IDF(DT); - - for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { - AllocaInst *AI = Allocas[AllocaNum]; - - assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); - assert(AI->getParent()->getParent() == &F && - "All allocas should be in the same function, which is same as DF!"); - - removeLifetimeIntrinsicUsers(AI); - - if (AI->use_empty()) { - // If there are no uses of the alloca, just delete it now. - AI->eraseFromParent(); - - // Remove the alloca from the Allocas list, since it has been processed - RemoveFromAllocasList(AllocaNum); - ++NumDeadAlloca; - continue; - } - - // Calculate the set of read and write-locations for each alloca. This is - // analogous to finding the 'uses' and 'definitions' of each variable. - Info.AnalyzeAlloca(AI); - - // If there is only a single store to this value, replace any loads of - // it that are directly dominated by the definition with the value stored. - if (Info.DefiningBlocks.size() == 1) { - if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { - // The alloca has been processed, move on. - RemoveFromAllocasList(AllocaNum); - ++NumSingleStore; - continue; - } - } - - // If the alloca is only read and written in one basic block, just perform a - // linear sweep over the block to eliminate it. - if (Info.OnlyUsedInOneBlock && - promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { - // The alloca has been processed, move on. - RemoveFromAllocasList(AllocaNum); - continue; - } - - // If we haven't computed a numbering for the BB's in the function, do so - // now. - if (BBNumbers.empty()) { - unsigned ID = 0; - for (auto &BB : F) - BBNumbers[&BB] = ID++; - } - - // Remember the dbg.declare intrinsic describing this alloca, if any. - if (!Info.DbgDeclares.empty()) - AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; - - // Keep the reverse mapping of the 'Allocas' array for the rename pass. - AllocaLookup[Allocas[AllocaNum]] = AllocaNum; - - // At this point, we're committed to promoting the alloca using IDF's, and - // the standard SSA construction algorithm. Determine which blocks need PHI - // nodes and see if we can optimize out some work by avoiding insertion of - // dead phi nodes. - - // Unique the set of defining blocks for efficient lookup. - SmallPtrSet<BasicBlock *, 32> DefBlocks; - DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); - - // Determine which blocks the value is live in. These are blocks which lead - // to uses. - SmallPtrSet<BasicBlock *, 32> LiveInBlocks; - ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); - - // At this point, we're committed to promoting the alloca using IDF's, and - // the standard SSA construction algorithm. Determine which blocks need phi - // nodes and see if we can optimize out some work by avoiding insertion of - // dead phi nodes. - IDF.setLiveInBlocks(LiveInBlocks); - IDF.setDefiningBlocks(DefBlocks); - SmallVector<BasicBlock *, 32> PHIBlocks; - IDF.calculate(PHIBlocks); - if (PHIBlocks.size() > 1) - llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { - return BBNumbers.lookup(A) < BBNumbers.lookup(B); - }); - - unsigned CurrentVersion = 0; - for (BasicBlock *BB : PHIBlocks) - QueuePhiNode(BB, AllocaNum, CurrentVersion); - } - - if (Allocas.empty()) - return; // All of the allocas must have been trivial! - - LBI.clear(); - - // Set the incoming values for the basic block to be null values for all of - // the alloca's. We do this in case there is a load of a value that has not - // been stored yet. In this case, it will get this null value. - RenamePassData::ValVector Values(Allocas.size()); - for (unsigned i = 0, e = Allocas.size(); i != e; ++i) - Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); - - // When handling debug info, treat all incoming values as if they have unknown - // locations until proven otherwise. - RenamePassData::LocationVector Locations(Allocas.size()); - - // Walks all basic blocks in the function performing the SSA rename algorithm - // and inserting the phi nodes we marked as necessary - std::vector<RenamePassData> RenamePassWorkList; - RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), - std::move(Locations)); - do { - RenamePassData RPD = std::move(RenamePassWorkList.back()); - RenamePassWorkList.pop_back(); - // RenamePass may add new worklist entries. - RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); - } while (!RenamePassWorkList.empty()); - - // The renamer uses the Visited set to avoid infinite loops. Clear it now. - Visited.clear(); - - // Remove the allocas themselves from the function. - for (Instruction *A : Allocas) { - // If there are any uses of the alloca instructions left, they must be in - // unreachable basic blocks that were not processed by walking the dominator - // tree. Just delete the users now. - if (!A->use_empty()) - A->replaceAllUsesWith(UndefValue::get(A->getType())); - A->eraseFromParent(); - } - - // Remove alloca's dbg.declare instrinsics from the function. - for (auto &Declares : AllocaDbgDeclares) - for (auto *DII : Declares) - DII->eraseFromParent(); - - // Loop over all of the PHI nodes and see if there are any that we can get - // rid of because they merge all of the same incoming values. This can - // happen due to undef values coming into the PHI nodes. This process is - // iterative, because eliminating one PHI node can cause others to be removed. - bool EliminatedAPHI = true; - while (EliminatedAPHI) { - EliminatedAPHI = false; - - // Iterating over NewPhiNodes is deterministic, so it is safe to try to - // simplify and RAUW them as we go. If it was not, we could add uses to - // the values we replace with in a non-deterministic order, thus creating - // non-deterministic def->use chains. - for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator - I = NewPhiNodes.begin(), - E = NewPhiNodes.end(); - I != E;) { - PHINode *PN = I->second; - - // If this PHI node merges one value and/or undefs, get the value. - if (Value *V = SimplifyInstruction(PN, SQ)) { - PN->replaceAllUsesWith(V); - PN->eraseFromParent(); - NewPhiNodes.erase(I++); - EliminatedAPHI = true; - continue; - } - ++I; - } - } - - // At this point, the renamer has added entries to PHI nodes for all reachable - // code. Unfortunately, there may be unreachable blocks which the renamer - // hasn't traversed. If this is the case, the PHI nodes may not - // have incoming values for all predecessors. Loop over all PHI nodes we have - // created, inserting undef values if they are missing any incoming values. - for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator - I = NewPhiNodes.begin(), - E = NewPhiNodes.end(); - I != E; ++I) { - // We want to do this once per basic block. As such, only process a block - // when we find the PHI that is the first entry in the block. - PHINode *SomePHI = I->second; - BasicBlock *BB = SomePHI->getParent(); - if (&BB->front() != SomePHI) - continue; - - // Only do work here if there the PHI nodes are missing incoming values. We - // know that all PHI nodes that were inserted in a block will have the same - // number of incoming values, so we can just check any of them. - if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) - continue; - - // Get the preds for BB. - SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); - - // Ok, now we know that all of the PHI nodes are missing entries for some - // basic blocks. Start by sorting the incoming predecessors for efficient - // access. - auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { - return BBNumbers.lookup(A) < BBNumbers.lookup(B); - }; - llvm::sort(Preds, CompareBBNumbers); - - // Now we loop through all BB's which have entries in SomePHI and remove - // them from the Preds list. - for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { - // Do a log(n) search of the Preds list for the entry we want. - SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( - Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i), - CompareBBNumbers); - assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && - "PHI node has entry for a block which is not a predecessor!"); - - // Remove the entry - Preds.erase(EntIt); - } - - // At this point, the blocks left in the preds list must have dummy - // entries inserted into every PHI nodes for the block. Update all the phi - // nodes in this block that we are inserting (there could be phis before - // mem2reg runs). - unsigned NumBadPreds = SomePHI->getNumIncomingValues(); - BasicBlock::iterator BBI = BB->begin(); - while ((SomePHI = dyn_cast<PHINode>(BBI++)) && - SomePHI->getNumIncomingValues() == NumBadPreds) { - Value *UndefVal = UndefValue::get(SomePHI->getType()); - for (BasicBlock *Pred : Preds) - SomePHI->addIncoming(UndefVal, Pred); - } - } - - NewPhiNodes.clear(); -} - -/// Determine which blocks the value is live in. -/// -/// These are blocks which lead to uses. Knowing this allows us to avoid -/// inserting PHI nodes into blocks which don't lead to uses (thus, the -/// inserted phi nodes would be dead). -void PromoteMem2Reg::ComputeLiveInBlocks( - AllocaInst *AI, AllocaInfo &Info, - const SmallPtrSetImpl<BasicBlock *> &DefBlocks, - SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { - // To determine liveness, we must iterate through the predecessors of blocks - // where the def is live. Blocks are added to the worklist if we need to - // check their predecessors. Start with all the using blocks. - SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), - Info.UsingBlocks.end()); - - // If any of the using blocks is also a definition block, check to see if the - // definition occurs before or after the use. If it happens before the use, - // the value isn't really live-in. - for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { - BasicBlock *BB = LiveInBlockWorklist[i]; - if (!DefBlocks.count(BB)) - continue; - - // Okay, this is a block that both uses and defines the value. If the first - // reference to the alloca is a def (store), then we know it isn't live-in. - for (BasicBlock::iterator I = BB->begin();; ++I) { - if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (SI->getOperand(1) != AI) - continue; - - // We found a store to the alloca before a load. The alloca is not - // actually live-in here. - LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); - LiveInBlockWorklist.pop_back(); - --i; - --e; - break; - } - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (LI->getOperand(0) != AI) - continue; - - // Okay, we found a load before a store to the alloca. It is actually - // live into this block. - break; - } - } - } - - // Now that we have a set of blocks where the phi is live-in, recursively add - // their predecessors until we find the full region the value is live. - while (!LiveInBlockWorklist.empty()) { - BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); - - // The block really is live in here, insert it into the set. If already in - // the set, then it has already been processed. - if (!LiveInBlocks.insert(BB).second) - continue; - - // Since the value is live into BB, it is either defined in a predecessor or - // live into it to. Add the preds to the worklist unless they are a - // defining block. - for (BasicBlock *P : predecessors(BB)) { - // The value is not live into a predecessor if it defines the value. - if (DefBlocks.count(P)) - continue; - - // Otherwise it is, add to the worklist. - LiveInBlockWorklist.push_back(P); - } - } -} - -/// Queue a phi-node to be added to a basic-block for a specific Alloca. -/// -/// Returns true if there wasn't already a phi-node for that variable -bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, - unsigned &Version) { - // Look up the basic-block in question. - PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; - - // If the BB already has a phi node added for the i'th alloca then we're done! - if (PN) - return false; - - // Create a PhiNode using the dereferenced type... and add the phi-node to the - // BasicBlock. - PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), - Allocas[AllocaNo]->getName() + "." + Twine(Version++), - &BB->front()); - ++NumPHIInsert; - PhiToAllocaMap[PN] = AllocaNo; - return true; -} - -/// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to -/// create a merged location incorporating \p DL, or to set \p DL directly. -static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, - bool ApplyMergedLoc) { - if (ApplyMergedLoc) - PN->applyMergedLocation(PN->getDebugLoc(), DL); - else - PN->setDebugLoc(DL); -} - -/// Recursively traverse the CFG of the function, renaming loads and -/// stores to the allocas which we are promoting. -/// -/// IncomingVals indicates what value each Alloca contains on exit from the -/// predecessor block Pred. -void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, - RenamePassData::ValVector &IncomingVals, - RenamePassData::LocationVector &IncomingLocs, - std::vector<RenamePassData> &Worklist) { -NextIteration: - // If we are inserting any phi nodes into this BB, they will already be in the - // block. - if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { - // If we have PHI nodes to update, compute the number of edges from Pred to - // BB. - if (PhiToAllocaMap.count(APN)) { - // We want to be able to distinguish between PHI nodes being inserted by - // this invocation of mem2reg from those phi nodes that already existed in - // the IR before mem2reg was run. We determine that APN is being inserted - // because it is missing incoming edges. All other PHI nodes being - // inserted by this pass of mem2reg will have the same number of incoming - // operands so far. Remember this count. - unsigned NewPHINumOperands = APN->getNumOperands(); - - unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); - assert(NumEdges && "Must be at least one edge from Pred to BB!"); - - // Add entries for all the phis. - BasicBlock::iterator PNI = BB->begin(); - do { - unsigned AllocaNo = PhiToAllocaMap[APN]; - - // Update the location of the phi node. - updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], - APN->getNumIncomingValues() > 0); - - // Add N incoming values to the PHI node. - for (unsigned i = 0; i != NumEdges; ++i) - APN->addIncoming(IncomingVals[AllocaNo], Pred); - - // The currently active variable for this block is now the PHI. - IncomingVals[AllocaNo] = APN; - for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) - ConvertDebugDeclareToDebugValue(DII, APN, DIB); - - // Get the next phi node. - ++PNI; - APN = dyn_cast<PHINode>(PNI); - if (!APN) - break; - - // Verify that it is missing entries. If not, it is not being inserted - // by this mem2reg invocation so we want to ignore it. - } while (APN->getNumOperands() == NewPHINumOperands); - } - } - - // Don't revisit blocks. - if (!Visited.insert(BB).second) - return; - - for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { - Instruction *I = &*II++; // get the instruction, increment iterator - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); - if (!Src) - continue; - - DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); - if (AI == AllocaLookup.end()) - continue; - - Value *V = IncomingVals[AI->second]; - - // If the load was marked as nonnull we don't want to lose - // that information when we erase this Load. So we preserve - // it with an assume. - if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && - !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) - addAssumeNonNull(AC, LI); - - // Anything using the load now uses the current value. - LI->replaceAllUsesWith(V); - BB->getInstList().erase(LI); - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - // Delete this instruction and mark the name as the current holder of the - // value - AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); - if (!Dest) - continue; - - DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); - if (ai == AllocaLookup.end()) - continue; - - // what value were we writing? - unsigned AllocaNo = ai->second; - IncomingVals[AllocaNo] = SI->getOperand(0); - - // Record debuginfo for the store before removing it. - IncomingLocs[AllocaNo] = SI->getDebugLoc(); - for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) - ConvertDebugDeclareToDebugValue(DII, SI, DIB); - BB->getInstList().erase(SI); - } - } - - // 'Recurse' to our successors. - succ_iterator I = succ_begin(BB), E = succ_end(BB); - if (I == E) - return; - - // Keep track of the successors so we don't visit the same successor twice - SmallPtrSet<BasicBlock *, 8> VisitedSuccs; - - // Handle the first successor without using the worklist. - VisitedSuccs.insert(*I); - Pred = BB; - BB = *I; - ++I; - - for (; I != E; ++I) - if (VisitedSuccs.insert(*I).second) - Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); - - goto NextIteration; -} - -void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, - AssumptionCache *AC) { - // If there is nothing to do, bail out... - if (Allocas.empty()) - return; - - PromoteMem2Reg(Allocas, DT, AC).run(); -} |
