summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lld/ELF/LinkerScript.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:32:29 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:32:29 +0000
commitece8a53058b183aa0a669e21c57225431117089d (patch)
treed015158a7940b850696bd234528db6544daf9a69 /gnu/llvm/lld/ELF/LinkerScript.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-ece8a53058b183aa0a669e21c57225431117089d.tar.xz
wireguard-openbsd-ece8a53058b183aa0a669e21c57225431117089d.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/lld/ELF/LinkerScript.cpp')
-rw-r--r--gnu/llvm/lld/ELF/LinkerScript.cpp1205
1 files changed, 1205 insertions, 0 deletions
diff --git a/gnu/llvm/lld/ELF/LinkerScript.cpp b/gnu/llvm/lld/ELF/LinkerScript.cpp
new file mode 100644
index 00000000000..c1e1800257c
--- /dev/null
+++ b/gnu/llvm/lld/ELF/LinkerScript.cpp
@@ -0,0 +1,1205 @@
+//===- LinkerScript.cpp ---------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the parser/evaluator of the linker script.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LinkerScript.h"
+#include "Config.h"
+#include "InputSection.h"
+#include "OutputSections.h"
+#include "SymbolTable.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "Writer.h"
+#include "lld/Common/Memory.h"
+#include "lld/Common/Strings.h"
+#include "lld/Common/Threads.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+
+namespace lld {
+namespace elf {
+LinkerScript *script;
+
+static uint64_t getOutputSectionVA(SectionBase *sec) {
+ OutputSection *os = sec->getOutputSection();
+ assert(os && "input section has no output section assigned");
+ return os ? os->addr : 0;
+}
+
+uint64_t ExprValue::getValue() const {
+ if (sec)
+ return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
+ alignment);
+ return alignTo(val, alignment);
+}
+
+uint64_t ExprValue::getSecAddr() const {
+ if (sec)
+ return sec->getOffset(0) + getOutputSectionVA(sec);
+ return 0;
+}
+
+uint64_t ExprValue::getSectionOffset() const {
+ // If the alignment is trivial, we don't have to compute the full
+ // value to know the offset. This allows this function to succeed in
+ // cases where the output section is not yet known.
+ if (alignment == 1 && !sec)
+ return val;
+ return getValue() - getSecAddr();
+}
+
+OutputSection *LinkerScript::createOutputSection(StringRef name,
+ StringRef location) {
+ OutputSection *&secRef = nameToOutputSection[name];
+ OutputSection *sec;
+ if (secRef && secRef->location.empty()) {
+ // There was a forward reference.
+ sec = secRef;
+ } else {
+ sec = make<OutputSection>(name, SHT_PROGBITS, 0);
+ if (!secRef)
+ secRef = sec;
+ }
+ sec->location = location;
+ return sec;
+}
+
+OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
+ OutputSection *&cmdRef = nameToOutputSection[name];
+ if (!cmdRef)
+ cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
+ return cmdRef;
+}
+
+// Expands the memory region by the specified size.
+static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
+ StringRef regionName, StringRef secName) {
+ memRegion->curPos += size;
+ uint64_t newSize = memRegion->curPos - memRegion->origin;
+ if (newSize > memRegion->length)
+ error("section '" + secName + "' will not fit in region '" + regionName +
+ "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
+}
+
+void LinkerScript::expandMemoryRegions(uint64_t size) {
+ if (ctx->memRegion)
+ expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
+ ctx->outSec->name);
+ // Only expand the LMARegion if it is different from memRegion.
+ if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
+ expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
+ ctx->outSec->name);
+}
+
+void LinkerScript::expandOutputSection(uint64_t size) {
+ ctx->outSec->size += size;
+ expandMemoryRegions(size);
+}
+
+void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
+ uint64_t val = e().getValue();
+ if (val < dot && inSec)
+ error(loc + ": unable to move location counter backward for: " +
+ ctx->outSec->name);
+
+ // Update to location counter means update to section size.
+ if (inSec)
+ expandOutputSection(val - dot);
+
+ dot = val;
+}
+
+// Used for handling linker symbol assignments, for both finalizing
+// their values and doing early declarations. Returns true if symbol
+// should be defined from linker script.
+static bool shouldDefineSym(SymbolAssignment *cmd) {
+ if (cmd->name == ".")
+ return false;
+
+ if (!cmd->provide)
+ return true;
+
+ // If a symbol was in PROVIDE(), we need to define it only
+ // when it is a referenced undefined symbol.
+ Symbol *b = symtab->find(cmd->name);
+ if (b && !b->isDefined())
+ return true;
+ return false;
+}
+
+// Called by processSymbolAssignments() to assign definitions to
+// linker-script-defined symbols.
+void LinkerScript::addSymbol(SymbolAssignment *cmd) {
+ if (!shouldDefineSym(cmd))
+ return;
+
+ // Define a symbol.
+ ExprValue value = cmd->expression();
+ SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
+ uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
+
+ // When this function is called, section addresses have not been
+ // fixed yet. So, we may or may not know the value of the RHS
+ // expression.
+ //
+ // For example, if an expression is `x = 42`, we know x is always 42.
+ // However, if an expression is `x = .`, there's no way to know its
+ // value at the moment.
+ //
+ // We want to set symbol values early if we can. This allows us to
+ // use symbols as variables in linker scripts. Doing so allows us to
+ // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
+ uint64_t symValue = value.sec ? 0 : value.getValue();
+
+ Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
+ symValue, 0, sec);
+
+ Symbol *sym = symtab->insert(cmd->name);
+ sym->mergeProperties(newSym);
+ sym->replace(newSym);
+ cmd->sym = cast<Defined>(sym);
+}
+
+// This function is called from LinkerScript::declareSymbols.
+// It creates a placeholder symbol if needed.
+static void declareSymbol(SymbolAssignment *cmd) {
+ if (!shouldDefineSym(cmd))
+ return;
+
+ uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
+ Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
+ nullptr);
+
+ // We can't calculate final value right now.
+ Symbol *sym = symtab->insert(cmd->name);
+ sym->mergeProperties(newSym);
+ sym->replace(newSym);
+
+ cmd->sym = cast<Defined>(sym);
+ cmd->provide = false;
+ sym->scriptDefined = true;
+}
+
+using SymbolAssignmentMap =
+ DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
+
+// Collect section/value pairs of linker-script-defined symbols. This is used to
+// check whether symbol values converge.
+static SymbolAssignmentMap
+getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
+ SymbolAssignmentMap ret;
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+ if (cmd->sym) // sym is nullptr for dot.
+ ret.try_emplace(cmd->sym,
+ std::make_pair(cmd->sym->section, cmd->sym->value));
+ continue;
+ }
+ for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
+ if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
+ if (cmd->sym)
+ ret.try_emplace(cmd->sym,
+ std::make_pair(cmd->sym->section, cmd->sym->value));
+ }
+ return ret;
+}
+
+// Returns the lexicographical smallest (for determinism) Defined whose
+// section/value has changed.
+static const Defined *
+getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
+ const Defined *changed = nullptr;
+ for (auto &it : oldValues) {
+ const Defined *sym = it.first;
+ if (std::make_pair(sym->section, sym->value) != it.second &&
+ (!changed || sym->getName() < changed->getName()))
+ changed = sym;
+ }
+ return changed;
+}
+
+// This method is used to handle INSERT AFTER statement. Here we rebuild
+// the list of script commands to mix sections inserted into.
+void LinkerScript::processInsertCommands() {
+ std::vector<BaseCommand *> v;
+ auto insert = [&](std::vector<BaseCommand *> &from) {
+ v.insert(v.end(), from.begin(), from.end());
+ from.clear();
+ };
+
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *os = dyn_cast<OutputSection>(base)) {
+ insert(insertBeforeCommands[os->name]);
+ v.push_back(base);
+ insert(insertAfterCommands[os->name]);
+ continue;
+ }
+ v.push_back(base);
+ }
+
+ for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
+ for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
+ if (!p.second.empty())
+ error("unable to INSERT AFTER/BEFORE " + p.first +
+ ": section not defined");
+
+ sectionCommands = std::move(v);
+}
+
+// Symbols defined in script should not be inlined by LTO. At the same time
+// we don't know their final values until late stages of link. Here we scan
+// over symbol assignment commands and create placeholder symbols if needed.
+void LinkerScript::declareSymbols() {
+ assert(!ctx);
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+ declareSymbol(cmd);
+ continue;
+ }
+
+ // If the output section directive has constraints,
+ // we can't say for sure if it is going to be included or not.
+ // Skip such sections for now. Improve the checks if we ever
+ // need symbols from that sections to be declared early.
+ auto *sec = cast<OutputSection>(base);
+ if (sec->constraint != ConstraintKind::NoConstraint)
+ continue;
+ for (BaseCommand *base2 : sec->sectionCommands)
+ if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
+ declareSymbol(cmd);
+ }
+}
+
+// This function is called from assignAddresses, while we are
+// fixing the output section addresses. This function is supposed
+// to set the final value for a given symbol assignment.
+void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
+ if (cmd->name == ".") {
+ setDot(cmd->expression, cmd->location, inSec);
+ return;
+ }
+
+ if (!cmd->sym)
+ return;
+
+ ExprValue v = cmd->expression();
+ if (v.isAbsolute()) {
+ cmd->sym->section = nullptr;
+ cmd->sym->value = v.getValue();
+ } else {
+ cmd->sym->section = v.sec;
+ cmd->sym->value = v.getSectionOffset();
+ }
+}
+
+static std::string getFilename(InputFile *file) {
+ if (!file)
+ return "";
+ if (file->archiveName.empty())
+ return file->getName();
+ return (file->archiveName + "(" + file->getName() + ")").str();
+}
+
+bool LinkerScript::shouldKeep(InputSectionBase *s) {
+ if (keptSections.empty())
+ return false;
+ std::string filename = getFilename(s->file);
+ for (InputSectionDescription *id : keptSections)
+ if (id->filePat.match(filename))
+ for (SectionPattern &p : id->sectionPatterns)
+ if (p.sectionPat.match(s->name))
+ return true;
+ return false;
+}
+
+// A helper function for the SORT() command.
+static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
+ ConstraintKind kind) {
+ if (kind == ConstraintKind::NoConstraint)
+ return true;
+
+ bool isRW = llvm::any_of(
+ sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
+
+ return (isRW && kind == ConstraintKind::ReadWrite) ||
+ (!isRW && kind == ConstraintKind::ReadOnly);
+}
+
+static void sortSections(MutableArrayRef<InputSectionBase *> vec,
+ SortSectionPolicy k) {
+ auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
+ // ">" is not a mistake. Sections with larger alignments are placed
+ // before sections with smaller alignments in order to reduce the
+ // amount of padding necessary. This is compatible with GNU.
+ return a->alignment > b->alignment;
+ };
+ auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
+ return a->name < b->name;
+ };
+ auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
+ return getPriority(a->name) < getPriority(b->name);
+ };
+
+ switch (k) {
+ case SortSectionPolicy::Default:
+ case SortSectionPolicy::None:
+ return;
+ case SortSectionPolicy::Alignment:
+ return llvm::stable_sort(vec, alignmentComparator);
+ case SortSectionPolicy::Name:
+ return llvm::stable_sort(vec, nameComparator);
+ case SortSectionPolicy::Priority:
+ return llvm::stable_sort(vec, priorityComparator);
+ }
+}
+
+// Sort sections as instructed by SORT-family commands and --sort-section
+// option. Because SORT-family commands can be nested at most two depth
+// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
+// line option is respected even if a SORT command is given, the exact
+// behavior we have here is a bit complicated. Here are the rules.
+//
+// 1. If two SORT commands are given, --sort-section is ignored.
+// 2. If one SORT command is given, and if it is not SORT_NONE,
+// --sort-section is handled as an inner SORT command.
+// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
+// 4. If no SORT command is given, sort according to --sort-section.
+static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
+ const SectionPattern &pat) {
+ if (pat.sortOuter == SortSectionPolicy::None)
+ return;
+
+ if (pat.sortInner == SortSectionPolicy::Default)
+ sortSections(vec, config->sortSection);
+ else
+ sortSections(vec, pat.sortInner);
+ sortSections(vec, pat.sortOuter);
+}
+
+// Compute and remember which sections the InputSectionDescription matches.
+std::vector<InputSectionBase *>
+LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
+ std::vector<InputSectionBase *> ret;
+
+ // Collects all sections that satisfy constraints of Cmd.
+ for (const SectionPattern &pat : cmd->sectionPatterns) {
+ size_t sizeBefore = ret.size();
+
+ for (InputSectionBase *sec : inputSections) {
+ if (!sec->isLive() || sec->parent)
+ continue;
+
+ // For -emit-relocs we have to ignore entries like
+ // .rela.dyn : { *(.rela.data) }
+ // which are common because they are in the default bfd script.
+ // We do not ignore SHT_REL[A] linker-synthesized sections here because
+ // want to support scripts that do custom layout for them.
+ if (isa<InputSection>(sec) &&
+ cast<InputSection>(sec)->getRelocatedSection())
+ continue;
+
+ std::string filename = getFilename(sec->file);
+ if (!cmd->filePat.match(filename) ||
+ pat.excludedFilePat.match(filename) ||
+ !pat.sectionPat.match(sec->name))
+ continue;
+
+ ret.push_back(sec);
+ }
+
+ sortInputSections(
+ MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
+ }
+ return ret;
+}
+
+void LinkerScript::discard(InputSectionBase *s) {
+ if (s == in.shStrTab || s == mainPart->relrDyn)
+ error("discarding " + s->name + " section is not allowed");
+
+ // You can discard .hash and .gnu.hash sections by linker scripts. Since
+ // they are synthesized sections, we need to handle them differently than
+ // other regular sections.
+ if (s == mainPart->gnuHashTab)
+ mainPart->gnuHashTab = nullptr;
+ if (s == mainPart->hashTab)
+ mainPart->hashTab = nullptr;
+
+ s->markDead();
+ s->parent = nullptr;
+ for (InputSection *ds : s->dependentSections)
+ discard(ds);
+}
+
+std::vector<InputSectionBase *>
+LinkerScript::createInputSectionList(OutputSection &outCmd) {
+ std::vector<InputSectionBase *> ret;
+
+ for (BaseCommand *base : outCmd.sectionCommands) {
+ if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
+ cmd->sectionBases = computeInputSections(cmd);
+ for (InputSectionBase *s : cmd->sectionBases)
+ s->parent = &outCmd;
+ ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
+ }
+ }
+ return ret;
+}
+
+// Create output sections described by SECTIONS commands.
+void LinkerScript::processSectionCommands() {
+ size_t i = 0;
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *sec = dyn_cast<OutputSection>(base)) {
+ std::vector<InputSectionBase *> v = createInputSectionList(*sec);
+
+ // The output section name `/DISCARD/' is special.
+ // Any input section assigned to it is discarded.
+ if (sec->name == "/DISCARD/") {
+ for (InputSectionBase *s : v)
+ discard(s);
+ sec->sectionCommands.clear();
+ continue;
+ }
+
+ // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
+ // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
+ // sections satisfy a given constraint. If not, a directive is handled
+ // as if it wasn't present from the beginning.
+ //
+ // Because we'll iterate over SectionCommands many more times, the easy
+ // way to "make it as if it wasn't present" is to make it empty.
+ if (!matchConstraints(v, sec->constraint)) {
+ for (InputSectionBase *s : v)
+ s->parent = nullptr;
+ sec->sectionCommands.clear();
+ continue;
+ }
+
+ // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
+ // is given, input sections are aligned to that value, whether the
+ // given value is larger or smaller than the original section alignment.
+ if (sec->subalignExpr) {
+ uint32_t subalign = sec->subalignExpr().getValue();
+ for (InputSectionBase *s : v)
+ s->alignment = subalign;
+ }
+
+ // Set the partition field the same way OutputSection::recordSection()
+ // does. Partitions cannot be used with the SECTIONS command, so this is
+ // always 1.
+ sec->partition = 1;
+
+ sec->sectionIndex = i++;
+ }
+ }
+}
+
+void LinkerScript::processSymbolAssignments() {
+ // Dot outside an output section still represents a relative address, whose
+ // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
+ // that fills the void outside a section. It has an index of one, which is
+ // indistinguishable from any other regular section index.
+ aether = make<OutputSection>("", 0, SHF_ALLOC);
+ aether->sectionIndex = 1;
+
+ // ctx captures the local AddressState and makes it accessible deliberately.
+ // This is needed as there are some cases where we cannot just thread the
+ // current state through to a lambda function created by the script parser.
+ AddressState state;
+ ctx = &state;
+ ctx->outSec = aether;
+
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *cmd = dyn_cast<SymbolAssignment>(base))
+ addSymbol(cmd);
+ else
+ for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
+ if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
+ addSymbol(cmd);
+ }
+
+ ctx = nullptr;
+}
+
+static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
+ StringRef name) {
+ for (BaseCommand *base : vec)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ if (sec->name == name)
+ return sec;
+ return nullptr;
+}
+
+static OutputSection *createSection(InputSectionBase *isec,
+ StringRef outsecName) {
+ OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
+ sec->recordSection(isec);
+ return sec;
+}
+
+static OutputSection *
+addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
+ InputSectionBase *isec, StringRef outsecName) {
+ // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
+ // option is given. A section with SHT_GROUP defines a "section group", and
+ // its members have SHF_GROUP attribute. Usually these flags have already been
+ // stripped by InputFiles.cpp as section groups are processed and uniquified.
+ // However, for the -r option, we want to pass through all section groups
+ // as-is because adding/removing members or merging them with other groups
+ // change their semantics.
+ if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
+ return createSection(isec, outsecName);
+
+ // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
+ // relocation sections .rela.foo and .rela.bar for example. Most tools do
+ // not allow multiple REL[A] sections for output section. Hence we
+ // should combine these relocation sections into single output.
+ // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
+ // other REL[A] sections created by linker itself.
+ if (!isa<SyntheticSection>(isec) &&
+ (isec->type == SHT_REL || isec->type == SHT_RELA)) {
+ auto *sec = cast<InputSection>(isec);
+ OutputSection *out = sec->getRelocatedSection()->getOutputSection();
+
+ if (out->relocationSection) {
+ out->relocationSection->recordSection(sec);
+ return nullptr;
+ }
+
+ out->relocationSection = createSection(isec, outsecName);
+ return out->relocationSection;
+ }
+
+ // The ELF spec just says
+ // ----------------------------------------------------------------
+ // In the first phase, input sections that match in name, type and
+ // attribute flags should be concatenated into single sections.
+ // ----------------------------------------------------------------
+ //
+ // However, it is clear that at least some flags have to be ignored for
+ // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
+ // ignored. We should not have two output .text sections just because one was
+ // in a group and another was not for example.
+ //
+ // It also seems that wording was a late addition and didn't get the
+ // necessary scrutiny.
+ //
+ // Merging sections with different flags is expected by some users. One
+ // reason is that if one file has
+ //
+ // int *const bar __attribute__((section(".foo"))) = (int *)0;
+ //
+ // gcc with -fPIC will produce a read only .foo section. But if another
+ // file has
+ //
+ // int zed;
+ // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
+ //
+ // gcc with -fPIC will produce a read write section.
+ //
+ // Last but not least, when using linker script the merge rules are forced by
+ // the script. Unfortunately, linker scripts are name based. This means that
+ // expressions like *(.foo*) can refer to multiple input sections with
+ // different flags. We cannot put them in different output sections or we
+ // would produce wrong results for
+ //
+ // start = .; *(.foo.*) end = .; *(.bar)
+ //
+ // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
+ // another. The problem is that there is no way to layout those output
+ // sections such that the .foo sections are the only thing between the start
+ // and end symbols.
+ //
+ // Given the above issues, we instead merge sections by name and error on
+ // incompatible types and flags.
+ TinyPtrVector<OutputSection *> &v = map[outsecName];
+ for (OutputSection *sec : v) {
+ if (sec->partition != isec->partition)
+ continue;
+
+ if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
+ // Merging two SHF_LINK_ORDER sections with different sh_link fields will
+ // change their semantics, so we only merge them in -r links if they will
+ // end up being linked to the same output section. The casts are fine
+ // because everything in the map was created by the orphan placement code.
+ auto *firstIsec = cast<InputSectionBase>(
+ cast<InputSectionDescription>(sec->sectionCommands[0])
+ ->sectionBases[0]);
+ if (firstIsec->getLinkOrderDep()->getOutputSection() !=
+ isec->getLinkOrderDep()->getOutputSection())
+ continue;
+ }
+
+ sec->recordSection(isec);
+ return nullptr;
+ }
+
+ OutputSection *sec = createSection(isec, outsecName);
+ v.push_back(sec);
+ return sec;
+}
+
+// Add sections that didn't match any sections command.
+void LinkerScript::addOrphanSections() {
+ StringMap<TinyPtrVector<OutputSection *>> map;
+ std::vector<OutputSection *> v;
+
+ std::function<void(InputSectionBase *)> add;
+ add = [&](InputSectionBase *s) {
+ if (s->isLive() && !s->parent) {
+ StringRef name = getOutputSectionName(s);
+
+ if (config->orphanHandling == OrphanHandlingPolicy::Error)
+ error(toString(s) + " is being placed in '" + name + "'");
+ else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
+ warn(toString(s) + " is being placed in '" + name + "'");
+
+ if (OutputSection *sec = findByName(sectionCommands, name)) {
+ sec->recordSection(s);
+ } else {
+ if (OutputSection *os = addInputSec(map, s, name))
+ v.push_back(os);
+ assert(isa<MergeInputSection>(s) ||
+ s->getOutputSection()->sectionIndex == UINT32_MAX);
+ }
+ }
+
+ if (config->relocatable)
+ for (InputSectionBase *depSec : s->dependentSections)
+ if (depSec->flags & SHF_LINK_ORDER)
+ add(depSec);
+ };
+
+ // For futher --emit-reloc handling code we need target output section
+ // to be created before we create relocation output section, so we want
+ // to create target sections first. We do not want priority handling
+ // for synthetic sections because them are special.
+ for (InputSectionBase *isec : inputSections) {
+ // In -r links, SHF_LINK_ORDER sections are added while adding their parent
+ // sections because we need to know the parent's output section before we
+ // can select an output section for the SHF_LINK_ORDER section.
+ if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
+ continue;
+
+ if (auto *sec = dyn_cast<InputSection>(isec))
+ if (InputSectionBase *rel = sec->getRelocatedSection())
+ if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
+ add(relIS);
+ add(isec);
+ }
+
+ // If no SECTIONS command was given, we should insert sections commands
+ // before others, so that we can handle scripts which refers them,
+ // for example: "foo = ABSOLUTE(ADDR(.text)));".
+ // When SECTIONS command is present we just add all orphans to the end.
+ if (hasSectionsCommand)
+ sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
+ else
+ sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
+}
+
+uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
+ bool isTbss =
+ (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
+ uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
+ start = alignTo(start, alignment);
+ uint64_t end = start + size;
+
+ if (isTbss)
+ ctx->threadBssOffset = end - dot;
+ else
+ dot = end;
+ return end;
+}
+
+void LinkerScript::output(InputSection *s) {
+ assert(ctx->outSec == s->getParent());
+ uint64_t before = advance(0, 1);
+ uint64_t pos = advance(s->getSize(), s->alignment);
+ s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
+
+ // Update output section size after adding each section. This is so that
+ // SIZEOF works correctly in the case below:
+ // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
+ expandOutputSection(pos - before);
+}
+
+void LinkerScript::switchTo(OutputSection *sec) {
+ ctx->outSec = sec;
+
+ uint64_t before = advance(0, 1);
+ ctx->outSec->addr = advance(0, ctx->outSec->alignment);
+ expandMemoryRegions(ctx->outSec->addr - before);
+}
+
+// This function searches for a memory region to place the given output
+// section in. If found, a pointer to the appropriate memory region is
+// returned. Otherwise, a nullptr is returned.
+MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
+ // If a memory region name was specified in the output section command,
+ // then try to find that region first.
+ if (!sec->memoryRegionName.empty()) {
+ if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
+ return m;
+ error("memory region '" + sec->memoryRegionName + "' not declared");
+ return nullptr;
+ }
+
+ // If at least one memory region is defined, all sections must
+ // belong to some memory region. Otherwise, we don't need to do
+ // anything for memory regions.
+ if (memoryRegions.empty())
+ return nullptr;
+
+ // See if a region can be found by matching section flags.
+ for (auto &pair : memoryRegions) {
+ MemoryRegion *m = pair.second;
+ if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
+ return m;
+ }
+
+ // Otherwise, no suitable region was found.
+ if (sec->flags & SHF_ALLOC)
+ error("no memory region specified for section '" + sec->name + "'");
+ return nullptr;
+}
+
+static OutputSection *findFirstSection(PhdrEntry *load) {
+ for (OutputSection *sec : outputSections)
+ if (sec->ptLoad == load)
+ return sec;
+ return nullptr;
+}
+
+// This function assigns offsets to input sections and an output section
+// for a single sections command (e.g. ".text { *(.text); }").
+void LinkerScript::assignOffsets(OutputSection *sec) {
+ if (!(sec->flags & SHF_ALLOC))
+ dot = 0;
+
+ ctx->memRegion = sec->memRegion;
+ ctx->lmaRegion = sec->lmaRegion;
+ if (ctx->memRegion)
+ dot = ctx->memRegion->curPos;
+
+ if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
+ setDot(sec->addrExpr, sec->location, false);
+
+ // If the address of the section has been moved forward by an explicit
+ // expression so that it now starts past the current curPos of the enclosing
+ // region, we need to expand the current region to account for the space
+ // between the previous section, if any, and the start of this section.
+ if (ctx->memRegion && ctx->memRegion->curPos < dot)
+ expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
+ ctx->memRegion->name, sec->name);
+
+ if (sec->lmaExpr)
+ ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
+
+ if (MemoryRegion *mr = sec->lmaRegion)
+ ctx->lmaOffset = mr->curPos - dot;
+
+ switchTo(sec);
+
+ // If neither AT nor AT> is specified for an allocatable section, the linker
+ // will set the LMA such that the difference between VMA and LMA for the
+ // section is the same as the preceding output section in the same region
+ // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
+ // This, however, should only be done by the first "non-header" section
+ // in the segment.
+ if (PhdrEntry *l = ctx->outSec->ptLoad)
+ if (sec == findFirstSection(l))
+ l->lmaOffset = ctx->lmaOffset;
+
+ // We can call this method multiple times during the creation of
+ // thunks and want to start over calculation each time.
+ sec->size = 0;
+
+ // We visited SectionsCommands from processSectionCommands to
+ // layout sections. Now, we visit SectionsCommands again to fix
+ // section offsets.
+ for (BaseCommand *base : sec->sectionCommands) {
+ // This handles the assignments to symbol or to the dot.
+ if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+ cmd->addr = dot;
+ assignSymbol(cmd, true);
+ cmd->size = dot - cmd->addr;
+ continue;
+ }
+
+ // Handle BYTE(), SHORT(), LONG(), or QUAD().
+ if (auto *cmd = dyn_cast<ByteCommand>(base)) {
+ cmd->offset = dot - ctx->outSec->addr;
+ dot += cmd->size;
+ expandOutputSection(cmd->size);
+ continue;
+ }
+
+ // Handle a single input section description command.
+ // It calculates and assigns the offsets for each section and also
+ // updates the output section size.
+ for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
+ output(sec);
+ }
+}
+
+static bool isDiscardable(OutputSection &sec) {
+ if (sec.name == "/DISCARD/")
+ return true;
+
+ // We do not remove empty sections that are explicitly
+ // assigned to any segment.
+ if (!sec.phdrs.empty())
+ return false;
+
+ // We do not want to remove OutputSections with expressions that reference
+ // symbols even if the OutputSection is empty. We want to ensure that the
+ // expressions can be evaluated and report an error if they cannot.
+ if (sec.expressionsUseSymbols)
+ return false;
+
+ // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
+ // as an empty Section can has a valid VMA and LMA we keep the OutputSection
+ // to maintain the integrity of the other Expression.
+ if (sec.usedInExpression)
+ return false;
+
+ for (BaseCommand *base : sec.sectionCommands) {
+ if (auto cmd = dyn_cast<SymbolAssignment>(base))
+ // Don't create empty output sections just for unreferenced PROVIDE
+ // symbols.
+ if (cmd->name != "." && !cmd->sym)
+ continue;
+
+ if (!isa<InputSectionDescription>(*base))
+ return false;
+ }
+ return true;
+}
+
+void LinkerScript::adjustSectionsBeforeSorting() {
+ // If the output section contains only symbol assignments, create a
+ // corresponding output section. The issue is what to do with linker script
+ // like ".foo : { symbol = 42; }". One option would be to convert it to
+ // "symbol = 42;". That is, move the symbol out of the empty section
+ // description. That seems to be what bfd does for this simple case. The
+ // problem is that this is not completely general. bfd will give up and
+ // create a dummy section too if there is a ". = . + 1" inside the section
+ // for example.
+ // Given that we want to create the section, we have to worry what impact
+ // it will have on the link. For example, if we just create a section with
+ // 0 for flags, it would change which PT_LOADs are created.
+ // We could remember that particular section is dummy and ignore it in
+ // other parts of the linker, but unfortunately there are quite a few places
+ // that would need to change:
+ // * The program header creation.
+ // * The orphan section placement.
+ // * The address assignment.
+ // The other option is to pick flags that minimize the impact the section
+ // will have on the rest of the linker. That is why we copy the flags from
+ // the previous sections. Only a few flags are needed to keep the impact low.
+ uint64_t flags = SHF_ALLOC;
+
+ for (BaseCommand *&cmd : sectionCommands) {
+ auto *sec = dyn_cast<OutputSection>(cmd);
+ if (!sec)
+ continue;
+
+ // Handle align (e.g. ".foo : ALIGN(16) { ... }").
+ if (sec->alignExpr)
+ sec->alignment =
+ std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
+
+ // The input section might have been removed (if it was an empty synthetic
+ // section), but we at least know the flags.
+ if (sec->hasInputSections)
+ flags = sec->flags;
+
+ // We do not want to keep any special flags for output section
+ // in case it is empty.
+ bool isEmpty = getInputSections(sec).empty();
+ if (isEmpty)
+ sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
+ SHF_WRITE | SHF_EXECINSTR);
+
+ if (isEmpty && isDiscardable(*sec)) {
+ sec->markDead();
+ cmd = nullptr;
+ }
+ }
+
+ // It is common practice to use very generic linker scripts. So for any
+ // given run some of the output sections in the script will be empty.
+ // We could create corresponding empty output sections, but that would
+ // clutter the output.
+ // We instead remove trivially empty sections. The bfd linker seems even
+ // more aggressive at removing them.
+ llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
+}
+
+void LinkerScript::adjustSectionsAfterSorting() {
+ // Try and find an appropriate memory region to assign offsets in.
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *sec = dyn_cast<OutputSection>(base)) {
+ if (!sec->lmaRegionName.empty()) {
+ if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
+ sec->lmaRegion = m;
+ else
+ error("memory region '" + sec->lmaRegionName + "' not declared");
+ }
+ sec->memRegion = findMemoryRegion(sec);
+ }
+ }
+
+ // If output section command doesn't specify any segments,
+ // and we haven't previously assigned any section to segment,
+ // then we simply assign section to the very first load segment.
+ // Below is an example of such linker script:
+ // PHDRS { seg PT_LOAD; }
+ // SECTIONS { .aaa : { *(.aaa) } }
+ std::vector<StringRef> defPhdrs;
+ auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
+ return cmd.type == PT_LOAD;
+ });
+ if (firstPtLoad != phdrsCommands.end())
+ defPhdrs.push_back(firstPtLoad->name);
+
+ // Walk the commands and propagate the program headers to commands that don't
+ // explicitly specify them.
+ for (BaseCommand *base : sectionCommands) {
+ auto *sec = dyn_cast<OutputSection>(base);
+ if (!sec)
+ continue;
+
+ if (sec->phdrs.empty()) {
+ // To match the bfd linker script behaviour, only propagate program
+ // headers to sections that are allocated.
+ if (sec->flags & SHF_ALLOC)
+ sec->phdrs = defPhdrs;
+ } else {
+ defPhdrs = sec->phdrs;
+ }
+ }
+}
+
+static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
+ // If there is no SECTIONS or if the linkerscript is explicit about program
+ // headers, do our best to allocate them.
+ if (!script->hasSectionsCommand || allocateHeaders)
+ return 0;
+ // Otherwise only allocate program headers if that would not add a page.
+ return alignDown(min, config->maxPageSize);
+}
+
+// When the SECTIONS command is used, try to find an address for the file and
+// program headers output sections, which can be added to the first PT_LOAD
+// segment when program headers are created.
+//
+// We check if the headers fit below the first allocated section. If there isn't
+// enough space for these sections, we'll remove them from the PT_LOAD segment,
+// and we'll also remove the PT_PHDR segment.
+void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
+ uint64_t min = std::numeric_limits<uint64_t>::max();
+ for (OutputSection *sec : outputSections)
+ if (sec->flags & SHF_ALLOC)
+ min = std::min<uint64_t>(min, sec->addr);
+
+ auto it = llvm::find_if(
+ phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
+ if (it == phdrs.end())
+ return;
+ PhdrEntry *firstPTLoad = *it;
+
+ bool hasExplicitHeaders =
+ llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
+ return cmd.hasPhdrs || cmd.hasFilehdr;
+ });
+ bool paged = !config->omagic && !config->nmagic;
+ uint64_t headerSize = getHeaderSize();
+ if ((paged || hasExplicitHeaders) &&
+ headerSize <= min - computeBase(min, hasExplicitHeaders)) {
+ min = alignDown(min - headerSize, config->maxPageSize);
+ Out::elfHeader->addr = min;
+ Out::programHeaders->addr = min + Out::elfHeader->size;
+ return;
+ }
+
+ // Error if we were explicitly asked to allocate headers.
+ if (hasExplicitHeaders)
+ error("could not allocate headers");
+
+ Out::elfHeader->ptLoad = nullptr;
+ Out::programHeaders->ptLoad = nullptr;
+ firstPTLoad->firstSec = findFirstSection(firstPTLoad);
+
+ llvm::erase_if(phdrs,
+ [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
+}
+
+LinkerScript::AddressState::AddressState() {
+ for (auto &mri : script->memoryRegions) {
+ MemoryRegion *mr = mri.second;
+ mr->curPos = mr->origin;
+ }
+}
+
+// Here we assign addresses as instructed by linker script SECTIONS
+// sub-commands. Doing that allows us to use final VA values, so here
+// we also handle rest commands like symbol assignments and ASSERTs.
+// Returns a symbol that has changed its section or value, or nullptr if no
+// symbol has changed.
+const Defined *LinkerScript::assignAddresses() {
+ if (script->hasSectionsCommand) {
+ // With a linker script, assignment of addresses to headers is covered by
+ // allocateHeaders().
+ dot = config->imageBase.getValueOr(0);
+ } else {
+ // Assign addresses to headers right now.
+ dot = target->getImageBase();
+ Out::elfHeader->addr = dot;
+ Out::programHeaders->addr = dot + Out::elfHeader->size;
+ dot += getHeaderSize();
+ }
+
+ auto deleter = std::make_unique<AddressState>();
+ ctx = deleter.get();
+ errorOnMissingSection = true;
+ switchTo(aether);
+
+ SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
+ for (BaseCommand *base : sectionCommands) {
+ if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
+ cmd->addr = dot;
+ assignSymbol(cmd, false);
+ cmd->size = dot - cmd->addr;
+ continue;
+ }
+ assignOffsets(cast<OutputSection>(base));
+ }
+
+ ctx = nullptr;
+ return getChangedSymbolAssignment(oldValues);
+}
+
+// Creates program headers as instructed by PHDRS linker script command.
+std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
+ std::vector<PhdrEntry *> ret;
+
+ // Process PHDRS and FILEHDR keywords because they are not
+ // real output sections and cannot be added in the following loop.
+ for (const PhdrsCommand &cmd : phdrsCommands) {
+ PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
+
+ if (cmd.hasFilehdr)
+ phdr->add(Out::elfHeader);
+ if (cmd.hasPhdrs)
+ phdr->add(Out::programHeaders);
+
+ if (cmd.lmaExpr) {
+ phdr->p_paddr = cmd.lmaExpr().getValue();
+ phdr->hasLMA = true;
+ }
+ ret.push_back(phdr);
+ }
+
+ // Add output sections to program headers.
+ for (OutputSection *sec : outputSections) {
+ // Assign headers specified by linker script
+ for (size_t id : getPhdrIndices(sec)) {
+ ret[id]->add(sec);
+ if (!phdrsCommands[id].flags.hasValue())
+ ret[id]->p_flags |= sec->getPhdrFlags();
+ }
+ }
+ return ret;
+}
+
+// Returns true if we should emit an .interp section.
+//
+// We usually do. But if PHDRS commands are given, and
+// no PT_INTERP is there, there's no place to emit an
+// .interp, so we don't do that in that case.
+bool LinkerScript::needsInterpSection() {
+ if (phdrsCommands.empty())
+ return true;
+ for (PhdrsCommand &cmd : phdrsCommands)
+ if (cmd.type == PT_INTERP)
+ return true;
+ return false;
+}
+
+ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
+ if (name == ".") {
+ if (ctx)
+ return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
+ error(loc + ": unable to get location counter value");
+ return 0;
+ }
+
+ if (Symbol *sym = symtab->find(name)) {
+ if (auto *ds = dyn_cast<Defined>(sym))
+ return {ds->section, false, ds->value, loc};
+ if (isa<SharedSymbol>(sym))
+ if (!errorOnMissingSection)
+ return {nullptr, false, 0, loc};
+ }
+
+ error(loc + ": symbol not found: " + name);
+ return 0;
+}
+
+// Returns the index of the segment named Name.
+static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
+ StringRef name) {
+ for (size_t i = 0; i < vec.size(); ++i)
+ if (vec[i].name == name)
+ return i;
+ return None;
+}
+
+// Returns indices of ELF headers containing specific section. Each index is a
+// zero based number of ELF header listed within PHDRS {} script block.
+std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
+ std::vector<size_t> ret;
+
+ for (StringRef s : cmd->phdrs) {
+ if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
+ ret.push_back(*idx);
+ else if (s != "NONE")
+ error(cmd->location + ": section header '" + s +
+ "' is not listed in PHDRS");
+ }
+ return ret;
+}
+
+} // namespace elf
+} // namespace lld