summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:33:06 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:33:06 +0000
commit061da546b983eb767bad15e67af1174fb0bcf31c (patch)
tree83c78b820819d70aa40c36d90447978b300078c5 /gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-061da546b983eb767bad15e67af1174fb0bcf31c.tar.xz
wireguard-openbsd-061da546b983eb767bad15e67af1174fb0bcf31c.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm')
-rw-r--r--gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp2189
-rw-r--r--gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h274
2 files changed, 2463 insertions, 0 deletions
diff --git a/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp b/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp
new file mode 100644
index 00000000000..45d05d6e0bd
--- /dev/null
+++ b/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp
@@ -0,0 +1,2189 @@
+//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Created by Greg Clayton on 6/25/07.
+//
+//===----------------------------------------------------------------------===//
+
+#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
+
+#include "MacOSX/arm/DNBArchImpl.h"
+#include "ARM_DWARF_Registers.h"
+#include "ARM_ehframe_Registers.h"
+#include "DNB.h"
+#include "DNBBreakpoint.h"
+#include "DNBLog.h"
+#include "DNBRegisterInfo.h"
+#include "MacOSX/MachProcess.h"
+#include "MacOSX/MachThread.h"
+
+#include <inttypes.h>
+#include <sys/sysctl.h>
+
+// BCR address match type
+#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
+#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
+#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
+#define BCR_M_RESERVED ((uint32_t)(3u << 21))
+
+// Link a BVR/BCR or WVR/WCR pair to another
+#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
+
+// Byte Address Select
+#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
+#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
+#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
+#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
+#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
+#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
+#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
+
+// Break only in privileged or user mode
+#define S_RSVD ((uint32_t)(0u << 1))
+#define S_PRIV ((uint32_t)(1u << 1))
+#define S_USER ((uint32_t)(2u << 1))
+#define S_PRIV_USER ((S_PRIV) | (S_USER))
+
+#define BCR_ENABLE ((uint32_t)(1u))
+#define WCR_ENABLE ((uint32_t)(1u))
+
+// Watchpoint load/store
+#define WCR_LOAD ((uint32_t)(1u << 3))
+#define WCR_STORE ((uint32_t)(1u << 4))
+
+// Definitions for the Debug Status and Control Register fields:
+// [5:2] => Method of debug entry
+//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
+// I'm seeing this, instead.
+#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
+
+// 0xE120BE70
+static const uint8_t g_arm_breakpoint_opcode[] = {0x70, 0xBE, 0x20, 0xE1};
+static const uint8_t g_thumb_breakpoint_opcode[] = {0x70, 0xBE};
+
+// A watchpoint may need to be implemented using two watchpoint registers.
+// e.g. watching an 8-byte region when the device can only watch 4-bytes.
+//
+// This stores the lo->hi mappings. It's safe to initialize to all 0's
+// since hi > lo and therefore LoHi[i] cannot be 0.
+static uint32_t LoHi[16] = {0};
+
+// ARM constants used during decoding
+#define REG_RD 0
+#define LDM_REGLIST 1
+#define PC_REG 15
+#define PC_REGLIST_BIT 0x8000
+
+// ARM conditions
+#define COND_EQ 0x0
+#define COND_NE 0x1
+#define COND_CS 0x2
+#define COND_HS 0x2
+#define COND_CC 0x3
+#define COND_LO 0x3
+#define COND_MI 0x4
+#define COND_PL 0x5
+#define COND_VS 0x6
+#define COND_VC 0x7
+#define COND_HI 0x8
+#define COND_LS 0x9
+#define COND_GE 0xA
+#define COND_LT 0xB
+#define COND_GT 0xC
+#define COND_LE 0xD
+#define COND_AL 0xE
+#define COND_UNCOND 0xF
+
+#define MASK_CPSR_T (1u << 5)
+#define MASK_CPSR_J (1u << 24)
+
+#define MNEMONIC_STRING_SIZE 32
+#define OPERAND_STRING_SIZE 128
+
+// Returns true if the first 16 bit opcode of a thumb instruction indicates
+// the instruction will be a 32 bit thumb opcode
+static bool IsThumb32Opcode(uint16_t opcode) {
+ if (((opcode & 0xE000) == 0xE000) && (opcode & 0x1800))
+ return true;
+ return false;
+}
+
+void DNBArchMachARM::Initialize() {
+ DNBArchPluginInfo arch_plugin_info = {
+ CPU_TYPE_ARM, DNBArchMachARM::Create, DNBArchMachARM::GetRegisterSetInfo,
+ DNBArchMachARM::SoftwareBreakpointOpcode};
+
+ // Register this arch plug-in with the main protocol class
+ DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
+}
+
+DNBArchProtocol *DNBArchMachARM::Create(MachThread *thread) {
+ DNBArchMachARM *obj = new DNBArchMachARM(thread);
+ return obj;
+}
+
+const uint8_t *DNBArchMachARM::SoftwareBreakpointOpcode(nub_size_t byte_size) {
+ switch (byte_size) {
+ case 2:
+ return g_thumb_breakpoint_opcode;
+ case 4:
+ return g_arm_breakpoint_opcode;
+ }
+ return NULL;
+}
+
+uint32_t DNBArchMachARM::GetCPUType() { return CPU_TYPE_ARM; }
+
+uint64_t DNBArchMachARM::GetPC(uint64_t failValue) {
+ // Get program counter
+ if (GetGPRState(false) == KERN_SUCCESS)
+ return m_state.context.gpr.__pc;
+ return failValue;
+}
+
+kern_return_t DNBArchMachARM::SetPC(uint64_t value) {
+ // Get program counter
+ kern_return_t err = GetGPRState(false);
+ if (err == KERN_SUCCESS) {
+ m_state.context.gpr.__pc = (uint32_t)value;
+ err = SetGPRState();
+ }
+ return err == KERN_SUCCESS;
+}
+
+uint64_t DNBArchMachARM::GetSP(uint64_t failValue) {
+ // Get stack pointer
+ if (GetGPRState(false) == KERN_SUCCESS)
+ return m_state.context.gpr.__sp;
+ return failValue;
+}
+
+kern_return_t DNBArchMachARM::GetGPRState(bool force) {
+ int set = e_regSetGPR;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
+ kern_return_t kret =
+ ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE,
+ (thread_state_t)&m_state.context.gpr, &count);
+ uint32_t *r = &m_state.context.gpr.__r[0];
+ DNBLogThreadedIf(
+ LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = "
+ "%u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x "
+ "r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x "
+ "r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
+ m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
+ kret, count, r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9],
+ r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t DNBArchMachARM::GetVFPState(bool force) {
+ int set = e_regSetVFP;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ kern_return_t kret;
+
+#if defined(__arm64__) || defined(__aarch64__)
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_NEON_STATE_COUNT;
+ kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
+ (thread_state_t)&m_state.context.vfp, &count);
+ if (DNBLogEnabledForAny(LOG_THREAD)) {
+ DNBLogThreaded(
+ "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
+ "\n q0 = 0x%16.16llx%16.16llx"
+ "\n q1 = 0x%16.16llx%16.16llx"
+ "\n q2 = 0x%16.16llx%16.16llx"
+ "\n q3 = 0x%16.16llx%16.16llx"
+ "\n q4 = 0x%16.16llx%16.16llx"
+ "\n q5 = 0x%16.16llx%16.16llx"
+ "\n q6 = 0x%16.16llx%16.16llx"
+ "\n q7 = 0x%16.16llx%16.16llx"
+ "\n q8 = 0x%16.16llx%16.16llx"
+ "\n q9 = 0x%16.16llx%16.16llx"
+ "\n q10 = 0x%16.16llx%16.16llx"
+ "\n q11 = 0x%16.16llx%16.16llx"
+ "\n q12 = 0x%16.16llx%16.16llx"
+ "\n q13 = 0x%16.16llx%16.16llx"
+ "\n q14 = 0x%16.16llx%16.16llx"
+ "\n q15 = 0x%16.16llx%16.16llx"
+ "\n fpsr = 0x%8.8x"
+ "\n fpcr = 0x%8.8x\n\n",
+ m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
+ count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[0])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[1])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[1])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[2])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[2])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[3])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[3])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[4])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[4])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[5])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[5])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[6])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[6])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[7])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[7])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[8])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[8])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[9])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[9])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[10])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[10])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[11])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[11])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[12])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[12])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[13])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[13])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[14])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[14])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[15])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[15])[1],
+ m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
+ }
+#else
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
+ kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
+ (thread_state_t)&m_state.context.vfp, &count);
+
+ if (DNBLogEnabledForAny(LOG_THREAD)) {
+ uint32_t *r = &m_state.context.vfp.__r[0];
+ DNBLogThreaded(
+ "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
+ m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
+ kret, count);
+ DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x "
+ "s5=%8.8x s6=%8.8x s7=%8.8x",
+ r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
+ DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
+ "s13=%8.8x s14=%8.8x s15=%8.8x",
+ r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
+ DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
+ "s21=%8.8x s22=%8.8x s23=%8.8x",
+ r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
+ DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
+ "s29=%8.8x s30=%8.8x s31=%8.8x",
+ r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
+ DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
+ "s37=%8.8x s38=%8.8x s39=%8.8x",
+ r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
+ DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
+ "s45=%8.8x s46=%8.8x s47=%8.8x",
+ r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
+ DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
+ "s53=%8.8x s54=%8.8x s55=%8.8x",
+ r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
+ DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
+ "s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
+ r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
+ r[64]);
+ }
+
+#endif
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+kern_return_t DNBArchMachARM::GetEXCState(bool force) {
+ int set = e_regSetEXC;
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+ // Read the registers from our thread
+ mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
+ kern_return_t kret =
+ ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
+ (thread_state_t)&m_state.context.exc, &count);
+ m_state.SetError(set, Read, kret);
+ return kret;
+}
+
+static void DumpDBGState(const DNBArchMachARM::DBG &dbg) {
+ uint32_t i = 0;
+ for (i = 0; i < 16; i++) {
+ DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
+ "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
+ i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
+ dbg.__wcr[i]);
+ }
+}
+
+kern_return_t DNBArchMachARM::GetDBGState(bool force) {
+ int set = e_regSetDBG;
+
+ // Check if we have valid cached registers
+ if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+ return KERN_SUCCESS;
+
+// Read the registers from our thread
+#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
+ mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT;
+ kern_return_t kret =
+ ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
+ (thread_state_t)&m_state.dbg, &count);
+#else
+ mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
+ kern_return_t kret =
+ ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
+ (thread_state_t)&m_state.dbg, &count);
+#endif
+ m_state.SetError(set, Read, kret);
+
+ return kret;
+}
+
+kern_return_t DNBArchMachARM::SetGPRState() {
+ int set = e_regSetGPR;
+ kern_return_t kret = ::thread_set_state(
+ m_thread->MachPortNumber(), ARM_THREAD_STATE,
+ (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
+ m_state.SetError(set, Write,
+ kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register
+ // state in case registers are read
+ // back differently
+ return kret; // Return the error code
+}
+
+kern_return_t DNBArchMachARM::SetVFPState() {
+ int set = e_regSetVFP;
+ kern_return_t kret;
+ mach_msg_type_number_t count;
+
+#if defined(__arm64__) || defined(__aarch64__)
+ count = ARM_NEON_STATE_COUNT;
+ kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
+ (thread_state_t)&m_state.context.vfp, count);
+#else
+ count = ARM_VFP_STATE_COUNT;
+ kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
+ (thread_state_t)&m_state.context.vfp, count);
+#endif
+
+#if defined(__arm64__) || defined(__aarch64__)
+ if (DNBLogEnabledForAny(LOG_THREAD)) {
+ DNBLogThreaded(
+ "thread_set_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
+ "\n q0 = 0x%16.16llx%16.16llx"
+ "\n q1 = 0x%16.16llx%16.16llx"
+ "\n q2 = 0x%16.16llx%16.16llx"
+ "\n q3 = 0x%16.16llx%16.16llx"
+ "\n q4 = 0x%16.16llx%16.16llx"
+ "\n q5 = 0x%16.16llx%16.16llx"
+ "\n q6 = 0x%16.16llx%16.16llx"
+ "\n q7 = 0x%16.16llx%16.16llx"
+ "\n q8 = 0x%16.16llx%16.16llx"
+ "\n q9 = 0x%16.16llx%16.16llx"
+ "\n q10 = 0x%16.16llx%16.16llx"
+ "\n q11 = 0x%16.16llx%16.16llx"
+ "\n q12 = 0x%16.16llx%16.16llx"
+ "\n q13 = 0x%16.16llx%16.16llx"
+ "\n q14 = 0x%16.16llx%16.16llx"
+ "\n q15 = 0x%16.16llx%16.16llx"
+ "\n fpsr = 0x%8.8x"
+ "\n fpcr = 0x%8.8x\n\n",
+ m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
+ count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[0])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[1])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[1])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[2])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[2])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[3])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[3])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[4])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[4])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[5])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[5])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[6])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[6])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[7])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[7])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[8])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[8])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[9])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[9])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[10])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[10])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[11])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[11])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[12])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[12])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[13])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[13])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[14])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[14])[1],
+ ((uint64_t *)&m_state.context.vfp.__v[15])[0],
+ ((uint64_t *)&m_state.context.vfp.__v[15])[1],
+ m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
+ }
+#else
+ if (DNBLogEnabledForAny(LOG_THREAD)) {
+ uint32_t *r = &m_state.context.vfp.__r[0];
+ DNBLogThreaded(
+ "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
+ m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
+ kret, count);
+ DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x "
+ "s5=%8.8x s6=%8.8x s7=%8.8x",
+ r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
+ DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
+ "s13=%8.8x s14=%8.8x s15=%8.8x",
+ r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
+ DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
+ "s21=%8.8x s22=%8.8x s23=%8.8x",
+ r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
+ DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
+ "s29=%8.8x s30=%8.8x s31=%8.8x",
+ r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
+ DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
+ "s37=%8.8x s38=%8.8x s39=%8.8x",
+ r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
+ DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
+ "s45=%8.8x s46=%8.8x s47=%8.8x",
+ r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
+ DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
+ "s53=%8.8x s54=%8.8x s55=%8.8x",
+ r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
+ DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
+ "s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
+ r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
+ r[64]);
+ }
+#endif
+
+ m_state.SetError(set, Write,
+ kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register
+ // state in case registers are read
+ // back differently
+ return kret; // Return the error code
+}
+
+kern_return_t DNBArchMachARM::SetEXCState() {
+ int set = e_regSetEXC;
+ kern_return_t kret = ::thread_set_state(
+ m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
+ (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
+ m_state.SetError(set, Write,
+ kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register
+ // state in case registers are read
+ // back differently
+ return kret; // Return the error code
+}
+
+kern_return_t DNBArchMachARM::SetDBGState(bool also_set_on_task) {
+ int set = e_regSetDBG;
+#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
+ kern_return_t kret =
+ ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
+ (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
+ if (also_set_on_task) {
+ kern_return_t task_kret = ::task_set_state(
+ m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32,
+ (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
+ if (task_kret != KERN_SUCCESS)
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
+ "set debug control register state: "
+ "0x%8.8x.",
+ kret);
+ }
+#else
+ kern_return_t kret =
+ ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
+ (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
+ if (also_set_on_task) {
+ kern_return_t task_kret = ::task_set_state(
+ m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE,
+ (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
+ if (task_kret != KERN_SUCCESS)
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
+ "set debug control register state: "
+ "0x%8.8x.",
+ kret);
+ }
+#endif
+
+ m_state.SetError(set, Write,
+ kret); // Set the current write error for this register set
+ m_state.InvalidateRegisterSetState(set); // Invalidate the current register
+ // state in case registers are read
+ // back differently
+ return kret; // Return the error code
+}
+
+void DNBArchMachARM::ThreadWillResume() {
+ // Do we need to step this thread? If so, let the mach thread tell us so.
+ if (m_thread->IsStepping()) {
+ // This is the primary thread, let the arch do anything it needs
+ if (NumSupportedHardwareBreakpoints() > 0) {
+ if (EnableHardwareSingleStep(true) != KERN_SUCCESS) {
+ DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable "
+ "hardware single step");
+ }
+ }
+ }
+
+ // Disable the triggered watchpoint temporarily before we resume.
+ // Plus, we try to enable hardware single step to execute past the instruction
+ // which triggered our watchpoint.
+ if (m_watchpoint_did_occur) {
+ if (m_watchpoint_hw_index >= 0) {
+ kern_return_t kret = GetDBGState(false);
+ if (kret == KERN_SUCCESS &&
+ !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
+ // The watchpoint might have been disabled by the user. We don't need
+ // to do anything at all
+ // to enable hardware single stepping.
+ m_watchpoint_did_occur = false;
+ m_watchpoint_hw_index = -1;
+ return;
+ }
+
+ DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
+ "DisableHardwareWatchpoint(%d) called",
+ m_watchpoint_hw_index);
+
+ // Enable hardware single step to move past the watchpoint-triggering
+ // instruction.
+ m_watchpoint_resume_single_step_enabled =
+ (EnableHardwareSingleStep(true) == KERN_SUCCESS);
+
+ // If we are not able to enable single step to move past the
+ // watchpoint-triggering instruction,
+ // at least we should reset the two watchpoint member variables so that
+ // the next time around
+ // this callback function is invoked, the enclosing logical branch is
+ // skipped.
+ if (!m_watchpoint_resume_single_step_enabled) {
+ // Reset the two watchpoint member variables.
+ m_watchpoint_did_occur = false;
+ m_watchpoint_hw_index = -1;
+ DNBLogThreadedIf(
+ LOG_WATCHPOINTS,
+ "DNBArchMachARM::ThreadWillResume() failed to enable single step");
+ } else
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
+ "succeeded to enable single step");
+ }
+ }
+}
+
+bool DNBArchMachARM::ThreadDidStop() {
+ bool success = true;
+
+ m_state.InvalidateRegisterSetState(e_regSetALL);
+
+ if (m_watchpoint_resume_single_step_enabled) {
+ // Great! We now disable the hardware single step as well as re-enable the
+ // hardware watchpoint.
+ // See also ThreadWillResume().
+ if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
+ if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
+ ReenableHardwareWatchpoint(m_watchpoint_hw_index);
+ m_watchpoint_resume_single_step_enabled = false;
+ m_watchpoint_did_occur = false;
+ m_watchpoint_hw_index = -1;
+ } else {
+ DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
+ "is true but (m_watchpoint_did_occur && "
+ "m_watchpoint_hw_index >= 0) does not hold!");
+ }
+ } else {
+ DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
+ "is true but unable to disable single step!");
+ }
+ }
+
+ // Are we stepping a single instruction?
+ if (GetGPRState(true) == KERN_SUCCESS) {
+ // We are single stepping, was this the primary thread?
+ if (m_thread->IsStepping()) {
+ success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
+ } else {
+ // The MachThread will automatically restore the suspend count
+ // in ThreadDidStop(), so we don't need to do anything here if
+ // we weren't the primary thread the last time
+ }
+ }
+ return success;
+}
+
+bool DNBArchMachARM::NotifyException(MachException::Data &exc) {
+ switch (exc.exc_type) {
+ default:
+ break;
+ case EXC_BREAKPOINT:
+ if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
+ // The data break address is passed as exc_data[1].
+ nub_addr_t addr = exc.exc_data[1];
+ // Find the hardware index with the side effect of possibly massaging the
+ // addr to return the starting address as seen from the debugger side.
+ uint32_t hw_index = GetHardwareWatchpointHit(addr);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
+ "watchpoint %d was hit on address "
+ "0x%llx",
+ hw_index, (uint64_t)addr);
+ const int num_watchpoints = NumSupportedHardwareWatchpoints();
+ for (int i = 0; i < num_watchpoints; i++) {
+ if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
+ GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
+ addr = GetWatchpointAddressByIndex(i);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
+ "It is a linked watchpoint; "
+ "rewritten to index %d addr 0x%llx",
+ LoHi[i], (uint64_t)addr);
+ }
+ }
+ if (hw_index != INVALID_NUB_HW_INDEX) {
+ m_watchpoint_did_occur = true;
+ m_watchpoint_hw_index = hw_index;
+ exc.exc_data[1] = addr;
+ // Piggyback the hw_index in the exc.data.
+ exc.exc_data.push_back(hw_index);
+ }
+
+ return true;
+ }
+ break;
+ }
+ return false;
+}
+
+bool DNBArchMachARM::StepNotComplete() {
+ if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS) {
+ kern_return_t kret = KERN_INVALID_ARGUMENT;
+ kret = GetGPRState(false);
+ if (kret == KERN_SUCCESS) {
+ if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr) {
+ DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx",
+ (uint64_t)m_hw_single_chained_step_addr);
+ return true;
+ }
+ }
+ }
+
+ m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
+ return false;
+}
+
+// Set the single step bit in the processor status register.
+kern_return_t DNBArchMachARM::EnableHardwareSingleStep(bool enable) {
+ DNBError err;
+ DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
+
+ err = GetGPRState(false);
+
+ if (err.Fail()) {
+ err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
+ return err.Status();
+ }
+
+ err = GetDBGState(false);
+
+ if (err.Fail()) {
+ err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
+ return err.Status();
+ }
+
+// The use of __arm64__ here is not ideal. If debugserver is running on
+// an armv8 device, regardless of whether it was built for arch arm or arch
+// arm64,
+// it needs to use the MDSCR_EL1 SS bit to single instruction step.
+
+#if defined(__arm64__) || defined(__aarch64__)
+ if (enable) {
+ DNBLogThreadedIf(LOG_STEP,
+ "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
+ __FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
+ m_state.dbg.__mdscr_el1 |=
+ 1; // Set bit 0 (single step, SS) in the MDSCR_EL1.
+ } else {
+ DNBLogThreadedIf(LOG_STEP,
+ "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
+ __FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
+ m_state.dbg.__mdscr_el1 &=
+ ~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1.
+ }
+#else
+ const uint32_t i = 0;
+ if (enable) {
+ m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
+
+ // Save our previous state
+ m_dbg_save = m_state.dbg;
+ // Set a breakpoint that will stop when the PC doesn't match the current
+ // one!
+ m_state.dbg.__bvr[i] =
+ m_state.context.gpr.__pc &
+ 0xFFFFFFFCu; // Set the current PC as the breakpoint address
+ m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
+ S_USER | // Stop only in user mode
+ BCR_ENABLE; // Enable this breakpoint
+ if (m_state.context.gpr.__cpsr & 0x20) {
+ // Thumb breakpoint
+ if (m_state.context.gpr.__pc & 2)
+ m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
+ else
+ m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
+
+ uint16_t opcode;
+ if (sizeof(opcode) ==
+ m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc,
+ sizeof(opcode), &opcode)) {
+ if (IsThumb32Opcode(opcode)) {
+ // 32 bit thumb opcode...
+ if (m_state.context.gpr.__pc & 2) {
+ // We can't take care of a 32 bit thumb instruction single step
+ // with just IVA mismatching. We will need to chain an extra
+ // hardware single step in order to complete this single step...
+ m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
+ } else {
+ // Extend the number of bits to ignore for the mismatch
+ m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
+ }
+ }
+ }
+ } else {
+ // ARM breakpoint
+ m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
+ }
+
+ DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__,
+ i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
+
+ for (uint32_t j = i + 1; j < 16; ++j) {
+ // Disable all others
+ m_state.dbg.__bvr[j] = 0;
+ m_state.dbg.__bcr[j] = 0;
+ }
+ } else {
+ // Just restore the state we had before we did single stepping
+ m_state.dbg = m_dbg_save;
+ }
+#endif
+
+ return SetDBGState(false);
+}
+
+// return 1 if bit "BIT" is set in "value"
+static inline uint32_t bit(uint32_t value, uint32_t bit) {
+ return (value >> bit) & 1u;
+}
+
+// return the bitfield "value[msbit:lsbit]".
+static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit) {
+ assert(msbit >= lsbit);
+ uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
+ value <<=
+ shift_left; // shift anything above the msbit off of the unsigned edge
+ value >>= (shift_left + lsbit); // shift it back again down to the lsbit
+ // (including undoing any shift from above)
+ return value; // return our result
+}
+
+bool DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr) {
+ uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
+ uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
+ uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
+ uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
+
+ switch (condition) {
+ case COND_EQ: // (0x0)
+ if (cpsr_z == 1)
+ return true;
+ break;
+ case COND_NE: // (0x1)
+ if (cpsr_z == 0)
+ return true;
+ break;
+ case COND_CS: // (0x2)
+ if (cpsr_c == 1)
+ return true;
+ break;
+ case COND_CC: // (0x3)
+ if (cpsr_c == 0)
+ return true;
+ break;
+ case COND_MI: // (0x4)
+ if (cpsr_n == 1)
+ return true;
+ break;
+ case COND_PL: // (0x5)
+ if (cpsr_n == 0)
+ return true;
+ break;
+ case COND_VS: // (0x6)
+ if (cpsr_v == 1)
+ return true;
+ break;
+ case COND_VC: // (0x7)
+ if (cpsr_v == 0)
+ return true;
+ break;
+ case COND_HI: // (0x8)
+ if ((cpsr_c == 1) && (cpsr_z == 0))
+ return true;
+ break;
+ case COND_LS: // (0x9)
+ if ((cpsr_c == 0) || (cpsr_z == 1))
+ return true;
+ break;
+ case COND_GE: // (0xA)
+ if (cpsr_n == cpsr_v)
+ return true;
+ break;
+ case COND_LT: // (0xB)
+ if (cpsr_n != cpsr_v)
+ return true;
+ break;
+ case COND_GT: // (0xC)
+ if ((cpsr_z == 0) && (cpsr_n == cpsr_v))
+ return true;
+ break;
+ case COND_LE: // (0xD)
+ if ((cpsr_z == 1) || (cpsr_n != cpsr_v))
+ return true;
+ break;
+ default:
+ return true;
+ break;
+ }
+
+ return false;
+}
+
+uint32_t DNBArchMachARM::NumSupportedHardwareBreakpoints() {
+ // Set the init value to something that will let us know that we need to
+ // autodetect how many breakpoints are supported dynamically...
+ static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
+ if (g_num_supported_hw_breakpoints == UINT_MAX) {
+ // Set this to zero in case we can't tell if there are any HW breakpoints
+ g_num_supported_hw_breakpoints = 0;
+
+ size_t len;
+ uint32_t n = 0;
+ len = sizeof(n);
+ if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) {
+ g_num_supported_hw_breakpoints = n;
+ DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
+ } else {
+#if !defined(__arm64__) && !defined(__aarch64__)
+ // Read the DBGDIDR to get the number of available hardware breakpoints
+ // However, in some of our current armv7 processors, hardware
+ // breakpoints/watchpoints were not properly connected. So detect those
+ // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
+ // field to distinguish CPU architectures. This is a hack until we can
+ // get <rdar://problem/6372672> fixed, at which point we will switch to
+ // using a different sysctl string that will tell us how many BRPs
+ // are available to us directly without having to read DBGDIDR.
+ uint32_t register_DBGDIDR;
+
+ asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
+ uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
+ // Zero is reserved for the BRP count, so don't increment it if it is zero
+ if (numBRPs > 0)
+ numBRPs++;
+ DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)",
+ register_DBGDIDR, numBRPs);
+
+ if (numBRPs > 0) {
+ uint32_t cpusubtype;
+ len = sizeof(cpusubtype);
+ // TODO: remove this hack and change to using hw.optional.xx when
+ // implmented
+ if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
+ DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
+ if (cpusubtype == CPU_SUBTYPE_ARM_V7)
+ DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for "
+ "armv7 (rdar://problem/6372672)");
+ else
+ g_num_supported_hw_breakpoints = numBRPs;
+ }
+ }
+#endif
+ }
+ }
+ return g_num_supported_hw_breakpoints;
+}
+
+uint32_t DNBArchMachARM::NumSupportedHardwareWatchpoints() {
+ // Set the init value to something that will let us know that we need to
+ // autodetect how many watchpoints are supported dynamically...
+ static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
+ if (g_num_supported_hw_watchpoints == UINT_MAX) {
+ // Set this to zero in case we can't tell if there are any HW breakpoints
+ g_num_supported_hw_watchpoints = 0;
+
+ size_t len;
+ uint32_t n = 0;
+ len = sizeof(n);
+ if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
+ g_num_supported_hw_watchpoints = n;
+ DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
+ } else {
+#if !defined(__arm64__) && !defined(__aarch64__)
+ // Read the DBGDIDR to get the number of available hardware breakpoints
+ // However, in some of our current armv7 processors, hardware
+ // breakpoints/watchpoints were not properly connected. So detect those
+ // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
+ // field to distinguish CPU architectures. This is a hack until we can
+ // get <rdar://problem/6372672> fixed, at which point we will switch to
+ // using a different sysctl string that will tell us how many WRPs
+ // are available to us directly without having to read DBGDIDR.
+
+ uint32_t register_DBGDIDR;
+ asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
+ uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
+ DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)",
+ register_DBGDIDR, numWRPs);
+
+ if (numWRPs > 0) {
+ uint32_t cpusubtype;
+ size_t len;
+ len = sizeof(cpusubtype);
+ // TODO: remove this hack and change to using hw.optional.xx when
+ // implmented
+ if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
+ DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
+
+ if (cpusubtype == CPU_SUBTYPE_ARM_V7)
+ DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for "
+ "armv7 (rdar://problem/6372672)");
+ else
+ g_num_supported_hw_watchpoints = numWRPs;
+ }
+ }
+#endif
+ }
+ }
+ return g_num_supported_hw_watchpoints;
+}
+
+uint32_t DNBArchMachARM::EnableHardwareBreakpoint(nub_addr_t addr,
+ nub_size_t size) {
+ // Make sure our address isn't bogus
+ if (addr & 1)
+ return INVALID_NUB_HW_INDEX;
+
+ kern_return_t kret = GetDBGState(false);
+
+ if (kret == KERN_SUCCESS) {
+ const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
+ uint32_t i;
+ for (i = 0; i < num_hw_breakpoints; ++i) {
+ if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
+ break; // We found an available hw breakpoint slot (in i)
+ }
+
+ // See if we found an available hw breakpoint slot above
+ if (i < num_hw_breakpoints) {
+ // Make sure bits 1:0 are clear in our address
+ m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
+
+ if (size == 2 || addr & 2) {
+ uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
+
+ // We have a thumb breakpoint
+ // We have an ARM breakpoint
+ m_state.dbg.__bcr[i] =
+ BCR_M_IMVA_MATCH | // Stop on address mismatch
+ byte_addr_select | // Set the correct byte address select so we only
+ // trigger on the correct opcode
+ S_USER | // Which modes should this breakpoint stop in?
+ BCR_ENABLE; // Enable this hardware breakpoint
+ DNBLogThreadedIf(LOG_BREAKPOINTS,
+ "DNBArchMachARM::EnableHardwareBreakpoint( addr = "
+ "0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
+ "0x%8.8x (Thumb)",
+ (uint64_t)addr, (uint64_t)size, i, i,
+ m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
+ } else if (size == 4) {
+ // We have an ARM breakpoint
+ m_state.dbg.__bcr[i] =
+ BCR_M_IMVA_MATCH | // Stop on address mismatch
+ BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
+ S_USER | // Which modes should this breakpoint stop in?
+ BCR_ENABLE; // Enable this hardware breakpoint
+ DNBLogThreadedIf(LOG_BREAKPOINTS,
+ "DNBArchMachARM::EnableHardwareBreakpoint( addr = "
+ "0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
+ "0x%8.8x (ARM)",
+ (uint64_t)addr, (uint64_t)size, i, i,
+ m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
+ }
+
+ kret = SetDBGState(false);
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::"
+ "EnableHardwareBreakpoint() "
+ "SetDBGState() => 0x%8.8x.",
+ kret);
+
+ if (kret == KERN_SUCCESS)
+ return i;
+ } else {
+ DNBLogThreadedIf(LOG_BREAKPOINTS,
+ "DNBArchMachARM::EnableHardwareBreakpoint(addr = "
+ "0x%8.8llx, size = %llu) => all hardware breakpoint "
+ "resources are being used.",
+ (uint64_t)addr, (uint64_t)size);
+ }
+ }
+
+ return INVALID_NUB_HW_INDEX;
+}
+
+bool DNBArchMachARM::DisableHardwareBreakpoint(uint32_t hw_index) {
+ kern_return_t kret = GetDBGState(false);
+
+ const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
+ if (kret == KERN_SUCCESS) {
+ if (hw_index < num_hw_points) {
+ m_state.dbg.__bcr[hw_index] = 0;
+ DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint("
+ " %u ) - BVR%u = 0x%8.8x BCR%u = "
+ "0x%8.8x",
+ hw_index, hw_index, m_state.dbg.__bvr[hw_index],
+ hw_index, m_state.dbg.__bcr[hw_index]);
+
+ kret = SetDBGState(false);
+
+ if (kret == KERN_SUCCESS)
+ return true;
+ }
+ }
+ return false;
+}
+
+// ARM v7 watchpoints may be either word-size or double-word-size.
+// It's implementation defined which they can handle. It looks like on an
+// armv8 device, armv7 processes can watch dwords. But on a genuine armv7
+// device I tried, only word watchpoints are supported.
+
+#if defined(__arm64__) || defined(__aarch64__)
+#define WATCHPOINTS_ARE_DWORD 1
+#else
+#undef WATCHPOINTS_ARE_DWORD
+#endif
+
+uint32_t DNBArchMachARM::EnableHardwareWatchpoint(nub_addr_t addr,
+ nub_size_t size, bool read,
+ bool write,
+ bool also_set_on_task) {
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint("
+ "addr = 0x%8.8llx, size = %zu, read = %u, "
+ "write = %u)",
+ (uint64_t)addr, size, read, write);
+
+ const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
+
+ // Can't watch zero bytes
+ if (size == 0)
+ return INVALID_NUB_HW_INDEX;
+
+ // We must watch for either read or write
+ if (read == false && write == false)
+ return INVALID_NUB_HW_INDEX;
+
+ // Otherwise, can't watch more than 8 bytes per WVR/WCR pair
+ if (size > 8)
+ return INVALID_NUB_HW_INDEX;
+
+// Treat arm watchpoints as having an 8-byte alignment requirement. You can put
+// a watchpoint on a 4-byte
+// offset address but you can only watch 4 bytes with that watchpoint.
+
+// arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes
+// in that
+// 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd
+// byte, etc, or any
+// combination therein by setting the bits in the BAS [12:5] (Byte Address
+// Select) field of
+// the DBGWCRn_EL1 reg for the watchpoint.
+
+// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to
+// monitor a larger region
+// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield
+// then selects a larger
+// range of bytes, instead of individual bytes. See the ARMv8 Debug
+// Architecture manual for details.
+// This implementation does not currently use the MASK bits; the largest single
+// region watched by a single
+// watchpoint right now is 8-bytes.
+
+#if defined(WATCHPOINTS_ARE_DWORD)
+ nub_addr_t aligned_wp_address = addr & ~0x7;
+ uint32_t addr_dword_offset = addr & 0x7;
+ const int max_watchpoint_size = 8;
+#else
+ nub_addr_t aligned_wp_address = addr & ~0x3;
+ uint32_t addr_dword_offset = addr & 0x3;
+ const int max_watchpoint_size = 4;
+#endif
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint "
+ "aligned_wp_address is 0x%llx and "
+ "addr_dword_offset is 0x%x",
+ (uint64_t)aligned_wp_address, addr_dword_offset);
+
+ // Do we need to split up this logical watchpoint into two hardware watchpoint
+ // registers?
+ // e.g. a watchpoint of length 4 on address 6. We need do this with
+ // one watchpoint on address 0 with bytes 6 & 7 being monitored
+ // one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
+
+ if (addr_dword_offset + size > max_watchpoint_size) {
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
+ "EnableHardwareWatchpoint(addr = "
+ "0x%8.8llx, size = %zu) needs two "
+ "hardware watchpoints slots to monitor",
+ (uint64_t)addr, size);
+ int low_watchpoint_size = max_watchpoint_size - addr_dword_offset;
+ int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size;
+
+ uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read,
+ write, also_set_on_task);
+ if (lo == INVALID_NUB_HW_INDEX)
+ return INVALID_NUB_HW_INDEX;
+ uint32_t hi = EnableHardwareWatchpoint(
+ aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read,
+ write, also_set_on_task);
+ if (hi == INVALID_NUB_HW_INDEX) {
+ DisableHardwareWatchpoint(lo, also_set_on_task);
+ return INVALID_NUB_HW_INDEX;
+ }
+ // Tag this lo->hi mapping in our database.
+ LoHi[lo] = hi;
+ return lo;
+ }
+
+ // At this point
+ // 1 aligned_wp_address is the requested address rounded down to 8-byte
+ // alignment
+ // 2 addr_dword_offset is the offset into that double word (8-byte) region
+ // that we are watching
+ // 3 size is the number of bytes within that 8-byte region that we are
+ // watching
+
+ // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
+ // above.
+ // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
+ // etc, up to 0b11111111 for 8.
+ // then we shift those bits left by the offset into this dword that we are
+ // interested in.
+ // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
+ // 0b11110000.
+ uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
+
+ // Read the debug state
+ kern_return_t kret = GetDBGState(true);
+
+ if (kret == KERN_SUCCESS) {
+ // Check to make sure we have the needed hardware support
+ uint32_t i = 0;
+
+ for (i = 0; i < num_hw_watchpoints; ++i) {
+ if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
+ break; // We found an available hw watchpoint slot (in i)
+ }
+
+ // See if we found an available hw watchpoint slot above
+ if (i < num_hw_watchpoints) {
+ // DumpDBGState(m_state.dbg);
+
+ // Clear any previous LoHi joined-watchpoint that may have been in use
+ LoHi[i] = 0;
+
+ // shift our Byte Address Select bits up to the correct bit range for the
+ // DBGWCRn_EL1
+ byte_address_select = byte_address_select << 5;
+
+ // Make sure bits 1:0 are clear in our address
+ m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
+ m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
+ // the DVA that we will watch
+ S_USER | // Stop only in user mode
+ (read ? WCR_LOAD : 0) | // Stop on read access?
+ (write ? WCR_STORE : 0) | // Stop on write access?
+ WCR_ENABLE; // Enable this watchpoint;
+
+ DNBLogThreadedIf(
+ LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding "
+ "watchpoint on address 0x%llx with control register "
+ "value 0x%x",
+ (uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]);
+
+ // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
+ // automatically, don't need to do it here.
+
+ kret = SetDBGState(also_set_on_task);
+ // DumpDBGState(m_state.dbg);
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
+ "EnableHardwareWatchpoint() "
+ "SetDBGState() => 0x%8.8x.",
+ kret);
+
+ if (kret == KERN_SUCCESS)
+ return i;
+ } else {
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
+ "EnableHardwareWatchpoint(): All "
+ "hardware resources (%u) are in use.",
+ num_hw_watchpoints);
+ }
+ }
+ return INVALID_NUB_HW_INDEX;
+}
+
+bool DNBArchMachARM::ReenableHardwareWatchpoint(uint32_t hw_index) {
+ // If this logical watchpoint # is actually implemented using
+ // two hardware watchpoint registers, re-enable both of them.
+
+ if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
+ return ReenableHardwareWatchpoint_helper(hw_index) &&
+ ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
+ } else {
+ return ReenableHardwareWatchpoint_helper(hw_index);
+ }
+}
+
+bool DNBArchMachARM::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
+ kern_return_t kret = GetDBGState(false);
+ if (kret != KERN_SUCCESS)
+ return false;
+ const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
+ if (hw_index >= num_hw_points)
+ return false;
+
+ m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
+ m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
+
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( "
+ "%u ) - WVR%u = 0x%8.8llx WCR%u = "
+ "0x%8.8llx",
+ hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
+ hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
+
+ // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
+ // automatically, don't need to do it here.
+
+ kret = SetDBGState(false);
+
+ return (kret == KERN_SUCCESS);
+}
+
+bool DNBArchMachARM::DisableHardwareWatchpoint(uint32_t hw_index,
+ bool also_set_on_task) {
+ if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
+ return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
+ DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
+ } else {
+ return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
+ }
+}
+
+bool DNBArchMachARM::DisableHardwareWatchpoint_helper(uint32_t hw_index,
+ bool also_set_on_task) {
+ kern_return_t kret = GetDBGState(false);
+ if (kret != KERN_SUCCESS)
+ return false;
+
+ const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
+ if (hw_index >= num_hw_points)
+ return false;
+
+ m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
+ m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
+
+ m_state.dbg.__wvr[hw_index] = 0;
+ m_state.dbg.__wcr[hw_index] = 0;
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint("
+ " %u ) - WVR%u = 0x%8.8llx WCR%u = "
+ "0x%8.8llx",
+ hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
+ hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
+
+ kret = SetDBGState(also_set_on_task);
+
+ return (kret == KERN_SUCCESS);
+}
+
+// Returns -1 if the trailing bit patterns are not one of:
+// { 0b???1, 0b??10, 0b?100, 0b1000 }.
+static inline int32_t LowestBitSet(uint32_t val) {
+ for (unsigned i = 0; i < 4; ++i) {
+ if (bit(val, i))
+ return i;
+ }
+ return -1;
+}
+
+// Iterate through the debug registers; return the index of the first watchpoint
+// whose address matches.
+// As a side effect, the starting address as understood by the debugger is
+// returned which could be
+// different from 'addr' passed as an in/out argument.
+uint32_t DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr) {
+ // Read the debug state
+ kern_return_t kret = GetDBGState(true);
+ // DumpDBGState(m_state.dbg);
+ DNBLogThreadedIf(
+ LOG_WATCHPOINTS,
+ "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
+ kret);
+ DNBLogThreadedIf(LOG_WATCHPOINTS,
+ "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx",
+ (uint64_t)addr);
+
+// This is the watchpoint value to match against, i.e., word address.
+#if defined(WATCHPOINTS_ARE_DWORD)
+ nub_addr_t wp_val = addr & ~((nub_addr_t)7);
+#else
+ nub_addr_t wp_val = addr & ~((nub_addr_t)3);
+#endif
+ if (kret == KERN_SUCCESS) {
+ DBG &debug_state = m_state.dbg;
+ uint32_t i, num = NumSupportedHardwareWatchpoints();
+ for (i = 0; i < num; ++i) {
+ nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
+ DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
+ "GetHardwareWatchpointHit() slot: %u "
+ "(addr = 0x%llx).",
+ i, (uint64_t)wp_addr);
+ if (wp_val == wp_addr) {
+#if defined(WATCHPOINTS_ARE_DWORD)
+ uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
+#else
+ uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
+#endif
+
+ // Sanity check the byte_mask, first.
+ if (LowestBitSet(byte_mask) < 0)
+ continue;
+
+ // Compute the starting address (from the point of view of the
+ // debugger).
+ addr = wp_addr + LowestBitSet(byte_mask);
+ return i;
+ }
+ }
+ }
+ return INVALID_NUB_HW_INDEX;
+}
+
+nub_addr_t DNBArchMachARM::GetWatchpointAddressByIndex(uint32_t hw_index) {
+ kern_return_t kret = GetDBGState(true);
+ if (kret != KERN_SUCCESS)
+ return INVALID_NUB_ADDRESS;
+ const uint32_t num = NumSupportedHardwareWatchpoints();
+ if (hw_index >= num)
+ return INVALID_NUB_ADDRESS;
+ if (IsWatchpointEnabled(m_state.dbg, hw_index))
+ return GetWatchAddress(m_state.dbg, hw_index);
+ return INVALID_NUB_ADDRESS;
+}
+
+bool DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state,
+ uint32_t hw_index) {
+ // Watchpoint Control Registers, bitfield definitions
+ // ...
+ // Bits Value Description
+ // [0] 0 Watchpoint disabled
+ // 1 Watchpoint enabled.
+ return (debug_state.__wcr[hw_index] & 1u);
+}
+
+nub_addr_t DNBArchMachARM::GetWatchAddress(const DBG &debug_state,
+ uint32_t hw_index) {
+ // Watchpoint Value Registers, bitfield definitions
+ // Bits Description
+ // [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
+ // [1:0] RAZ/SBZP
+ return bits(debug_state.__wvr[hw_index], 31, 0);
+}
+
+// Register information definitions for 32 bit ARMV7.
+enum gpr_regnums {
+ gpr_r0 = 0,
+ gpr_r1,
+ gpr_r2,
+ gpr_r3,
+ gpr_r4,
+ gpr_r5,
+ gpr_r6,
+ gpr_r7,
+ gpr_r8,
+ gpr_r9,
+ gpr_r10,
+ gpr_r11,
+ gpr_r12,
+ gpr_sp,
+ gpr_lr,
+ gpr_pc,
+ gpr_cpsr
+};
+
+enum {
+ vfp_s0 = 0,
+ vfp_s1,
+ vfp_s2,
+ vfp_s3,
+ vfp_s4,
+ vfp_s5,
+ vfp_s6,
+ vfp_s7,
+ vfp_s8,
+ vfp_s9,
+ vfp_s10,
+ vfp_s11,
+ vfp_s12,
+ vfp_s13,
+ vfp_s14,
+ vfp_s15,
+ vfp_s16,
+ vfp_s17,
+ vfp_s18,
+ vfp_s19,
+ vfp_s20,
+ vfp_s21,
+ vfp_s22,
+ vfp_s23,
+ vfp_s24,
+ vfp_s25,
+ vfp_s26,
+ vfp_s27,
+ vfp_s28,
+ vfp_s29,
+ vfp_s30,
+ vfp_s31,
+ vfp_d0,
+ vfp_d1,
+ vfp_d2,
+ vfp_d3,
+ vfp_d4,
+ vfp_d5,
+ vfp_d6,
+ vfp_d7,
+ vfp_d8,
+ vfp_d9,
+ vfp_d10,
+ vfp_d11,
+ vfp_d12,
+ vfp_d13,
+ vfp_d14,
+ vfp_d15,
+ vfp_d16,
+ vfp_d17,
+ vfp_d18,
+ vfp_d19,
+ vfp_d20,
+ vfp_d21,
+ vfp_d22,
+ vfp_d23,
+ vfp_d24,
+ vfp_d25,
+ vfp_d26,
+ vfp_d27,
+ vfp_d28,
+ vfp_d29,
+ vfp_d30,
+ vfp_d31,
+ vfp_q0,
+ vfp_q1,
+ vfp_q2,
+ vfp_q3,
+ vfp_q4,
+ vfp_q5,
+ vfp_q6,
+ vfp_q7,
+ vfp_q8,
+ vfp_q9,
+ vfp_q10,
+ vfp_q11,
+ vfp_q12,
+ vfp_q13,
+ vfp_q14,
+ vfp_q15,
+#if defined(__arm64__) || defined(__aarch64__)
+ vfp_fpsr,
+ vfp_fpcr,
+#else
+ vfp_fpscr
+#endif
+};
+
+enum {
+ exc_exception,
+ exc_fsr,
+ exc_far,
+};
+
+#define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM::GPR, __r[idx]))
+#define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM::GPR, __##reg))
+
+#define EXC_OFFSET(reg) \
+ (offsetof(DNBArchMachARM::EXC, __##reg) + \
+ offsetof(DNBArchMachARM::Context, exc))
+
+// These macros will auto define the register name, alt name, register size,
+// register offset, encoding, format and native register. This ensures that
+// the register state structures are defined correctly and have the correct
+// sizes and offsets.
+#define DEFINE_GPR_IDX(idx, reg, alt, gen) \
+ { \
+ e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), \
+ ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL \
+ }
+#define DEFINE_GPR_NAME(reg, alt, gen, inval) \
+ { \
+ e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), \
+ ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval \
+ }
+
+// In case we are debugging to a debug target that the ability to
+// change into the protected modes with folded registers (ABT, IRQ,
+// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
+// gets modified.
+
+const char *g_invalidate_cpsr[] = {"r8", "r9", "r10", "r11",
+ "r12", "sp", "lr", NULL};
+
+// General purpose registers
+const DNBRegisterInfo DNBArchMachARM::g_gpr_registers[] = {
+ DEFINE_GPR_IDX(0, r0, "arg1", GENERIC_REGNUM_ARG1),
+ DEFINE_GPR_IDX(1, r1, "arg2", GENERIC_REGNUM_ARG2),
+ DEFINE_GPR_IDX(2, r2, "arg3", GENERIC_REGNUM_ARG3),
+ DEFINE_GPR_IDX(3, r3, "arg4", GENERIC_REGNUM_ARG4),
+ DEFINE_GPR_IDX(4, r4, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(5, r5, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(6, r6, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(7, r7, "fp", GENERIC_REGNUM_FP),
+ DEFINE_GPR_IDX(8, r8, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(9, r9, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(10, r10, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(11, r11, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_IDX(12, r12, NULL, INVALID_NUB_REGNUM),
+ DEFINE_GPR_NAME(sp, "r13", GENERIC_REGNUM_SP, NULL),
+ DEFINE_GPR_NAME(lr, "r14", GENERIC_REGNUM_RA, NULL),
+ DEFINE_GPR_NAME(pc, "r15", GENERIC_REGNUM_PC, NULL),
+ DEFINE_GPR_NAME(cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)};
+
+const char *g_contained_q0[]{"q0", NULL};
+const char *g_contained_q1[]{"q1", NULL};
+const char *g_contained_q2[]{"q2", NULL};
+const char *g_contained_q3[]{"q3", NULL};
+const char *g_contained_q4[]{"q4", NULL};
+const char *g_contained_q5[]{"q5", NULL};
+const char *g_contained_q6[]{"q6", NULL};
+const char *g_contained_q7[]{"q7", NULL};
+const char *g_contained_q8[]{"q8", NULL};
+const char *g_contained_q9[]{"q9", NULL};
+const char *g_contained_q10[]{"q10", NULL};
+const char *g_contained_q11[]{"q11", NULL};
+const char *g_contained_q12[]{"q12", NULL};
+const char *g_contained_q13[]{"q13", NULL};
+const char *g_contained_q14[]{"q14", NULL};
+const char *g_contained_q15[]{"q15", NULL};
+
+const char *g_invalidate_q0[]{"q0", "d0", "d1", "s0", "s1", "s2", "s3", NULL};
+const char *g_invalidate_q1[]{"q1", "d2", "d3", "s4", "s5", "s6", "s7", NULL};
+const char *g_invalidate_q2[]{"q2", "d4", "d5", "s8", "s9", "s10", "s11", NULL};
+const char *g_invalidate_q3[]{"q3", "d6", "d7", "s12",
+ "s13", "s14", "s15", NULL};
+const char *g_invalidate_q4[]{"q4", "d8", "d9", "s16",
+ "s17", "s18", "s19", NULL};
+const char *g_invalidate_q5[]{"q5", "d10", "d11", "s20",
+ "s21", "s22", "s23", NULL};
+const char *g_invalidate_q6[]{"q6", "d12", "d13", "s24",
+ "s25", "s26", "s27", NULL};
+const char *g_invalidate_q7[]{"q7", "d14", "d15", "s28",
+ "s29", "s30", "s31", NULL};
+const char *g_invalidate_q8[]{"q8", "d16", "d17", NULL};
+const char *g_invalidate_q9[]{"q9", "d18", "d19", NULL};
+const char *g_invalidate_q10[]{"q10", "d20", "d21", NULL};
+const char *g_invalidate_q11[]{"q11", "d22", "d23", NULL};
+const char *g_invalidate_q12[]{"q12", "d24", "d25", NULL};
+const char *g_invalidate_q13[]{"q13", "d26", "d27", NULL};
+const char *g_invalidate_q14[]{"q14", "d28", "d29", NULL};
+const char *g_invalidate_q15[]{"q15", "d30", "d31", NULL};
+
+#define VFP_S_OFFSET_IDX(idx) \
+ (((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12
+#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8
+#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX((idx)*4))
+
+#define VFP_OFFSET_NAME(reg) \
+ (offsetof(DNBArchMachARM::FPU, __##reg) + \
+ offsetof(DNBArchMachARM::Context, vfp))
+
+#define FLOAT_FORMAT Float
+
+#define DEFINE_VFP_S_IDX(idx) \
+ e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, \
+ VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, \
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
+#define DEFINE_VFP_D_IDX(idx) \
+ e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, \
+ VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, \
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
+#define DEFINE_VFP_Q_IDX(idx) \
+ e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16, \
+ VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, \
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
+
+// Floating point registers
+const DNBRegisterInfo DNBArchMachARM::g_vfp_registers[] = {
+ {DEFINE_VFP_S_IDX(0), g_contained_q0, g_invalidate_q0},
+ {DEFINE_VFP_S_IDX(1), g_contained_q0, g_invalidate_q0},
+ {DEFINE_VFP_S_IDX(2), g_contained_q0, g_invalidate_q0},
+ {DEFINE_VFP_S_IDX(3), g_contained_q0, g_invalidate_q0},
+ {DEFINE_VFP_S_IDX(4), g_contained_q1, g_invalidate_q1},
+ {DEFINE_VFP_S_IDX(5), g_contained_q1, g_invalidate_q1},
+ {DEFINE_VFP_S_IDX(6), g_contained_q1, g_invalidate_q1},
+ {DEFINE_VFP_S_IDX(7), g_contained_q1, g_invalidate_q1},
+ {DEFINE_VFP_S_IDX(8), g_contained_q2, g_invalidate_q2},
+ {DEFINE_VFP_S_IDX(9), g_contained_q2, g_invalidate_q2},
+ {DEFINE_VFP_S_IDX(10), g_contained_q2, g_invalidate_q2},
+ {DEFINE_VFP_S_IDX(11), g_contained_q2, g_invalidate_q2},
+ {DEFINE_VFP_S_IDX(12), g_contained_q3, g_invalidate_q3},
+ {DEFINE_VFP_S_IDX(13), g_contained_q3, g_invalidate_q3},
+ {DEFINE_VFP_S_IDX(14), g_contained_q3, g_invalidate_q3},
+ {DEFINE_VFP_S_IDX(15), g_contained_q3, g_invalidate_q3},
+ {DEFINE_VFP_S_IDX(16), g_contained_q4, g_invalidate_q4},
+ {DEFINE_VFP_S_IDX(17), g_contained_q4, g_invalidate_q4},
+ {DEFINE_VFP_S_IDX(18), g_contained_q4, g_invalidate_q4},
+ {DEFINE_VFP_S_IDX(19), g_contained_q4, g_invalidate_q4},
+ {DEFINE_VFP_S_IDX(20), g_contained_q5, g_invalidate_q5},
+ {DEFINE_VFP_S_IDX(21), g_contained_q5, g_invalidate_q5},
+ {DEFINE_VFP_S_IDX(22), g_contained_q5, g_invalidate_q5},
+ {DEFINE_VFP_S_IDX(23), g_contained_q5, g_invalidate_q5},
+ {DEFINE_VFP_S_IDX(24), g_contained_q6, g_invalidate_q6},
+ {DEFINE_VFP_S_IDX(25), g_contained_q6, g_invalidate_q6},
+ {DEFINE_VFP_S_IDX(26), g_contained_q6, g_invalidate_q6},
+ {DEFINE_VFP_S_IDX(27), g_contained_q6, g_invalidate_q6},
+ {DEFINE_VFP_S_IDX(28), g_contained_q7, g_invalidate_q7},
+ {DEFINE_VFP_S_IDX(29), g_contained_q7, g_invalidate_q7},
+ {DEFINE_VFP_S_IDX(30), g_contained_q7, g_invalidate_q7},
+ {DEFINE_VFP_S_IDX(31), g_contained_q7, g_invalidate_q7},
+
+ {DEFINE_VFP_D_IDX(0), g_contained_q0, g_invalidate_q0},
+ {DEFINE_VFP_D_IDX(1), g_contained_q0, g_invalidate_q0},
+ {DEFINE_VFP_D_IDX(2), g_contained_q1, g_invalidate_q1},
+ {DEFINE_VFP_D_IDX(3), g_contained_q1, g_invalidate_q1},
+ {DEFINE_VFP_D_IDX(4), g_contained_q2, g_invalidate_q2},
+ {DEFINE_VFP_D_IDX(5), g_contained_q2, g_invalidate_q2},
+ {DEFINE_VFP_D_IDX(6), g_contained_q3, g_invalidate_q3},
+ {DEFINE_VFP_D_IDX(7), g_contained_q3, g_invalidate_q3},
+ {DEFINE_VFP_D_IDX(8), g_contained_q4, g_invalidate_q4},
+ {DEFINE_VFP_D_IDX(9), g_contained_q4, g_invalidate_q4},
+ {DEFINE_VFP_D_IDX(10), g_contained_q5, g_invalidate_q5},
+ {DEFINE_VFP_D_IDX(11), g_contained_q5, g_invalidate_q5},
+ {DEFINE_VFP_D_IDX(12), g_contained_q6, g_invalidate_q6},
+ {DEFINE_VFP_D_IDX(13), g_contained_q6, g_invalidate_q6},
+ {DEFINE_VFP_D_IDX(14), g_contained_q7, g_invalidate_q7},
+ {DEFINE_VFP_D_IDX(15), g_contained_q7, g_invalidate_q7},
+ {DEFINE_VFP_D_IDX(16), g_contained_q8, g_invalidate_q8},
+ {DEFINE_VFP_D_IDX(17), g_contained_q8, g_invalidate_q8},
+ {DEFINE_VFP_D_IDX(18), g_contained_q9, g_invalidate_q9},
+ {DEFINE_VFP_D_IDX(19), g_contained_q9, g_invalidate_q9},
+ {DEFINE_VFP_D_IDX(20), g_contained_q10, g_invalidate_q10},
+ {DEFINE_VFP_D_IDX(21), g_contained_q10, g_invalidate_q10},
+ {DEFINE_VFP_D_IDX(22), g_contained_q11, g_invalidate_q11},
+ {DEFINE_VFP_D_IDX(23), g_contained_q11, g_invalidate_q11},
+ {DEFINE_VFP_D_IDX(24), g_contained_q12, g_invalidate_q12},
+ {DEFINE_VFP_D_IDX(25), g_contained_q12, g_invalidate_q12},
+ {DEFINE_VFP_D_IDX(26), g_contained_q13, g_invalidate_q13},
+ {DEFINE_VFP_D_IDX(27), g_contained_q13, g_invalidate_q13},
+ {DEFINE_VFP_D_IDX(28), g_contained_q14, g_invalidate_q14},
+ {DEFINE_VFP_D_IDX(29), g_contained_q14, g_invalidate_q14},
+ {DEFINE_VFP_D_IDX(30), g_contained_q15, g_invalidate_q15},
+ {DEFINE_VFP_D_IDX(31), g_contained_q15, g_invalidate_q15},
+
+ {DEFINE_VFP_Q_IDX(0), NULL, g_invalidate_q0},
+ {DEFINE_VFP_Q_IDX(1), NULL, g_invalidate_q1},
+ {DEFINE_VFP_Q_IDX(2), NULL, g_invalidate_q2},
+ {DEFINE_VFP_Q_IDX(3), NULL, g_invalidate_q3},
+ {DEFINE_VFP_Q_IDX(4), NULL, g_invalidate_q4},
+ {DEFINE_VFP_Q_IDX(5), NULL, g_invalidate_q5},
+ {DEFINE_VFP_Q_IDX(6), NULL, g_invalidate_q6},
+ {DEFINE_VFP_Q_IDX(7), NULL, g_invalidate_q7},
+ {DEFINE_VFP_Q_IDX(8), NULL, g_invalidate_q8},
+ {DEFINE_VFP_Q_IDX(9), NULL, g_invalidate_q9},
+ {DEFINE_VFP_Q_IDX(10), NULL, g_invalidate_q10},
+ {DEFINE_VFP_Q_IDX(11), NULL, g_invalidate_q11},
+ {DEFINE_VFP_Q_IDX(12), NULL, g_invalidate_q12},
+ {DEFINE_VFP_Q_IDX(13), NULL, g_invalidate_q13},
+ {DEFINE_VFP_Q_IDX(14), NULL, g_invalidate_q14},
+ {DEFINE_VFP_Q_IDX(15), NULL, g_invalidate_q15},
+
+#if defined(__arm64__) || defined(__aarch64__)
+ {e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpsr),
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
+ INVALID_NUB_REGNUM, NULL, NULL},
+ {e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpcr),
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
+ INVALID_NUB_REGNUM, NULL, NULL}
+#else
+ {e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4,
+ VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}
+#endif
+};
+
+// Exception registers
+
+const DNBRegisterInfo DNBArchMachARM::g_exc_registers[] = {
+ {e_regSetVFP, exc_exception, "exception", NULL, Uint, Hex, 4,
+ EXC_OFFSET(exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM},
+ {e_regSetVFP, exc_fsr, "fsr", NULL, Uint, Hex, 4, EXC_OFFSET(fsr),
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
+ INVALID_NUB_REGNUM},
+ {e_regSetVFP, exc_far, "far", NULL, Uint, Hex, 4, EXC_OFFSET(far),
+ INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
+ INVALID_NUB_REGNUM}};
+
+// Number of registers in each register set
+const size_t DNBArchMachARM::k_num_gpr_registers =
+ sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
+const size_t DNBArchMachARM::k_num_vfp_registers =
+ sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
+const size_t DNBArchMachARM::k_num_exc_registers =
+ sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
+const size_t DNBArchMachARM::k_num_all_registers =
+ k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
+
+// Register set definitions. The first definitions at register set index
+// of zero is for all registers, followed by other registers sets. The
+// register information for the all register set need not be filled in.
+const DNBRegisterSetInfo DNBArchMachARM::g_reg_sets[] = {
+ {"ARM Registers", NULL, k_num_all_registers},
+ {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
+ {"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
+ {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
+// Total number of register sets for this architecture
+const size_t DNBArchMachARM::k_num_register_sets =
+ sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
+
+const DNBRegisterSetInfo *
+DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
+ *num_reg_sets = k_num_register_sets;
+ return g_reg_sets;
+}
+
+bool DNBArchMachARM::GetRegisterValue(uint32_t set, uint32_t reg,
+ DNBRegisterValue *value) {
+ if (set == REGISTER_SET_GENERIC) {
+ switch (reg) {
+ case GENERIC_REGNUM_PC: // Program Counter
+ set = e_regSetGPR;
+ reg = gpr_pc;
+ break;
+
+ case GENERIC_REGNUM_SP: // Stack Pointer
+ set = e_regSetGPR;
+ reg = gpr_sp;
+ break;
+
+ case GENERIC_REGNUM_FP: // Frame Pointer
+ set = e_regSetGPR;
+ reg = gpr_r7; // is this the right reg?
+ break;
+
+ case GENERIC_REGNUM_RA: // Return Address
+ set = e_regSetGPR;
+ reg = gpr_lr;
+ break;
+
+ case GENERIC_REGNUM_FLAGS: // Processor flags register
+ set = e_regSetGPR;
+ reg = gpr_cpsr;
+ break;
+
+ default:
+ return false;
+ }
+ }
+
+ if (GetRegisterState(set, false) != KERN_SUCCESS)
+ return false;
+
+ const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+ if (regInfo) {
+ value->info = *regInfo;
+ switch (set) {
+ case e_regSetGPR:
+ if (reg < k_num_gpr_registers) {
+ value->value.uint32 = m_state.context.gpr.__r[reg];
+ return true;
+ }
+ break;
+
+ case e_regSetVFP:
+ // "reg" is an index into the floating point register set at this point.
+ // We need to translate it up so entry 0 in the fp reg set is the same as
+ // vfp_s0
+ // in the enumerated values for case statement below.
+ if (reg >= vfp_s0 && reg <= vfp_s31) {
+#if defined(__arm64__) || defined(__aarch64__)
+ uint32_t *s_reg =
+ ((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
+ memcpy(&value->value.v_uint8, s_reg, 4);
+#else
+ value->value.uint32 = m_state.context.vfp.__r[reg];
+#endif
+ return true;
+ } else if (reg >= vfp_d0 && reg <= vfp_d31) {
+#if defined(__arm64__) || defined(__aarch64__)
+ uint64_t *d_reg =
+ ((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
+ memcpy(&value->value.v_uint8, d_reg, 8);
+#else
+ uint32_t d_reg_idx = reg - vfp_d0;
+ uint32_t s_reg_idx = d_reg_idx * 2;
+ value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
+ value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
+#endif
+ return true;
+ } else if (reg >= vfp_q0 && reg <= vfp_q15) {
+#if defined(__arm64__) || defined(__aarch64__)
+ memcpy(&value->value.v_uint8,
+ (uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0], 16);
+#else
+ uint32_t s_reg_idx = (reg - vfp_q0) * 4;
+ memcpy(&value->value.v_uint8,
+ (uint8_t *)&m_state.context.vfp.__r[s_reg_idx], 16);
+#endif
+ return true;
+ }
+#if defined(__arm64__) || defined(__aarch64__)
+ else if (reg == vfp_fpsr) {
+ value->value.uint32 = m_state.context.vfp.__fpsr;
+ return true;
+ } else if (reg == vfp_fpcr) {
+ value->value.uint32 = m_state.context.vfp.__fpcr;
+ return true;
+ }
+#else
+ else if (reg == vfp_fpscr) {
+ value->value.uint32 = m_state.context.vfp.__fpscr;
+ return true;
+ }
+#endif
+ break;
+
+ case e_regSetEXC:
+ if (reg < k_num_exc_registers) {
+ value->value.uint32 = (&m_state.context.exc.__exception)[reg];
+ return true;
+ }
+ break;
+ }
+ }
+ return false;
+}
+
+bool DNBArchMachARM::SetRegisterValue(uint32_t set, uint32_t reg,
+ const DNBRegisterValue *value) {
+ if (set == REGISTER_SET_GENERIC) {
+ switch (reg) {
+ case GENERIC_REGNUM_PC: // Program Counter
+ set = e_regSetGPR;
+ reg = gpr_pc;
+ break;
+
+ case GENERIC_REGNUM_SP: // Stack Pointer
+ set = e_regSetGPR;
+ reg = gpr_sp;
+ break;
+
+ case GENERIC_REGNUM_FP: // Frame Pointer
+ set = e_regSetGPR;
+ reg = gpr_r7;
+ break;
+
+ case GENERIC_REGNUM_RA: // Return Address
+ set = e_regSetGPR;
+ reg = gpr_lr;
+ break;
+
+ case GENERIC_REGNUM_FLAGS: // Processor flags register
+ set = e_regSetGPR;
+ reg = gpr_cpsr;
+ break;
+
+ default:
+ return false;
+ }
+ }
+
+ if (GetRegisterState(set, false) != KERN_SUCCESS)
+ return false;
+
+ bool success = false;
+ const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+ if (regInfo) {
+ switch (set) {
+ case e_regSetGPR:
+ if (reg < k_num_gpr_registers) {
+ m_state.context.gpr.__r[reg] = value->value.uint32;
+ success = true;
+ }
+ break;
+
+ case e_regSetVFP:
+ // "reg" is an index into the floating point register set at this point.
+ // We need to translate it up so entry 0 in the fp reg set is the same as
+ // vfp_s0
+ // in the enumerated values for case statement below.
+ if (reg >= vfp_s0 && reg <= vfp_s31) {
+#if defined(__arm64__) || defined(__aarch64__)
+ uint32_t *s_reg =
+ ((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
+ memcpy(s_reg, &value->value.v_uint8, 4);
+#else
+ m_state.context.vfp.__r[reg] = value->value.uint32;
+#endif
+ success = true;
+ } else if (reg >= vfp_d0 && reg <= vfp_d31) {
+#if defined(__arm64__) || defined(__aarch64__)
+ uint64_t *d_reg =
+ ((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
+ memcpy(d_reg, &value->value.v_uint8, 8);
+#else
+ uint32_t d_reg_idx = reg - vfp_d0;
+ uint32_t s_reg_idx = d_reg_idx * 2;
+ m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
+ m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
+#endif
+ success = true;
+ } else if (reg >= vfp_q0 && reg <= vfp_q15) {
+#if defined(__arm64__) || defined(__aarch64__)
+ memcpy((uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0],
+ &value->value.v_uint8, 16);
+#else
+ uint32_t s_reg_idx = (reg - vfp_q0) * 4;
+ memcpy((uint8_t *)&m_state.context.vfp.__r[s_reg_idx],
+ &value->value.v_uint8, 16);
+#endif
+ success = true;
+ }
+#if defined(__arm64__) || defined(__aarch64__)
+ else if (reg == vfp_fpsr) {
+ m_state.context.vfp.__fpsr = value->value.uint32;
+ success = true;
+ } else if (reg == vfp_fpcr) {
+ m_state.context.vfp.__fpcr = value->value.uint32;
+ success = true;
+ }
+#else
+ else if (reg == vfp_fpscr) {
+ m_state.context.vfp.__fpscr = value->value.uint32;
+ success = true;
+ }
+#endif
+ break;
+
+ case e_regSetEXC:
+ if (reg < k_num_exc_registers) {
+ (&m_state.context.exc.__exception)[reg] = value->value.uint32;
+ success = true;
+ }
+ break;
+ }
+ }
+ if (success)
+ return SetRegisterState(set) == KERN_SUCCESS;
+ return false;
+}
+
+kern_return_t DNBArchMachARM::GetRegisterState(int set, bool force) {
+ switch (set) {
+ case e_regSetALL:
+ return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
+ GetDBGState(force);
+ case e_regSetGPR:
+ return GetGPRState(force);
+ case e_regSetVFP:
+ return GetVFPState(force);
+ case e_regSetEXC:
+ return GetEXCState(force);
+ case e_regSetDBG:
+ return GetDBGState(force);
+ default:
+ break;
+ }
+ return KERN_INVALID_ARGUMENT;
+}
+
+kern_return_t DNBArchMachARM::SetRegisterState(int set) {
+ // Make sure we have a valid context to set.
+ kern_return_t err = GetRegisterState(set, false);
+ if (err != KERN_SUCCESS)
+ return err;
+
+ switch (set) {
+ case e_regSetALL:
+ return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
+ case e_regSetGPR:
+ return SetGPRState();
+ case e_regSetVFP:
+ return SetVFPState();
+ case e_regSetEXC:
+ return SetEXCState();
+ case e_regSetDBG:
+ return SetDBGState(false);
+ default:
+ break;
+ }
+ return KERN_INVALID_ARGUMENT;
+}
+
+bool DNBArchMachARM::RegisterSetStateIsValid(int set) const {
+ return m_state.RegsAreValid(set);
+}
+
+nub_size_t DNBArchMachARM::GetRegisterContext(void *buf, nub_size_t buf_len) {
+ nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
+ sizeof(m_state.context.exc);
+
+ if (buf && buf_len) {
+ if (size > buf_len)
+ size = buf_len;
+
+ bool force = false;
+ if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
+ return 0;
+
+ // Copy each struct individually to avoid any padding that might be between
+ // the structs in m_state.context
+ uint8_t *p = (uint8_t *)buf;
+ ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
+ p += sizeof(m_state.context.gpr);
+ ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
+ p += sizeof(m_state.context.vfp);
+ ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
+ p += sizeof(m_state.context.exc);
+
+ size_t bytes_written = p - (uint8_t *)buf;
+ UNUSED_IF_ASSERT_DISABLED(bytes_written);
+ assert(bytes_written == size);
+ }
+ DNBLogThreadedIf(
+ LOG_THREAD,
+ "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf,
+ (uint64_t)buf_len, (uint64_t)size);
+ // Return the size of the register context even if NULL was passed in
+ return size;
+}
+
+nub_size_t DNBArchMachARM::SetRegisterContext(const void *buf,
+ nub_size_t buf_len) {
+ nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
+ sizeof(m_state.context.exc);
+
+ if (buf == NULL || buf_len == 0)
+ size = 0;
+
+ if (size) {
+ if (size > buf_len)
+ size = buf_len;
+
+ // Copy each struct individually to avoid any padding that might be between
+ // the structs in m_state.context
+ uint8_t *p = (uint8_t *)buf;
+ ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
+ p += sizeof(m_state.context.gpr);
+ ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
+ p += sizeof(m_state.context.vfp);
+ ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
+ p += sizeof(m_state.context.exc);
+
+ size_t bytes_written = p - (uint8_t *)buf;
+ UNUSED_IF_ASSERT_DISABLED(bytes_written);
+ assert(bytes_written == size);
+
+ if (SetGPRState() | SetVFPState() | SetEXCState())
+ return 0;
+ }
+ DNBLogThreadedIf(
+ LOG_THREAD,
+ "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf,
+ (uint64_t)buf_len, (uint64_t)size);
+ return size;
+}
+
+uint32_t DNBArchMachARM::SaveRegisterState() {
+ kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
+ DNBLogThreadedIf(
+ LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
+ "(SetGPRState() for stop_count = %u)",
+ m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
+
+ // Always re-read the registers because above we call thread_abort_safely();
+ bool force = true;
+
+ if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
+ DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
+ "GPR regs failed to read: %u ",
+ kret);
+ } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
+ DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
+ "%s regs failed to read: %u",
+ "VFP", kret);
+ } else {
+ const uint32_t save_id = GetNextRegisterStateSaveID();
+ m_saved_register_states[save_id] = m_state.context;
+ return save_id;
+ }
+ return UINT32_MAX;
+}
+
+bool DNBArchMachARM::RestoreRegisterState(uint32_t save_id) {
+ SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
+ if (pos != m_saved_register_states.end()) {
+ m_state.context.gpr = pos->second.gpr;
+ m_state.context.vfp = pos->second.vfp;
+ kern_return_t kret;
+ bool success = true;
+ if ((kret = SetGPRState()) != KERN_SUCCESS) {
+ DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
+ "(save_id = %u) error: GPR regs failed to "
+ "write: %u",
+ save_id, kret);
+ success = false;
+ } else if ((kret = SetVFPState()) != KERN_SUCCESS) {
+ DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
+ "(save_id = %u) error: %s regs failed to "
+ "write: %u",
+ save_id, "VFP", kret);
+ success = false;
+ }
+ m_saved_register_states.erase(pos);
+ return success;
+ }
+ return false;
+}
+
+#endif // #if defined (__arm__)
diff --git a/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h b/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h
new file mode 100644
index 00000000000..4bb899b4503
--- /dev/null
+++ b/gnu/llvm/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.h
@@ -0,0 +1,274 @@
+//===-- DNBArchImpl.h -------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Created by Greg Clayton on 6/25/07.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef __DebugNubArchMachARM_h__
+#define __DebugNubArchMachARM_h__
+
+#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
+
+#include "DNBArch.h"
+
+#include <map>
+
+class MachThread;
+
+class DNBArchMachARM : public DNBArchProtocol {
+public:
+ enum { kMaxNumThumbITBreakpoints = 4 };
+
+ DNBArchMachARM(MachThread *thread)
+ : m_thread(thread), m_state(), m_disabled_watchpoints(),
+ m_hw_single_chained_step_addr(INVALID_NUB_ADDRESS),
+ m_last_decode_pc(INVALID_NUB_ADDRESS), m_watchpoint_hw_index(-1),
+ m_watchpoint_did_occur(false),
+ m_watchpoint_resume_single_step_enabled(false),
+ m_saved_register_states() {
+ m_disabled_watchpoints.resize(16);
+ memset(&m_dbg_save, 0, sizeof(m_dbg_save));
+#if defined(USE_ARM_DISASSEMBLER_FRAMEWORK)
+ ThumbStaticsInit(&m_last_decode_thumb);
+#endif
+ }
+
+ virtual ~DNBArchMachARM() {}
+
+ static void Initialize();
+ static const DNBRegisterSetInfo *GetRegisterSetInfo(nub_size_t *num_reg_sets);
+
+ virtual bool GetRegisterValue(uint32_t set, uint32_t reg,
+ DNBRegisterValue *value);
+ virtual bool SetRegisterValue(uint32_t set, uint32_t reg,
+ const DNBRegisterValue *value);
+ virtual nub_size_t GetRegisterContext(void *buf, nub_size_t buf_len);
+ virtual nub_size_t SetRegisterContext(const void *buf, nub_size_t buf_len);
+ virtual uint32_t SaveRegisterState();
+ virtual bool RestoreRegisterState(uint32_t save_id);
+
+ virtual kern_return_t GetRegisterState(int set, bool force);
+ virtual kern_return_t SetRegisterState(int set);
+ virtual bool RegisterSetStateIsValid(int set) const;
+
+ virtual uint64_t GetPC(uint64_t failValue); // Get program counter
+ virtual kern_return_t SetPC(uint64_t value);
+ virtual uint64_t GetSP(uint64_t failValue); // Get stack pointer
+ virtual void ThreadWillResume();
+ virtual bool ThreadDidStop();
+ virtual bool NotifyException(MachException::Data &exc);
+
+ static DNBArchProtocol *Create(MachThread *thread);
+ static const uint8_t *SoftwareBreakpointOpcode(nub_size_t byte_size);
+ static uint32_t GetCPUType();
+
+ virtual uint32_t NumSupportedHardwareBreakpoints();
+ virtual uint32_t NumSupportedHardwareWatchpoints();
+ virtual uint32_t EnableHardwareBreakpoint(nub_addr_t addr, nub_size_t size);
+ virtual bool DisableHardwareBreakpoint(uint32_t hw_break_index);
+
+ virtual uint32_t EnableHardwareWatchpoint(nub_addr_t addr, nub_size_t size,
+ bool read, bool write,
+ bool also_set_on_task);
+ virtual bool DisableHardwareWatchpoint(uint32_t hw_break_index,
+ bool also_set_on_task);
+ virtual bool DisableHardwareWatchpoint_helper(uint32_t hw_break_index,
+ bool also_set_on_task);
+ virtual bool ReenableHardwareWatchpoint(uint32_t hw_break_index);
+ virtual bool ReenableHardwareWatchpoint_helper(uint32_t hw_break_index);
+
+ virtual bool StepNotComplete();
+ virtual uint32_t GetHardwareWatchpointHit(nub_addr_t &addr);
+
+#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
+ typedef arm_debug_state32_t DBG;
+#else
+ typedef arm_debug_state_t DBG;
+#endif
+
+protected:
+ kern_return_t EnableHardwareSingleStep(bool enable);
+ kern_return_t SetSingleStepSoftwareBreakpoints();
+
+ bool ConditionPassed(uint8_t condition, uint32_t cpsr);
+#if defined(USE_ARM_DISASSEMBLER_FRAMEWORK)
+ bool ComputeNextPC(nub_addr_t currentPC,
+ arm_decoded_instruction_t decodedInstruction,
+ bool currentPCIsThumb, nub_addr_t *targetPC);
+ arm_error_t DecodeInstructionUsingDisassembler(
+ nub_addr_t curr_pc, uint32_t curr_cpsr,
+ arm_decoded_instruction_t *decodedInstruction,
+ thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc);
+ void DecodeITBlockInstructions(nub_addr_t curr_pc);
+#endif
+ void EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC,
+ uint32_t cpsr,
+ bool currentPCIsThumb,
+ nub_addr_t *nextPC,
+ bool *nextPCIsThumb);
+
+ enum RegisterSet {
+ e_regSetALL = REGISTER_SET_ALL,
+ e_regSetGPR, // ARM_THREAD_STATE
+ e_regSetVFP, // ARM_VFP_STATE (ARM_NEON_STATE if defined __arm64__)
+ e_regSetEXC, // ARM_EXCEPTION_STATE
+ e_regSetDBG, // ARM_DEBUG_STATE (ARM_DEBUG_STATE32 if defined __arm64__)
+ kNumRegisterSets
+ };
+
+ enum { Read = 0, Write = 1, kNumErrors = 2 };
+
+ typedef arm_thread_state_t GPR;
+#if defined(__arm64__) || defined(__aarch64__)
+ typedef arm_neon_state_t FPU;
+#else
+ typedef arm_vfp_state_t FPU;
+#endif
+ typedef arm_exception_state_t EXC;
+
+ static const DNBRegisterInfo g_gpr_registers[];
+ static const DNBRegisterInfo g_vfp_registers[];
+ static const DNBRegisterInfo g_exc_registers[];
+ static const DNBRegisterSetInfo g_reg_sets[];
+
+ static const size_t k_num_gpr_registers;
+ static const size_t k_num_vfp_registers;
+ static const size_t k_num_exc_registers;
+ static const size_t k_num_all_registers;
+ static const size_t k_num_register_sets;
+
+ struct Context {
+ GPR gpr;
+ FPU vfp;
+ EXC exc;
+ };
+
+ struct State {
+ Context context;
+ DBG dbg;
+ kern_return_t gpr_errs[2]; // Read/Write errors
+ kern_return_t vfp_errs[2]; // Read/Write errors
+ kern_return_t exc_errs[2]; // Read/Write errors
+ kern_return_t dbg_errs[2]; // Read/Write errors
+ State() {
+ uint32_t i;
+ for (i = 0; i < kNumErrors; i++) {
+ gpr_errs[i] = -1;
+ vfp_errs[i] = -1;
+ exc_errs[i] = -1;
+ dbg_errs[i] = -1;
+ }
+ }
+ void InvalidateRegisterSetState(int set) { SetError(set, Read, -1); }
+ kern_return_t GetError(int set, uint32_t err_idx) const {
+ if (err_idx < kNumErrors) {
+ switch (set) {
+ // When getting all errors, just OR all values together to see if
+ // we got any kind of error.
+ case e_regSetALL:
+ return gpr_errs[err_idx] | vfp_errs[err_idx] | exc_errs[err_idx] |
+ dbg_errs[err_idx];
+ case e_regSetGPR:
+ return gpr_errs[err_idx];
+ case e_regSetVFP:
+ return vfp_errs[err_idx];
+ case e_regSetEXC:
+ return exc_errs[err_idx];
+ case e_regSetDBG:
+ return dbg_errs[err_idx];
+ default:
+ break;
+ }
+ }
+ return -1;
+ }
+ bool SetError(int set, uint32_t err_idx, kern_return_t err) {
+ if (err_idx < kNumErrors) {
+ switch (set) {
+ case e_regSetALL:
+ gpr_errs[err_idx] = err;
+ vfp_errs[err_idx] = err;
+ dbg_errs[err_idx] = err;
+ exc_errs[err_idx] = err;
+ return true;
+
+ case e_regSetGPR:
+ gpr_errs[err_idx] = err;
+ return true;
+
+ case e_regSetVFP:
+ vfp_errs[err_idx] = err;
+ return true;
+
+ case e_regSetEXC:
+ exc_errs[err_idx] = err;
+ return true;
+
+ case e_regSetDBG:
+ dbg_errs[err_idx] = err;
+ return true;
+ default:
+ break;
+ }
+ }
+ return false;
+ }
+ bool RegsAreValid(int set) const {
+ return GetError(set, Read) == KERN_SUCCESS;
+ }
+ };
+
+ kern_return_t GetGPRState(bool force);
+ kern_return_t GetVFPState(bool force);
+ kern_return_t GetEXCState(bool force);
+ kern_return_t GetDBGState(bool force);
+
+ kern_return_t SetGPRState();
+ kern_return_t SetVFPState();
+ kern_return_t SetEXCState();
+ kern_return_t SetDBGState(bool also_set_on_task);
+
+ bool IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index);
+ nub_addr_t GetWatchpointAddressByIndex(uint32_t hw_index);
+ nub_addr_t GetWatchAddress(const DBG &debug_state, uint32_t hw_index);
+
+ class disabled_watchpoint {
+ public:
+ disabled_watchpoint() {
+ addr = 0;
+ control = 0;
+ }
+ nub_addr_t addr;
+ uint32_t control;
+ };
+
+protected:
+ MachThread *m_thread;
+ State m_state;
+ DBG m_dbg_save;
+
+ // armv8 doesn't keep the disabled watchpoint values in the debug register
+ // context like armv7;
+ // we need to save them aside when we disable them temporarily.
+ std::vector<disabled_watchpoint> m_disabled_watchpoints;
+
+ nub_addr_t m_hw_single_chained_step_addr;
+ nub_addr_t m_last_decode_pc;
+
+ // The following member variables should be updated atomically.
+ int32_t m_watchpoint_hw_index;
+ bool m_watchpoint_did_occur;
+ bool m_watchpoint_resume_single_step_enabled;
+
+ typedef std::map<uint32_t, Context> SaveRegisterStates;
+ SaveRegisterStates m_saved_register_states;
+};
+
+#endif // #if defined (__arm__)
+#endif // #ifndef __DebugNubArchMachARM_h__