diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp | 3401 |
1 files changed, 0 insertions, 3401 deletions
diff --git a/gnu/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp b/gnu/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp deleted file mode 100644 index 62dc22c8140..00000000000 --- a/gnu/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp +++ /dev/null @@ -1,3401 +0,0 @@ -//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#include "clang/AST/RecordLayout.h" -#include "clang/AST/ASTContext.h" -#include "clang/AST/ASTDiagnostic.h" -#include "clang/AST/Attr.h" -#include "clang/AST/CXXInheritance.h" -#include "clang/AST/Decl.h" -#include "clang/AST/DeclCXX.h" -#include "clang/AST/DeclObjC.h" -#include "clang/AST/Expr.h" -#include "clang/Basic/TargetInfo.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/Support/Format.h" -#include "llvm/Support/MathExtras.h" - -using namespace clang; - -namespace { - -/// BaseSubobjectInfo - Represents a single base subobject in a complete class. -/// For a class hierarchy like -/// -/// class A { }; -/// class B : A { }; -/// class C : A, B { }; -/// -/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo -/// instances, one for B and two for A. -/// -/// If a base is virtual, it will only have one BaseSubobjectInfo allocated. -struct BaseSubobjectInfo { - /// Class - The class for this base info. - const CXXRecordDecl *Class; - - /// IsVirtual - Whether the BaseInfo represents a virtual base or not. - bool IsVirtual; - - /// Bases - Information about the base subobjects. - SmallVector<BaseSubobjectInfo*, 4> Bases; - - /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base - /// of this base info (if one exists). - BaseSubobjectInfo *PrimaryVirtualBaseInfo; - - // FIXME: Document. - const BaseSubobjectInfo *Derived; -}; - -/// Externally provided layout. Typically used when the AST source, such -/// as DWARF, lacks all the information that was available at compile time, such -/// as alignment attributes on fields and pragmas in effect. -struct ExternalLayout { - ExternalLayout() : Size(0), Align(0) {} - - /// Overall record size in bits. - uint64_t Size; - - /// Overall record alignment in bits. - uint64_t Align; - - /// Record field offsets in bits. - llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; - - /// Direct, non-virtual base offsets. - llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; - - /// Virtual base offsets. - llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; - - /// Get the offset of the given field. The external source must provide - /// entries for all fields in the record. - uint64_t getExternalFieldOffset(const FieldDecl *FD) { - assert(FieldOffsets.count(FD) && - "Field does not have an external offset"); - return FieldOffsets[FD]; - } - - bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { - auto Known = BaseOffsets.find(RD); - if (Known == BaseOffsets.end()) - return false; - BaseOffset = Known->second; - return true; - } - - bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { - auto Known = VirtualBaseOffsets.find(RD); - if (Known == VirtualBaseOffsets.end()) - return false; - BaseOffset = Known->second; - return true; - } -}; - -/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different -/// offsets while laying out a C++ class. -class EmptySubobjectMap { - const ASTContext &Context; - uint64_t CharWidth; - - /// Class - The class whose empty entries we're keeping track of. - const CXXRecordDecl *Class; - - /// EmptyClassOffsets - A map from offsets to empty record decls. - typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; - typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; - EmptyClassOffsetsMapTy EmptyClassOffsets; - - /// MaxEmptyClassOffset - The highest offset known to contain an empty - /// base subobject. - CharUnits MaxEmptyClassOffset; - - /// ComputeEmptySubobjectSizes - Compute the size of the largest base or - /// member subobject that is empty. - void ComputeEmptySubobjectSizes(); - - void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); - - void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, - CharUnits Offset, bool PlacingEmptyBase); - - void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, - const CXXRecordDecl *Class, - CharUnits Offset); - void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset); - - /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty - /// subobjects beyond the given offset. - bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { - return Offset <= MaxEmptyClassOffset; - } - - CharUnits - getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { - uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); - assert(FieldOffset % CharWidth == 0 && - "Field offset not at char boundary!"); - - return Context.toCharUnitsFromBits(FieldOffset); - } - -protected: - bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, - CharUnits Offset) const; - - bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, - CharUnits Offset); - - bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, - const CXXRecordDecl *Class, - CharUnits Offset) const; - bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, - CharUnits Offset) const; - -public: - /// This holds the size of the largest empty subobject (either a base - /// or a member). Will be zero if the record being built doesn't contain - /// any empty classes. - CharUnits SizeOfLargestEmptySubobject; - - EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) - : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { - ComputeEmptySubobjectSizes(); - } - - /// CanPlaceBaseAtOffset - Return whether the given base class can be placed - /// at the given offset. - /// Returns false if placing the record will result in two components - /// (direct or indirect) of the same type having the same offset. - bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, - CharUnits Offset); - - /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given - /// offset. - bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); -}; - -void EmptySubobjectMap::ComputeEmptySubobjectSizes() { - // Check the bases. - for (const CXXBaseSpecifier &Base : Class->bases()) { - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - - CharUnits EmptySize; - const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); - if (BaseDecl->isEmpty()) { - // If the class decl is empty, get its size. - EmptySize = Layout.getSize(); - } else { - // Otherwise, we get the largest empty subobject for the decl. - EmptySize = Layout.getSizeOfLargestEmptySubobject(); - } - - if (EmptySize > SizeOfLargestEmptySubobject) - SizeOfLargestEmptySubobject = EmptySize; - } - - // Check the fields. - for (const FieldDecl *FD : Class->fields()) { - const RecordType *RT = - Context.getBaseElementType(FD->getType())->getAs<RecordType>(); - - // We only care about record types. - if (!RT) - continue; - - CharUnits EmptySize; - const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); - const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); - if (MemberDecl->isEmpty()) { - // If the class decl is empty, get its size. - EmptySize = Layout.getSize(); - } else { - // Otherwise, we get the largest empty subobject for the decl. - EmptySize = Layout.getSizeOfLargestEmptySubobject(); - } - - if (EmptySize > SizeOfLargestEmptySubobject) - SizeOfLargestEmptySubobject = EmptySize; - } -} - -bool -EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, - CharUnits Offset) const { - // We only need to check empty bases. - if (!RD->isEmpty()) - return true; - - EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); - if (I == EmptyClassOffsets.end()) - return true; - - const ClassVectorTy &Classes = I->second; - if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end()) - return true; - - // There is already an empty class of the same type at this offset. - return false; -} - -void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, - CharUnits Offset) { - // We only care about empty bases. - if (!RD->isEmpty()) - return; - - // If we have empty structures inside a union, we can assign both - // the same offset. Just avoid pushing them twice in the list. - ClassVectorTy &Classes = EmptyClassOffsets[Offset]; - if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end()) - return; - - Classes.push_back(RD); - - // Update the empty class offset. - if (Offset > MaxEmptyClassOffset) - MaxEmptyClassOffset = Offset; -} - -bool -EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, - CharUnits Offset) { - // We don't have to keep looking past the maximum offset that's known to - // contain an empty class. - if (!AnyEmptySubobjectsBeyondOffset(Offset)) - return true; - - if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) - return false; - - // Traverse all non-virtual bases. - const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); - for (const BaseSubobjectInfo *Base : Info->Bases) { - if (Base->IsVirtual) - continue; - - CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); - - if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) - return false; - } - - if (Info->PrimaryVirtualBaseInfo) { - BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; - - if (Info == PrimaryVirtualBaseInfo->Derived) { - if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) - return false; - } - } - - // Traverse all member variables. - unsigned FieldNo = 0; - for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), - E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { - if (I->isBitField()) - continue; - - CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); - if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) - return false; - } - - return true; -} - -void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, - CharUnits Offset, - bool PlacingEmptyBase) { - if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { - // We know that the only empty subobjects that can conflict with empty - // subobject of non-empty bases, are empty bases that can be placed at - // offset zero. Because of this, we only need to keep track of empty base - // subobjects with offsets less than the size of the largest empty - // subobject for our class. - return; - } - - AddSubobjectAtOffset(Info->Class, Offset); - - // Traverse all non-virtual bases. - const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); - for (const BaseSubobjectInfo *Base : Info->Bases) { - if (Base->IsVirtual) - continue; - - CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); - UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); - } - - if (Info->PrimaryVirtualBaseInfo) { - BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; - - if (Info == PrimaryVirtualBaseInfo->Derived) - UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, - PlacingEmptyBase); - } - - // Traverse all member variables. - unsigned FieldNo = 0; - for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), - E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { - if (I->isBitField()) - continue; - - CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); - UpdateEmptyFieldSubobjects(*I, FieldOffset); - } -} - -bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, - CharUnits Offset) { - // If we know this class doesn't have any empty subobjects we don't need to - // bother checking. - if (SizeOfLargestEmptySubobject.isZero()) - return true; - - if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) - return false; - - // We are able to place the base at this offset. Make sure to update the - // empty base subobject map. - UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); - return true; -} - -bool -EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, - const CXXRecordDecl *Class, - CharUnits Offset) const { - // We don't have to keep looking past the maximum offset that's known to - // contain an empty class. - if (!AnyEmptySubobjectsBeyondOffset(Offset)) - return true; - - if (!CanPlaceSubobjectAtOffset(RD, Offset)) - return false; - - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - - // Traverse all non-virtual bases. - for (const CXXBaseSpecifier &Base : RD->bases()) { - if (Base.isVirtual()) - continue; - - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - - CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); - if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) - return false; - } - - if (RD == Class) { - // This is the most derived class, traverse virtual bases as well. - for (const CXXBaseSpecifier &Base : RD->vbases()) { - const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); - - CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); - if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) - return false; - } - } - - // Traverse all member variables. - unsigned FieldNo = 0; - for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); - I != E; ++I, ++FieldNo) { - if (I->isBitField()) - continue; - - CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); - - if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) - return false; - } - - return true; -} - -bool -EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, - CharUnits Offset) const { - // We don't have to keep looking past the maximum offset that's known to - // contain an empty class. - if (!AnyEmptySubobjectsBeyondOffset(Offset)) - return true; - - QualType T = FD->getType(); - if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) - return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); - - // If we have an array type we need to look at every element. - if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { - QualType ElemTy = Context.getBaseElementType(AT); - const RecordType *RT = ElemTy->getAs<RecordType>(); - if (!RT) - return true; - - const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - - uint64_t NumElements = Context.getConstantArrayElementCount(AT); - CharUnits ElementOffset = Offset; - for (uint64_t I = 0; I != NumElements; ++I) { - // We don't have to keep looking past the maximum offset that's known to - // contain an empty class. - if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) - return true; - - if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) - return false; - - ElementOffset += Layout.getSize(); - } - } - - return true; -} - -bool -EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, - CharUnits Offset) { - if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) - return false; - - // We are able to place the member variable at this offset. - // Make sure to update the empty base subobject map. - UpdateEmptyFieldSubobjects(FD, Offset); - return true; -} - -void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, - const CXXRecordDecl *Class, - CharUnits Offset) { - // We know that the only empty subobjects that can conflict with empty - // field subobjects are subobjects of empty bases that can be placed at offset - // zero. Because of this, we only need to keep track of empty field - // subobjects with offsets less than the size of the largest empty - // subobject for our class. - if (Offset >= SizeOfLargestEmptySubobject) - return; - - AddSubobjectAtOffset(RD, Offset); - - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - - // Traverse all non-virtual bases. - for (const CXXBaseSpecifier &Base : RD->bases()) { - if (Base.isVirtual()) - continue; - - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - - CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); - UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset); - } - - if (RD == Class) { - // This is the most derived class, traverse virtual bases as well. - for (const CXXBaseSpecifier &Base : RD->vbases()) { - const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); - - CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); - UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset); - } - } - - // Traverse all member variables. - unsigned FieldNo = 0; - for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); - I != E; ++I, ++FieldNo) { - if (I->isBitField()) - continue; - - CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); - - UpdateEmptyFieldSubobjects(*I, FieldOffset); - } -} - -void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD, - CharUnits Offset) { - QualType T = FD->getType(); - if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { - UpdateEmptyFieldSubobjects(RD, RD, Offset); - return; - } - - // If we have an array type we need to update every element. - if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { - QualType ElemTy = Context.getBaseElementType(AT); - const RecordType *RT = ElemTy->getAs<RecordType>(); - if (!RT) - return; - - const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - - uint64_t NumElements = Context.getConstantArrayElementCount(AT); - CharUnits ElementOffset = Offset; - - for (uint64_t I = 0; I != NumElements; ++I) { - // We know that the only empty subobjects that can conflict with empty - // field subobjects are subobjects of empty bases that can be placed at - // offset zero. Because of this, we only need to keep track of empty field - // subobjects with offsets less than the size of the largest empty - // subobject for our class. - if (ElementOffset >= SizeOfLargestEmptySubobject) - return; - - UpdateEmptyFieldSubobjects(RD, RD, ElementOffset); - ElementOffset += Layout.getSize(); - } - } -} - -typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; - -class ItaniumRecordLayoutBuilder { -protected: - // FIXME: Remove this and make the appropriate fields public. - friend class clang::ASTContext; - - const ASTContext &Context; - - EmptySubobjectMap *EmptySubobjects; - - /// Size - The current size of the record layout. - uint64_t Size; - - /// Alignment - The current alignment of the record layout. - CharUnits Alignment; - - /// The alignment if attribute packed is not used. - CharUnits UnpackedAlignment; - - /// \brief The maximum of the alignments of top-level members. - CharUnits UnadjustedAlignment; - - SmallVector<uint64_t, 16> FieldOffsets; - - /// Whether the external AST source has provided a layout for this - /// record. - unsigned UseExternalLayout : 1; - - /// Whether we need to infer alignment, even when we have an - /// externally-provided layout. - unsigned InferAlignment : 1; - - /// Packed - Whether the record is packed or not. - unsigned Packed : 1; - - unsigned IsUnion : 1; - - unsigned IsMac68kAlign : 1; - - unsigned IsMsStruct : 1; - - /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, - /// this contains the number of bits in the last unit that can be used for - /// an adjacent bitfield if necessary. The unit in question is usually - /// a byte, but larger units are used if IsMsStruct. - unsigned char UnfilledBitsInLastUnit; - /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type - /// of the previous field if it was a bitfield. - unsigned char LastBitfieldTypeSize; - - /// MaxFieldAlignment - The maximum allowed field alignment. This is set by - /// #pragma pack. - CharUnits MaxFieldAlignment; - - /// DataSize - The data size of the record being laid out. - uint64_t DataSize; - - CharUnits NonVirtualSize; - CharUnits NonVirtualAlignment; - - /// PrimaryBase - the primary base class (if one exists) of the class - /// we're laying out. - const CXXRecordDecl *PrimaryBase; - - /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying - /// out is virtual. - bool PrimaryBaseIsVirtual; - - /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl - /// pointer, as opposed to inheriting one from a primary base class. - bool HasOwnVFPtr; - - /// the flag of field offset changing due to packed attribute. - bool HasPackedField; - - typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; - - /// Bases - base classes and their offsets in the record. - BaseOffsetsMapTy Bases; - - // VBases - virtual base classes and their offsets in the record. - ASTRecordLayout::VBaseOffsetsMapTy VBases; - - /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are - /// primary base classes for some other direct or indirect base class. - CXXIndirectPrimaryBaseSet IndirectPrimaryBases; - - /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in - /// inheritance graph order. Used for determining the primary base class. - const CXXRecordDecl *FirstNearlyEmptyVBase; - - /// VisitedVirtualBases - A set of all the visited virtual bases, used to - /// avoid visiting virtual bases more than once. - llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; - - /// Valid if UseExternalLayout is true. - ExternalLayout External; - - ItaniumRecordLayoutBuilder(const ASTContext &Context, - EmptySubobjectMap *EmptySubobjects) - : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), - Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()), - UnadjustedAlignment(CharUnits::One()), - UseExternalLayout(false), InferAlignment(false), Packed(false), - IsUnion(false), IsMac68kAlign(false), IsMsStruct(false), - UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0), - MaxFieldAlignment(CharUnits::Zero()), DataSize(0), - NonVirtualSize(CharUnits::Zero()), - NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr), - PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), - HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {} - - void Layout(const RecordDecl *D); - void Layout(const CXXRecordDecl *D); - void Layout(const ObjCInterfaceDecl *D); - - void LayoutFields(const RecordDecl *D); - void LayoutField(const FieldDecl *D, bool InsertExtraPadding); - void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize, - bool FieldPacked, const FieldDecl *D); - void LayoutBitField(const FieldDecl *D); - - TargetCXXABI getCXXABI() const { - return Context.getTargetInfo().getCXXABI(); - } - - /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. - llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; - - typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> - BaseSubobjectInfoMapTy; - - /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases - /// of the class we're laying out to their base subobject info. - BaseSubobjectInfoMapTy VirtualBaseInfo; - - /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the - /// class we're laying out to their base subobject info. - BaseSubobjectInfoMapTy NonVirtualBaseInfo; - - /// ComputeBaseSubobjectInfo - Compute the base subobject information for the - /// bases of the given class. - void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); - - /// ComputeBaseSubobjectInfo - Compute the base subobject information for a - /// single class and all of its base classes. - BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, - bool IsVirtual, - BaseSubobjectInfo *Derived); - - /// DeterminePrimaryBase - Determine the primary base of the given class. - void DeterminePrimaryBase(const CXXRecordDecl *RD); - - void SelectPrimaryVBase(const CXXRecordDecl *RD); - - void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); - - /// LayoutNonVirtualBases - Determines the primary base class (if any) and - /// lays it out. Will then proceed to lay out all non-virtual base clasess. - void LayoutNonVirtualBases(const CXXRecordDecl *RD); - - /// LayoutNonVirtualBase - Lays out a single non-virtual base. - void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); - - void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, - CharUnits Offset); - - /// LayoutVirtualBases - Lays out all the virtual bases. - void LayoutVirtualBases(const CXXRecordDecl *RD, - const CXXRecordDecl *MostDerivedClass); - - /// LayoutVirtualBase - Lays out a single virtual base. - void LayoutVirtualBase(const BaseSubobjectInfo *Base); - - /// LayoutBase - Will lay out a base and return the offset where it was - /// placed, in chars. - CharUnits LayoutBase(const BaseSubobjectInfo *Base); - - /// InitializeLayout - Initialize record layout for the given record decl. - void InitializeLayout(const Decl *D); - - /// FinishLayout - Finalize record layout. Adjust record size based on the - /// alignment. - void FinishLayout(const NamedDecl *D); - - void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment); - void UpdateAlignment(CharUnits NewAlignment) { - UpdateAlignment(NewAlignment, NewAlignment); - } - - /// Retrieve the externally-supplied field offset for the given - /// field. - /// - /// \param Field The field whose offset is being queried. - /// \param ComputedOffset The offset that we've computed for this field. - uint64_t updateExternalFieldOffset(const FieldDecl *Field, - uint64_t ComputedOffset); - - void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, - uint64_t UnpackedOffset, unsigned UnpackedAlign, - bool isPacked, const FieldDecl *D); - - DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); - - CharUnits getSize() const { - assert(Size % Context.getCharWidth() == 0); - return Context.toCharUnitsFromBits(Size); - } - uint64_t getSizeInBits() const { return Size; } - - void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } - void setSize(uint64_t NewSize) { Size = NewSize; } - - CharUnits getAligment() const { return Alignment; } - - CharUnits getDataSize() const { - assert(DataSize % Context.getCharWidth() == 0); - return Context.toCharUnitsFromBits(DataSize); - } - uint64_t getDataSizeInBits() const { return DataSize; } - - void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } - void setDataSize(uint64_t NewSize) { DataSize = NewSize; } - - ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; - void operator=(const ItaniumRecordLayoutBuilder &) = delete; -}; -} // end anonymous namespace - -void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { - for (const auto &I : RD->bases()) { - assert(!I.getType()->isDependentType() && - "Cannot layout class with dependent bases."); - - const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); - - // Check if this is a nearly empty virtual base. - if (I.isVirtual() && Context.isNearlyEmpty(Base)) { - // If it's not an indirect primary base, then we've found our primary - // base. - if (!IndirectPrimaryBases.count(Base)) { - PrimaryBase = Base; - PrimaryBaseIsVirtual = true; - return; - } - - // Is this the first nearly empty virtual base? - if (!FirstNearlyEmptyVBase) - FirstNearlyEmptyVBase = Base; - } - - SelectPrimaryVBase(Base); - if (PrimaryBase) - return; - } -} - -/// DeterminePrimaryBase - Determine the primary base of the given class. -void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { - // If the class isn't dynamic, it won't have a primary base. - if (!RD->isDynamicClass()) - return; - - // Compute all the primary virtual bases for all of our direct and - // indirect bases, and record all their primary virtual base classes. - RD->getIndirectPrimaryBases(IndirectPrimaryBases); - - // If the record has a dynamic base class, attempt to choose a primary base - // class. It is the first (in direct base class order) non-virtual dynamic - // base class, if one exists. - for (const auto &I : RD->bases()) { - // Ignore virtual bases. - if (I.isVirtual()) - continue; - - const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); - - if (Base->isDynamicClass()) { - // We found it. - PrimaryBase = Base; - PrimaryBaseIsVirtual = false; - return; - } - } - - // Under the Itanium ABI, if there is no non-virtual primary base class, - // try to compute the primary virtual base. The primary virtual base is - // the first nearly empty virtual base that is not an indirect primary - // virtual base class, if one exists. - if (RD->getNumVBases() != 0) { - SelectPrimaryVBase(RD); - if (PrimaryBase) - return; - } - - // Otherwise, it is the first indirect primary base class, if one exists. - if (FirstNearlyEmptyVBase) { - PrimaryBase = FirstNearlyEmptyVBase; - PrimaryBaseIsVirtual = true; - return; - } - - assert(!PrimaryBase && "Should not get here with a primary base!"); -} - -BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( - const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { - BaseSubobjectInfo *Info; - - if (IsVirtual) { - // Check if we already have info about this virtual base. - BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; - if (InfoSlot) { - assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); - return InfoSlot; - } - - // We don't, create it. - InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; - Info = InfoSlot; - } else { - Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; - } - - Info->Class = RD; - Info->IsVirtual = IsVirtual; - Info->Derived = nullptr; - Info->PrimaryVirtualBaseInfo = nullptr; - - const CXXRecordDecl *PrimaryVirtualBase = nullptr; - BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; - - // Check if this base has a primary virtual base. - if (RD->getNumVBases()) { - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - if (Layout.isPrimaryBaseVirtual()) { - // This base does have a primary virtual base. - PrimaryVirtualBase = Layout.getPrimaryBase(); - assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); - - // Now check if we have base subobject info about this primary base. - PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); - - if (PrimaryVirtualBaseInfo) { - if (PrimaryVirtualBaseInfo->Derived) { - // We did have info about this primary base, and it turns out that it - // has already been claimed as a primary virtual base for another - // base. - PrimaryVirtualBase = nullptr; - } else { - // We can claim this base as our primary base. - Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; - PrimaryVirtualBaseInfo->Derived = Info; - } - } - } - } - - // Now go through all direct bases. - for (const auto &I : RD->bases()) { - bool IsVirtual = I.isVirtual(); - - const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); - - Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); - } - - if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { - // Traversing the bases must have created the base info for our primary - // virtual base. - PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); - assert(PrimaryVirtualBaseInfo && - "Did not create a primary virtual base!"); - - // Claim the primary virtual base as our primary virtual base. - Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; - PrimaryVirtualBaseInfo->Derived = Info; - } - - return Info; -} - -void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( - const CXXRecordDecl *RD) { - for (const auto &I : RD->bases()) { - bool IsVirtual = I.isVirtual(); - - const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); - - // Compute the base subobject info for this base. - BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, - nullptr); - - if (IsVirtual) { - // ComputeBaseInfo has already added this base for us. - assert(VirtualBaseInfo.count(BaseDecl) && - "Did not add virtual base!"); - } else { - // Add the base info to the map of non-virtual bases. - assert(!NonVirtualBaseInfo.count(BaseDecl) && - "Non-virtual base already exists!"); - NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); - } - } -} - -void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( - CharUnits UnpackedBaseAlign) { - CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; - - // The maximum field alignment overrides base align. - if (!MaxFieldAlignment.isZero()) { - BaseAlign = std::min(BaseAlign, MaxFieldAlignment); - UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); - } - - // Round up the current record size to pointer alignment. - setSize(getSize().alignTo(BaseAlign)); - setDataSize(getSize()); - - // Update the alignment. - UpdateAlignment(BaseAlign, UnpackedBaseAlign); -} - -void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( - const CXXRecordDecl *RD) { - // Then, determine the primary base class. - DeterminePrimaryBase(RD); - - // Compute base subobject info. - ComputeBaseSubobjectInfo(RD); - - // If we have a primary base class, lay it out. - if (PrimaryBase) { - if (PrimaryBaseIsVirtual) { - // If the primary virtual base was a primary virtual base of some other - // base class we'll have to steal it. - BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); - PrimaryBaseInfo->Derived = nullptr; - - // We have a virtual primary base, insert it as an indirect primary base. - IndirectPrimaryBases.insert(PrimaryBase); - - assert(!VisitedVirtualBases.count(PrimaryBase) && - "vbase already visited!"); - VisitedVirtualBases.insert(PrimaryBase); - - LayoutVirtualBase(PrimaryBaseInfo); - } else { - BaseSubobjectInfo *PrimaryBaseInfo = - NonVirtualBaseInfo.lookup(PrimaryBase); - assert(PrimaryBaseInfo && - "Did not find base info for non-virtual primary base!"); - - LayoutNonVirtualBase(PrimaryBaseInfo); - } - - // If this class needs a vtable/vf-table and didn't get one from a - // primary base, add it in now. - } else if (RD->isDynamicClass()) { - assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); - CharUnits PtrWidth = - Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); - CharUnits PtrAlign = - Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); - EnsureVTablePointerAlignment(PtrAlign); - HasOwnVFPtr = true; - setSize(getSize() + PtrWidth); - setDataSize(getSize()); - } - - // Now lay out the non-virtual bases. - for (const auto &I : RD->bases()) { - - // Ignore virtual bases. - if (I.isVirtual()) - continue; - - const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); - - // Skip the primary base, because we've already laid it out. The - // !PrimaryBaseIsVirtual check is required because we might have a - // non-virtual base of the same type as a primary virtual base. - if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) - continue; - - // Lay out the base. - BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); - assert(BaseInfo && "Did not find base info for non-virtual base!"); - - LayoutNonVirtualBase(BaseInfo); - } -} - -void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( - const BaseSubobjectInfo *Base) { - // Layout the base. - CharUnits Offset = LayoutBase(Base); - - // Add its base class offset. - assert(!Bases.count(Base->Class) && "base offset already exists!"); - Bases.insert(std::make_pair(Base->Class, Offset)); - - AddPrimaryVirtualBaseOffsets(Base, Offset); -} - -void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( - const BaseSubobjectInfo *Info, CharUnits Offset) { - // This base isn't interesting, it has no virtual bases. - if (!Info->Class->getNumVBases()) - return; - - // First, check if we have a virtual primary base to add offsets for. - if (Info->PrimaryVirtualBaseInfo) { - assert(Info->PrimaryVirtualBaseInfo->IsVirtual && - "Primary virtual base is not virtual!"); - if (Info->PrimaryVirtualBaseInfo->Derived == Info) { - // Add the offset. - assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && - "primary vbase offset already exists!"); - VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, - ASTRecordLayout::VBaseInfo(Offset, false))); - - // Traverse the primary virtual base. - AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); - } - } - - // Now go through all direct non-virtual bases. - const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); - for (const BaseSubobjectInfo *Base : Info->Bases) { - if (Base->IsVirtual) - continue; - - CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); - AddPrimaryVirtualBaseOffsets(Base, BaseOffset); - } -} - -void ItaniumRecordLayoutBuilder::LayoutVirtualBases( - const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { - const CXXRecordDecl *PrimaryBase; - bool PrimaryBaseIsVirtual; - - if (MostDerivedClass == RD) { - PrimaryBase = this->PrimaryBase; - PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; - } else { - const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); - PrimaryBase = Layout.getPrimaryBase(); - PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); - } - - for (const CXXBaseSpecifier &Base : RD->bases()) { - assert(!Base.getType()->isDependentType() && - "Cannot layout class with dependent bases."); - - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - - if (Base.isVirtual()) { - if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { - bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); - - // Only lay out the virtual base if it's not an indirect primary base. - if (!IndirectPrimaryBase) { - // Only visit virtual bases once. - if (!VisitedVirtualBases.insert(BaseDecl).second) - continue; - - const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); - assert(BaseInfo && "Did not find virtual base info!"); - LayoutVirtualBase(BaseInfo); - } - } - } - - if (!BaseDecl->getNumVBases()) { - // This base isn't interesting since it doesn't have any virtual bases. - continue; - } - - LayoutVirtualBases(BaseDecl, MostDerivedClass); - } -} - -void ItaniumRecordLayoutBuilder::LayoutVirtualBase( - const BaseSubobjectInfo *Base) { - assert(!Base->Derived && "Trying to lay out a primary virtual base!"); - - // Layout the base. - CharUnits Offset = LayoutBase(Base); - - // Add its base class offset. - assert(!VBases.count(Base->Class) && "vbase offset already exists!"); - VBases.insert(std::make_pair(Base->Class, - ASTRecordLayout::VBaseInfo(Offset, false))); - - AddPrimaryVirtualBaseOffsets(Base, Offset); -} - -CharUnits -ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { - const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); - - - CharUnits Offset; - - // Query the external layout to see if it provides an offset. - bool HasExternalLayout = false; - if (UseExternalLayout) { - if (Base->IsVirtual) - HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); - else - HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); - } - - // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. - // Per GCC's documentation, it only applies to non-static data members. - CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); - CharUnits BaseAlign = - (Packed && ((Context.getLangOpts().getClangABICompat() <= - LangOptions::ClangABI::Ver6) || - Context.getTargetInfo().getTriple().isPS4())) - ? CharUnits::One() - : UnpackedBaseAlign; - - // If we have an empty base class, try to place it at offset 0. - if (Base->Class->isEmpty() && - (!HasExternalLayout || Offset == CharUnits::Zero()) && - EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { - setSize(std::max(getSize(), Layout.getSize())); - UpdateAlignment(BaseAlign, UnpackedBaseAlign); - - return CharUnits::Zero(); - } - - // The maximum field alignment overrides base align. - if (!MaxFieldAlignment.isZero()) { - BaseAlign = std::min(BaseAlign, MaxFieldAlignment); - UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); - } - - if (!HasExternalLayout) { - // Round up the current record size to the base's alignment boundary. - Offset = getDataSize().alignTo(BaseAlign); - - // Try to place the base. - while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) - Offset += BaseAlign; - } else { - bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); - (void)Allowed; - assert(Allowed && "Base subobject externally placed at overlapping offset"); - - if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) { - // The externally-supplied base offset is before the base offset we - // computed. Assume that the structure is packed. - Alignment = CharUnits::One(); - InferAlignment = false; - } - } - - if (!Base->Class->isEmpty()) { - // Update the data size. - setDataSize(Offset + Layout.getNonVirtualSize()); - - setSize(std::max(getSize(), getDataSize())); - } else - setSize(std::max(getSize(), Offset + Layout.getSize())); - - // Remember max struct/class alignment. - UpdateAlignment(BaseAlign, UnpackedBaseAlign); - - return Offset; -} - -void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { - if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { - IsUnion = RD->isUnion(); - IsMsStruct = RD->isMsStruct(Context); - } - - Packed = D->hasAttr<PackedAttr>(); - - // Honor the default struct packing maximum alignment flag. - if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { - MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); - } - - // mac68k alignment supersedes maximum field alignment and attribute aligned, - // and forces all structures to have 2-byte alignment. The IBM docs on it - // allude to additional (more complicated) semantics, especially with regard - // to bit-fields, but gcc appears not to follow that. - if (D->hasAttr<AlignMac68kAttr>()) { - IsMac68kAlign = true; - MaxFieldAlignment = CharUnits::fromQuantity(2); - Alignment = CharUnits::fromQuantity(2); - } else { - if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) - MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); - - if (unsigned MaxAlign = D->getMaxAlignment()) - UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); - } - - // If there is an external AST source, ask it for the various offsets. - if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) - if (ExternalASTSource *Source = Context.getExternalSource()) { - UseExternalLayout = Source->layoutRecordType( - RD, External.Size, External.Align, External.FieldOffsets, - External.BaseOffsets, External.VirtualBaseOffsets); - - // Update based on external alignment. - if (UseExternalLayout) { - if (External.Align > 0) { - Alignment = Context.toCharUnitsFromBits(External.Align); - } else { - // The external source didn't have alignment information; infer it. - InferAlignment = true; - } - } - } -} - -void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { - InitializeLayout(D); - LayoutFields(D); - - // Finally, round the size of the total struct up to the alignment of the - // struct itself. - FinishLayout(D); -} - -void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { - InitializeLayout(RD); - - // Lay out the vtable and the non-virtual bases. - LayoutNonVirtualBases(RD); - - LayoutFields(RD); - - NonVirtualSize = Context.toCharUnitsFromBits( - llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); - NonVirtualAlignment = Alignment; - - // Lay out the virtual bases and add the primary virtual base offsets. - LayoutVirtualBases(RD, RD); - - // Finally, round the size of the total struct up to the alignment - // of the struct itself. - FinishLayout(RD); - -#ifndef NDEBUG - // Check that we have base offsets for all bases. - for (const CXXBaseSpecifier &Base : RD->bases()) { - if (Base.isVirtual()) - continue; - - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - - assert(Bases.count(BaseDecl) && "Did not find base offset!"); - } - - // And all virtual bases. - for (const CXXBaseSpecifier &Base : RD->vbases()) { - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - - assert(VBases.count(BaseDecl) && "Did not find base offset!"); - } -#endif -} - -void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { - if (ObjCInterfaceDecl *SD = D->getSuperClass()) { - const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); - - UpdateAlignment(SL.getAlignment()); - - // We start laying out ivars not at the end of the superclass - // structure, but at the next byte following the last field. - setSize(SL.getDataSize()); - setDataSize(getSize()); - } - - InitializeLayout(D); - // Layout each ivar sequentially. - for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; - IVD = IVD->getNextIvar()) - LayoutField(IVD, false); - - // Finally, round the size of the total struct up to the alignment of the - // struct itself. - FinishLayout(D); -} - -void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { - // Layout each field, for now, just sequentially, respecting alignment. In - // the future, this will need to be tweakable by targets. - bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); - bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); - for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { - auto Next(I); - ++Next; - LayoutField(*I, - InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); - } -} - -// Rounds the specified size to have it a multiple of the char size. -static uint64_t -roundUpSizeToCharAlignment(uint64_t Size, - const ASTContext &Context) { - uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); - return llvm::alignTo(Size, CharAlignment); -} - -void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, - uint64_t TypeSize, - bool FieldPacked, - const FieldDecl *D) { - assert(Context.getLangOpts().CPlusPlus && - "Can only have wide bit-fields in C++!"); - - // Itanium C++ ABI 2.4: - // If sizeof(T)*8 < n, let T' be the largest integral POD type with - // sizeof(T')*8 <= n. - - QualType IntegralPODTypes[] = { - Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, - Context.UnsignedLongTy, Context.UnsignedLongLongTy - }; - - QualType Type; - for (const QualType &QT : IntegralPODTypes) { - uint64_t Size = Context.getTypeSize(QT); - - if (Size > FieldSize) - break; - - Type = QT; - } - assert(!Type.isNull() && "Did not find a type!"); - - CharUnits TypeAlign = Context.getTypeAlignInChars(Type); - - // We're not going to use any of the unfilled bits in the last byte. - UnfilledBitsInLastUnit = 0; - LastBitfieldTypeSize = 0; - - uint64_t FieldOffset; - uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; - - if (IsUnion) { - uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, - Context); - setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); - FieldOffset = 0; - } else { - // The bitfield is allocated starting at the next offset aligned - // appropriately for T', with length n bits. - FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); - - uint64_t NewSizeInBits = FieldOffset + FieldSize; - - setDataSize( - llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); - UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; - } - - // Place this field at the current location. - FieldOffsets.push_back(FieldOffset); - - CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, - Context.toBits(TypeAlign), FieldPacked, D); - - // Update the size. - setSize(std::max(getSizeInBits(), getDataSizeInBits())); - - // Remember max struct/class alignment. - UpdateAlignment(TypeAlign); -} - -void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { - bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); - uint64_t FieldSize = D->getBitWidthValue(Context); - TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); - uint64_t TypeSize = FieldInfo.Width; - unsigned FieldAlign = FieldInfo.Align; - - // UnfilledBitsInLastUnit is the difference between the end of the - // last allocated bitfield (i.e. the first bit offset available for - // bitfields) and the end of the current data size in bits (i.e. the - // first bit offset available for non-bitfields). The current data - // size in bits is always a multiple of the char size; additionally, - // for ms_struct records it's also a multiple of the - // LastBitfieldTypeSize (if set). - - // The struct-layout algorithm is dictated by the platform ABI, - // which in principle could use almost any rules it likes. In - // practice, UNIXy targets tend to inherit the algorithm described - // in the System V generic ABI. The basic bitfield layout rule in - // System V is to place bitfields at the next available bit offset - // where the entire bitfield would fit in an aligned storage unit of - // the declared type; it's okay if an earlier or later non-bitfield - // is allocated in the same storage unit. However, some targets - // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't - // require this storage unit to be aligned, and therefore always put - // the bitfield at the next available bit offset. - - // ms_struct basically requests a complete replacement of the - // platform ABI's struct-layout algorithm, with the high-level goal - // of duplicating MSVC's layout. For non-bitfields, this follows - // the standard algorithm. The basic bitfield layout rule is to - // allocate an entire unit of the bitfield's declared type - // (e.g. 'unsigned long'), then parcel it up among successive - // bitfields whose declared types have the same size, making a new - // unit as soon as the last can no longer store the whole value. - // Since it completely replaces the platform ABI's algorithm, - // settings like !useBitFieldTypeAlignment() do not apply. - - // A zero-width bitfield forces the use of a new storage unit for - // later bitfields. In general, this occurs by rounding up the - // current size of the struct as if the algorithm were about to - // place a non-bitfield of the field's formal type. Usually this - // does not change the alignment of the struct itself, but it does - // on some targets (those that useZeroLengthBitfieldAlignment(), - // e.g. ARM). In ms_struct layout, zero-width bitfields are - // ignored unless they follow a non-zero-width bitfield. - - // A field alignment restriction (e.g. from #pragma pack) or - // specification (e.g. from __attribute__((aligned))) changes the - // formal alignment of the field. For System V, this alters the - // required alignment of the notional storage unit that must contain - // the bitfield. For ms_struct, this only affects the placement of - // new storage units. In both cases, the effect of #pragma pack is - // ignored on zero-width bitfields. - - // On System V, a packed field (e.g. from #pragma pack or - // __attribute__((packed))) always uses the next available bit - // offset. - - // In an ms_struct struct, the alignment of a fundamental type is - // always equal to its size. This is necessary in order to mimic - // the i386 alignment rules on targets which might not fully align - // all types (e.g. Darwin PPC32, where alignof(long long) == 4). - - // First, some simple bookkeeping to perform for ms_struct structs. - if (IsMsStruct) { - // The field alignment for integer types is always the size. - FieldAlign = TypeSize; - - // If the previous field was not a bitfield, or was a bitfield - // with a different storage unit size, or if this field doesn't fit into - // the current storage unit, we're done with that storage unit. - if (LastBitfieldTypeSize != TypeSize || - UnfilledBitsInLastUnit < FieldSize) { - // Also, ignore zero-length bitfields after non-bitfields. - if (!LastBitfieldTypeSize && !FieldSize) - FieldAlign = 1; - - UnfilledBitsInLastUnit = 0; - LastBitfieldTypeSize = 0; - } - } - - // If the field is wider than its declared type, it follows - // different rules in all cases. - if (FieldSize > TypeSize) { - LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D); - return; - } - - // Compute the next available bit offset. - uint64_t FieldOffset = - IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); - - // Handle targets that don't honor bitfield type alignment. - if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { - // Some such targets do honor it on zero-width bitfields. - if (FieldSize == 0 && - Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { - // The alignment to round up to is the max of the field's natural - // alignment and a target-specific fixed value (sometimes zero). - unsigned ZeroLengthBitfieldBoundary = - Context.getTargetInfo().getZeroLengthBitfieldBoundary(); - FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); - - // If that doesn't apply, just ignore the field alignment. - } else { - FieldAlign = 1; - } - } - - // Remember the alignment we would have used if the field were not packed. - unsigned UnpackedFieldAlign = FieldAlign; - - // Ignore the field alignment if the field is packed unless it has zero-size. - if (!IsMsStruct && FieldPacked && FieldSize != 0) - FieldAlign = 1; - - // But, if there's an 'aligned' attribute on the field, honor that. - unsigned ExplicitFieldAlign = D->getMaxAlignment(); - if (ExplicitFieldAlign) { - FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); - UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); - } - - // But, if there's a #pragma pack in play, that takes precedent over - // even the 'aligned' attribute, for non-zero-width bitfields. - unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); - if (!MaxFieldAlignment.isZero() && FieldSize) { - UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); - if (FieldPacked) - FieldAlign = UnpackedFieldAlign; - else - FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); - } - - // But, ms_struct just ignores all of that in unions, even explicit - // alignment attributes. - if (IsMsStruct && IsUnion) { - FieldAlign = UnpackedFieldAlign = 1; - } - - // For purposes of diagnostics, we're going to simultaneously - // compute the field offsets that we would have used if we weren't - // adding any alignment padding or if the field weren't packed. - uint64_t UnpaddedFieldOffset = FieldOffset; - uint64_t UnpackedFieldOffset = FieldOffset; - - // Check if we need to add padding to fit the bitfield within an - // allocation unit with the right size and alignment. The rules are - // somewhat different here for ms_struct structs. - if (IsMsStruct) { - // If it's not a zero-width bitfield, and we can fit the bitfield - // into the active storage unit (and we haven't already decided to - // start a new storage unit), just do so, regardless of any other - // other consideration. Otherwise, round up to the right alignment. - if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { - FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); - UnpackedFieldOffset = - llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); - UnfilledBitsInLastUnit = 0; - } - - } else { - // #pragma pack, with any value, suppresses the insertion of padding. - bool AllowPadding = MaxFieldAlignment.isZero(); - - // Compute the real offset. - if (FieldSize == 0 || - (AllowPadding && - (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) { - FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); - } else if (ExplicitFieldAlign && - (MaxFieldAlignmentInBits == 0 || - ExplicitFieldAlign <= MaxFieldAlignmentInBits) && - Context.getTargetInfo().useExplicitBitFieldAlignment()) { - // TODO: figure it out what needs to be done on targets that don't honor - // bit-field type alignment like ARM APCS ABI. - FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); - } - - // Repeat the computation for diagnostic purposes. - if (FieldSize == 0 || - (AllowPadding && - (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize)) - UnpackedFieldOffset = - llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); - else if (ExplicitFieldAlign && - (MaxFieldAlignmentInBits == 0 || - ExplicitFieldAlign <= MaxFieldAlignmentInBits) && - Context.getTargetInfo().useExplicitBitFieldAlignment()) - UnpackedFieldOffset = - llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); - } - - // If we're using external layout, give the external layout a chance - // to override this information. - if (UseExternalLayout) - FieldOffset = updateExternalFieldOffset(D, FieldOffset); - - // Okay, place the bitfield at the calculated offset. - FieldOffsets.push_back(FieldOffset); - - // Bookkeeping: - - // Anonymous members don't affect the overall record alignment, - // except on targets where they do. - if (!IsMsStruct && - !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && - !D->getIdentifier()) - FieldAlign = UnpackedFieldAlign = 1; - - // Diagnose differences in layout due to padding or packing. - if (!UseExternalLayout) - CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, - UnpackedFieldAlign, FieldPacked, D); - - // Update DataSize to include the last byte containing (part of) the bitfield. - - // For unions, this is just a max operation, as usual. - if (IsUnion) { - // For ms_struct, allocate the entire storage unit --- unless this - // is a zero-width bitfield, in which case just use a size of 1. - uint64_t RoundedFieldSize; - if (IsMsStruct) { - RoundedFieldSize = - (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth()); - - // Otherwise, allocate just the number of bytes required to store - // the bitfield. - } else { - RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); - } - setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); - - // For non-zero-width bitfields in ms_struct structs, allocate a new - // storage unit if necessary. - } else if (IsMsStruct && FieldSize) { - // We should have cleared UnfilledBitsInLastUnit in every case - // where we changed storage units. - if (!UnfilledBitsInLastUnit) { - setDataSize(FieldOffset + TypeSize); - UnfilledBitsInLastUnit = TypeSize; - } - UnfilledBitsInLastUnit -= FieldSize; - LastBitfieldTypeSize = TypeSize; - - // Otherwise, bump the data size up to include the bitfield, - // including padding up to char alignment, and then remember how - // bits we didn't use. - } else { - uint64_t NewSizeInBits = FieldOffset + FieldSize; - uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); - setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); - UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; - - // The only time we can get here for an ms_struct is if this is a - // zero-width bitfield, which doesn't count as anything for the - // purposes of unfilled bits. - LastBitfieldTypeSize = 0; - } - - // Update the size. - setSize(std::max(getSizeInBits(), getDataSizeInBits())); - - // Remember max struct/class alignment. - UnadjustedAlignment = - std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); - UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), - Context.toCharUnitsFromBits(UnpackedFieldAlign)); -} - -void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, - bool InsertExtraPadding) { - if (D->isBitField()) { - LayoutBitField(D); - return; - } - - uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; - - // Reset the unfilled bits. - UnfilledBitsInLastUnit = 0; - LastBitfieldTypeSize = 0; - - bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); - CharUnits FieldOffset = - IsUnion ? CharUnits::Zero() : getDataSize(); - CharUnits FieldSize; - CharUnits FieldAlign; - - if (D->getType()->isIncompleteArrayType()) { - // This is a flexible array member; we can't directly - // query getTypeInfo about these, so we figure it out here. - // Flexible array members don't have any size, but they - // have to be aligned appropriately for their element type. - FieldSize = CharUnits::Zero(); - const ArrayType* ATy = Context.getAsArrayType(D->getType()); - FieldAlign = Context.getTypeAlignInChars(ATy->getElementType()); - } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) { - unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType()); - FieldSize = - Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS)); - FieldAlign = - Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS)); - } else { - std::pair<CharUnits, CharUnits> FieldInfo = - Context.getTypeInfoInChars(D->getType()); - FieldSize = FieldInfo.first; - FieldAlign = FieldInfo.second; - - if (IsMsStruct) { - // If MS bitfield layout is required, figure out what type is being - // laid out and align the field to the width of that type. - - // Resolve all typedefs down to their base type and round up the field - // alignment if necessary. - QualType T = Context.getBaseElementType(D->getType()); - if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { - CharUnits TypeSize = Context.getTypeSizeInChars(BTy); - - if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { - assert( - !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && - "Non PowerOf2 size in MSVC mode"); - // Base types with sizes that aren't a power of two don't work - // with the layout rules for MS structs. This isn't an issue in - // MSVC itself since there are no such base data types there. - // On e.g. x86_32 mingw and linux, long double is 12 bytes though. - // Any structs involving that data type obviously can't be ABI - // compatible with MSVC regardless of how it is laid out. - - // Since ms_struct can be mass enabled (via a pragma or via the - // -mms-bitfields command line parameter), this can trigger for - // structs that don't actually need MSVC compatibility, so we - // need to be able to sidestep the ms_struct layout for these types. - - // Since the combination of -mms-bitfields together with structs - // like max_align_t (which contains a long double) for mingw is - // quite comon (and GCC handles it silently), just handle it - // silently there. For other targets that have ms_struct enabled - // (most probably via a pragma or attribute), trigger a diagnostic - // that defaults to an error. - if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) - Diag(D->getLocation(), diag::warn_npot_ms_struct); - } - if (TypeSize > FieldAlign && - llvm::isPowerOf2_64(TypeSize.getQuantity())) - FieldAlign = TypeSize; - } - } - } - - // The align if the field is not packed. This is to check if the attribute - // was unnecessary (-Wpacked). - CharUnits UnpackedFieldAlign = FieldAlign; - CharUnits UnpackedFieldOffset = FieldOffset; - - if (FieldPacked) - FieldAlign = CharUnits::One(); - CharUnits MaxAlignmentInChars = - Context.toCharUnitsFromBits(D->getMaxAlignment()); - FieldAlign = std::max(FieldAlign, MaxAlignmentInChars); - UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); - - // The maximum field alignment overrides the aligned attribute. - if (!MaxFieldAlignment.isZero()) { - FieldAlign = std::min(FieldAlign, MaxFieldAlignment); - UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); - } - - // Round up the current record size to the field's alignment boundary. - FieldOffset = FieldOffset.alignTo(FieldAlign); - UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); - - if (UseExternalLayout) { - FieldOffset = Context.toCharUnitsFromBits( - updateExternalFieldOffset(D, Context.toBits(FieldOffset))); - - if (!IsUnion && EmptySubobjects) { - // Record the fact that we're placing a field at this offset. - bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); - (void)Allowed; - assert(Allowed && "Externally-placed field cannot be placed here"); - } - } else { - if (!IsUnion && EmptySubobjects) { - // Check if we can place the field at this offset. - while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { - // We couldn't place the field at the offset. Try again at a new offset. - FieldOffset += FieldAlign; - } - } - } - - // Place this field at the current location. - FieldOffsets.push_back(Context.toBits(FieldOffset)); - - if (!UseExternalLayout) - CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, - Context.toBits(UnpackedFieldOffset), - Context.toBits(UnpackedFieldAlign), FieldPacked, D); - - if (InsertExtraPadding) { - CharUnits ASanAlignment = CharUnits::fromQuantity(8); - CharUnits ExtraSizeForAsan = ASanAlignment; - if (FieldSize % ASanAlignment) - ExtraSizeForAsan += - ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); - FieldSize += ExtraSizeForAsan; - } - - // Reserve space for this field. - uint64_t FieldSizeInBits = Context.toBits(FieldSize); - if (IsUnion) - setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits)); - else - setDataSize(FieldOffset + FieldSize); - - // Update the size. - setSize(std::max(getSizeInBits(), getDataSizeInBits())); - - // Remember max struct/class alignment. - UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); - UpdateAlignment(FieldAlign, UnpackedFieldAlign); -} - -void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { - // In C++, records cannot be of size 0. - if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { - if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { - // Compatibility with gcc requires a class (pod or non-pod) - // which is not empty but of size 0; such as having fields of - // array of zero-length, remains of Size 0 - if (RD->isEmpty()) - setSize(CharUnits::One()); - } - else - setSize(CharUnits::One()); - } - - // Finally, round the size of the record up to the alignment of the - // record itself. - uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; - uint64_t UnpackedSizeInBits = - llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); - uint64_t RoundedSize = - llvm::alignTo(getSizeInBits(), Context.toBits(Alignment)); - - if (UseExternalLayout) { - // If we're inferring alignment, and the external size is smaller than - // our size after we've rounded up to alignment, conservatively set the - // alignment to 1. - if (InferAlignment && External.Size < RoundedSize) { - Alignment = CharUnits::One(); - InferAlignment = false; - } - setSize(External.Size); - return; - } - - // Set the size to the final size. - setSize(RoundedSize); - - unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); - if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { - // Warn if padding was introduced to the struct/class/union. - if (getSizeInBits() > UnpaddedSize) { - unsigned PadSize = getSizeInBits() - UnpaddedSize; - bool InBits = true; - if (PadSize % CharBitNum == 0) { - PadSize = PadSize / CharBitNum; - InBits = false; - } - Diag(RD->getLocation(), diag::warn_padded_struct_size) - << Context.getTypeDeclType(RD) - << PadSize - << (InBits ? 1 : 0); // (byte|bit) - } - - // Warn if we packed it unnecessarily, when the unpacked alignment is not - // greater than the one after packing, the size in bits doesn't change and - // the offset of each field is identical. - if (Packed && UnpackedAlignment <= Alignment && - UnpackedSizeInBits == getSizeInBits() && !HasPackedField) - Diag(D->getLocation(), diag::warn_unnecessary_packed) - << Context.getTypeDeclType(RD); - } -} - -void ItaniumRecordLayoutBuilder::UpdateAlignment( - CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { - // The alignment is not modified when using 'mac68k' alignment or when - // we have an externally-supplied layout that also provides overall alignment. - if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) - return; - - if (NewAlignment > Alignment) { - assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && - "Alignment not a power of 2"); - Alignment = NewAlignment; - } - - if (UnpackedNewAlignment > UnpackedAlignment) { - assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && - "Alignment not a power of 2"); - UnpackedAlignment = UnpackedNewAlignment; - } -} - -uint64_t -ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, - uint64_t ComputedOffset) { - uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); - - if (InferAlignment && ExternalFieldOffset < ComputedOffset) { - // The externally-supplied field offset is before the field offset we - // computed. Assume that the structure is packed. - Alignment = CharUnits::One(); - InferAlignment = false; - } - - // Use the externally-supplied field offset. - return ExternalFieldOffset; -} - -/// Get diagnostic %select index for tag kind for -/// field padding diagnostic message. -/// WARNING: Indexes apply to particular diagnostics only! -/// -/// \returns diagnostic %select index. -static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { - switch (Tag) { - case TTK_Struct: return 0; - case TTK_Interface: return 1; - case TTK_Class: return 2; - default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); - } -} - -void ItaniumRecordLayoutBuilder::CheckFieldPadding( - uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, - unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { - // We let objc ivars without warning, objc interfaces generally are not used - // for padding tricks. - if (isa<ObjCIvarDecl>(D)) - return; - - // Don't warn about structs created without a SourceLocation. This can - // be done by clients of the AST, such as codegen. - if (D->getLocation().isInvalid()) - return; - - unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); - - // Warn if padding was introduced to the struct/class. - if (!IsUnion && Offset > UnpaddedOffset) { - unsigned PadSize = Offset - UnpaddedOffset; - bool InBits = true; - if (PadSize % CharBitNum == 0) { - PadSize = PadSize / CharBitNum; - InBits = false; - } - if (D->getIdentifier()) - Diag(D->getLocation(), diag::warn_padded_struct_field) - << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) - << Context.getTypeDeclType(D->getParent()) - << PadSize - << (InBits ? 1 : 0) // (byte|bit) - << D->getIdentifier(); - else - Diag(D->getLocation(), diag::warn_padded_struct_anon_field) - << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) - << Context.getTypeDeclType(D->getParent()) - << PadSize - << (InBits ? 1 : 0); // (byte|bit) - } - if (isPacked && Offset != UnpackedOffset) { - HasPackedField = true; - } -} - -static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, - const CXXRecordDecl *RD) { - // If a class isn't polymorphic it doesn't have a key function. - if (!RD->isPolymorphic()) - return nullptr; - - // A class that is not externally visible doesn't have a key function. (Or - // at least, there's no point to assigning a key function to such a class; - // this doesn't affect the ABI.) - if (!RD->isExternallyVisible()) - return nullptr; - - // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. - // Same behavior as GCC. - TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); - if (TSK == TSK_ImplicitInstantiation || - TSK == TSK_ExplicitInstantiationDeclaration || - TSK == TSK_ExplicitInstantiationDefinition) - return nullptr; - - bool allowInlineFunctions = - Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); - - for (const CXXMethodDecl *MD : RD->methods()) { - if (!MD->isVirtual()) - continue; - - if (MD->isPure()) - continue; - - // Ignore implicit member functions, they are always marked as inline, but - // they don't have a body until they're defined. - if (MD->isImplicit()) - continue; - - if (MD->isInlineSpecified()) - continue; - - if (MD->hasInlineBody()) - continue; - - // Ignore inline deleted or defaulted functions. - if (!MD->isUserProvided()) - continue; - - // In certain ABIs, ignore functions with out-of-line inline definitions. - if (!allowInlineFunctions) { - const FunctionDecl *Def; - if (MD->hasBody(Def) && Def->isInlineSpecified()) - continue; - } - - if (Context.getLangOpts().CUDA) { - // While compiler may see key method in this TU, during CUDA - // compilation we should ignore methods that are not accessible - // on this side of compilation. - if (Context.getLangOpts().CUDAIsDevice) { - // In device mode ignore methods without __device__ attribute. - if (!MD->hasAttr<CUDADeviceAttr>()) - continue; - } else { - // In host mode ignore __device__-only methods. - if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) - continue; - } - } - - // If the key function is dllimport but the class isn't, then the class has - // no key function. The DLL that exports the key function won't export the - // vtable in this case. - if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>()) - return nullptr; - - // We found it. - return MD; - } - - return nullptr; -} - -DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, - unsigned DiagID) { - return Context.getDiagnostics().Report(Loc, DiagID); -} - -/// Does the target C++ ABI require us to skip over the tail-padding -/// of the given class (considering it as a base class) when allocating -/// objects? -static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { - switch (ABI.getTailPaddingUseRules()) { - case TargetCXXABI::AlwaysUseTailPadding: - return false; - - case TargetCXXABI::UseTailPaddingUnlessPOD03: - // FIXME: To the extent that this is meant to cover the Itanium ABI - // rules, we should implement the restrictions about over-sized - // bitfields: - // - // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : - // In general, a type is considered a POD for the purposes of - // layout if it is a POD type (in the sense of ISO C++ - // [basic.types]). However, a POD-struct or POD-union (in the - // sense of ISO C++ [class]) with a bitfield member whose - // declared width is wider than the declared type of the - // bitfield is not a POD for the purpose of layout. Similarly, - // an array type is not a POD for the purpose of layout if the - // element type of the array is not a POD for the purpose of - // layout. - // - // Where references to the ISO C++ are made in this paragraph, - // the Technical Corrigendum 1 version of the standard is - // intended. - return RD->isPOD(); - - case TargetCXXABI::UseTailPaddingUnlessPOD11: - // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), - // but with a lot of abstraction penalty stripped off. This does - // assume that these properties are set correctly even in C++98 - // mode; fortunately, that is true because we want to assign - // consistently semantics to the type-traits intrinsics (or at - // least as many of them as possible). - return RD->isTrivial() && RD->isCXX11StandardLayout(); - } - - llvm_unreachable("bad tail-padding use kind"); -} - -static bool isMsLayout(const ASTContext &Context) { - return Context.getTargetInfo().getCXXABI().isMicrosoft(); -} - -// This section contains an implementation of struct layout that is, up to the -// included tests, compatible with cl.exe (2013). The layout produced is -// significantly different than those produced by the Itanium ABI. Here we note -// the most important differences. -// -// * The alignment of bitfields in unions is ignored when computing the -// alignment of the union. -// * The existence of zero-width bitfield that occurs after anything other than -// a non-zero length bitfield is ignored. -// * There is no explicit primary base for the purposes of layout. All bases -// with vfptrs are laid out first, followed by all bases without vfptrs. -// * The Itanium equivalent vtable pointers are split into a vfptr (virtual -// function pointer) and a vbptr (virtual base pointer). They can each be -// shared with a, non-virtual bases. These bases need not be the same. vfptrs -// always occur at offset 0. vbptrs can occur at an arbitrary offset and are -// placed after the lexicographically last non-virtual base. This placement -// is always before fields but can be in the middle of the non-virtual bases -// due to the two-pass layout scheme for non-virtual-bases. -// * Virtual bases sometimes require a 'vtordisp' field that is laid out before -// the virtual base and is used in conjunction with virtual overrides during -// construction and destruction. This is always a 4 byte value and is used as -// an alternative to constructor vtables. -// * vtordisps are allocated in a block of memory with size and alignment equal -// to the alignment of the completed structure (before applying __declspec( -// align())). The vtordisp always occur at the end of the allocation block, -// immediately prior to the virtual base. -// * vfptrs are injected after all bases and fields have been laid out. In -// order to guarantee proper alignment of all fields, the vfptr injection -// pushes all bases and fields back by the alignment imposed by those bases -// and fields. This can potentially add a significant amount of padding. -// vfptrs are always injected at offset 0. -// * vbptrs are injected after all bases and fields have been laid out. In -// order to guarantee proper alignment of all fields, the vfptr injection -// pushes all bases and fields back by the alignment imposed by those bases -// and fields. This can potentially add a significant amount of padding. -// vbptrs are injected immediately after the last non-virtual base as -// lexicographically ordered in the code. If this site isn't pointer aligned -// the vbptr is placed at the next properly aligned location. Enough padding -// is added to guarantee a fit. -// * The last zero sized non-virtual base can be placed at the end of the -// struct (potentially aliasing another object), or may alias with the first -// field, even if they are of the same type. -// * The last zero size virtual base may be placed at the end of the struct -// potentially aliasing another object. -// * The ABI attempts to avoid aliasing of zero sized bases by adding padding -// between bases or vbases with specific properties. The criteria for -// additional padding between two bases is that the first base is zero sized -// or ends with a zero sized subobject and the second base is zero sized or -// trails with a zero sized base or field (sharing of vfptrs can reorder the -// layout of the so the leading base is not always the first one declared). -// This rule does take into account fields that are not records, so padding -// will occur even if the last field is, e.g. an int. The padding added for -// bases is 1 byte. The padding added between vbases depends on the alignment -// of the object but is at least 4 bytes (in both 32 and 64 bit modes). -// * There is no concept of non-virtual alignment, non-virtual alignment and -// alignment are always identical. -// * There is a distinction between alignment and required alignment. -// __declspec(align) changes the required alignment of a struct. This -// alignment is _always_ obeyed, even in the presence of #pragma pack. A -// record inherits required alignment from all of its fields and bases. -// * __declspec(align) on bitfields has the effect of changing the bitfield's -// alignment instead of its required alignment. This is the only known way -// to make the alignment of a struct bigger than 8. Interestingly enough -// this alignment is also immune to the effects of #pragma pack and can be -// used to create structures with large alignment under #pragma pack. -// However, because it does not impact required alignment, such a structure, -// when used as a field or base, will not be aligned if #pragma pack is -// still active at the time of use. -// -// Known incompatibilities: -// * all: #pragma pack between fields in a record -// * 2010 and back: If the last field in a record is a bitfield, every object -// laid out after the record will have extra padding inserted before it. The -// extra padding will have size equal to the size of the storage class of the -// bitfield. 0 sized bitfields don't exhibit this behavior and the extra -// padding can be avoided by adding a 0 sized bitfield after the non-zero- -// sized bitfield. -// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or -// greater due to __declspec(align()) then a second layout phase occurs after -// The locations of the vf and vb pointers are known. This layout phase -// suffers from the "last field is a bitfield" bug in 2010 and results in -// _every_ field getting padding put in front of it, potentially including the -// vfptr, leaving the vfprt at a non-zero location which results in a fault if -// anything tries to read the vftbl. The second layout phase also treats -// bitfields as separate entities and gives them each storage rather than -// packing them. Additionally, because this phase appears to perform a -// (an unstable) sort on the members before laying them out and because merged -// bitfields have the same address, the bitfields end up in whatever order -// the sort left them in, a behavior we could never hope to replicate. - -namespace { -struct MicrosoftRecordLayoutBuilder { - struct ElementInfo { - CharUnits Size; - CharUnits Alignment; - }; - typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; - MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {} -private: - MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; - void operator=(const MicrosoftRecordLayoutBuilder &) = delete; -public: - void layout(const RecordDecl *RD); - void cxxLayout(const CXXRecordDecl *RD); - /// Initializes size and alignment and honors some flags. - void initializeLayout(const RecordDecl *RD); - /// Initialized C++ layout, compute alignment and virtual alignment and - /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is - /// laid out. - void initializeCXXLayout(const CXXRecordDecl *RD); - void layoutNonVirtualBases(const CXXRecordDecl *RD); - void layoutNonVirtualBase(const CXXRecordDecl *RD, - const CXXRecordDecl *BaseDecl, - const ASTRecordLayout &BaseLayout, - const ASTRecordLayout *&PreviousBaseLayout); - void injectVFPtr(const CXXRecordDecl *RD); - void injectVBPtr(const CXXRecordDecl *RD); - /// Lays out the fields of the record. Also rounds size up to - /// alignment. - void layoutFields(const RecordDecl *RD); - void layoutField(const FieldDecl *FD); - void layoutBitField(const FieldDecl *FD); - /// Lays out a single zero-width bit-field in the record and handles - /// special cases associated with zero-width bit-fields. - void layoutZeroWidthBitField(const FieldDecl *FD); - void layoutVirtualBases(const CXXRecordDecl *RD); - void finalizeLayout(const RecordDecl *RD); - /// Gets the size and alignment of a base taking pragma pack and - /// __declspec(align) into account. - ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); - /// Gets the size and alignment of a field taking pragma pack and - /// __declspec(align) into account. It also updates RequiredAlignment as a - /// side effect because it is most convenient to do so here. - ElementInfo getAdjustedElementInfo(const FieldDecl *FD); - /// Places a field at an offset in CharUnits. - void placeFieldAtOffset(CharUnits FieldOffset) { - FieldOffsets.push_back(Context.toBits(FieldOffset)); - } - /// Places a bitfield at a bit offset. - void placeFieldAtBitOffset(uint64_t FieldOffset) { - FieldOffsets.push_back(FieldOffset); - } - /// Compute the set of virtual bases for which vtordisps are required. - void computeVtorDispSet( - llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, - const CXXRecordDecl *RD) const; - const ASTContext &Context; - /// The size of the record being laid out. - CharUnits Size; - /// The non-virtual size of the record layout. - CharUnits NonVirtualSize; - /// The data size of the record layout. - CharUnits DataSize; - /// The current alignment of the record layout. - CharUnits Alignment; - /// The maximum allowed field alignment. This is set by #pragma pack. - CharUnits MaxFieldAlignment; - /// The alignment that this record must obey. This is imposed by - /// __declspec(align()) on the record itself or one of its fields or bases. - CharUnits RequiredAlignment; - /// The size of the allocation of the currently active bitfield. - /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield - /// is true. - CharUnits CurrentBitfieldSize; - /// Offset to the virtual base table pointer (if one exists). - CharUnits VBPtrOffset; - /// Minimum record size possible. - CharUnits MinEmptyStructSize; - /// The size and alignment info of a pointer. - ElementInfo PointerInfo; - /// The primary base class (if one exists). - const CXXRecordDecl *PrimaryBase; - /// The class we share our vb-pointer with. - const CXXRecordDecl *SharedVBPtrBase; - /// The collection of field offsets. - SmallVector<uint64_t, 16> FieldOffsets; - /// Base classes and their offsets in the record. - BaseOffsetsMapTy Bases; - /// virtual base classes and their offsets in the record. - ASTRecordLayout::VBaseOffsetsMapTy VBases; - /// The number of remaining bits in our last bitfield allocation. - /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is - /// true. - unsigned RemainingBitsInField; - bool IsUnion : 1; - /// True if the last field laid out was a bitfield and was not 0 - /// width. - bool LastFieldIsNonZeroWidthBitfield : 1; - /// True if the class has its own vftable pointer. - bool HasOwnVFPtr : 1; - /// True if the class has a vbtable pointer. - bool HasVBPtr : 1; - /// True if the last sub-object within the type is zero sized or the - /// object itself is zero sized. This *does not* count members that are not - /// records. Only used for MS-ABI. - bool EndsWithZeroSizedObject : 1; - /// True if this class is zero sized or first base is zero sized or - /// has this property. Only used for MS-ABI. - bool LeadsWithZeroSizedBase : 1; - - /// True if the external AST source provided a layout for this record. - bool UseExternalLayout : 1; - - /// The layout provided by the external AST source. Only active if - /// UseExternalLayout is true. - ExternalLayout External; -}; -} // namespace - -MicrosoftRecordLayoutBuilder::ElementInfo -MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( - const ASTRecordLayout &Layout) { - ElementInfo Info; - Info.Alignment = Layout.getAlignment(); - // Respect pragma pack. - if (!MaxFieldAlignment.isZero()) - Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); - // Track zero-sized subobjects here where it's already available. - EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); - // Respect required alignment, this is necessary because we may have adjusted - // the alignment in the case of pragam pack. Note that the required alignment - // doesn't actually apply to the struct alignment at this point. - Alignment = std::max(Alignment, Info.Alignment); - RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); - Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); - Info.Size = Layout.getNonVirtualSize(); - return Info; -} - -MicrosoftRecordLayoutBuilder::ElementInfo -MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( - const FieldDecl *FD) { - // Get the alignment of the field type's natural alignment, ignore any - // alignment attributes. - ElementInfo Info; - std::tie(Info.Size, Info.Alignment) = - Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); - // Respect align attributes on the field. - CharUnits FieldRequiredAlignment = - Context.toCharUnitsFromBits(FD->getMaxAlignment()); - // Respect align attributes on the type. - if (Context.isAlignmentRequired(FD->getType())) - FieldRequiredAlignment = std::max( - Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); - // Respect attributes applied to subobjects of the field. - if (FD->isBitField()) - // For some reason __declspec align impacts alignment rather than required - // alignment when it is applied to bitfields. - Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); - else { - if (auto RT = - FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { - auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); - EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); - FieldRequiredAlignment = std::max(FieldRequiredAlignment, - Layout.getRequiredAlignment()); - } - // Capture required alignment as a side-effect. - RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); - } - // Respect pragma pack, attribute pack and declspec align - if (!MaxFieldAlignment.isZero()) - Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); - if (FD->hasAttr<PackedAttr>()) - Info.Alignment = CharUnits::One(); - Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); - return Info; -} - -void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { - // For C record layout, zero-sized records always have size 4. - MinEmptyStructSize = CharUnits::fromQuantity(4); - initializeLayout(RD); - layoutFields(RD); - DataSize = Size = Size.alignTo(Alignment); - RequiredAlignment = std::max( - RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); - finalizeLayout(RD); -} - -void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { - // The C++ standard says that empty structs have size 1. - MinEmptyStructSize = CharUnits::One(); - initializeLayout(RD); - initializeCXXLayout(RD); - layoutNonVirtualBases(RD); - layoutFields(RD); - injectVBPtr(RD); - injectVFPtr(RD); - if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) - Alignment = std::max(Alignment, PointerInfo.Alignment); - auto RoundingAlignment = Alignment; - if (!MaxFieldAlignment.isZero()) - RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); - if (!UseExternalLayout) - Size = Size.alignTo(RoundingAlignment); - NonVirtualSize = Size; - RequiredAlignment = std::max( - RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); - layoutVirtualBases(RD); - finalizeLayout(RD); -} - -void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { - IsUnion = RD->isUnion(); - Size = CharUnits::Zero(); - Alignment = CharUnits::One(); - // In 64-bit mode we always perform an alignment step after laying out vbases. - // In 32-bit mode we do not. The check to see if we need to perform alignment - // checks the RequiredAlignment field and performs alignment if it isn't 0. - RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() - ? CharUnits::One() - : CharUnits::Zero(); - // Compute the maximum field alignment. - MaxFieldAlignment = CharUnits::Zero(); - // Honor the default struct packing maximum alignment flag. - if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) - MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); - // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger - // than the pointer size. - if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ - unsigned PackedAlignment = MFAA->getAlignment(); - if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0)) - MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); - } - // Packed attribute forces max field alignment to be 1. - if (RD->hasAttr<PackedAttr>()) - MaxFieldAlignment = CharUnits::One(); - - // Try to respect the external layout if present. - UseExternalLayout = false; - if (ExternalASTSource *Source = Context.getExternalSource()) - UseExternalLayout = Source->layoutRecordType( - RD, External.Size, External.Align, External.FieldOffsets, - External.BaseOffsets, External.VirtualBaseOffsets); -} - -void -MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { - EndsWithZeroSizedObject = false; - LeadsWithZeroSizedBase = false; - HasOwnVFPtr = false; - HasVBPtr = false; - PrimaryBase = nullptr; - SharedVBPtrBase = nullptr; - // Calculate pointer size and alignment. These are used for vfptr and vbprt - // injection. - PointerInfo.Size = - Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); - PointerInfo.Alignment = - Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); - // Respect pragma pack. - if (!MaxFieldAlignment.isZero()) - PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); -} - -void -MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { - // The MS-ABI lays out all bases that contain leading vfptrs before it lays - // out any bases that do not contain vfptrs. We implement this as two passes - // over the bases. This approach guarantees that the primary base is laid out - // first. We use these passes to calculate some additional aggregated - // information about the bases, such as required alignment and the presence of - // zero sized members. - const ASTRecordLayout *PreviousBaseLayout = nullptr; - // Iterate through the bases and lay out the non-virtual ones. - for (const CXXBaseSpecifier &Base : RD->bases()) { - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); - // Mark and skip virtual bases. - if (Base.isVirtual()) { - HasVBPtr = true; - continue; - } - // Check for a base to share a VBPtr with. - if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { - SharedVBPtrBase = BaseDecl; - HasVBPtr = true; - } - // Only lay out bases with extendable VFPtrs on the first pass. - if (!BaseLayout.hasExtendableVFPtr()) - continue; - // If we don't have a primary base, this one qualifies. - if (!PrimaryBase) { - PrimaryBase = BaseDecl; - LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); - } - // Lay out the base. - layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); - } - // Figure out if we need a fresh VFPtr for this class. - if (!PrimaryBase && RD->isDynamicClass()) - for (CXXRecordDecl::method_iterator i = RD->method_begin(), - e = RD->method_end(); - !HasOwnVFPtr && i != e; ++i) - HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0; - // If we don't have a primary base then we have a leading object that could - // itself lead with a zero-sized object, something we track. - bool CheckLeadingLayout = !PrimaryBase; - // Iterate through the bases and lay out the non-virtual ones. - for (const CXXBaseSpecifier &Base : RD->bases()) { - if (Base.isVirtual()) - continue; - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); - // Only lay out bases without extendable VFPtrs on the second pass. - if (BaseLayout.hasExtendableVFPtr()) { - VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); - continue; - } - // If this is the first layout, check to see if it leads with a zero sized - // object. If it does, so do we. - if (CheckLeadingLayout) { - CheckLeadingLayout = false; - LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); - } - // Lay out the base. - layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); - VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); - } - // Set our VBPtroffset if we know it at this point. - if (!HasVBPtr) - VBPtrOffset = CharUnits::fromQuantity(-1); - else if (SharedVBPtrBase) { - const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); - VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); - } -} - -static bool recordUsesEBO(const RecordDecl *RD) { - if (!isa<CXXRecordDecl>(RD)) - return false; - if (RD->hasAttr<EmptyBasesAttr>()) - return true; - if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) - // TODO: Double check with the next version of MSVC. - if (LVA->getVersion() <= LangOptions::MSVC2015) - return false; - // TODO: Some later version of MSVC will change the default behavior of the - // compiler to enable EBO by default. When this happens, we will need an - // additional isCompatibleWithMSVC check. - return false; -} - -void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( - const CXXRecordDecl *RD, - const CXXRecordDecl *BaseDecl, - const ASTRecordLayout &BaseLayout, - const ASTRecordLayout *&PreviousBaseLayout) { - // Insert padding between two bases if the left first one is zero sized or - // contains a zero sized subobject and the right is zero sized or one leads - // with a zero sized base. - bool MDCUsesEBO = recordUsesEBO(RD); - if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && - BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) - Size++; - ElementInfo Info = getAdjustedElementInfo(BaseLayout); - CharUnits BaseOffset; - - // Respect the external AST source base offset, if present. - bool FoundBase = false; - if (UseExternalLayout) { - FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); - if (FoundBase) { - assert(BaseOffset >= Size && "base offset already allocated"); - Size = BaseOffset; - } - } - - if (!FoundBase) { - if (MDCUsesEBO && BaseDecl->isEmpty()) { - assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero()); - BaseOffset = CharUnits::Zero(); - } else { - // Otherwise, lay the base out at the end of the MDC. - BaseOffset = Size = Size.alignTo(Info.Alignment); - } - } - Bases.insert(std::make_pair(BaseDecl, BaseOffset)); - Size += BaseLayout.getNonVirtualSize(); - PreviousBaseLayout = &BaseLayout; -} - -void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { - LastFieldIsNonZeroWidthBitfield = false; - for (const FieldDecl *Field : RD->fields()) - layoutField(Field); -} - -void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { - if (FD->isBitField()) { - layoutBitField(FD); - return; - } - LastFieldIsNonZeroWidthBitfield = false; - ElementInfo Info = getAdjustedElementInfo(FD); - Alignment = std::max(Alignment, Info.Alignment); - CharUnits FieldOffset; - if (UseExternalLayout) - FieldOffset = - Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); - else if (IsUnion) - FieldOffset = CharUnits::Zero(); - else - FieldOffset = Size.alignTo(Info.Alignment); - placeFieldAtOffset(FieldOffset); - Size = std::max(Size, FieldOffset + Info.Size); -} - -void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { - unsigned Width = FD->getBitWidthValue(Context); - if (Width == 0) { - layoutZeroWidthBitField(FD); - return; - } - ElementInfo Info = getAdjustedElementInfo(FD); - // Clamp the bitfield to a containable size for the sake of being able - // to lay them out. Sema will throw an error. - if (Width > Context.toBits(Info.Size)) - Width = Context.toBits(Info.Size); - // Check to see if this bitfield fits into an existing allocation. Note: - // MSVC refuses to pack bitfields of formal types with different sizes - // into the same allocation. - if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && - CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { - placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); - RemainingBitsInField -= Width; - return; - } - LastFieldIsNonZeroWidthBitfield = true; - CurrentBitfieldSize = Info.Size; - if (UseExternalLayout) { - auto FieldBitOffset = External.getExternalFieldOffset(FD); - placeFieldAtBitOffset(FieldBitOffset); - auto NewSize = Context.toCharUnitsFromBits( - llvm::alignTo(FieldBitOffset + Width, Context.getCharWidth())); - Size = std::max(Size, NewSize); - Alignment = std::max(Alignment, Info.Alignment); - } else if (IsUnion) { - placeFieldAtOffset(CharUnits::Zero()); - Size = std::max(Size, Info.Size); - // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. - } else { - // Allocate a new block of memory and place the bitfield in it. - CharUnits FieldOffset = Size.alignTo(Info.Alignment); - placeFieldAtOffset(FieldOffset); - Size = FieldOffset + Info.Size; - Alignment = std::max(Alignment, Info.Alignment); - RemainingBitsInField = Context.toBits(Info.Size) - Width; - } -} - -void -MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { - // Zero-width bitfields are ignored unless they follow a non-zero-width - // bitfield. - if (!LastFieldIsNonZeroWidthBitfield) { - placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); - // TODO: Add a Sema warning that MS ignores alignment for zero - // sized bitfields that occur after zero-size bitfields or non-bitfields. - return; - } - LastFieldIsNonZeroWidthBitfield = false; - ElementInfo Info = getAdjustedElementInfo(FD); - if (IsUnion) { - placeFieldAtOffset(CharUnits::Zero()); - Size = std::max(Size, Info.Size); - // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. - } else { - // Round up the current record size to the field's alignment boundary. - CharUnits FieldOffset = Size.alignTo(Info.Alignment); - placeFieldAtOffset(FieldOffset); - Size = FieldOffset; - Alignment = std::max(Alignment, Info.Alignment); - } -} - -void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { - if (!HasVBPtr || SharedVBPtrBase) - return; - // Inject the VBPointer at the injection site. - CharUnits InjectionSite = VBPtrOffset; - // But before we do, make sure it's properly aligned. - VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); - // Shift everything after the vbptr down, unless we're using an external - // layout. - if (UseExternalLayout) - return; - // Determine where the first field should be laid out after the vbptr. - CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; - // Make sure that the amount we push the fields back by is a multiple of the - // alignment. - CharUnits Offset = (FieldStart - InjectionSite) - .alignTo(std::max(RequiredAlignment, Alignment)); - Size += Offset; - for (uint64_t &FieldOffset : FieldOffsets) - FieldOffset += Context.toBits(Offset); - for (BaseOffsetsMapTy::value_type &Base : Bases) - if (Base.second >= InjectionSite) - Base.second += Offset; -} - -void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { - if (!HasOwnVFPtr) - return; - // Make sure that the amount we push the struct back by is a multiple of the - // alignment. - CharUnits Offset = - PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); - // Push back the vbptr, but increase the size of the object and push back - // regular fields by the offset only if not using external record layout. - if (HasVBPtr) - VBPtrOffset += Offset; - - if (UseExternalLayout) - return; - - Size += Offset; - - // If we're using an external layout, the fields offsets have already - // accounted for this adjustment. - for (uint64_t &FieldOffset : FieldOffsets) - FieldOffset += Context.toBits(Offset); - for (BaseOffsetsMapTy::value_type &Base : Bases) - Base.second += Offset; -} - -void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { - if (!HasVBPtr) - return; - // Vtordisps are always 4 bytes (even in 64-bit mode) - CharUnits VtorDispSize = CharUnits::fromQuantity(4); - CharUnits VtorDispAlignment = VtorDispSize; - // vtordisps respect pragma pack. - if (!MaxFieldAlignment.isZero()) - VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); - // The alignment of the vtordisp is at least the required alignment of the - // entire record. This requirement may be present to support vtordisp - // injection. - for (const CXXBaseSpecifier &VBase : RD->vbases()) { - const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); - const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); - RequiredAlignment = - std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); - } - VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); - // Compute the vtordisp set. - llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; - computeVtorDispSet(HasVtorDispSet, RD); - // Iterate through the virtual bases and lay them out. - const ASTRecordLayout *PreviousBaseLayout = nullptr; - for (const CXXBaseSpecifier &VBase : RD->vbases()) { - const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); - const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); - bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0; - // Insert padding between two bases if the left first one is zero sized or - // contains a zero sized subobject and the right is zero sized or one leads - // with a zero sized base. The padding between virtual bases is 4 - // bytes (in both 32 and 64 bits modes) and always involves rounding up to - // the required alignment, we don't know why. - if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && - BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || - HasVtordisp) { - Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; - Alignment = std::max(VtorDispAlignment, Alignment); - } - // Insert the virtual base. - ElementInfo Info = getAdjustedElementInfo(BaseLayout); - CharUnits BaseOffset; - - // Respect the external AST source base offset, if present. - if (UseExternalLayout) { - if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) - BaseOffset = Size; - } else - BaseOffset = Size.alignTo(Info.Alignment); - - assert(BaseOffset >= Size && "base offset already allocated"); - - VBases.insert(std::make_pair(BaseDecl, - ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); - Size = BaseOffset + BaseLayout.getNonVirtualSize(); - PreviousBaseLayout = &BaseLayout; - } -} - -void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { - // Respect required alignment. Note that in 32-bit mode Required alignment - // may be 0 and cause size not to be updated. - DataSize = Size; - if (!RequiredAlignment.isZero()) { - Alignment = std::max(Alignment, RequiredAlignment); - auto RoundingAlignment = Alignment; - if (!MaxFieldAlignment.isZero()) - RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); - RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); - Size = Size.alignTo(RoundingAlignment); - } - if (Size.isZero()) { - if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { - EndsWithZeroSizedObject = true; - LeadsWithZeroSizedBase = true; - } - // Zero-sized structures have size equal to their alignment if a - // __declspec(align) came into play. - if (RequiredAlignment >= MinEmptyStructSize) - Size = Alignment; - else - Size = MinEmptyStructSize; - } - - if (UseExternalLayout) { - Size = Context.toCharUnitsFromBits(External.Size); - if (External.Align) - Alignment = Context.toCharUnitsFromBits(External.Align); - } -} - -// Recursively walks the non-virtual bases of a class and determines if any of -// them are in the bases with overridden methods set. -static bool -RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & - BasesWithOverriddenMethods, - const CXXRecordDecl *RD) { - if (BasesWithOverriddenMethods.count(RD)) - return true; - // If any of a virtual bases non-virtual bases (recursively) requires a - // vtordisp than so does this virtual base. - for (const CXXBaseSpecifier &Base : RD->bases()) - if (!Base.isVirtual() && - RequiresVtordisp(BasesWithOverriddenMethods, - Base.getType()->getAsCXXRecordDecl())) - return true; - return false; -} - -void MicrosoftRecordLayoutBuilder::computeVtorDispSet( - llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, - const CXXRecordDecl *RD) const { - // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with - // vftables. - if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) { - for (const CXXBaseSpecifier &Base : RD->vbases()) { - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); - if (Layout.hasExtendableVFPtr()) - HasVtordispSet.insert(BaseDecl); - } - return; - } - - // If any of our bases need a vtordisp for this type, so do we. Check our - // direct bases for vtordisp requirements. - for (const CXXBaseSpecifier &Base : RD->bases()) { - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); - for (const auto &bi : Layout.getVBaseOffsetsMap()) - if (bi.second.hasVtorDisp()) - HasVtordispSet.insert(bi.first); - } - // We don't introduce any additional vtordisps if either: - // * A user declared constructor or destructor aren't declared. - // * #pragma vtordisp(0) or the /vd0 flag are in use. - if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || - RD->getMSVtorDispMode() == MSVtorDispAttr::Never) - return; - // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's - // possible for a partially constructed object with virtual base overrides to - // escape a non-trivial constructor. - assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride); - // Compute a set of base classes which define methods we override. A virtual - // base in this set will require a vtordisp. A virtual base that transitively - // contains one of these bases as a non-virtual base will also require a - // vtordisp. - llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; - llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; - // Seed the working set with our non-destructor, non-pure virtual methods. - for (const CXXMethodDecl *MD : RD->methods()) - if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure()) - Work.insert(MD); - while (!Work.empty()) { - const CXXMethodDecl *MD = *Work.begin(); - auto MethodRange = MD->overridden_methods(); - // If a virtual method has no-overrides it lives in its parent's vtable. - if (MethodRange.begin() == MethodRange.end()) - BasesWithOverriddenMethods.insert(MD->getParent()); - else - Work.insert(MethodRange.begin(), MethodRange.end()); - // We've finished processing this element, remove it from the working set. - Work.erase(MD); - } - // For each of our virtual bases, check if it is in the set of overridden - // bases or if it transitively contains a non-virtual base that is. - for (const CXXBaseSpecifier &Base : RD->vbases()) { - const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); - if (!HasVtordispSet.count(BaseDecl) && - RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) - HasVtordispSet.insert(BaseDecl); - } -} - -/// getASTRecordLayout - Get or compute information about the layout of the -/// specified record (struct/union/class), which indicates its size and field -/// position information. -const ASTRecordLayout & -ASTContext::getASTRecordLayout(const RecordDecl *D) const { - // These asserts test different things. A record has a definition - // as soon as we begin to parse the definition. That definition is - // not a complete definition (which is what isDefinition() tests) - // until we *finish* parsing the definition. - - if (D->hasExternalLexicalStorage() && !D->getDefinition()) - getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); - - D = D->getDefinition(); - assert(D && "Cannot get layout of forward declarations!"); - assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); - assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); - - // Look up this layout, if already laid out, return what we have. - // Note that we can't save a reference to the entry because this function - // is recursive. - const ASTRecordLayout *Entry = ASTRecordLayouts[D]; - if (Entry) return *Entry; - - const ASTRecordLayout *NewEntry = nullptr; - - if (isMsLayout(*this)) { - MicrosoftRecordLayoutBuilder Builder(*this); - if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { - Builder.cxxLayout(RD); - NewEntry = new (*this) ASTRecordLayout( - *this, Builder.Size, Builder.Alignment, Builder.Alignment, - Builder.RequiredAlignment, - Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase, - Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets, - Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(), - Builder.PrimaryBase, false, Builder.SharedVBPtrBase, - Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, - Builder.Bases, Builder.VBases); - } else { - Builder.layout(D); - NewEntry = new (*this) ASTRecordLayout( - *this, Builder.Size, Builder.Alignment, Builder.Alignment, - Builder.RequiredAlignment, - Builder.Size, Builder.FieldOffsets); - } - } else { - if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { - EmptySubobjectMap EmptySubobjects(*this, RD); - ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); - Builder.Layout(RD); - - // In certain situations, we are allowed to lay out objects in the - // tail-padding of base classes. This is ABI-dependent. - // FIXME: this should be stored in the record layout. - bool skipTailPadding = - mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); - - // FIXME: This should be done in FinalizeLayout. - CharUnits DataSize = - skipTailPadding ? Builder.getSize() : Builder.getDataSize(); - CharUnits NonVirtualSize = - skipTailPadding ? DataSize : Builder.NonVirtualSize; - NewEntry = new (*this) ASTRecordLayout( - *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment, - /*RequiredAlignment : used by MS-ABI)*/ - Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), - CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, - NonVirtualSize, Builder.NonVirtualAlignment, - EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, - Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, - Builder.VBases); - } else { - ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); - Builder.Layout(D); - - NewEntry = new (*this) ASTRecordLayout( - *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment, - /*RequiredAlignment : used by MS-ABI)*/ - Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); - } - } - - ASTRecordLayouts[D] = NewEntry; - - if (getLangOpts().DumpRecordLayouts) { - llvm::outs() << "\n*** Dumping AST Record Layout\n"; - DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); - } - - return *NewEntry; -} - -const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { - if (!getTargetInfo().getCXXABI().hasKeyFunctions()) - return nullptr; - - assert(RD->getDefinition() && "Cannot get key function for forward decl!"); - RD = RD->getDefinition(); - - // Beware: - // 1) computing the key function might trigger deserialization, which might - // invalidate iterators into KeyFunctions - // 2) 'get' on the LazyDeclPtr might also trigger deserialization and - // invalidate the LazyDeclPtr within the map itself - LazyDeclPtr Entry = KeyFunctions[RD]; - const Decl *Result = - Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); - - // Store it back if it changed. - if (Entry.isOffset() || Entry.isValid() != bool(Result)) - KeyFunctions[RD] = const_cast<Decl*>(Result); - - return cast_or_null<CXXMethodDecl>(Result); -} - -void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { - assert(Method == Method->getFirstDecl() && - "not working with method declaration from class definition"); - - // Look up the cache entry. Since we're working with the first - // declaration, its parent must be the class definition, which is - // the correct key for the KeyFunctions hash. - const auto &Map = KeyFunctions; - auto I = Map.find(Method->getParent()); - - // If it's not cached, there's nothing to do. - if (I == Map.end()) return; - - // If it is cached, check whether it's the target method, and if so, - // remove it from the cache. Note, the call to 'get' might invalidate - // the iterator and the LazyDeclPtr object within the map. - LazyDeclPtr Ptr = I->second; - if (Ptr.get(getExternalSource()) == Method) { - // FIXME: remember that we did this for module / chained PCH state? - KeyFunctions.erase(Method->getParent()); - } -} - -static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { - const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); - return Layout.getFieldOffset(FD->getFieldIndex()); -} - -uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { - uint64_t OffsetInBits; - if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { - OffsetInBits = ::getFieldOffset(*this, FD); - } else { - const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); - - OffsetInBits = 0; - for (const NamedDecl *ND : IFD->chain()) - OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); - } - - return OffsetInBits; -} - -uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, - const ObjCImplementationDecl *ID, - const ObjCIvarDecl *Ivar) const { - const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); - - // FIXME: We should eliminate the need to have ObjCImplementationDecl passed - // in here; it should never be necessary because that should be the lexical - // decl context for the ivar. - - // If we know have an implementation (and the ivar is in it) then - // look up in the implementation layout. - const ASTRecordLayout *RL; - if (ID && declaresSameEntity(ID->getClassInterface(), Container)) - RL = &getASTObjCImplementationLayout(ID); - else - RL = &getASTObjCInterfaceLayout(Container); - - // Compute field index. - // - // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is - // implemented. This should be fixed to get the information from the layout - // directly. - unsigned Index = 0; - - for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); - IVD; IVD = IVD->getNextIvar()) { - if (Ivar == IVD) - break; - ++Index; - } - assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); - - return RL->getFieldOffset(Index); -} - -/// getObjCLayout - Get or compute information about the layout of the -/// given interface. -/// -/// \param Impl - If given, also include the layout of the interface's -/// implementation. This may differ by including synthesized ivars. -const ASTRecordLayout & -ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, - const ObjCImplementationDecl *Impl) const { - // Retrieve the definition - if (D->hasExternalLexicalStorage() && !D->getDefinition()) - getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); - D = D->getDefinition(); - assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!"); - - // Look up this layout, if already laid out, return what we have. - const ObjCContainerDecl *Key = - Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; - if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) - return *Entry; - - // Add in synthesized ivar count if laying out an implementation. - if (Impl) { - unsigned SynthCount = CountNonClassIvars(D); - // If there aren't any synthesized ivars then reuse the interface - // entry. Note we can't cache this because we simply free all - // entries later; however we shouldn't look up implementations - // frequently. - if (SynthCount == 0) - return getObjCLayout(D, nullptr); - } - - ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); - Builder.Layout(D); - - const ASTRecordLayout *NewEntry = - new (*this) ASTRecordLayout(*this, Builder.getSize(), - Builder.Alignment, - Builder.UnadjustedAlignment, - /*RequiredAlignment : used by MS-ABI)*/ - Builder.Alignment, - Builder.getDataSize(), - Builder.FieldOffsets); - - ObjCLayouts[Key] = NewEntry; - - return *NewEntry; -} - -static void PrintOffset(raw_ostream &OS, - CharUnits Offset, unsigned IndentLevel) { - OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity()); - OS.indent(IndentLevel * 2); -} - -static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, - unsigned Begin, unsigned Width, - unsigned IndentLevel) { - llvm::SmallString<10> Buffer; - { - llvm::raw_svector_ostream BufferOS(Buffer); - BufferOS << Offset.getQuantity() << ':'; - if (Width == 0) { - BufferOS << '-'; - } else { - BufferOS << Begin << '-' << (Begin + Width - 1); - } - } - - OS << llvm::right_justify(Buffer, 10) << " | "; - OS.indent(IndentLevel * 2); -} - -static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { - OS << " | "; - OS.indent(IndentLevel * 2); -} - -static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, - const ASTContext &C, - CharUnits Offset, - unsigned IndentLevel, - const char* Description, - bool PrintSizeInfo, - bool IncludeVirtualBases) { - const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); - auto CXXRD = dyn_cast<CXXRecordDecl>(RD); - - PrintOffset(OS, Offset, IndentLevel); - OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString(); - if (Description) - OS << ' ' << Description; - if (CXXRD && CXXRD->isEmpty()) - OS << " (empty)"; - OS << '\n'; - - IndentLevel++; - - // Dump bases. - if (CXXRD) { - const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); - bool HasOwnVFPtr = Layout.hasOwnVFPtr(); - bool HasOwnVBPtr = Layout.hasOwnVBPtr(); - - // Vtable pointer. - if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { - PrintOffset(OS, Offset, IndentLevel); - OS << '(' << *RD << " vtable pointer)\n"; - } else if (HasOwnVFPtr) { - PrintOffset(OS, Offset, IndentLevel); - // vfptr (for Microsoft C++ ABI) - OS << '(' << *RD << " vftable pointer)\n"; - } - - // Collect nvbases. - SmallVector<const CXXRecordDecl *, 4> Bases; - for (const CXXBaseSpecifier &Base : CXXRD->bases()) { - assert(!Base.getType()->isDependentType() && - "Cannot layout class with dependent bases."); - if (!Base.isVirtual()) - Bases.push_back(Base.getType()->getAsCXXRecordDecl()); - } - - // Sort nvbases by offset. - std::stable_sort(Bases.begin(), Bases.end(), - [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { - return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); - }); - - // Dump (non-virtual) bases - for (const CXXRecordDecl *Base : Bases) { - CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); - DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, - Base == PrimaryBase ? "(primary base)" : "(base)", - /*PrintSizeInfo=*/false, - /*IncludeVirtualBases=*/false); - } - - // vbptr (for Microsoft C++ ABI) - if (HasOwnVBPtr) { - PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); - OS << '(' << *RD << " vbtable pointer)\n"; - } - } - - // Dump fields. - uint64_t FieldNo = 0; - for (RecordDecl::field_iterator I = RD->field_begin(), - E = RD->field_end(); I != E; ++I, ++FieldNo) { - const FieldDecl &Field = **I; - uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); - CharUnits FieldOffset = - Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); - - // Recursively dump fields of record type. - if (auto RT = Field.getType()->getAs<RecordType>()) { - DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, - Field.getName().data(), - /*PrintSizeInfo=*/false, - /*IncludeVirtualBases=*/true); - continue; - } - - if (Field.isBitField()) { - uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); - unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; - unsigned Width = Field.getBitWidthValue(C); - PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); - } else { - PrintOffset(OS, FieldOffset, IndentLevel); - } - OS << Field.getType().getAsString() << ' ' << Field << '\n'; - } - - // Dump virtual bases. - if (CXXRD && IncludeVirtualBases) { - const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = - Layout.getVBaseOffsetsMap(); - - for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { - assert(Base.isVirtual() && "Found non-virtual class!"); - const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); - - CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); - - if (VtorDisps.find(VBase)->second.hasVtorDisp()) { - PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); - OS << "(vtordisp for vbase " << *VBase << ")\n"; - } - - DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, - VBase == Layout.getPrimaryBase() ? - "(primary virtual base)" : "(virtual base)", - /*PrintSizeInfo=*/false, - /*IncludeVirtualBases=*/false); - } - } - - if (!PrintSizeInfo) return; - - PrintIndentNoOffset(OS, IndentLevel - 1); - OS << "[sizeof=" << Layout.getSize().getQuantity(); - if (CXXRD && !isMsLayout(C)) - OS << ", dsize=" << Layout.getDataSize().getQuantity(); - OS << ", align=" << Layout.getAlignment().getQuantity(); - - if (CXXRD) { - OS << ",\n"; - PrintIndentNoOffset(OS, IndentLevel - 1); - OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); - OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); - } - OS << "]\n"; -} - -void ASTContext::DumpRecordLayout(const RecordDecl *RD, - raw_ostream &OS, - bool Simple) const { - if (!Simple) { - ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, - /*PrintSizeInfo*/true, - /*IncludeVirtualBases=*/true); - return; - } - - // The "simple" format is designed to be parsed by the - // layout-override testing code. There shouldn't be any external - // uses of this format --- when LLDB overrides a layout, it sets up - // the data structures directly --- so feel free to adjust this as - // you like as long as you also update the rudimentary parser for it - // in libFrontend. - - const ASTRecordLayout &Info = getASTRecordLayout(RD); - OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n"; - OS << "\nLayout: "; - OS << "<ASTRecordLayout\n"; - OS << " Size:" << toBits(Info.getSize()) << "\n"; - if (!isMsLayout(*this)) - OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; - OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; - OS << " FieldOffsets: ["; - for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { - if (i) OS << ", "; - OS << Info.getFieldOffset(i); - } - OS << "]>\n"; -} |
