summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/tools/clang/lib/Analysis/CFG.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/Analysis/CFG.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/Analysis/CFG.cpp')
-rw-r--r--gnu/llvm/tools/clang/lib/Analysis/CFG.cpp5578
1 files changed, 0 insertions, 5578 deletions
diff --git a/gnu/llvm/tools/clang/lib/Analysis/CFG.cpp b/gnu/llvm/tools/clang/lib/Analysis/CFG.cpp
deleted file mode 100644
index 96130c25be8..00000000000
--- a/gnu/llvm/tools/clang/lib/Analysis/CFG.cpp
+++ /dev/null
@@ -1,5578 +0,0 @@
-//===- CFG.cpp - Classes for representing and building CFGs ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the CFG and CFGBuilder classes for representing and
-// building Control-Flow Graphs (CFGs) from ASTs.
-//
-//===----------------------------------------------------------------------===//
-
-#include "clang/Analysis/CFG.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/Attr.h"
-#include "clang/AST/Decl.h"
-#include "clang/AST/DeclBase.h"
-#include "clang/AST/DeclCXX.h"
-#include "clang/AST/DeclGroup.h"
-#include "clang/AST/Expr.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/AST/OperationKinds.h"
-#include "clang/AST/PrettyPrinter.h"
-#include "clang/AST/Stmt.h"
-#include "clang/AST/StmtCXX.h"
-#include "clang/AST/StmtObjC.h"
-#include "clang/AST/StmtVisitor.h"
-#include "clang/AST/Type.h"
-#include "clang/Analysis/Support/BumpVector.h"
-#include "clang/Analysis/ConstructionContext.h"
-#include "clang/Basic/Builtins.h"
-#include "clang/Basic/ExceptionSpecificationType.h"
-#include "clang/Basic/LLVM.h"
-#include "clang/Basic/LangOptions.h"
-#include "clang/Basic/SourceLocation.h"
-#include "clang/Basic/Specifiers.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/APSInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/DOTGraphTraits.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Format.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/SaveAndRestore.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cassert>
-#include <memory>
-#include <string>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace clang;
-
-static SourceLocation GetEndLoc(Decl *D) {
- if (VarDecl *VD = dyn_cast<VarDecl>(D))
- if (Expr *Ex = VD->getInit())
- return Ex->getSourceRange().getEnd();
- return D->getLocation();
-}
-
-/// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
-/// or EnumConstantDecl from the given Expr. If it fails, returns nullptr.
-static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
- E = E->IgnoreParens();
- if (isa<IntegerLiteral>(E))
- return E;
- if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
- return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
- return nullptr;
-}
-
-/// Tries to interpret a binary operator into `Decl Op Expr` form, if Expr is
-/// an integer literal or an enum constant.
-///
-/// If this fails, at least one of the returned DeclRefExpr or Expr will be
-/// null.
-static std::tuple<const DeclRefExpr *, BinaryOperatorKind, const Expr *>
-tryNormalizeBinaryOperator(const BinaryOperator *B) {
- BinaryOperatorKind Op = B->getOpcode();
-
- const Expr *MaybeDecl = B->getLHS();
- const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
- // Expr looked like `0 == Foo` instead of `Foo == 0`
- if (Constant == nullptr) {
- // Flip the operator
- if (Op == BO_GT)
- Op = BO_LT;
- else if (Op == BO_GE)
- Op = BO_LE;
- else if (Op == BO_LT)
- Op = BO_GT;
- else if (Op == BO_LE)
- Op = BO_GE;
-
- MaybeDecl = B->getRHS();
- Constant = tryTransformToIntOrEnumConstant(B->getLHS());
- }
-
- auto *D = dyn_cast<DeclRefExpr>(MaybeDecl->IgnoreParenImpCasts());
- return std::make_tuple(D, Op, Constant);
-}
-
-/// For an expression `x == Foo && x == Bar`, this determines whether the
-/// `Foo` and `Bar` are either of the same enumeration type, or both integer
-/// literals.
-///
-/// It's an error to pass this arguments that are not either IntegerLiterals
-/// or DeclRefExprs (that have decls of type EnumConstantDecl)
-static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
- // User intent isn't clear if they're mixing int literals with enum
- // constants.
- if (isa<IntegerLiteral>(E1) != isa<IntegerLiteral>(E2))
- return false;
-
- // Integer literal comparisons, regardless of literal type, are acceptable.
- if (isa<IntegerLiteral>(E1))
- return true;
-
- // IntegerLiterals are handled above and only EnumConstantDecls are expected
- // beyond this point
- assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
- auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
- auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
-
- assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
- const DeclContext *DC1 = Decl1->getDeclContext();
- const DeclContext *DC2 = Decl2->getDeclContext();
-
- assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
- return DC1 == DC2;
-}
-
-namespace {
-
-class CFGBuilder;
-
-/// The CFG builder uses a recursive algorithm to build the CFG. When
-/// we process an expression, sometimes we know that we must add the
-/// subexpressions as block-level expressions. For example:
-///
-/// exp1 || exp2
-///
-/// When processing the '||' expression, we know that exp1 and exp2
-/// need to be added as block-level expressions, even though they
-/// might not normally need to be. AddStmtChoice records this
-/// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
-/// the builder has an option not to add a subexpression as a
-/// block-level expression.
-class AddStmtChoice {
-public:
- enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
-
- AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
-
- bool alwaysAdd(CFGBuilder &builder,
- const Stmt *stmt) const;
-
- /// Return a copy of this object, except with the 'always-add' bit
- /// set as specified.
- AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
- return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
- }
-
-private:
- Kind kind;
-};
-
-/// LocalScope - Node in tree of local scopes created for C++ implicit
-/// destructor calls generation. It contains list of automatic variables
-/// declared in the scope and link to position in previous scope this scope
-/// began in.
-///
-/// The process of creating local scopes is as follows:
-/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
-/// - Before processing statements in scope (e.g. CompoundStmt) create
-/// LocalScope object using CFGBuilder::ScopePos as link to previous scope
-/// and set CFGBuilder::ScopePos to the end of new scope,
-/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
-/// at this VarDecl,
-/// - For every normal (without jump) end of scope add to CFGBlock destructors
-/// for objects in the current scope,
-/// - For every jump add to CFGBlock destructors for objects
-/// between CFGBuilder::ScopePos and local scope position saved for jump
-/// target. Thanks to C++ restrictions on goto jumps we can be sure that
-/// jump target position will be on the path to root from CFGBuilder::ScopePos
-/// (adding any variable that doesn't need constructor to be called to
-/// LocalScope can break this assumption),
-///
-class LocalScope {
-public:
- friend class const_iterator;
-
- using AutomaticVarsTy = BumpVector<VarDecl *>;
-
- /// const_iterator - Iterates local scope backwards and jumps to previous
- /// scope on reaching the beginning of currently iterated scope.
- class const_iterator {
- const LocalScope* Scope = nullptr;
-
- /// VarIter is guaranteed to be greater then 0 for every valid iterator.
- /// Invalid iterator (with null Scope) has VarIter equal to 0.
- unsigned VarIter = 0;
-
- public:
- /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
- /// Incrementing invalid iterator is allowed and will result in invalid
- /// iterator.
- const_iterator() = default;
-
- /// Create valid iterator. In case when S.Prev is an invalid iterator and
- /// I is equal to 0, this will create invalid iterator.
- const_iterator(const LocalScope& S, unsigned I)
- : Scope(&S), VarIter(I) {
- // Iterator to "end" of scope is not allowed. Handle it by going up
- // in scopes tree possibly up to invalid iterator in the root.
- if (VarIter == 0 && Scope)
- *this = Scope->Prev;
- }
-
- VarDecl *const* operator->() const {
- assert(Scope && "Dereferencing invalid iterator is not allowed");
- assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
- return &Scope->Vars[VarIter - 1];
- }
-
- const VarDecl *getFirstVarInScope() const {
- assert(Scope && "Dereferencing invalid iterator is not allowed");
- assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
- return Scope->Vars[0];
- }
-
- VarDecl *operator*() const {
- return *this->operator->();
- }
-
- const_iterator &operator++() {
- if (!Scope)
- return *this;
-
- assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
- --VarIter;
- if (VarIter == 0)
- *this = Scope->Prev;
- return *this;
- }
- const_iterator operator++(int) {
- const_iterator P = *this;
- ++*this;
- return P;
- }
-
- bool operator==(const const_iterator &rhs) const {
- return Scope == rhs.Scope && VarIter == rhs.VarIter;
- }
- bool operator!=(const const_iterator &rhs) const {
- return !(*this == rhs);
- }
-
- explicit operator bool() const {
- return *this != const_iterator();
- }
-
- int distance(const_iterator L);
- const_iterator shared_parent(const_iterator L);
- bool pointsToFirstDeclaredVar() { return VarIter == 1; }
- };
-
-private:
- BumpVectorContext ctx;
-
- /// Automatic variables in order of declaration.
- AutomaticVarsTy Vars;
-
- /// Iterator to variable in previous scope that was declared just before
- /// begin of this scope.
- const_iterator Prev;
-
-public:
- /// Constructs empty scope linked to previous scope in specified place.
- LocalScope(BumpVectorContext ctx, const_iterator P)
- : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
-
- /// Begin of scope in direction of CFG building (backwards).
- const_iterator begin() const { return const_iterator(*this, Vars.size()); }
-
- void addVar(VarDecl *VD) {
- Vars.push_back(VD, ctx);
- }
-};
-
-} // namespace
-
-/// distance - Calculates distance from this to L. L must be reachable from this
-/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
-/// number of scopes between this and L.
-int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
- int D = 0;
- const_iterator F = *this;
- while (F.Scope != L.Scope) {
- assert(F != const_iterator() &&
- "L iterator is not reachable from F iterator.");
- D += F.VarIter;
- F = F.Scope->Prev;
- }
- D += F.VarIter - L.VarIter;
- return D;
-}
-
-/// Calculates the closest parent of this iterator
-/// that is in a scope reachable through the parents of L.
-/// I.e. when using 'goto' from this to L, the lifetime of all variables
-/// between this and shared_parent(L) end.
-LocalScope::const_iterator
-LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
- llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
- while (true) {
- ScopesOfL.insert(L.Scope);
- if (L == const_iterator())
- break;
- L = L.Scope->Prev;
- }
-
- const_iterator F = *this;
- while (true) {
- if (ScopesOfL.count(F.Scope))
- return F;
- assert(F != const_iterator() &&
- "L iterator is not reachable from F iterator.");
- F = F.Scope->Prev;
- }
-}
-
-namespace {
-
-/// Structure for specifying position in CFG during its build process. It
-/// consists of CFGBlock that specifies position in CFG and
-/// LocalScope::const_iterator that specifies position in LocalScope graph.
-struct BlockScopePosPair {
- CFGBlock *block = nullptr;
- LocalScope::const_iterator scopePosition;
-
- BlockScopePosPair() = default;
- BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
- : block(b), scopePosition(scopePos) {}
-};
-
-/// TryResult - a class representing a variant over the values
-/// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
-/// and is used by the CFGBuilder to decide if a branch condition
-/// can be decided up front during CFG construction.
-class TryResult {
- int X = -1;
-
-public:
- TryResult() = default;
- TryResult(bool b) : X(b ? 1 : 0) {}
-
- bool isTrue() const { return X == 1; }
- bool isFalse() const { return X == 0; }
- bool isKnown() const { return X >= 0; }
-
- void negate() {
- assert(isKnown());
- X ^= 0x1;
- }
-};
-
-} // namespace
-
-static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
- if (!R1.isKnown() || !R2.isKnown())
- return TryResult();
- return TryResult(R1.isTrue() && R2.isTrue());
-}
-
-namespace {
-
-class reverse_children {
- llvm::SmallVector<Stmt *, 12> childrenBuf;
- ArrayRef<Stmt *> children;
-
-public:
- reverse_children(Stmt *S);
-
- using iterator = ArrayRef<Stmt *>::reverse_iterator;
-
- iterator begin() const { return children.rbegin(); }
- iterator end() const { return children.rend(); }
-};
-
-} // namespace
-
-reverse_children::reverse_children(Stmt *S) {
- if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
- children = CE->getRawSubExprs();
- return;
- }
- switch (S->getStmtClass()) {
- // Note: Fill in this switch with more cases we want to optimize.
- case Stmt::InitListExprClass: {
- InitListExpr *IE = cast<InitListExpr>(S);
- children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
- IE->getNumInits());
- return;
- }
- default:
- break;
- }
-
- // Default case for all other statements.
- for (Stmt *SubStmt : S->children())
- childrenBuf.push_back(SubStmt);
-
- // This needs to be done *after* childrenBuf has been populated.
- children = childrenBuf;
-}
-
-namespace {
-
-/// CFGBuilder - This class implements CFG construction from an AST.
-/// The builder is stateful: an instance of the builder should be used to only
-/// construct a single CFG.
-///
-/// Example usage:
-///
-/// CFGBuilder builder;
-/// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
-///
-/// CFG construction is done via a recursive walk of an AST. We actually parse
-/// the AST in reverse order so that the successor of a basic block is
-/// constructed prior to its predecessor. This allows us to nicely capture
-/// implicit fall-throughs without extra basic blocks.
-class CFGBuilder {
- using JumpTarget = BlockScopePosPair;
- using JumpSource = BlockScopePosPair;
-
- ASTContext *Context;
- std::unique_ptr<CFG> cfg;
-
- // Current block.
- CFGBlock *Block = nullptr;
-
- // Block after the current block.
- CFGBlock *Succ = nullptr;
-
- JumpTarget ContinueJumpTarget;
- JumpTarget BreakJumpTarget;
- JumpTarget SEHLeaveJumpTarget;
- CFGBlock *SwitchTerminatedBlock = nullptr;
- CFGBlock *DefaultCaseBlock = nullptr;
-
- // This can point either to a try or a __try block. The frontend forbids
- // mixing both kinds in one function, so having one for both is enough.
- CFGBlock *TryTerminatedBlock = nullptr;
-
- // Current position in local scope.
- LocalScope::const_iterator ScopePos;
-
- // LabelMap records the mapping from Label expressions to their jump targets.
- using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
- LabelMapTy LabelMap;
-
- // A list of blocks that end with a "goto" that must be backpatched to their
- // resolved targets upon completion of CFG construction.
- using BackpatchBlocksTy = std::vector<JumpSource>;
- BackpatchBlocksTy BackpatchBlocks;
-
- // A list of labels whose address has been taken (for indirect gotos).
- using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
- LabelSetTy AddressTakenLabels;
-
- // Information about the currently visited C++ object construction site.
- // This is set in the construction trigger and read when the constructor
- // or a function that returns an object by value is being visited.
- llvm::DenseMap<Expr *, const ConstructionContextLayer *>
- ConstructionContextMap;
-
- using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
- DeclsWithEndedScopeSetTy DeclsWithEndedScope;
-
- bool badCFG = false;
- const CFG::BuildOptions &BuildOpts;
-
- // State to track for building switch statements.
- bool switchExclusivelyCovered = false;
- Expr::EvalResult *switchCond = nullptr;
-
- CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
- const Stmt *lastLookup = nullptr;
-
- // Caches boolean evaluations of expressions to avoid multiple re-evaluations
- // during construction of branches for chained logical operators.
- using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
- CachedBoolEvalsTy CachedBoolEvals;
-
-public:
- explicit CFGBuilder(ASTContext *astContext,
- const CFG::BuildOptions &buildOpts)
- : Context(astContext), cfg(new CFG()), // crew a new CFG
- ConstructionContextMap(), BuildOpts(buildOpts) {}
-
-
- // buildCFG - Used by external clients to construct the CFG.
- std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
-
- bool alwaysAdd(const Stmt *stmt);
-
-private:
- // Visitors to walk an AST and construct the CFG.
- CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
- CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
- CFGBlock *VisitBreakStmt(BreakStmt *B);
- CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
- CFGBlock *VisitCaseStmt(CaseStmt *C);
- CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
- CFGBlock *VisitCompoundStmt(CompoundStmt *C);
- CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
- AddStmtChoice asc);
- CFGBlock *VisitContinueStmt(ContinueStmt *C);
- CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
- AddStmtChoice asc);
- CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
- CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
- CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
- CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
- CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
- CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
- AddStmtChoice asc);
- CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
- AddStmtChoice asc);
- CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
- CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
- CFGBlock *VisitDeclStmt(DeclStmt *DS);
- CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
- CFGBlock *VisitDefaultStmt(DefaultStmt *D);
- CFGBlock *VisitDoStmt(DoStmt *D);
- CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
- CFGBlock *VisitForStmt(ForStmt *F);
- CFGBlock *VisitGotoStmt(GotoStmt *G);
- CFGBlock *VisitIfStmt(IfStmt *I);
- CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
- CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
- CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
- CFGBlock *VisitLabelStmt(LabelStmt *L);
- CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
- CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
- CFGBlock *VisitLogicalOperator(BinaryOperator *B);
- std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
- Stmt *Term,
- CFGBlock *TrueBlock,
- CFGBlock *FalseBlock);
- CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
- AddStmtChoice asc);
- CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
- CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
- CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
- CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
- CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
- CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
- CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
- CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
- CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
- CFGBlock *VisitReturnStmt(Stmt *S);
- CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
- CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
- CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
- CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
- CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
- CFGBlock *VisitSwitchStmt(SwitchStmt *S);
- CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
- AddStmtChoice asc);
- CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
- CFGBlock *VisitWhileStmt(WhileStmt *W);
-
- CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
- CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
- CFGBlock *VisitChildren(Stmt *S);
- CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
-
- void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
- const Stmt *S) {
- if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
- appendScopeBegin(B, VD, S);
- }
-
- /// When creating the CFG for temporary destructors, we want to mirror the
- /// branch structure of the corresponding constructor calls.
- /// Thus, while visiting a statement for temporary destructors, we keep a
- /// context to keep track of the following information:
- /// - whether a subexpression is executed unconditionally
- /// - if a subexpression is executed conditionally, the first
- /// CXXBindTemporaryExpr we encounter in that subexpression (which
- /// corresponds to the last temporary destructor we have to call for this
- /// subexpression) and the CFG block at that point (which will become the
- /// successor block when inserting the decision point).
- ///
- /// That way, we can build the branch structure for temporary destructors as
- /// follows:
- /// 1. If a subexpression is executed unconditionally, we add the temporary
- /// destructor calls to the current block.
- /// 2. If a subexpression is executed conditionally, when we encounter a
- /// CXXBindTemporaryExpr:
- /// a) If it is the first temporary destructor call in the subexpression,
- /// we remember the CXXBindTemporaryExpr and the current block in the
- /// TempDtorContext; we start a new block, and insert the temporary
- /// destructor call.
- /// b) Otherwise, add the temporary destructor call to the current block.
- /// 3. When we finished visiting a conditionally executed subexpression,
- /// and we found at least one temporary constructor during the visitation
- /// (2.a has executed), we insert a decision block that uses the
- /// CXXBindTemporaryExpr as terminator, and branches to the current block
- /// if the CXXBindTemporaryExpr was marked executed, and otherwise
- /// branches to the stored successor.
- struct TempDtorContext {
- TempDtorContext() = default;
- TempDtorContext(TryResult KnownExecuted)
- : IsConditional(true), KnownExecuted(KnownExecuted) {}
-
- /// Returns whether we need to start a new branch for a temporary destructor
- /// call. This is the case when the temporary destructor is
- /// conditionally executed, and it is the first one we encounter while
- /// visiting a subexpression - other temporary destructors at the same level
- /// will be added to the same block and are executed under the same
- /// condition.
- bool needsTempDtorBranch() const {
- return IsConditional && !TerminatorExpr;
- }
-
- /// Remember the successor S of a temporary destructor decision branch for
- /// the corresponding CXXBindTemporaryExpr E.
- void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
- Succ = S;
- TerminatorExpr = E;
- }
-
- const bool IsConditional = false;
- const TryResult KnownExecuted = true;
- CFGBlock *Succ = nullptr;
- CXXBindTemporaryExpr *TerminatorExpr = nullptr;
- };
-
- // Visitors to walk an AST and generate destructors of temporaries in
- // full expression.
- CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
- TempDtorContext &Context);
- CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, TempDtorContext &Context);
- CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
- TempDtorContext &Context);
- CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
- CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context);
- CFGBlock *VisitConditionalOperatorForTemporaryDtors(
- AbstractConditionalOperator *E, bool BindToTemporary,
- TempDtorContext &Context);
- void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
- CFGBlock *FalseSucc = nullptr);
-
- // NYS == Not Yet Supported
- CFGBlock *NYS() {
- badCFG = true;
- return Block;
- }
-
- // Remember to apply the construction context based on the current \p Layer
- // when constructing the CFG element for \p CE.
- void consumeConstructionContext(const ConstructionContextLayer *Layer,
- Expr *E);
-
- // Scan \p Child statement to find constructors in it, while keeping in mind
- // that its parent statement is providing a partial construction context
- // described by \p Layer. If a constructor is found, it would be assigned
- // the context based on the layer. If an additional construction context layer
- // is found, the function recurses into that.
- void findConstructionContexts(const ConstructionContextLayer *Layer,
- Stmt *Child);
-
- // Scan all arguments of a call expression for a construction context.
- // These sorts of call expressions don't have a common superclass,
- // hence strict duck-typing.
- template <typename CallLikeExpr,
- typename = typename std::enable_if<
- std::is_same<CallLikeExpr, CallExpr>::value ||
- std::is_same<CallLikeExpr, CXXConstructExpr>::value ||
- std::is_same<CallLikeExpr, ObjCMessageExpr>::value>>
- void findConstructionContextsForArguments(CallLikeExpr *E) {
- for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
- Expr *Arg = E->getArg(i);
- if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(),
- ConstructionContextItem(E, i)),
- Arg);
- }
- }
-
- // Unset the construction context after consuming it. This is done immediately
- // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
- // there's no need to do this manually in every Visit... function.
- void cleanupConstructionContext(Expr *E);
-
- void autoCreateBlock() { if (!Block) Block = createBlock(); }
- CFGBlock *createBlock(bool add_successor = true);
- CFGBlock *createNoReturnBlock();
-
- CFGBlock *addStmt(Stmt *S) {
- return Visit(S, AddStmtChoice::AlwaysAdd);
- }
-
- CFGBlock *addInitializer(CXXCtorInitializer *I);
- void addLoopExit(const Stmt *LoopStmt);
- void addAutomaticObjDtors(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S);
- void addLifetimeEnds(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S);
- void addAutomaticObjHandling(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S);
- void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
- void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
- Stmt *S);
-
- void getDeclsWithEndedScope(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S);
-
- // Local scopes creation.
- LocalScope* createOrReuseLocalScope(LocalScope* Scope);
-
- void addLocalScopeForStmt(Stmt *S);
- LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
- LocalScope* Scope = nullptr);
- LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
-
- void addLocalScopeAndDtors(Stmt *S);
-
- const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
- if (!BuildOpts.AddRichCXXConstructors)
- return nullptr;
-
- const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
- if (!Layer)
- return nullptr;
-
- cleanupConstructionContext(E);
- return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
- Layer);
- }
-
- // Interface to CFGBlock - adding CFGElements.
-
- void appendStmt(CFGBlock *B, const Stmt *S) {
- if (alwaysAdd(S) && cachedEntry)
- cachedEntry->second = B;
-
- // All block-level expressions should have already been IgnoreParens()ed.
- assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
- B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
- }
-
- void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
- if (const ConstructionContext *CC =
- retrieveAndCleanupConstructionContext(CE)) {
- B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
- return;
- }
-
- // No valid construction context found. Fall back to statement.
- B->appendStmt(CE, cfg->getBumpVectorContext());
- }
-
- void appendCall(CFGBlock *B, CallExpr *CE) {
- if (alwaysAdd(CE) && cachedEntry)
- cachedEntry->second = B;
-
- if (const ConstructionContext *CC =
- retrieveAndCleanupConstructionContext(CE)) {
- B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
- return;
- }
-
- // No valid construction context found. Fall back to statement.
- B->appendStmt(CE, cfg->getBumpVectorContext());
- }
-
- void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
- B->appendInitializer(I, cfg->getBumpVectorContext());
- }
-
- void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
- B->appendNewAllocator(NE, cfg->getBumpVectorContext());
- }
-
- void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
- B->appendBaseDtor(BS, cfg->getBumpVectorContext());
- }
-
- void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
- B->appendMemberDtor(FD, cfg->getBumpVectorContext());
- }
-
- void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
- if (alwaysAdd(ME) && cachedEntry)
- cachedEntry->second = B;
-
- if (const ConstructionContext *CC =
- retrieveAndCleanupConstructionContext(ME)) {
- B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
- return;
- }
-
- B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
- cfg->getBumpVectorContext());
- }
-
- void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
- B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
- }
-
- void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
- B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
- }
-
- void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
- B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
- }
-
- void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
- B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
- }
-
- void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
- B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
- }
-
- void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
- LocalScope::const_iterator B, LocalScope::const_iterator E);
-
- void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
- LocalScope::const_iterator B,
- LocalScope::const_iterator E);
-
- const VarDecl *
- prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
- LocalScope::const_iterator B,
- LocalScope::const_iterator E);
-
- void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
- B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
- cfg->getBumpVectorContext());
- }
-
- /// Add a reachable successor to a block, with the alternate variant that is
- /// unreachable.
- void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
- B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
- cfg->getBumpVectorContext());
- }
-
- void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
- if (BuildOpts.AddScopes)
- B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
- }
-
- void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
- if (BuildOpts.AddScopes)
- B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
- }
-
- void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
- if (BuildOpts.AddScopes)
- B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
- }
-
- void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
- if (BuildOpts.AddScopes)
- B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
- }
-
- /// Find a relational comparison with an expression evaluating to a
- /// boolean and a constant other than 0 and 1.
- /// e.g. if ((x < y) == 10)
- TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
- const Expr *LHSExpr = B->getLHS()->IgnoreParens();
- const Expr *RHSExpr = B->getRHS()->IgnoreParens();
-
- const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
- const Expr *BoolExpr = RHSExpr;
- bool IntFirst = true;
- if (!IntLiteral) {
- IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
- BoolExpr = LHSExpr;
- IntFirst = false;
- }
-
- if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
- return TryResult();
-
- llvm::APInt IntValue = IntLiteral->getValue();
- if ((IntValue == 1) || (IntValue == 0))
- return TryResult();
-
- bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
- !IntValue.isNegative();
-
- BinaryOperatorKind Bok = B->getOpcode();
- if (Bok == BO_GT || Bok == BO_GE) {
- // Always true for 10 > bool and bool > -1
- // Always false for -1 > bool and bool > 10
- return TryResult(IntFirst == IntLarger);
- } else {
- // Always true for -1 < bool and bool < 10
- // Always false for 10 < bool and bool < -1
- return TryResult(IntFirst != IntLarger);
- }
- }
-
- /// Find an incorrect equality comparison. Either with an expression
- /// evaluating to a boolean and a constant other than 0 and 1.
- /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
- /// true/false e.q. (x & 8) == 4.
- TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
- const Expr *LHSExpr = B->getLHS()->IgnoreParens();
- const Expr *RHSExpr = B->getRHS()->IgnoreParens();
-
- const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
- const Expr *BoolExpr = RHSExpr;
-
- if (!IntLiteral) {
- IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
- BoolExpr = LHSExpr;
- }
-
- if (!IntLiteral)
- return TryResult();
-
- const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
- if (BitOp && (BitOp->getOpcode() == BO_And ||
- BitOp->getOpcode() == BO_Or)) {
- const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
- const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
-
- const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
-
- if (!IntLiteral2)
- IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
-
- if (!IntLiteral2)
- return TryResult();
-
- llvm::APInt L1 = IntLiteral->getValue();
- llvm::APInt L2 = IntLiteral2->getValue();
- if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
- (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
- if (BuildOpts.Observer)
- BuildOpts.Observer->compareBitwiseEquality(B,
- B->getOpcode() != BO_EQ);
- TryResult(B->getOpcode() != BO_EQ);
- }
- } else if (BoolExpr->isKnownToHaveBooleanValue()) {
- llvm::APInt IntValue = IntLiteral->getValue();
- if ((IntValue == 1) || (IntValue == 0)) {
- return TryResult();
- }
- return TryResult(B->getOpcode() != BO_EQ);
- }
-
- return TryResult();
- }
-
- TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
- const llvm::APSInt &Value1,
- const llvm::APSInt &Value2) {
- assert(Value1.isSigned() == Value2.isSigned());
- switch (Relation) {
- default:
- return TryResult();
- case BO_EQ:
- return TryResult(Value1 == Value2);
- case BO_NE:
- return TryResult(Value1 != Value2);
- case BO_LT:
- return TryResult(Value1 < Value2);
- case BO_LE:
- return TryResult(Value1 <= Value2);
- case BO_GT:
- return TryResult(Value1 > Value2);
- case BO_GE:
- return TryResult(Value1 >= Value2);
- }
- }
-
- /// Find a pair of comparison expressions with or without parentheses
- /// with a shared variable and constants and a logical operator between them
- /// that always evaluates to either true or false.
- /// e.g. if (x != 3 || x != 4)
- TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
- assert(B->isLogicalOp());
- const BinaryOperator *LHS =
- dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
- const BinaryOperator *RHS =
- dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
- if (!LHS || !RHS)
- return {};
-
- if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
- return {};
-
- const DeclRefExpr *Decl1;
- const Expr *Expr1;
- BinaryOperatorKind BO1;
- std::tie(Decl1, BO1, Expr1) = tryNormalizeBinaryOperator(LHS);
-
- if (!Decl1 || !Expr1)
- return {};
-
- const DeclRefExpr *Decl2;
- const Expr *Expr2;
- BinaryOperatorKind BO2;
- std::tie(Decl2, BO2, Expr2) = tryNormalizeBinaryOperator(RHS);
-
- if (!Decl2 || !Expr2)
- return {};
-
- // Check that it is the same variable on both sides.
- if (Decl1->getDecl() != Decl2->getDecl())
- return {};
-
- // Make sure the user's intent is clear (e.g. they're comparing against two
- // int literals, or two things from the same enum)
- if (!areExprTypesCompatible(Expr1, Expr2))
- return {};
-
- Expr::EvalResult L1Result, L2Result;
- if (!Expr1->EvaluateAsInt(L1Result, *Context) ||
- !Expr2->EvaluateAsInt(L2Result, *Context))
- return {};
-
- llvm::APSInt L1 = L1Result.Val.getInt();
- llvm::APSInt L2 = L2Result.Val.getInt();
-
- // Can't compare signed with unsigned or with different bit width.
- if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
- return {};
-
- // Values that will be used to determine if result of logical
- // operator is always true/false
- const llvm::APSInt Values[] = {
- // Value less than both Value1 and Value2
- llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
- // L1
- L1,
- // Value between Value1 and Value2
- ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
- L1.isUnsigned()),
- // L2
- L2,
- // Value greater than both Value1 and Value2
- llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
- };
-
- // Check whether expression is always true/false by evaluating the following
- // * variable x is less than the smallest literal.
- // * variable x is equal to the smallest literal.
- // * Variable x is between smallest and largest literal.
- // * Variable x is equal to the largest literal.
- // * Variable x is greater than largest literal.
- bool AlwaysTrue = true, AlwaysFalse = true;
- for (const llvm::APSInt &Value : Values) {
- TryResult Res1, Res2;
- Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
- Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
-
- if (!Res1.isKnown() || !Res2.isKnown())
- return {};
-
- if (B->getOpcode() == BO_LAnd) {
- AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
- AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
- } else {
- AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
- AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
- }
- }
-
- if (AlwaysTrue || AlwaysFalse) {
- if (BuildOpts.Observer)
- BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
- return TryResult(AlwaysTrue);
- }
- return {};
- }
-
- /// Try and evaluate an expression to an integer constant.
- bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
- if (!BuildOpts.PruneTriviallyFalseEdges)
- return false;
- return !S->isTypeDependent() &&
- !S->isValueDependent() &&
- S->EvaluateAsRValue(outResult, *Context);
- }
-
- /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
- /// if we can evaluate to a known value, otherwise return -1.
- TryResult tryEvaluateBool(Expr *S) {
- if (!BuildOpts.PruneTriviallyFalseEdges ||
- S->isTypeDependent() || S->isValueDependent())
- return {};
-
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
- if (Bop->isLogicalOp()) {
- // Check the cache first.
- CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
- if (I != CachedBoolEvals.end())
- return I->second; // already in map;
-
- // Retrieve result at first, or the map might be updated.
- TryResult Result = evaluateAsBooleanConditionNoCache(S);
- CachedBoolEvals[S] = Result; // update or insert
- return Result;
- }
- else {
- switch (Bop->getOpcode()) {
- default: break;
- // For 'x & 0' and 'x * 0', we can determine that
- // the value is always false.
- case BO_Mul:
- case BO_And: {
- // If either operand is zero, we know the value
- // must be false.
- Expr::EvalResult LHSResult;
- if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
- llvm::APSInt IntVal = LHSResult.Val.getInt();
- if (!IntVal.getBoolValue()) {
- return TryResult(false);
- }
- }
- Expr::EvalResult RHSResult;
- if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
- llvm::APSInt IntVal = RHSResult.Val.getInt();
- if (!IntVal.getBoolValue()) {
- return TryResult(false);
- }
- }
- }
- break;
- }
- }
- }
-
- return evaluateAsBooleanConditionNoCache(S);
- }
-
- /// Evaluate as boolean \param E without using the cache.
- TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
- if (Bop->isLogicalOp()) {
- TryResult LHS = tryEvaluateBool(Bop->getLHS());
- if (LHS.isKnown()) {
- // We were able to evaluate the LHS, see if we can get away with not
- // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
- if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
- return LHS.isTrue();
-
- TryResult RHS = tryEvaluateBool(Bop->getRHS());
- if (RHS.isKnown()) {
- if (Bop->getOpcode() == BO_LOr)
- return LHS.isTrue() || RHS.isTrue();
- else
- return LHS.isTrue() && RHS.isTrue();
- }
- } else {
- TryResult RHS = tryEvaluateBool(Bop->getRHS());
- if (RHS.isKnown()) {
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
- return RHS.isTrue();
- } else {
- TryResult BopRes = checkIncorrectLogicOperator(Bop);
- if (BopRes.isKnown())
- return BopRes.isTrue();
- }
- }
-
- return {};
- } else if (Bop->isEqualityOp()) {
- TryResult BopRes = checkIncorrectEqualityOperator(Bop);
- if (BopRes.isKnown())
- return BopRes.isTrue();
- } else if (Bop->isRelationalOp()) {
- TryResult BopRes = checkIncorrectRelationalOperator(Bop);
- if (BopRes.isKnown())
- return BopRes.isTrue();
- }
- }
-
- bool Result;
- if (E->EvaluateAsBooleanCondition(Result, *Context))
- return Result;
-
- return {};
- }
-
- bool hasTrivialDestructor(VarDecl *VD);
-};
-
-} // namespace
-
-inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
- const Stmt *stmt) const {
- return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
-}
-
-bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
- bool shouldAdd = BuildOpts.alwaysAdd(stmt);
-
- if (!BuildOpts.forcedBlkExprs)
- return shouldAdd;
-
- if (lastLookup == stmt) {
- if (cachedEntry) {
- assert(cachedEntry->first == stmt);
- return true;
- }
- return shouldAdd;
- }
-
- lastLookup = stmt;
-
- // Perform the lookup!
- CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
-
- if (!fb) {
- // No need to update 'cachedEntry', since it will always be null.
- assert(!cachedEntry);
- return shouldAdd;
- }
-
- CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
- if (itr == fb->end()) {
- cachedEntry = nullptr;
- return shouldAdd;
- }
-
- cachedEntry = &*itr;
- return true;
-}
-
-// FIXME: Add support for dependent-sized array types in C++?
-// Does it even make sense to build a CFG for an uninstantiated template?
-static const VariableArrayType *FindVA(const Type *t) {
- while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
- if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
- if (vat->getSizeExpr())
- return vat;
-
- t = vt->getElementType().getTypePtr();
- }
-
- return nullptr;
-}
-
-void CFGBuilder::consumeConstructionContext(
- const ConstructionContextLayer *Layer, Expr *E) {
- assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
- isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
- if (const ConstructionContextLayer *PreviouslyStoredLayer =
- ConstructionContextMap.lookup(E)) {
- (void)PreviouslyStoredLayer;
- // We might have visited this child when we were finding construction
- // contexts within its parents.
- assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
- "Already within a different construction context!");
- } else {
- ConstructionContextMap[E] = Layer;
- }
-}
-
-void CFGBuilder::findConstructionContexts(
- const ConstructionContextLayer *Layer, Stmt *Child) {
- if (!BuildOpts.AddRichCXXConstructors)
- return;
-
- if (!Child)
- return;
-
- auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
- return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
- Layer);
- };
-
- switch(Child->getStmtClass()) {
- case Stmt::CXXConstructExprClass:
- case Stmt::CXXTemporaryObjectExprClass: {
- // Support pre-C++17 copy elision AST.
- auto *CE = cast<CXXConstructExpr>(Child);
- if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
- findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
- }
-
- consumeConstructionContext(Layer, CE);
- break;
- }
- // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
- // FIXME: An isa<> would look much better but this whole switch is a
- // workaround for an internal compiler error in MSVC 2015 (see r326021).
- case Stmt::CallExprClass:
- case Stmt::CXXMemberCallExprClass:
- case Stmt::CXXOperatorCallExprClass:
- case Stmt::UserDefinedLiteralClass:
- case Stmt::ObjCMessageExprClass: {
- auto *E = cast<Expr>(Child);
- if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
- consumeConstructionContext(Layer, E);
- break;
- }
- case Stmt::ExprWithCleanupsClass: {
- auto *Cleanups = cast<ExprWithCleanups>(Child);
- findConstructionContexts(Layer, Cleanups->getSubExpr());
- break;
- }
- case Stmt::CXXFunctionalCastExprClass: {
- auto *Cast = cast<CXXFunctionalCastExpr>(Child);
- findConstructionContexts(Layer, Cast->getSubExpr());
- break;
- }
- case Stmt::ImplicitCastExprClass: {
- auto *Cast = cast<ImplicitCastExpr>(Child);
- // Should we support other implicit cast kinds?
- switch (Cast->getCastKind()) {
- case CK_NoOp:
- case CK_ConstructorConversion:
- findConstructionContexts(Layer, Cast->getSubExpr());
- break;
- default:
- break;
- }
- break;
- }
- case Stmt::CXXBindTemporaryExprClass: {
- auto *BTE = cast<CXXBindTemporaryExpr>(Child);
- findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
- break;
- }
- case Stmt::MaterializeTemporaryExprClass: {
- // Normally we don't want to search in MaterializeTemporaryExpr because
- // it indicates the beginning of a temporary object construction context,
- // so it shouldn't be found in the middle. However, if it is the beginning
- // of an elidable copy or move construction context, we need to include it.
- if (Layer->getItem().getKind() ==
- ConstructionContextItem::ElidableConstructorKind) {
- auto *MTE = cast<MaterializeTemporaryExpr>(Child);
- findConstructionContexts(withExtraLayer(MTE), MTE->GetTemporaryExpr());
- }
- break;
- }
- case Stmt::ConditionalOperatorClass: {
- auto *CO = cast<ConditionalOperator>(Child);
- if (Layer->getItem().getKind() !=
- ConstructionContextItem::MaterializationKind) {
- // If the object returned by the conditional operator is not going to be a
- // temporary object that needs to be immediately materialized, then
- // it must be C++17 with its mandatory copy elision. Do not yet promise
- // to support this case.
- assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
- Context->getLangOpts().CPlusPlus17);
- break;
- }
- findConstructionContexts(Layer, CO->getLHS());
- findConstructionContexts(Layer, CO->getRHS());
- break;
- }
- default:
- break;
- }
-}
-
-void CFGBuilder::cleanupConstructionContext(Expr *E) {
- assert(BuildOpts.AddRichCXXConstructors &&
- "We should not be managing construction contexts!");
- assert(ConstructionContextMap.count(E) &&
- "Cannot exit construction context without the context!");
- ConstructionContextMap.erase(E);
-}
-
-
-/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
-/// arbitrary statement. Examples include a single expression or a function
-/// body (compound statement). The ownership of the returned CFG is
-/// transferred to the caller. If CFG construction fails, this method returns
-/// NULL.
-std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
- assert(cfg.get());
- if (!Statement)
- return nullptr;
-
- // Create an empty block that will serve as the exit block for the CFG. Since
- // this is the first block added to the CFG, it will be implicitly registered
- // as the exit block.
- Succ = createBlock();
- assert(Succ == &cfg->getExit());
- Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
-
- assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
- "AddImplicitDtors and AddLifetime cannot be used at the same time");
-
- if (BuildOpts.AddImplicitDtors)
- if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
- addImplicitDtorsForDestructor(DD);
-
- // Visit the statements and create the CFG.
- CFGBlock *B = addStmt(Statement);
-
- if (badCFG)
- return nullptr;
-
- // For C++ constructor add initializers to CFG.
- if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
- for (auto *I : llvm::reverse(CD->inits())) {
- B = addInitializer(I);
- if (badCFG)
- return nullptr;
- }
- }
-
- if (B)
- Succ = B;
-
- // Backpatch the gotos whose label -> block mappings we didn't know when we
- // encountered them.
- for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
- E = BackpatchBlocks.end(); I != E; ++I ) {
-
- CFGBlock *B = I->block;
- const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
- LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
-
- // If there is no target for the goto, then we are looking at an
- // incomplete AST. Handle this by not registering a successor.
- if (LI == LabelMap.end()) continue;
-
- JumpTarget JT = LI->second;
- prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
- JT.scopePosition);
- prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
- JT.scopePosition);
- const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
- B, I->scopePosition, JT.scopePosition);
- appendScopeBegin(JT.block, VD, G);
- addSuccessor(B, JT.block);
- }
-
- // Add successors to the Indirect Goto Dispatch block (if we have one).
- if (CFGBlock *B = cfg->getIndirectGotoBlock())
- for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
- E = AddressTakenLabels.end(); I != E; ++I ) {
- // Lookup the target block.
- LabelMapTy::iterator LI = LabelMap.find(*I);
-
- // If there is no target block that contains label, then we are looking
- // at an incomplete AST. Handle this by not registering a successor.
- if (LI == LabelMap.end()) continue;
-
- addSuccessor(B, LI->second.block);
- }
-
- // Create an empty entry block that has no predecessors.
- cfg->setEntry(createBlock());
-
- if (BuildOpts.AddRichCXXConstructors)
- assert(ConstructionContextMap.empty() &&
- "Not all construction contexts were cleaned up!");
-
- return std::move(cfg);
-}
-
-/// createBlock - Used to lazily create blocks that are connected
-/// to the current (global) succcessor.
-CFGBlock *CFGBuilder::createBlock(bool add_successor) {
- CFGBlock *B = cfg->createBlock();
- if (add_successor && Succ)
- addSuccessor(B, Succ);
- return B;
-}
-
-/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
-/// CFG. It is *not* connected to the current (global) successor, and instead
-/// directly tied to the exit block in order to be reachable.
-CFGBlock *CFGBuilder::createNoReturnBlock() {
- CFGBlock *B = createBlock(false);
- B->setHasNoReturnElement();
- addSuccessor(B, &cfg->getExit(), Succ);
- return B;
-}
-
-/// addInitializer - Add C++ base or member initializer element to CFG.
-CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
- if (!BuildOpts.AddInitializers)
- return Block;
-
- bool HasTemporaries = false;
-
- // Destructors of temporaries in initialization expression should be called
- // after initialization finishes.
- Expr *Init = I->getInit();
- if (Init) {
- HasTemporaries = isa<ExprWithCleanups>(Init);
-
- if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
- // Generate destructors for temporaries in initialization expression.
- TempDtorContext Context;
- VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
- /*BindToTemporary=*/false, Context);
- }
- }
-
- autoCreateBlock();
- appendInitializer(Block, I);
-
- if (Init) {
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
- Init);
-
- if (HasTemporaries) {
- // For expression with temporaries go directly to subexpression to omit
- // generating destructors for the second time.
- return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
- }
- if (BuildOpts.AddCXXDefaultInitExprInCtors) {
- if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
- // In general, appending the expression wrapped by a CXXDefaultInitExpr
- // may cause the same Expr to appear more than once in the CFG. Doing it
- // here is safe because there's only one initializer per field.
- autoCreateBlock();
- appendStmt(Block, Default);
- if (Stmt *Child = Default->getExpr())
- if (CFGBlock *R = Visit(Child))
- Block = R;
- return Block;
- }
- }
- return Visit(Init);
- }
-
- return Block;
-}
-
-/// Retrieve the type of the temporary object whose lifetime was
-/// extended by a local reference with the given initializer.
-static QualType getReferenceInitTemporaryType(const Expr *Init,
- bool *FoundMTE = nullptr) {
- while (true) {
- // Skip parentheses.
- Init = Init->IgnoreParens();
-
- // Skip through cleanups.
- if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
- Init = EWC->getSubExpr();
- continue;
- }
-
- // Skip through the temporary-materialization expression.
- if (const MaterializeTemporaryExpr *MTE
- = dyn_cast<MaterializeTemporaryExpr>(Init)) {
- Init = MTE->GetTemporaryExpr();
- if (FoundMTE)
- *FoundMTE = true;
- continue;
- }
-
- // Skip sub-object accesses into rvalues.
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *SkippedInit =
- Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
- if (SkippedInit != Init) {
- Init = SkippedInit;
- continue;
- }
-
- break;
- }
-
- return Init->getType();
-}
-
-// TODO: Support adding LoopExit element to the CFG in case where the loop is
-// ended by ReturnStmt, GotoStmt or ThrowExpr.
-void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
- if(!BuildOpts.AddLoopExit)
- return;
- autoCreateBlock();
- appendLoopExit(Block, LoopStmt);
-}
-
-void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S) {
- if (!BuildOpts.AddScopes)
- return;
-
- if (B == E)
- return;
-
- // To go from B to E, one first goes up the scopes from B to P
- // then sideways in one scope from P to P' and then down
- // the scopes from P' to E.
- // The lifetime of all objects between B and P end.
- LocalScope::const_iterator P = B.shared_parent(E);
- int Dist = B.distance(P);
- if (Dist <= 0)
- return;
-
- for (LocalScope::const_iterator I = B; I != P; ++I)
- if (I.pointsToFirstDeclaredVar())
- DeclsWithEndedScope.insert(*I);
-}
-
-void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
- LocalScope::const_iterator E,
- Stmt *S) {
- getDeclsWithEndedScope(B, E, S);
- if (BuildOpts.AddScopes)
- addScopesEnd(B, E, S);
- if (BuildOpts.AddImplicitDtors)
- addAutomaticObjDtors(B, E, S);
- if (BuildOpts.AddLifetime)
- addLifetimeEnds(B, E, S);
-}
-
-/// Add to current block automatic objects that leave the scope.
-void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S) {
- if (!BuildOpts.AddLifetime)
- return;
-
- if (B == E)
- return;
-
- // To go from B to E, one first goes up the scopes from B to P
- // then sideways in one scope from P to P' and then down
- // the scopes from P' to E.
- // The lifetime of all objects between B and P end.
- LocalScope::const_iterator P = B.shared_parent(E);
- int dist = B.distance(P);
- if (dist <= 0)
- return;
-
- // We need to perform the scope leaving in reverse order
- SmallVector<VarDecl *, 10> DeclsTrivial;
- SmallVector<VarDecl *, 10> DeclsNonTrivial;
- DeclsTrivial.reserve(dist);
- DeclsNonTrivial.reserve(dist);
-
- for (LocalScope::const_iterator I = B; I != P; ++I)
- if (hasTrivialDestructor(*I))
- DeclsTrivial.push_back(*I);
- else
- DeclsNonTrivial.push_back(*I);
-
- autoCreateBlock();
- // object with trivial destructor end their lifetime last (when storage
- // duration ends)
- for (SmallVectorImpl<VarDecl *>::reverse_iterator I = DeclsTrivial.rbegin(),
- E = DeclsTrivial.rend();
- I != E; ++I)
- appendLifetimeEnds(Block, *I, S);
-
- for (SmallVectorImpl<VarDecl *>::reverse_iterator
- I = DeclsNonTrivial.rbegin(),
- E = DeclsNonTrivial.rend();
- I != E; ++I)
- appendLifetimeEnds(Block, *I, S);
-}
-
-/// Add to current block markers for ending scopes.
-void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S) {
- // If implicit destructors are enabled, we'll add scope ends in
- // addAutomaticObjDtors.
- if (BuildOpts.AddImplicitDtors)
- return;
-
- autoCreateBlock();
-
- for (auto I = DeclsWithEndedScope.rbegin(), E = DeclsWithEndedScope.rend();
- I != E; ++I)
- appendScopeEnd(Block, *I, S);
-
- return;
-}
-
-/// addAutomaticObjDtors - Add to current block automatic objects destructors
-/// for objects in range of local scope positions. Use S as trigger statement
-/// for destructors.
-void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
- LocalScope::const_iterator E, Stmt *S) {
- if (!BuildOpts.AddImplicitDtors)
- return;
-
- if (B == E)
- return;
-
- // We need to append the destructors in reverse order, but any one of them
- // may be a no-return destructor which changes the CFG. As a result, buffer
- // this sequence up and replay them in reverse order when appending onto the
- // CFGBlock(s).
- SmallVector<VarDecl*, 10> Decls;
- Decls.reserve(B.distance(E));
- for (LocalScope::const_iterator I = B; I != E; ++I)
- Decls.push_back(*I);
-
- for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
- E = Decls.rend();
- I != E; ++I) {
- if (hasTrivialDestructor(*I)) {
- // If AddScopes is enabled and *I is a first variable in a scope, add a
- // ScopeEnd marker in a Block.
- if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I)) {
- autoCreateBlock();
- appendScopeEnd(Block, *I, S);
- }
- continue;
- }
- // If this destructor is marked as a no-return destructor, we need to
- // create a new block for the destructor which does not have as a successor
- // anything built thus far: control won't flow out of this block.
- QualType Ty = (*I)->getType();
- if (Ty->isReferenceType()) {
- Ty = getReferenceInitTemporaryType((*I)->getInit());
- }
- Ty = Context->getBaseElementType(Ty);
-
- if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
- Block = createNoReturnBlock();
- else
- autoCreateBlock();
-
- // Add ScopeEnd just after automatic obj destructor.
- if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I))
- appendScopeEnd(Block, *I, S);
- appendAutomaticObjDtor(Block, *I, S);
- }
-}
-
-/// addImplicitDtorsForDestructor - Add implicit destructors generated for
-/// base and member objects in destructor.
-void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
- assert(BuildOpts.AddImplicitDtors &&
- "Can be called only when dtors should be added");
- const CXXRecordDecl *RD = DD->getParent();
-
- // At the end destroy virtual base objects.
- for (const auto &VI : RD->vbases()) {
- const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
- if (!CD->hasTrivialDestructor()) {
- autoCreateBlock();
- appendBaseDtor(Block, &VI);
- }
- }
-
- // Before virtual bases destroy direct base objects.
- for (const auto &BI : RD->bases()) {
- if (!BI.isVirtual()) {
- const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
- if (!CD->hasTrivialDestructor()) {
- autoCreateBlock();
- appendBaseDtor(Block, &BI);
- }
- }
- }
-
- // First destroy member objects.
- for (auto *FI : RD->fields()) {
- // Check for constant size array. Set type to array element type.
- QualType QT = FI->getType();
- if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
- if (AT->getSize() == 0)
- continue;
- QT = AT->getElementType();
- }
-
- if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
- if (!CD->hasTrivialDestructor()) {
- autoCreateBlock();
- appendMemberDtor(Block, FI);
- }
- }
-}
-
-/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
-/// way return valid LocalScope object.
-LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
- if (Scope)
- return Scope;
- llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
- return new (alloc.Allocate<LocalScope>())
- LocalScope(BumpVectorContext(alloc), ScopePos);
-}
-
-/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
-/// that should create implicit scope (e.g. if/else substatements).
-void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
- if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
- !BuildOpts.AddScopes)
- return;
-
- LocalScope *Scope = nullptr;
-
- // For compound statement we will be creating explicit scope.
- if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
- for (auto *BI : CS->body()) {
- Stmt *SI = BI->stripLabelLikeStatements();
- if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
- Scope = addLocalScopeForDeclStmt(DS, Scope);
- }
- return;
- }
-
- // For any other statement scope will be implicit and as such will be
- // interesting only for DeclStmt.
- if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
- addLocalScopeForDeclStmt(DS);
-}
-
-/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
-/// reuse Scope if not NULL.
-LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
- LocalScope* Scope) {
- if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
- !BuildOpts.AddScopes)
- return Scope;
-
- for (auto *DI : DS->decls())
- if (VarDecl *VD = dyn_cast<VarDecl>(DI))
- Scope = addLocalScopeForVarDecl(VD, Scope);
- return Scope;
-}
-
-bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
- // Check for const references bound to temporary. Set type to pointee.
- QualType QT = VD->getType();
- if (QT->isReferenceType()) {
- // Attempt to determine whether this declaration lifetime-extends a
- // temporary.
- //
- // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
- // temporaries, and a single declaration can extend multiple temporaries.
- // We should look at the storage duration on each nested
- // MaterializeTemporaryExpr instead.
-
- const Expr *Init = VD->getInit();
- if (!Init) {
- // Probably an exception catch-by-reference variable.
- // FIXME: It doesn't really mean that the object has a trivial destructor.
- // Also are there other cases?
- return true;
- }
-
- // Lifetime-extending a temporary?
- bool FoundMTE = false;
- QT = getReferenceInitTemporaryType(Init, &FoundMTE);
- if (!FoundMTE)
- return true;
- }
-
- // Check for constant size array. Set type to array element type.
- while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
- if (AT->getSize() == 0)
- return true;
- QT = AT->getElementType();
- }
-
- // Check if type is a C++ class with non-trivial destructor.
- if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
- return !CD->hasDefinition() || CD->hasTrivialDestructor();
- return true;
-}
-
-/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
-/// create add scope for automatic objects and temporary objects bound to
-/// const reference. Will reuse Scope if not NULL.
-LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
- LocalScope* Scope) {
- assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
- "AddImplicitDtors and AddLifetime cannot be used at the same time");
- if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
- !BuildOpts.AddScopes)
- return Scope;
-
- // Check if variable is local.
- switch (VD->getStorageClass()) {
- case SC_None:
- case SC_Auto:
- case SC_Register:
- break;
- default: return Scope;
- }
-
- if (BuildOpts.AddImplicitDtors) {
- if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
- // Add the variable to scope
- Scope = createOrReuseLocalScope(Scope);
- Scope->addVar(VD);
- ScopePos = Scope->begin();
- }
- return Scope;
- }
-
- assert(BuildOpts.AddLifetime);
- // Add the variable to scope
- Scope = createOrReuseLocalScope(Scope);
- Scope->addVar(VD);
- ScopePos = Scope->begin();
- return Scope;
-}
-
-/// addLocalScopeAndDtors - For given statement add local scope for it and
-/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
-void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
- LocalScope::const_iterator scopeBeginPos = ScopePos;
- addLocalScopeForStmt(S);
- addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
-}
-
-/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
-/// variables with automatic storage duration to CFGBlock's elements vector.
-/// Elements will be prepended to physical beginning of the vector which
-/// happens to be logical end. Use blocks terminator as statement that specifies
-/// destructors call site.
-/// FIXME: This mechanism for adding automatic destructors doesn't handle
-/// no-return destructors properly.
-void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
- LocalScope::const_iterator B, LocalScope::const_iterator E) {
- if (!BuildOpts.AddImplicitDtors)
- return;
- BumpVectorContext &C = cfg->getBumpVectorContext();
- CFGBlock::iterator InsertPos
- = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
- for (LocalScope::const_iterator I = B; I != E; ++I)
- InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
- Blk->getTerminator());
-}
-
-/// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
-/// variables with automatic storage duration to CFGBlock's elements vector.
-/// Elements will be prepended to physical beginning of the vector which
-/// happens to be logical end. Use blocks terminator as statement that specifies
-/// where lifetime ends.
-void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
- CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
- if (!BuildOpts.AddLifetime)
- return;
- BumpVectorContext &C = cfg->getBumpVectorContext();
- CFGBlock::iterator InsertPos =
- Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
- for (LocalScope::const_iterator I = B; I != E; ++I)
- InsertPos = Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminator());
-}
-
-/// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
-/// variables with automatic storage duration to CFGBlock's elements vector.
-/// Elements will be prepended to physical beginning of the vector which
-/// happens to be logical end. Use blocks terminator as statement that specifies
-/// where scope ends.
-const VarDecl *
-CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
- CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
- if (!BuildOpts.AddScopes)
- return nullptr;
- BumpVectorContext &C = cfg->getBumpVectorContext();
- CFGBlock::iterator InsertPos =
- Blk->beginScopeEndInsert(Blk->end(), 1, C);
- LocalScope::const_iterator PlaceToInsert = B;
- for (LocalScope::const_iterator I = B; I != E; ++I)
- PlaceToInsert = I;
- Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminator());
- return *PlaceToInsert;
-}
-
-/// Visit - Walk the subtree of a statement and add extra
-/// blocks for ternary operators, &&, and ||. We also process "," and
-/// DeclStmts (which may contain nested control-flow).
-CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
- if (!S) {
- badCFG = true;
- return nullptr;
- }
-
- if (Expr *E = dyn_cast<Expr>(S))
- S = E->IgnoreParens();
-
- switch (S->getStmtClass()) {
- default:
- return VisitStmt(S, asc);
-
- case Stmt::AddrLabelExprClass:
- return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
-
- case Stmt::BinaryConditionalOperatorClass:
- return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
-
- case Stmt::BinaryOperatorClass:
- return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
-
- case Stmt::BlockExprClass:
- return VisitBlockExpr(cast<BlockExpr>(S), asc);
-
- case Stmt::BreakStmtClass:
- return VisitBreakStmt(cast<BreakStmt>(S));
-
- case Stmt::CallExprClass:
- case Stmt::CXXOperatorCallExprClass:
- case Stmt::CXXMemberCallExprClass:
- case Stmt::UserDefinedLiteralClass:
- return VisitCallExpr(cast<CallExpr>(S), asc);
-
- case Stmt::CaseStmtClass:
- return VisitCaseStmt(cast<CaseStmt>(S));
-
- case Stmt::ChooseExprClass:
- return VisitChooseExpr(cast<ChooseExpr>(S), asc);
-
- case Stmt::CompoundStmtClass:
- return VisitCompoundStmt(cast<CompoundStmt>(S));
-
- case Stmt::ConditionalOperatorClass:
- return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
-
- case Stmt::ContinueStmtClass:
- return VisitContinueStmt(cast<ContinueStmt>(S));
-
- case Stmt::CXXCatchStmtClass:
- return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
-
- case Stmt::ExprWithCleanupsClass:
- return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
-
- case Stmt::CXXDefaultArgExprClass:
- case Stmt::CXXDefaultInitExprClass:
- // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
- // called function's declaration, not by the caller. If we simply add
- // this expression to the CFG, we could end up with the same Expr
- // appearing multiple times.
- // PR13385 / <rdar://problem/12156507>
- //
- // It's likewise possible for multiple CXXDefaultInitExprs for the same
- // expression to be used in the same function (through aggregate
- // initialization).
- return VisitStmt(S, asc);
-
- case Stmt::CXXBindTemporaryExprClass:
- return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
-
- case Stmt::CXXConstructExprClass:
- return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
-
- case Stmt::CXXNewExprClass:
- return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
-
- case Stmt::CXXDeleteExprClass:
- return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
-
- case Stmt::CXXFunctionalCastExprClass:
- return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
-
- case Stmt::CXXTemporaryObjectExprClass:
- return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
-
- case Stmt::CXXThrowExprClass:
- return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
-
- case Stmt::CXXTryStmtClass:
- return VisitCXXTryStmt(cast<CXXTryStmt>(S));
-
- case Stmt::CXXForRangeStmtClass:
- return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
-
- case Stmt::DeclStmtClass:
- return VisitDeclStmt(cast<DeclStmt>(S));
-
- case Stmt::DefaultStmtClass:
- return VisitDefaultStmt(cast<DefaultStmt>(S));
-
- case Stmt::DoStmtClass:
- return VisitDoStmt(cast<DoStmt>(S));
-
- case Stmt::ForStmtClass:
- return VisitForStmt(cast<ForStmt>(S));
-
- case Stmt::GotoStmtClass:
- return VisitGotoStmt(cast<GotoStmt>(S));
-
- case Stmt::IfStmtClass:
- return VisitIfStmt(cast<IfStmt>(S));
-
- case Stmt::ImplicitCastExprClass:
- return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
-
- case Stmt::ConstantExprClass:
- return VisitConstantExpr(cast<ConstantExpr>(S), asc);
-
- case Stmt::IndirectGotoStmtClass:
- return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
-
- case Stmt::LabelStmtClass:
- return VisitLabelStmt(cast<LabelStmt>(S));
-
- case Stmt::LambdaExprClass:
- return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
-
- case Stmt::MaterializeTemporaryExprClass:
- return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
- asc);
-
- case Stmt::MemberExprClass:
- return VisitMemberExpr(cast<MemberExpr>(S), asc);
-
- case Stmt::NullStmtClass:
- return Block;
-
- case Stmt::ObjCAtCatchStmtClass:
- return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
-
- case Stmt::ObjCAutoreleasePoolStmtClass:
- return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
-
- case Stmt::ObjCAtSynchronizedStmtClass:
- return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
-
- case Stmt::ObjCAtThrowStmtClass:
- return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
-
- case Stmt::ObjCAtTryStmtClass:
- return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
-
- case Stmt::ObjCForCollectionStmtClass:
- return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
-
- case Stmt::ObjCMessageExprClass:
- return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
-
- case Stmt::OpaqueValueExprClass:
- return Block;
-
- case Stmt::PseudoObjectExprClass:
- return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
-
- case Stmt::ReturnStmtClass:
- case Stmt::CoreturnStmtClass:
- return VisitReturnStmt(S);
-
- case Stmt::SEHExceptStmtClass:
- return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
-
- case Stmt::SEHFinallyStmtClass:
- return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
-
- case Stmt::SEHLeaveStmtClass:
- return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
-
- case Stmt::SEHTryStmtClass:
- return VisitSEHTryStmt(cast<SEHTryStmt>(S));
-
- case Stmt::UnaryExprOrTypeTraitExprClass:
- return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
- asc);
-
- case Stmt::StmtExprClass:
- return VisitStmtExpr(cast<StmtExpr>(S), asc);
-
- case Stmt::SwitchStmtClass:
- return VisitSwitchStmt(cast<SwitchStmt>(S));
-
- case Stmt::UnaryOperatorClass:
- return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
-
- case Stmt::WhileStmtClass:
- return VisitWhileStmt(cast<WhileStmt>(S));
- }
-}
-
-CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, S)) {
- autoCreateBlock();
- appendStmt(Block, S);
- }
-
- return VisitChildren(S);
-}
-
-/// VisitChildren - Visit the children of a Stmt.
-CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
- CFGBlock *B = Block;
-
- // Visit the children in their reverse order so that they appear in
- // left-to-right (natural) order in the CFG.
- reverse_children RChildren(S);
- for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
- I != E; ++I) {
- if (Stmt *Child = *I)
- if (CFGBlock *R = Visit(Child))
- B = R;
- }
- return B;
-}
-
-CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
- AddStmtChoice asc) {
- AddressTakenLabels.insert(A->getLabel());
-
- if (asc.alwaysAdd(*this, A)) {
- autoCreateBlock();
- appendStmt(Block, A);
- }
-
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
- AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, U)) {
- autoCreateBlock();
- appendStmt(Block, U);
- }
-
- return Visit(U->getSubExpr(), AddStmtChoice());
-}
-
-CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
- CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
- appendStmt(ConfluenceBlock, B);
-
- if (badCFG)
- return nullptr;
-
- return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
- ConfluenceBlock).first;
-}
-
-std::pair<CFGBlock*, CFGBlock*>
-CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
- Stmt *Term,
- CFGBlock *TrueBlock,
- CFGBlock *FalseBlock) {
- // Introspect the RHS. If it is a nested logical operation, we recursively
- // build the CFG using this function. Otherwise, resort to default
- // CFG construction behavior.
- Expr *RHS = B->getRHS()->IgnoreParens();
- CFGBlock *RHSBlock, *ExitBlock;
-
- do {
- if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
- if (B_RHS->isLogicalOp()) {
- std::tie(RHSBlock, ExitBlock) =
- VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
- break;
- }
-
- // The RHS is not a nested logical operation. Don't push the terminator
- // down further, but instead visit RHS and construct the respective
- // pieces of the CFG, and link up the RHSBlock with the terminator
- // we have been provided.
- ExitBlock = RHSBlock = createBlock(false);
-
- // Even though KnownVal is only used in the else branch of the next
- // conditional, tryEvaluateBool performs additional checking on the
- // Expr, so it should be called unconditionally.
- TryResult KnownVal = tryEvaluateBool(RHS);
- if (!KnownVal.isKnown())
- KnownVal = tryEvaluateBool(B);
-
- if (!Term) {
- assert(TrueBlock == FalseBlock);
- addSuccessor(RHSBlock, TrueBlock);
- }
- else {
- RHSBlock->setTerminator(Term);
- addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
- addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
- }
-
- Block = RHSBlock;
- RHSBlock = addStmt(RHS);
- }
- while (false);
-
- if (badCFG)
- return std::make_pair(nullptr, nullptr);
-
- // Generate the blocks for evaluating the LHS.
- Expr *LHS = B->getLHS()->IgnoreParens();
-
- if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
- if (B_LHS->isLogicalOp()) {
- if (B->getOpcode() == BO_LOr)
- FalseBlock = RHSBlock;
- else
- TrueBlock = RHSBlock;
-
- // For the LHS, treat 'B' as the terminator that we want to sink
- // into the nested branch. The RHS always gets the top-most
- // terminator.
- return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
- }
-
- // Create the block evaluating the LHS.
- // This contains the '&&' or '||' as the terminator.
- CFGBlock *LHSBlock = createBlock(false);
- LHSBlock->setTerminator(B);
-
- Block = LHSBlock;
- CFGBlock *EntryLHSBlock = addStmt(LHS);
-
- if (badCFG)
- return std::make_pair(nullptr, nullptr);
-
- // See if this is a known constant.
- TryResult KnownVal = tryEvaluateBool(LHS);
-
- // Now link the LHSBlock with RHSBlock.
- if (B->getOpcode() == BO_LOr) {
- addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
- addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
- } else {
- assert(B->getOpcode() == BO_LAnd);
- addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
- addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
- }
-
- return std::make_pair(EntryLHSBlock, ExitBlock);
-}
-
-CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
- AddStmtChoice asc) {
- // && or ||
- if (B->isLogicalOp())
- return VisitLogicalOperator(B);
-
- if (B->getOpcode() == BO_Comma) { // ,
- autoCreateBlock();
- appendStmt(Block, B);
- addStmt(B->getRHS());
- return addStmt(B->getLHS());
- }
-
- if (B->isAssignmentOp()) {
- if (asc.alwaysAdd(*this, B)) {
- autoCreateBlock();
- appendStmt(Block, B);
- }
- Visit(B->getLHS());
- return Visit(B->getRHS());
- }
-
- if (asc.alwaysAdd(*this, B)) {
- autoCreateBlock();
- appendStmt(Block, B);
- }
-
- CFGBlock *RBlock = Visit(B->getRHS());
- CFGBlock *LBlock = Visit(B->getLHS());
- // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
- // containing a DoStmt, and the LHS doesn't create a new block, then we should
- // return RBlock. Otherwise we'll incorrectly return NULL.
- return (LBlock ? LBlock : RBlock);
-}
-
-CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, E)) {
- autoCreateBlock();
- appendStmt(Block, E);
- }
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
- // "break" is a control-flow statement. Thus we stop processing the current
- // block.
- if (badCFG)
- return nullptr;
-
- // Now create a new block that ends with the break statement.
- Block = createBlock(false);
- Block->setTerminator(B);
-
- // If there is no target for the break, then we are looking at an incomplete
- // AST. This means that the CFG cannot be constructed.
- if (BreakJumpTarget.block) {
- addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
- addSuccessor(Block, BreakJumpTarget.block);
- } else
- badCFG = true;
-
- return Block;
-}
-
-static bool CanThrow(Expr *E, ASTContext &Ctx) {
- QualType Ty = E->getType();
- if (Ty->isFunctionPointerType())
- Ty = Ty->getAs<PointerType>()->getPointeeType();
- else if (Ty->isBlockPointerType())
- Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
-
- const FunctionType *FT = Ty->getAs<FunctionType>();
- if (FT) {
- if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
- if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
- Proto->isNothrow())
- return false;
- }
- return true;
-}
-
-CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
- // Compute the callee type.
- QualType calleeType = C->getCallee()->getType();
- if (calleeType == Context->BoundMemberTy) {
- QualType boundType = Expr::findBoundMemberType(C->getCallee());
-
- // We should only get a null bound type if processing a dependent
- // CFG. Recover by assuming nothing.
- if (!boundType.isNull()) calleeType = boundType;
- }
-
- // If this is a call to a no-return function, this stops the block here.
- bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
-
- bool AddEHEdge = false;
-
- // Languages without exceptions are assumed to not throw.
- if (Context->getLangOpts().Exceptions) {
- if (BuildOpts.AddEHEdges)
- AddEHEdge = true;
- }
-
- // If this is a call to a builtin function, it might not actually evaluate
- // its arguments. Don't add them to the CFG if this is the case.
- bool OmitArguments = false;
-
- if (FunctionDecl *FD = C->getDirectCallee()) {
- // TODO: Support construction contexts for variadic function arguments.
- // These are a bit problematic and not very useful because passing
- // C++ objects as C-style variadic arguments doesn't work in general
- // (see [expr.call]).
- if (!FD->isVariadic())
- findConstructionContextsForArguments(C);
-
- if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
- NoReturn = true;
- if (FD->hasAttr<NoThrowAttr>())
- AddEHEdge = false;
- if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
- OmitArguments = true;
- }
-
- if (!CanThrow(C->getCallee(), *Context))
- AddEHEdge = false;
-
- if (OmitArguments) {
- assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
- assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
- autoCreateBlock();
- appendStmt(Block, C);
- return Visit(C->getCallee());
- }
-
- if (!NoReturn && !AddEHEdge) {
- autoCreateBlock();
- appendCall(Block, C);
-
- return VisitChildren(C);
- }
-
- if (Block) {
- Succ = Block;
- if (badCFG)
- return nullptr;
- }
-
- if (NoReturn)
- Block = createNoReturnBlock();
- else
- Block = createBlock();
-
- appendCall(Block, C);
-
- if (AddEHEdge) {
- // Add exceptional edges.
- if (TryTerminatedBlock)
- addSuccessor(Block, TryTerminatedBlock);
- else
- addSuccessor(Block, &cfg->getExit());
- }
-
- return VisitChildren(C);
-}
-
-CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
- AddStmtChoice asc) {
- CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
- appendStmt(ConfluenceBlock, C);
- if (badCFG)
- return nullptr;
-
- AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
- Succ = ConfluenceBlock;
- Block = nullptr;
- CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
- if (badCFG)
- return nullptr;
-
- Succ = ConfluenceBlock;
- Block = nullptr;
- CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
- if (badCFG)
- return nullptr;
-
- Block = createBlock(false);
- // See if this is a known constant.
- const TryResult& KnownVal = tryEvaluateBool(C->getCond());
- addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
- addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
- Block->setTerminator(C);
- return addStmt(C->getCond());
-}
-
-CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
- LocalScope::const_iterator scopeBeginPos = ScopePos;
- addLocalScopeForStmt(C);
-
- if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
- // If the body ends with a ReturnStmt, the dtors will be added in
- // VisitReturnStmt.
- addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
- }
-
- CFGBlock *LastBlock = Block;
-
- for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
- I != E; ++I ) {
- // If we hit a segment of code just containing ';' (NullStmts), we can
- // get a null block back. In such cases, just use the LastBlock
- if (CFGBlock *newBlock = addStmt(*I))
- LastBlock = newBlock;
-
- if (badCFG)
- return nullptr;
- }
-
- return LastBlock;
-}
-
-CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
- AddStmtChoice asc) {
- const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
- const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
-
- // Create the confluence block that will "merge" the results of the ternary
- // expression.
- CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
- appendStmt(ConfluenceBlock, C);
- if (badCFG)
- return nullptr;
-
- AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
-
- // Create a block for the LHS expression if there is an LHS expression. A
- // GCC extension allows LHS to be NULL, causing the condition to be the
- // value that is returned instead.
- // e.g: x ?: y is shorthand for: x ? x : y;
- Succ = ConfluenceBlock;
- Block = nullptr;
- CFGBlock *LHSBlock = nullptr;
- const Expr *trueExpr = C->getTrueExpr();
- if (trueExpr != opaqueValue) {
- LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
- if (badCFG)
- return nullptr;
- Block = nullptr;
- }
- else
- LHSBlock = ConfluenceBlock;
-
- // Create the block for the RHS expression.
- Succ = ConfluenceBlock;
- CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
- if (badCFG)
- return nullptr;
-
- // If the condition is a logical '&&' or '||', build a more accurate CFG.
- if (BinaryOperator *Cond =
- dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
- if (Cond->isLogicalOp())
- return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
-
- // Create the block that will contain the condition.
- Block = createBlock(false);
-
- // See if this is a known constant.
- const TryResult& KnownVal = tryEvaluateBool(C->getCond());
- addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
- addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
- Block->setTerminator(C);
- Expr *condExpr = C->getCond();
-
- if (opaqueValue) {
- // Run the condition expression if it's not trivially expressed in
- // terms of the opaque value (or if there is no opaque value).
- if (condExpr != opaqueValue)
- addStmt(condExpr);
-
- // Before that, run the common subexpression if there was one.
- // At least one of this or the above will be run.
- return addStmt(BCO->getCommon());
- }
-
- return addStmt(condExpr);
-}
-
-CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
- // Check if the Decl is for an __label__. If so, elide it from the
- // CFG entirely.
- if (isa<LabelDecl>(*DS->decl_begin()))
- return Block;
-
- // This case also handles static_asserts.
- if (DS->isSingleDecl())
- return VisitDeclSubExpr(DS);
-
- CFGBlock *B = nullptr;
-
- // Build an individual DeclStmt for each decl.
- for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
- E = DS->decl_rend();
- I != E; ++I) {
-
- // Allocate the DeclStmt using the BumpPtrAllocator. It will get
- // automatically freed with the CFG.
- DeclGroupRef DG(*I);
- Decl *D = *I;
- DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
- cfg->addSyntheticDeclStmt(DSNew, DS);
-
- // Append the fake DeclStmt to block.
- B = VisitDeclSubExpr(DSNew);
- }
-
- return B;
-}
-
-/// VisitDeclSubExpr - Utility method to add block-level expressions for
-/// DeclStmts and initializers in them.
-CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
- assert(DS->isSingleDecl() && "Can handle single declarations only.");
- VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
-
- if (!VD) {
- // Of everything that can be declared in a DeclStmt, only VarDecls impact
- // runtime semantics.
- return Block;
- }
-
- bool HasTemporaries = false;
-
- // Guard static initializers under a branch.
- CFGBlock *blockAfterStaticInit = nullptr;
-
- if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
- // For static variables, we need to create a branch to track
- // whether or not they are initialized.
- if (Block) {
- Succ = Block;
- Block = nullptr;
- if (badCFG)
- return nullptr;
- }
- blockAfterStaticInit = Succ;
- }
-
- // Destructors of temporaries in initialization expression should be called
- // after initialization finishes.
- Expr *Init = VD->getInit();
- if (Init) {
- HasTemporaries = isa<ExprWithCleanups>(Init);
-
- if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
- // Generate destructors for temporaries in initialization expression.
- TempDtorContext Context;
- VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
- /*BindToTemporary=*/false, Context);
- }
- }
-
- autoCreateBlock();
- appendStmt(Block, DS);
-
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
- Init);
-
- // Keep track of the last non-null block, as 'Block' can be nulled out
- // if the initializer expression is something like a 'while' in a
- // statement-expression.
- CFGBlock *LastBlock = Block;
-
- if (Init) {
- if (HasTemporaries) {
- // For expression with temporaries go directly to subexpression to omit
- // generating destructors for the second time.
- ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
- if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
- LastBlock = newBlock;
- }
- else {
- if (CFGBlock *newBlock = Visit(Init))
- LastBlock = newBlock;
- }
- }
-
- // If the type of VD is a VLA, then we must process its size expressions.
- for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
- VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
- if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
- LastBlock = newBlock;
- }
-
- maybeAddScopeBeginForVarDecl(Block, VD, DS);
-
- // Remove variable from local scope.
- if (ScopePos && VD == *ScopePos)
- ++ScopePos;
-
- CFGBlock *B = LastBlock;
- if (blockAfterStaticInit) {
- Succ = B;
- Block = createBlock(false);
- Block->setTerminator(DS);
- addSuccessor(Block, blockAfterStaticInit);
- addSuccessor(Block, B);
- B = Block;
- }
-
- return B;
-}
-
-CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
- // We may see an if statement in the middle of a basic block, or it may be the
- // first statement we are processing. In either case, we create a new basic
- // block. First, we create the blocks for the then...else statements, and
- // then we create the block containing the if statement. If we were in the
- // middle of a block, we stop processing that block. That block is then the
- // implicit successor for the "then" and "else" clauses.
-
- // Save local scope position because in case of condition variable ScopePos
- // won't be restored when traversing AST.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Create local scope for C++17 if init-stmt if one exists.
- if (Stmt *Init = I->getInit())
- addLocalScopeForStmt(Init);
-
- // Create local scope for possible condition variable.
- // Store scope position. Add implicit destructor.
- if (VarDecl *VD = I->getConditionVariable())
- addLocalScopeForVarDecl(VD);
-
- addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
-
- // The block we were processing is now finished. Make it the successor
- // block.
- if (Block) {
- Succ = Block;
- if (badCFG)
- return nullptr;
- }
-
- // Process the false branch.
- CFGBlock *ElseBlock = Succ;
-
- if (Stmt *Else = I->getElse()) {
- SaveAndRestore<CFGBlock*> sv(Succ);
-
- // NULL out Block so that the recursive call to Visit will
- // create a new basic block.
- Block = nullptr;
-
- // If branch is not a compound statement create implicit scope
- // and add destructors.
- if (!isa<CompoundStmt>(Else))
- addLocalScopeAndDtors(Else);
-
- ElseBlock = addStmt(Else);
-
- if (!ElseBlock) // Can occur when the Else body has all NullStmts.
- ElseBlock = sv.get();
- else if (Block) {
- if (badCFG)
- return nullptr;
- }
- }
-
- // Process the true branch.
- CFGBlock *ThenBlock;
- {
- Stmt *Then = I->getThen();
- assert(Then);
- SaveAndRestore<CFGBlock*> sv(Succ);
- Block = nullptr;
-
- // If branch is not a compound statement create implicit scope
- // and add destructors.
- if (!isa<CompoundStmt>(Then))
- addLocalScopeAndDtors(Then);
-
- ThenBlock = addStmt(Then);
-
- if (!ThenBlock) {
- // We can reach here if the "then" body has all NullStmts.
- // Create an empty block so we can distinguish between true and false
- // branches in path-sensitive analyses.
- ThenBlock = createBlock(false);
- addSuccessor(ThenBlock, sv.get());
- } else if (Block) {
- if (badCFG)
- return nullptr;
- }
- }
-
- // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
- // having these handle the actual control-flow jump. Note that
- // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
- // we resort to the old control-flow behavior. This special handling
- // removes infeasible paths from the control-flow graph by having the
- // control-flow transfer of '&&' or '||' go directly into the then/else
- // blocks directly.
- BinaryOperator *Cond =
- I->getConditionVariable()
- ? nullptr
- : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
- CFGBlock *LastBlock;
- if (Cond && Cond->isLogicalOp())
- LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
- else {
- // Now create a new block containing the if statement.
- Block = createBlock(false);
-
- // Set the terminator of the new block to the If statement.
- Block->setTerminator(I);
-
- // See if this is a known constant.
- const TryResult &KnownVal = tryEvaluateBool(I->getCond());
-
- // Add the successors. If we know that specific branches are
- // unreachable, inform addSuccessor() of that knowledge.
- addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
- addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
-
- // Add the condition as the last statement in the new block. This may
- // create new blocks as the condition may contain control-flow. Any newly
- // created blocks will be pointed to be "Block".
- LastBlock = addStmt(I->getCond());
-
- // If the IfStmt contains a condition variable, add it and its
- // initializer to the CFG.
- if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
- autoCreateBlock();
- LastBlock = addStmt(const_cast<DeclStmt *>(DS));
- }
- }
-
- // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
- if (Stmt *Init = I->getInit()) {
- autoCreateBlock();
- LastBlock = addStmt(Init);
- }
-
- return LastBlock;
-}
-
-CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
- // If we were in the middle of a block we stop processing that block.
- //
- // NOTE: If a "return" or "co_return" appears in the middle of a block, this
- // means that the code afterwards is DEAD (unreachable). We still keep
- // a basic block for that code; a simple "mark-and-sweep" from the entry
- // block will be able to report such dead blocks.
- assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
-
- // Create the new block.
- Block = createBlock(false);
-
- addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
-
- if (auto *R = dyn_cast<ReturnStmt>(S))
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
- R->getRetValue());
-
- // If the one of the destructors does not return, we already have the Exit
- // block as a successor.
- if (!Block->hasNoReturnElement())
- addSuccessor(Block, &cfg->getExit());
-
- // Add the return statement to the block. This may create new blocks if R
- // contains control-flow (short-circuit operations).
- return VisitStmt(S, AddStmtChoice::AlwaysAdd);
-}
-
-CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
- // SEHExceptStmt are treated like labels, so they are the first statement in a
- // block.
-
- // Save local scope position because in case of exception variable ScopePos
- // won't be restored when traversing AST.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- addStmt(ES->getBlock());
- CFGBlock *SEHExceptBlock = Block;
- if (!SEHExceptBlock)
- SEHExceptBlock = createBlock();
-
- appendStmt(SEHExceptBlock, ES);
-
- // Also add the SEHExceptBlock as a label, like with regular labels.
- SEHExceptBlock->setLabel(ES);
-
- // Bail out if the CFG is bad.
- if (badCFG)
- return nullptr;
-
- // We set Block to NULL to allow lazy creation of a new block (if necessary).
- Block = nullptr;
-
- return SEHExceptBlock;
-}
-
-CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
- return VisitCompoundStmt(FS->getBlock());
-}
-
-CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
- // "__leave" is a control-flow statement. Thus we stop processing the current
- // block.
- if (badCFG)
- return nullptr;
-
- // Now create a new block that ends with the __leave statement.
- Block = createBlock(false);
- Block->setTerminator(LS);
-
- // If there is no target for the __leave, then we are looking at an incomplete
- // AST. This means that the CFG cannot be constructed.
- if (SEHLeaveJumpTarget.block) {
- addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
- addSuccessor(Block, SEHLeaveJumpTarget.block);
- } else
- badCFG = true;
-
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
- // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop
- // processing the current block.
- CFGBlock *SEHTrySuccessor = nullptr;
-
- if (Block) {
- if (badCFG)
- return nullptr;
- SEHTrySuccessor = Block;
- } else SEHTrySuccessor = Succ;
-
- // FIXME: Implement __finally support.
- if (Terminator->getFinallyHandler())
- return NYS();
-
- CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
-
- // Create a new block that will contain the __try statement.
- CFGBlock *NewTryTerminatedBlock = createBlock(false);
-
- // Add the terminator in the __try block.
- NewTryTerminatedBlock->setTerminator(Terminator);
-
- if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
- // The code after the try is the implicit successor if there's an __except.
- Succ = SEHTrySuccessor;
- Block = nullptr;
- CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
- if (!ExceptBlock)
- return nullptr;
- // Add this block to the list of successors for the block with the try
- // statement.
- addSuccessor(NewTryTerminatedBlock, ExceptBlock);
- }
- if (PrevSEHTryTerminatedBlock)
- addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
- else
- addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
-
- // The code after the try is the implicit successor.
- Succ = SEHTrySuccessor;
-
- // Save the current "__try" context.
- SaveAndRestore<CFGBlock *> save_try(TryTerminatedBlock,
- NewTryTerminatedBlock);
- cfg->addTryDispatchBlock(TryTerminatedBlock);
-
- // Save the current value for the __leave target.
- // All __leaves should go to the code following the __try
- // (FIXME: or if the __try has a __finally, to the __finally.)
- SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
- SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
-
- assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
- Block = nullptr;
- return addStmt(Terminator->getTryBlock());
-}
-
-CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
- // Get the block of the labeled statement. Add it to our map.
- addStmt(L->getSubStmt());
- CFGBlock *LabelBlock = Block;
-
- if (!LabelBlock) // This can happen when the body is empty, i.e.
- LabelBlock = createBlock(); // scopes that only contains NullStmts.
-
- assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
- "label already in map");
- LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
-
- // Labels partition blocks, so this is the end of the basic block we were
- // processing (L is the block's label). Because this is label (and we have
- // already processed the substatement) there is no extra control-flow to worry
- // about.
- LabelBlock->setLabel(L);
- if (badCFG)
- return nullptr;
-
- // We set Block to NULL to allow lazy creation of a new block (if necessary);
- Block = nullptr;
-
- // This block is now the implicit successor of other blocks.
- Succ = LabelBlock;
-
- return LabelBlock;
-}
-
-CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
- CFGBlock *LastBlock = VisitNoRecurse(E, asc);
- for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
- if (Expr *CopyExpr = CI.getCopyExpr()) {
- CFGBlock *Tmp = Visit(CopyExpr);
- if (Tmp)
- LastBlock = Tmp;
- }
- }
- return LastBlock;
-}
-
-CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
- CFGBlock *LastBlock = VisitNoRecurse(E, asc);
- for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
- et = E->capture_init_end(); it != et; ++it) {
- if (Expr *Init = *it) {
- CFGBlock *Tmp = Visit(Init);
- if (Tmp)
- LastBlock = Tmp;
- }
- }
- return LastBlock;
-}
-
-CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
- // Goto is a control-flow statement. Thus we stop processing the current
- // block and create a new one.
-
- Block = createBlock(false);
- Block->setTerminator(G);
-
- // If we already know the mapping to the label block add the successor now.
- LabelMapTy::iterator I = LabelMap.find(G->getLabel());
-
- if (I == LabelMap.end())
- // We will need to backpatch this block later.
- BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
- else {
- JumpTarget JT = I->second;
- addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
- addSuccessor(Block, JT.block);
- }
-
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
- CFGBlock *LoopSuccessor = nullptr;
-
- // Save local scope position because in case of condition variable ScopePos
- // won't be restored when traversing AST.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Create local scope for init statement and possible condition variable.
- // Add destructor for init statement and condition variable.
- // Store scope position for continue statement.
- if (Stmt *Init = F->getInit())
- addLocalScopeForStmt(Init);
- LocalScope::const_iterator LoopBeginScopePos = ScopePos;
-
- if (VarDecl *VD = F->getConditionVariable())
- addLocalScopeForVarDecl(VD);
- LocalScope::const_iterator ContinueScopePos = ScopePos;
-
- addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
-
- addLoopExit(F);
-
- // "for" is a control-flow statement. Thus we stop processing the current
- // block.
- if (Block) {
- if (badCFG)
- return nullptr;
- LoopSuccessor = Block;
- } else
- LoopSuccessor = Succ;
-
- // Save the current value for the break targets.
- // All breaks should go to the code following the loop.
- SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
- BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
-
- CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
-
- // Now create the loop body.
- {
- assert(F->getBody());
-
- // Save the current values for Block, Succ, continue and break targets.
- SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
- SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
-
- // Create an empty block to represent the transition block for looping back
- // to the head of the loop. If we have increment code, it will
- // go in this block as well.
- Block = Succ = TransitionBlock = createBlock(false);
- TransitionBlock->setLoopTarget(F);
-
- if (Stmt *I = F->getInc()) {
- // Generate increment code in its own basic block. This is the target of
- // continue statements.
- Succ = addStmt(I);
- }
-
- // Finish up the increment (or empty) block if it hasn't been already.
- if (Block) {
- assert(Block == Succ);
- if (badCFG)
- return nullptr;
- Block = nullptr;
- }
-
- // The starting block for the loop increment is the block that should
- // represent the 'loop target' for looping back to the start of the loop.
- ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
- ContinueJumpTarget.block->setLoopTarget(F);
-
- // Loop body should end with destructor of Condition variable (if any).
- addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
-
- // If body is not a compound statement create implicit scope
- // and add destructors.
- if (!isa<CompoundStmt>(F->getBody()))
- addLocalScopeAndDtors(F->getBody());
-
- // Now populate the body block, and in the process create new blocks as we
- // walk the body of the loop.
- BodyBlock = addStmt(F->getBody());
-
- if (!BodyBlock) {
- // In the case of "for (...;...;...);" we can have a null BodyBlock.
- // Use the continue jump target as the proxy for the body.
- BodyBlock = ContinueJumpTarget.block;
- }
- else if (badCFG)
- return nullptr;
- }
-
- // Because of short-circuit evaluation, the condition of the loop can span
- // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
- // evaluate the condition.
- CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
-
- do {
- Expr *C = F->getCond();
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Specially handle logical operators, which have a slightly
- // more optimal CFG representation.
- if (BinaryOperator *Cond =
- dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
- if (Cond->isLogicalOp()) {
- std::tie(EntryConditionBlock, ExitConditionBlock) =
- VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
- break;
- }
-
- // The default case when not handling logical operators.
- EntryConditionBlock = ExitConditionBlock = createBlock(false);
- ExitConditionBlock->setTerminator(F);
-
- // See if this is a known constant.
- TryResult KnownVal(true);
-
- if (C) {
- // Now add the actual condition to the condition block.
- // Because the condition itself may contain control-flow, new blocks may
- // be created. Thus we update "Succ" after adding the condition.
- Block = ExitConditionBlock;
- EntryConditionBlock = addStmt(C);
-
- // If this block contains a condition variable, add both the condition
- // variable and initializer to the CFG.
- if (VarDecl *VD = F->getConditionVariable()) {
- if (Expr *Init = VD->getInit()) {
- autoCreateBlock();
- const DeclStmt *DS = F->getConditionVariableDeclStmt();
- assert(DS->isSingleDecl());
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
- Init);
- appendStmt(Block, DS);
- EntryConditionBlock = addStmt(Init);
- assert(Block == EntryConditionBlock);
- maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
- }
- }
-
- if (Block && badCFG)
- return nullptr;
-
- KnownVal = tryEvaluateBool(C);
- }
-
- // Add the loop body entry as a successor to the condition.
- addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
- // Link up the condition block with the code that follows the loop. (the
- // false branch).
- addSuccessor(ExitConditionBlock,
- KnownVal.isTrue() ? nullptr : LoopSuccessor);
- } while (false);
-
- // Link up the loop-back block to the entry condition block.
- addSuccessor(TransitionBlock, EntryConditionBlock);
-
- // The condition block is the implicit successor for any code above the loop.
- Succ = EntryConditionBlock;
-
- // If the loop contains initialization, create a new block for those
- // statements. This block can also contain statements that precede the loop.
- if (Stmt *I = F->getInit()) {
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
- ScopePos = LoopBeginScopePos;
- Block = createBlock();
- return addStmt(I);
- }
-
- // There is no loop initialization. We are thus basically a while loop.
- // NULL out Block to force lazy block construction.
- Block = nullptr;
- Succ = EntryConditionBlock;
- return EntryConditionBlock;
-}
-
-CFGBlock *
-CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
- AddStmtChoice asc) {
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
- MTE->getTemporary());
-
- return VisitStmt(MTE, asc);
-}
-
-CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, M)) {
- autoCreateBlock();
- appendStmt(Block, M);
- }
- return Visit(M->getBase());
-}
-
-CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
- // Objective-C fast enumeration 'for' statements:
- // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
- //
- // for ( Type newVariable in collection_expression ) { statements }
- //
- // becomes:
- //
- // prologue:
- // 1. collection_expression
- // T. jump to loop_entry
- // loop_entry:
- // 1. side-effects of element expression
- // 1. ObjCForCollectionStmt [performs binding to newVariable]
- // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
- // TB:
- // statements
- // T. jump to loop_entry
- // FB:
- // what comes after
- //
- // and
- //
- // Type existingItem;
- // for ( existingItem in expression ) { statements }
- //
- // becomes:
- //
- // the same with newVariable replaced with existingItem; the binding works
- // the same except that for one ObjCForCollectionStmt::getElement() returns
- // a DeclStmt and the other returns a DeclRefExpr.
-
- CFGBlock *LoopSuccessor = nullptr;
-
- if (Block) {
- if (badCFG)
- return nullptr;
- LoopSuccessor = Block;
- Block = nullptr;
- } else
- LoopSuccessor = Succ;
-
- // Build the condition blocks.
- CFGBlock *ExitConditionBlock = createBlock(false);
-
- // Set the terminator for the "exit" condition block.
- ExitConditionBlock->setTerminator(S);
-
- // The last statement in the block should be the ObjCForCollectionStmt, which
- // performs the actual binding to 'element' and determines if there are any
- // more items in the collection.
- appendStmt(ExitConditionBlock, S);
- Block = ExitConditionBlock;
-
- // Walk the 'element' expression to see if there are any side-effects. We
- // generate new blocks as necessary. We DON'T add the statement by default to
- // the CFG unless it contains control-flow.
- CFGBlock *EntryConditionBlock = Visit(S->getElement(),
- AddStmtChoice::NotAlwaysAdd);
- if (Block) {
- if (badCFG)
- return nullptr;
- Block = nullptr;
- }
-
- // The condition block is the implicit successor for the loop body as well as
- // any code above the loop.
- Succ = EntryConditionBlock;
-
- // Now create the true branch.
- {
- // Save the current values for Succ, continue and break targets.
- SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
- SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
- save_break(BreakJumpTarget);
-
- // Add an intermediate block between the BodyBlock and the
- // EntryConditionBlock to represent the "loop back" transition, for looping
- // back to the head of the loop.
- CFGBlock *LoopBackBlock = nullptr;
- Succ = LoopBackBlock = createBlock();
- LoopBackBlock->setLoopTarget(S);
-
- BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
- ContinueJumpTarget = JumpTarget(Succ, ScopePos);
-
- CFGBlock *BodyBlock = addStmt(S->getBody());
-
- if (!BodyBlock)
- BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
- else if (Block) {
- if (badCFG)
- return nullptr;
- }
-
- // This new body block is a successor to our "exit" condition block.
- addSuccessor(ExitConditionBlock, BodyBlock);
- }
-
- // Link up the condition block with the code that follows the loop.
- // (the false branch).
- addSuccessor(ExitConditionBlock, LoopSuccessor);
-
- // Now create a prologue block to contain the collection expression.
- Block = createBlock();
- return addStmt(S->getCollection());
-}
-
-CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
- // Inline the body.
- return addStmt(S->getSubStmt());
- // TODO: consider adding cleanups for the end of @autoreleasepool scope.
-}
-
-CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
- // FIXME: Add locking 'primitives' to CFG for @synchronized.
-
- // Inline the body.
- CFGBlock *SyncBlock = addStmt(S->getSynchBody());
-
- // The sync body starts its own basic block. This makes it a little easier
- // for diagnostic clients.
- if (SyncBlock) {
- if (badCFG)
- return nullptr;
-
- Block = nullptr;
- Succ = SyncBlock;
- }
-
- // Add the @synchronized to the CFG.
- autoCreateBlock();
- appendStmt(Block, S);
-
- // Inline the sync expression.
- return addStmt(S->getSynchExpr());
-}
-
-CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
- // FIXME
- return NYS();
-}
-
-CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
- autoCreateBlock();
-
- // Add the PseudoObject as the last thing.
- appendStmt(Block, E);
-
- CFGBlock *lastBlock = Block;
-
- // Before that, evaluate all of the semantics in order. In
- // CFG-land, that means appending them in reverse order.
- for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
- Expr *Semantic = E->getSemanticExpr(--i);
-
- // If the semantic is an opaque value, we're being asked to bind
- // it to its source expression.
- if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
- Semantic = OVE->getSourceExpr();
-
- if (CFGBlock *B = Visit(Semantic))
- lastBlock = B;
- }
-
- return lastBlock;
-}
-
-CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
- CFGBlock *LoopSuccessor = nullptr;
-
- // Save local scope position because in case of condition variable ScopePos
- // won't be restored when traversing AST.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Create local scope for possible condition variable.
- // Store scope position for continue statement.
- LocalScope::const_iterator LoopBeginScopePos = ScopePos;
- if (VarDecl *VD = W->getConditionVariable()) {
- addLocalScopeForVarDecl(VD);
- addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
- }
- addLoopExit(W);
-
- // "while" is a control-flow statement. Thus we stop processing the current
- // block.
- if (Block) {
- if (badCFG)
- return nullptr;
- LoopSuccessor = Block;
- Block = nullptr;
- } else {
- LoopSuccessor = Succ;
- }
-
- CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
-
- // Process the loop body.
- {
- assert(W->getBody());
-
- // Save the current values for Block, Succ, continue and break targets.
- SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
- SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
- save_break(BreakJumpTarget);
-
- // Create an empty block to represent the transition block for looping back
- // to the head of the loop.
- Succ = TransitionBlock = createBlock(false);
- TransitionBlock->setLoopTarget(W);
- ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
-
- // All breaks should go to the code following the loop.
- BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
-
- // Loop body should end with destructor of Condition variable (if any).
- addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
-
- // If body is not a compound statement create implicit scope
- // and add destructors.
- if (!isa<CompoundStmt>(W->getBody()))
- addLocalScopeAndDtors(W->getBody());
-
- // Create the body. The returned block is the entry to the loop body.
- BodyBlock = addStmt(W->getBody());
-
- if (!BodyBlock)
- BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
- else if (Block && badCFG)
- return nullptr;
- }
-
- // Because of short-circuit evaluation, the condition of the loop can span
- // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
- // evaluate the condition.
- CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
-
- do {
- Expr *C = W->getCond();
-
- // Specially handle logical operators, which have a slightly
- // more optimal CFG representation.
- if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
- if (Cond->isLogicalOp()) {
- std::tie(EntryConditionBlock, ExitConditionBlock) =
- VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
- break;
- }
-
- // The default case when not handling logical operators.
- ExitConditionBlock = createBlock(false);
- ExitConditionBlock->setTerminator(W);
-
- // Now add the actual condition to the condition block.
- // Because the condition itself may contain control-flow, new blocks may
- // be created. Thus we update "Succ" after adding the condition.
- Block = ExitConditionBlock;
- Block = EntryConditionBlock = addStmt(C);
-
- // If this block contains a condition variable, add both the condition
- // variable and initializer to the CFG.
- if (VarDecl *VD = W->getConditionVariable()) {
- if (Expr *Init = VD->getInit()) {
- autoCreateBlock();
- const DeclStmt *DS = W->getConditionVariableDeclStmt();
- assert(DS->isSingleDecl());
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(),
- const_cast<DeclStmt *>(DS)),
- Init);
- appendStmt(Block, DS);
- EntryConditionBlock = addStmt(Init);
- assert(Block == EntryConditionBlock);
- maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
- }
- }
-
- if (Block && badCFG)
- return nullptr;
-
- // See if this is a known constant.
- const TryResult& KnownVal = tryEvaluateBool(C);
-
- // Add the loop body entry as a successor to the condition.
- addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
- // Link up the condition block with the code that follows the loop. (the
- // false branch).
- addSuccessor(ExitConditionBlock,
- KnownVal.isTrue() ? nullptr : LoopSuccessor);
- } while(false);
-
- // Link up the loop-back block to the entry condition block.
- addSuccessor(TransitionBlock, EntryConditionBlock);
-
- // There can be no more statements in the condition block since we loop back
- // to this block. NULL out Block to force lazy creation of another block.
- Block = nullptr;
-
- // Return the condition block, which is the dominating block for the loop.
- Succ = EntryConditionBlock;
- return EntryConditionBlock;
-}
-
-CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
- // FIXME: For now we pretend that @catch and the code it contains does not
- // exit.
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
- // FIXME: This isn't complete. We basically treat @throw like a return
- // statement.
-
- // If we were in the middle of a block we stop processing that block.
- if (badCFG)
- return nullptr;
-
- // Create the new block.
- Block = createBlock(false);
-
- // The Exit block is the only successor.
- addSuccessor(Block, &cfg->getExit());
-
- // Add the statement to the block. This may create new blocks if S contains
- // control-flow (short-circuit operations).
- return VisitStmt(S, AddStmtChoice::AlwaysAdd);
-}
-
-CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
- AddStmtChoice asc) {
- findConstructionContextsForArguments(ME);
-
- autoCreateBlock();
- appendObjCMessage(Block, ME);
-
- return VisitChildren(ME);
-}
-
-CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
- // If we were in the middle of a block we stop processing that block.
- if (badCFG)
- return nullptr;
-
- // Create the new block.
- Block = createBlock(false);
-
- if (TryTerminatedBlock)
- // The current try statement is the only successor.
- addSuccessor(Block, TryTerminatedBlock);
- else
- // otherwise the Exit block is the only successor.
- addSuccessor(Block, &cfg->getExit());
-
- // Add the statement to the block. This may create new blocks if S contains
- // control-flow (short-circuit operations).
- return VisitStmt(T, AddStmtChoice::AlwaysAdd);
-}
-
-CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
- CFGBlock *LoopSuccessor = nullptr;
-
- addLoopExit(D);
-
- // "do...while" is a control-flow statement. Thus we stop processing the
- // current block.
- if (Block) {
- if (badCFG)
- return nullptr;
- LoopSuccessor = Block;
- } else
- LoopSuccessor = Succ;
-
- // Because of short-circuit evaluation, the condition of the loop can span
- // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
- // evaluate the condition.
- CFGBlock *ExitConditionBlock = createBlock(false);
- CFGBlock *EntryConditionBlock = ExitConditionBlock;
-
- // Set the terminator for the "exit" condition block.
- ExitConditionBlock->setTerminator(D);
-
- // Now add the actual condition to the condition block. Because the condition
- // itself may contain control-flow, new blocks may be created.
- if (Stmt *C = D->getCond()) {
- Block = ExitConditionBlock;
- EntryConditionBlock = addStmt(C);
- if (Block) {
- if (badCFG)
- return nullptr;
- }
- }
-
- // The condition block is the implicit successor for the loop body.
- Succ = EntryConditionBlock;
-
- // See if this is a known constant.
- const TryResult &KnownVal = tryEvaluateBool(D->getCond());
-
- // Process the loop body.
- CFGBlock *BodyBlock = nullptr;
- {
- assert(D->getBody());
-
- // Save the current values for Block, Succ, and continue and break targets
- SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
- SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
- save_break(BreakJumpTarget);
-
- // All continues within this loop should go to the condition block
- ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
-
- // All breaks should go to the code following the loop.
- BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
-
- // NULL out Block to force lazy instantiation of blocks for the body.
- Block = nullptr;
-
- // If body is not a compound statement create implicit scope
- // and add destructors.
- if (!isa<CompoundStmt>(D->getBody()))
- addLocalScopeAndDtors(D->getBody());
-
- // Create the body. The returned block is the entry to the loop body.
- BodyBlock = addStmt(D->getBody());
-
- if (!BodyBlock)
- BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
- else if (Block) {
- if (badCFG)
- return nullptr;
- }
-
- // Add an intermediate block between the BodyBlock and the
- // ExitConditionBlock to represent the "loop back" transition. Create an
- // empty block to represent the transition block for looping back to the
- // head of the loop.
- // FIXME: Can we do this more efficiently without adding another block?
- Block = nullptr;
- Succ = BodyBlock;
- CFGBlock *LoopBackBlock = createBlock();
- LoopBackBlock->setLoopTarget(D);
-
- if (!KnownVal.isFalse())
- // Add the loop body entry as a successor to the condition.
- addSuccessor(ExitConditionBlock, LoopBackBlock);
- else
- addSuccessor(ExitConditionBlock, nullptr);
- }
-
- // Link up the condition block with the code that follows the loop.
- // (the false branch).
- addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
-
- // There can be no more statements in the body block(s) since we loop back to
- // the body. NULL out Block to force lazy creation of another block.
- Block = nullptr;
-
- // Return the loop body, which is the dominating block for the loop.
- Succ = BodyBlock;
- return BodyBlock;
-}
-
-CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
- // "continue" is a control-flow statement. Thus we stop processing the
- // current block.
- if (badCFG)
- return nullptr;
-
- // Now create a new block that ends with the continue statement.
- Block = createBlock(false);
- Block->setTerminator(C);
-
- // If there is no target for the continue, then we are looking at an
- // incomplete AST. This means the CFG cannot be constructed.
- if (ContinueJumpTarget.block) {
- addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
- addSuccessor(Block, ContinueJumpTarget.block);
- } else
- badCFG = true;
-
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
- AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, E)) {
- autoCreateBlock();
- appendStmt(Block, E);
- }
-
- // VLA types have expressions that must be evaluated.
- CFGBlock *lastBlock = Block;
-
- if (E->isArgumentType()) {
- for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
- VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
- lastBlock = addStmt(VA->getSizeExpr());
- }
- return lastBlock;
-}
-
-/// VisitStmtExpr - Utility method to handle (nested) statement
-/// expressions (a GCC extension).
-CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, SE)) {
- autoCreateBlock();
- appendStmt(Block, SE);
- }
- return VisitCompoundStmt(SE->getSubStmt());
-}
-
-CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
- // "switch" is a control-flow statement. Thus we stop processing the current
- // block.
- CFGBlock *SwitchSuccessor = nullptr;
-
- // Save local scope position because in case of condition variable ScopePos
- // won't be restored when traversing AST.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Create local scope for C++17 switch init-stmt if one exists.
- if (Stmt *Init = Terminator->getInit())
- addLocalScopeForStmt(Init);
-
- // Create local scope for possible condition variable.
- // Store scope position. Add implicit destructor.
- if (VarDecl *VD = Terminator->getConditionVariable())
- addLocalScopeForVarDecl(VD);
-
- addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
-
- if (Block) {
- if (badCFG)
- return nullptr;
- SwitchSuccessor = Block;
- } else SwitchSuccessor = Succ;
-
- // Save the current "switch" context.
- SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
- save_default(DefaultCaseBlock);
- SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
-
- // Set the "default" case to be the block after the switch statement. If the
- // switch statement contains a "default:", this value will be overwritten with
- // the block for that code.
- DefaultCaseBlock = SwitchSuccessor;
-
- // Create a new block that will contain the switch statement.
- SwitchTerminatedBlock = createBlock(false);
-
- // Now process the switch body. The code after the switch is the implicit
- // successor.
- Succ = SwitchSuccessor;
- BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
-
- // When visiting the body, the case statements should automatically get linked
- // up to the switch. We also don't keep a pointer to the body, since all
- // control-flow from the switch goes to case/default statements.
- assert(Terminator->getBody() && "switch must contain a non-NULL body");
- Block = nullptr;
-
- // For pruning unreachable case statements, save the current state
- // for tracking the condition value.
- SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
- false);
-
- // Determine if the switch condition can be explicitly evaluated.
- assert(Terminator->getCond() && "switch condition must be non-NULL");
- Expr::EvalResult result;
- bool b = tryEvaluate(Terminator->getCond(), result);
- SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
- b ? &result : nullptr);
-
- // If body is not a compound statement create implicit scope
- // and add destructors.
- if (!isa<CompoundStmt>(Terminator->getBody()))
- addLocalScopeAndDtors(Terminator->getBody());
-
- addStmt(Terminator->getBody());
- if (Block) {
- if (badCFG)
- return nullptr;
- }
-
- // If we have no "default:" case, the default transition is to the code
- // following the switch body. Moreover, take into account if all the
- // cases of a switch are covered (e.g., switching on an enum value).
- //
- // Note: We add a successor to a switch that is considered covered yet has no
- // case statements if the enumeration has no enumerators.
- bool SwitchAlwaysHasSuccessor = false;
- SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
- SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
- Terminator->getSwitchCaseList();
- addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
- !SwitchAlwaysHasSuccessor);
-
- // Add the terminator and condition in the switch block.
- SwitchTerminatedBlock->setTerminator(Terminator);
- Block = SwitchTerminatedBlock;
- CFGBlock *LastBlock = addStmt(Terminator->getCond());
-
- // If the SwitchStmt contains a condition variable, add both the
- // SwitchStmt and the condition variable initialization to the CFG.
- if (VarDecl *VD = Terminator->getConditionVariable()) {
- if (Expr *Init = VD->getInit()) {
- autoCreateBlock();
- appendStmt(Block, Terminator->getConditionVariableDeclStmt());
- LastBlock = addStmt(Init);
- maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
- }
- }
-
- // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
- if (Stmt *Init = Terminator->getInit()) {
- autoCreateBlock();
- LastBlock = addStmt(Init);
- }
-
- return LastBlock;
-}
-
-static bool shouldAddCase(bool &switchExclusivelyCovered,
- const Expr::EvalResult *switchCond,
- const CaseStmt *CS,
- ASTContext &Ctx) {
- if (!switchCond)
- return true;
-
- bool addCase = false;
-
- if (!switchExclusivelyCovered) {
- if (switchCond->Val.isInt()) {
- // Evaluate the LHS of the case value.
- const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
- const llvm::APSInt &condInt = switchCond->Val.getInt();
-
- if (condInt == lhsInt) {
- addCase = true;
- switchExclusivelyCovered = true;
- }
- else if (condInt > lhsInt) {
- if (const Expr *RHS = CS->getRHS()) {
- // Evaluate the RHS of the case value.
- const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
- if (V2 >= condInt) {
- addCase = true;
- switchExclusivelyCovered = true;
- }
- }
- }
- }
- else
- addCase = true;
- }
- return addCase;
-}
-
-CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
- // CaseStmts are essentially labels, so they are the first statement in a
- // block.
- CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
-
- if (Stmt *Sub = CS->getSubStmt()) {
- // For deeply nested chains of CaseStmts, instead of doing a recursion
- // (which can blow out the stack), manually unroll and create blocks
- // along the way.
- while (isa<CaseStmt>(Sub)) {
- CFGBlock *currentBlock = createBlock(false);
- currentBlock->setLabel(CS);
-
- if (TopBlock)
- addSuccessor(LastBlock, currentBlock);
- else
- TopBlock = currentBlock;
-
- addSuccessor(SwitchTerminatedBlock,
- shouldAddCase(switchExclusivelyCovered, switchCond,
- CS, *Context)
- ? currentBlock : nullptr);
-
- LastBlock = currentBlock;
- CS = cast<CaseStmt>(Sub);
- Sub = CS->getSubStmt();
- }
-
- addStmt(Sub);
- }
-
- CFGBlock *CaseBlock = Block;
- if (!CaseBlock)
- CaseBlock = createBlock();
-
- // Cases statements partition blocks, so this is the top of the basic block we
- // were processing (the "case XXX:" is the label).
- CaseBlock->setLabel(CS);
-
- if (badCFG)
- return nullptr;
-
- // Add this block to the list of successors for the block with the switch
- // statement.
- assert(SwitchTerminatedBlock);
- addSuccessor(SwitchTerminatedBlock, CaseBlock,
- shouldAddCase(switchExclusivelyCovered, switchCond,
- CS, *Context));
-
- // We set Block to NULL to allow lazy creation of a new block (if necessary)
- Block = nullptr;
-
- if (TopBlock) {
- addSuccessor(LastBlock, CaseBlock);
- Succ = TopBlock;
- } else {
- // This block is now the implicit successor of other blocks.
- Succ = CaseBlock;
- }
-
- return Succ;
-}
-
-CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
- if (Terminator->getSubStmt())
- addStmt(Terminator->getSubStmt());
-
- DefaultCaseBlock = Block;
-
- if (!DefaultCaseBlock)
- DefaultCaseBlock = createBlock();
-
- // Default statements partition blocks, so this is the top of the basic block
- // we were processing (the "default:" is the label).
- DefaultCaseBlock->setLabel(Terminator);
-
- if (badCFG)
- return nullptr;
-
- // Unlike case statements, we don't add the default block to the successors
- // for the switch statement immediately. This is done when we finish
- // processing the switch statement. This allows for the default case
- // (including a fall-through to the code after the switch statement) to always
- // be the last successor of a switch-terminated block.
-
- // We set Block to NULL to allow lazy creation of a new block (if necessary)
- Block = nullptr;
-
- // This block is now the implicit successor of other blocks.
- Succ = DefaultCaseBlock;
-
- return DefaultCaseBlock;
-}
-
-CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
- // "try"/"catch" is a control-flow statement. Thus we stop processing the
- // current block.
- CFGBlock *TrySuccessor = nullptr;
-
- if (Block) {
- if (badCFG)
- return nullptr;
- TrySuccessor = Block;
- } else TrySuccessor = Succ;
-
- CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
-
- // Create a new block that will contain the try statement.
- CFGBlock *NewTryTerminatedBlock = createBlock(false);
- // Add the terminator in the try block.
- NewTryTerminatedBlock->setTerminator(Terminator);
-
- bool HasCatchAll = false;
- for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
- // The code after the try is the implicit successor.
- Succ = TrySuccessor;
- CXXCatchStmt *CS = Terminator->getHandler(h);
- if (CS->getExceptionDecl() == nullptr) {
- HasCatchAll = true;
- }
- Block = nullptr;
- CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
- if (!CatchBlock)
- return nullptr;
- // Add this block to the list of successors for the block with the try
- // statement.
- addSuccessor(NewTryTerminatedBlock, CatchBlock);
- }
- if (!HasCatchAll) {
- if (PrevTryTerminatedBlock)
- addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
- else
- addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
- }
-
- // The code after the try is the implicit successor.
- Succ = TrySuccessor;
-
- // Save the current "try" context.
- SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
- cfg->addTryDispatchBlock(TryTerminatedBlock);
-
- assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
- Block = nullptr;
- return addStmt(Terminator->getTryBlock());
-}
-
-CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
- // CXXCatchStmt are treated like labels, so they are the first statement in a
- // block.
-
- // Save local scope position because in case of exception variable ScopePos
- // won't be restored when traversing AST.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Create local scope for possible exception variable.
- // Store scope position. Add implicit destructor.
- if (VarDecl *VD = CS->getExceptionDecl()) {
- LocalScope::const_iterator BeginScopePos = ScopePos;
- addLocalScopeForVarDecl(VD);
- addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
- }
-
- if (CS->getHandlerBlock())
- addStmt(CS->getHandlerBlock());
-
- CFGBlock *CatchBlock = Block;
- if (!CatchBlock)
- CatchBlock = createBlock();
-
- // CXXCatchStmt is more than just a label. They have semantic meaning
- // as well, as they implicitly "initialize" the catch variable. Add
- // it to the CFG as a CFGElement so that the control-flow of these
- // semantics gets captured.
- appendStmt(CatchBlock, CS);
-
- // Also add the CXXCatchStmt as a label, to mirror handling of regular
- // labels.
- CatchBlock->setLabel(CS);
-
- // Bail out if the CFG is bad.
- if (badCFG)
- return nullptr;
-
- // We set Block to NULL to allow lazy creation of a new block (if necessary)
- Block = nullptr;
-
- return CatchBlock;
-}
-
-CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
- // C++0x for-range statements are specified as [stmt.ranged]:
- //
- // {
- // auto && __range = range-init;
- // for ( auto __begin = begin-expr,
- // __end = end-expr;
- // __begin != __end;
- // ++__begin ) {
- // for-range-declaration = *__begin;
- // statement
- // }
- // }
-
- // Save local scope position before the addition of the implicit variables.
- SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
-
- // Create local scopes and destructors for range, begin and end variables.
- if (Stmt *Range = S->getRangeStmt())
- addLocalScopeForStmt(Range);
- if (Stmt *Begin = S->getBeginStmt())
- addLocalScopeForStmt(Begin);
- if (Stmt *End = S->getEndStmt())
- addLocalScopeForStmt(End);
- addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
-
- LocalScope::const_iterator ContinueScopePos = ScopePos;
-
- // "for" is a control-flow statement. Thus we stop processing the current
- // block.
- CFGBlock *LoopSuccessor = nullptr;
- if (Block) {
- if (badCFG)
- return nullptr;
- LoopSuccessor = Block;
- } else
- LoopSuccessor = Succ;
-
- // Save the current value for the break targets.
- // All breaks should go to the code following the loop.
- SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
- BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
-
- // The block for the __begin != __end expression.
- CFGBlock *ConditionBlock = createBlock(false);
- ConditionBlock->setTerminator(S);
-
- // Now add the actual condition to the condition block.
- if (Expr *C = S->getCond()) {
- Block = ConditionBlock;
- CFGBlock *BeginConditionBlock = addStmt(C);
- if (badCFG)
- return nullptr;
- assert(BeginConditionBlock == ConditionBlock &&
- "condition block in for-range was unexpectedly complex");
- (void)BeginConditionBlock;
- }
-
- // The condition block is the implicit successor for the loop body as well as
- // any code above the loop.
- Succ = ConditionBlock;
-
- // See if this is a known constant.
- TryResult KnownVal(true);
-
- if (S->getCond())
- KnownVal = tryEvaluateBool(S->getCond());
-
- // Now create the loop body.
- {
- assert(S->getBody());
-
- // Save the current values for Block, Succ, and continue targets.
- SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
- SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
-
- // Generate increment code in its own basic block. This is the target of
- // continue statements.
- Block = nullptr;
- Succ = addStmt(S->getInc());
- if (badCFG)
- return nullptr;
- ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
-
- // The starting block for the loop increment is the block that should
- // represent the 'loop target' for looping back to the start of the loop.
- ContinueJumpTarget.block->setLoopTarget(S);
-
- // Finish up the increment block and prepare to start the loop body.
- assert(Block);
- if (badCFG)
- return nullptr;
- Block = nullptr;
-
- // Add implicit scope and dtors for loop variable.
- addLocalScopeAndDtors(S->getLoopVarStmt());
-
- // Populate a new block to contain the loop body and loop variable.
- addStmt(S->getBody());
- if (badCFG)
- return nullptr;
- CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
- if (badCFG)
- return nullptr;
-
- // This new body block is a successor to our condition block.
- addSuccessor(ConditionBlock,
- KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
- }
-
- // Link up the condition block with the code that follows the loop (the
- // false branch).
- addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
-
- // Add the initialization statements.
- Block = createBlock();
- addStmt(S->getBeginStmt());
- addStmt(S->getEndStmt());
- CFGBlock *Head = addStmt(S->getRangeStmt());
- if (S->getInit())
- Head = addStmt(S->getInit());
- return Head;
-}
-
-CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
- AddStmtChoice asc) {
- if (BuildOpts.AddTemporaryDtors) {
- // If adding implicit destructors visit the full expression for adding
- // destructors of temporaries.
- TempDtorContext Context;
- VisitForTemporaryDtors(E->getSubExpr(), false, Context);
-
- // Full expression has to be added as CFGStmt so it will be sequenced
- // before destructors of it's temporaries.
- asc = asc.withAlwaysAdd(true);
- }
- return Visit(E->getSubExpr(), asc);
-}
-
-CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
- AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, E)) {
- autoCreateBlock();
- appendStmt(Block, E);
-
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
- E->getSubExpr());
-
- // We do not want to propagate the AlwaysAdd property.
- asc = asc.withAlwaysAdd(false);
- }
- return Visit(E->getSubExpr(), asc);
-}
-
-CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
- AddStmtChoice asc) {
- // If the constructor takes objects as arguments by value, we need to properly
- // construct these objects. Construction contexts we find here aren't for the
- // constructor C, they're for its arguments only.
- findConstructionContextsForArguments(C);
-
- autoCreateBlock();
- appendConstructor(Block, C);
-
- return VisitChildren(C);
-}
-
-CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
- AddStmtChoice asc) {
- autoCreateBlock();
- appendStmt(Block, NE);
-
- findConstructionContexts(
- ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
- const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
-
- if (NE->getInitializer())
- Block = Visit(NE->getInitializer());
-
- if (BuildOpts.AddCXXNewAllocator)
- appendNewAllocator(Block, NE);
-
- if (NE->isArray())
- Block = Visit(NE->getArraySize());
-
- for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
- E = NE->placement_arg_end(); I != E; ++I)
- Block = Visit(*I);
-
- return Block;
-}
-
-CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
- AddStmtChoice asc) {
- autoCreateBlock();
- appendStmt(Block, DE);
- QualType DTy = DE->getDestroyedType();
- if (!DTy.isNull()) {
- DTy = DTy.getNonReferenceType();
- CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
- if (RD) {
- if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
- appendDeleteDtor(Block, RD, DE);
- }
- }
-
- return VisitChildren(DE);
-}
-
-CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
- AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, E)) {
- autoCreateBlock();
- appendStmt(Block, E);
- // We do not want to propagate the AlwaysAdd property.
- asc = asc.withAlwaysAdd(false);
- }
- return Visit(E->getSubExpr(), asc);
-}
-
-CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
- AddStmtChoice asc) {
- // If the constructor takes objects as arguments by value, we need to properly
- // construct these objects. Construction contexts we find here aren't for the
- // constructor C, they're for its arguments only.
- findConstructionContextsForArguments(C);
-
- autoCreateBlock();
- appendConstructor(Block, C);
- return VisitChildren(C);
-}
-
-CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
- AddStmtChoice asc) {
- if (asc.alwaysAdd(*this, E)) {
- autoCreateBlock();
- appendStmt(Block, E);
- }
- return Visit(E->getSubExpr(), AddStmtChoice());
-}
-
-CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
- return Visit(E->getSubExpr(), AddStmtChoice());
-}
-
-CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
- // Lazily create the indirect-goto dispatch block if there isn't one already.
- CFGBlock *IBlock = cfg->getIndirectGotoBlock();
-
- if (!IBlock) {
- IBlock = createBlock(false);
- cfg->setIndirectGotoBlock(IBlock);
- }
-
- // IndirectGoto is a control-flow statement. Thus we stop processing the
- // current block and create a new one.
- if (badCFG)
- return nullptr;
-
- Block = createBlock(false);
- Block->setTerminator(I);
- addSuccessor(Block, IBlock);
- return addStmt(I->getTarget());
-}
-
-CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
- TempDtorContext &Context) {
- assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
-
-tryAgain:
- if (!E) {
- badCFG = true;
- return nullptr;
- }
- switch (E->getStmtClass()) {
- default:
- return VisitChildrenForTemporaryDtors(E, Context);
-
- case Stmt::BinaryOperatorClass:
- return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
- Context);
-
- case Stmt::CXXBindTemporaryExprClass:
- return VisitCXXBindTemporaryExprForTemporaryDtors(
- cast<CXXBindTemporaryExpr>(E), BindToTemporary, Context);
-
- case Stmt::BinaryConditionalOperatorClass:
- case Stmt::ConditionalOperatorClass:
- return VisitConditionalOperatorForTemporaryDtors(
- cast<AbstractConditionalOperator>(E), BindToTemporary, Context);
-
- case Stmt::ImplicitCastExprClass:
- // For implicit cast we want BindToTemporary to be passed further.
- E = cast<CastExpr>(E)->getSubExpr();
- goto tryAgain;
-
- case Stmt::CXXFunctionalCastExprClass:
- // For functional cast we want BindToTemporary to be passed further.
- E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
- goto tryAgain;
-
- case Stmt::ConstantExprClass:
- E = cast<ConstantExpr>(E)->getSubExpr();
- goto tryAgain;
-
- case Stmt::ParenExprClass:
- E = cast<ParenExpr>(E)->getSubExpr();
- goto tryAgain;
-
- case Stmt::MaterializeTemporaryExprClass: {
- const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
- BindToTemporary = (MTE->getStorageDuration() != SD_FullExpression);
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- // Find the expression whose lifetime needs to be extended.
- E = const_cast<Expr *>(
- cast<MaterializeTemporaryExpr>(E)
- ->GetTemporaryExpr()
- ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
- // Visit the skipped comma operator left-hand sides for other temporaries.
- for (const Expr *CommaLHS : CommaLHSs) {
- VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
- /*BindToTemporary=*/false, Context);
- }
- goto tryAgain;
- }
-
- case Stmt::BlockExprClass:
- // Don't recurse into blocks; their subexpressions don't get evaluated
- // here.
- return Block;
-
- case Stmt::LambdaExprClass: {
- // For lambda expressions, only recurse into the capture initializers,
- // and not the body.
- auto *LE = cast<LambdaExpr>(E);
- CFGBlock *B = Block;
- for (Expr *Init : LE->capture_inits()) {
- if (Init) {
- if (CFGBlock *R = VisitForTemporaryDtors(
- Init, /*BindToTemporary=*/false, Context))
- B = R;
- }
- }
- return B;
- }
-
- case Stmt::CXXDefaultArgExprClass:
- E = cast<CXXDefaultArgExpr>(E)->getExpr();
- goto tryAgain;
-
- case Stmt::CXXDefaultInitExprClass:
- E = cast<CXXDefaultInitExpr>(E)->getExpr();
- goto tryAgain;
- }
-}
-
-CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
- TempDtorContext &Context) {
- if (isa<LambdaExpr>(E)) {
- // Do not visit the children of lambdas; they have their own CFGs.
- return Block;
- }
-
- // When visiting children for destructors we want to visit them in reverse
- // order that they will appear in the CFG. Because the CFG is built
- // bottom-up, this means we visit them in their natural order, which
- // reverses them in the CFG.
- CFGBlock *B = Block;
- for (Stmt *Child : E->children())
- if (Child)
- if (CFGBlock *R = VisitForTemporaryDtors(Child, false, Context))
- B = R;
-
- return B;
-}
-
-CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
- BinaryOperator *E, TempDtorContext &Context) {
- if (E->isLogicalOp()) {
- VisitForTemporaryDtors(E->getLHS(), false, Context);
- TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
- if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
- RHSExecuted.negate();
-
- // We do not know at CFG-construction time whether the right-hand-side was
- // executed, thus we add a branch node that depends on the temporary
- // constructor call.
- TempDtorContext RHSContext(
- bothKnownTrue(Context.KnownExecuted, RHSExecuted));
- VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
- InsertTempDtorDecisionBlock(RHSContext);
-
- return Block;
- }
-
- if (E->isAssignmentOp()) {
- // For assignment operator (=) LHS expression is visited
- // before RHS expression. For destructors visit them in reverse order.
- CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
- CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
- return LHSBlock ? LHSBlock : RHSBlock;
- }
-
- // For any other binary operator RHS expression is visited before
- // LHS expression (order of children). For destructors visit them in reverse
- // order.
- CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
- CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
- return RHSBlock ? RHSBlock : LHSBlock;
-}
-
-CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
- CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context) {
- // First add destructors for temporaries in subexpression.
- CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), false, Context);
- if (!BindToTemporary) {
- // If lifetime of temporary is not prolonged (by assigning to constant
- // reference) add destructor for it.
-
- const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
-
- if (Dtor->getParent()->isAnyDestructorNoReturn()) {
- // If the destructor is marked as a no-return destructor, we need to
- // create a new block for the destructor which does not have as a
- // successor anything built thus far. Control won't flow out of this
- // block.
- if (B) Succ = B;
- Block = createNoReturnBlock();
- } else if (Context.needsTempDtorBranch()) {
- // If we need to introduce a branch, we add a new block that we will hook
- // up to a decision block later.
- if (B) Succ = B;
- Block = createBlock();
- } else {
- autoCreateBlock();
- }
- if (Context.needsTempDtorBranch()) {
- Context.setDecisionPoint(Succ, E);
- }
- appendTemporaryDtor(Block, E);
-
- B = Block;
- }
- return B;
-}
-
-void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
- CFGBlock *FalseSucc) {
- if (!Context.TerminatorExpr) {
- // If no temporary was found, we do not need to insert a decision point.
- return;
- }
- assert(Context.TerminatorExpr);
- CFGBlock *Decision = createBlock(false);
- Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, true));
- addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
- addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
- !Context.KnownExecuted.isTrue());
- Block = Decision;
-}
-
-CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
- AbstractConditionalOperator *E, bool BindToTemporary,
- TempDtorContext &Context) {
- VisitForTemporaryDtors(E->getCond(), false, Context);
- CFGBlock *ConditionBlock = Block;
- CFGBlock *ConditionSucc = Succ;
- TryResult ConditionVal = tryEvaluateBool(E->getCond());
- TryResult NegatedVal = ConditionVal;
- if (NegatedVal.isKnown()) NegatedVal.negate();
-
- TempDtorContext TrueContext(
- bothKnownTrue(Context.KnownExecuted, ConditionVal));
- VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary, TrueContext);
- CFGBlock *TrueBlock = Block;
-
- Block = ConditionBlock;
- Succ = ConditionSucc;
- TempDtorContext FalseContext(
- bothKnownTrue(Context.KnownExecuted, NegatedVal));
- VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary, FalseContext);
-
- if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
- InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
- } else if (TrueContext.TerminatorExpr) {
- Block = TrueBlock;
- InsertTempDtorDecisionBlock(TrueContext);
- } else {
- InsertTempDtorDecisionBlock(FalseContext);
- }
- return Block;
-}
-
-/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
-/// no successors or predecessors. If this is the first block created in the
-/// CFG, it is automatically set to be the Entry and Exit of the CFG.
-CFGBlock *CFG::createBlock() {
- bool first_block = begin() == end();
-
- // Create the block.
- CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
- new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
- Blocks.push_back(Mem, BlkBVC);
-
- // If this is the first block, set it as the Entry and Exit.
- if (first_block)
- Entry = Exit = &back();
-
- // Return the block.
- return &back();
-}
-
-/// buildCFG - Constructs a CFG from an AST.
-std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
- ASTContext *C, const BuildOptions &BO) {
- CFGBuilder Builder(C, BO);
- return Builder.buildCFG(D, Statement);
-}
-
-const CXXDestructorDecl *
-CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
- switch (getKind()) {
- case CFGElement::Initializer:
- case CFGElement::NewAllocator:
- case CFGElement::LoopExit:
- case CFGElement::LifetimeEnds:
- case CFGElement::Statement:
- case CFGElement::Constructor:
- case CFGElement::CXXRecordTypedCall:
- case CFGElement::ScopeBegin:
- case CFGElement::ScopeEnd:
- llvm_unreachable("getDestructorDecl should only be used with "
- "ImplicitDtors");
- case CFGElement::AutomaticObjectDtor: {
- const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
- QualType ty = var->getType();
-
- // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
- //
- // Lifetime-extending constructs are handled here. This works for a single
- // temporary in an initializer expression.
- if (ty->isReferenceType()) {
- if (const Expr *Init = var->getInit()) {
- ty = getReferenceInitTemporaryType(Init);
- }
- }
-
- while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
- ty = arrayType->getElementType();
- }
- const RecordType *recordType = ty->getAs<RecordType>();
- const CXXRecordDecl *classDecl =
- cast<CXXRecordDecl>(recordType->getDecl());
- return classDecl->getDestructor();
- }
- case CFGElement::DeleteDtor: {
- const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
- QualType DTy = DE->getDestroyedType();
- DTy = DTy.getNonReferenceType();
- const CXXRecordDecl *classDecl =
- astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
- return classDecl->getDestructor();
- }
- case CFGElement::TemporaryDtor: {
- const CXXBindTemporaryExpr *bindExpr =
- castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
- const CXXTemporary *temp = bindExpr->getTemporary();
- return temp->getDestructor();
- }
- case CFGElement::BaseDtor:
- case CFGElement::MemberDtor:
- // Not yet supported.
- return nullptr;
- }
- llvm_unreachable("getKind() returned bogus value");
-}
-
-bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
- if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
- return DD->isNoReturn();
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// CFGBlock operations.
-//===----------------------------------------------------------------------===//
-
-CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
- : ReachableBlock(IsReachable ? B : nullptr),
- UnreachableBlock(!IsReachable ? B : nullptr,
- B && IsReachable ? AB_Normal : AB_Unreachable) {}
-
-CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
- : ReachableBlock(B),
- UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
- B == AlternateBlock ? AB_Alternate : AB_Normal) {}
-
-void CFGBlock::addSuccessor(AdjacentBlock Succ,
- BumpVectorContext &C) {
- if (CFGBlock *B = Succ.getReachableBlock())
- B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
-
- if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
- UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
-
- Succs.push_back(Succ, C);
-}
-
-bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
- const CFGBlock *From, const CFGBlock *To) {
- if (F.IgnoreNullPredecessors && !From)
- return true;
-
- if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
- // If the 'To' has no label or is labeled but the label isn't a
- // CaseStmt then filter this edge.
- if (const SwitchStmt *S =
- dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
- if (S->isAllEnumCasesCovered()) {
- const Stmt *L = To->getLabel();
- if (!L || !isa<CaseStmt>(L))
- return true;
- }
- }
- }
-
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// CFG pretty printing
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class StmtPrinterHelper : public PrinterHelper {
- using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
- using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
-
- StmtMapTy StmtMap;
- DeclMapTy DeclMap;
- signed currentBlock = 0;
- unsigned currStmt = 0;
- const LangOptions &LangOpts;
-
-public:
- StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
- : LangOpts(LO) {
- for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
- unsigned j = 1;
- for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
- BI != BEnd; ++BI, ++j ) {
- if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
- const Stmt *stmt= SE->getStmt();
- std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
- StmtMap[stmt] = P;
-
- switch (stmt->getStmtClass()) {
- case Stmt::DeclStmtClass:
- DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
- break;
- case Stmt::IfStmtClass: {
- const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
- if (var)
- DeclMap[var] = P;
- break;
- }
- case Stmt::ForStmtClass: {
- const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
- if (var)
- DeclMap[var] = P;
- break;
- }
- case Stmt::WhileStmtClass: {
- const VarDecl *var =
- cast<WhileStmt>(stmt)->getConditionVariable();
- if (var)
- DeclMap[var] = P;
- break;
- }
- case Stmt::SwitchStmtClass: {
- const VarDecl *var =
- cast<SwitchStmt>(stmt)->getConditionVariable();
- if (var)
- DeclMap[var] = P;
- break;
- }
- case Stmt::CXXCatchStmtClass: {
- const VarDecl *var =
- cast<CXXCatchStmt>(stmt)->getExceptionDecl();
- if (var)
- DeclMap[var] = P;
- break;
- }
- default:
- break;
- }
- }
- }
- }
- }
-
- ~StmtPrinterHelper() override = default;
-
- const LangOptions &getLangOpts() const { return LangOpts; }
- void setBlockID(signed i) { currentBlock = i; }
- void setStmtID(unsigned i) { currStmt = i; }
-
- bool handledStmt(Stmt *S, raw_ostream &OS) override {
- StmtMapTy::iterator I = StmtMap.find(S);
-
- if (I == StmtMap.end())
- return false;
-
- if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
- && I->second.second == currStmt) {
- return false;
- }
-
- OS << "[B" << I->second.first << "." << I->second.second << "]";
- return true;
- }
-
- bool handleDecl(const Decl *D, raw_ostream &OS) {
- DeclMapTy::iterator I = DeclMap.find(D);
-
- if (I == DeclMap.end())
- return false;
-
- if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
- && I->second.second == currStmt) {
- return false;
- }
-
- OS << "[B" << I->second.first << "." << I->second.second << "]";
- return true;
- }
-};
-
-class CFGBlockTerminatorPrint
- : public StmtVisitor<CFGBlockTerminatorPrint,void> {
- raw_ostream &OS;
- StmtPrinterHelper* Helper;
- PrintingPolicy Policy;
-
-public:
- CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
- const PrintingPolicy &Policy)
- : OS(os), Helper(helper), Policy(Policy) {
- this->Policy.IncludeNewlines = false;
- }
-
- void VisitIfStmt(IfStmt *I) {
- OS << "if ";
- if (Stmt *C = I->getCond())
- C->printPretty(OS, Helper, Policy);
- }
-
- // Default case.
- void VisitStmt(Stmt *Terminator) {
- Terminator->printPretty(OS, Helper, Policy);
- }
-
- void VisitDeclStmt(DeclStmt *DS) {
- VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
- OS << "static init " << VD->getName();
- }
-
- void VisitForStmt(ForStmt *F) {
- OS << "for (" ;
- if (F->getInit())
- OS << "...";
- OS << "; ";
- if (Stmt *C = F->getCond())
- C->printPretty(OS, Helper, Policy);
- OS << "; ";
- if (F->getInc())
- OS << "...";
- OS << ")";
- }
-
- void VisitWhileStmt(WhileStmt *W) {
- OS << "while " ;
- if (Stmt *C = W->getCond())
- C->printPretty(OS, Helper, Policy);
- }
-
- void VisitDoStmt(DoStmt *D) {
- OS << "do ... while ";
- if (Stmt *C = D->getCond())
- C->printPretty(OS, Helper, Policy);
- }
-
- void VisitSwitchStmt(SwitchStmt *Terminator) {
- OS << "switch ";
- Terminator->getCond()->printPretty(OS, Helper, Policy);
- }
-
- void VisitCXXTryStmt(CXXTryStmt *CS) {
- OS << "try ...";
- }
-
- void VisitSEHTryStmt(SEHTryStmt *CS) {
- OS << "__try ...";
- }
-
- void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
- if (Stmt *Cond = C->getCond())
- Cond->printPretty(OS, Helper, Policy);
- OS << " ? ... : ...";
- }
-
- void VisitChooseExpr(ChooseExpr *C) {
- OS << "__builtin_choose_expr( ";
- if (Stmt *Cond = C->getCond())
- Cond->printPretty(OS, Helper, Policy);
- OS << " )";
- }
-
- void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
- OS << "goto *";
- if (Stmt *T = I->getTarget())
- T->printPretty(OS, Helper, Policy);
- }
-
- void VisitBinaryOperator(BinaryOperator* B) {
- if (!B->isLogicalOp()) {
- VisitExpr(B);
- return;
- }
-
- if (B->getLHS())
- B->getLHS()->printPretty(OS, Helper, Policy);
-
- switch (B->getOpcode()) {
- case BO_LOr:
- OS << " || ...";
- return;
- case BO_LAnd:
- OS << " && ...";
- return;
- default:
- llvm_unreachable("Invalid logical operator.");
- }
- }
-
- void VisitExpr(Expr *E) {
- E->printPretty(OS, Helper, Policy);
- }
-
-public:
- void print(CFGTerminator T) {
- if (T.isTemporaryDtorsBranch())
- OS << "(Temp Dtor) ";
- Visit(T.getStmt());
- }
-};
-
-} // namespace
-
-static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
- const CXXCtorInitializer *I) {
- if (I->isBaseInitializer())
- OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
- else if (I->isDelegatingInitializer())
- OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
- else
- OS << I->getAnyMember()->getName();
- OS << "(";
- if (Expr *IE = I->getInit())
- IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
- OS << ")";
-
- if (I->isBaseInitializer())
- OS << " (Base initializer)";
- else if (I->isDelegatingInitializer())
- OS << " (Delegating initializer)";
- else
- OS << " (Member initializer)";
-}
-
-static void print_construction_context(raw_ostream &OS,
- StmtPrinterHelper &Helper,
- const ConstructionContext *CC) {
- SmallVector<const Stmt *, 3> Stmts;
- switch (CC->getKind()) {
- case ConstructionContext::SimpleConstructorInitializerKind: {
- OS << ", ";
- const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
- print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
- return;
- }
- case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
- OS << ", ";
- const auto *CICC =
- cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
- print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
- Stmts.push_back(CICC->getCXXBindTemporaryExpr());
- break;
- }
- case ConstructionContext::SimpleVariableKind: {
- const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
- Stmts.push_back(SDSCC->getDeclStmt());
- break;
- }
- case ConstructionContext::CXX17ElidedCopyVariableKind: {
- const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
- Stmts.push_back(CDSCC->getDeclStmt());
- Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
- break;
- }
- case ConstructionContext::NewAllocatedObjectKind: {
- const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
- Stmts.push_back(NECC->getCXXNewExpr());
- break;
- }
- case ConstructionContext::SimpleReturnedValueKind: {
- const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
- Stmts.push_back(RSCC->getReturnStmt());
- break;
- }
- case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
- const auto *RSCC =
- cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
- Stmts.push_back(RSCC->getReturnStmt());
- Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
- break;
- }
- case ConstructionContext::SimpleTemporaryObjectKind: {
- const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
- Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
- Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
- break;
- }
- case ConstructionContext::ElidedTemporaryObjectKind: {
- const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
- Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
- Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
- Stmts.push_back(TOCC->getConstructorAfterElision());
- break;
- }
- case ConstructionContext::ArgumentKind: {
- const auto *ACC = cast<ArgumentConstructionContext>(CC);
- if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
- OS << ", ";
- Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
- }
- OS << ", ";
- Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
- OS << "+" << ACC->getIndex();
- return;
- }
- }
- for (auto I: Stmts)
- if (I) {
- OS << ", ";
- Helper.handledStmt(const_cast<Stmt *>(I), OS);
- }
-}
-
-static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
- const CFGElement &E) {
- if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
- const Stmt *S = CS->getStmt();
- assert(S != nullptr && "Expecting non-null Stmt");
-
- // special printing for statement-expressions.
- if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
- const CompoundStmt *Sub = SE->getSubStmt();
-
- auto Children = Sub->children();
- if (Children.begin() != Children.end()) {
- OS << "({ ... ; ";
- Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
- OS << " })\n";
- return;
- }
- }
- // special printing for comma expressions.
- if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
- if (B->getOpcode() == BO_Comma) {
- OS << "... , ";
- Helper.handledStmt(B->getRHS(),OS);
- OS << '\n';
- return;
- }
- }
- S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
-
- if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
- if (isa<CXXOperatorCallExpr>(S))
- OS << " (OperatorCall)";
- OS << " (CXXRecordTypedCall";
- print_construction_context(OS, Helper, VTC->getConstructionContext());
- OS << ")";
- } else if (isa<CXXOperatorCallExpr>(S)) {
- OS << " (OperatorCall)";
- } else if (isa<CXXBindTemporaryExpr>(S)) {
- OS << " (BindTemporary)";
- } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
- OS << " (CXXConstructExpr";
- if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
- print_construction_context(OS, Helper, CE->getConstructionContext());
- }
- OS << ", " << CCE->getType().getAsString() << ")";
- } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
- OS << " (" << CE->getStmtClassName() << ", "
- << CE->getCastKindName()
- << ", " << CE->getType().getAsString()
- << ")";
- }
-
- // Expressions need a newline.
- if (isa<Expr>(S))
- OS << '\n';
- } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
- print_initializer(OS, Helper, IE->getInitializer());
- OS << '\n';
- } else if (Optional<CFGAutomaticObjDtor> DE =
- E.getAs<CFGAutomaticObjDtor>()) {
- const VarDecl *VD = DE->getVarDecl();
- Helper.handleDecl(VD, OS);
-
- ASTContext &ACtx = VD->getASTContext();
- QualType T = VD->getType();
- if (T->isReferenceType())
- T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
- if (const ArrayType *AT = ACtx.getAsArrayType(T))
- T = ACtx.getBaseElementType(AT);
-
- OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
- OS << " (Implicit destructor)\n";
- } else if (Optional<CFGLifetimeEnds> DE = E.getAs<CFGLifetimeEnds>()) {
- const VarDecl *VD = DE->getVarDecl();
- Helper.handleDecl(VD, OS);
-
- OS << " (Lifetime ends)\n";
- } else if (Optional<CFGLoopExit> LE = E.getAs<CFGLoopExit>()) {
- const Stmt *LoopStmt = LE->getLoopStmt();
- OS << LoopStmt->getStmtClassName() << " (LoopExit)\n";
- } else if (Optional<CFGScopeBegin> SB = E.getAs<CFGScopeBegin>()) {
- OS << "CFGScopeBegin(";
- if (const VarDecl *VD = SB->getVarDecl())
- OS << VD->getQualifiedNameAsString();
- OS << ")\n";
- } else if (Optional<CFGScopeEnd> SE = E.getAs<CFGScopeEnd>()) {
- OS << "CFGScopeEnd(";
- if (const VarDecl *VD = SE->getVarDecl())
- OS << VD->getQualifiedNameAsString();
- OS << ")\n";
- } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
- OS << "CFGNewAllocator(";
- if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
- AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
- OS << ")\n";
- } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
- const CXXRecordDecl *RD = DE->getCXXRecordDecl();
- if (!RD)
- return;
- CXXDeleteExpr *DelExpr =
- const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
- Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
- OS << "->~" << RD->getName().str() << "()";
- OS << " (Implicit destructor)\n";
- } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
- const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
- OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
- OS << " (Base object destructor)\n";
- } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
- const FieldDecl *FD = ME->getFieldDecl();
- const Type *T = FD->getType()->getBaseElementTypeUnsafe();
- OS << "this->" << FD->getName();
- OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
- OS << " (Member object destructor)\n";
- } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
- const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
- OS << "~";
- BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
- OS << "() (Temporary object destructor)\n";
- }
-}
-
-static void print_block(raw_ostream &OS, const CFG* cfg,
- const CFGBlock &B,
- StmtPrinterHelper &Helper, bool print_edges,
- bool ShowColors) {
- Helper.setBlockID(B.getBlockID());
-
- // Print the header.
- if (ShowColors)
- OS.changeColor(raw_ostream::YELLOW, true);
-
- OS << "\n [B" << B.getBlockID();
-
- if (&B == &cfg->getEntry())
- OS << " (ENTRY)]\n";
- else if (&B == &cfg->getExit())
- OS << " (EXIT)]\n";
- else if (&B == cfg->getIndirectGotoBlock())
- OS << " (INDIRECT GOTO DISPATCH)]\n";
- else if (B.hasNoReturnElement())
- OS << " (NORETURN)]\n";
- else
- OS << "]\n";
-
- if (ShowColors)
- OS.resetColor();
-
- // Print the label of this block.
- if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
- if (print_edges)
- OS << " ";
-
- if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
- OS << L->getName();
- else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
- OS << "case ";
- if (C->getLHS())
- C->getLHS()->printPretty(OS, &Helper,
- PrintingPolicy(Helper.getLangOpts()));
- if (C->getRHS()) {
- OS << " ... ";
- C->getRHS()->printPretty(OS, &Helper,
- PrintingPolicy(Helper.getLangOpts()));
- }
- } else if (isa<DefaultStmt>(Label))
- OS << "default";
- else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
- OS << "catch (";
- if (CS->getExceptionDecl())
- CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
- 0);
- else
- OS << "...";
- OS << ")";
- } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
- OS << "__except (";
- ES->getFilterExpr()->printPretty(OS, &Helper,
- PrintingPolicy(Helper.getLangOpts()), 0);
- OS << ")";
- } else
- llvm_unreachable("Invalid label statement in CFGBlock.");
-
- OS << ":\n";
- }
-
- // Iterate through the statements in the block and print them.
- unsigned j = 1;
-
- for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
- I != E ; ++I, ++j ) {
- // Print the statement # in the basic block and the statement itself.
- if (print_edges)
- OS << " ";
-
- OS << llvm::format("%3d", j) << ": ";
-
- Helper.setStmtID(j);
-
- print_elem(OS, Helper, *I);
- }
-
- // Print the terminator of this block.
- if (B.getTerminator()) {
- if (ShowColors)
- OS.changeColor(raw_ostream::GREEN);
-
- OS << " T: ";
-
- Helper.setBlockID(-1);
-
- PrintingPolicy PP(Helper.getLangOpts());
- CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
- TPrinter.print(B.getTerminator());
- OS << '\n';
-
- if (ShowColors)
- OS.resetColor();
- }
-
- if (print_edges) {
- // Print the predecessors of this block.
- if (!B.pred_empty()) {
- const raw_ostream::Colors Color = raw_ostream::BLUE;
- if (ShowColors)
- OS.changeColor(Color);
- OS << " Preds " ;
- if (ShowColors)
- OS.resetColor();
- OS << '(' << B.pred_size() << "):";
- unsigned i = 0;
-
- if (ShowColors)
- OS.changeColor(Color);
-
- for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
- I != E; ++I, ++i) {
- if (i % 10 == 8)
- OS << "\n ";
-
- CFGBlock *B = *I;
- bool Reachable = true;
- if (!B) {
- Reachable = false;
- B = I->getPossiblyUnreachableBlock();
- }
-
- OS << " B" << B->getBlockID();
- if (!Reachable)
- OS << "(Unreachable)";
- }
-
- if (ShowColors)
- OS.resetColor();
-
- OS << '\n';
- }
-
- // Print the successors of this block.
- if (!B.succ_empty()) {
- const raw_ostream::Colors Color = raw_ostream::MAGENTA;
- if (ShowColors)
- OS.changeColor(Color);
- OS << " Succs ";
- if (ShowColors)
- OS.resetColor();
- OS << '(' << B.succ_size() << "):";
- unsigned i = 0;
-
- if (ShowColors)
- OS.changeColor(Color);
-
- for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
- I != E; ++I, ++i) {
- if (i % 10 == 8)
- OS << "\n ";
-
- CFGBlock *B = *I;
-
- bool Reachable = true;
- if (!B) {
- Reachable = false;
- B = I->getPossiblyUnreachableBlock();
- }
-
- if (B) {
- OS << " B" << B->getBlockID();
- if (!Reachable)
- OS << "(Unreachable)";
- }
- else {
- OS << " NULL";
- }
- }
-
- if (ShowColors)
- OS.resetColor();
- OS << '\n';
- }
- }
-}
-
-/// dump - A simple pretty printer of a CFG that outputs to stderr.
-void CFG::dump(const LangOptions &LO, bool ShowColors) const {
- print(llvm::errs(), LO, ShowColors);
-}
-
-/// print - A simple pretty printer of a CFG that outputs to an ostream.
-void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
- StmtPrinterHelper Helper(this, LO);
-
- // Print the entry block.
- print_block(OS, this, getEntry(), Helper, true, ShowColors);
-
- // Iterate through the CFGBlocks and print them one by one.
- for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
- // Skip the entry block, because we already printed it.
- if (&(**I) == &getEntry() || &(**I) == &getExit())
- continue;
-
- print_block(OS, this, **I, Helper, true, ShowColors);
- }
-
- // Print the exit block.
- print_block(OS, this, getExit(), Helper, true, ShowColors);
- OS << '\n';
- OS.flush();
-}
-
-/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
-void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
- bool ShowColors) const {
- print(llvm::errs(), cfg, LO, ShowColors);
-}
-
-LLVM_DUMP_METHOD void CFGBlock::dump() const {
- dump(getParent(), LangOptions(), false);
-}
-
-/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
-/// Generally this will only be called from CFG::print.
-void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
- const LangOptions &LO, bool ShowColors) const {
- StmtPrinterHelper Helper(cfg, LO);
- print_block(OS, cfg, *this, Helper, true, ShowColors);
- OS << '\n';
-}
-
-/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
-void CFGBlock::printTerminator(raw_ostream &OS,
- const LangOptions &LO) const {
- CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
- TPrinter.print(getTerminator());
-}
-
-Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
- Stmt *Terminator = this->Terminator;
- if (!Terminator)
- return nullptr;
-
- Expr *E = nullptr;
-
- switch (Terminator->getStmtClass()) {
- default:
- break;
-
- case Stmt::CXXForRangeStmtClass:
- E = cast<CXXForRangeStmt>(Terminator)->getCond();
- break;
-
- case Stmt::ForStmtClass:
- E = cast<ForStmt>(Terminator)->getCond();
- break;
-
- case Stmt::WhileStmtClass:
- E = cast<WhileStmt>(Terminator)->getCond();
- break;
-
- case Stmt::DoStmtClass:
- E = cast<DoStmt>(Terminator)->getCond();
- break;
-
- case Stmt::IfStmtClass:
- E = cast<IfStmt>(Terminator)->getCond();
- break;
-
- case Stmt::ChooseExprClass:
- E = cast<ChooseExpr>(Terminator)->getCond();
- break;
-
- case Stmt::IndirectGotoStmtClass:
- E = cast<IndirectGotoStmt>(Terminator)->getTarget();
- break;
-
- case Stmt::SwitchStmtClass:
- E = cast<SwitchStmt>(Terminator)->getCond();
- break;
-
- case Stmt::BinaryConditionalOperatorClass:
- E = cast<BinaryConditionalOperator>(Terminator)->getCond();
- break;
-
- case Stmt::ConditionalOperatorClass:
- E = cast<ConditionalOperator>(Terminator)->getCond();
- break;
-
- case Stmt::BinaryOperatorClass: // '&&' and '||'
- E = cast<BinaryOperator>(Terminator)->getLHS();
- break;
-
- case Stmt::ObjCForCollectionStmtClass:
- return Terminator;
- }
-
- if (!StripParens)
- return E;
-
- return E ? E->IgnoreParens() : nullptr;
-}
-
-//===----------------------------------------------------------------------===//
-// CFG Graphviz Visualization
-//===----------------------------------------------------------------------===//
-
-#ifndef NDEBUG
-static StmtPrinterHelper* GraphHelper;
-#endif
-
-void CFG::viewCFG(const LangOptions &LO) const {
-#ifndef NDEBUG
- StmtPrinterHelper H(this, LO);
- GraphHelper = &H;
- llvm::ViewGraph(this,"CFG");
- GraphHelper = nullptr;
-#endif
-}
-
-namespace llvm {
-
-template<>
-struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
- DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
-
- static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
-#ifndef NDEBUG
- std::string OutSStr;
- llvm::raw_string_ostream Out(OutSStr);
- print_block(Out,Graph, *Node, *GraphHelper, false, false);
- std::string& OutStr = Out.str();
-
- if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
-
- // Process string output to make it nicer...
- for (unsigned i = 0; i != OutStr.length(); ++i)
- if (OutStr[i] == '\n') { // Left justify
- OutStr[i] = '\\';
- OutStr.insert(OutStr.begin()+i+1, 'l');
- }
-
- return OutStr;
-#else
- return {};
-#endif
- }
-};
-
-} // namespace llvm