diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/Analysis/CloneDetection.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/Analysis/CloneDetection.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/Analysis/CloneDetection.cpp | 630 |
1 files changed, 0 insertions, 630 deletions
diff --git a/gnu/llvm/tools/clang/lib/Analysis/CloneDetection.cpp b/gnu/llvm/tools/clang/lib/Analysis/CloneDetection.cpp deleted file mode 100644 index 88402e2adaa..00000000000 --- a/gnu/llvm/tools/clang/lib/Analysis/CloneDetection.cpp +++ /dev/null @@ -1,630 +0,0 @@ -//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -/// -/// This file implements classes for searching and analyzing source code clones. -/// -//===----------------------------------------------------------------------===// - -#include "clang/Analysis/CloneDetection.h" - -#include "clang/AST/DataCollection.h" -#include "clang/AST/DeclTemplate.h" -#include "llvm/Support/MD5.h" -#include "llvm/Support/Path.h" - -using namespace clang; - -StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D, - unsigned StartIndex, unsigned EndIndex) - : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) { - assert(Stmt && "Stmt must not be a nullptr"); - assert(StartIndex < EndIndex && "Given array should not be empty"); - assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); -} - -StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D) - : S(Stmt), D(D), StartIndex(0), EndIndex(0) {} - -StmtSequence::StmtSequence() - : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {} - -bool StmtSequence::contains(const StmtSequence &Other) const { - // If both sequences reside in different declarations, they can never contain - // each other. - if (D != Other.D) - return false; - - const SourceManager &SM = getASTContext().getSourceManager(); - - // Otherwise check if the start and end locations of the current sequence - // surround the other sequence. - bool StartIsInBounds = - SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) || - getBeginLoc() == Other.getBeginLoc(); - if (!StartIsInBounds) - return false; - - bool EndIsInBounds = - SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || - Other.getEndLoc() == getEndLoc(); - return EndIsInBounds; -} - -StmtSequence::iterator StmtSequence::begin() const { - if (!holdsSequence()) { - return &S; - } - auto CS = cast<CompoundStmt>(S); - return CS->body_begin() + StartIndex; -} - -StmtSequence::iterator StmtSequence::end() const { - if (!holdsSequence()) { - return reinterpret_cast<StmtSequence::iterator>(&S) + 1; - } - auto CS = cast<CompoundStmt>(S); - return CS->body_begin() + EndIndex; -} - -ASTContext &StmtSequence::getASTContext() const { - assert(D); - return D->getASTContext(); -} - -SourceLocation StmtSequence::getBeginLoc() const { - return front()->getBeginLoc(); -} - -SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); } - -SourceRange StmtSequence::getSourceRange() const { - return SourceRange(getBeginLoc(), getEndLoc()); -} - -void CloneDetector::analyzeCodeBody(const Decl *D) { - assert(D); - assert(D->hasBody()); - - Sequences.push_back(StmtSequence(D->getBody(), D)); -} - -/// Returns true if and only if \p Stmt contains at least one other -/// sequence in the \p Group. -static bool containsAnyInGroup(StmtSequence &Seq, - CloneDetector::CloneGroup &Group) { - for (StmtSequence &GroupSeq : Group) { - if (Seq.contains(GroupSeq)) - return true; - } - return false; -} - -/// Returns true if and only if all sequences in \p OtherGroup are -/// contained by a sequence in \p Group. -static bool containsGroup(CloneDetector::CloneGroup &Group, - CloneDetector::CloneGroup &OtherGroup) { - // We have less sequences in the current group than we have in the other, - // so we will never fulfill the requirement for returning true. This is only - // possible because we know that a sequence in Group can contain at most - // one sequence in OtherGroup. - if (Group.size() < OtherGroup.size()) - return false; - - for (StmtSequence &Stmt : Group) { - if (!containsAnyInGroup(Stmt, OtherGroup)) - return false; - } - return true; -} - -void OnlyLargestCloneConstraint::constrain( - std::vector<CloneDetector::CloneGroup> &Result) { - std::vector<unsigned> IndexesToRemove; - - // Compare every group in the result with the rest. If one groups contains - // another group, we only need to return the bigger group. - // Note: This doesn't scale well, so if possible avoid calling any heavy - // function from this loop to minimize the performance impact. - for (unsigned i = 0; i < Result.size(); ++i) { - for (unsigned j = 0; j < Result.size(); ++j) { - // Don't compare a group with itself. - if (i == j) - continue; - - if (containsGroup(Result[j], Result[i])) { - IndexesToRemove.push_back(i); - break; - } - } - } - - // Erasing a list of indexes from the vector should be done with decreasing - // indexes. As IndexesToRemove is constructed with increasing values, we just - // reverse iterate over it to get the desired order. - for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { - Result.erase(Result.begin() + *I); - } -} - -bool FilenamePatternConstraint::isAutoGenerated( - const CloneDetector::CloneGroup &Group) { - std::string Error; - if (IgnoredFilesPattern.empty() || Group.empty() || - !IgnoredFilesRegex->isValid(Error)) - return false; - - for (const StmtSequence &S : Group) { - const SourceManager &SM = S.getASTContext().getSourceManager(); - StringRef Filename = llvm::sys::path::filename( - SM.getFilename(S.getContainingDecl()->getLocation())); - if (IgnoredFilesRegex->match(Filename)) - return true; - } - - return false; -} - -/// This class defines what a type II code clone is: If it collects for two -/// statements the same data, then those two statements are considered to be -/// clones of each other. -/// -/// All collected data is forwarded to the given data consumer of the type T. -/// The data consumer class needs to provide a member method with the signature: -/// update(StringRef Str) -namespace { -template <class T> -class CloneTypeIIStmtDataCollector - : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> { - ASTContext &Context; - /// The data sink to which all data is forwarded. - T &DataConsumer; - - template <class Ty> void addData(const Ty &Data) { - data_collection::addDataToConsumer(DataConsumer, Data); - } - -public: - CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context, - T &DataConsumer) - : Context(Context), DataConsumer(DataConsumer) { - this->Visit(S); - } - -// Define a visit method for each class to collect data and subsequently visit -// all parent classes. This uses a template so that custom visit methods by us -// take precedence. -#define DEF_ADD_DATA(CLASS, CODE) \ - template <class = void> void Visit##CLASS(const CLASS *S) { \ - CODE; \ - ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ - } - -#include "clang/AST/StmtDataCollectors.inc" - -// Type II clones ignore variable names and literals, so let's skip them. -#define SKIP(CLASS) \ - void Visit##CLASS(const CLASS *S) { \ - ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ - } - SKIP(DeclRefExpr) - SKIP(MemberExpr) - SKIP(IntegerLiteral) - SKIP(FloatingLiteral) - SKIP(StringLiteral) - SKIP(CXXBoolLiteralExpr) - SKIP(CharacterLiteral) -#undef SKIP -}; -} // end anonymous namespace - -static size_t createHash(llvm::MD5 &Hash) { - size_t HashCode; - - // Create the final hash code for the current Stmt. - llvm::MD5::MD5Result HashResult; - Hash.final(HashResult); - - // Copy as much as possible of the generated hash code to the Stmt's hash - // code. - std::memcpy(&HashCode, &HashResult, - std::min(sizeof(HashCode), sizeof(HashResult))); - - return HashCode; -} - -/// Generates and saves a hash code for the given Stmt. -/// \param S The given Stmt. -/// \param D The Decl containing S. -/// \param StmtsByHash Output parameter that will contain the hash codes for -/// each StmtSequence in the given Stmt. -/// \return The hash code of the given Stmt. -/// -/// If the given Stmt is a CompoundStmt, this method will also generate -/// hashes for all possible StmtSequences in the children of this Stmt. -static size_t -saveHash(const Stmt *S, const Decl *D, - std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) { - llvm::MD5 Hash; - ASTContext &Context = D->getASTContext(); - - CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash); - - auto CS = dyn_cast<CompoundStmt>(S); - SmallVector<size_t, 8> ChildHashes; - - for (const Stmt *Child : S->children()) { - if (Child == nullptr) { - ChildHashes.push_back(0); - continue; - } - size_t ChildHash = saveHash(Child, D, StmtsByHash); - Hash.update( - StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); - ChildHashes.push_back(ChildHash); - } - - if (CS) { - // If we're in a CompoundStmt, we hash all possible combinations of child - // statements to find clones in those subsequences. - // We first go through every possible starting position of a subsequence. - for (unsigned Pos = 0; Pos < CS->size(); ++Pos) { - // Then we try all possible lengths this subsequence could have and - // reuse the same hash object to make sure we only hash every child - // hash exactly once. - llvm::MD5 Hash; - for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) { - // Grab the current child hash and put it into our hash. We do - // -1 on the index because we start counting the length at 1. - size_t ChildHash = ChildHashes[Pos + Length - 1]; - Hash.update( - StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); - // If we have at least two elements in our subsequence, we can start - // saving it. - if (Length > 1) { - llvm::MD5 SubHash = Hash; - StmtsByHash.push_back(std::make_pair( - createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length))); - } - } - } - } - - size_t HashCode = createHash(Hash); - StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D))); - return HashCode; -} - -namespace { -/// Wrapper around FoldingSetNodeID that it can be used as the template -/// argument of the StmtDataCollector. -class FoldingSetNodeIDWrapper { - - llvm::FoldingSetNodeID &FS; - -public: - FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} - - void update(StringRef Str) { FS.AddString(Str); } -}; -} // end anonymous namespace - -/// Writes the relevant data from all statements and child statements -/// in the given StmtSequence into the given FoldingSetNodeID. -static void CollectStmtSequenceData(const StmtSequence &Sequence, - FoldingSetNodeIDWrapper &OutputData) { - for (const Stmt *S : Sequence) { - CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>( - S, Sequence.getASTContext(), OutputData); - - for (const Stmt *Child : S->children()) { - if (!Child) - continue; - - CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()), - OutputData); - } - } -} - -/// Returns true if both sequences are clones of each other. -static bool areSequencesClones(const StmtSequence &LHS, - const StmtSequence &RHS) { - // We collect the data from all statements in the sequence as we did before - // when generating a hash value for each sequence. But this time we don't - // hash the collected data and compare the whole data set instead. This - // prevents any false-positives due to hash code collisions. - llvm::FoldingSetNodeID DataLHS, DataRHS; - FoldingSetNodeIDWrapper LHSWrapper(DataLHS); - FoldingSetNodeIDWrapper RHSWrapper(DataRHS); - - CollectStmtSequenceData(LHS, LHSWrapper); - CollectStmtSequenceData(RHS, RHSWrapper); - - return DataLHS == DataRHS; -} - -void RecursiveCloneTypeIIHashConstraint::constrain( - std::vector<CloneDetector::CloneGroup> &Sequences) { - // FIXME: Maybe we can do this in-place and don't need this additional vector. - std::vector<CloneDetector::CloneGroup> Result; - - for (CloneDetector::CloneGroup &Group : Sequences) { - // We assume in the following code that the Group is non-empty, so we - // skip all empty groups. - if (Group.empty()) - continue; - - std::vector<std::pair<size_t, StmtSequence>> StmtsByHash; - - // Generate hash codes for all children of S and save them in StmtsByHash. - for (const StmtSequence &S : Group) { - saveHash(S.front(), S.getContainingDecl(), StmtsByHash); - } - - // Sort hash_codes in StmtsByHash. - std::stable_sort(StmtsByHash.begin(), StmtsByHash.end(), - [](std::pair<size_t, StmtSequence> LHS, - std::pair<size_t, StmtSequence> RHS) { - return LHS.first < RHS.first; - }); - - // Check for each StmtSequence if its successor has the same hash value. - // We don't check the last StmtSequence as it has no successor. - // Note: The 'size - 1 ' in the condition is safe because we check for an - // empty Group vector at the beginning of this function. - for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) { - const auto Current = StmtsByHash[i]; - - // It's likely that we just found a sequence of StmtSequences that - // represent a CloneGroup, so we create a new group and start checking and - // adding the StmtSequences in this sequence. - CloneDetector::CloneGroup NewGroup; - - size_t PrototypeHash = Current.first; - - for (; i < StmtsByHash.size(); ++i) { - // A different hash value means we have reached the end of the sequence. - if (PrototypeHash != StmtsByHash[i].first) { - // The current sequence could be the start of a new CloneGroup. So we - // decrement i so that we visit it again in the outer loop. - // Note: i can never be 0 at this point because we are just comparing - // the hash of the Current StmtSequence with itself in the 'if' above. - assert(i != 0); - --i; - break; - } - // Same hash value means we should add the StmtSequence to the current - // group. - NewGroup.push_back(StmtsByHash[i].second); - } - - // We created a new clone group with matching hash codes and move it to - // the result vector. - Result.push_back(NewGroup); - } - } - // Sequences is the output parameter, so we copy our result into it. - Sequences = Result; -} - -void RecursiveCloneTypeIIVerifyConstraint::constrain( - std::vector<CloneDetector::CloneGroup> &Sequences) { - CloneConstraint::splitCloneGroups( - Sequences, [](const StmtSequence &A, const StmtSequence &B) { - return areSequencesClones(A, B); - }); -} - -size_t MinComplexityConstraint::calculateStmtComplexity( - const StmtSequence &Seq, std::size_t Limit, - const std::string &ParentMacroStack) { - if (Seq.empty()) - return 0; - - size_t Complexity = 1; - - ASTContext &Context = Seq.getASTContext(); - - // Look up what macros expanded into the current statement. - std::string MacroStack = - data_collection::getMacroStack(Seq.getBeginLoc(), Context); - - // First, check if ParentMacroStack is not empty which means we are currently - // dealing with a parent statement which was expanded from a macro. - // If this parent statement was expanded from the same macros as this - // statement, we reduce the initial complexity of this statement to zero. - // This causes that a group of statements that were generated by a single - // macro expansion will only increase the total complexity by one. - // Note: This is not the final complexity of this statement as we still - // add the complexity of the child statements to the complexity value. - if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) { - Complexity = 0; - } - - // Iterate over the Stmts in the StmtSequence and add their complexity values - // to the current complexity value. - if (Seq.holdsSequence()) { - for (const Stmt *S : Seq) { - Complexity += calculateStmtComplexity( - StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack); - if (Complexity >= Limit) - return Limit; - } - } else { - for (const Stmt *S : Seq.front()->children()) { - Complexity += calculateStmtComplexity( - StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack); - if (Complexity >= Limit) - return Limit; - } - } - return Complexity; -} - -void MatchingVariablePatternConstraint::constrain( - std::vector<CloneDetector::CloneGroup> &CloneGroups) { - CloneConstraint::splitCloneGroups( - CloneGroups, [](const StmtSequence &A, const StmtSequence &B) { - VariablePattern PatternA(A); - VariablePattern PatternB(B); - return PatternA.countPatternDifferences(PatternB) == 0; - }); -} - -void CloneConstraint::splitCloneGroups( - std::vector<CloneDetector::CloneGroup> &CloneGroups, - llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)> - Compare) { - std::vector<CloneDetector::CloneGroup> Result; - for (auto &HashGroup : CloneGroups) { - // Contains all indexes in HashGroup that were already added to a - // CloneGroup. - std::vector<char> Indexes; - Indexes.resize(HashGroup.size()); - - for (unsigned i = 0; i < HashGroup.size(); ++i) { - // Skip indexes that are already part of a CloneGroup. - if (Indexes[i]) - continue; - - // Pick the first unhandled StmtSequence and consider it as the - // beginning - // of a new CloneGroup for now. - // We don't add i to Indexes because we never iterate back. - StmtSequence Prototype = HashGroup[i]; - CloneDetector::CloneGroup PotentialGroup = {Prototype}; - ++Indexes[i]; - - // Check all following StmtSequences for clones. - for (unsigned j = i + 1; j < HashGroup.size(); ++j) { - // Skip indexes that are already part of a CloneGroup. - if (Indexes[j]) - continue; - - // If a following StmtSequence belongs to our CloneGroup, we add it. - const StmtSequence &Candidate = HashGroup[j]; - - if (!Compare(Prototype, Candidate)) - continue; - - PotentialGroup.push_back(Candidate); - // Make sure we never visit this StmtSequence again. - ++Indexes[j]; - } - - // Otherwise, add it to the result and continue searching for more - // groups. - Result.push_back(PotentialGroup); - } - - assert(llvm::all_of(Indexes, [](char c) { return c == 1; })); - } - CloneGroups = Result; -} - -void VariablePattern::addVariableOccurence(const VarDecl *VarDecl, - const Stmt *Mention) { - // First check if we already reference this variable - for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { - if (Variables[KindIndex] == VarDecl) { - // If yes, add a new occurrence that points to the existing entry in - // the Variables vector. - Occurences.emplace_back(KindIndex, Mention); - return; - } - } - // If this variable wasn't already referenced, add it to the list of - // referenced variables and add a occurrence that points to this new entry. - Occurences.emplace_back(Variables.size(), Mention); - Variables.push_back(VarDecl); -} - -void VariablePattern::addVariables(const Stmt *S) { - // Sometimes we get a nullptr (such as from IfStmts which often have nullptr - // children). We skip such statements as they don't reference any - // variables. - if (!S) - return; - - // Check if S is a reference to a variable. If yes, add it to the pattern. - if (auto D = dyn_cast<DeclRefExpr>(S)) { - if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl())) - addVariableOccurence(VD, D); - } - - // Recursively check all children of the given statement. - for (const Stmt *Child : S->children()) { - addVariables(Child); - } -} - -unsigned VariablePattern::countPatternDifferences( - const VariablePattern &Other, - VariablePattern::SuspiciousClonePair *FirstMismatch) { - unsigned NumberOfDifferences = 0; - - assert(Other.Occurences.size() == Occurences.size()); - for (unsigned i = 0; i < Occurences.size(); ++i) { - auto ThisOccurence = Occurences[i]; - auto OtherOccurence = Other.Occurences[i]; - if (ThisOccurence.KindID == OtherOccurence.KindID) - continue; - - ++NumberOfDifferences; - - // If FirstMismatch is not a nullptr, we need to store information about - // the first difference between the two patterns. - if (FirstMismatch == nullptr) - continue; - - // Only proceed if we just found the first difference as we only store - // information about the first difference. - if (NumberOfDifferences != 1) - continue; - - const VarDecl *FirstSuggestion = nullptr; - // If there is a variable available in the list of referenced variables - // which wouldn't break the pattern if it is used in place of the - // current variable, we provide this variable as the suggested fix. - if (OtherOccurence.KindID < Variables.size()) - FirstSuggestion = Variables[OtherOccurence.KindID]; - - // Store information about the first clone. - FirstMismatch->FirstCloneInfo = - VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( - Variables[ThisOccurence.KindID], ThisOccurence.Mention, - FirstSuggestion); - - // Same as above but with the other clone. We do this for both clones as - // we don't know which clone is the one containing the unintended - // pattern error. - const VarDecl *SecondSuggestion = nullptr; - if (ThisOccurence.KindID < Other.Variables.size()) - SecondSuggestion = Other.Variables[ThisOccurence.KindID]; - - // Store information about the second clone. - FirstMismatch->SecondCloneInfo = - VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( - Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, - SecondSuggestion); - - // SuspiciousClonePair guarantees that the first clone always has a - // suggested variable associated with it. As we know that one of the two - // clones in the pair always has suggestion, we swap the two clones - // in case the first clone has no suggested variable which means that - // the second clone has a suggested variable and should be first. - if (!FirstMismatch->FirstCloneInfo.Suggestion) - std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo); - - // This ensures that we always have at least one suggestion in a pair. - assert(FirstMismatch->FirstCloneInfo.Suggestion); - } - - return NumberOfDifferences; -} |
