diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp | 333 |
1 files changed, 0 insertions, 333 deletions
diff --git a/gnu/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp b/gnu/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp deleted file mode 100644 index 11f7afbd229..00000000000 --- a/gnu/llvm/tools/clang/lib/Analysis/ThreadSafetyTIL.cpp +++ /dev/null @@ -1,333 +0,0 @@ -//===- ThreadSafetyTIL.cpp ------------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT in the llvm repository for details. -// -//===----------------------------------------------------------------------===// - -#include "clang/Analysis/Analyses/ThreadSafetyTIL.h" -#include "clang/Basic/LLVM.h" -#include "llvm/Support/Casting.h" -#include <cassert> -#include <cstddef> - -using namespace clang; -using namespace threadSafety; -using namespace til; - -StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) { - switch (Op) { - case UOP_Minus: return "-"; - case UOP_BitNot: return "~"; - case UOP_LogicNot: return "!"; - } - return {}; -} - -StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) { - switch (Op) { - case BOP_Mul: return "*"; - case BOP_Div: return "/"; - case BOP_Rem: return "%"; - case BOP_Add: return "+"; - case BOP_Sub: return "-"; - case BOP_Shl: return "<<"; - case BOP_Shr: return ">>"; - case BOP_BitAnd: return "&"; - case BOP_BitXor: return "^"; - case BOP_BitOr: return "|"; - case BOP_Eq: return "=="; - case BOP_Neq: return "!="; - case BOP_Lt: return "<"; - case BOP_Leq: return "<="; - case BOP_Cmp: return "<=>"; - case BOP_LogicAnd: return "&&"; - case BOP_LogicOr: return "||"; - } - return {}; -} - -SExpr* Future::force() { - Status = FS_evaluating; - Result = compute(); - Status = FS_done; - return Result; -} - -unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { - unsigned Idx = Predecessors.size(); - Predecessors.reserveCheck(1, Arena); - Predecessors.push_back(Pred); - for (auto *E : Args) { - if (auto *Ph = dyn_cast<Phi>(E)) { - Ph->values().reserveCheck(1, Arena); - Ph->values().push_back(nullptr); - } - } - return Idx; -} - -void BasicBlock::reservePredecessors(unsigned NumPreds) { - Predecessors.reserve(NumPreds, Arena); - for (auto *E : Args) { - if (auto *Ph = dyn_cast<Phi>(E)) { - Ph->values().reserve(NumPreds, Arena); - } - } -} - -// If E is a variable, then trace back through any aliases or redundant -// Phi nodes to find the canonical definition. -const SExpr *til::getCanonicalVal(const SExpr *E) { - while (true) { - if (const auto *V = dyn_cast<Variable>(E)) { - if (V->kind() == Variable::VK_Let) { - E = V->definition(); - continue; - } - } - if (const auto *Ph = dyn_cast<Phi>(E)) { - if (Ph->status() == Phi::PH_SingleVal) { - E = Ph->values()[0]; - continue; - } - } - break; - } - return E; -} - -// If E is a variable, then trace back through any aliases or redundant -// Phi nodes to find the canonical definition. -// The non-const version will simplify incomplete Phi nodes. -SExpr *til::simplifyToCanonicalVal(SExpr *E) { - while (true) { - if (auto *V = dyn_cast<Variable>(E)) { - if (V->kind() != Variable::VK_Let) - return V; - // Eliminate redundant variables, e.g. x = y, or x = 5, - // but keep anything more complicated. - if (til::ThreadSafetyTIL::isTrivial(V->definition())) { - E = V->definition(); - continue; - } - return V; - } - if (auto *Ph = dyn_cast<Phi>(E)) { - if (Ph->status() == Phi::PH_Incomplete) - simplifyIncompleteArg(Ph); - // Eliminate redundant Phi nodes. - if (Ph->status() == Phi::PH_SingleVal) { - E = Ph->values()[0]; - continue; - } - } - return E; - } -} - -// Trace the arguments of an incomplete Phi node to see if they have the same -// canonical definition. If so, mark the Phi node as redundant. -// getCanonicalVal() will recursively call simplifyIncompletePhi(). -void til::simplifyIncompleteArg(til::Phi *Ph) { - assert(Ph && Ph->status() == Phi::PH_Incomplete); - - // eliminate infinite recursion -- assume that this node is not redundant. - Ph->setStatus(Phi::PH_MultiVal); - - SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]); - for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) { - SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]); - if (Ei == Ph) - continue; // Recursive reference to itself. Don't count. - if (Ei != E0) { - return; // Status is already set to MultiVal. - } - } - Ph->setStatus(Phi::PH_SingleVal); -} - -// Renumbers the arguments and instructions to have unique, sequential IDs. -unsigned BasicBlock::renumberInstrs(unsigned ID) { - for (auto *Arg : Args) - Arg->setID(this, ID++); - for (auto *Instr : Instrs) - Instr->setID(this, ID++); - TermInstr->setID(this, ID++); - return ID; -} - -// Sorts the CFGs blocks using a reverse post-order depth-first traversal. -// Each block will be written into the Blocks array in order, and its BlockID -// will be set to the index in the array. Sorting should start from the entry -// block, and ID should be the total number of blocks. -unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks, - unsigned ID) { - if (Visited) return ID; - Visited = true; - for (auto *Block : successors()) - ID = Block->topologicalSort(Blocks, ID); - // set ID and update block array in place. - // We may lose pointers to unreachable blocks. - assert(ID > 0); - BlockID = --ID; - Blocks[BlockID] = this; - return ID; -} - -// Performs a reverse topological traversal, starting from the exit block and -// following back-edges. The dominator is serialized before any predecessors, -// which guarantees that all blocks are serialized after their dominator and -// before their post-dominator (because it's a reverse topological traversal). -// ID should be initially set to 0. -// -// This sort assumes that (1) dominators have been computed, (2) there are no -// critical edges, and (3) the entry block is reachable from the exit block -// and no blocks are accessible via traversal of back-edges from the exit that -// weren't accessible via forward edges from the entry. -unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, - unsigned ID) { - // Visited is assumed to have been set by the topologicalSort. This pass - // assumes !Visited means that we've visited this node before. - if (!Visited) return ID; - Visited = false; - if (DominatorNode.Parent) - ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); - for (auto *Pred : Predecessors) - ID = Pred->topologicalFinalSort(Blocks, ID); - assert(static_cast<size_t>(ID) < Blocks.size()); - BlockID = ID++; - Blocks[BlockID] = this; - return ID; -} - -// Computes the immediate dominator of the current block. Assumes that all of -// its predecessors have already computed their dominators. This is achieved -// by visiting the nodes in topological order. -void BasicBlock::computeDominator() { - BasicBlock *Candidate = nullptr; - // Walk backwards from each predecessor to find the common dominator node. - for (auto *Pred : Predecessors) { - // Skip back-edges - if (Pred->BlockID >= BlockID) continue; - // If we don't yet have a candidate for dominator yet, take this one. - if (Candidate == nullptr) { - Candidate = Pred; - continue; - } - // Walk the alternate and current candidate back to find a common ancestor. - auto *Alternate = Pred; - while (Alternate != Candidate) { - if (Candidate->BlockID > Alternate->BlockID) - Candidate = Candidate->DominatorNode.Parent; - else - Alternate = Alternate->DominatorNode.Parent; - } - } - DominatorNode.Parent = Candidate; - DominatorNode.SizeOfSubTree = 1; -} - -// Computes the immediate post-dominator of the current block. Assumes that all -// of its successors have already computed their post-dominators. This is -// achieved visiting the nodes in reverse topological order. -void BasicBlock::computePostDominator() { - BasicBlock *Candidate = nullptr; - // Walk back from each predecessor to find the common post-dominator node. - for (auto *Succ : successors()) { - // Skip back-edges - if (Succ->BlockID <= BlockID) continue; - // If we don't yet have a candidate for post-dominator yet, take this one. - if (Candidate == nullptr) { - Candidate = Succ; - continue; - } - // Walk the alternate and current candidate back to find a common ancestor. - auto *Alternate = Succ; - while (Alternate != Candidate) { - if (Candidate->BlockID < Alternate->BlockID) - Candidate = Candidate->PostDominatorNode.Parent; - else - Alternate = Alternate->PostDominatorNode.Parent; - } - } - PostDominatorNode.Parent = Candidate; - PostDominatorNode.SizeOfSubTree = 1; -} - -// Renumber instructions in all blocks -void SCFG::renumberInstrs() { - unsigned InstrID = 0; - for (auto *Block : Blocks) - InstrID = Block->renumberInstrs(InstrID); -} - -static inline void computeNodeSize(BasicBlock *B, - BasicBlock::TopologyNode BasicBlock::*TN) { - BasicBlock::TopologyNode *N = &(B->*TN); - if (N->Parent) { - BasicBlock::TopologyNode *P = &(N->Parent->*TN); - // Initially set ID relative to the (as yet uncomputed) parent ID - N->NodeID = P->SizeOfSubTree; - P->SizeOfSubTree += N->SizeOfSubTree; - } -} - -static inline void computeNodeID(BasicBlock *B, - BasicBlock::TopologyNode BasicBlock::*TN) { - BasicBlock::TopologyNode *N = &(B->*TN); - if (N->Parent) { - BasicBlock::TopologyNode *P = &(N->Parent->*TN); - N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node. - } -} - -// Normalizes a CFG. Normalization has a few major components: -// 1) Removing unreachable blocks. -// 2) Computing dominators and post-dominators -// 3) Topologically sorting the blocks into the "Blocks" array. -void SCFG::computeNormalForm() { - // Topologically sort the blocks starting from the entry block. - unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size()); - if (NumUnreachableBlocks > 0) { - // If there were unreachable blocks shift everything down, and delete them. - for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { - unsigned NI = I - NumUnreachableBlocks; - Blocks[NI] = Blocks[I]; - Blocks[NI]->BlockID = NI; - // FIXME: clean up predecessor pointers to unreachable blocks? - } - Blocks.drop(NumUnreachableBlocks); - } - - // Compute dominators. - for (auto *Block : Blocks) - Block->computeDominator(); - - // Once dominators have been computed, the final sort may be performed. - unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0); - assert(static_cast<size_t>(NumBlocks) == Blocks.size()); - (void) NumBlocks; - - // Renumber the instructions now that we have a final sort. - renumberInstrs(); - - // Compute post-dominators and compute the sizes of each node in the - // dominator tree. - for (auto *Block : Blocks.reverse()) { - Block->computePostDominator(); - computeNodeSize(Block, &BasicBlock::DominatorNode); - } - // Compute the sizes of each node in the post-dominator tree and assign IDs in - // the dominator tree. - for (auto *Block : Blocks) { - computeNodeID(Block, &BasicBlock::DominatorNode); - computeNodeSize(Block, &BasicBlock::PostDominatorNode); - } - // Assign IDs in the post-dominator tree. - for (auto *Block : Blocks.reverse()) { - computeNodeID(Block, &BasicBlock::PostDominatorNode); - } -} |
