diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp | 4942 |
1 files changed, 0 insertions, 4942 deletions
diff --git a/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp b/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp deleted file mode 100644 index 34a921e2dc0..00000000000 --- a/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp +++ /dev/null @@ -1,4942 +0,0 @@ -//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This contains code to emit Expr nodes as LLVM code. -// -//===----------------------------------------------------------------------===// - -#include "CGCXXABI.h" -#include "CGCall.h" -#include "CGCleanup.h" -#include "CGDebugInfo.h" -#include "CGObjCRuntime.h" -#include "CGOpenMPRuntime.h" -#include "CGRecordLayout.h" -#include "CodeGenFunction.h" -#include "CodeGenModule.h" -#include "ConstantEmitter.h" -#include "TargetInfo.h" -#include "clang/AST/ASTContext.h" -#include "clang/AST/Attr.h" -#include "clang/AST/DeclObjC.h" -#include "clang/AST/NSAPI.h" -#include "clang/Basic/CodeGenOptions.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/Support/ConvertUTF.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/Path.h" -#include "llvm/Transforms/Utils/SanitizerStats.h" - -#include <string> - -using namespace clang; -using namespace CodeGen; - -//===--------------------------------------------------------------------===// -// Miscellaneous Helper Methods -//===--------------------------------------------------------------------===// - -llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { - unsigned addressSpace = - cast<llvm::PointerType>(value->getType())->getAddressSpace(); - - llvm::PointerType *destType = Int8PtrTy; - if (addressSpace) - destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); - - if (value->getType() == destType) return value; - return Builder.CreateBitCast(value, destType); -} - -/// CreateTempAlloca - This creates a alloca and inserts it into the entry -/// block. -Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, - CharUnits Align, - const Twine &Name, - llvm::Value *ArraySize) { - auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); - Alloca->setAlignment(Align.getQuantity()); - return Address(Alloca, Align); -} - -/// CreateTempAlloca - This creates a alloca and inserts it into the entry -/// block. The alloca is casted to default address space if necessary. -Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, - const Twine &Name, - llvm::Value *ArraySize, - Address *AllocaAddr) { - auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); - if (AllocaAddr) - *AllocaAddr = Alloca; - llvm::Value *V = Alloca.getPointer(); - // Alloca always returns a pointer in alloca address space, which may - // be different from the type defined by the language. For example, - // in C++ the auto variables are in the default address space. Therefore - // cast alloca to the default address space when necessary. - if (getASTAllocaAddressSpace() != LangAS::Default) { - auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); - llvm::IRBuilderBase::InsertPointGuard IPG(Builder); - // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, - // otherwise alloca is inserted at the current insertion point of the - // builder. - if (!ArraySize) - Builder.SetInsertPoint(AllocaInsertPt); - V = getTargetHooks().performAddrSpaceCast( - *this, V, getASTAllocaAddressSpace(), LangAS::Default, - Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); - } - - return Address(V, Align); -} - -/// CreateTempAlloca - This creates an alloca and inserts it into the entry -/// block if \p ArraySize is nullptr, otherwise inserts it at the current -/// insertion point of the builder. -llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, - const Twine &Name, - llvm::Value *ArraySize) { - if (ArraySize) - return Builder.CreateAlloca(Ty, ArraySize, Name); - return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), - ArraySize, Name, AllocaInsertPt); -} - -/// CreateDefaultAlignTempAlloca - This creates an alloca with the -/// default alignment of the corresponding LLVM type, which is *not* -/// guaranteed to be related in any way to the expected alignment of -/// an AST type that might have been lowered to Ty. -Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, - const Twine &Name) { - CharUnits Align = - CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); - return CreateTempAlloca(Ty, Align, Name); -} - -void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { - assert(isa<llvm::AllocaInst>(Var.getPointer())); - auto *Store = new llvm::StoreInst(Init, Var.getPointer()); - Store->setAlignment(Var.getAlignment().getQuantity()); - llvm::BasicBlock *Block = AllocaInsertPt->getParent(); - Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); -} - -Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { - CharUnits Align = getContext().getTypeAlignInChars(Ty); - return CreateTempAlloca(ConvertType(Ty), Align, Name); -} - -Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, - Address *Alloca) { - // FIXME: Should we prefer the preferred type alignment here? - return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); -} - -Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, - const Twine &Name, Address *Alloca) { - return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, - /*ArraySize=*/nullptr, Alloca); -} - -Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, - const Twine &Name) { - return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); -} - -Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, - const Twine &Name) { - return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), - Name); -} - -/// EvaluateExprAsBool - Perform the usual unary conversions on the specified -/// expression and compare the result against zero, returning an Int1Ty value. -llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { - PGO.setCurrentStmt(E); - if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { - llvm::Value *MemPtr = EmitScalarExpr(E); - return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); - } - - QualType BoolTy = getContext().BoolTy; - SourceLocation Loc = E->getExprLoc(); - if (!E->getType()->isAnyComplexType()) - return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); - - return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, - Loc); -} - -/// EmitIgnoredExpr - Emit code to compute the specified expression, -/// ignoring the result. -void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { - if (E->isRValue()) - return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); - - // Just emit it as an l-value and drop the result. - EmitLValue(E); -} - -/// EmitAnyExpr - Emit code to compute the specified expression which -/// can have any type. The result is returned as an RValue struct. -/// If this is an aggregate expression, AggSlot indicates where the -/// result should be returned. -RValue CodeGenFunction::EmitAnyExpr(const Expr *E, - AggValueSlot aggSlot, - bool ignoreResult) { - switch (getEvaluationKind(E->getType())) { - case TEK_Scalar: - return RValue::get(EmitScalarExpr(E, ignoreResult)); - case TEK_Complex: - return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); - case TEK_Aggregate: - if (!ignoreResult && aggSlot.isIgnored()) - aggSlot = CreateAggTemp(E->getType(), "agg-temp"); - EmitAggExpr(E, aggSlot); - return aggSlot.asRValue(); - } - llvm_unreachable("bad evaluation kind"); -} - -/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will -/// always be accessible even if no aggregate location is provided. -RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { - AggValueSlot AggSlot = AggValueSlot::ignored(); - - if (hasAggregateEvaluationKind(E->getType())) - AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); - return EmitAnyExpr(E, AggSlot); -} - -/// EmitAnyExprToMem - Evaluate an expression into a given memory -/// location. -void CodeGenFunction::EmitAnyExprToMem(const Expr *E, - Address Location, - Qualifiers Quals, - bool IsInit) { - // FIXME: This function should take an LValue as an argument. - switch (getEvaluationKind(E->getType())) { - case TEK_Complex: - EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), - /*isInit*/ false); - return; - - case TEK_Aggregate: { - EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, - AggValueSlot::IsDestructed_t(IsInit), - AggValueSlot::DoesNotNeedGCBarriers, - AggValueSlot::IsAliased_t(!IsInit), - AggValueSlot::MayOverlap)); - return; - } - - case TEK_Scalar: { - RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); - LValue LV = MakeAddrLValue(Location, E->getType()); - EmitStoreThroughLValue(RV, LV); - return; - } - } - llvm_unreachable("bad evaluation kind"); -} - -static void -pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, - const Expr *E, Address ReferenceTemporary) { - // Objective-C++ ARC: - // If we are binding a reference to a temporary that has ownership, we - // need to perform retain/release operations on the temporary. - // - // FIXME: This should be looking at E, not M. - if (auto Lifetime = M->getType().getObjCLifetime()) { - switch (Lifetime) { - case Qualifiers::OCL_None: - case Qualifiers::OCL_ExplicitNone: - // Carry on to normal cleanup handling. - break; - - case Qualifiers::OCL_Autoreleasing: - // Nothing to do; cleaned up by an autorelease pool. - return; - - case Qualifiers::OCL_Strong: - case Qualifiers::OCL_Weak: - switch (StorageDuration Duration = M->getStorageDuration()) { - case SD_Static: - // Note: we intentionally do not register a cleanup to release - // the object on program termination. - return; - - case SD_Thread: - // FIXME: We should probably register a cleanup in this case. - return; - - case SD_Automatic: - case SD_FullExpression: - CodeGenFunction::Destroyer *Destroy; - CleanupKind CleanupKind; - if (Lifetime == Qualifiers::OCL_Strong) { - const ValueDecl *VD = M->getExtendingDecl(); - bool Precise = - VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); - CleanupKind = CGF.getARCCleanupKind(); - Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise - : &CodeGenFunction::destroyARCStrongImprecise; - } else { - // __weak objects always get EH cleanups; otherwise, exceptions - // could cause really nasty crashes instead of mere leaks. - CleanupKind = NormalAndEHCleanup; - Destroy = &CodeGenFunction::destroyARCWeak; - } - if (Duration == SD_FullExpression) - CGF.pushDestroy(CleanupKind, ReferenceTemporary, - M->getType(), *Destroy, - CleanupKind & EHCleanup); - else - CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, - M->getType(), - *Destroy, CleanupKind & EHCleanup); - return; - - case SD_Dynamic: - llvm_unreachable("temporary cannot have dynamic storage duration"); - } - llvm_unreachable("unknown storage duration"); - } - } - - CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; - if (const RecordType *RT = - E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { - // Get the destructor for the reference temporary. - auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); - if (!ClassDecl->hasTrivialDestructor()) - ReferenceTemporaryDtor = ClassDecl->getDestructor(); - } - - if (!ReferenceTemporaryDtor) - return; - - // Call the destructor for the temporary. - switch (M->getStorageDuration()) { - case SD_Static: - case SD_Thread: { - llvm::Constant *CleanupFn; - llvm::Constant *CleanupArg; - if (E->getType()->isArrayType()) { - CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( - ReferenceTemporary, E->getType(), - CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, - dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); - CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); - } else { - CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, - StructorType::Complete); - CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); - } - CGF.CGM.getCXXABI().registerGlobalDtor( - CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); - break; - } - - case SD_FullExpression: - CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), - CodeGenFunction::destroyCXXObject, - CGF.getLangOpts().Exceptions); - break; - - case SD_Automatic: - CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, - ReferenceTemporary, E->getType(), - CodeGenFunction::destroyCXXObject, - CGF.getLangOpts().Exceptions); - break; - - case SD_Dynamic: - llvm_unreachable("temporary cannot have dynamic storage duration"); - } -} - -static Address createReferenceTemporary(CodeGenFunction &CGF, - const MaterializeTemporaryExpr *M, - const Expr *Inner, - Address *Alloca = nullptr) { - auto &TCG = CGF.getTargetHooks(); - switch (M->getStorageDuration()) { - case SD_FullExpression: - case SD_Automatic: { - // If we have a constant temporary array or record try to promote it into a - // constant global under the same rules a normal constant would've been - // promoted. This is easier on the optimizer and generally emits fewer - // instructions. - QualType Ty = Inner->getType(); - if (CGF.CGM.getCodeGenOpts().MergeAllConstants && - (Ty->isArrayType() || Ty->isRecordType()) && - CGF.CGM.isTypeConstant(Ty, true)) - if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { - if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { - auto AS = AddrSpace.getValue(); - auto *GV = new llvm::GlobalVariable( - CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, - llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, - llvm::GlobalValue::NotThreadLocal, - CGF.getContext().getTargetAddressSpace(AS)); - CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); - GV->setAlignment(alignment.getQuantity()); - llvm::Constant *C = GV; - if (AS != LangAS::Default) - C = TCG.performAddrSpaceCast( - CGF.CGM, GV, AS, LangAS::Default, - GV->getValueType()->getPointerTo( - CGF.getContext().getTargetAddressSpace(LangAS::Default))); - // FIXME: Should we put the new global into a COMDAT? - return Address(C, alignment); - } - } - return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); - } - case SD_Thread: - case SD_Static: - return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); - - case SD_Dynamic: - llvm_unreachable("temporary can't have dynamic storage duration"); - } - llvm_unreachable("unknown storage duration"); -} - -LValue CodeGenFunction:: -EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { - const Expr *E = M->GetTemporaryExpr(); - - assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || - !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && - "Reference should never be pseudo-strong!"); - - // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so - // as that will cause the lifetime adjustment to be lost for ARC - auto ownership = M->getType().getObjCLifetime(); - if (ownership != Qualifiers::OCL_None && - ownership != Qualifiers::OCL_ExplicitNone) { - Address Object = createReferenceTemporary(*this, M, E); - if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { - Object = Address(llvm::ConstantExpr::getBitCast(Var, - ConvertTypeForMem(E->getType()) - ->getPointerTo(Object.getAddressSpace())), - Object.getAlignment()); - - // createReferenceTemporary will promote the temporary to a global with a - // constant initializer if it can. It can only do this to a value of - // ARC-manageable type if the value is global and therefore "immune" to - // ref-counting operations. Therefore we have no need to emit either a - // dynamic initialization or a cleanup and we can just return the address - // of the temporary. - if (Var->hasInitializer()) - return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); - - Var->setInitializer(CGM.EmitNullConstant(E->getType())); - } - LValue RefTempDst = MakeAddrLValue(Object, M->getType(), - AlignmentSource::Decl); - - switch (getEvaluationKind(E->getType())) { - default: llvm_unreachable("expected scalar or aggregate expression"); - case TEK_Scalar: - EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); - break; - case TEK_Aggregate: { - EmitAggExpr(E, AggValueSlot::forAddr(Object, - E->getType().getQualifiers(), - AggValueSlot::IsDestructed, - AggValueSlot::DoesNotNeedGCBarriers, - AggValueSlot::IsNotAliased, - AggValueSlot::DoesNotOverlap)); - break; - } - } - - pushTemporaryCleanup(*this, M, E, Object); - return RefTempDst; - } - - SmallVector<const Expr *, 2> CommaLHSs; - SmallVector<SubobjectAdjustment, 2> Adjustments; - E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); - - for (const auto &Ignored : CommaLHSs) - EmitIgnoredExpr(Ignored); - - if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { - if (opaque->getType()->isRecordType()) { - assert(Adjustments.empty()); - return EmitOpaqueValueLValue(opaque); - } - } - - // Create and initialize the reference temporary. - Address Alloca = Address::invalid(); - Address Object = createReferenceTemporary(*this, M, E, &Alloca); - if (auto *Var = dyn_cast<llvm::GlobalVariable>( - Object.getPointer()->stripPointerCasts())) { - Object = Address(llvm::ConstantExpr::getBitCast( - cast<llvm::Constant>(Object.getPointer()), - ConvertTypeForMem(E->getType())->getPointerTo()), - Object.getAlignment()); - // If the temporary is a global and has a constant initializer or is a - // constant temporary that we promoted to a global, we may have already - // initialized it. - if (!Var->hasInitializer()) { - Var->setInitializer(CGM.EmitNullConstant(E->getType())); - EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); - } - } else { - switch (M->getStorageDuration()) { - case SD_Automatic: - if (auto *Size = EmitLifetimeStart( - CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), - Alloca.getPointer())) { - pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, - Alloca, Size); - } - break; - - case SD_FullExpression: { - if (!ShouldEmitLifetimeMarkers) - break; - - // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end - // marker. Instead, start the lifetime of a conditional temporary earlier - // so that it's unconditional. Don't do this in ASan's use-after-scope - // mode so that it gets the more precise lifetime marks. If the type has - // a non-trivial destructor, we'll have a cleanup block for it anyway, - // so this typically doesn't help; skip it in that case. - ConditionalEvaluation *OldConditional = nullptr; - CGBuilderTy::InsertPoint OldIP; - if (isInConditionalBranch() && !E->getType().isDestructedType() && - !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { - OldConditional = OutermostConditional; - OutermostConditional = nullptr; - - OldIP = Builder.saveIP(); - llvm::BasicBlock *Block = OldConditional->getStartingBlock(); - Builder.restoreIP(CGBuilderTy::InsertPoint( - Block, llvm::BasicBlock::iterator(Block->back()))); - } - - if (auto *Size = EmitLifetimeStart( - CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), - Alloca.getPointer())) { - pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, - Size); - } - - if (OldConditional) { - OutermostConditional = OldConditional; - Builder.restoreIP(OldIP); - } - break; - } - - default: - break; - } - EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); - } - pushTemporaryCleanup(*this, M, E, Object); - - // Perform derived-to-base casts and/or field accesses, to get from the - // temporary object we created (and, potentially, for which we extended - // the lifetime) to the subobject we're binding the reference to. - for (unsigned I = Adjustments.size(); I != 0; --I) { - SubobjectAdjustment &Adjustment = Adjustments[I-1]; - switch (Adjustment.Kind) { - case SubobjectAdjustment::DerivedToBaseAdjustment: - Object = - GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, - Adjustment.DerivedToBase.BasePath->path_begin(), - Adjustment.DerivedToBase.BasePath->path_end(), - /*NullCheckValue=*/ false, E->getExprLoc()); - break; - - case SubobjectAdjustment::FieldAdjustment: { - LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); - LV = EmitLValueForField(LV, Adjustment.Field); - assert(LV.isSimple() && - "materialized temporary field is not a simple lvalue"); - Object = LV.getAddress(); - break; - } - - case SubobjectAdjustment::MemberPointerAdjustment: { - llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); - Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, - Adjustment.Ptr.MPT); - break; - } - } - } - - return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); -} - -RValue -CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { - // Emit the expression as an lvalue. - LValue LV = EmitLValue(E); - assert(LV.isSimple()); - llvm::Value *Value = LV.getPointer(); - - if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { - // C++11 [dcl.ref]p5 (as amended by core issue 453): - // If a glvalue to which a reference is directly bound designates neither - // an existing object or function of an appropriate type nor a region of - // storage of suitable size and alignment to contain an object of the - // reference's type, the behavior is undefined. - QualType Ty = E->getType(); - EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); - } - - return RValue::get(Value); -} - - -/// getAccessedFieldNo - Given an encoded value and a result number, return the -/// input field number being accessed. -unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, - const llvm::Constant *Elts) { - return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) - ->getZExtValue(); -} - -/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. -static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, - llvm::Value *High) { - llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); - llvm::Value *K47 = Builder.getInt64(47); - llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); - llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); - llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); - llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); - return Builder.CreateMul(B1, KMul); -} - -bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { - return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || - TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; -} - -bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { - CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); - return (RD && RD->hasDefinition() && RD->isDynamicClass()) && - (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || - TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || - TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); -} - -bool CodeGenFunction::sanitizePerformTypeCheck() const { - return SanOpts.has(SanitizerKind::Null) | - SanOpts.has(SanitizerKind::Alignment) | - SanOpts.has(SanitizerKind::ObjectSize) | - SanOpts.has(SanitizerKind::Vptr); -} - -void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, - llvm::Value *Ptr, QualType Ty, - CharUnits Alignment, - SanitizerSet SkippedChecks) { - if (!sanitizePerformTypeCheck()) - return; - - // Don't check pointers outside the default address space. The null check - // isn't correct, the object-size check isn't supported by LLVM, and we can't - // communicate the addresses to the runtime handler for the vptr check. - if (Ptr->getType()->getPointerAddressSpace()) - return; - - // Don't check pointers to volatile data. The behavior here is implementation- - // defined. - if (Ty.isVolatileQualified()) - return; - - SanitizerScope SanScope(this); - - SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; - llvm::BasicBlock *Done = nullptr; - - // Quickly determine whether we have a pointer to an alloca. It's possible - // to skip null checks, and some alignment checks, for these pointers. This - // can reduce compile-time significantly. - auto PtrToAlloca = - dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); - - llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); - llvm::Value *IsNonNull = nullptr; - bool IsGuaranteedNonNull = - SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; - bool AllowNullPointers = isNullPointerAllowed(TCK); - if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && - !IsGuaranteedNonNull) { - // The glvalue must not be an empty glvalue. - IsNonNull = Builder.CreateIsNotNull(Ptr); - - // The IR builder can constant-fold the null check if the pointer points to - // a constant. - IsGuaranteedNonNull = IsNonNull == True; - - // Skip the null check if the pointer is known to be non-null. - if (!IsGuaranteedNonNull) { - if (AllowNullPointers) { - // When performing pointer casts, it's OK if the value is null. - // Skip the remaining checks in that case. - Done = createBasicBlock("null"); - llvm::BasicBlock *Rest = createBasicBlock("not.null"); - Builder.CreateCondBr(IsNonNull, Rest, Done); - EmitBlock(Rest); - } else { - Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); - } - } - } - - if (SanOpts.has(SanitizerKind::ObjectSize) && - !SkippedChecks.has(SanitizerKind::ObjectSize) && - !Ty->isIncompleteType()) { - uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); - - // The glvalue must refer to a large enough storage region. - // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation - // to check this. - // FIXME: Get object address space - llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; - llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); - llvm::Value *Min = Builder.getFalse(); - llvm::Value *NullIsUnknown = Builder.getFalse(); - llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); - llvm::Value *LargeEnough = Builder.CreateICmpUGE( - Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), - llvm::ConstantInt::get(IntPtrTy, Size)); - Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); - } - - uint64_t AlignVal = 0; - llvm::Value *PtrAsInt = nullptr; - - if (SanOpts.has(SanitizerKind::Alignment) && - !SkippedChecks.has(SanitizerKind::Alignment)) { - AlignVal = Alignment.getQuantity(); - if (!Ty->isIncompleteType() && !AlignVal) - AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); - - // The glvalue must be suitably aligned. - if (AlignVal > 1 && - (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { - PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); - llvm::Value *Align = Builder.CreateAnd( - PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); - llvm::Value *Aligned = - Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); - if (Aligned != True) - Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); - } - } - - if (Checks.size() > 0) { - // Make sure we're not losing information. Alignment needs to be a power of - // 2 - assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); - llvm::Constant *StaticData[] = { - EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), - llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), - llvm::ConstantInt::get(Int8Ty, TCK)}; - EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, - PtrAsInt ? PtrAsInt : Ptr); - } - - // If possible, check that the vptr indicates that there is a subobject of - // type Ty at offset zero within this object. - // - // C++11 [basic.life]p5,6: - // [For storage which does not refer to an object within its lifetime] - // The program has undefined behavior if: - // -- the [pointer or glvalue] is used to access a non-static data member - // or call a non-static member function - if (SanOpts.has(SanitizerKind::Vptr) && - !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { - // Ensure that the pointer is non-null before loading it. If there is no - // compile-time guarantee, reuse the run-time null check or emit a new one. - if (!IsGuaranteedNonNull) { - if (!IsNonNull) - IsNonNull = Builder.CreateIsNotNull(Ptr); - if (!Done) - Done = createBasicBlock("vptr.null"); - llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); - Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); - EmitBlock(VptrNotNull); - } - - // Compute a hash of the mangled name of the type. - // - // FIXME: This is not guaranteed to be deterministic! Move to a - // fingerprinting mechanism once LLVM provides one. For the time - // being the implementation happens to be deterministic. - SmallString<64> MangledName; - llvm::raw_svector_ostream Out(MangledName); - CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), - Out); - - // Blacklist based on the mangled type. - if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( - SanitizerKind::Vptr, Out.str())) { - llvm::hash_code TypeHash = hash_value(Out.str()); - - // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). - llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); - llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); - Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); - llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); - llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); - - llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); - Hash = Builder.CreateTrunc(Hash, IntPtrTy); - - // Look the hash up in our cache. - const int CacheSize = 128; - llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); - llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, - "__ubsan_vptr_type_cache"); - llvm::Value *Slot = Builder.CreateAnd(Hash, - llvm::ConstantInt::get(IntPtrTy, - CacheSize-1)); - llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; - llvm::Value *CacheVal = - Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), - getPointerAlign()); - - // If the hash isn't in the cache, call a runtime handler to perform the - // hard work of checking whether the vptr is for an object of the right - // type. This will either fill in the cache and return, or produce a - // diagnostic. - llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); - llvm::Constant *StaticData[] = { - EmitCheckSourceLocation(Loc), - EmitCheckTypeDescriptor(Ty), - CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), - llvm::ConstantInt::get(Int8Ty, TCK) - }; - llvm::Value *DynamicData[] = { Ptr, Hash }; - EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), - SanitizerHandler::DynamicTypeCacheMiss, StaticData, - DynamicData); - } - } - - if (Done) { - Builder.CreateBr(Done); - EmitBlock(Done); - } -} - -/// Determine whether this expression refers to a flexible array member in a -/// struct. We disable array bounds checks for such members. -static bool isFlexibleArrayMemberExpr(const Expr *E) { - // For compatibility with existing code, we treat arrays of length 0 or - // 1 as flexible array members. - const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); - if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { - if (CAT->getSize().ugt(1)) - return false; - } else if (!isa<IncompleteArrayType>(AT)) - return false; - - E = E->IgnoreParens(); - - // A flexible array member must be the last member in the class. - if (const auto *ME = dyn_cast<MemberExpr>(E)) { - // FIXME: If the base type of the member expr is not FD->getParent(), - // this should not be treated as a flexible array member access. - if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { - RecordDecl::field_iterator FI( - DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); - return ++FI == FD->getParent()->field_end(); - } - } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { - return IRE->getDecl()->getNextIvar() == nullptr; - } - - return false; -} - -llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, - QualType EltTy) { - ASTContext &C = getContext(); - uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); - if (!EltSize) - return nullptr; - - auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); - if (!ArrayDeclRef) - return nullptr; - - auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); - if (!ParamDecl) - return nullptr; - - auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); - if (!POSAttr) - return nullptr; - - // Don't load the size if it's a lower bound. - int POSType = POSAttr->getType(); - if (POSType != 0 && POSType != 1) - return nullptr; - - // Find the implicit size parameter. - auto PassedSizeIt = SizeArguments.find(ParamDecl); - if (PassedSizeIt == SizeArguments.end()) - return nullptr; - - const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; - assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); - Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; - llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, - C.getSizeType(), E->getExprLoc()); - llvm::Value *SizeOfElement = - llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); - return Builder.CreateUDiv(SizeInBytes, SizeOfElement); -} - -/// If Base is known to point to the start of an array, return the length of -/// that array. Return 0 if the length cannot be determined. -static llvm::Value *getArrayIndexingBound( - CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { - // For the vector indexing extension, the bound is the number of elements. - if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { - IndexedType = Base->getType(); - return CGF.Builder.getInt32(VT->getNumElements()); - } - - Base = Base->IgnoreParens(); - - if (const auto *CE = dyn_cast<CastExpr>(Base)) { - if (CE->getCastKind() == CK_ArrayToPointerDecay && - !isFlexibleArrayMemberExpr(CE->getSubExpr())) { - IndexedType = CE->getSubExpr()->getType(); - const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); - if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) - return CGF.Builder.getInt(CAT->getSize()); - else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) - return CGF.getVLASize(VAT).NumElts; - // Ignore pass_object_size here. It's not applicable on decayed pointers. - } - } - - QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; - if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { - IndexedType = Base->getType(); - return POS; - } - - return nullptr; -} - -void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, - llvm::Value *Index, QualType IndexType, - bool Accessed) { - assert(SanOpts.has(SanitizerKind::ArrayBounds) && - "should not be called unless adding bounds checks"); - SanitizerScope SanScope(this); - - QualType IndexedType; - llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); - if (!Bound) - return; - - bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); - llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); - llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); - - llvm::Constant *StaticData[] = { - EmitCheckSourceLocation(E->getExprLoc()), - EmitCheckTypeDescriptor(IndexedType), - EmitCheckTypeDescriptor(IndexType) - }; - llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) - : Builder.CreateICmpULE(IndexVal, BoundVal); - EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), - SanitizerHandler::OutOfBounds, StaticData, Index); -} - - -CodeGenFunction::ComplexPairTy CodeGenFunction:: -EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, - bool isInc, bool isPre) { - ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); - - llvm::Value *NextVal; - if (isa<llvm::IntegerType>(InVal.first->getType())) { - uint64_t AmountVal = isInc ? 1 : -1; - NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); - - // Add the inc/dec to the real part. - NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); - } else { - QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); - llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); - if (!isInc) - FVal.changeSign(); - NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); - - // Add the inc/dec to the real part. - NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); - } - - ComplexPairTy IncVal(NextVal, InVal.second); - - // Store the updated result through the lvalue. - EmitStoreOfComplex(IncVal, LV, /*init*/ false); - - // If this is a postinc, return the value read from memory, otherwise use the - // updated value. - return isPre ? IncVal : InVal; -} - -void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, - CodeGenFunction *CGF) { - // Bind VLAs in the cast type. - if (CGF && E->getType()->isVariablyModifiedType()) - CGF->EmitVariablyModifiedType(E->getType()); - - if (CGDebugInfo *DI = getModuleDebugInfo()) - DI->EmitExplicitCastType(E->getType()); -} - -//===----------------------------------------------------------------------===// -// LValue Expression Emission -//===----------------------------------------------------------------------===// - -/// EmitPointerWithAlignment - Given an expression of pointer type, try to -/// derive a more accurate bound on the alignment of the pointer. -Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, - LValueBaseInfo *BaseInfo, - TBAAAccessInfo *TBAAInfo) { - // We allow this with ObjC object pointers because of fragile ABIs. - assert(E->getType()->isPointerType() || - E->getType()->isObjCObjectPointerType()); - E = E->IgnoreParens(); - - // Casts: - if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { - if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) - CGM.EmitExplicitCastExprType(ECE, this); - - switch (CE->getCastKind()) { - // Non-converting casts (but not C's implicit conversion from void*). - case CK_BitCast: - case CK_NoOp: - case CK_AddressSpaceConversion: - if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { - if (PtrTy->getPointeeType()->isVoidType()) - break; - - LValueBaseInfo InnerBaseInfo; - TBAAAccessInfo InnerTBAAInfo; - Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), - &InnerBaseInfo, - &InnerTBAAInfo); - if (BaseInfo) *BaseInfo = InnerBaseInfo; - if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; - - if (isa<ExplicitCastExpr>(CE)) { - LValueBaseInfo TargetTypeBaseInfo; - TBAAAccessInfo TargetTypeTBAAInfo; - CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), - &TargetTypeBaseInfo, - &TargetTypeTBAAInfo); - if (TBAAInfo) - *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, - TargetTypeTBAAInfo); - // If the source l-value is opaque, honor the alignment of the - // casted-to type. - if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { - if (BaseInfo) - BaseInfo->mergeForCast(TargetTypeBaseInfo); - Addr = Address(Addr.getPointer(), Align); - } - } - - if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && - CE->getCastKind() == CK_BitCast) { - if (auto PT = E->getType()->getAs<PointerType>()) - EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), - /*MayBeNull=*/true, - CodeGenFunction::CFITCK_UnrelatedCast, - CE->getBeginLoc()); - } - return CE->getCastKind() != CK_AddressSpaceConversion - ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) - : Builder.CreateAddrSpaceCast(Addr, - ConvertType(E->getType())); - } - break; - - // Array-to-pointer decay. - case CK_ArrayToPointerDecay: - return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); - - // Derived-to-base conversions. - case CK_UncheckedDerivedToBase: - case CK_DerivedToBase: { - // TODO: Support accesses to members of base classes in TBAA. For now, we - // conservatively pretend that the complete object is of the base class - // type. - if (TBAAInfo) - *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); - Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); - auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); - return GetAddressOfBaseClass(Addr, Derived, - CE->path_begin(), CE->path_end(), - ShouldNullCheckClassCastValue(CE), - CE->getExprLoc()); - } - - // TODO: Is there any reason to treat base-to-derived conversions - // specially? - default: - break; - } - } - - // Unary &. - if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { - if (UO->getOpcode() == UO_AddrOf) { - LValue LV = EmitLValue(UO->getSubExpr()); - if (BaseInfo) *BaseInfo = LV.getBaseInfo(); - if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); - return LV.getAddress(); - } - } - - // TODO: conditional operators, comma. - - // Otherwise, use the alignment of the type. - CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, - TBAAInfo); - return Address(EmitScalarExpr(E), Align); -} - -RValue CodeGenFunction::GetUndefRValue(QualType Ty) { - if (Ty->isVoidType()) - return RValue::get(nullptr); - - switch (getEvaluationKind(Ty)) { - case TEK_Complex: { - llvm::Type *EltTy = - ConvertType(Ty->castAs<ComplexType>()->getElementType()); - llvm::Value *U = llvm::UndefValue::get(EltTy); - return RValue::getComplex(std::make_pair(U, U)); - } - - // If this is a use of an undefined aggregate type, the aggregate must have an - // identifiable address. Just because the contents of the value are undefined - // doesn't mean that the address can't be taken and compared. - case TEK_Aggregate: { - Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); - return RValue::getAggregate(DestPtr); - } - - case TEK_Scalar: - return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); - } - llvm_unreachable("bad evaluation kind"); -} - -RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, - const char *Name) { - ErrorUnsupported(E, Name); - return GetUndefRValue(E->getType()); -} - -LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, - const char *Name) { - ErrorUnsupported(E, Name); - llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); - return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), - E->getType()); -} - -bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { - const Expr *Base = Obj; - while (!isa<CXXThisExpr>(Base)) { - // The result of a dynamic_cast can be null. - if (isa<CXXDynamicCastExpr>(Base)) - return false; - - if (const auto *CE = dyn_cast<CastExpr>(Base)) { - Base = CE->getSubExpr(); - } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { - Base = PE->getSubExpr(); - } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { - if (UO->getOpcode() == UO_Extension) - Base = UO->getSubExpr(); - else - return false; - } else { - return false; - } - } - return true; -} - -LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { - LValue LV; - if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) - LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); - else - LV = EmitLValue(E); - if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { - SanitizerSet SkippedChecks; - if (const auto *ME = dyn_cast<MemberExpr>(E)) { - bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); - if (IsBaseCXXThis) - SkippedChecks.set(SanitizerKind::Alignment, true); - if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) - SkippedChecks.set(SanitizerKind::Null, true); - } - EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), - E->getType(), LV.getAlignment(), SkippedChecks); - } - return LV; -} - -/// EmitLValue - Emit code to compute a designator that specifies the location -/// of the expression. -/// -/// This can return one of two things: a simple address or a bitfield reference. -/// In either case, the LLVM Value* in the LValue structure is guaranteed to be -/// an LLVM pointer type. -/// -/// If this returns a bitfield reference, nothing about the pointee type of the -/// LLVM value is known: For example, it may not be a pointer to an integer. -/// -/// If this returns a normal address, and if the lvalue's C type is fixed size, -/// this method guarantees that the returned pointer type will point to an LLVM -/// type of the same size of the lvalue's type. If the lvalue has a variable -/// length type, this is not possible. -/// -LValue CodeGenFunction::EmitLValue(const Expr *E) { - ApplyDebugLocation DL(*this, E); - switch (E->getStmtClass()) { - default: return EmitUnsupportedLValue(E, "l-value expression"); - - case Expr::ObjCPropertyRefExprClass: - llvm_unreachable("cannot emit a property reference directly"); - - case Expr::ObjCSelectorExprClass: - return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); - case Expr::ObjCIsaExprClass: - return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); - case Expr::BinaryOperatorClass: - return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); - case Expr::CompoundAssignOperatorClass: { - QualType Ty = E->getType(); - if (const AtomicType *AT = Ty->getAs<AtomicType>()) - Ty = AT->getValueType(); - if (!Ty->isAnyComplexType()) - return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); - return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); - } - case Expr::CallExprClass: - case Expr::CXXMemberCallExprClass: - case Expr::CXXOperatorCallExprClass: - case Expr::UserDefinedLiteralClass: - return EmitCallExprLValue(cast<CallExpr>(E)); - case Expr::VAArgExprClass: - return EmitVAArgExprLValue(cast<VAArgExpr>(E)); - case Expr::DeclRefExprClass: - return EmitDeclRefLValue(cast<DeclRefExpr>(E)); - case Expr::ConstantExprClass: - return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); - case Expr::ParenExprClass: - return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); - case Expr::GenericSelectionExprClass: - return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); - case Expr::PredefinedExprClass: - return EmitPredefinedLValue(cast<PredefinedExpr>(E)); - case Expr::StringLiteralClass: - return EmitStringLiteralLValue(cast<StringLiteral>(E)); - case Expr::ObjCEncodeExprClass: - return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); - case Expr::PseudoObjectExprClass: - return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); - case Expr::InitListExprClass: - return EmitInitListLValue(cast<InitListExpr>(E)); - case Expr::CXXTemporaryObjectExprClass: - case Expr::CXXConstructExprClass: - return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); - case Expr::CXXBindTemporaryExprClass: - return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); - case Expr::CXXUuidofExprClass: - return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); - case Expr::LambdaExprClass: - return EmitLambdaLValue(cast<LambdaExpr>(E)); - - case Expr::ExprWithCleanupsClass: { - const auto *cleanups = cast<ExprWithCleanups>(E); - enterFullExpression(cleanups); - RunCleanupsScope Scope(*this); - LValue LV = EmitLValue(cleanups->getSubExpr()); - if (LV.isSimple()) { - // Defend against branches out of gnu statement expressions surrounded by - // cleanups. - llvm::Value *V = LV.getPointer(); - Scope.ForceCleanup({&V}); - return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), - getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); - } - // FIXME: Is it possible to create an ExprWithCleanups that produces a - // bitfield lvalue or some other non-simple lvalue? - return LV; - } - - case Expr::CXXDefaultArgExprClass: - return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); - case Expr::CXXDefaultInitExprClass: { - CXXDefaultInitExprScope Scope(*this); - return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); - } - case Expr::CXXTypeidExprClass: - return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); - - case Expr::ObjCMessageExprClass: - return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); - case Expr::ObjCIvarRefExprClass: - return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); - case Expr::StmtExprClass: - return EmitStmtExprLValue(cast<StmtExpr>(E)); - case Expr::UnaryOperatorClass: - return EmitUnaryOpLValue(cast<UnaryOperator>(E)); - case Expr::ArraySubscriptExprClass: - return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); - case Expr::OMPArraySectionExprClass: - return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); - case Expr::ExtVectorElementExprClass: - return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); - case Expr::MemberExprClass: - return EmitMemberExpr(cast<MemberExpr>(E)); - case Expr::CompoundLiteralExprClass: - return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); - case Expr::ConditionalOperatorClass: - return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); - case Expr::BinaryConditionalOperatorClass: - return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); - case Expr::ChooseExprClass: - return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); - case Expr::OpaqueValueExprClass: - return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); - case Expr::SubstNonTypeTemplateParmExprClass: - return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); - case Expr::ImplicitCastExprClass: - case Expr::CStyleCastExprClass: - case Expr::CXXFunctionalCastExprClass: - case Expr::CXXStaticCastExprClass: - case Expr::CXXDynamicCastExprClass: - case Expr::CXXReinterpretCastExprClass: - case Expr::CXXConstCastExprClass: - case Expr::ObjCBridgedCastExprClass: - return EmitCastLValue(cast<CastExpr>(E)); - - case Expr::MaterializeTemporaryExprClass: - return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); - - case Expr::CoawaitExprClass: - return EmitCoawaitLValue(cast<CoawaitExpr>(E)); - case Expr::CoyieldExprClass: - return EmitCoyieldLValue(cast<CoyieldExpr>(E)); - } -} - -/// Given an object of the given canonical type, can we safely copy a -/// value out of it based on its initializer? -static bool isConstantEmittableObjectType(QualType type) { - assert(type.isCanonical()); - assert(!type->isReferenceType()); - - // Must be const-qualified but non-volatile. - Qualifiers qs = type.getLocalQualifiers(); - if (!qs.hasConst() || qs.hasVolatile()) return false; - - // Otherwise, all object types satisfy this except C++ classes with - // mutable subobjects or non-trivial copy/destroy behavior. - if (const auto *RT = dyn_cast<RecordType>(type)) - if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) - if (RD->hasMutableFields() || !RD->isTrivial()) - return false; - - return true; -} - -/// Can we constant-emit a load of a reference to a variable of the -/// given type? This is different from predicates like -/// Decl::isUsableInConstantExpressions because we do want it to apply -/// in situations that don't necessarily satisfy the language's rules -/// for this (e.g. C++'s ODR-use rules). For example, we want to able -/// to do this with const float variables even if those variables -/// aren't marked 'constexpr'. -enum ConstantEmissionKind { - CEK_None, - CEK_AsReferenceOnly, - CEK_AsValueOrReference, - CEK_AsValueOnly -}; -static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { - type = type.getCanonicalType(); - if (const auto *ref = dyn_cast<ReferenceType>(type)) { - if (isConstantEmittableObjectType(ref->getPointeeType())) - return CEK_AsValueOrReference; - return CEK_AsReferenceOnly; - } - if (isConstantEmittableObjectType(type)) - return CEK_AsValueOnly; - return CEK_None; -} - -/// Try to emit a reference to the given value without producing it as -/// an l-value. This is actually more than an optimization: we can't -/// produce an l-value for variables that we never actually captured -/// in a block or lambda, which means const int variables or constexpr -/// literals or similar. -CodeGenFunction::ConstantEmission -CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { - ValueDecl *value = refExpr->getDecl(); - - // The value needs to be an enum constant or a constant variable. - ConstantEmissionKind CEK; - if (isa<ParmVarDecl>(value)) { - CEK = CEK_None; - } else if (auto *var = dyn_cast<VarDecl>(value)) { - CEK = checkVarTypeForConstantEmission(var->getType()); - } else if (isa<EnumConstantDecl>(value)) { - CEK = CEK_AsValueOnly; - } else { - CEK = CEK_None; - } - if (CEK == CEK_None) return ConstantEmission(); - - Expr::EvalResult result; - bool resultIsReference; - QualType resultType; - - // It's best to evaluate all the way as an r-value if that's permitted. - if (CEK != CEK_AsReferenceOnly && - refExpr->EvaluateAsRValue(result, getContext())) { - resultIsReference = false; - resultType = refExpr->getType(); - - // Otherwise, try to evaluate as an l-value. - } else if (CEK != CEK_AsValueOnly && - refExpr->EvaluateAsLValue(result, getContext())) { - resultIsReference = true; - resultType = value->getType(); - - // Failure. - } else { - return ConstantEmission(); - } - - // In any case, if the initializer has side-effects, abandon ship. - if (result.HasSideEffects) - return ConstantEmission(); - - // Emit as a constant. - auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), - result.Val, resultType); - - // Make sure we emit a debug reference to the global variable. - // This should probably fire even for - if (isa<VarDecl>(value)) { - if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) - EmitDeclRefExprDbgValue(refExpr, result.Val); - } else { - assert(isa<EnumConstantDecl>(value)); - EmitDeclRefExprDbgValue(refExpr, result.Val); - } - - // If we emitted a reference constant, we need to dereference that. - if (resultIsReference) - return ConstantEmission::forReference(C); - - return ConstantEmission::forValue(C); -} - -static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, - const MemberExpr *ME) { - if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { - // Try to emit static variable member expressions as DREs. - return DeclRefExpr::Create( - CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, - /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), - ME->getType(), ME->getValueKind()); - } - return nullptr; -} - -CodeGenFunction::ConstantEmission -CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { - if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) - return tryEmitAsConstant(DRE); - return ConstantEmission(); -} - -llvm::Value *CodeGenFunction::emitScalarConstant( - const CodeGenFunction::ConstantEmission &Constant, Expr *E) { - assert(Constant && "not a constant"); - if (Constant.isReference()) - return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), - E->getExprLoc()) - .getScalarVal(); - return Constant.getValue(); -} - -llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, - SourceLocation Loc) { - return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), - lvalue.getType(), Loc, lvalue.getBaseInfo(), - lvalue.getTBAAInfo(), lvalue.isNontemporal()); -} - -static bool hasBooleanRepresentation(QualType Ty) { - if (Ty->isBooleanType()) - return true; - - if (const EnumType *ET = Ty->getAs<EnumType>()) - return ET->getDecl()->getIntegerType()->isBooleanType(); - - if (const AtomicType *AT = Ty->getAs<AtomicType>()) - return hasBooleanRepresentation(AT->getValueType()); - - return false; -} - -static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, - llvm::APInt &Min, llvm::APInt &End, - bool StrictEnums, bool IsBool) { - const EnumType *ET = Ty->getAs<EnumType>(); - bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && - ET && !ET->getDecl()->isFixed(); - if (!IsBool && !IsRegularCPlusPlusEnum) - return false; - - if (IsBool) { - Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); - End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); - } else { - const EnumDecl *ED = ET->getDecl(); - llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); - unsigned Bitwidth = LTy->getScalarSizeInBits(); - unsigned NumNegativeBits = ED->getNumNegativeBits(); - unsigned NumPositiveBits = ED->getNumPositiveBits(); - - if (NumNegativeBits) { - unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); - assert(NumBits <= Bitwidth); - End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); - Min = -End; - } else { - assert(NumPositiveBits <= Bitwidth); - End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; - Min = llvm::APInt(Bitwidth, 0); - } - } - return true; -} - -llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { - llvm::APInt Min, End; - if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, - hasBooleanRepresentation(Ty))) - return nullptr; - - llvm::MDBuilder MDHelper(getLLVMContext()); - return MDHelper.createRange(Min, End); -} - -bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, - SourceLocation Loc) { - bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); - bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); - if (!HasBoolCheck && !HasEnumCheck) - return false; - - bool IsBool = hasBooleanRepresentation(Ty) || - NSAPI(CGM.getContext()).isObjCBOOLType(Ty); - bool NeedsBoolCheck = HasBoolCheck && IsBool; - bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); - if (!NeedsBoolCheck && !NeedsEnumCheck) - return false; - - // Single-bit booleans don't need to be checked. Special-case this to avoid - // a bit width mismatch when handling bitfield values. This is handled by - // EmitFromMemory for the non-bitfield case. - if (IsBool && - cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) - return false; - - llvm::APInt Min, End; - if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) - return true; - - auto &Ctx = getLLVMContext(); - SanitizerScope SanScope(this); - llvm::Value *Check; - --End; - if (!Min) { - Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); - } else { - llvm::Value *Upper = - Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); - llvm::Value *Lower = - Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); - Check = Builder.CreateAnd(Upper, Lower); - } - llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), - EmitCheckTypeDescriptor(Ty)}; - SanitizerMask Kind = - NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; - EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, - StaticArgs, EmitCheckValue(Value)); - return true; -} - -llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, - QualType Ty, - SourceLocation Loc, - LValueBaseInfo BaseInfo, - TBAAAccessInfo TBAAInfo, - bool isNontemporal) { - if (!CGM.getCodeGenOpts().PreserveVec3Type) { - // For better performance, handle vector loads differently. - if (Ty->isVectorType()) { - const llvm::Type *EltTy = Addr.getElementType(); - - const auto *VTy = cast<llvm::VectorType>(EltTy); - - // Handle vectors of size 3 like size 4 for better performance. - if (VTy->getNumElements() == 3) { - - // Bitcast to vec4 type. - llvm::VectorType *vec4Ty = - llvm::VectorType::get(VTy->getElementType(), 4); - Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); - // Now load value. - llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); - - // Shuffle vector to get vec3. - V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), - {0, 1, 2}, "extractVec"); - return EmitFromMemory(V, Ty); - } - } - } - - // Atomic operations have to be done on integral types. - LValue AtomicLValue = - LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); - if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { - return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); - } - - llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); - if (isNontemporal) { - llvm::MDNode *Node = llvm::MDNode::get( - Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); - Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); - } - - CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); - - if (EmitScalarRangeCheck(Load, Ty, Loc)) { - // In order to prevent the optimizer from throwing away the check, don't - // attach range metadata to the load. - } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) - if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) - Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); - - return EmitFromMemory(Load, Ty); -} - -llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { - // Bool has a different representation in memory than in registers. - if (hasBooleanRepresentation(Ty)) { - // This should really always be an i1, but sometimes it's already - // an i8, and it's awkward to track those cases down. - if (Value->getType()->isIntegerTy(1)) - return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); - assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && - "wrong value rep of bool"); - } - - return Value; -} - -llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { - // Bool has a different representation in memory than in registers. - if (hasBooleanRepresentation(Ty)) { - assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && - "wrong value rep of bool"); - return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); - } - - return Value; -} - -void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, - bool Volatile, QualType Ty, - LValueBaseInfo BaseInfo, - TBAAAccessInfo TBAAInfo, - bool isInit, bool isNontemporal) { - if (!CGM.getCodeGenOpts().PreserveVec3Type) { - // Handle vectors differently to get better performance. - if (Ty->isVectorType()) { - llvm::Type *SrcTy = Value->getType(); - auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); - // Handle vec3 special. - if (VecTy && VecTy->getNumElements() == 3) { - // Our source is a vec3, do a shuffle vector to make it a vec4. - llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), - Builder.getInt32(2), - llvm::UndefValue::get(Builder.getInt32Ty())}; - llvm::Value *MaskV = llvm::ConstantVector::get(Mask); - Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), - MaskV, "extractVec"); - SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); - } - if (Addr.getElementType() != SrcTy) { - Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); - } - } - } - - Value = EmitToMemory(Value, Ty); - - LValue AtomicLValue = - LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); - if (Ty->isAtomicType() || - (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { - EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); - return; - } - - llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); - if (isNontemporal) { - llvm::MDNode *Node = - llvm::MDNode::get(Store->getContext(), - llvm::ConstantAsMetadata::get(Builder.getInt32(1))); - Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); - } - - CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); -} - -void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, - bool isInit) { - EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), - lvalue.getType(), lvalue.getBaseInfo(), - lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); -} - -/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this -/// method emits the address of the lvalue, then loads the result as an rvalue, -/// returning the rvalue. -RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { - if (LV.isObjCWeak()) { - // load of a __weak object. - Address AddrWeakObj = LV.getAddress(); - return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, - AddrWeakObj)); - } - if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { - // In MRC mode, we do a load+autorelease. - if (!getLangOpts().ObjCAutoRefCount) { - return RValue::get(EmitARCLoadWeak(LV.getAddress())); - } - - // In ARC mode, we load retained and then consume the value. - llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); - Object = EmitObjCConsumeObject(LV.getType(), Object); - return RValue::get(Object); - } - - if (LV.isSimple()) { - assert(!LV.getType()->isFunctionType()); - - // Everything needs a load. - return RValue::get(EmitLoadOfScalar(LV, Loc)); - } - - if (LV.isVectorElt()) { - llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), - LV.isVolatileQualified()); - return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), - "vecext")); - } - - // If this is a reference to a subset of the elements of a vector, either - // shuffle the input or extract/insert them as appropriate. - if (LV.isExtVectorElt()) - return EmitLoadOfExtVectorElementLValue(LV); - - // Global Register variables always invoke intrinsics - if (LV.isGlobalReg()) - return EmitLoadOfGlobalRegLValue(LV); - - assert(LV.isBitField() && "Unknown LValue type!"); - return EmitLoadOfBitfieldLValue(LV, Loc); -} - -RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, - SourceLocation Loc) { - const CGBitFieldInfo &Info = LV.getBitFieldInfo(); - - // Get the output type. - llvm::Type *ResLTy = ConvertType(LV.getType()); - - Address Ptr = LV.getBitFieldAddress(); - llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); - - if (Info.IsSigned) { - assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); - unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; - if (HighBits) - Val = Builder.CreateShl(Val, HighBits, "bf.shl"); - if (Info.Offset + HighBits) - Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); - } else { - if (Info.Offset) - Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); - if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) - Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, - Info.Size), - "bf.clear"); - } - Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); - EmitScalarRangeCheck(Val, LV.getType(), Loc); - return RValue::get(Val); -} - -// If this is a reference to a subset of the elements of a vector, create an -// appropriate shufflevector. -RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { - llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), - LV.isVolatileQualified()); - - const llvm::Constant *Elts = LV.getExtVectorElts(); - - // If the result of the expression is a non-vector type, we must be extracting - // a single element. Just codegen as an extractelement. - const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); - if (!ExprVT) { - unsigned InIdx = getAccessedFieldNo(0, Elts); - llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); - return RValue::get(Builder.CreateExtractElement(Vec, Elt)); - } - - // Always use shuffle vector to try to retain the original program structure - unsigned NumResultElts = ExprVT->getNumElements(); - - SmallVector<llvm::Constant*, 4> Mask; - for (unsigned i = 0; i != NumResultElts; ++i) - Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); - - llvm::Value *MaskV = llvm::ConstantVector::get(Mask); - Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), - MaskV); - return RValue::get(Vec); -} - -/// Generates lvalue for partial ext_vector access. -Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { - Address VectorAddress = LV.getExtVectorAddress(); - const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); - QualType EQT = ExprVT->getElementType(); - llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); - - Address CastToPointerElement = - Builder.CreateElementBitCast(VectorAddress, VectorElementTy, - "conv.ptr.element"); - - const llvm::Constant *Elts = LV.getExtVectorElts(); - unsigned ix = getAccessedFieldNo(0, Elts); - - Address VectorBasePtrPlusIx = - Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, - getContext().getTypeSizeInChars(EQT), - "vector.elt"); - - return VectorBasePtrPlusIx; -} - -/// Load of global gamed gegisters are always calls to intrinsics. -RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { - assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && - "Bad type for register variable"); - llvm::MDNode *RegName = cast<llvm::MDNode>( - cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); - - // We accept integer and pointer types only - llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); - llvm::Type *Ty = OrigTy; - if (OrigTy->isPointerTy()) - Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); - llvm::Type *Types[] = { Ty }; - - llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); - llvm::Value *Call = Builder.CreateCall( - F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); - if (OrigTy->isPointerTy()) - Call = Builder.CreateIntToPtr(Call, OrigTy); - return RValue::get(Call); -} - - -/// EmitStoreThroughLValue - Store the specified rvalue into the specified -/// lvalue, where both are guaranteed to the have the same type, and that type -/// is 'Ty'. -void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, - bool isInit) { - if (!Dst.isSimple()) { - if (Dst.isVectorElt()) { - // Read/modify/write the vector, inserting the new element. - llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), - Dst.isVolatileQualified()); - Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), - Dst.getVectorIdx(), "vecins"); - Builder.CreateStore(Vec, Dst.getVectorAddress(), - Dst.isVolatileQualified()); - return; - } - - // If this is an update of extended vector elements, insert them as - // appropriate. - if (Dst.isExtVectorElt()) - return EmitStoreThroughExtVectorComponentLValue(Src, Dst); - - if (Dst.isGlobalReg()) - return EmitStoreThroughGlobalRegLValue(Src, Dst); - - assert(Dst.isBitField() && "Unknown LValue type"); - return EmitStoreThroughBitfieldLValue(Src, Dst); - } - - // There's special magic for assigning into an ARC-qualified l-value. - if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { - switch (Lifetime) { - case Qualifiers::OCL_None: - llvm_unreachable("present but none"); - - case Qualifiers::OCL_ExplicitNone: - // nothing special - break; - - case Qualifiers::OCL_Strong: - if (isInit) { - Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); - break; - } - EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); - return; - - case Qualifiers::OCL_Weak: - if (isInit) - // Initialize and then skip the primitive store. - EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); - else - EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); - return; - - case Qualifiers::OCL_Autoreleasing: - Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), - Src.getScalarVal())); - // fall into the normal path - break; - } - } - - if (Dst.isObjCWeak() && !Dst.isNonGC()) { - // load of a __weak object. - Address LvalueDst = Dst.getAddress(); - llvm::Value *src = Src.getScalarVal(); - CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); - return; - } - - if (Dst.isObjCStrong() && !Dst.isNonGC()) { - // load of a __strong object. - Address LvalueDst = Dst.getAddress(); - llvm::Value *src = Src.getScalarVal(); - if (Dst.isObjCIvar()) { - assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); - llvm::Type *ResultType = IntPtrTy; - Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); - llvm::Value *RHS = dst.getPointer(); - RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); - llvm::Value *LHS = - Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, - "sub.ptr.lhs.cast"); - llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); - CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, - BytesBetween); - } else if (Dst.isGlobalObjCRef()) { - CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, - Dst.isThreadLocalRef()); - } - else - CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); - return; - } - - assert(Src.isScalar() && "Can't emit an agg store with this method"); - EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); -} - -void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, - llvm::Value **Result) { - const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); - llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); - Address Ptr = Dst.getBitFieldAddress(); - - // Get the source value, truncated to the width of the bit-field. - llvm::Value *SrcVal = Src.getScalarVal(); - - // Cast the source to the storage type and shift it into place. - SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), - /*IsSigned=*/false); - llvm::Value *MaskedVal = SrcVal; - - // See if there are other bits in the bitfield's storage we'll need to load - // and mask together with source before storing. - if (Info.StorageSize != Info.Size) { - assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); - llvm::Value *Val = - Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); - - // Mask the source value as needed. - if (!hasBooleanRepresentation(Dst.getType())) - SrcVal = Builder.CreateAnd(SrcVal, - llvm::APInt::getLowBitsSet(Info.StorageSize, - Info.Size), - "bf.value"); - MaskedVal = SrcVal; - if (Info.Offset) - SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); - - // Mask out the original value. - Val = Builder.CreateAnd(Val, - ~llvm::APInt::getBitsSet(Info.StorageSize, - Info.Offset, - Info.Offset + Info.Size), - "bf.clear"); - - // Or together the unchanged values and the source value. - SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); - } else { - assert(Info.Offset == 0); - } - - // Write the new value back out. - Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); - - // Return the new value of the bit-field, if requested. - if (Result) { - llvm::Value *ResultVal = MaskedVal; - - // Sign extend the value if needed. - if (Info.IsSigned) { - assert(Info.Size <= Info.StorageSize); - unsigned HighBits = Info.StorageSize - Info.Size; - if (HighBits) { - ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); - ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); - } - } - - ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, - "bf.result.cast"); - *Result = EmitFromMemory(ResultVal, Dst.getType()); - } -} - -void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, - LValue Dst) { - // This access turns into a read/modify/write of the vector. Load the input - // value now. - llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), - Dst.isVolatileQualified()); - const llvm::Constant *Elts = Dst.getExtVectorElts(); - - llvm::Value *SrcVal = Src.getScalarVal(); - - if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { - unsigned NumSrcElts = VTy->getNumElements(); - unsigned NumDstElts = Vec->getType()->getVectorNumElements(); - if (NumDstElts == NumSrcElts) { - // Use shuffle vector is the src and destination are the same number of - // elements and restore the vector mask since it is on the side it will be - // stored. - SmallVector<llvm::Constant*, 4> Mask(NumDstElts); - for (unsigned i = 0; i != NumSrcElts; ++i) - Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); - - llvm::Value *MaskV = llvm::ConstantVector::get(Mask); - Vec = Builder.CreateShuffleVector(SrcVal, - llvm::UndefValue::get(Vec->getType()), - MaskV); - } else if (NumDstElts > NumSrcElts) { - // Extended the source vector to the same length and then shuffle it - // into the destination. - // FIXME: since we're shuffling with undef, can we just use the indices - // into that? This could be simpler. - SmallVector<llvm::Constant*, 4> ExtMask; - for (unsigned i = 0; i != NumSrcElts; ++i) - ExtMask.push_back(Builder.getInt32(i)); - ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); - llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); - llvm::Value *ExtSrcVal = - Builder.CreateShuffleVector(SrcVal, - llvm::UndefValue::get(SrcVal->getType()), - ExtMaskV); - // build identity - SmallVector<llvm::Constant*, 4> Mask; - for (unsigned i = 0; i != NumDstElts; ++i) - Mask.push_back(Builder.getInt32(i)); - - // When the vector size is odd and .odd or .hi is used, the last element - // of the Elts constant array will be one past the size of the vector. - // Ignore the last element here, if it is greater than the mask size. - if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) - NumSrcElts--; - - // modify when what gets shuffled in - for (unsigned i = 0; i != NumSrcElts; ++i) - Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); - llvm::Value *MaskV = llvm::ConstantVector::get(Mask); - Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); - } else { - // We should never shorten the vector - llvm_unreachable("unexpected shorten vector length"); - } - } else { - // If the Src is a scalar (not a vector) it must be updating one element. - unsigned InIdx = getAccessedFieldNo(0, Elts); - llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); - Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); - } - - Builder.CreateStore(Vec, Dst.getExtVectorAddress(), - Dst.isVolatileQualified()); -} - -/// Store of global named registers are always calls to intrinsics. -void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { - assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && - "Bad type for register variable"); - llvm::MDNode *RegName = cast<llvm::MDNode>( - cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); - assert(RegName && "Register LValue is not metadata"); - - // We accept integer and pointer types only - llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); - llvm::Type *Ty = OrigTy; - if (OrigTy->isPointerTy()) - Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); - llvm::Type *Types[] = { Ty }; - - llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); - llvm::Value *Value = Src.getScalarVal(); - if (OrigTy->isPointerTy()) - Value = Builder.CreatePtrToInt(Value, Ty); - Builder.CreateCall( - F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); -} - -// setObjCGCLValueClass - sets class of the lvalue for the purpose of -// generating write-barries API. It is currently a global, ivar, -// or neither. -static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, - LValue &LV, - bool IsMemberAccess=false) { - if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) - return; - - if (isa<ObjCIvarRefExpr>(E)) { - QualType ExpTy = E->getType(); - if (IsMemberAccess && ExpTy->isPointerType()) { - // If ivar is a structure pointer, assigning to field of - // this struct follows gcc's behavior and makes it a non-ivar - // writer-barrier conservatively. - ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); - if (ExpTy->isRecordType()) { - LV.setObjCIvar(false); - return; - } - } - LV.setObjCIvar(true); - auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); - LV.setBaseIvarExp(Exp->getBase()); - LV.setObjCArray(E->getType()->isArrayType()); - return; - } - - if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { - if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { - if (VD->hasGlobalStorage()) { - LV.setGlobalObjCRef(true); - LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); - } - } - LV.setObjCArray(E->getType()->isArrayType()); - return; - } - - if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { - setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); - return; - } - - if (const auto *Exp = dyn_cast<ParenExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); - if (LV.isObjCIvar()) { - // If cast is to a structure pointer, follow gcc's behavior and make it - // a non-ivar write-barrier. - QualType ExpTy = E->getType(); - if (ExpTy->isPointerType()) - ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); - if (ExpTy->isRecordType()) - LV.setObjCIvar(false); - } - return; - } - - if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); - return; - } - - if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); - return; - } - - if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); - return; - } - - if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); - return; - } - - if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getBase(), LV); - if (LV.isObjCIvar() && !LV.isObjCArray()) - // Using array syntax to assigning to what an ivar points to is not - // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; - LV.setObjCIvar(false); - else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) - // Using array syntax to assigning to what global points to is not - // same as assigning to the global itself. {id *G;} G[i] = 0; - LV.setGlobalObjCRef(false); - return; - } - - if (const auto *Exp = dyn_cast<MemberExpr>(E)) { - setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); - // We don't know if member is an 'ivar', but this flag is looked at - // only in the context of LV.isObjCIvar(). - LV.setObjCArray(E->getType()->isArrayType()); - return; - } -} - -static llvm::Value * -EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, - llvm::Value *V, llvm::Type *IRType, - StringRef Name = StringRef()) { - unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); - return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); -} - -static LValue EmitThreadPrivateVarDeclLValue( - CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, - llvm::Type *RealVarTy, SourceLocation Loc) { - Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); - Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); - return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); -} - -static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, - const VarDecl *VD, QualType T) { - llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = - OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); - if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) - return Address::invalid(); - assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); - QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); - Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); - return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); -} - -Address -CodeGenFunction::EmitLoadOfReference(LValue RefLVal, - LValueBaseInfo *PointeeBaseInfo, - TBAAAccessInfo *PointeeTBAAInfo) { - llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), - RefLVal.isVolatile()); - CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); - - CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), - PointeeBaseInfo, PointeeTBAAInfo, - /* forPointeeType= */ true); - return Address(Load, Align); -} - -LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { - LValueBaseInfo PointeeBaseInfo; - TBAAAccessInfo PointeeTBAAInfo; - Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, - &PointeeTBAAInfo); - return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), - PointeeBaseInfo, PointeeTBAAInfo); -} - -Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, - const PointerType *PtrTy, - LValueBaseInfo *BaseInfo, - TBAAAccessInfo *TBAAInfo) { - llvm::Value *Addr = Builder.CreateLoad(Ptr); - return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), - BaseInfo, TBAAInfo, - /*forPointeeType=*/true)); -} - -LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, - const PointerType *PtrTy) { - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); - return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); -} - -static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, - const Expr *E, const VarDecl *VD) { - QualType T = E->getType(); - - // If it's thread_local, emit a call to its wrapper function instead. - if (VD->getTLSKind() == VarDecl::TLS_Dynamic && - CGF.CGM.getCXXABI().usesThreadWrapperFunction()) - return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); - // Check if the variable is marked as declare target with link clause in - // device codegen. - if (CGF.getLangOpts().OpenMPIsDevice) { - Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); - if (Addr.isValid()) - return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); - } - - llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); - llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); - V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); - CharUnits Alignment = CGF.getContext().getDeclAlign(VD); - Address Addr(V, Alignment); - // Emit reference to the private copy of the variable if it is an OpenMP - // threadprivate variable. - if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && - VD->hasAttr<OMPThreadPrivateDeclAttr>()) { - return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, - E->getExprLoc()); - } - LValue LV = VD->getType()->isReferenceType() ? - CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), - AlignmentSource::Decl) : - CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); - setObjCGCLValueClass(CGF.getContext(), E, LV); - return LV; -} - -static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, - const FunctionDecl *FD) { - if (FD->hasAttr<WeakRefAttr>()) { - ConstantAddress aliasee = CGM.GetWeakRefReference(FD); - return aliasee.getPointer(); - } - - llvm::Constant *V = CGM.GetAddrOfFunction(FD); - if (!FD->hasPrototype()) { - if (const FunctionProtoType *Proto = - FD->getType()->getAs<FunctionProtoType>()) { - // Ugly case: for a K&R-style definition, the type of the definition - // isn't the same as the type of a use. Correct for this with a - // bitcast. - QualType NoProtoType = - CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); - NoProtoType = CGM.getContext().getPointerType(NoProtoType); - V = llvm::ConstantExpr::getBitCast(V, - CGM.getTypes().ConvertType(NoProtoType)); - } - } - return V; -} - -static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, - const Expr *E, const FunctionDecl *FD) { - llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); - CharUnits Alignment = CGF.getContext().getDeclAlign(FD); - return CGF.MakeAddrLValue(V, E->getType(), Alignment, - AlignmentSource::Decl); -} - -static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, - llvm::Value *ThisValue) { - QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); - LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); - return CGF.EmitLValueForField(LV, FD); -} - -/// Named Registers are named metadata pointing to the register name -/// which will be read from/written to as an argument to the intrinsic -/// @llvm.read/write_register. -/// So far, only the name is being passed down, but other options such as -/// register type, allocation type or even optimization options could be -/// passed down via the metadata node. -static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { - SmallString<64> Name("llvm.named.register."); - AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); - assert(Asm->getLabel().size() < 64-Name.size() && - "Register name too big"); - Name.append(Asm->getLabel()); - llvm::NamedMDNode *M = - CGM.getModule().getOrInsertNamedMetadata(Name); - if (M->getNumOperands() == 0) { - llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), - Asm->getLabel()); - llvm::Metadata *Ops[] = {Str}; - M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); - } - - CharUnits Alignment = CGM.getContext().getDeclAlign(VD); - - llvm::Value *Ptr = - llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); - return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); -} - -LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { - const NamedDecl *ND = E->getDecl(); - QualType T = E->getType(); - - if (const auto *VD = dyn_cast<VarDecl>(ND)) { - // Global Named registers access via intrinsics only - if (VD->getStorageClass() == SC_Register && - VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) - return EmitGlobalNamedRegister(VD, CGM); - - // A DeclRefExpr for a reference initialized by a constant expression can - // appear without being odr-used. Directly emit the constant initializer. - const Expr *Init = VD->getAnyInitializer(VD); - const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); - if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && - VD->isUsableInConstantExpressions(getContext()) && - VD->checkInitIsICE() && - // Do not emit if it is private OpenMP variable. - !(E->refersToEnclosingVariableOrCapture() && - ((CapturedStmtInfo && - (LocalDeclMap.count(VD->getCanonicalDecl()) || - CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || - LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || - (BD && BD->capturesVariable(VD))))) { - llvm::Constant *Val = - ConstantEmitter(*this).emitAbstract(E->getLocation(), - *VD->evaluateValue(), - VD->getType()); - assert(Val && "failed to emit reference constant expression"); - // FIXME: Eventually we will want to emit vector element references. - - // Should we be using the alignment of the constant pointer we emitted? - CharUnits Alignment = getNaturalTypeAlignment(E->getType(), - /* BaseInfo= */ nullptr, - /* TBAAInfo= */ nullptr, - /* forPointeeType= */ true); - return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); - } - - // Check for captured variables. - if (E->refersToEnclosingVariableOrCapture()) { - VD = VD->getCanonicalDecl(); - if (auto *FD = LambdaCaptureFields.lookup(VD)) - return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); - else if (CapturedStmtInfo) { - auto I = LocalDeclMap.find(VD); - if (I != LocalDeclMap.end()) { - if (VD->getType()->isReferenceType()) - return EmitLoadOfReferenceLValue(I->second, VD->getType(), - AlignmentSource::Decl); - return MakeAddrLValue(I->second, T); - } - LValue CapLVal = - EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), - CapturedStmtInfo->getContextValue()); - return MakeAddrLValue( - Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), - CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), - CapLVal.getTBAAInfo()); - } - - assert(isa<BlockDecl>(CurCodeDecl)); - Address addr = GetAddrOfBlockDecl(VD); - return MakeAddrLValue(addr, T, AlignmentSource::Decl); - } - } - - // FIXME: We should be able to assert this for FunctionDecls as well! - // FIXME: We should be able to assert this for all DeclRefExprs, not just - // those with a valid source location. - assert((ND->isUsed(false) || !isa<VarDecl>(ND) || - !E->getLocation().isValid()) && - "Should not use decl without marking it used!"); - - if (ND->hasAttr<WeakRefAttr>()) { - const auto *VD = cast<ValueDecl>(ND); - ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); - return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); - } - - if (const auto *VD = dyn_cast<VarDecl>(ND)) { - // Check if this is a global variable. - if (VD->hasLinkage() || VD->isStaticDataMember()) - return EmitGlobalVarDeclLValue(*this, E, VD); - - Address addr = Address::invalid(); - - // The variable should generally be present in the local decl map. - auto iter = LocalDeclMap.find(VD); - if (iter != LocalDeclMap.end()) { - addr = iter->second; - - // Otherwise, it might be static local we haven't emitted yet for - // some reason; most likely, because it's in an outer function. - } else if (VD->isStaticLocal()) { - addr = Address(CGM.getOrCreateStaticVarDecl( - *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), - getContext().getDeclAlign(VD)); - - // No other cases for now. - } else { - llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); - } - - - // Check for OpenMP threadprivate variables. - if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && - VD->hasAttr<OMPThreadPrivateDeclAttr>()) { - return EmitThreadPrivateVarDeclLValue( - *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), - E->getExprLoc()); - } - - // Drill into block byref variables. - bool isBlockByref = VD->isEscapingByref(); - if (isBlockByref) { - addr = emitBlockByrefAddress(addr, VD); - } - - // Drill into reference types. - LValue LV = VD->getType()->isReferenceType() ? - EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : - MakeAddrLValue(addr, T, AlignmentSource::Decl); - - bool isLocalStorage = VD->hasLocalStorage(); - - bool NonGCable = isLocalStorage && - !VD->getType()->isReferenceType() && - !isBlockByref; - if (NonGCable) { - LV.getQuals().removeObjCGCAttr(); - LV.setNonGC(true); - } - - bool isImpreciseLifetime = - (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); - if (isImpreciseLifetime) - LV.setARCPreciseLifetime(ARCImpreciseLifetime); - setObjCGCLValueClass(getContext(), E, LV); - return LV; - } - - if (const auto *FD = dyn_cast<FunctionDecl>(ND)) - return EmitFunctionDeclLValue(*this, E, FD); - - // FIXME: While we're emitting a binding from an enclosing scope, all other - // DeclRefExprs we see should be implicitly treated as if they also refer to - // an enclosing scope. - if (const auto *BD = dyn_cast<BindingDecl>(ND)) - return EmitLValue(BD->getBinding()); - - llvm_unreachable("Unhandled DeclRefExpr"); -} - -LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { - // __extension__ doesn't affect lvalue-ness. - if (E->getOpcode() == UO_Extension) - return EmitLValue(E->getSubExpr()); - - QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); - switch (E->getOpcode()) { - default: llvm_unreachable("Unknown unary operator lvalue!"); - case UO_Deref: { - QualType T = E->getSubExpr()->getType()->getPointeeType(); - assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); - - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, - &TBAAInfo); - LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); - LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); - - // We should not generate __weak write barrier on indirect reference - // of a pointer to object; as in void foo (__weak id *param); *param = 0; - // But, we continue to generate __strong write barrier on indirect write - // into a pointer to object. - if (getLangOpts().ObjC && - getLangOpts().getGC() != LangOptions::NonGC && - LV.isObjCWeak()) - LV.setNonGC(!E->isOBJCGCCandidate(getContext())); - return LV; - } - case UO_Real: - case UO_Imag: { - LValue LV = EmitLValue(E->getSubExpr()); - assert(LV.isSimple() && "real/imag on non-ordinary l-value"); - - // __real is valid on scalars. This is a faster way of testing that. - // __imag can only produce an rvalue on scalars. - if (E->getOpcode() == UO_Real && - !LV.getAddress().getElementType()->isStructTy()) { - assert(E->getSubExpr()->getType()->isArithmeticType()); - return LV; - } - - QualType T = ExprTy->castAs<ComplexType>()->getElementType(); - - Address Component = - (E->getOpcode() == UO_Real - ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) - : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); - LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), - CGM.getTBAAInfoForSubobject(LV, T)); - ElemLV.getQuals().addQualifiers(LV.getQuals()); - return ElemLV; - } - case UO_PreInc: - case UO_PreDec: { - LValue LV = EmitLValue(E->getSubExpr()); - bool isInc = E->getOpcode() == UO_PreInc; - - if (E->getType()->isAnyComplexType()) - EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); - else - EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); - return LV; - } - } -} - -LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { - return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), - E->getType(), AlignmentSource::Decl); -} - -LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { - return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), - E->getType(), AlignmentSource::Decl); -} - -LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { - auto SL = E->getFunctionName(); - assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); - StringRef FnName = CurFn->getName(); - if (FnName.startswith("\01")) - FnName = FnName.substr(1); - StringRef NameItems[] = { - PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; - std::string GVName = llvm::join(NameItems, NameItems + 2, "."); - if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { - std::string Name = SL->getString(); - if (!Name.empty()) { - unsigned Discriminator = - CGM.getCXXABI().getMangleContext().getBlockId(BD, true); - if (Discriminator) - Name += "_" + Twine(Discriminator + 1).str(); - auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); - return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); - } else { - auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); - return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); - } - } - auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); - return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); -} - -/// Emit a type description suitable for use by a runtime sanitizer library. The -/// format of a type descriptor is -/// -/// \code -/// { i16 TypeKind, i16 TypeInfo } -/// \endcode -/// -/// followed by an array of i8 containing the type name. TypeKind is 0 for an -/// integer, 1 for a floating point value, and -1 for anything else. -llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { - // Only emit each type's descriptor once. - if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) - return C; - - uint16_t TypeKind = -1; - uint16_t TypeInfo = 0; - - if (T->isIntegerType()) { - TypeKind = 0; - TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | - (T->isSignedIntegerType() ? 1 : 0); - } else if (T->isFloatingType()) { - TypeKind = 1; - TypeInfo = getContext().getTypeSize(T); - } - - // Format the type name as if for a diagnostic, including quotes and - // optionally an 'aka'. - SmallString<32> Buffer; - CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, - (intptr_t)T.getAsOpaquePtr(), - StringRef(), StringRef(), None, Buffer, - None); - - llvm::Constant *Components[] = { - Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), - llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) - }; - llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); - - auto *GV = new llvm::GlobalVariable( - CGM.getModule(), Descriptor->getType(), - /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); - GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); - CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); - - // Remember the descriptor for this type. - CGM.setTypeDescriptorInMap(T, GV); - - return GV; -} - -llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { - llvm::Type *TargetTy = IntPtrTy; - - if (V->getType() == TargetTy) - return V; - - // Floating-point types which fit into intptr_t are bitcast to integers - // and then passed directly (after zero-extension, if necessary). - if (V->getType()->isFloatingPointTy()) { - unsigned Bits = V->getType()->getPrimitiveSizeInBits(); - if (Bits <= TargetTy->getIntegerBitWidth()) - V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), - Bits)); - } - - // Integers which fit in intptr_t are zero-extended and passed directly. - if (V->getType()->isIntegerTy() && - V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) - return Builder.CreateZExt(V, TargetTy); - - // Pointers are passed directly, everything else is passed by address. - if (!V->getType()->isPointerTy()) { - Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); - Builder.CreateStore(V, Ptr); - V = Ptr.getPointer(); - } - return Builder.CreatePtrToInt(V, TargetTy); -} - -/// Emit a representation of a SourceLocation for passing to a handler -/// in a sanitizer runtime library. The format for this data is: -/// \code -/// struct SourceLocation { -/// const char *Filename; -/// int32_t Line, Column; -/// }; -/// \endcode -/// For an invalid SourceLocation, the Filename pointer is null. -llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { - llvm::Constant *Filename; - int Line, Column; - - PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); - if (PLoc.isValid()) { - StringRef FilenameString = PLoc.getFilename(); - - int PathComponentsToStrip = - CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; - if (PathComponentsToStrip < 0) { - assert(PathComponentsToStrip != INT_MIN); - int PathComponentsToKeep = -PathComponentsToStrip; - auto I = llvm::sys::path::rbegin(FilenameString); - auto E = llvm::sys::path::rend(FilenameString); - while (I != E && --PathComponentsToKeep) - ++I; - - FilenameString = FilenameString.substr(I - E); - } else if (PathComponentsToStrip > 0) { - auto I = llvm::sys::path::begin(FilenameString); - auto E = llvm::sys::path::end(FilenameString); - while (I != E && PathComponentsToStrip--) - ++I; - - if (I != E) - FilenameString = - FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); - else - FilenameString = llvm::sys::path::filename(FilenameString); - } - - auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); - CGM.getSanitizerMetadata()->disableSanitizerForGlobal( - cast<llvm::GlobalVariable>(FilenameGV.getPointer())); - Filename = FilenameGV.getPointer(); - Line = PLoc.getLine(); - Column = PLoc.getColumn(); - } else { - Filename = llvm::Constant::getNullValue(Int8PtrTy); - Line = Column = 0; - } - - llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), - Builder.getInt32(Column)}; - - return llvm::ConstantStruct::getAnon(Data); -} - -namespace { -/// Specify under what conditions this check can be recovered -enum class CheckRecoverableKind { - /// Always terminate program execution if this check fails. - Unrecoverable, - /// Check supports recovering, runtime has both fatal (noreturn) and - /// non-fatal handlers for this check. - Recoverable, - /// Runtime conditionally aborts, always need to support recovery. - AlwaysRecoverable -}; -} - -static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { - assert(llvm::countPopulation(Kind) == 1); - switch (Kind) { - case SanitizerKind::Vptr: - return CheckRecoverableKind::AlwaysRecoverable; - case SanitizerKind::Return: - case SanitizerKind::Unreachable: - return CheckRecoverableKind::Unrecoverable; - default: - return CheckRecoverableKind::Recoverable; - } -} - -namespace { -struct SanitizerHandlerInfo { - char const *const Name; - unsigned Version; -}; -} - -const SanitizerHandlerInfo SanitizerHandlers[] = { -#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, - LIST_SANITIZER_CHECKS -#undef SANITIZER_CHECK -}; - -static void emitCheckHandlerCall(CodeGenFunction &CGF, - llvm::FunctionType *FnType, - ArrayRef<llvm::Value *> FnArgs, - SanitizerHandler CheckHandler, - CheckRecoverableKind RecoverKind, bool IsFatal, - llvm::BasicBlock *ContBB) { - assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); - Optional<ApplyDebugLocation> DL; - if (!CGF.Builder.getCurrentDebugLocation()) { - // Ensure that the call has at least an artificial debug location. - DL.emplace(CGF, SourceLocation()); - } - bool NeedsAbortSuffix = - IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; - bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; - const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; - const StringRef CheckName = CheckInfo.Name; - std::string FnName = "__ubsan_handle_" + CheckName.str(); - if (CheckInfo.Version && !MinimalRuntime) - FnName += "_v" + llvm::utostr(CheckInfo.Version); - if (MinimalRuntime) - FnName += "_minimal"; - if (NeedsAbortSuffix) - FnName += "_abort"; - bool MayReturn = - !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; - - llvm::AttrBuilder B; - if (!MayReturn) { - B.addAttribute(llvm::Attribute::NoReturn) - .addAttribute(llvm::Attribute::NoUnwind); - } - B.addAttribute(llvm::Attribute::UWTable); - - llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( - FnType, FnName, - llvm::AttributeList::get(CGF.getLLVMContext(), - llvm::AttributeList::FunctionIndex, B), - /*Local=*/true); - llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); - if (!MayReturn) { - HandlerCall->setDoesNotReturn(); - CGF.Builder.CreateUnreachable(); - } else { - CGF.Builder.CreateBr(ContBB); - } -} - -void CodeGenFunction::EmitCheck( - ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, - SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, - ArrayRef<llvm::Value *> DynamicArgs) { - assert(IsSanitizerScope); - assert(Checked.size() > 0); - assert(CheckHandler >= 0 && - size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); - const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; - - llvm::Value *FatalCond = nullptr; - llvm::Value *RecoverableCond = nullptr; - llvm::Value *TrapCond = nullptr; - for (int i = 0, n = Checked.size(); i < n; ++i) { - llvm::Value *Check = Checked[i].first; - // -fsanitize-trap= overrides -fsanitize-recover=. - llvm::Value *&Cond = - CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) - ? TrapCond - : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) - ? RecoverableCond - : FatalCond; - Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; - } - - if (TrapCond) - EmitTrapCheck(TrapCond); - if (!FatalCond && !RecoverableCond) - return; - - llvm::Value *JointCond; - if (FatalCond && RecoverableCond) - JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); - else - JointCond = FatalCond ? FatalCond : RecoverableCond; - assert(JointCond); - - CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); - assert(SanOpts.has(Checked[0].second)); -#ifndef NDEBUG - for (int i = 1, n = Checked.size(); i < n; ++i) { - assert(RecoverKind == getRecoverableKind(Checked[i].second) && - "All recoverable kinds in a single check must be same!"); - assert(SanOpts.has(Checked[i].second)); - } -#endif - - llvm::BasicBlock *Cont = createBasicBlock("cont"); - llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); - llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); - // Give hint that we very much don't expect to execute the handler - // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp - llvm::MDBuilder MDHelper(getLLVMContext()); - llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); - Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); - EmitBlock(Handlers); - - // Handler functions take an i8* pointing to the (handler-specific) static - // information block, followed by a sequence of intptr_t arguments - // representing operand values. - SmallVector<llvm::Value *, 4> Args; - SmallVector<llvm::Type *, 4> ArgTypes; - if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { - Args.reserve(DynamicArgs.size() + 1); - ArgTypes.reserve(DynamicArgs.size() + 1); - - // Emit handler arguments and create handler function type. - if (!StaticArgs.empty()) { - llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); - auto *InfoPtr = - new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, - llvm::GlobalVariable::PrivateLinkage, Info); - InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); - CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); - Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); - ArgTypes.push_back(Int8PtrTy); - } - - for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { - Args.push_back(EmitCheckValue(DynamicArgs[i])); - ArgTypes.push_back(IntPtrTy); - } - } - - llvm::FunctionType *FnType = - llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); - - if (!FatalCond || !RecoverableCond) { - // Simple case: we need to generate a single handler call, either - // fatal, or non-fatal. - emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, - (FatalCond != nullptr), Cont); - } else { - // Emit two handler calls: first one for set of unrecoverable checks, - // another one for recoverable. - llvm::BasicBlock *NonFatalHandlerBB = - createBasicBlock("non_fatal." + CheckName); - llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); - Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); - EmitBlock(FatalHandlerBB); - emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, - NonFatalHandlerBB); - EmitBlock(NonFatalHandlerBB); - emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, - Cont); - } - - EmitBlock(Cont); -} - -void CodeGenFunction::EmitCfiSlowPathCheck( - SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, - llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { - llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); - - llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); - llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); - - llvm::MDBuilder MDHelper(getLLVMContext()); - llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); - BI->setMetadata(llvm::LLVMContext::MD_prof, Node); - - EmitBlock(CheckBB); - - bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); - - llvm::CallInst *CheckCall; - llvm::Constant *SlowPathFn; - if (WithDiag) { - llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); - auto *InfoPtr = - new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, - llvm::GlobalVariable::PrivateLinkage, Info); - InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); - CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); - - SlowPathFn = CGM.getModule().getOrInsertFunction( - "__cfi_slowpath_diag", - llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, - false)); - CheckCall = Builder.CreateCall( - SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); - } else { - SlowPathFn = CGM.getModule().getOrInsertFunction( - "__cfi_slowpath", - llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); - CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); - } - - CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); - CheckCall->setDoesNotThrow(); - - EmitBlock(Cont); -} - -// Emit a stub for __cfi_check function so that the linker knows about this -// symbol in LTO mode. -void CodeGenFunction::EmitCfiCheckStub() { - llvm::Module *M = &CGM.getModule(); - auto &Ctx = M->getContext(); - llvm::Function *F = llvm::Function::Create( - llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), - llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); - CGM.setDSOLocal(F); - llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); - // FIXME: consider emitting an intrinsic call like - // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) - // which can be lowered in CrossDSOCFI pass to the actual contents of - // __cfi_check. This would allow inlining of __cfi_check calls. - llvm::CallInst::Create( - llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); - llvm::ReturnInst::Create(Ctx, nullptr, BB); -} - -// This function is basically a switch over the CFI failure kind, which is -// extracted from CFICheckFailData (1st function argument). Each case is either -// llvm.trap or a call to one of the two runtime handlers, based on -// -fsanitize-trap and -fsanitize-recover settings. Default case (invalid -// failure kind) traps, but this should really never happen. CFICheckFailData -// can be nullptr if the calling module has -fsanitize-trap behavior for this -// check kind; in this case __cfi_check_fail traps as well. -void CodeGenFunction::EmitCfiCheckFail() { - SanitizerScope SanScope(this); - FunctionArgList Args; - ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, - ImplicitParamDecl::Other); - ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, - ImplicitParamDecl::Other); - Args.push_back(&ArgData); - Args.push_back(&ArgAddr); - - const CGFunctionInfo &FI = - CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); - - llvm::Function *F = llvm::Function::Create( - llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), - llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); - F->setVisibility(llvm::GlobalValue::HiddenVisibility); - - StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, - SourceLocation()); - - // This function should not be affected by blacklist. This function does - // not have a source location, but "src:*" would still apply. Revert any - // changes to SanOpts made in StartFunction. - SanOpts = CGM.getLangOpts().Sanitize; - - llvm::Value *Data = - EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, - CGM.getContext().VoidPtrTy, ArgData.getLocation()); - llvm::Value *Addr = - EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, - CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); - - // Data == nullptr means the calling module has trap behaviour for this check. - llvm::Value *DataIsNotNullPtr = - Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); - EmitTrapCheck(DataIsNotNullPtr); - - llvm::StructType *SourceLocationTy = - llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); - llvm::StructType *CfiCheckFailDataTy = - llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); - - llvm::Value *V = Builder.CreateConstGEP2_32( - CfiCheckFailDataTy, - Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, - 0); - Address CheckKindAddr(V, getIntAlign()); - llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); - - llvm::Value *AllVtables = llvm::MetadataAsValue::get( - CGM.getLLVMContext(), - llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); - llvm::Value *ValidVtable = Builder.CreateZExt( - Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), - {Addr, AllVtables}), - IntPtrTy); - - const std::pair<int, SanitizerMask> CheckKinds[] = { - {CFITCK_VCall, SanitizerKind::CFIVCall}, - {CFITCK_NVCall, SanitizerKind::CFINVCall}, - {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, - {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, - {CFITCK_ICall, SanitizerKind::CFIICall}}; - - SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; - for (auto CheckKindMaskPair : CheckKinds) { - int Kind = CheckKindMaskPair.first; - SanitizerMask Mask = CheckKindMaskPair.second; - llvm::Value *Cond = - Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); - if (CGM.getLangOpts().Sanitize.has(Mask)) - EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, - {Data, Addr, ValidVtable}); - else - EmitTrapCheck(Cond); - } - - FinishFunction(); - // The only reference to this function will be created during LTO link. - // Make sure it survives until then. - CGM.addUsedGlobal(F); -} - -void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { - if (SanOpts.has(SanitizerKind::Unreachable)) { - SanitizerScope SanScope(this); - EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), - SanitizerKind::Unreachable), - SanitizerHandler::BuiltinUnreachable, - EmitCheckSourceLocation(Loc), None); - } - Builder.CreateUnreachable(); -} - -void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { - llvm::BasicBlock *Cont = createBasicBlock("cont"); - - // If we're optimizing, collapse all calls to trap down to just one per - // function to save on code size. - if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { - TrapBB = createBasicBlock("trap"); - Builder.CreateCondBr(Checked, Cont, TrapBB); - EmitBlock(TrapBB); - llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); - TrapCall->setDoesNotReturn(); - TrapCall->setDoesNotThrow(); - Builder.CreateUnreachable(); - } else { - Builder.CreateCondBr(Checked, Cont, TrapBB); - } - - EmitBlock(Cont); -} - -llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { - llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); - - if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { - auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", - CGM.getCodeGenOpts().TrapFuncName); - TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); - } - - return TrapCall; -} - -Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, - LValueBaseInfo *BaseInfo, - TBAAAccessInfo *TBAAInfo) { - assert(E->getType()->isArrayType() && - "Array to pointer decay must have array source type!"); - - // Expressions of array type can't be bitfields or vector elements. - LValue LV = EmitLValue(E); - Address Addr = LV.getAddress(); - - // If the array type was an incomplete type, we need to make sure - // the decay ends up being the right type. - llvm::Type *NewTy = ConvertType(E->getType()); - Addr = Builder.CreateElementBitCast(Addr, NewTy); - - // Note that VLA pointers are always decayed, so we don't need to do - // anything here. - if (!E->getType()->isVariableArrayType()) { - assert(isa<llvm::ArrayType>(Addr.getElementType()) && - "Expected pointer to array"); - Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); - } - - // The result of this decay conversion points to an array element within the - // base lvalue. However, since TBAA currently does not support representing - // accesses to elements of member arrays, we conservatively represent accesses - // to the pointee object as if it had no any base lvalue specified. - // TODO: Support TBAA for member arrays. - QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); - if (BaseInfo) *BaseInfo = LV.getBaseInfo(); - if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); - - return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); -} - -/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an -/// array to pointer, return the array subexpression. -static const Expr *isSimpleArrayDecayOperand(const Expr *E) { - // If this isn't just an array->pointer decay, bail out. - const auto *CE = dyn_cast<CastExpr>(E); - if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) - return nullptr; - - // If this is a decay from variable width array, bail out. - const Expr *SubExpr = CE->getSubExpr(); - if (SubExpr->getType()->isVariableArrayType()) - return nullptr; - - return SubExpr; -} - -static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, - llvm::Value *ptr, - ArrayRef<llvm::Value*> indices, - bool inbounds, - bool signedIndices, - SourceLocation loc, - const llvm::Twine &name = "arrayidx") { - if (inbounds) { - return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, - CodeGenFunction::NotSubtraction, loc, - name); - } else { - return CGF.Builder.CreateGEP(ptr, indices, name); - } -} - -static CharUnits getArrayElementAlign(CharUnits arrayAlign, - llvm::Value *idx, - CharUnits eltSize) { - // If we have a constant index, we can use the exact offset of the - // element we're accessing. - if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { - CharUnits offset = constantIdx->getZExtValue() * eltSize; - return arrayAlign.alignmentAtOffset(offset); - - // Otherwise, use the worst-case alignment for any element. - } else { - return arrayAlign.alignmentOfArrayElement(eltSize); - } -} - -static QualType getFixedSizeElementType(const ASTContext &ctx, - const VariableArrayType *vla) { - QualType eltType; - do { - eltType = vla->getElementType(); - } while ((vla = ctx.getAsVariableArrayType(eltType))); - return eltType; -} - -static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, - ArrayRef<llvm::Value *> indices, - QualType eltType, bool inbounds, - bool signedIndices, SourceLocation loc, - const llvm::Twine &name = "arrayidx") { - // All the indices except that last must be zero. -#ifndef NDEBUG - for (auto idx : indices.drop_back()) - assert(isa<llvm::ConstantInt>(idx) && - cast<llvm::ConstantInt>(idx)->isZero()); -#endif - - // Determine the element size of the statically-sized base. This is - // the thing that the indices are expressed in terms of. - if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { - eltType = getFixedSizeElementType(CGF.getContext(), vla); - } - - // We can use that to compute the best alignment of the element. - CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); - CharUnits eltAlign = - getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); - - llvm::Value *eltPtr = emitArraySubscriptGEP( - CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); - return Address(eltPtr, eltAlign); -} - -LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, - bool Accessed) { - // The index must always be an integer, which is not an aggregate. Emit it - // in lexical order (this complexity is, sadly, required by C++17). - llvm::Value *IdxPre = - (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; - bool SignedIndices = false; - auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { - auto *Idx = IdxPre; - if (E->getLHS() != E->getIdx()) { - assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); - Idx = EmitScalarExpr(E->getIdx()); - } - - QualType IdxTy = E->getIdx()->getType(); - bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); - SignedIndices |= IdxSigned; - - if (SanOpts.has(SanitizerKind::ArrayBounds)) - EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); - - // Extend or truncate the index type to 32 or 64-bits. - if (Promote && Idx->getType() != IntPtrTy) - Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); - - return Idx; - }; - IdxPre = nullptr; - - // If the base is a vector type, then we are forming a vector element lvalue - // with this subscript. - if (E->getBase()->getType()->isVectorType() && - !isa<ExtVectorElementExpr>(E->getBase())) { - // Emit the vector as an lvalue to get its address. - LValue LHS = EmitLValue(E->getBase()); - auto *Idx = EmitIdxAfterBase(/*Promote*/false); - assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); - return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), - LHS.getBaseInfo(), TBAAAccessInfo()); - } - - // All the other cases basically behave like simple offsetting. - - // Handle the extvector case we ignored above. - if (isa<ExtVectorElementExpr>(E->getBase())) { - LValue LV = EmitLValue(E->getBase()); - auto *Idx = EmitIdxAfterBase(/*Promote*/true); - Address Addr = EmitExtVectorElementLValue(LV); - - QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); - Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, - SignedIndices, E->getExprLoc()); - return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), - CGM.getTBAAInfoForSubobject(LV, EltType)); - } - - LValueBaseInfo EltBaseInfo; - TBAAAccessInfo EltTBAAInfo; - Address Addr = Address::invalid(); - if (const VariableArrayType *vla = - getContext().getAsVariableArrayType(E->getType())) { - // The base must be a pointer, which is not an aggregate. Emit - // it. It needs to be emitted first in case it's what captures - // the VLA bounds. - Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); - auto *Idx = EmitIdxAfterBase(/*Promote*/true); - - // The element count here is the total number of non-VLA elements. - llvm::Value *numElements = getVLASize(vla).NumElts; - - // Effectively, the multiply by the VLA size is part of the GEP. - // GEP indexes are signed, and scaling an index isn't permitted to - // signed-overflow, so we use the same semantics for our explicit - // multiply. We suppress this if overflow is not undefined behavior. - if (getLangOpts().isSignedOverflowDefined()) { - Idx = Builder.CreateMul(Idx, numElements); - } else { - Idx = Builder.CreateNSWMul(Idx, numElements); - } - - Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), - !getLangOpts().isSignedOverflowDefined(), - SignedIndices, E->getExprLoc()); - - } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ - // Indexing over an interface, as in "NSString *P; P[4];" - - // Emit the base pointer. - Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); - auto *Idx = EmitIdxAfterBase(/*Promote*/true); - - CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); - llvm::Value *InterfaceSizeVal = - llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); - - llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); - - // We don't necessarily build correct LLVM struct types for ObjC - // interfaces, so we can't rely on GEP to do this scaling - // correctly, so we need to cast to i8*. FIXME: is this actually - // true? A lot of other things in the fragile ABI would break... - llvm::Type *OrigBaseTy = Addr.getType(); - Addr = Builder.CreateElementBitCast(Addr, Int8Ty); - - // Do the GEP. - CharUnits EltAlign = - getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); - llvm::Value *EltPtr = - emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, - SignedIndices, E->getExprLoc()); - Addr = Address(EltPtr, EltAlign); - - // Cast back. - Addr = Builder.CreateBitCast(Addr, OrigBaseTy); - } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { - // If this is A[i] where A is an array, the frontend will have decayed the - // base to be a ArrayToPointerDecay implicit cast. While correct, it is - // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a - // "gep x, i" here. Emit one "gep A, 0, i". - assert(Array->getType()->isArrayType() && - "Array to pointer decay must have array source type!"); - LValue ArrayLV; - // For simple multidimensional array indexing, set the 'accessed' flag for - // better bounds-checking of the base expression. - if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) - ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); - else - ArrayLV = EmitLValue(Array); - auto *Idx = EmitIdxAfterBase(/*Promote*/true); - - // Propagate the alignment from the array itself to the result. - Addr = emitArraySubscriptGEP( - *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, - E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, - E->getExprLoc()); - EltBaseInfo = ArrayLV.getBaseInfo(); - EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); - } else { - // The base must be a pointer; emit it with an estimate of its alignment. - Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); - auto *Idx = EmitIdxAfterBase(/*Promote*/true); - Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), - !getLangOpts().isSignedOverflowDefined(), - SignedIndices, E->getExprLoc()); - } - - LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); - - if (getLangOpts().ObjC && - getLangOpts().getGC() != LangOptions::NonGC) { - LV.setNonGC(!E->isOBJCGCCandidate(getContext())); - setObjCGCLValueClass(getContext(), E, LV); - } - return LV; -} - -static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, - LValueBaseInfo &BaseInfo, - TBAAAccessInfo &TBAAInfo, - QualType BaseTy, QualType ElTy, - bool IsLowerBound) { - LValue BaseLVal; - if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { - BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); - if (BaseTy->isArrayType()) { - Address Addr = BaseLVal.getAddress(); - BaseInfo = BaseLVal.getBaseInfo(); - - // If the array type was an incomplete type, we need to make sure - // the decay ends up being the right type. - llvm::Type *NewTy = CGF.ConvertType(BaseTy); - Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); - - // Note that VLA pointers are always decayed, so we don't need to do - // anything here. - if (!BaseTy->isVariableArrayType()) { - assert(isa<llvm::ArrayType>(Addr.getElementType()) && - "Expected pointer to array"); - Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), - "arraydecay"); - } - - return CGF.Builder.CreateElementBitCast(Addr, - CGF.ConvertTypeForMem(ElTy)); - } - LValueBaseInfo TypeBaseInfo; - TBAAAccessInfo TypeTBAAInfo; - CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, - &TypeTBAAInfo); - BaseInfo.mergeForCast(TypeBaseInfo); - TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); - return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); - } - return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); -} - -LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, - bool IsLowerBound) { - QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); - QualType ResultExprTy; - if (auto *AT = getContext().getAsArrayType(BaseTy)) - ResultExprTy = AT->getElementType(); - else - ResultExprTy = BaseTy->getPointeeType(); - llvm::Value *Idx = nullptr; - if (IsLowerBound || E->getColonLoc().isInvalid()) { - // Requesting lower bound or upper bound, but without provided length and - // without ':' symbol for the default length -> length = 1. - // Idx = LowerBound ?: 0; - if (auto *LowerBound = E->getLowerBound()) { - Idx = Builder.CreateIntCast( - EmitScalarExpr(LowerBound), IntPtrTy, - LowerBound->getType()->hasSignedIntegerRepresentation()); - } else - Idx = llvm::ConstantInt::getNullValue(IntPtrTy); - } else { - // Try to emit length or lower bound as constant. If this is possible, 1 - // is subtracted from constant length or lower bound. Otherwise, emit LLVM - // IR (LB + Len) - 1. - auto &C = CGM.getContext(); - auto *Length = E->getLength(); - llvm::APSInt ConstLength; - if (Length) { - // Idx = LowerBound + Length - 1; - if (Length->isIntegerConstantExpr(ConstLength, C)) { - ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); - Length = nullptr; - } - auto *LowerBound = E->getLowerBound(); - llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); - if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { - ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); - LowerBound = nullptr; - } - if (!Length) - --ConstLength; - else if (!LowerBound) - --ConstLowerBound; - - if (Length || LowerBound) { - auto *LowerBoundVal = - LowerBound - ? Builder.CreateIntCast( - EmitScalarExpr(LowerBound), IntPtrTy, - LowerBound->getType()->hasSignedIntegerRepresentation()) - : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); - auto *LengthVal = - Length - ? Builder.CreateIntCast( - EmitScalarExpr(Length), IntPtrTy, - Length->getType()->hasSignedIntegerRepresentation()) - : llvm::ConstantInt::get(IntPtrTy, ConstLength); - Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", - /*HasNUW=*/false, - !getLangOpts().isSignedOverflowDefined()); - if (Length && LowerBound) { - Idx = Builder.CreateSub( - Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", - /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); - } - } else - Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); - } else { - // Idx = ArraySize - 1; - QualType ArrayTy = BaseTy->isPointerType() - ? E->getBase()->IgnoreParenImpCasts()->getType() - : BaseTy; - if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { - Length = VAT->getSizeExpr(); - if (Length->isIntegerConstantExpr(ConstLength, C)) - Length = nullptr; - } else { - auto *CAT = C.getAsConstantArrayType(ArrayTy); - ConstLength = CAT->getSize(); - } - if (Length) { - auto *LengthVal = Builder.CreateIntCast( - EmitScalarExpr(Length), IntPtrTy, - Length->getType()->hasSignedIntegerRepresentation()); - Idx = Builder.CreateSub( - LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", - /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); - } else { - ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); - --ConstLength; - Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); - } - } - } - assert(Idx); - - Address EltPtr = Address::invalid(); - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { - // The base must be a pointer, which is not an aggregate. Emit - // it. It needs to be emitted first in case it's what captures - // the VLA bounds. - Address Base = - emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, - BaseTy, VLA->getElementType(), IsLowerBound); - // The element count here is the total number of non-VLA elements. - llvm::Value *NumElements = getVLASize(VLA).NumElts; - - // Effectively, the multiply by the VLA size is part of the GEP. - // GEP indexes are signed, and scaling an index isn't permitted to - // signed-overflow, so we use the same semantics for our explicit - // multiply. We suppress this if overflow is not undefined behavior. - if (getLangOpts().isSignedOverflowDefined()) - Idx = Builder.CreateMul(Idx, NumElements); - else - Idx = Builder.CreateNSWMul(Idx, NumElements); - EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), - !getLangOpts().isSignedOverflowDefined(), - /*SignedIndices=*/false, E->getExprLoc()); - } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { - // If this is A[i] where A is an array, the frontend will have decayed the - // base to be a ArrayToPointerDecay implicit cast. While correct, it is - // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a - // "gep x, i" here. Emit one "gep A, 0, i". - assert(Array->getType()->isArrayType() && - "Array to pointer decay must have array source type!"); - LValue ArrayLV; - // For simple multidimensional array indexing, set the 'accessed' flag for - // better bounds-checking of the base expression. - if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) - ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); - else - ArrayLV = EmitLValue(Array); - - // Propagate the alignment from the array itself to the result. - EltPtr = emitArraySubscriptGEP( - *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, - ResultExprTy, !getLangOpts().isSignedOverflowDefined(), - /*SignedIndices=*/false, E->getExprLoc()); - BaseInfo = ArrayLV.getBaseInfo(); - TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); - } else { - Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, - TBAAInfo, BaseTy, ResultExprTy, - IsLowerBound); - EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, - !getLangOpts().isSignedOverflowDefined(), - /*SignedIndices=*/false, E->getExprLoc()); - } - - return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); -} - -LValue CodeGenFunction:: -EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { - // Emit the base vector as an l-value. - LValue Base; - - // ExtVectorElementExpr's base can either be a vector or pointer to vector. - if (E->isArrow()) { - // If it is a pointer to a vector, emit the address and form an lvalue with - // it. - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); - const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); - Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); - Base.getQuals().removeObjCGCAttr(); - } else if (E->getBase()->isGLValue()) { - // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), - // emit the base as an lvalue. - assert(E->getBase()->getType()->isVectorType()); - Base = EmitLValue(E->getBase()); - } else { - // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. - assert(E->getBase()->getType()->isVectorType() && - "Result must be a vector"); - llvm::Value *Vec = EmitScalarExpr(E->getBase()); - - // Store the vector to memory (because LValue wants an address). - Address VecMem = CreateMemTemp(E->getBase()->getType()); - Builder.CreateStore(Vec, VecMem); - Base = MakeAddrLValue(VecMem, E->getBase()->getType(), - AlignmentSource::Decl); - } - - QualType type = - E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); - - // Encode the element access list into a vector of unsigned indices. - SmallVector<uint32_t, 4> Indices; - E->getEncodedElementAccess(Indices); - - if (Base.isSimple()) { - llvm::Constant *CV = - llvm::ConstantDataVector::get(getLLVMContext(), Indices); - return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, - Base.getBaseInfo(), TBAAAccessInfo()); - } - assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); - - llvm::Constant *BaseElts = Base.getExtVectorElts(); - SmallVector<llvm::Constant *, 4> CElts; - - for (unsigned i = 0, e = Indices.size(); i != e; ++i) - CElts.push_back(BaseElts->getAggregateElement(Indices[i])); - llvm::Constant *CV = llvm::ConstantVector::get(CElts); - return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, - Base.getBaseInfo(), TBAAAccessInfo()); -} - -LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { - if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { - EmitIgnoredExpr(E->getBase()); - return EmitDeclRefLValue(DRE); - } - - Expr *BaseExpr = E->getBase(); - // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. - LValue BaseLV; - if (E->isArrow()) { - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); - QualType PtrTy = BaseExpr->getType()->getPointeeType(); - SanitizerSet SkippedChecks; - bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); - if (IsBaseCXXThis) - SkippedChecks.set(SanitizerKind::Alignment, true); - if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) - SkippedChecks.set(SanitizerKind::Null, true); - EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, - /*Alignment=*/CharUnits::Zero(), SkippedChecks); - BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); - } else - BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); - - NamedDecl *ND = E->getMemberDecl(); - if (auto *Field = dyn_cast<FieldDecl>(ND)) { - LValue LV = EmitLValueForField(BaseLV, Field); - setObjCGCLValueClass(getContext(), E, LV); - return LV; - } - - if (const auto *FD = dyn_cast<FunctionDecl>(ND)) - return EmitFunctionDeclLValue(*this, E, FD); - - llvm_unreachable("Unhandled member declaration!"); -} - -/// Given that we are currently emitting a lambda, emit an l-value for -/// one of its members. -LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { - assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); - assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); - QualType LambdaTagType = - getContext().getTagDeclType(Field->getParent()); - LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); - return EmitLValueForField(LambdaLV, Field); -} - -/// Drill down to the storage of a field without walking into -/// reference types. -/// -/// The resulting address doesn't necessarily have the right type. -static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, - const FieldDecl *field) { - const RecordDecl *rec = field->getParent(); - - unsigned idx = - CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); - - CharUnits offset; - // Adjust the alignment down to the given offset. - // As a special case, if the LLVM field index is 0, we know that this - // is zero. - assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) - .getFieldOffset(field->getFieldIndex()) == 0) && - "LLVM field at index zero had non-zero offset?"); - if (idx != 0) { - auto &recLayout = CGF.getContext().getASTRecordLayout(rec); - auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); - offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); - } - - return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); -} - -static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { - const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); - if (!RD) - return false; - - if (RD->isDynamicClass()) - return true; - - for (const auto &Base : RD->bases()) - if (hasAnyVptr(Base.getType(), Context)) - return true; - - for (const FieldDecl *Field : RD->fields()) - if (hasAnyVptr(Field->getType(), Context)) - return true; - - return false; -} - -LValue CodeGenFunction::EmitLValueForField(LValue base, - const FieldDecl *field) { - LValueBaseInfo BaseInfo = base.getBaseInfo(); - - if (field->isBitField()) { - const CGRecordLayout &RL = - CGM.getTypes().getCGRecordLayout(field->getParent()); - const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); - Address Addr = base.getAddress(); - unsigned Idx = RL.getLLVMFieldNo(field); - if (Idx != 0) - // For structs, we GEP to the field that the record layout suggests. - Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, - field->getName()); - // Get the access type. - llvm::Type *FieldIntTy = - llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); - if (Addr.getElementType() != FieldIntTy) - Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); - - QualType fieldType = - field->getType().withCVRQualifiers(base.getVRQualifiers()); - // TODO: Support TBAA for bit fields. - LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); - return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, - TBAAAccessInfo()); - } - - // Fields of may-alias structures are may-alias themselves. - // FIXME: this should get propagated down through anonymous structs - // and unions. - QualType FieldType = field->getType(); - const RecordDecl *rec = field->getParent(); - AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); - LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); - TBAAAccessInfo FieldTBAAInfo; - if (base.getTBAAInfo().isMayAlias() || - rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { - FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); - } else if (rec->isUnion()) { - // TODO: Support TBAA for unions. - FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); - } else { - // If no base type been assigned for the base access, then try to generate - // one for this base lvalue. - FieldTBAAInfo = base.getTBAAInfo(); - if (!FieldTBAAInfo.BaseType) { - FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); - assert(!FieldTBAAInfo.Offset && - "Nonzero offset for an access with no base type!"); - } - - // Adjust offset to be relative to the base type. - const ASTRecordLayout &Layout = - getContext().getASTRecordLayout(field->getParent()); - unsigned CharWidth = getContext().getCharWidth(); - if (FieldTBAAInfo.BaseType) - FieldTBAAInfo.Offset += - Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; - - // Update the final access type and size. - FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); - FieldTBAAInfo.Size = - getContext().getTypeSizeInChars(FieldType).getQuantity(); - } - - Address addr = base.getAddress(); - if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { - if (CGM.getCodeGenOpts().StrictVTablePointers && - ClassDef->isDynamicClass()) { - // Getting to any field of dynamic object requires stripping dynamic - // information provided by invariant.group. This is because accessing - // fields may leak the real address of dynamic object, which could result - // in miscompilation when leaked pointer would be compared. - auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); - addr = Address(stripped, addr.getAlignment()); - } - } - - unsigned RecordCVR = base.getVRQualifiers(); - if (rec->isUnion()) { - // For unions, there is no pointer adjustment. - assert(!FieldType->isReferenceType() && "union has reference member"); - if (CGM.getCodeGenOpts().StrictVTablePointers && - hasAnyVptr(FieldType, getContext())) - // Because unions can easily skip invariant.barriers, we need to add - // a barrier every time CXXRecord field with vptr is referenced. - addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), - addr.getAlignment()); - } else { - // For structs, we GEP to the field that the record layout suggests. - addr = emitAddrOfFieldStorage(*this, addr, field); - - // If this is a reference field, load the reference right now. - if (FieldType->isReferenceType()) { - LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, - FieldTBAAInfo); - if (RecordCVR & Qualifiers::Volatile) - RefLVal.getQuals().addVolatile(); - addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); - - // Qualifiers on the struct don't apply to the referencee. - RecordCVR = 0; - FieldType = FieldType->getPointeeType(); - } - } - - // Make sure that the address is pointing to the right type. This is critical - // for both unions and structs. A union needs a bitcast, a struct element - // will need a bitcast if the LLVM type laid out doesn't match the desired - // type. - addr = Builder.CreateElementBitCast( - addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); - - if (field->hasAttr<AnnotateAttr>()) - addr = EmitFieldAnnotations(field, addr); - - LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); - LV.getQuals().addCVRQualifiers(RecordCVR); - - // __weak attribute on a field is ignored. - if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) - LV.getQuals().removeObjCGCAttr(); - - return LV; -} - -LValue -CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, - const FieldDecl *Field) { - QualType FieldType = Field->getType(); - - if (!FieldType->isReferenceType()) - return EmitLValueForField(Base, Field); - - Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); - - // Make sure that the address is pointing to the right type. - llvm::Type *llvmType = ConvertTypeForMem(FieldType); - V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); - - // TODO: Generate TBAA information that describes this access as a structure - // member access and not just an access to an object of the field's type. This - // should be similar to what we do in EmitLValueForField(). - LValueBaseInfo BaseInfo = Base.getBaseInfo(); - AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); - LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); - return MakeAddrLValue(V, FieldType, FieldBaseInfo, - CGM.getTBAAInfoForSubobject(Base, FieldType)); -} - -LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ - if (E->isFileScope()) { - ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); - return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); - } - if (E->getType()->isVariablyModifiedType()) - // make sure to emit the VLA size. - EmitVariablyModifiedType(E->getType()); - - Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); - const Expr *InitExpr = E->getInitializer(); - LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); - - EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), - /*Init*/ true); - - return Result; -} - -LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { - if (!E->isGLValue()) - // Initializing an aggregate temporary in C++11: T{...}. - return EmitAggExprToLValue(E); - - // An lvalue initializer list must be initializing a reference. - assert(E->isTransparent() && "non-transparent glvalue init list"); - return EmitLValue(E->getInit(0)); -} - -/// Emit the operand of a glvalue conditional operator. This is either a glvalue -/// or a (possibly-parenthesized) throw-expression. If this is a throw, no -/// LValue is returned and the current block has been terminated. -static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, - const Expr *Operand) { - if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { - CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); - return None; - } - - return CGF.EmitLValue(Operand); -} - -LValue CodeGenFunction:: -EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { - if (!expr->isGLValue()) { - // ?: here should be an aggregate. - assert(hasAggregateEvaluationKind(expr->getType()) && - "Unexpected conditional operator!"); - return EmitAggExprToLValue(expr); - } - - OpaqueValueMapping binding(*this, expr); - - const Expr *condExpr = expr->getCond(); - bool CondExprBool; - if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { - const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); - if (!CondExprBool) std::swap(live, dead); - - if (!ContainsLabel(dead)) { - // If the true case is live, we need to track its region. - if (CondExprBool) - incrementProfileCounter(expr); - return EmitLValue(live); - } - } - - llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); - llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); - llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); - - ConditionalEvaluation eval(*this); - EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); - - // Any temporaries created here are conditional. - EmitBlock(lhsBlock); - incrementProfileCounter(expr); - eval.begin(*this); - Optional<LValue> lhs = - EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); - eval.end(*this); - - if (lhs && !lhs->isSimple()) - return EmitUnsupportedLValue(expr, "conditional operator"); - - lhsBlock = Builder.GetInsertBlock(); - if (lhs) - Builder.CreateBr(contBlock); - - // Any temporaries created here are conditional. - EmitBlock(rhsBlock); - eval.begin(*this); - Optional<LValue> rhs = - EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); - eval.end(*this); - if (rhs && !rhs->isSimple()) - return EmitUnsupportedLValue(expr, "conditional operator"); - rhsBlock = Builder.GetInsertBlock(); - - EmitBlock(contBlock); - - if (lhs && rhs) { - llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), - 2, "cond-lvalue"); - phi->addIncoming(lhs->getPointer(), lhsBlock); - phi->addIncoming(rhs->getPointer(), rhsBlock); - Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); - AlignmentSource alignSource = - std::max(lhs->getBaseInfo().getAlignmentSource(), - rhs->getBaseInfo().getAlignmentSource()); - TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( - lhs->getTBAAInfo(), rhs->getTBAAInfo()); - return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), - TBAAInfo); - } else { - assert((lhs || rhs) && - "both operands of glvalue conditional are throw-expressions?"); - return lhs ? *lhs : *rhs; - } -} - -/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference -/// type. If the cast is to a reference, we can have the usual lvalue result, -/// otherwise if a cast is needed by the code generator in an lvalue context, -/// then it must mean that we need the address of an aggregate in order to -/// access one of its members. This can happen for all the reasons that casts -/// are permitted with aggregate result, including noop aggregate casts, and -/// cast from scalar to union. -LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { - switch (E->getCastKind()) { - case CK_ToVoid: - case CK_BitCast: - case CK_ArrayToPointerDecay: - case CK_FunctionToPointerDecay: - case CK_NullToMemberPointer: - case CK_NullToPointer: - case CK_IntegralToPointer: - case CK_PointerToIntegral: - case CK_PointerToBoolean: - case CK_VectorSplat: - case CK_IntegralCast: - case CK_BooleanToSignedIntegral: - case CK_IntegralToBoolean: - case CK_IntegralToFloating: - case CK_FloatingToIntegral: - case CK_FloatingToBoolean: - case CK_FloatingCast: - case CK_FloatingRealToComplex: - case CK_FloatingComplexToReal: - case CK_FloatingComplexToBoolean: - case CK_FloatingComplexCast: - case CK_FloatingComplexToIntegralComplex: - case CK_IntegralRealToComplex: - case CK_IntegralComplexToReal: - case CK_IntegralComplexToBoolean: - case CK_IntegralComplexCast: - case CK_IntegralComplexToFloatingComplex: - case CK_DerivedToBaseMemberPointer: - case CK_BaseToDerivedMemberPointer: - case CK_MemberPointerToBoolean: - case CK_ReinterpretMemberPointer: - case CK_AnyPointerToBlockPointerCast: - case CK_ARCProduceObject: - case CK_ARCConsumeObject: - case CK_ARCReclaimReturnedObject: - case CK_ARCExtendBlockObject: - case CK_CopyAndAutoreleaseBlockObject: - case CK_IntToOCLSampler: - case CK_FixedPointCast: - case CK_FixedPointToBoolean: - return EmitUnsupportedLValue(E, "unexpected cast lvalue"); - - case CK_Dependent: - llvm_unreachable("dependent cast kind in IR gen!"); - - case CK_BuiltinFnToFnPtr: - llvm_unreachable("builtin functions are handled elsewhere"); - - // These are never l-values; just use the aggregate emission code. - case CK_NonAtomicToAtomic: - case CK_AtomicToNonAtomic: - return EmitAggExprToLValue(E); - - case CK_Dynamic: { - LValue LV = EmitLValue(E->getSubExpr()); - Address V = LV.getAddress(); - const auto *DCE = cast<CXXDynamicCastExpr>(E); - return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); - } - - case CK_ConstructorConversion: - case CK_UserDefinedConversion: - case CK_CPointerToObjCPointerCast: - case CK_BlockPointerToObjCPointerCast: - case CK_NoOp: - case CK_LValueToRValue: - return EmitLValue(E->getSubExpr()); - - case CK_UncheckedDerivedToBase: - case CK_DerivedToBase: { - const RecordType *DerivedClassTy = - E->getSubExpr()->getType()->getAs<RecordType>(); - auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); - - LValue LV = EmitLValue(E->getSubExpr()); - Address This = LV.getAddress(); - - // Perform the derived-to-base conversion - Address Base = GetAddressOfBaseClass( - This, DerivedClassDecl, E->path_begin(), E->path_end(), - /*NullCheckValue=*/false, E->getExprLoc()); - - // TODO: Support accesses to members of base classes in TBAA. For now, we - // conservatively pretend that the complete object is of the base class - // type. - return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), - CGM.getTBAAInfoForSubobject(LV, E->getType())); - } - case CK_ToUnion: - return EmitAggExprToLValue(E); - case CK_BaseToDerived: { - const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); - auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); - - LValue LV = EmitLValue(E->getSubExpr()); - - // Perform the base-to-derived conversion - Address Derived = - GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, - E->path_begin(), E->path_end(), - /*NullCheckValue=*/false); - - // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is - // performed and the object is not of the derived type. - if (sanitizePerformTypeCheck()) - EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), - Derived.getPointer(), E->getType()); - - if (SanOpts.has(SanitizerKind::CFIDerivedCast)) - EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), - /*MayBeNull=*/false, CFITCK_DerivedCast, - E->getBeginLoc()); - - return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), - CGM.getTBAAInfoForSubobject(LV, E->getType())); - } - case CK_LValueBitCast: { - // This must be a reinterpret_cast (or c-style equivalent). - const auto *CE = cast<ExplicitCastExpr>(E); - - CGM.EmitExplicitCastExprType(CE, this); - LValue LV = EmitLValue(E->getSubExpr()); - Address V = Builder.CreateBitCast(LV.getAddress(), - ConvertType(CE->getTypeAsWritten())); - - if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) - EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), - /*MayBeNull=*/false, CFITCK_UnrelatedCast, - E->getBeginLoc()); - - return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), - CGM.getTBAAInfoForSubobject(LV, E->getType())); - } - case CK_AddressSpaceConversion: { - LValue LV = EmitLValue(E->getSubExpr()); - QualType DestTy = getContext().getPointerType(E->getType()); - llvm::Value *V = getTargetHooks().performAddrSpaceCast( - *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), - E->getType().getAddressSpace(), ConvertType(DestTy)); - return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), - E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); - } - case CK_ObjCObjectLValueCast: { - LValue LV = EmitLValue(E->getSubExpr()); - Address V = Builder.CreateElementBitCast(LV.getAddress(), - ConvertType(E->getType())); - return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), - CGM.getTBAAInfoForSubobject(LV, E->getType())); - } - case CK_ZeroToOCLOpaqueType: - llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); - } - - llvm_unreachable("Unhandled lvalue cast kind?"); -} - -LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { - assert(OpaqueValueMappingData::shouldBindAsLValue(e)); - return getOrCreateOpaqueLValueMapping(e); -} - -LValue -CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { - assert(OpaqueValueMapping::shouldBindAsLValue(e)); - - llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator - it = OpaqueLValues.find(e); - - if (it != OpaqueLValues.end()) - return it->second; - - assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); - return EmitLValue(e->getSourceExpr()); -} - -RValue -CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { - assert(!OpaqueValueMapping::shouldBindAsLValue(e)); - - llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator - it = OpaqueRValues.find(e); - - if (it != OpaqueRValues.end()) - return it->second; - - assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); - return EmitAnyExpr(e->getSourceExpr()); -} - -RValue CodeGenFunction::EmitRValueForField(LValue LV, - const FieldDecl *FD, - SourceLocation Loc) { - QualType FT = FD->getType(); - LValue FieldLV = EmitLValueForField(LV, FD); - switch (getEvaluationKind(FT)) { - case TEK_Complex: - return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); - case TEK_Aggregate: - return FieldLV.asAggregateRValue(); - case TEK_Scalar: - // This routine is used to load fields one-by-one to perform a copy, so - // don't load reference fields. - if (FD->getType()->isReferenceType()) - return RValue::get(FieldLV.getPointer()); - return EmitLoadOfLValue(FieldLV, Loc); - } - llvm_unreachable("bad evaluation kind"); -} - -//===--------------------------------------------------------------------===// -// Expression Emission -//===--------------------------------------------------------------------===// - -RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, - ReturnValueSlot ReturnValue) { - // Builtins never have block type. - if (E->getCallee()->getType()->isBlockPointerType()) - return EmitBlockCallExpr(E, ReturnValue); - - if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) - return EmitCXXMemberCallExpr(CE, ReturnValue); - - if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) - return EmitCUDAKernelCallExpr(CE, ReturnValue); - - if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) - if (const CXXMethodDecl *MD = - dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) - return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); - - CGCallee callee = EmitCallee(E->getCallee()); - - if (callee.isBuiltin()) { - return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), - E, ReturnValue); - } - - if (callee.isPseudoDestructor()) { - return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); - } - - return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); -} - -/// Emit a CallExpr without considering whether it might be a subclass. -RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, - ReturnValueSlot ReturnValue) { - CGCallee Callee = EmitCallee(E->getCallee()); - return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); -} - -static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { - if (auto builtinID = FD->getBuiltinID()) { - return CGCallee::forBuiltin(builtinID, FD); - } - - llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); - return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); -} - -CGCallee CodeGenFunction::EmitCallee(const Expr *E) { - E = E->IgnoreParens(); - - // Look through function-to-pointer decay. - if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { - if (ICE->getCastKind() == CK_FunctionToPointerDecay || - ICE->getCastKind() == CK_BuiltinFnToFnPtr) { - return EmitCallee(ICE->getSubExpr()); - } - - // Resolve direct calls. - } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { - if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { - return EmitDirectCallee(*this, FD); - } - } else if (auto ME = dyn_cast<MemberExpr>(E)) { - if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { - EmitIgnoredExpr(ME->getBase()); - return EmitDirectCallee(*this, FD); - } - - // Look through template substitutions. - } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { - return EmitCallee(NTTP->getReplacement()); - - // Treat pseudo-destructor calls differently. - } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { - return CGCallee::forPseudoDestructor(PDE); - } - - // Otherwise, we have an indirect reference. - llvm::Value *calleePtr; - QualType functionType; - if (auto ptrType = E->getType()->getAs<PointerType>()) { - calleePtr = EmitScalarExpr(E); - functionType = ptrType->getPointeeType(); - } else { - functionType = E->getType(); - calleePtr = EmitLValue(E).getPointer(); - } - assert(functionType->isFunctionType()); - - GlobalDecl GD; - if (const auto *VD = - dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) - GD = GlobalDecl(VD); - - CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); - CGCallee callee(calleeInfo, calleePtr); - return callee; -} - -LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { - // Comma expressions just emit their LHS then their RHS as an l-value. - if (E->getOpcode() == BO_Comma) { - EmitIgnoredExpr(E->getLHS()); - EnsureInsertPoint(); - return EmitLValue(E->getRHS()); - } - - if (E->getOpcode() == BO_PtrMemD || - E->getOpcode() == BO_PtrMemI) - return EmitPointerToDataMemberBinaryExpr(E); - - assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); - - // Note that in all of these cases, __block variables need the RHS - // evaluated first just in case the variable gets moved by the RHS. - - switch (getEvaluationKind(E->getType())) { - case TEK_Scalar: { - switch (E->getLHS()->getType().getObjCLifetime()) { - case Qualifiers::OCL_Strong: - return EmitARCStoreStrong(E, /*ignored*/ false).first; - - case Qualifiers::OCL_Autoreleasing: - return EmitARCStoreAutoreleasing(E).first; - - // No reason to do any of these differently. - case Qualifiers::OCL_None: - case Qualifiers::OCL_ExplicitNone: - case Qualifiers::OCL_Weak: - break; - } - - RValue RV = EmitAnyExpr(E->getRHS()); - LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); - if (RV.isScalar()) - EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); - EmitStoreThroughLValue(RV, LV); - return LV; - } - - case TEK_Complex: - return EmitComplexAssignmentLValue(E); - - case TEK_Aggregate: - return EmitAggExprToLValue(E); - } - llvm_unreachable("bad evaluation kind"); -} - -LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { - RValue RV = EmitCallExpr(E); - - if (!RV.isScalar()) - return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), - AlignmentSource::Decl); - - assert(E->getCallReturnType(getContext())->isReferenceType() && - "Can't have a scalar return unless the return type is a " - "reference type!"); - - return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); -} - -LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { - // FIXME: This shouldn't require another copy. - return EmitAggExprToLValue(E); -} - -LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { - assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() - && "binding l-value to type which needs a temporary"); - AggValueSlot Slot = CreateAggTemp(E->getType()); - EmitCXXConstructExpr(E, Slot); - return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); -} - -LValue -CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { - return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); -} - -Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { - return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), - ConvertType(E->getType())); -} - -LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { - return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), - AlignmentSource::Decl); -} - -LValue -CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { - AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); - Slot.setExternallyDestructed(); - EmitAggExpr(E->getSubExpr(), Slot); - EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); - return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); -} - -LValue -CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { - AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); - EmitLambdaExpr(E, Slot); - return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); -} - -LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { - RValue RV = EmitObjCMessageExpr(E); - - if (!RV.isScalar()) - return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), - AlignmentSource::Decl); - - assert(E->getMethodDecl()->getReturnType()->isReferenceType() && - "Can't have a scalar return unless the return type is a " - "reference type!"); - - return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); -} - -LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { - Address V = - CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); - return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); -} - -llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, - const ObjCIvarDecl *Ivar) { - return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); -} - -LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, - llvm::Value *BaseValue, - const ObjCIvarDecl *Ivar, - unsigned CVRQualifiers) { - return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, - Ivar, CVRQualifiers); -} - -LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { - // FIXME: A lot of the code below could be shared with EmitMemberExpr. - llvm::Value *BaseValue = nullptr; - const Expr *BaseExpr = E->getBase(); - Qualifiers BaseQuals; - QualType ObjectTy; - if (E->isArrow()) { - BaseValue = EmitScalarExpr(BaseExpr); - ObjectTy = BaseExpr->getType()->getPointeeType(); - BaseQuals = ObjectTy.getQualifiers(); - } else { - LValue BaseLV = EmitLValue(BaseExpr); - BaseValue = BaseLV.getPointer(); - ObjectTy = BaseExpr->getType(); - BaseQuals = ObjectTy.getQualifiers(); - } - - LValue LV = - EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), - BaseQuals.getCVRQualifiers()); - setObjCGCLValueClass(getContext(), E, LV); - return LV; -} - -LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { - // Can only get l-value for message expression returning aggregate type - RValue RV = EmitAnyExprToTemp(E); - return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), - AlignmentSource::Decl); -} - -RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, - const CallExpr *E, ReturnValueSlot ReturnValue, - llvm::Value *Chain) { - // Get the actual function type. The callee type will always be a pointer to - // function type or a block pointer type. - assert(CalleeType->isFunctionPointerType() && - "Call must have function pointer type!"); - - const Decl *TargetDecl = - OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); - - if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) - // We can only guarantee that a function is called from the correct - // context/function based on the appropriate target attributes, - // so only check in the case where we have both always_inline and target - // since otherwise we could be making a conditional call after a check for - // the proper cpu features (and it won't cause code generation issues due to - // function based code generation). - if (TargetDecl->hasAttr<AlwaysInlineAttr>() && - TargetDecl->hasAttr<TargetAttr>()) - checkTargetFeatures(E, FD); - - CalleeType = getContext().getCanonicalType(CalleeType); - - auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); - - CGCallee Callee = OrigCallee; - - if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && - (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { - if (llvm::Constant *PrefixSig = - CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { - SanitizerScope SanScope(this); - // Remove any (C++17) exception specifications, to allow calling e.g. a - // noexcept function through a non-noexcept pointer. - auto ProtoTy = - getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); - llvm::Constant *FTRTTIConst = - CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); - llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; - llvm::StructType *PrefixStructTy = llvm::StructType::get( - CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); - - llvm::Value *CalleePtr = Callee.getFunctionPointer(); - - llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( - CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); - llvm::Value *CalleeSigPtr = - Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); - llvm::Value *CalleeSig = - Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); - llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); - - llvm::BasicBlock *Cont = createBasicBlock("cont"); - llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); - Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); - - EmitBlock(TypeCheck); - llvm::Value *CalleeRTTIPtr = - Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); - llvm::Value *CalleeRTTIEncoded = - Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); - llvm::Value *CalleeRTTI = - DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); - llvm::Value *CalleeRTTIMatch = - Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); - llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), - EmitCheckTypeDescriptor(CalleeType)}; - EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), - SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); - - Builder.CreateBr(Cont); - EmitBlock(Cont); - } - } - - const auto *FnType = cast<FunctionType>(PointeeType); - - // If we are checking indirect calls and this call is indirect, check that the - // function pointer is a member of the bit set for the function type. - if (SanOpts.has(SanitizerKind::CFIICall) && - (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { - SanitizerScope SanScope(this); - EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); - - llvm::Metadata *MD; - if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) - MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); - else - MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); - - llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); - - llvm::Value *CalleePtr = Callee.getFunctionPointer(); - llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); - llvm::Value *TypeTest = Builder.CreateCall( - CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); - - auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); - llvm::Constant *StaticData[] = { - llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), - EmitCheckSourceLocation(E->getBeginLoc()), - EmitCheckTypeDescriptor(QualType(FnType, 0)), - }; - if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { - EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, - CastedCallee, StaticData); - } else { - EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), - SanitizerHandler::CFICheckFail, StaticData, - {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); - } - } - - CallArgList Args; - if (Chain) - Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), - CGM.getContext().VoidPtrTy); - - // C++17 requires that we evaluate arguments to a call using assignment syntax - // right-to-left, and that we evaluate arguments to certain other operators - // left-to-right. Note that we allow this to override the order dictated by - // the calling convention on the MS ABI, which means that parameter - // destruction order is not necessarily reverse construction order. - // FIXME: Revisit this based on C++ committee response to unimplementability. - EvaluationOrder Order = EvaluationOrder::Default; - if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { - if (OCE->isAssignmentOp()) - Order = EvaluationOrder::ForceRightToLeft; - else { - switch (OCE->getOperator()) { - case OO_LessLess: - case OO_GreaterGreater: - case OO_AmpAmp: - case OO_PipePipe: - case OO_Comma: - case OO_ArrowStar: - Order = EvaluationOrder::ForceLeftToRight; - break; - default: - break; - } - } - } - - EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), - E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); - - const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( - Args, FnType, /*isChainCall=*/Chain); - - // C99 6.5.2.2p6: - // If the expression that denotes the called function has a type - // that does not include a prototype, [the default argument - // promotions are performed]. If the number of arguments does not - // equal the number of parameters, the behavior is undefined. If - // the function is defined with a type that includes a prototype, - // and either the prototype ends with an ellipsis (, ...) or the - // types of the arguments after promotion are not compatible with - // the types of the parameters, the behavior is undefined. If the - // function is defined with a type that does not include a - // prototype, and the types of the arguments after promotion are - // not compatible with those of the parameters after promotion, - // the behavior is undefined [except in some trivial cases]. - // That is, in the general case, we should assume that a call - // through an unprototyped function type works like a *non-variadic* - // call. The way we make this work is to cast to the exact type - // of the promoted arguments. - // - // Chain calls use this same code path to add the invisible chain parameter - // to the function type. - if (isa<FunctionNoProtoType>(FnType) || Chain) { - llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); - CalleeTy = CalleeTy->getPointerTo(); - - llvm::Value *CalleePtr = Callee.getFunctionPointer(); - CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); - Callee.setFunctionPointer(CalleePtr); - } - - return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); -} - -LValue CodeGenFunction:: -EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { - Address BaseAddr = Address::invalid(); - if (E->getOpcode() == BO_PtrMemI) { - BaseAddr = EmitPointerWithAlignment(E->getLHS()); - } else { - BaseAddr = EmitLValue(E->getLHS()).getAddress(); - } - - llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); - - const MemberPointerType *MPT - = E->getRHS()->getType()->getAs<MemberPointerType>(); - - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - Address MemberAddr = - EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, - &TBAAInfo); - - return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); -} - -/// Given the address of a temporary variable, produce an r-value of -/// its type. -RValue CodeGenFunction::convertTempToRValue(Address addr, - QualType type, - SourceLocation loc) { - LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); - switch (getEvaluationKind(type)) { - case TEK_Complex: - return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); - case TEK_Aggregate: - return lvalue.asAggregateRValue(); - case TEK_Scalar: - return RValue::get(EmitLoadOfScalar(lvalue, loc)); - } - llvm_unreachable("bad evaluation kind"); -} - -void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { - assert(Val->getType()->isFPOrFPVectorTy()); - if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) - return; - - llvm::MDBuilder MDHelper(getLLVMContext()); - llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); - - cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); -} - -namespace { - struct LValueOrRValue { - LValue LV; - RValue RV; - }; -} - -static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, - const PseudoObjectExpr *E, - bool forLValue, - AggValueSlot slot) { - SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; - - // Find the result expression, if any. - const Expr *resultExpr = E->getResultExpr(); - LValueOrRValue result; - - for (PseudoObjectExpr::const_semantics_iterator - i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { - const Expr *semantic = *i; - - // If this semantic expression is an opaque value, bind it - // to the result of its source expression. - if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { - // Skip unique OVEs. - if (ov->isUnique()) { - assert(ov != resultExpr && - "A unique OVE cannot be used as the result expression"); - continue; - } - - // If this is the result expression, we may need to evaluate - // directly into the slot. - typedef CodeGenFunction::OpaqueValueMappingData OVMA; - OVMA opaqueData; - if (ov == resultExpr && ov->isRValue() && !forLValue && - CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { - CGF.EmitAggExpr(ov->getSourceExpr(), slot); - LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), - AlignmentSource::Decl); - opaqueData = OVMA::bind(CGF, ov, LV); - result.RV = slot.asRValue(); - - // Otherwise, emit as normal. - } else { - opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); - - // If this is the result, also evaluate the result now. - if (ov == resultExpr) { - if (forLValue) - result.LV = CGF.EmitLValue(ov); - else - result.RV = CGF.EmitAnyExpr(ov, slot); - } - } - - opaques.push_back(opaqueData); - - // Otherwise, if the expression is the result, evaluate it - // and remember the result. - } else if (semantic == resultExpr) { - if (forLValue) - result.LV = CGF.EmitLValue(semantic); - else - result.RV = CGF.EmitAnyExpr(semantic, slot); - - // Otherwise, evaluate the expression in an ignored context. - } else { - CGF.EmitIgnoredExpr(semantic); - } - } - - // Unbind all the opaques now. - for (unsigned i = 0, e = opaques.size(); i != e; ++i) - opaques[i].unbind(CGF); - - return result; -} - -RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, - AggValueSlot slot) { - return emitPseudoObjectExpr(*this, E, false, slot).RV; -} - -LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { - return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; -} |
