summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp')
-rw-r--r--gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp4942
1 files changed, 0 insertions, 4942 deletions
diff --git a/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp b/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
deleted file mode 100644
index 34a921e2dc0..00000000000
--- a/gnu/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
+++ /dev/null
@@ -1,4942 +0,0 @@
-//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This contains code to emit Expr nodes as LLVM code.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CGCXXABI.h"
-#include "CGCall.h"
-#include "CGCleanup.h"
-#include "CGDebugInfo.h"
-#include "CGObjCRuntime.h"
-#include "CGOpenMPRuntime.h"
-#include "CGRecordLayout.h"
-#include "CodeGenFunction.h"
-#include "CodeGenModule.h"
-#include "ConstantEmitter.h"
-#include "TargetInfo.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/Attr.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/NSAPI.h"
-#include "clang/Basic/CodeGenOptions.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/Support/ConvertUTF.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Path.h"
-#include "llvm/Transforms/Utils/SanitizerStats.h"
-
-#include <string>
-
-using namespace clang;
-using namespace CodeGen;
-
-//===--------------------------------------------------------------------===//
-// Miscellaneous Helper Methods
-//===--------------------------------------------------------------------===//
-
-llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
- unsigned addressSpace =
- cast<llvm::PointerType>(value->getType())->getAddressSpace();
-
- llvm::PointerType *destType = Int8PtrTy;
- if (addressSpace)
- destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
-
- if (value->getType() == destType) return value;
- return Builder.CreateBitCast(value, destType);
-}
-
-/// CreateTempAlloca - This creates a alloca and inserts it into the entry
-/// block.
-Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
- CharUnits Align,
- const Twine &Name,
- llvm::Value *ArraySize) {
- auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
- Alloca->setAlignment(Align.getQuantity());
- return Address(Alloca, Align);
-}
-
-/// CreateTempAlloca - This creates a alloca and inserts it into the entry
-/// block. The alloca is casted to default address space if necessary.
-Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
- const Twine &Name,
- llvm::Value *ArraySize,
- Address *AllocaAddr) {
- auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
- if (AllocaAddr)
- *AllocaAddr = Alloca;
- llvm::Value *V = Alloca.getPointer();
- // Alloca always returns a pointer in alloca address space, which may
- // be different from the type defined by the language. For example,
- // in C++ the auto variables are in the default address space. Therefore
- // cast alloca to the default address space when necessary.
- if (getASTAllocaAddressSpace() != LangAS::Default) {
- auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
- llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
- // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
- // otherwise alloca is inserted at the current insertion point of the
- // builder.
- if (!ArraySize)
- Builder.SetInsertPoint(AllocaInsertPt);
- V = getTargetHooks().performAddrSpaceCast(
- *this, V, getASTAllocaAddressSpace(), LangAS::Default,
- Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
- }
-
- return Address(V, Align);
-}
-
-/// CreateTempAlloca - This creates an alloca and inserts it into the entry
-/// block if \p ArraySize is nullptr, otherwise inserts it at the current
-/// insertion point of the builder.
-llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
- const Twine &Name,
- llvm::Value *ArraySize) {
- if (ArraySize)
- return Builder.CreateAlloca(Ty, ArraySize, Name);
- return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
- ArraySize, Name, AllocaInsertPt);
-}
-
-/// CreateDefaultAlignTempAlloca - This creates an alloca with the
-/// default alignment of the corresponding LLVM type, which is *not*
-/// guaranteed to be related in any way to the expected alignment of
-/// an AST type that might have been lowered to Ty.
-Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
- const Twine &Name) {
- CharUnits Align =
- CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
- return CreateTempAlloca(Ty, Align, Name);
-}
-
-void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
- assert(isa<llvm::AllocaInst>(Var.getPointer()));
- auto *Store = new llvm::StoreInst(Init, Var.getPointer());
- Store->setAlignment(Var.getAlignment().getQuantity());
- llvm::BasicBlock *Block = AllocaInsertPt->getParent();
- Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
-}
-
-Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
- CharUnits Align = getContext().getTypeAlignInChars(Ty);
- return CreateTempAlloca(ConvertType(Ty), Align, Name);
-}
-
-Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
- Address *Alloca) {
- // FIXME: Should we prefer the preferred type alignment here?
- return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
-}
-
-Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
- const Twine &Name, Address *Alloca) {
- return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
- /*ArraySize=*/nullptr, Alloca);
-}
-
-Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
- const Twine &Name) {
- return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
-}
-
-Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
- const Twine &Name) {
- return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
- Name);
-}
-
-/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
-/// expression and compare the result against zero, returning an Int1Ty value.
-llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
- PGO.setCurrentStmt(E);
- if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
- llvm::Value *MemPtr = EmitScalarExpr(E);
- return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
- }
-
- QualType BoolTy = getContext().BoolTy;
- SourceLocation Loc = E->getExprLoc();
- if (!E->getType()->isAnyComplexType())
- return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
-
- return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
- Loc);
-}
-
-/// EmitIgnoredExpr - Emit code to compute the specified expression,
-/// ignoring the result.
-void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
- if (E->isRValue())
- return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
-
- // Just emit it as an l-value and drop the result.
- EmitLValue(E);
-}
-
-/// EmitAnyExpr - Emit code to compute the specified expression which
-/// can have any type. The result is returned as an RValue struct.
-/// If this is an aggregate expression, AggSlot indicates where the
-/// result should be returned.
-RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
- AggValueSlot aggSlot,
- bool ignoreResult) {
- switch (getEvaluationKind(E->getType())) {
- case TEK_Scalar:
- return RValue::get(EmitScalarExpr(E, ignoreResult));
- case TEK_Complex:
- return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
- case TEK_Aggregate:
- if (!ignoreResult && aggSlot.isIgnored())
- aggSlot = CreateAggTemp(E->getType(), "agg-temp");
- EmitAggExpr(E, aggSlot);
- return aggSlot.asRValue();
- }
- llvm_unreachable("bad evaluation kind");
-}
-
-/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
-/// always be accessible even if no aggregate location is provided.
-RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
- AggValueSlot AggSlot = AggValueSlot::ignored();
-
- if (hasAggregateEvaluationKind(E->getType()))
- AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
- return EmitAnyExpr(E, AggSlot);
-}
-
-/// EmitAnyExprToMem - Evaluate an expression into a given memory
-/// location.
-void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
- Address Location,
- Qualifiers Quals,
- bool IsInit) {
- // FIXME: This function should take an LValue as an argument.
- switch (getEvaluationKind(E->getType())) {
- case TEK_Complex:
- EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
- /*isInit*/ false);
- return;
-
- case TEK_Aggregate: {
- EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
- AggValueSlot::IsDestructed_t(IsInit),
- AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsAliased_t(!IsInit),
- AggValueSlot::MayOverlap));
- return;
- }
-
- case TEK_Scalar: {
- RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
- LValue LV = MakeAddrLValue(Location, E->getType());
- EmitStoreThroughLValue(RV, LV);
- return;
- }
- }
- llvm_unreachable("bad evaluation kind");
-}
-
-static void
-pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
- const Expr *E, Address ReferenceTemporary) {
- // Objective-C++ ARC:
- // If we are binding a reference to a temporary that has ownership, we
- // need to perform retain/release operations on the temporary.
- //
- // FIXME: This should be looking at E, not M.
- if (auto Lifetime = M->getType().getObjCLifetime()) {
- switch (Lifetime) {
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- // Carry on to normal cleanup handling.
- break;
-
- case Qualifiers::OCL_Autoreleasing:
- // Nothing to do; cleaned up by an autorelease pool.
- return;
-
- case Qualifiers::OCL_Strong:
- case Qualifiers::OCL_Weak:
- switch (StorageDuration Duration = M->getStorageDuration()) {
- case SD_Static:
- // Note: we intentionally do not register a cleanup to release
- // the object on program termination.
- return;
-
- case SD_Thread:
- // FIXME: We should probably register a cleanup in this case.
- return;
-
- case SD_Automatic:
- case SD_FullExpression:
- CodeGenFunction::Destroyer *Destroy;
- CleanupKind CleanupKind;
- if (Lifetime == Qualifiers::OCL_Strong) {
- const ValueDecl *VD = M->getExtendingDecl();
- bool Precise =
- VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
- CleanupKind = CGF.getARCCleanupKind();
- Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
- : &CodeGenFunction::destroyARCStrongImprecise;
- } else {
- // __weak objects always get EH cleanups; otherwise, exceptions
- // could cause really nasty crashes instead of mere leaks.
- CleanupKind = NormalAndEHCleanup;
- Destroy = &CodeGenFunction::destroyARCWeak;
- }
- if (Duration == SD_FullExpression)
- CGF.pushDestroy(CleanupKind, ReferenceTemporary,
- M->getType(), *Destroy,
- CleanupKind & EHCleanup);
- else
- CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
- M->getType(),
- *Destroy, CleanupKind & EHCleanup);
- return;
-
- case SD_Dynamic:
- llvm_unreachable("temporary cannot have dynamic storage duration");
- }
- llvm_unreachable("unknown storage duration");
- }
- }
-
- CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
- if (const RecordType *RT =
- E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
- // Get the destructor for the reference temporary.
- auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
- if (!ClassDecl->hasTrivialDestructor())
- ReferenceTemporaryDtor = ClassDecl->getDestructor();
- }
-
- if (!ReferenceTemporaryDtor)
- return;
-
- // Call the destructor for the temporary.
- switch (M->getStorageDuration()) {
- case SD_Static:
- case SD_Thread: {
- llvm::Constant *CleanupFn;
- llvm::Constant *CleanupArg;
- if (E->getType()->isArrayType()) {
- CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
- ReferenceTemporary, E->getType(),
- CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
- dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
- CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
- } else {
- CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
- StructorType::Complete);
- CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
- }
- CGF.CGM.getCXXABI().registerGlobalDtor(
- CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
- break;
- }
-
- case SD_FullExpression:
- CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
- CodeGenFunction::destroyCXXObject,
- CGF.getLangOpts().Exceptions);
- break;
-
- case SD_Automatic:
- CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
- ReferenceTemporary, E->getType(),
- CodeGenFunction::destroyCXXObject,
- CGF.getLangOpts().Exceptions);
- break;
-
- case SD_Dynamic:
- llvm_unreachable("temporary cannot have dynamic storage duration");
- }
-}
-
-static Address createReferenceTemporary(CodeGenFunction &CGF,
- const MaterializeTemporaryExpr *M,
- const Expr *Inner,
- Address *Alloca = nullptr) {
- auto &TCG = CGF.getTargetHooks();
- switch (M->getStorageDuration()) {
- case SD_FullExpression:
- case SD_Automatic: {
- // If we have a constant temporary array or record try to promote it into a
- // constant global under the same rules a normal constant would've been
- // promoted. This is easier on the optimizer and generally emits fewer
- // instructions.
- QualType Ty = Inner->getType();
- if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
- (Ty->isArrayType() || Ty->isRecordType()) &&
- CGF.CGM.isTypeConstant(Ty, true))
- if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
- if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
- auto AS = AddrSpace.getValue();
- auto *GV = new llvm::GlobalVariable(
- CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
- llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
- llvm::GlobalValue::NotThreadLocal,
- CGF.getContext().getTargetAddressSpace(AS));
- CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
- GV->setAlignment(alignment.getQuantity());
- llvm::Constant *C = GV;
- if (AS != LangAS::Default)
- C = TCG.performAddrSpaceCast(
- CGF.CGM, GV, AS, LangAS::Default,
- GV->getValueType()->getPointerTo(
- CGF.getContext().getTargetAddressSpace(LangAS::Default)));
- // FIXME: Should we put the new global into a COMDAT?
- return Address(C, alignment);
- }
- }
- return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
- }
- case SD_Thread:
- case SD_Static:
- return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
-
- case SD_Dynamic:
- llvm_unreachable("temporary can't have dynamic storage duration");
- }
- llvm_unreachable("unknown storage duration");
-}
-
-LValue CodeGenFunction::
-EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
- const Expr *E = M->GetTemporaryExpr();
-
- assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
- !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
- "Reference should never be pseudo-strong!");
-
- // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
- // as that will cause the lifetime adjustment to be lost for ARC
- auto ownership = M->getType().getObjCLifetime();
- if (ownership != Qualifiers::OCL_None &&
- ownership != Qualifiers::OCL_ExplicitNone) {
- Address Object = createReferenceTemporary(*this, M, E);
- if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
- Object = Address(llvm::ConstantExpr::getBitCast(Var,
- ConvertTypeForMem(E->getType())
- ->getPointerTo(Object.getAddressSpace())),
- Object.getAlignment());
-
- // createReferenceTemporary will promote the temporary to a global with a
- // constant initializer if it can. It can only do this to a value of
- // ARC-manageable type if the value is global and therefore "immune" to
- // ref-counting operations. Therefore we have no need to emit either a
- // dynamic initialization or a cleanup and we can just return the address
- // of the temporary.
- if (Var->hasInitializer())
- return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
-
- Var->setInitializer(CGM.EmitNullConstant(E->getType()));
- }
- LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
- AlignmentSource::Decl);
-
- switch (getEvaluationKind(E->getType())) {
- default: llvm_unreachable("expected scalar or aggregate expression");
- case TEK_Scalar:
- EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
- break;
- case TEK_Aggregate: {
- EmitAggExpr(E, AggValueSlot::forAddr(Object,
- E->getType().getQualifiers(),
- AggValueSlot::IsDestructed,
- AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsNotAliased,
- AggValueSlot::DoesNotOverlap));
- break;
- }
- }
-
- pushTemporaryCleanup(*this, M, E, Object);
- return RefTempDst;
- }
-
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
-
- for (const auto &Ignored : CommaLHSs)
- EmitIgnoredExpr(Ignored);
-
- if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
- if (opaque->getType()->isRecordType()) {
- assert(Adjustments.empty());
- return EmitOpaqueValueLValue(opaque);
- }
- }
-
- // Create and initialize the reference temporary.
- Address Alloca = Address::invalid();
- Address Object = createReferenceTemporary(*this, M, E, &Alloca);
- if (auto *Var = dyn_cast<llvm::GlobalVariable>(
- Object.getPointer()->stripPointerCasts())) {
- Object = Address(llvm::ConstantExpr::getBitCast(
- cast<llvm::Constant>(Object.getPointer()),
- ConvertTypeForMem(E->getType())->getPointerTo()),
- Object.getAlignment());
- // If the temporary is a global and has a constant initializer or is a
- // constant temporary that we promoted to a global, we may have already
- // initialized it.
- if (!Var->hasInitializer()) {
- Var->setInitializer(CGM.EmitNullConstant(E->getType()));
- EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
- }
- } else {
- switch (M->getStorageDuration()) {
- case SD_Automatic:
- if (auto *Size = EmitLifetimeStart(
- CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
- Alloca.getPointer())) {
- pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
- Alloca, Size);
- }
- break;
-
- case SD_FullExpression: {
- if (!ShouldEmitLifetimeMarkers)
- break;
-
- // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
- // marker. Instead, start the lifetime of a conditional temporary earlier
- // so that it's unconditional. Don't do this in ASan's use-after-scope
- // mode so that it gets the more precise lifetime marks. If the type has
- // a non-trivial destructor, we'll have a cleanup block for it anyway,
- // so this typically doesn't help; skip it in that case.
- ConditionalEvaluation *OldConditional = nullptr;
- CGBuilderTy::InsertPoint OldIP;
- if (isInConditionalBranch() && !E->getType().isDestructedType() &&
- !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
- OldConditional = OutermostConditional;
- OutermostConditional = nullptr;
-
- OldIP = Builder.saveIP();
- llvm::BasicBlock *Block = OldConditional->getStartingBlock();
- Builder.restoreIP(CGBuilderTy::InsertPoint(
- Block, llvm::BasicBlock::iterator(Block->back())));
- }
-
- if (auto *Size = EmitLifetimeStart(
- CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
- Alloca.getPointer())) {
- pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
- Size);
- }
-
- if (OldConditional) {
- OutermostConditional = OldConditional;
- Builder.restoreIP(OldIP);
- }
- break;
- }
-
- default:
- break;
- }
- EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
- }
- pushTemporaryCleanup(*this, M, E, Object);
-
- // Perform derived-to-base casts and/or field accesses, to get from the
- // temporary object we created (and, potentially, for which we extended
- // the lifetime) to the subobject we're binding the reference to.
- for (unsigned I = Adjustments.size(); I != 0; --I) {
- SubobjectAdjustment &Adjustment = Adjustments[I-1];
- switch (Adjustment.Kind) {
- case SubobjectAdjustment::DerivedToBaseAdjustment:
- Object =
- GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
- Adjustment.DerivedToBase.BasePath->path_begin(),
- Adjustment.DerivedToBase.BasePath->path_end(),
- /*NullCheckValue=*/ false, E->getExprLoc());
- break;
-
- case SubobjectAdjustment::FieldAdjustment: {
- LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
- LV = EmitLValueForField(LV, Adjustment.Field);
- assert(LV.isSimple() &&
- "materialized temporary field is not a simple lvalue");
- Object = LV.getAddress();
- break;
- }
-
- case SubobjectAdjustment::MemberPointerAdjustment: {
- llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
- Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
- Adjustment.Ptr.MPT);
- break;
- }
- }
- }
-
- return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
-}
-
-RValue
-CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
- // Emit the expression as an lvalue.
- LValue LV = EmitLValue(E);
- assert(LV.isSimple());
- llvm::Value *Value = LV.getPointer();
-
- if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
- // C++11 [dcl.ref]p5 (as amended by core issue 453):
- // If a glvalue to which a reference is directly bound designates neither
- // an existing object or function of an appropriate type nor a region of
- // storage of suitable size and alignment to contain an object of the
- // reference's type, the behavior is undefined.
- QualType Ty = E->getType();
- EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
- }
-
- return RValue::get(Value);
-}
-
-
-/// getAccessedFieldNo - Given an encoded value and a result number, return the
-/// input field number being accessed.
-unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
- const llvm::Constant *Elts) {
- return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
- ->getZExtValue();
-}
-
-/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
-static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
- llvm::Value *High) {
- llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
- llvm::Value *K47 = Builder.getInt64(47);
- llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
- llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
- llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
- llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
- return Builder.CreateMul(B1, KMul);
-}
-
-bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
- return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
- TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
-}
-
-bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
- CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
- return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
- (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
- TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
- TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
-}
-
-bool CodeGenFunction::sanitizePerformTypeCheck() const {
- return SanOpts.has(SanitizerKind::Null) |
- SanOpts.has(SanitizerKind::Alignment) |
- SanOpts.has(SanitizerKind::ObjectSize) |
- SanOpts.has(SanitizerKind::Vptr);
-}
-
-void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
- llvm::Value *Ptr, QualType Ty,
- CharUnits Alignment,
- SanitizerSet SkippedChecks) {
- if (!sanitizePerformTypeCheck())
- return;
-
- // Don't check pointers outside the default address space. The null check
- // isn't correct, the object-size check isn't supported by LLVM, and we can't
- // communicate the addresses to the runtime handler for the vptr check.
- if (Ptr->getType()->getPointerAddressSpace())
- return;
-
- // Don't check pointers to volatile data. The behavior here is implementation-
- // defined.
- if (Ty.isVolatileQualified())
- return;
-
- SanitizerScope SanScope(this);
-
- SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
- llvm::BasicBlock *Done = nullptr;
-
- // Quickly determine whether we have a pointer to an alloca. It's possible
- // to skip null checks, and some alignment checks, for these pointers. This
- // can reduce compile-time significantly.
- auto PtrToAlloca =
- dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
-
- llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
- llvm::Value *IsNonNull = nullptr;
- bool IsGuaranteedNonNull =
- SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
- bool AllowNullPointers = isNullPointerAllowed(TCK);
- if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
- !IsGuaranteedNonNull) {
- // The glvalue must not be an empty glvalue.
- IsNonNull = Builder.CreateIsNotNull(Ptr);
-
- // The IR builder can constant-fold the null check if the pointer points to
- // a constant.
- IsGuaranteedNonNull = IsNonNull == True;
-
- // Skip the null check if the pointer is known to be non-null.
- if (!IsGuaranteedNonNull) {
- if (AllowNullPointers) {
- // When performing pointer casts, it's OK if the value is null.
- // Skip the remaining checks in that case.
- Done = createBasicBlock("null");
- llvm::BasicBlock *Rest = createBasicBlock("not.null");
- Builder.CreateCondBr(IsNonNull, Rest, Done);
- EmitBlock(Rest);
- } else {
- Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
- }
- }
- }
-
- if (SanOpts.has(SanitizerKind::ObjectSize) &&
- !SkippedChecks.has(SanitizerKind::ObjectSize) &&
- !Ty->isIncompleteType()) {
- uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
-
- // The glvalue must refer to a large enough storage region.
- // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
- // to check this.
- // FIXME: Get object address space
- llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
- llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
- llvm::Value *Min = Builder.getFalse();
- llvm::Value *NullIsUnknown = Builder.getFalse();
- llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
- llvm::Value *LargeEnough = Builder.CreateICmpUGE(
- Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
- llvm::ConstantInt::get(IntPtrTy, Size));
- Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
- }
-
- uint64_t AlignVal = 0;
- llvm::Value *PtrAsInt = nullptr;
-
- if (SanOpts.has(SanitizerKind::Alignment) &&
- !SkippedChecks.has(SanitizerKind::Alignment)) {
- AlignVal = Alignment.getQuantity();
- if (!Ty->isIncompleteType() && !AlignVal)
- AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
-
- // The glvalue must be suitably aligned.
- if (AlignVal > 1 &&
- (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
- PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
- llvm::Value *Align = Builder.CreateAnd(
- PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
- llvm::Value *Aligned =
- Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
- if (Aligned != True)
- Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
- }
- }
-
- if (Checks.size() > 0) {
- // Make sure we're not losing information. Alignment needs to be a power of
- // 2
- assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
- llvm::Constant *StaticData[] = {
- EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
- llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
- llvm::ConstantInt::get(Int8Ty, TCK)};
- EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
- PtrAsInt ? PtrAsInt : Ptr);
- }
-
- // If possible, check that the vptr indicates that there is a subobject of
- // type Ty at offset zero within this object.
- //
- // C++11 [basic.life]p5,6:
- // [For storage which does not refer to an object within its lifetime]
- // The program has undefined behavior if:
- // -- the [pointer or glvalue] is used to access a non-static data member
- // or call a non-static member function
- if (SanOpts.has(SanitizerKind::Vptr) &&
- !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
- // Ensure that the pointer is non-null before loading it. If there is no
- // compile-time guarantee, reuse the run-time null check or emit a new one.
- if (!IsGuaranteedNonNull) {
- if (!IsNonNull)
- IsNonNull = Builder.CreateIsNotNull(Ptr);
- if (!Done)
- Done = createBasicBlock("vptr.null");
- llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
- Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
- EmitBlock(VptrNotNull);
- }
-
- // Compute a hash of the mangled name of the type.
- //
- // FIXME: This is not guaranteed to be deterministic! Move to a
- // fingerprinting mechanism once LLVM provides one. For the time
- // being the implementation happens to be deterministic.
- SmallString<64> MangledName;
- llvm::raw_svector_ostream Out(MangledName);
- CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
- Out);
-
- // Blacklist based on the mangled type.
- if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
- SanitizerKind::Vptr, Out.str())) {
- llvm::hash_code TypeHash = hash_value(Out.str());
-
- // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
- llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
- llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
- Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
- llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
- llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
-
- llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
- Hash = Builder.CreateTrunc(Hash, IntPtrTy);
-
- // Look the hash up in our cache.
- const int CacheSize = 128;
- llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
- llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
- "__ubsan_vptr_type_cache");
- llvm::Value *Slot = Builder.CreateAnd(Hash,
- llvm::ConstantInt::get(IntPtrTy,
- CacheSize-1));
- llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
- llvm::Value *CacheVal =
- Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
- getPointerAlign());
-
- // If the hash isn't in the cache, call a runtime handler to perform the
- // hard work of checking whether the vptr is for an object of the right
- // type. This will either fill in the cache and return, or produce a
- // diagnostic.
- llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
- llvm::Constant *StaticData[] = {
- EmitCheckSourceLocation(Loc),
- EmitCheckTypeDescriptor(Ty),
- CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
- llvm::ConstantInt::get(Int8Ty, TCK)
- };
- llvm::Value *DynamicData[] = { Ptr, Hash };
- EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
- SanitizerHandler::DynamicTypeCacheMiss, StaticData,
- DynamicData);
- }
- }
-
- if (Done) {
- Builder.CreateBr(Done);
- EmitBlock(Done);
- }
-}
-
-/// Determine whether this expression refers to a flexible array member in a
-/// struct. We disable array bounds checks for such members.
-static bool isFlexibleArrayMemberExpr(const Expr *E) {
- // For compatibility with existing code, we treat arrays of length 0 or
- // 1 as flexible array members.
- const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
- if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
- if (CAT->getSize().ugt(1))
- return false;
- } else if (!isa<IncompleteArrayType>(AT))
- return false;
-
- E = E->IgnoreParens();
-
- // A flexible array member must be the last member in the class.
- if (const auto *ME = dyn_cast<MemberExpr>(E)) {
- // FIXME: If the base type of the member expr is not FD->getParent(),
- // this should not be treated as a flexible array member access.
- if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
- RecordDecl::field_iterator FI(
- DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
- return ++FI == FD->getParent()->field_end();
- }
- } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
- return IRE->getDecl()->getNextIvar() == nullptr;
- }
-
- return false;
-}
-
-llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
- QualType EltTy) {
- ASTContext &C = getContext();
- uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
- if (!EltSize)
- return nullptr;
-
- auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
- if (!ArrayDeclRef)
- return nullptr;
-
- auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
- if (!ParamDecl)
- return nullptr;
-
- auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
- if (!POSAttr)
- return nullptr;
-
- // Don't load the size if it's a lower bound.
- int POSType = POSAttr->getType();
- if (POSType != 0 && POSType != 1)
- return nullptr;
-
- // Find the implicit size parameter.
- auto PassedSizeIt = SizeArguments.find(ParamDecl);
- if (PassedSizeIt == SizeArguments.end())
- return nullptr;
-
- const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
- assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
- Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
- llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
- C.getSizeType(), E->getExprLoc());
- llvm::Value *SizeOfElement =
- llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
- return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
-}
-
-/// If Base is known to point to the start of an array, return the length of
-/// that array. Return 0 if the length cannot be determined.
-static llvm::Value *getArrayIndexingBound(
- CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
- // For the vector indexing extension, the bound is the number of elements.
- if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
- IndexedType = Base->getType();
- return CGF.Builder.getInt32(VT->getNumElements());
- }
-
- Base = Base->IgnoreParens();
-
- if (const auto *CE = dyn_cast<CastExpr>(Base)) {
- if (CE->getCastKind() == CK_ArrayToPointerDecay &&
- !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
- IndexedType = CE->getSubExpr()->getType();
- const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
- if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
- return CGF.Builder.getInt(CAT->getSize());
- else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
- return CGF.getVLASize(VAT).NumElts;
- // Ignore pass_object_size here. It's not applicable on decayed pointers.
- }
- }
-
- QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
- if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
- IndexedType = Base->getType();
- return POS;
- }
-
- return nullptr;
-}
-
-void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
- llvm::Value *Index, QualType IndexType,
- bool Accessed) {
- assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
- "should not be called unless adding bounds checks");
- SanitizerScope SanScope(this);
-
- QualType IndexedType;
- llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
- if (!Bound)
- return;
-
- bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
- llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
- llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
-
- llvm::Constant *StaticData[] = {
- EmitCheckSourceLocation(E->getExprLoc()),
- EmitCheckTypeDescriptor(IndexedType),
- EmitCheckTypeDescriptor(IndexType)
- };
- llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
- : Builder.CreateICmpULE(IndexVal, BoundVal);
- EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
- SanitizerHandler::OutOfBounds, StaticData, Index);
-}
-
-
-CodeGenFunction::ComplexPairTy CodeGenFunction::
-EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
- bool isInc, bool isPre) {
- ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
-
- llvm::Value *NextVal;
- if (isa<llvm::IntegerType>(InVal.first->getType())) {
- uint64_t AmountVal = isInc ? 1 : -1;
- NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
-
- // Add the inc/dec to the real part.
- NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
- } else {
- QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
- llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
- if (!isInc)
- FVal.changeSign();
- NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
-
- // Add the inc/dec to the real part.
- NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
- }
-
- ComplexPairTy IncVal(NextVal, InVal.second);
-
- // Store the updated result through the lvalue.
- EmitStoreOfComplex(IncVal, LV, /*init*/ false);
-
- // If this is a postinc, return the value read from memory, otherwise use the
- // updated value.
- return isPre ? IncVal : InVal;
-}
-
-void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
- CodeGenFunction *CGF) {
- // Bind VLAs in the cast type.
- if (CGF && E->getType()->isVariablyModifiedType())
- CGF->EmitVariablyModifiedType(E->getType());
-
- if (CGDebugInfo *DI = getModuleDebugInfo())
- DI->EmitExplicitCastType(E->getType());
-}
-
-//===----------------------------------------------------------------------===//
-// LValue Expression Emission
-//===----------------------------------------------------------------------===//
-
-/// EmitPointerWithAlignment - Given an expression of pointer type, try to
-/// derive a more accurate bound on the alignment of the pointer.
-Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
- LValueBaseInfo *BaseInfo,
- TBAAAccessInfo *TBAAInfo) {
- // We allow this with ObjC object pointers because of fragile ABIs.
- assert(E->getType()->isPointerType() ||
- E->getType()->isObjCObjectPointerType());
- E = E->IgnoreParens();
-
- // Casts:
- if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
- if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
- CGM.EmitExplicitCastExprType(ECE, this);
-
- switch (CE->getCastKind()) {
- // Non-converting casts (but not C's implicit conversion from void*).
- case CK_BitCast:
- case CK_NoOp:
- case CK_AddressSpaceConversion:
- if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
- if (PtrTy->getPointeeType()->isVoidType())
- break;
-
- LValueBaseInfo InnerBaseInfo;
- TBAAAccessInfo InnerTBAAInfo;
- Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
- &InnerBaseInfo,
- &InnerTBAAInfo);
- if (BaseInfo) *BaseInfo = InnerBaseInfo;
- if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
-
- if (isa<ExplicitCastExpr>(CE)) {
- LValueBaseInfo TargetTypeBaseInfo;
- TBAAAccessInfo TargetTypeTBAAInfo;
- CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
- &TargetTypeBaseInfo,
- &TargetTypeTBAAInfo);
- if (TBAAInfo)
- *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
- TargetTypeTBAAInfo);
- // If the source l-value is opaque, honor the alignment of the
- // casted-to type.
- if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
- if (BaseInfo)
- BaseInfo->mergeForCast(TargetTypeBaseInfo);
- Addr = Address(Addr.getPointer(), Align);
- }
- }
-
- if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
- CE->getCastKind() == CK_BitCast) {
- if (auto PT = E->getType()->getAs<PointerType>())
- EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
- /*MayBeNull=*/true,
- CodeGenFunction::CFITCK_UnrelatedCast,
- CE->getBeginLoc());
- }
- return CE->getCastKind() != CK_AddressSpaceConversion
- ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
- : Builder.CreateAddrSpaceCast(Addr,
- ConvertType(E->getType()));
- }
- break;
-
- // Array-to-pointer decay.
- case CK_ArrayToPointerDecay:
- return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
-
- // Derived-to-base conversions.
- case CK_UncheckedDerivedToBase:
- case CK_DerivedToBase: {
- // TODO: Support accesses to members of base classes in TBAA. For now, we
- // conservatively pretend that the complete object is of the base class
- // type.
- if (TBAAInfo)
- *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
- Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
- auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
- return GetAddressOfBaseClass(Addr, Derived,
- CE->path_begin(), CE->path_end(),
- ShouldNullCheckClassCastValue(CE),
- CE->getExprLoc());
- }
-
- // TODO: Is there any reason to treat base-to-derived conversions
- // specially?
- default:
- break;
- }
- }
-
- // Unary &.
- if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
- if (UO->getOpcode() == UO_AddrOf) {
- LValue LV = EmitLValue(UO->getSubExpr());
- if (BaseInfo) *BaseInfo = LV.getBaseInfo();
- if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
- return LV.getAddress();
- }
- }
-
- // TODO: conditional operators, comma.
-
- // Otherwise, use the alignment of the type.
- CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
- TBAAInfo);
- return Address(EmitScalarExpr(E), Align);
-}
-
-RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
- if (Ty->isVoidType())
- return RValue::get(nullptr);
-
- switch (getEvaluationKind(Ty)) {
- case TEK_Complex: {
- llvm::Type *EltTy =
- ConvertType(Ty->castAs<ComplexType>()->getElementType());
- llvm::Value *U = llvm::UndefValue::get(EltTy);
- return RValue::getComplex(std::make_pair(U, U));
- }
-
- // If this is a use of an undefined aggregate type, the aggregate must have an
- // identifiable address. Just because the contents of the value are undefined
- // doesn't mean that the address can't be taken and compared.
- case TEK_Aggregate: {
- Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
- return RValue::getAggregate(DestPtr);
- }
-
- case TEK_Scalar:
- return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
- }
- llvm_unreachable("bad evaluation kind");
-}
-
-RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
- const char *Name) {
- ErrorUnsupported(E, Name);
- return GetUndefRValue(E->getType());
-}
-
-LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
- const char *Name) {
- ErrorUnsupported(E, Name);
- llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
- return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
- E->getType());
-}
-
-bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
- const Expr *Base = Obj;
- while (!isa<CXXThisExpr>(Base)) {
- // The result of a dynamic_cast can be null.
- if (isa<CXXDynamicCastExpr>(Base))
- return false;
-
- if (const auto *CE = dyn_cast<CastExpr>(Base)) {
- Base = CE->getSubExpr();
- } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
- Base = PE->getSubExpr();
- } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
- if (UO->getOpcode() == UO_Extension)
- Base = UO->getSubExpr();
- else
- return false;
- } else {
- return false;
- }
- }
- return true;
-}
-
-LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
- LValue LV;
- if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
- LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
- else
- LV = EmitLValue(E);
- if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
- SanitizerSet SkippedChecks;
- if (const auto *ME = dyn_cast<MemberExpr>(E)) {
- bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
- if (IsBaseCXXThis)
- SkippedChecks.set(SanitizerKind::Alignment, true);
- if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
- SkippedChecks.set(SanitizerKind::Null, true);
- }
- EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
- E->getType(), LV.getAlignment(), SkippedChecks);
- }
- return LV;
-}
-
-/// EmitLValue - Emit code to compute a designator that specifies the location
-/// of the expression.
-///
-/// This can return one of two things: a simple address or a bitfield reference.
-/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
-/// an LLVM pointer type.
-///
-/// If this returns a bitfield reference, nothing about the pointee type of the
-/// LLVM value is known: For example, it may not be a pointer to an integer.
-///
-/// If this returns a normal address, and if the lvalue's C type is fixed size,
-/// this method guarantees that the returned pointer type will point to an LLVM
-/// type of the same size of the lvalue's type. If the lvalue has a variable
-/// length type, this is not possible.
-///
-LValue CodeGenFunction::EmitLValue(const Expr *E) {
- ApplyDebugLocation DL(*this, E);
- switch (E->getStmtClass()) {
- default: return EmitUnsupportedLValue(E, "l-value expression");
-
- case Expr::ObjCPropertyRefExprClass:
- llvm_unreachable("cannot emit a property reference directly");
-
- case Expr::ObjCSelectorExprClass:
- return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
- case Expr::ObjCIsaExprClass:
- return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
- case Expr::BinaryOperatorClass:
- return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
- case Expr::CompoundAssignOperatorClass: {
- QualType Ty = E->getType();
- if (const AtomicType *AT = Ty->getAs<AtomicType>())
- Ty = AT->getValueType();
- if (!Ty->isAnyComplexType())
- return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
- return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
- }
- case Expr::CallExprClass:
- case Expr::CXXMemberCallExprClass:
- case Expr::CXXOperatorCallExprClass:
- case Expr::UserDefinedLiteralClass:
- return EmitCallExprLValue(cast<CallExpr>(E));
- case Expr::VAArgExprClass:
- return EmitVAArgExprLValue(cast<VAArgExpr>(E));
- case Expr::DeclRefExprClass:
- return EmitDeclRefLValue(cast<DeclRefExpr>(E));
- case Expr::ConstantExprClass:
- return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
- case Expr::ParenExprClass:
- return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
- case Expr::GenericSelectionExprClass:
- return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
- case Expr::PredefinedExprClass:
- return EmitPredefinedLValue(cast<PredefinedExpr>(E));
- case Expr::StringLiteralClass:
- return EmitStringLiteralLValue(cast<StringLiteral>(E));
- case Expr::ObjCEncodeExprClass:
- return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
- case Expr::PseudoObjectExprClass:
- return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
- case Expr::InitListExprClass:
- return EmitInitListLValue(cast<InitListExpr>(E));
- case Expr::CXXTemporaryObjectExprClass:
- case Expr::CXXConstructExprClass:
- return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
- case Expr::CXXBindTemporaryExprClass:
- return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
- case Expr::CXXUuidofExprClass:
- return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
- case Expr::LambdaExprClass:
- return EmitLambdaLValue(cast<LambdaExpr>(E));
-
- case Expr::ExprWithCleanupsClass: {
- const auto *cleanups = cast<ExprWithCleanups>(E);
- enterFullExpression(cleanups);
- RunCleanupsScope Scope(*this);
- LValue LV = EmitLValue(cleanups->getSubExpr());
- if (LV.isSimple()) {
- // Defend against branches out of gnu statement expressions surrounded by
- // cleanups.
- llvm::Value *V = LV.getPointer();
- Scope.ForceCleanup({&V});
- return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
- getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
- }
- // FIXME: Is it possible to create an ExprWithCleanups that produces a
- // bitfield lvalue or some other non-simple lvalue?
- return LV;
- }
-
- case Expr::CXXDefaultArgExprClass:
- return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
- case Expr::CXXDefaultInitExprClass: {
- CXXDefaultInitExprScope Scope(*this);
- return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
- }
- case Expr::CXXTypeidExprClass:
- return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
-
- case Expr::ObjCMessageExprClass:
- return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
- case Expr::ObjCIvarRefExprClass:
- return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
- case Expr::StmtExprClass:
- return EmitStmtExprLValue(cast<StmtExpr>(E));
- case Expr::UnaryOperatorClass:
- return EmitUnaryOpLValue(cast<UnaryOperator>(E));
- case Expr::ArraySubscriptExprClass:
- return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
- case Expr::OMPArraySectionExprClass:
- return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
- case Expr::ExtVectorElementExprClass:
- return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
- case Expr::MemberExprClass:
- return EmitMemberExpr(cast<MemberExpr>(E));
- case Expr::CompoundLiteralExprClass:
- return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
- case Expr::ConditionalOperatorClass:
- return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
- case Expr::BinaryConditionalOperatorClass:
- return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
- case Expr::ChooseExprClass:
- return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
- case Expr::OpaqueValueExprClass:
- return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
- case Expr::SubstNonTypeTemplateParmExprClass:
- return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
- case Expr::ImplicitCastExprClass:
- case Expr::CStyleCastExprClass:
- case Expr::CXXFunctionalCastExprClass:
- case Expr::CXXStaticCastExprClass:
- case Expr::CXXDynamicCastExprClass:
- case Expr::CXXReinterpretCastExprClass:
- case Expr::CXXConstCastExprClass:
- case Expr::ObjCBridgedCastExprClass:
- return EmitCastLValue(cast<CastExpr>(E));
-
- case Expr::MaterializeTemporaryExprClass:
- return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
-
- case Expr::CoawaitExprClass:
- return EmitCoawaitLValue(cast<CoawaitExpr>(E));
- case Expr::CoyieldExprClass:
- return EmitCoyieldLValue(cast<CoyieldExpr>(E));
- }
-}
-
-/// Given an object of the given canonical type, can we safely copy a
-/// value out of it based on its initializer?
-static bool isConstantEmittableObjectType(QualType type) {
- assert(type.isCanonical());
- assert(!type->isReferenceType());
-
- // Must be const-qualified but non-volatile.
- Qualifiers qs = type.getLocalQualifiers();
- if (!qs.hasConst() || qs.hasVolatile()) return false;
-
- // Otherwise, all object types satisfy this except C++ classes with
- // mutable subobjects or non-trivial copy/destroy behavior.
- if (const auto *RT = dyn_cast<RecordType>(type))
- if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
- if (RD->hasMutableFields() || !RD->isTrivial())
- return false;
-
- return true;
-}
-
-/// Can we constant-emit a load of a reference to a variable of the
-/// given type? This is different from predicates like
-/// Decl::isUsableInConstantExpressions because we do want it to apply
-/// in situations that don't necessarily satisfy the language's rules
-/// for this (e.g. C++'s ODR-use rules). For example, we want to able
-/// to do this with const float variables even if those variables
-/// aren't marked 'constexpr'.
-enum ConstantEmissionKind {
- CEK_None,
- CEK_AsReferenceOnly,
- CEK_AsValueOrReference,
- CEK_AsValueOnly
-};
-static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
- type = type.getCanonicalType();
- if (const auto *ref = dyn_cast<ReferenceType>(type)) {
- if (isConstantEmittableObjectType(ref->getPointeeType()))
- return CEK_AsValueOrReference;
- return CEK_AsReferenceOnly;
- }
- if (isConstantEmittableObjectType(type))
- return CEK_AsValueOnly;
- return CEK_None;
-}
-
-/// Try to emit a reference to the given value without producing it as
-/// an l-value. This is actually more than an optimization: we can't
-/// produce an l-value for variables that we never actually captured
-/// in a block or lambda, which means const int variables or constexpr
-/// literals or similar.
-CodeGenFunction::ConstantEmission
-CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
- ValueDecl *value = refExpr->getDecl();
-
- // The value needs to be an enum constant or a constant variable.
- ConstantEmissionKind CEK;
- if (isa<ParmVarDecl>(value)) {
- CEK = CEK_None;
- } else if (auto *var = dyn_cast<VarDecl>(value)) {
- CEK = checkVarTypeForConstantEmission(var->getType());
- } else if (isa<EnumConstantDecl>(value)) {
- CEK = CEK_AsValueOnly;
- } else {
- CEK = CEK_None;
- }
- if (CEK == CEK_None) return ConstantEmission();
-
- Expr::EvalResult result;
- bool resultIsReference;
- QualType resultType;
-
- // It's best to evaluate all the way as an r-value if that's permitted.
- if (CEK != CEK_AsReferenceOnly &&
- refExpr->EvaluateAsRValue(result, getContext())) {
- resultIsReference = false;
- resultType = refExpr->getType();
-
- // Otherwise, try to evaluate as an l-value.
- } else if (CEK != CEK_AsValueOnly &&
- refExpr->EvaluateAsLValue(result, getContext())) {
- resultIsReference = true;
- resultType = value->getType();
-
- // Failure.
- } else {
- return ConstantEmission();
- }
-
- // In any case, if the initializer has side-effects, abandon ship.
- if (result.HasSideEffects)
- return ConstantEmission();
-
- // Emit as a constant.
- auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
- result.Val, resultType);
-
- // Make sure we emit a debug reference to the global variable.
- // This should probably fire even for
- if (isa<VarDecl>(value)) {
- if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
- EmitDeclRefExprDbgValue(refExpr, result.Val);
- } else {
- assert(isa<EnumConstantDecl>(value));
- EmitDeclRefExprDbgValue(refExpr, result.Val);
- }
-
- // If we emitted a reference constant, we need to dereference that.
- if (resultIsReference)
- return ConstantEmission::forReference(C);
-
- return ConstantEmission::forValue(C);
-}
-
-static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
- const MemberExpr *ME) {
- if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
- // Try to emit static variable member expressions as DREs.
- return DeclRefExpr::Create(
- CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
- /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
- ME->getType(), ME->getValueKind());
- }
- return nullptr;
-}
-
-CodeGenFunction::ConstantEmission
-CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
- if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
- return tryEmitAsConstant(DRE);
- return ConstantEmission();
-}
-
-llvm::Value *CodeGenFunction::emitScalarConstant(
- const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
- assert(Constant && "not a constant");
- if (Constant.isReference())
- return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
- E->getExprLoc())
- .getScalarVal();
- return Constant.getValue();
-}
-
-llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
- SourceLocation Loc) {
- return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
- lvalue.getType(), Loc, lvalue.getBaseInfo(),
- lvalue.getTBAAInfo(), lvalue.isNontemporal());
-}
-
-static bool hasBooleanRepresentation(QualType Ty) {
- if (Ty->isBooleanType())
- return true;
-
- if (const EnumType *ET = Ty->getAs<EnumType>())
- return ET->getDecl()->getIntegerType()->isBooleanType();
-
- if (const AtomicType *AT = Ty->getAs<AtomicType>())
- return hasBooleanRepresentation(AT->getValueType());
-
- return false;
-}
-
-static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
- llvm::APInt &Min, llvm::APInt &End,
- bool StrictEnums, bool IsBool) {
- const EnumType *ET = Ty->getAs<EnumType>();
- bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
- ET && !ET->getDecl()->isFixed();
- if (!IsBool && !IsRegularCPlusPlusEnum)
- return false;
-
- if (IsBool) {
- Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
- End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
- } else {
- const EnumDecl *ED = ET->getDecl();
- llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
- unsigned Bitwidth = LTy->getScalarSizeInBits();
- unsigned NumNegativeBits = ED->getNumNegativeBits();
- unsigned NumPositiveBits = ED->getNumPositiveBits();
-
- if (NumNegativeBits) {
- unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
- assert(NumBits <= Bitwidth);
- End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
- Min = -End;
- } else {
- assert(NumPositiveBits <= Bitwidth);
- End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
- Min = llvm::APInt(Bitwidth, 0);
- }
- }
- return true;
-}
-
-llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
- llvm::APInt Min, End;
- if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
- hasBooleanRepresentation(Ty)))
- return nullptr;
-
- llvm::MDBuilder MDHelper(getLLVMContext());
- return MDHelper.createRange(Min, End);
-}
-
-bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
- SourceLocation Loc) {
- bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
- bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
- if (!HasBoolCheck && !HasEnumCheck)
- return false;
-
- bool IsBool = hasBooleanRepresentation(Ty) ||
- NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
- bool NeedsBoolCheck = HasBoolCheck && IsBool;
- bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
- if (!NeedsBoolCheck && !NeedsEnumCheck)
- return false;
-
- // Single-bit booleans don't need to be checked. Special-case this to avoid
- // a bit width mismatch when handling bitfield values. This is handled by
- // EmitFromMemory for the non-bitfield case.
- if (IsBool &&
- cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
- return false;
-
- llvm::APInt Min, End;
- if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
- return true;
-
- auto &Ctx = getLLVMContext();
- SanitizerScope SanScope(this);
- llvm::Value *Check;
- --End;
- if (!Min) {
- Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
- } else {
- llvm::Value *Upper =
- Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
- llvm::Value *Lower =
- Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
- Check = Builder.CreateAnd(Upper, Lower);
- }
- llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
- EmitCheckTypeDescriptor(Ty)};
- SanitizerMask Kind =
- NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
- EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
- StaticArgs, EmitCheckValue(Value));
- return true;
-}
-
-llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
- QualType Ty,
- SourceLocation Loc,
- LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo,
- bool isNontemporal) {
- if (!CGM.getCodeGenOpts().PreserveVec3Type) {
- // For better performance, handle vector loads differently.
- if (Ty->isVectorType()) {
- const llvm::Type *EltTy = Addr.getElementType();
-
- const auto *VTy = cast<llvm::VectorType>(EltTy);
-
- // Handle vectors of size 3 like size 4 for better performance.
- if (VTy->getNumElements() == 3) {
-
- // Bitcast to vec4 type.
- llvm::VectorType *vec4Ty =
- llvm::VectorType::get(VTy->getElementType(), 4);
- Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
- // Now load value.
- llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
-
- // Shuffle vector to get vec3.
- V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
- {0, 1, 2}, "extractVec");
- return EmitFromMemory(V, Ty);
- }
- }
- }
-
- // Atomic operations have to be done on integral types.
- LValue AtomicLValue =
- LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
- if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
- return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
- }
-
- llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
- if (isNontemporal) {
- llvm::MDNode *Node = llvm::MDNode::get(
- Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
- Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
- }
-
- CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
-
- if (EmitScalarRangeCheck(Load, Ty, Loc)) {
- // In order to prevent the optimizer from throwing away the check, don't
- // attach range metadata to the load.
- } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
- if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
- Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
-
- return EmitFromMemory(Load, Ty);
-}
-
-llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
- // Bool has a different representation in memory than in registers.
- if (hasBooleanRepresentation(Ty)) {
- // This should really always be an i1, but sometimes it's already
- // an i8, and it's awkward to track those cases down.
- if (Value->getType()->isIntegerTy(1))
- return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
- assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
- "wrong value rep of bool");
- }
-
- return Value;
-}
-
-llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
- // Bool has a different representation in memory than in registers.
- if (hasBooleanRepresentation(Ty)) {
- assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
- "wrong value rep of bool");
- return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
- }
-
- return Value;
-}
-
-void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
- bool Volatile, QualType Ty,
- LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo,
- bool isInit, bool isNontemporal) {
- if (!CGM.getCodeGenOpts().PreserveVec3Type) {
- // Handle vectors differently to get better performance.
- if (Ty->isVectorType()) {
- llvm::Type *SrcTy = Value->getType();
- auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
- // Handle vec3 special.
- if (VecTy && VecTy->getNumElements() == 3) {
- // Our source is a vec3, do a shuffle vector to make it a vec4.
- llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
- Builder.getInt32(2),
- llvm::UndefValue::get(Builder.getInt32Ty())};
- llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
- Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
- MaskV, "extractVec");
- SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
- }
- if (Addr.getElementType() != SrcTy) {
- Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
- }
- }
- }
-
- Value = EmitToMemory(Value, Ty);
-
- LValue AtomicLValue =
- LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
- if (Ty->isAtomicType() ||
- (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
- EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
- return;
- }
-
- llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
- if (isNontemporal) {
- llvm::MDNode *Node =
- llvm::MDNode::get(Store->getContext(),
- llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
- Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
- }
-
- CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
-}
-
-void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
- bool isInit) {
- EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
- lvalue.getType(), lvalue.getBaseInfo(),
- lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
-}
-
-/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
-/// method emits the address of the lvalue, then loads the result as an rvalue,
-/// returning the rvalue.
-RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
- if (LV.isObjCWeak()) {
- // load of a __weak object.
- Address AddrWeakObj = LV.getAddress();
- return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
- AddrWeakObj));
- }
- if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
- // In MRC mode, we do a load+autorelease.
- if (!getLangOpts().ObjCAutoRefCount) {
- return RValue::get(EmitARCLoadWeak(LV.getAddress()));
- }
-
- // In ARC mode, we load retained and then consume the value.
- llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
- Object = EmitObjCConsumeObject(LV.getType(), Object);
- return RValue::get(Object);
- }
-
- if (LV.isSimple()) {
- assert(!LV.getType()->isFunctionType());
-
- // Everything needs a load.
- return RValue::get(EmitLoadOfScalar(LV, Loc));
- }
-
- if (LV.isVectorElt()) {
- llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
- LV.isVolatileQualified());
- return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
- "vecext"));
- }
-
- // If this is a reference to a subset of the elements of a vector, either
- // shuffle the input or extract/insert them as appropriate.
- if (LV.isExtVectorElt())
- return EmitLoadOfExtVectorElementLValue(LV);
-
- // Global Register variables always invoke intrinsics
- if (LV.isGlobalReg())
- return EmitLoadOfGlobalRegLValue(LV);
-
- assert(LV.isBitField() && "Unknown LValue type!");
- return EmitLoadOfBitfieldLValue(LV, Loc);
-}
-
-RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
- SourceLocation Loc) {
- const CGBitFieldInfo &Info = LV.getBitFieldInfo();
-
- // Get the output type.
- llvm::Type *ResLTy = ConvertType(LV.getType());
-
- Address Ptr = LV.getBitFieldAddress();
- llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
-
- if (Info.IsSigned) {
- assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
- unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
- if (HighBits)
- Val = Builder.CreateShl(Val, HighBits, "bf.shl");
- if (Info.Offset + HighBits)
- Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
- } else {
- if (Info.Offset)
- Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
- if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
- Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
- Info.Size),
- "bf.clear");
- }
- Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
- EmitScalarRangeCheck(Val, LV.getType(), Loc);
- return RValue::get(Val);
-}
-
-// If this is a reference to a subset of the elements of a vector, create an
-// appropriate shufflevector.
-RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
- llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
- LV.isVolatileQualified());
-
- const llvm::Constant *Elts = LV.getExtVectorElts();
-
- // If the result of the expression is a non-vector type, we must be extracting
- // a single element. Just codegen as an extractelement.
- const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
- if (!ExprVT) {
- unsigned InIdx = getAccessedFieldNo(0, Elts);
- llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
- return RValue::get(Builder.CreateExtractElement(Vec, Elt));
- }
-
- // Always use shuffle vector to try to retain the original program structure
- unsigned NumResultElts = ExprVT->getNumElements();
-
- SmallVector<llvm::Constant*, 4> Mask;
- for (unsigned i = 0; i != NumResultElts; ++i)
- Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
-
- llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
- Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
- MaskV);
- return RValue::get(Vec);
-}
-
-/// Generates lvalue for partial ext_vector access.
-Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
- Address VectorAddress = LV.getExtVectorAddress();
- const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
- QualType EQT = ExprVT->getElementType();
- llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
-
- Address CastToPointerElement =
- Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
- "conv.ptr.element");
-
- const llvm::Constant *Elts = LV.getExtVectorElts();
- unsigned ix = getAccessedFieldNo(0, Elts);
-
- Address VectorBasePtrPlusIx =
- Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
- getContext().getTypeSizeInChars(EQT),
- "vector.elt");
-
- return VectorBasePtrPlusIx;
-}
-
-/// Load of global gamed gegisters are always calls to intrinsics.
-RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
- assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
- "Bad type for register variable");
- llvm::MDNode *RegName = cast<llvm::MDNode>(
- cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
-
- // We accept integer and pointer types only
- llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
- llvm::Type *Ty = OrigTy;
- if (OrigTy->isPointerTy())
- Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
- llvm::Type *Types[] = { Ty };
-
- llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
- llvm::Value *Call = Builder.CreateCall(
- F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
- if (OrigTy->isPointerTy())
- Call = Builder.CreateIntToPtr(Call, OrigTy);
- return RValue::get(Call);
-}
-
-
-/// EmitStoreThroughLValue - Store the specified rvalue into the specified
-/// lvalue, where both are guaranteed to the have the same type, and that type
-/// is 'Ty'.
-void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
- bool isInit) {
- if (!Dst.isSimple()) {
- if (Dst.isVectorElt()) {
- // Read/modify/write the vector, inserting the new element.
- llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
- Dst.isVolatileQualified());
- Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
- Dst.getVectorIdx(), "vecins");
- Builder.CreateStore(Vec, Dst.getVectorAddress(),
- Dst.isVolatileQualified());
- return;
- }
-
- // If this is an update of extended vector elements, insert them as
- // appropriate.
- if (Dst.isExtVectorElt())
- return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
-
- if (Dst.isGlobalReg())
- return EmitStoreThroughGlobalRegLValue(Src, Dst);
-
- assert(Dst.isBitField() && "Unknown LValue type");
- return EmitStoreThroughBitfieldLValue(Src, Dst);
- }
-
- // There's special magic for assigning into an ARC-qualified l-value.
- if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
- switch (Lifetime) {
- case Qualifiers::OCL_None:
- llvm_unreachable("present but none");
-
- case Qualifiers::OCL_ExplicitNone:
- // nothing special
- break;
-
- case Qualifiers::OCL_Strong:
- if (isInit) {
- Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
- break;
- }
- EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
- return;
-
- case Qualifiers::OCL_Weak:
- if (isInit)
- // Initialize and then skip the primitive store.
- EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
- else
- EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
- return;
-
- case Qualifiers::OCL_Autoreleasing:
- Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
- Src.getScalarVal()));
- // fall into the normal path
- break;
- }
- }
-
- if (Dst.isObjCWeak() && !Dst.isNonGC()) {
- // load of a __weak object.
- Address LvalueDst = Dst.getAddress();
- llvm::Value *src = Src.getScalarVal();
- CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
- return;
- }
-
- if (Dst.isObjCStrong() && !Dst.isNonGC()) {
- // load of a __strong object.
- Address LvalueDst = Dst.getAddress();
- llvm::Value *src = Src.getScalarVal();
- if (Dst.isObjCIvar()) {
- assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
- llvm::Type *ResultType = IntPtrTy;
- Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
- llvm::Value *RHS = dst.getPointer();
- RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
- llvm::Value *LHS =
- Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
- "sub.ptr.lhs.cast");
- llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
- CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
- BytesBetween);
- } else if (Dst.isGlobalObjCRef()) {
- CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
- Dst.isThreadLocalRef());
- }
- else
- CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
- return;
- }
-
- assert(Src.isScalar() && "Can't emit an agg store with this method");
- EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
-}
-
-void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
- llvm::Value **Result) {
- const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
- llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
- Address Ptr = Dst.getBitFieldAddress();
-
- // Get the source value, truncated to the width of the bit-field.
- llvm::Value *SrcVal = Src.getScalarVal();
-
- // Cast the source to the storage type and shift it into place.
- SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
- /*IsSigned=*/false);
- llvm::Value *MaskedVal = SrcVal;
-
- // See if there are other bits in the bitfield's storage we'll need to load
- // and mask together with source before storing.
- if (Info.StorageSize != Info.Size) {
- assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
- llvm::Value *Val =
- Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
-
- // Mask the source value as needed.
- if (!hasBooleanRepresentation(Dst.getType()))
- SrcVal = Builder.CreateAnd(SrcVal,
- llvm::APInt::getLowBitsSet(Info.StorageSize,
- Info.Size),
- "bf.value");
- MaskedVal = SrcVal;
- if (Info.Offset)
- SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
-
- // Mask out the original value.
- Val = Builder.CreateAnd(Val,
- ~llvm::APInt::getBitsSet(Info.StorageSize,
- Info.Offset,
- Info.Offset + Info.Size),
- "bf.clear");
-
- // Or together the unchanged values and the source value.
- SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
- } else {
- assert(Info.Offset == 0);
- }
-
- // Write the new value back out.
- Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
-
- // Return the new value of the bit-field, if requested.
- if (Result) {
- llvm::Value *ResultVal = MaskedVal;
-
- // Sign extend the value if needed.
- if (Info.IsSigned) {
- assert(Info.Size <= Info.StorageSize);
- unsigned HighBits = Info.StorageSize - Info.Size;
- if (HighBits) {
- ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
- ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
- }
- }
-
- ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
- "bf.result.cast");
- *Result = EmitFromMemory(ResultVal, Dst.getType());
- }
-}
-
-void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
- LValue Dst) {
- // This access turns into a read/modify/write of the vector. Load the input
- // value now.
- llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
- Dst.isVolatileQualified());
- const llvm::Constant *Elts = Dst.getExtVectorElts();
-
- llvm::Value *SrcVal = Src.getScalarVal();
-
- if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
- unsigned NumSrcElts = VTy->getNumElements();
- unsigned NumDstElts = Vec->getType()->getVectorNumElements();
- if (NumDstElts == NumSrcElts) {
- // Use shuffle vector is the src and destination are the same number of
- // elements and restore the vector mask since it is on the side it will be
- // stored.
- SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
- for (unsigned i = 0; i != NumSrcElts; ++i)
- Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
-
- llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
- Vec = Builder.CreateShuffleVector(SrcVal,
- llvm::UndefValue::get(Vec->getType()),
- MaskV);
- } else if (NumDstElts > NumSrcElts) {
- // Extended the source vector to the same length and then shuffle it
- // into the destination.
- // FIXME: since we're shuffling with undef, can we just use the indices
- // into that? This could be simpler.
- SmallVector<llvm::Constant*, 4> ExtMask;
- for (unsigned i = 0; i != NumSrcElts; ++i)
- ExtMask.push_back(Builder.getInt32(i));
- ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
- llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
- llvm::Value *ExtSrcVal =
- Builder.CreateShuffleVector(SrcVal,
- llvm::UndefValue::get(SrcVal->getType()),
- ExtMaskV);
- // build identity
- SmallVector<llvm::Constant*, 4> Mask;
- for (unsigned i = 0; i != NumDstElts; ++i)
- Mask.push_back(Builder.getInt32(i));
-
- // When the vector size is odd and .odd or .hi is used, the last element
- // of the Elts constant array will be one past the size of the vector.
- // Ignore the last element here, if it is greater than the mask size.
- if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
- NumSrcElts--;
-
- // modify when what gets shuffled in
- for (unsigned i = 0; i != NumSrcElts; ++i)
- Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
- llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
- Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
- } else {
- // We should never shorten the vector
- llvm_unreachable("unexpected shorten vector length");
- }
- } else {
- // If the Src is a scalar (not a vector) it must be updating one element.
- unsigned InIdx = getAccessedFieldNo(0, Elts);
- llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
- Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
- }
-
- Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
- Dst.isVolatileQualified());
-}
-
-/// Store of global named registers are always calls to intrinsics.
-void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
- assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
- "Bad type for register variable");
- llvm::MDNode *RegName = cast<llvm::MDNode>(
- cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
- assert(RegName && "Register LValue is not metadata");
-
- // We accept integer and pointer types only
- llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
- llvm::Type *Ty = OrigTy;
- if (OrigTy->isPointerTy())
- Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
- llvm::Type *Types[] = { Ty };
-
- llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
- llvm::Value *Value = Src.getScalarVal();
- if (OrigTy->isPointerTy())
- Value = Builder.CreatePtrToInt(Value, Ty);
- Builder.CreateCall(
- F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
-}
-
-// setObjCGCLValueClass - sets class of the lvalue for the purpose of
-// generating write-barries API. It is currently a global, ivar,
-// or neither.
-static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
- LValue &LV,
- bool IsMemberAccess=false) {
- if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
- return;
-
- if (isa<ObjCIvarRefExpr>(E)) {
- QualType ExpTy = E->getType();
- if (IsMemberAccess && ExpTy->isPointerType()) {
- // If ivar is a structure pointer, assigning to field of
- // this struct follows gcc's behavior and makes it a non-ivar
- // writer-barrier conservatively.
- ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
- if (ExpTy->isRecordType()) {
- LV.setObjCIvar(false);
- return;
- }
- }
- LV.setObjCIvar(true);
- auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
- LV.setBaseIvarExp(Exp->getBase());
- LV.setObjCArray(E->getType()->isArrayType());
- return;
- }
-
- if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
- if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
- if (VD->hasGlobalStorage()) {
- LV.setGlobalObjCRef(true);
- LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
- }
- }
- LV.setObjCArray(E->getType()->isArrayType());
- return;
- }
-
- if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
- return;
- }
-
- if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
- if (LV.isObjCIvar()) {
- // If cast is to a structure pointer, follow gcc's behavior and make it
- // a non-ivar write-barrier.
- QualType ExpTy = E->getType();
- if (ExpTy->isPointerType())
- ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
- if (ExpTy->isRecordType())
- LV.setObjCIvar(false);
- }
- return;
- }
-
- if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
- return;
- }
-
- if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
- return;
- }
-
- if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
- return;
- }
-
- if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
- return;
- }
-
- if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
- if (LV.isObjCIvar() && !LV.isObjCArray())
- // Using array syntax to assigning to what an ivar points to is not
- // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
- LV.setObjCIvar(false);
- else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
- // Using array syntax to assigning to what global points to is not
- // same as assigning to the global itself. {id *G;} G[i] = 0;
- LV.setGlobalObjCRef(false);
- return;
- }
-
- if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
- setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
- // We don't know if member is an 'ivar', but this flag is looked at
- // only in the context of LV.isObjCIvar().
- LV.setObjCArray(E->getType()->isArrayType());
- return;
- }
-}
-
-static llvm::Value *
-EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
- llvm::Value *V, llvm::Type *IRType,
- StringRef Name = StringRef()) {
- unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
- return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
-}
-
-static LValue EmitThreadPrivateVarDeclLValue(
- CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
- llvm::Type *RealVarTy, SourceLocation Loc) {
- Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
- Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
- return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
-}
-
-static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
- const VarDecl *VD, QualType T) {
- llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
- OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
- if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
- return Address::invalid();
- assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
- QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
- Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
- return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
-}
-
-Address
-CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
- LValueBaseInfo *PointeeBaseInfo,
- TBAAAccessInfo *PointeeTBAAInfo) {
- llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
- RefLVal.isVolatile());
- CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
-
- CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
- PointeeBaseInfo, PointeeTBAAInfo,
- /* forPointeeType= */ true);
- return Address(Load, Align);
-}
-
-LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
- LValueBaseInfo PointeeBaseInfo;
- TBAAAccessInfo PointeeTBAAInfo;
- Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
- &PointeeTBAAInfo);
- return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
- PointeeBaseInfo, PointeeTBAAInfo);
-}
-
-Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
- const PointerType *PtrTy,
- LValueBaseInfo *BaseInfo,
- TBAAAccessInfo *TBAAInfo) {
- llvm::Value *Addr = Builder.CreateLoad(Ptr);
- return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
- BaseInfo, TBAAInfo,
- /*forPointeeType=*/true));
-}
-
-LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
- const PointerType *PtrTy) {
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
- return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
-}
-
-static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
- const Expr *E, const VarDecl *VD) {
- QualType T = E->getType();
-
- // If it's thread_local, emit a call to its wrapper function instead.
- if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
- CGF.CGM.getCXXABI().usesThreadWrapperFunction())
- return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
- // Check if the variable is marked as declare target with link clause in
- // device codegen.
- if (CGF.getLangOpts().OpenMPIsDevice) {
- Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
- if (Addr.isValid())
- return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
- }
-
- llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
- llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
- V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
- CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
- Address Addr(V, Alignment);
- // Emit reference to the private copy of the variable if it is an OpenMP
- // threadprivate variable.
- if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
- VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
- return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
- E->getExprLoc());
- }
- LValue LV = VD->getType()->isReferenceType() ?
- CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
- AlignmentSource::Decl) :
- CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
- setObjCGCLValueClass(CGF.getContext(), E, LV);
- return LV;
-}
-
-static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
- const FunctionDecl *FD) {
- if (FD->hasAttr<WeakRefAttr>()) {
- ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
- return aliasee.getPointer();
- }
-
- llvm::Constant *V = CGM.GetAddrOfFunction(FD);
- if (!FD->hasPrototype()) {
- if (const FunctionProtoType *Proto =
- FD->getType()->getAs<FunctionProtoType>()) {
- // Ugly case: for a K&R-style definition, the type of the definition
- // isn't the same as the type of a use. Correct for this with a
- // bitcast.
- QualType NoProtoType =
- CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
- NoProtoType = CGM.getContext().getPointerType(NoProtoType);
- V = llvm::ConstantExpr::getBitCast(V,
- CGM.getTypes().ConvertType(NoProtoType));
- }
- }
- return V;
-}
-
-static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
- const Expr *E, const FunctionDecl *FD) {
- llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
- CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
- return CGF.MakeAddrLValue(V, E->getType(), Alignment,
- AlignmentSource::Decl);
-}
-
-static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
- llvm::Value *ThisValue) {
- QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
- LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
- return CGF.EmitLValueForField(LV, FD);
-}
-
-/// Named Registers are named metadata pointing to the register name
-/// which will be read from/written to as an argument to the intrinsic
-/// @llvm.read/write_register.
-/// So far, only the name is being passed down, but other options such as
-/// register type, allocation type or even optimization options could be
-/// passed down via the metadata node.
-static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
- SmallString<64> Name("llvm.named.register.");
- AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
- assert(Asm->getLabel().size() < 64-Name.size() &&
- "Register name too big");
- Name.append(Asm->getLabel());
- llvm::NamedMDNode *M =
- CGM.getModule().getOrInsertNamedMetadata(Name);
- if (M->getNumOperands() == 0) {
- llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
- Asm->getLabel());
- llvm::Metadata *Ops[] = {Str};
- M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
- }
-
- CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
-
- llvm::Value *Ptr =
- llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
- return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
-}
-
-LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
- const NamedDecl *ND = E->getDecl();
- QualType T = E->getType();
-
- if (const auto *VD = dyn_cast<VarDecl>(ND)) {
- // Global Named registers access via intrinsics only
- if (VD->getStorageClass() == SC_Register &&
- VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
- return EmitGlobalNamedRegister(VD, CGM);
-
- // A DeclRefExpr for a reference initialized by a constant expression can
- // appear without being odr-used. Directly emit the constant initializer.
- const Expr *Init = VD->getAnyInitializer(VD);
- const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
- if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
- VD->isUsableInConstantExpressions(getContext()) &&
- VD->checkInitIsICE() &&
- // Do not emit if it is private OpenMP variable.
- !(E->refersToEnclosingVariableOrCapture() &&
- ((CapturedStmtInfo &&
- (LocalDeclMap.count(VD->getCanonicalDecl()) ||
- CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
- LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
- (BD && BD->capturesVariable(VD))))) {
- llvm::Constant *Val =
- ConstantEmitter(*this).emitAbstract(E->getLocation(),
- *VD->evaluateValue(),
- VD->getType());
- assert(Val && "failed to emit reference constant expression");
- // FIXME: Eventually we will want to emit vector element references.
-
- // Should we be using the alignment of the constant pointer we emitted?
- CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
- /* BaseInfo= */ nullptr,
- /* TBAAInfo= */ nullptr,
- /* forPointeeType= */ true);
- return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
- }
-
- // Check for captured variables.
- if (E->refersToEnclosingVariableOrCapture()) {
- VD = VD->getCanonicalDecl();
- if (auto *FD = LambdaCaptureFields.lookup(VD))
- return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
- else if (CapturedStmtInfo) {
- auto I = LocalDeclMap.find(VD);
- if (I != LocalDeclMap.end()) {
- if (VD->getType()->isReferenceType())
- return EmitLoadOfReferenceLValue(I->second, VD->getType(),
- AlignmentSource::Decl);
- return MakeAddrLValue(I->second, T);
- }
- LValue CapLVal =
- EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
- CapturedStmtInfo->getContextValue());
- return MakeAddrLValue(
- Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
- CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
- CapLVal.getTBAAInfo());
- }
-
- assert(isa<BlockDecl>(CurCodeDecl));
- Address addr = GetAddrOfBlockDecl(VD);
- return MakeAddrLValue(addr, T, AlignmentSource::Decl);
- }
- }
-
- // FIXME: We should be able to assert this for FunctionDecls as well!
- // FIXME: We should be able to assert this for all DeclRefExprs, not just
- // those with a valid source location.
- assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
- !E->getLocation().isValid()) &&
- "Should not use decl without marking it used!");
-
- if (ND->hasAttr<WeakRefAttr>()) {
- const auto *VD = cast<ValueDecl>(ND);
- ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
- return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
- }
-
- if (const auto *VD = dyn_cast<VarDecl>(ND)) {
- // Check if this is a global variable.
- if (VD->hasLinkage() || VD->isStaticDataMember())
- return EmitGlobalVarDeclLValue(*this, E, VD);
-
- Address addr = Address::invalid();
-
- // The variable should generally be present in the local decl map.
- auto iter = LocalDeclMap.find(VD);
- if (iter != LocalDeclMap.end()) {
- addr = iter->second;
-
- // Otherwise, it might be static local we haven't emitted yet for
- // some reason; most likely, because it's in an outer function.
- } else if (VD->isStaticLocal()) {
- addr = Address(CGM.getOrCreateStaticVarDecl(
- *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
- getContext().getDeclAlign(VD));
-
- // No other cases for now.
- } else {
- llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
- }
-
-
- // Check for OpenMP threadprivate variables.
- if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
- VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
- return EmitThreadPrivateVarDeclLValue(
- *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
- E->getExprLoc());
- }
-
- // Drill into block byref variables.
- bool isBlockByref = VD->isEscapingByref();
- if (isBlockByref) {
- addr = emitBlockByrefAddress(addr, VD);
- }
-
- // Drill into reference types.
- LValue LV = VD->getType()->isReferenceType() ?
- EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
- MakeAddrLValue(addr, T, AlignmentSource::Decl);
-
- bool isLocalStorage = VD->hasLocalStorage();
-
- bool NonGCable = isLocalStorage &&
- !VD->getType()->isReferenceType() &&
- !isBlockByref;
- if (NonGCable) {
- LV.getQuals().removeObjCGCAttr();
- LV.setNonGC(true);
- }
-
- bool isImpreciseLifetime =
- (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
- if (isImpreciseLifetime)
- LV.setARCPreciseLifetime(ARCImpreciseLifetime);
- setObjCGCLValueClass(getContext(), E, LV);
- return LV;
- }
-
- if (const auto *FD = dyn_cast<FunctionDecl>(ND))
- return EmitFunctionDeclLValue(*this, E, FD);
-
- // FIXME: While we're emitting a binding from an enclosing scope, all other
- // DeclRefExprs we see should be implicitly treated as if they also refer to
- // an enclosing scope.
- if (const auto *BD = dyn_cast<BindingDecl>(ND))
- return EmitLValue(BD->getBinding());
-
- llvm_unreachable("Unhandled DeclRefExpr");
-}
-
-LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
- // __extension__ doesn't affect lvalue-ness.
- if (E->getOpcode() == UO_Extension)
- return EmitLValue(E->getSubExpr());
-
- QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
- switch (E->getOpcode()) {
- default: llvm_unreachable("Unknown unary operator lvalue!");
- case UO_Deref: {
- QualType T = E->getSubExpr()->getType()->getPointeeType();
- assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
-
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
- &TBAAInfo);
- LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
- LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
-
- // We should not generate __weak write barrier on indirect reference
- // of a pointer to object; as in void foo (__weak id *param); *param = 0;
- // But, we continue to generate __strong write barrier on indirect write
- // into a pointer to object.
- if (getLangOpts().ObjC &&
- getLangOpts().getGC() != LangOptions::NonGC &&
- LV.isObjCWeak())
- LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
- return LV;
- }
- case UO_Real:
- case UO_Imag: {
- LValue LV = EmitLValue(E->getSubExpr());
- assert(LV.isSimple() && "real/imag on non-ordinary l-value");
-
- // __real is valid on scalars. This is a faster way of testing that.
- // __imag can only produce an rvalue on scalars.
- if (E->getOpcode() == UO_Real &&
- !LV.getAddress().getElementType()->isStructTy()) {
- assert(E->getSubExpr()->getType()->isArithmeticType());
- return LV;
- }
-
- QualType T = ExprTy->castAs<ComplexType>()->getElementType();
-
- Address Component =
- (E->getOpcode() == UO_Real
- ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
- : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
- LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
- CGM.getTBAAInfoForSubobject(LV, T));
- ElemLV.getQuals().addQualifiers(LV.getQuals());
- return ElemLV;
- }
- case UO_PreInc:
- case UO_PreDec: {
- LValue LV = EmitLValue(E->getSubExpr());
- bool isInc = E->getOpcode() == UO_PreInc;
-
- if (E->getType()->isAnyComplexType())
- EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
- else
- EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
- return LV;
- }
- }
-}
-
-LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
- return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
- E->getType(), AlignmentSource::Decl);
-}
-
-LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
- return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
- E->getType(), AlignmentSource::Decl);
-}
-
-LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
- auto SL = E->getFunctionName();
- assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
- StringRef FnName = CurFn->getName();
- if (FnName.startswith("\01"))
- FnName = FnName.substr(1);
- StringRef NameItems[] = {
- PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
- std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
- if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
- std::string Name = SL->getString();
- if (!Name.empty()) {
- unsigned Discriminator =
- CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
- if (Discriminator)
- Name += "_" + Twine(Discriminator + 1).str();
- auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
- return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
- } else {
- auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
- return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
- }
- }
- auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
- return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
-}
-
-/// Emit a type description suitable for use by a runtime sanitizer library. The
-/// format of a type descriptor is
-///
-/// \code
-/// { i16 TypeKind, i16 TypeInfo }
-/// \endcode
-///
-/// followed by an array of i8 containing the type name. TypeKind is 0 for an
-/// integer, 1 for a floating point value, and -1 for anything else.
-llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
- // Only emit each type's descriptor once.
- if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
- return C;
-
- uint16_t TypeKind = -1;
- uint16_t TypeInfo = 0;
-
- if (T->isIntegerType()) {
- TypeKind = 0;
- TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
- (T->isSignedIntegerType() ? 1 : 0);
- } else if (T->isFloatingType()) {
- TypeKind = 1;
- TypeInfo = getContext().getTypeSize(T);
- }
-
- // Format the type name as if for a diagnostic, including quotes and
- // optionally an 'aka'.
- SmallString<32> Buffer;
- CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
- (intptr_t)T.getAsOpaquePtr(),
- StringRef(), StringRef(), None, Buffer,
- None);
-
- llvm::Constant *Components[] = {
- Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
- llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
- };
- llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
-
- auto *GV = new llvm::GlobalVariable(
- CGM.getModule(), Descriptor->getType(),
- /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
- GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
- CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
-
- // Remember the descriptor for this type.
- CGM.setTypeDescriptorInMap(T, GV);
-
- return GV;
-}
-
-llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
- llvm::Type *TargetTy = IntPtrTy;
-
- if (V->getType() == TargetTy)
- return V;
-
- // Floating-point types which fit into intptr_t are bitcast to integers
- // and then passed directly (after zero-extension, if necessary).
- if (V->getType()->isFloatingPointTy()) {
- unsigned Bits = V->getType()->getPrimitiveSizeInBits();
- if (Bits <= TargetTy->getIntegerBitWidth())
- V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
- Bits));
- }
-
- // Integers which fit in intptr_t are zero-extended and passed directly.
- if (V->getType()->isIntegerTy() &&
- V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
- return Builder.CreateZExt(V, TargetTy);
-
- // Pointers are passed directly, everything else is passed by address.
- if (!V->getType()->isPointerTy()) {
- Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
- Builder.CreateStore(V, Ptr);
- V = Ptr.getPointer();
- }
- return Builder.CreatePtrToInt(V, TargetTy);
-}
-
-/// Emit a representation of a SourceLocation for passing to a handler
-/// in a sanitizer runtime library. The format for this data is:
-/// \code
-/// struct SourceLocation {
-/// const char *Filename;
-/// int32_t Line, Column;
-/// };
-/// \endcode
-/// For an invalid SourceLocation, the Filename pointer is null.
-llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
- llvm::Constant *Filename;
- int Line, Column;
-
- PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
- if (PLoc.isValid()) {
- StringRef FilenameString = PLoc.getFilename();
-
- int PathComponentsToStrip =
- CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
- if (PathComponentsToStrip < 0) {
- assert(PathComponentsToStrip != INT_MIN);
- int PathComponentsToKeep = -PathComponentsToStrip;
- auto I = llvm::sys::path::rbegin(FilenameString);
- auto E = llvm::sys::path::rend(FilenameString);
- while (I != E && --PathComponentsToKeep)
- ++I;
-
- FilenameString = FilenameString.substr(I - E);
- } else if (PathComponentsToStrip > 0) {
- auto I = llvm::sys::path::begin(FilenameString);
- auto E = llvm::sys::path::end(FilenameString);
- while (I != E && PathComponentsToStrip--)
- ++I;
-
- if (I != E)
- FilenameString =
- FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
- else
- FilenameString = llvm::sys::path::filename(FilenameString);
- }
-
- auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
- CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
- cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
- Filename = FilenameGV.getPointer();
- Line = PLoc.getLine();
- Column = PLoc.getColumn();
- } else {
- Filename = llvm::Constant::getNullValue(Int8PtrTy);
- Line = Column = 0;
- }
-
- llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
- Builder.getInt32(Column)};
-
- return llvm::ConstantStruct::getAnon(Data);
-}
-
-namespace {
-/// Specify under what conditions this check can be recovered
-enum class CheckRecoverableKind {
- /// Always terminate program execution if this check fails.
- Unrecoverable,
- /// Check supports recovering, runtime has both fatal (noreturn) and
- /// non-fatal handlers for this check.
- Recoverable,
- /// Runtime conditionally aborts, always need to support recovery.
- AlwaysRecoverable
-};
-}
-
-static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
- assert(llvm::countPopulation(Kind) == 1);
- switch (Kind) {
- case SanitizerKind::Vptr:
- return CheckRecoverableKind::AlwaysRecoverable;
- case SanitizerKind::Return:
- case SanitizerKind::Unreachable:
- return CheckRecoverableKind::Unrecoverable;
- default:
- return CheckRecoverableKind::Recoverable;
- }
-}
-
-namespace {
-struct SanitizerHandlerInfo {
- char const *const Name;
- unsigned Version;
-};
-}
-
-const SanitizerHandlerInfo SanitizerHandlers[] = {
-#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
- LIST_SANITIZER_CHECKS
-#undef SANITIZER_CHECK
-};
-
-static void emitCheckHandlerCall(CodeGenFunction &CGF,
- llvm::FunctionType *FnType,
- ArrayRef<llvm::Value *> FnArgs,
- SanitizerHandler CheckHandler,
- CheckRecoverableKind RecoverKind, bool IsFatal,
- llvm::BasicBlock *ContBB) {
- assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
- Optional<ApplyDebugLocation> DL;
- if (!CGF.Builder.getCurrentDebugLocation()) {
- // Ensure that the call has at least an artificial debug location.
- DL.emplace(CGF, SourceLocation());
- }
- bool NeedsAbortSuffix =
- IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
- bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
- const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
- const StringRef CheckName = CheckInfo.Name;
- std::string FnName = "__ubsan_handle_" + CheckName.str();
- if (CheckInfo.Version && !MinimalRuntime)
- FnName += "_v" + llvm::utostr(CheckInfo.Version);
- if (MinimalRuntime)
- FnName += "_minimal";
- if (NeedsAbortSuffix)
- FnName += "_abort";
- bool MayReturn =
- !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
-
- llvm::AttrBuilder B;
- if (!MayReturn) {
- B.addAttribute(llvm::Attribute::NoReturn)
- .addAttribute(llvm::Attribute::NoUnwind);
- }
- B.addAttribute(llvm::Attribute::UWTable);
-
- llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
- FnType, FnName,
- llvm::AttributeList::get(CGF.getLLVMContext(),
- llvm::AttributeList::FunctionIndex, B),
- /*Local=*/true);
- llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
- if (!MayReturn) {
- HandlerCall->setDoesNotReturn();
- CGF.Builder.CreateUnreachable();
- } else {
- CGF.Builder.CreateBr(ContBB);
- }
-}
-
-void CodeGenFunction::EmitCheck(
- ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
- SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
- ArrayRef<llvm::Value *> DynamicArgs) {
- assert(IsSanitizerScope);
- assert(Checked.size() > 0);
- assert(CheckHandler >= 0 &&
- size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
- const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
-
- llvm::Value *FatalCond = nullptr;
- llvm::Value *RecoverableCond = nullptr;
- llvm::Value *TrapCond = nullptr;
- for (int i = 0, n = Checked.size(); i < n; ++i) {
- llvm::Value *Check = Checked[i].first;
- // -fsanitize-trap= overrides -fsanitize-recover=.
- llvm::Value *&Cond =
- CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
- ? TrapCond
- : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
- ? RecoverableCond
- : FatalCond;
- Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
- }
-
- if (TrapCond)
- EmitTrapCheck(TrapCond);
- if (!FatalCond && !RecoverableCond)
- return;
-
- llvm::Value *JointCond;
- if (FatalCond && RecoverableCond)
- JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
- else
- JointCond = FatalCond ? FatalCond : RecoverableCond;
- assert(JointCond);
-
- CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
- assert(SanOpts.has(Checked[0].second));
-#ifndef NDEBUG
- for (int i = 1, n = Checked.size(); i < n; ++i) {
- assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
- "All recoverable kinds in a single check must be same!");
- assert(SanOpts.has(Checked[i].second));
- }
-#endif
-
- llvm::BasicBlock *Cont = createBasicBlock("cont");
- llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
- llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
- // Give hint that we very much don't expect to execute the handler
- // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
- llvm::MDBuilder MDHelper(getLLVMContext());
- llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
- Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
- EmitBlock(Handlers);
-
- // Handler functions take an i8* pointing to the (handler-specific) static
- // information block, followed by a sequence of intptr_t arguments
- // representing operand values.
- SmallVector<llvm::Value *, 4> Args;
- SmallVector<llvm::Type *, 4> ArgTypes;
- if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
- Args.reserve(DynamicArgs.size() + 1);
- ArgTypes.reserve(DynamicArgs.size() + 1);
-
- // Emit handler arguments and create handler function type.
- if (!StaticArgs.empty()) {
- llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
- auto *InfoPtr =
- new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
- llvm::GlobalVariable::PrivateLinkage, Info);
- InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
- CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
- Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
- ArgTypes.push_back(Int8PtrTy);
- }
-
- for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
- Args.push_back(EmitCheckValue(DynamicArgs[i]));
- ArgTypes.push_back(IntPtrTy);
- }
- }
-
- llvm::FunctionType *FnType =
- llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
-
- if (!FatalCond || !RecoverableCond) {
- // Simple case: we need to generate a single handler call, either
- // fatal, or non-fatal.
- emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
- (FatalCond != nullptr), Cont);
- } else {
- // Emit two handler calls: first one for set of unrecoverable checks,
- // another one for recoverable.
- llvm::BasicBlock *NonFatalHandlerBB =
- createBasicBlock("non_fatal." + CheckName);
- llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
- Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
- EmitBlock(FatalHandlerBB);
- emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
- NonFatalHandlerBB);
- EmitBlock(NonFatalHandlerBB);
- emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
- Cont);
- }
-
- EmitBlock(Cont);
-}
-
-void CodeGenFunction::EmitCfiSlowPathCheck(
- SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
- llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
- llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
-
- llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
- llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
-
- llvm::MDBuilder MDHelper(getLLVMContext());
- llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
- BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
-
- EmitBlock(CheckBB);
-
- bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
-
- llvm::CallInst *CheckCall;
- llvm::Constant *SlowPathFn;
- if (WithDiag) {
- llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
- auto *InfoPtr =
- new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
- llvm::GlobalVariable::PrivateLinkage, Info);
- InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
- CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
-
- SlowPathFn = CGM.getModule().getOrInsertFunction(
- "__cfi_slowpath_diag",
- llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
- false));
- CheckCall = Builder.CreateCall(
- SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
- } else {
- SlowPathFn = CGM.getModule().getOrInsertFunction(
- "__cfi_slowpath",
- llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
- CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
- }
-
- CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
- CheckCall->setDoesNotThrow();
-
- EmitBlock(Cont);
-}
-
-// Emit a stub for __cfi_check function so that the linker knows about this
-// symbol in LTO mode.
-void CodeGenFunction::EmitCfiCheckStub() {
- llvm::Module *M = &CGM.getModule();
- auto &Ctx = M->getContext();
- llvm::Function *F = llvm::Function::Create(
- llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
- llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
- CGM.setDSOLocal(F);
- llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
- // FIXME: consider emitting an intrinsic call like
- // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
- // which can be lowered in CrossDSOCFI pass to the actual contents of
- // __cfi_check. This would allow inlining of __cfi_check calls.
- llvm::CallInst::Create(
- llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
- llvm::ReturnInst::Create(Ctx, nullptr, BB);
-}
-
-// This function is basically a switch over the CFI failure kind, which is
-// extracted from CFICheckFailData (1st function argument). Each case is either
-// llvm.trap or a call to one of the two runtime handlers, based on
-// -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
-// failure kind) traps, but this should really never happen. CFICheckFailData
-// can be nullptr if the calling module has -fsanitize-trap behavior for this
-// check kind; in this case __cfi_check_fail traps as well.
-void CodeGenFunction::EmitCfiCheckFail() {
- SanitizerScope SanScope(this);
- FunctionArgList Args;
- ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
- ImplicitParamDecl::Other);
- ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
- ImplicitParamDecl::Other);
- Args.push_back(&ArgData);
- Args.push_back(&ArgAddr);
-
- const CGFunctionInfo &FI =
- CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
-
- llvm::Function *F = llvm::Function::Create(
- llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
- llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
- F->setVisibility(llvm::GlobalValue::HiddenVisibility);
-
- StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
- SourceLocation());
-
- // This function should not be affected by blacklist. This function does
- // not have a source location, but "src:*" would still apply. Revert any
- // changes to SanOpts made in StartFunction.
- SanOpts = CGM.getLangOpts().Sanitize;
-
- llvm::Value *Data =
- EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
- CGM.getContext().VoidPtrTy, ArgData.getLocation());
- llvm::Value *Addr =
- EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
- CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
-
- // Data == nullptr means the calling module has trap behaviour for this check.
- llvm::Value *DataIsNotNullPtr =
- Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
- EmitTrapCheck(DataIsNotNullPtr);
-
- llvm::StructType *SourceLocationTy =
- llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
- llvm::StructType *CfiCheckFailDataTy =
- llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
-
- llvm::Value *V = Builder.CreateConstGEP2_32(
- CfiCheckFailDataTy,
- Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
- 0);
- Address CheckKindAddr(V, getIntAlign());
- llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
-
- llvm::Value *AllVtables = llvm::MetadataAsValue::get(
- CGM.getLLVMContext(),
- llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
- llvm::Value *ValidVtable = Builder.CreateZExt(
- Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
- {Addr, AllVtables}),
- IntPtrTy);
-
- const std::pair<int, SanitizerMask> CheckKinds[] = {
- {CFITCK_VCall, SanitizerKind::CFIVCall},
- {CFITCK_NVCall, SanitizerKind::CFINVCall},
- {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
- {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
- {CFITCK_ICall, SanitizerKind::CFIICall}};
-
- SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
- for (auto CheckKindMaskPair : CheckKinds) {
- int Kind = CheckKindMaskPair.first;
- SanitizerMask Mask = CheckKindMaskPair.second;
- llvm::Value *Cond =
- Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
- if (CGM.getLangOpts().Sanitize.has(Mask))
- EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
- {Data, Addr, ValidVtable});
- else
- EmitTrapCheck(Cond);
- }
-
- FinishFunction();
- // The only reference to this function will be created during LTO link.
- // Make sure it survives until then.
- CGM.addUsedGlobal(F);
-}
-
-void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
- if (SanOpts.has(SanitizerKind::Unreachable)) {
- SanitizerScope SanScope(this);
- EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
- SanitizerKind::Unreachable),
- SanitizerHandler::BuiltinUnreachable,
- EmitCheckSourceLocation(Loc), None);
- }
- Builder.CreateUnreachable();
-}
-
-void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
- llvm::BasicBlock *Cont = createBasicBlock("cont");
-
- // If we're optimizing, collapse all calls to trap down to just one per
- // function to save on code size.
- if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
- TrapBB = createBasicBlock("trap");
- Builder.CreateCondBr(Checked, Cont, TrapBB);
- EmitBlock(TrapBB);
- llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
- TrapCall->setDoesNotReturn();
- TrapCall->setDoesNotThrow();
- Builder.CreateUnreachable();
- } else {
- Builder.CreateCondBr(Checked, Cont, TrapBB);
- }
-
- EmitBlock(Cont);
-}
-
-llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
- llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
-
- if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
- auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
- CGM.getCodeGenOpts().TrapFuncName);
- TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
- }
-
- return TrapCall;
-}
-
-Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
- LValueBaseInfo *BaseInfo,
- TBAAAccessInfo *TBAAInfo) {
- assert(E->getType()->isArrayType() &&
- "Array to pointer decay must have array source type!");
-
- // Expressions of array type can't be bitfields or vector elements.
- LValue LV = EmitLValue(E);
- Address Addr = LV.getAddress();
-
- // If the array type was an incomplete type, we need to make sure
- // the decay ends up being the right type.
- llvm::Type *NewTy = ConvertType(E->getType());
- Addr = Builder.CreateElementBitCast(Addr, NewTy);
-
- // Note that VLA pointers are always decayed, so we don't need to do
- // anything here.
- if (!E->getType()->isVariableArrayType()) {
- assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
- "Expected pointer to array");
- Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
- }
-
- // The result of this decay conversion points to an array element within the
- // base lvalue. However, since TBAA currently does not support representing
- // accesses to elements of member arrays, we conservatively represent accesses
- // to the pointee object as if it had no any base lvalue specified.
- // TODO: Support TBAA for member arrays.
- QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
- if (BaseInfo) *BaseInfo = LV.getBaseInfo();
- if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
-
- return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
-}
-
-/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
-/// array to pointer, return the array subexpression.
-static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
- // If this isn't just an array->pointer decay, bail out.
- const auto *CE = dyn_cast<CastExpr>(E);
- if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
- return nullptr;
-
- // If this is a decay from variable width array, bail out.
- const Expr *SubExpr = CE->getSubExpr();
- if (SubExpr->getType()->isVariableArrayType())
- return nullptr;
-
- return SubExpr;
-}
-
-static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
- llvm::Value *ptr,
- ArrayRef<llvm::Value*> indices,
- bool inbounds,
- bool signedIndices,
- SourceLocation loc,
- const llvm::Twine &name = "arrayidx") {
- if (inbounds) {
- return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
- CodeGenFunction::NotSubtraction, loc,
- name);
- } else {
- return CGF.Builder.CreateGEP(ptr, indices, name);
- }
-}
-
-static CharUnits getArrayElementAlign(CharUnits arrayAlign,
- llvm::Value *idx,
- CharUnits eltSize) {
- // If we have a constant index, we can use the exact offset of the
- // element we're accessing.
- if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
- CharUnits offset = constantIdx->getZExtValue() * eltSize;
- return arrayAlign.alignmentAtOffset(offset);
-
- // Otherwise, use the worst-case alignment for any element.
- } else {
- return arrayAlign.alignmentOfArrayElement(eltSize);
- }
-}
-
-static QualType getFixedSizeElementType(const ASTContext &ctx,
- const VariableArrayType *vla) {
- QualType eltType;
- do {
- eltType = vla->getElementType();
- } while ((vla = ctx.getAsVariableArrayType(eltType)));
- return eltType;
-}
-
-static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
- ArrayRef<llvm::Value *> indices,
- QualType eltType, bool inbounds,
- bool signedIndices, SourceLocation loc,
- const llvm::Twine &name = "arrayidx") {
- // All the indices except that last must be zero.
-#ifndef NDEBUG
- for (auto idx : indices.drop_back())
- assert(isa<llvm::ConstantInt>(idx) &&
- cast<llvm::ConstantInt>(idx)->isZero());
-#endif
-
- // Determine the element size of the statically-sized base. This is
- // the thing that the indices are expressed in terms of.
- if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
- eltType = getFixedSizeElementType(CGF.getContext(), vla);
- }
-
- // We can use that to compute the best alignment of the element.
- CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
- CharUnits eltAlign =
- getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
-
- llvm::Value *eltPtr = emitArraySubscriptGEP(
- CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
- return Address(eltPtr, eltAlign);
-}
-
-LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
- bool Accessed) {
- // The index must always be an integer, which is not an aggregate. Emit it
- // in lexical order (this complexity is, sadly, required by C++17).
- llvm::Value *IdxPre =
- (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
- bool SignedIndices = false;
- auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
- auto *Idx = IdxPre;
- if (E->getLHS() != E->getIdx()) {
- assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
- Idx = EmitScalarExpr(E->getIdx());
- }
-
- QualType IdxTy = E->getIdx()->getType();
- bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
- SignedIndices |= IdxSigned;
-
- if (SanOpts.has(SanitizerKind::ArrayBounds))
- EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
-
- // Extend or truncate the index type to 32 or 64-bits.
- if (Promote && Idx->getType() != IntPtrTy)
- Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
-
- return Idx;
- };
- IdxPre = nullptr;
-
- // If the base is a vector type, then we are forming a vector element lvalue
- // with this subscript.
- if (E->getBase()->getType()->isVectorType() &&
- !isa<ExtVectorElementExpr>(E->getBase())) {
- // Emit the vector as an lvalue to get its address.
- LValue LHS = EmitLValue(E->getBase());
- auto *Idx = EmitIdxAfterBase(/*Promote*/false);
- assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
- return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
- LHS.getBaseInfo(), TBAAAccessInfo());
- }
-
- // All the other cases basically behave like simple offsetting.
-
- // Handle the extvector case we ignored above.
- if (isa<ExtVectorElementExpr>(E->getBase())) {
- LValue LV = EmitLValue(E->getBase());
- auto *Idx = EmitIdxAfterBase(/*Promote*/true);
- Address Addr = EmitExtVectorElementLValue(LV);
-
- QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
- Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
- SignedIndices, E->getExprLoc());
- return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
- CGM.getTBAAInfoForSubobject(LV, EltType));
- }
-
- LValueBaseInfo EltBaseInfo;
- TBAAAccessInfo EltTBAAInfo;
- Address Addr = Address::invalid();
- if (const VariableArrayType *vla =
- getContext().getAsVariableArrayType(E->getType())) {
- // The base must be a pointer, which is not an aggregate. Emit
- // it. It needs to be emitted first in case it's what captures
- // the VLA bounds.
- Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
- auto *Idx = EmitIdxAfterBase(/*Promote*/true);
-
- // The element count here is the total number of non-VLA elements.
- llvm::Value *numElements = getVLASize(vla).NumElts;
-
- // Effectively, the multiply by the VLA size is part of the GEP.
- // GEP indexes are signed, and scaling an index isn't permitted to
- // signed-overflow, so we use the same semantics for our explicit
- // multiply. We suppress this if overflow is not undefined behavior.
- if (getLangOpts().isSignedOverflowDefined()) {
- Idx = Builder.CreateMul(Idx, numElements);
- } else {
- Idx = Builder.CreateNSWMul(Idx, numElements);
- }
-
- Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
- !getLangOpts().isSignedOverflowDefined(),
- SignedIndices, E->getExprLoc());
-
- } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
- // Indexing over an interface, as in "NSString *P; P[4];"
-
- // Emit the base pointer.
- Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
- auto *Idx = EmitIdxAfterBase(/*Promote*/true);
-
- CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
- llvm::Value *InterfaceSizeVal =
- llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
-
- llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
-
- // We don't necessarily build correct LLVM struct types for ObjC
- // interfaces, so we can't rely on GEP to do this scaling
- // correctly, so we need to cast to i8*. FIXME: is this actually
- // true? A lot of other things in the fragile ABI would break...
- llvm::Type *OrigBaseTy = Addr.getType();
- Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
-
- // Do the GEP.
- CharUnits EltAlign =
- getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
- llvm::Value *EltPtr =
- emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
- SignedIndices, E->getExprLoc());
- Addr = Address(EltPtr, EltAlign);
-
- // Cast back.
- Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
- } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
- // If this is A[i] where A is an array, the frontend will have decayed the
- // base to be a ArrayToPointerDecay implicit cast. While correct, it is
- // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
- // "gep x, i" here. Emit one "gep A, 0, i".
- assert(Array->getType()->isArrayType() &&
- "Array to pointer decay must have array source type!");
- LValue ArrayLV;
- // For simple multidimensional array indexing, set the 'accessed' flag for
- // better bounds-checking of the base expression.
- if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
- ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
- else
- ArrayLV = EmitLValue(Array);
- auto *Idx = EmitIdxAfterBase(/*Promote*/true);
-
- // Propagate the alignment from the array itself to the result.
- Addr = emitArraySubscriptGEP(
- *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
- E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
- E->getExprLoc());
- EltBaseInfo = ArrayLV.getBaseInfo();
- EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
- } else {
- // The base must be a pointer; emit it with an estimate of its alignment.
- Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
- auto *Idx = EmitIdxAfterBase(/*Promote*/true);
- Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
- !getLangOpts().isSignedOverflowDefined(),
- SignedIndices, E->getExprLoc());
- }
-
- LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
-
- if (getLangOpts().ObjC &&
- getLangOpts().getGC() != LangOptions::NonGC) {
- LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
- setObjCGCLValueClass(getContext(), E, LV);
- }
- return LV;
-}
-
-static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
- LValueBaseInfo &BaseInfo,
- TBAAAccessInfo &TBAAInfo,
- QualType BaseTy, QualType ElTy,
- bool IsLowerBound) {
- LValue BaseLVal;
- if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
- BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
- if (BaseTy->isArrayType()) {
- Address Addr = BaseLVal.getAddress();
- BaseInfo = BaseLVal.getBaseInfo();
-
- // If the array type was an incomplete type, we need to make sure
- // the decay ends up being the right type.
- llvm::Type *NewTy = CGF.ConvertType(BaseTy);
- Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
-
- // Note that VLA pointers are always decayed, so we don't need to do
- // anything here.
- if (!BaseTy->isVariableArrayType()) {
- assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
- "Expected pointer to array");
- Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
- "arraydecay");
- }
-
- return CGF.Builder.CreateElementBitCast(Addr,
- CGF.ConvertTypeForMem(ElTy));
- }
- LValueBaseInfo TypeBaseInfo;
- TBAAAccessInfo TypeTBAAInfo;
- CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
- &TypeTBAAInfo);
- BaseInfo.mergeForCast(TypeBaseInfo);
- TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
- return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
- }
- return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
-}
-
-LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
- bool IsLowerBound) {
- QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
- QualType ResultExprTy;
- if (auto *AT = getContext().getAsArrayType(BaseTy))
- ResultExprTy = AT->getElementType();
- else
- ResultExprTy = BaseTy->getPointeeType();
- llvm::Value *Idx = nullptr;
- if (IsLowerBound || E->getColonLoc().isInvalid()) {
- // Requesting lower bound or upper bound, but without provided length and
- // without ':' symbol for the default length -> length = 1.
- // Idx = LowerBound ?: 0;
- if (auto *LowerBound = E->getLowerBound()) {
- Idx = Builder.CreateIntCast(
- EmitScalarExpr(LowerBound), IntPtrTy,
- LowerBound->getType()->hasSignedIntegerRepresentation());
- } else
- Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
- } else {
- // Try to emit length or lower bound as constant. If this is possible, 1
- // is subtracted from constant length or lower bound. Otherwise, emit LLVM
- // IR (LB + Len) - 1.
- auto &C = CGM.getContext();
- auto *Length = E->getLength();
- llvm::APSInt ConstLength;
- if (Length) {
- // Idx = LowerBound + Length - 1;
- if (Length->isIntegerConstantExpr(ConstLength, C)) {
- ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
- Length = nullptr;
- }
- auto *LowerBound = E->getLowerBound();
- llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
- if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
- ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
- LowerBound = nullptr;
- }
- if (!Length)
- --ConstLength;
- else if (!LowerBound)
- --ConstLowerBound;
-
- if (Length || LowerBound) {
- auto *LowerBoundVal =
- LowerBound
- ? Builder.CreateIntCast(
- EmitScalarExpr(LowerBound), IntPtrTy,
- LowerBound->getType()->hasSignedIntegerRepresentation())
- : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
- auto *LengthVal =
- Length
- ? Builder.CreateIntCast(
- EmitScalarExpr(Length), IntPtrTy,
- Length->getType()->hasSignedIntegerRepresentation())
- : llvm::ConstantInt::get(IntPtrTy, ConstLength);
- Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
- /*HasNUW=*/false,
- !getLangOpts().isSignedOverflowDefined());
- if (Length && LowerBound) {
- Idx = Builder.CreateSub(
- Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
- /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
- }
- } else
- Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
- } else {
- // Idx = ArraySize - 1;
- QualType ArrayTy = BaseTy->isPointerType()
- ? E->getBase()->IgnoreParenImpCasts()->getType()
- : BaseTy;
- if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
- Length = VAT->getSizeExpr();
- if (Length->isIntegerConstantExpr(ConstLength, C))
- Length = nullptr;
- } else {
- auto *CAT = C.getAsConstantArrayType(ArrayTy);
- ConstLength = CAT->getSize();
- }
- if (Length) {
- auto *LengthVal = Builder.CreateIntCast(
- EmitScalarExpr(Length), IntPtrTy,
- Length->getType()->hasSignedIntegerRepresentation());
- Idx = Builder.CreateSub(
- LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
- /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
- } else {
- ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
- --ConstLength;
- Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
- }
- }
- }
- assert(Idx);
-
- Address EltPtr = Address::invalid();
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
- // The base must be a pointer, which is not an aggregate. Emit
- // it. It needs to be emitted first in case it's what captures
- // the VLA bounds.
- Address Base =
- emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
- BaseTy, VLA->getElementType(), IsLowerBound);
- // The element count here is the total number of non-VLA elements.
- llvm::Value *NumElements = getVLASize(VLA).NumElts;
-
- // Effectively, the multiply by the VLA size is part of the GEP.
- // GEP indexes are signed, and scaling an index isn't permitted to
- // signed-overflow, so we use the same semantics for our explicit
- // multiply. We suppress this if overflow is not undefined behavior.
- if (getLangOpts().isSignedOverflowDefined())
- Idx = Builder.CreateMul(Idx, NumElements);
- else
- Idx = Builder.CreateNSWMul(Idx, NumElements);
- EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
- !getLangOpts().isSignedOverflowDefined(),
- /*SignedIndices=*/false, E->getExprLoc());
- } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
- // If this is A[i] where A is an array, the frontend will have decayed the
- // base to be a ArrayToPointerDecay implicit cast. While correct, it is
- // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
- // "gep x, i" here. Emit one "gep A, 0, i".
- assert(Array->getType()->isArrayType() &&
- "Array to pointer decay must have array source type!");
- LValue ArrayLV;
- // For simple multidimensional array indexing, set the 'accessed' flag for
- // better bounds-checking of the base expression.
- if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
- ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
- else
- ArrayLV = EmitLValue(Array);
-
- // Propagate the alignment from the array itself to the result.
- EltPtr = emitArraySubscriptGEP(
- *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
- ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
- /*SignedIndices=*/false, E->getExprLoc());
- BaseInfo = ArrayLV.getBaseInfo();
- TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
- } else {
- Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
- TBAAInfo, BaseTy, ResultExprTy,
- IsLowerBound);
- EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
- !getLangOpts().isSignedOverflowDefined(),
- /*SignedIndices=*/false, E->getExprLoc());
- }
-
- return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
-}
-
-LValue CodeGenFunction::
-EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
- // Emit the base vector as an l-value.
- LValue Base;
-
- // ExtVectorElementExpr's base can either be a vector or pointer to vector.
- if (E->isArrow()) {
- // If it is a pointer to a vector, emit the address and form an lvalue with
- // it.
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
- const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
- Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
- Base.getQuals().removeObjCGCAttr();
- } else if (E->getBase()->isGLValue()) {
- // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
- // emit the base as an lvalue.
- assert(E->getBase()->getType()->isVectorType());
- Base = EmitLValue(E->getBase());
- } else {
- // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
- assert(E->getBase()->getType()->isVectorType() &&
- "Result must be a vector");
- llvm::Value *Vec = EmitScalarExpr(E->getBase());
-
- // Store the vector to memory (because LValue wants an address).
- Address VecMem = CreateMemTemp(E->getBase()->getType());
- Builder.CreateStore(Vec, VecMem);
- Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
- AlignmentSource::Decl);
- }
-
- QualType type =
- E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
-
- // Encode the element access list into a vector of unsigned indices.
- SmallVector<uint32_t, 4> Indices;
- E->getEncodedElementAccess(Indices);
-
- if (Base.isSimple()) {
- llvm::Constant *CV =
- llvm::ConstantDataVector::get(getLLVMContext(), Indices);
- return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
- Base.getBaseInfo(), TBAAAccessInfo());
- }
- assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
-
- llvm::Constant *BaseElts = Base.getExtVectorElts();
- SmallVector<llvm::Constant *, 4> CElts;
-
- for (unsigned i = 0, e = Indices.size(); i != e; ++i)
- CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
- llvm::Constant *CV = llvm::ConstantVector::get(CElts);
- return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
- Base.getBaseInfo(), TBAAAccessInfo());
-}
-
-LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
- if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
- EmitIgnoredExpr(E->getBase());
- return EmitDeclRefLValue(DRE);
- }
-
- Expr *BaseExpr = E->getBase();
- // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
- LValue BaseLV;
- if (E->isArrow()) {
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
- QualType PtrTy = BaseExpr->getType()->getPointeeType();
- SanitizerSet SkippedChecks;
- bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
- if (IsBaseCXXThis)
- SkippedChecks.set(SanitizerKind::Alignment, true);
- if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
- SkippedChecks.set(SanitizerKind::Null, true);
- EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
- /*Alignment=*/CharUnits::Zero(), SkippedChecks);
- BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
- } else
- BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
-
- NamedDecl *ND = E->getMemberDecl();
- if (auto *Field = dyn_cast<FieldDecl>(ND)) {
- LValue LV = EmitLValueForField(BaseLV, Field);
- setObjCGCLValueClass(getContext(), E, LV);
- return LV;
- }
-
- if (const auto *FD = dyn_cast<FunctionDecl>(ND))
- return EmitFunctionDeclLValue(*this, E, FD);
-
- llvm_unreachable("Unhandled member declaration!");
-}
-
-/// Given that we are currently emitting a lambda, emit an l-value for
-/// one of its members.
-LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
- assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
- assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
- QualType LambdaTagType =
- getContext().getTagDeclType(Field->getParent());
- LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
- return EmitLValueForField(LambdaLV, Field);
-}
-
-/// Drill down to the storage of a field without walking into
-/// reference types.
-///
-/// The resulting address doesn't necessarily have the right type.
-static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
- const FieldDecl *field) {
- const RecordDecl *rec = field->getParent();
-
- unsigned idx =
- CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
-
- CharUnits offset;
- // Adjust the alignment down to the given offset.
- // As a special case, if the LLVM field index is 0, we know that this
- // is zero.
- assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
- .getFieldOffset(field->getFieldIndex()) == 0) &&
- "LLVM field at index zero had non-zero offset?");
- if (idx != 0) {
- auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
- auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
- offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
- }
-
- return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
-}
-
-static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
- const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
- if (!RD)
- return false;
-
- if (RD->isDynamicClass())
- return true;
-
- for (const auto &Base : RD->bases())
- if (hasAnyVptr(Base.getType(), Context))
- return true;
-
- for (const FieldDecl *Field : RD->fields())
- if (hasAnyVptr(Field->getType(), Context))
- return true;
-
- return false;
-}
-
-LValue CodeGenFunction::EmitLValueForField(LValue base,
- const FieldDecl *field) {
- LValueBaseInfo BaseInfo = base.getBaseInfo();
-
- if (field->isBitField()) {
- const CGRecordLayout &RL =
- CGM.getTypes().getCGRecordLayout(field->getParent());
- const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
- Address Addr = base.getAddress();
- unsigned Idx = RL.getLLVMFieldNo(field);
- if (Idx != 0)
- // For structs, we GEP to the field that the record layout suggests.
- Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
- field->getName());
- // Get the access type.
- llvm::Type *FieldIntTy =
- llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
- if (Addr.getElementType() != FieldIntTy)
- Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
-
- QualType fieldType =
- field->getType().withCVRQualifiers(base.getVRQualifiers());
- // TODO: Support TBAA for bit fields.
- LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
- return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
- TBAAAccessInfo());
- }
-
- // Fields of may-alias structures are may-alias themselves.
- // FIXME: this should get propagated down through anonymous structs
- // and unions.
- QualType FieldType = field->getType();
- const RecordDecl *rec = field->getParent();
- AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
- LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
- TBAAAccessInfo FieldTBAAInfo;
- if (base.getTBAAInfo().isMayAlias() ||
- rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
- FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
- } else if (rec->isUnion()) {
- // TODO: Support TBAA for unions.
- FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
- } else {
- // If no base type been assigned for the base access, then try to generate
- // one for this base lvalue.
- FieldTBAAInfo = base.getTBAAInfo();
- if (!FieldTBAAInfo.BaseType) {
- FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
- assert(!FieldTBAAInfo.Offset &&
- "Nonzero offset for an access with no base type!");
- }
-
- // Adjust offset to be relative to the base type.
- const ASTRecordLayout &Layout =
- getContext().getASTRecordLayout(field->getParent());
- unsigned CharWidth = getContext().getCharWidth();
- if (FieldTBAAInfo.BaseType)
- FieldTBAAInfo.Offset +=
- Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
-
- // Update the final access type and size.
- FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
- FieldTBAAInfo.Size =
- getContext().getTypeSizeInChars(FieldType).getQuantity();
- }
-
- Address addr = base.getAddress();
- if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
- if (CGM.getCodeGenOpts().StrictVTablePointers &&
- ClassDef->isDynamicClass()) {
- // Getting to any field of dynamic object requires stripping dynamic
- // information provided by invariant.group. This is because accessing
- // fields may leak the real address of dynamic object, which could result
- // in miscompilation when leaked pointer would be compared.
- auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
- addr = Address(stripped, addr.getAlignment());
- }
- }
-
- unsigned RecordCVR = base.getVRQualifiers();
- if (rec->isUnion()) {
- // For unions, there is no pointer adjustment.
- assert(!FieldType->isReferenceType() && "union has reference member");
- if (CGM.getCodeGenOpts().StrictVTablePointers &&
- hasAnyVptr(FieldType, getContext()))
- // Because unions can easily skip invariant.barriers, we need to add
- // a barrier every time CXXRecord field with vptr is referenced.
- addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
- addr.getAlignment());
- } else {
- // For structs, we GEP to the field that the record layout suggests.
- addr = emitAddrOfFieldStorage(*this, addr, field);
-
- // If this is a reference field, load the reference right now.
- if (FieldType->isReferenceType()) {
- LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
- FieldTBAAInfo);
- if (RecordCVR & Qualifiers::Volatile)
- RefLVal.getQuals().addVolatile();
- addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
-
- // Qualifiers on the struct don't apply to the referencee.
- RecordCVR = 0;
- FieldType = FieldType->getPointeeType();
- }
- }
-
- // Make sure that the address is pointing to the right type. This is critical
- // for both unions and structs. A union needs a bitcast, a struct element
- // will need a bitcast if the LLVM type laid out doesn't match the desired
- // type.
- addr = Builder.CreateElementBitCast(
- addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
-
- if (field->hasAttr<AnnotateAttr>())
- addr = EmitFieldAnnotations(field, addr);
-
- LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
- LV.getQuals().addCVRQualifiers(RecordCVR);
-
- // __weak attribute on a field is ignored.
- if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
- LV.getQuals().removeObjCGCAttr();
-
- return LV;
-}
-
-LValue
-CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
- const FieldDecl *Field) {
- QualType FieldType = Field->getType();
-
- if (!FieldType->isReferenceType())
- return EmitLValueForField(Base, Field);
-
- Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
-
- // Make sure that the address is pointing to the right type.
- llvm::Type *llvmType = ConvertTypeForMem(FieldType);
- V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
-
- // TODO: Generate TBAA information that describes this access as a structure
- // member access and not just an access to an object of the field's type. This
- // should be similar to what we do in EmitLValueForField().
- LValueBaseInfo BaseInfo = Base.getBaseInfo();
- AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
- LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
- return MakeAddrLValue(V, FieldType, FieldBaseInfo,
- CGM.getTBAAInfoForSubobject(Base, FieldType));
-}
-
-LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
- if (E->isFileScope()) {
- ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
- return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
- }
- if (E->getType()->isVariablyModifiedType())
- // make sure to emit the VLA size.
- EmitVariablyModifiedType(E->getType());
-
- Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
- const Expr *InitExpr = E->getInitializer();
- LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
-
- EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
- /*Init*/ true);
-
- return Result;
-}
-
-LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
- if (!E->isGLValue())
- // Initializing an aggregate temporary in C++11: T{...}.
- return EmitAggExprToLValue(E);
-
- // An lvalue initializer list must be initializing a reference.
- assert(E->isTransparent() && "non-transparent glvalue init list");
- return EmitLValue(E->getInit(0));
-}
-
-/// Emit the operand of a glvalue conditional operator. This is either a glvalue
-/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
-/// LValue is returned and the current block has been terminated.
-static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
- const Expr *Operand) {
- if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
- CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
- return None;
- }
-
- return CGF.EmitLValue(Operand);
-}
-
-LValue CodeGenFunction::
-EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
- if (!expr->isGLValue()) {
- // ?: here should be an aggregate.
- assert(hasAggregateEvaluationKind(expr->getType()) &&
- "Unexpected conditional operator!");
- return EmitAggExprToLValue(expr);
- }
-
- OpaqueValueMapping binding(*this, expr);
-
- const Expr *condExpr = expr->getCond();
- bool CondExprBool;
- if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
- const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
- if (!CondExprBool) std::swap(live, dead);
-
- if (!ContainsLabel(dead)) {
- // If the true case is live, we need to track its region.
- if (CondExprBool)
- incrementProfileCounter(expr);
- return EmitLValue(live);
- }
- }
-
- llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
- llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
- llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
-
- ConditionalEvaluation eval(*this);
- EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
-
- // Any temporaries created here are conditional.
- EmitBlock(lhsBlock);
- incrementProfileCounter(expr);
- eval.begin(*this);
- Optional<LValue> lhs =
- EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
- eval.end(*this);
-
- if (lhs && !lhs->isSimple())
- return EmitUnsupportedLValue(expr, "conditional operator");
-
- lhsBlock = Builder.GetInsertBlock();
- if (lhs)
- Builder.CreateBr(contBlock);
-
- // Any temporaries created here are conditional.
- EmitBlock(rhsBlock);
- eval.begin(*this);
- Optional<LValue> rhs =
- EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
- eval.end(*this);
- if (rhs && !rhs->isSimple())
- return EmitUnsupportedLValue(expr, "conditional operator");
- rhsBlock = Builder.GetInsertBlock();
-
- EmitBlock(contBlock);
-
- if (lhs && rhs) {
- llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
- 2, "cond-lvalue");
- phi->addIncoming(lhs->getPointer(), lhsBlock);
- phi->addIncoming(rhs->getPointer(), rhsBlock);
- Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
- AlignmentSource alignSource =
- std::max(lhs->getBaseInfo().getAlignmentSource(),
- rhs->getBaseInfo().getAlignmentSource());
- TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
- lhs->getTBAAInfo(), rhs->getTBAAInfo());
- return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
- TBAAInfo);
- } else {
- assert((lhs || rhs) &&
- "both operands of glvalue conditional are throw-expressions?");
- return lhs ? *lhs : *rhs;
- }
-}
-
-/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
-/// type. If the cast is to a reference, we can have the usual lvalue result,
-/// otherwise if a cast is needed by the code generator in an lvalue context,
-/// then it must mean that we need the address of an aggregate in order to
-/// access one of its members. This can happen for all the reasons that casts
-/// are permitted with aggregate result, including noop aggregate casts, and
-/// cast from scalar to union.
-LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
- switch (E->getCastKind()) {
- case CK_ToVoid:
- case CK_BitCast:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToMemberPointer:
- case CK_NullToPointer:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral:
- case CK_PointerToBoolean:
- case CK_VectorSplat:
- case CK_IntegralCast:
- case CK_BooleanToSignedIntegral:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_DerivedToBaseMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_MemberPointerToBoolean:
- case CK_ReinterpretMemberPointer:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- case CK_IntToOCLSampler:
- case CK_FixedPointCast:
- case CK_FixedPointToBoolean:
- return EmitUnsupportedLValue(E, "unexpected cast lvalue");
-
- case CK_Dependent:
- llvm_unreachable("dependent cast kind in IR gen!");
-
- case CK_BuiltinFnToFnPtr:
- llvm_unreachable("builtin functions are handled elsewhere");
-
- // These are never l-values; just use the aggregate emission code.
- case CK_NonAtomicToAtomic:
- case CK_AtomicToNonAtomic:
- return EmitAggExprToLValue(E);
-
- case CK_Dynamic: {
- LValue LV = EmitLValue(E->getSubExpr());
- Address V = LV.getAddress();
- const auto *DCE = cast<CXXDynamicCastExpr>(E);
- return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
- }
-
- case CK_ConstructorConversion:
- case CK_UserDefinedConversion:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_NoOp:
- case CK_LValueToRValue:
- return EmitLValue(E->getSubExpr());
-
- case CK_UncheckedDerivedToBase:
- case CK_DerivedToBase: {
- const RecordType *DerivedClassTy =
- E->getSubExpr()->getType()->getAs<RecordType>();
- auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
-
- LValue LV = EmitLValue(E->getSubExpr());
- Address This = LV.getAddress();
-
- // Perform the derived-to-base conversion
- Address Base = GetAddressOfBaseClass(
- This, DerivedClassDecl, E->path_begin(), E->path_end(),
- /*NullCheckValue=*/false, E->getExprLoc());
-
- // TODO: Support accesses to members of base classes in TBAA. For now, we
- // conservatively pretend that the complete object is of the base class
- // type.
- return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
- CGM.getTBAAInfoForSubobject(LV, E->getType()));
- }
- case CK_ToUnion:
- return EmitAggExprToLValue(E);
- case CK_BaseToDerived: {
- const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
- auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
-
- LValue LV = EmitLValue(E->getSubExpr());
-
- // Perform the base-to-derived conversion
- Address Derived =
- GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
- E->path_begin(), E->path_end(),
- /*NullCheckValue=*/false);
-
- // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
- // performed and the object is not of the derived type.
- if (sanitizePerformTypeCheck())
- EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
- Derived.getPointer(), E->getType());
-
- if (SanOpts.has(SanitizerKind::CFIDerivedCast))
- EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
- /*MayBeNull=*/false, CFITCK_DerivedCast,
- E->getBeginLoc());
-
- return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
- CGM.getTBAAInfoForSubobject(LV, E->getType()));
- }
- case CK_LValueBitCast: {
- // This must be a reinterpret_cast (or c-style equivalent).
- const auto *CE = cast<ExplicitCastExpr>(E);
-
- CGM.EmitExplicitCastExprType(CE, this);
- LValue LV = EmitLValue(E->getSubExpr());
- Address V = Builder.CreateBitCast(LV.getAddress(),
- ConvertType(CE->getTypeAsWritten()));
-
- if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
- EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
- /*MayBeNull=*/false, CFITCK_UnrelatedCast,
- E->getBeginLoc());
-
- return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
- CGM.getTBAAInfoForSubobject(LV, E->getType()));
- }
- case CK_AddressSpaceConversion: {
- LValue LV = EmitLValue(E->getSubExpr());
- QualType DestTy = getContext().getPointerType(E->getType());
- llvm::Value *V = getTargetHooks().performAddrSpaceCast(
- *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
- E->getType().getAddressSpace(), ConvertType(DestTy));
- return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
- E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
- }
- case CK_ObjCObjectLValueCast: {
- LValue LV = EmitLValue(E->getSubExpr());
- Address V = Builder.CreateElementBitCast(LV.getAddress(),
- ConvertType(E->getType()));
- return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
- CGM.getTBAAInfoForSubobject(LV, E->getType()));
- }
- case CK_ZeroToOCLOpaqueType:
- llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
- }
-
- llvm_unreachable("Unhandled lvalue cast kind?");
-}
-
-LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
- assert(OpaqueValueMappingData::shouldBindAsLValue(e));
- return getOrCreateOpaqueLValueMapping(e);
-}
-
-LValue
-CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
- assert(OpaqueValueMapping::shouldBindAsLValue(e));
-
- llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
- it = OpaqueLValues.find(e);
-
- if (it != OpaqueLValues.end())
- return it->second;
-
- assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
- return EmitLValue(e->getSourceExpr());
-}
-
-RValue
-CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
- assert(!OpaqueValueMapping::shouldBindAsLValue(e));
-
- llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
- it = OpaqueRValues.find(e);
-
- if (it != OpaqueRValues.end())
- return it->second;
-
- assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
- return EmitAnyExpr(e->getSourceExpr());
-}
-
-RValue CodeGenFunction::EmitRValueForField(LValue LV,
- const FieldDecl *FD,
- SourceLocation Loc) {
- QualType FT = FD->getType();
- LValue FieldLV = EmitLValueForField(LV, FD);
- switch (getEvaluationKind(FT)) {
- case TEK_Complex:
- return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
- case TEK_Aggregate:
- return FieldLV.asAggregateRValue();
- case TEK_Scalar:
- // This routine is used to load fields one-by-one to perform a copy, so
- // don't load reference fields.
- if (FD->getType()->isReferenceType())
- return RValue::get(FieldLV.getPointer());
- return EmitLoadOfLValue(FieldLV, Loc);
- }
- llvm_unreachable("bad evaluation kind");
-}
-
-//===--------------------------------------------------------------------===//
-// Expression Emission
-//===--------------------------------------------------------------------===//
-
-RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
- ReturnValueSlot ReturnValue) {
- // Builtins never have block type.
- if (E->getCallee()->getType()->isBlockPointerType())
- return EmitBlockCallExpr(E, ReturnValue);
-
- if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
- return EmitCXXMemberCallExpr(CE, ReturnValue);
-
- if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
- return EmitCUDAKernelCallExpr(CE, ReturnValue);
-
- if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
- if (const CXXMethodDecl *MD =
- dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
- return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
-
- CGCallee callee = EmitCallee(E->getCallee());
-
- if (callee.isBuiltin()) {
- return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
- E, ReturnValue);
- }
-
- if (callee.isPseudoDestructor()) {
- return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
- }
-
- return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
-}
-
-/// Emit a CallExpr without considering whether it might be a subclass.
-RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
- ReturnValueSlot ReturnValue) {
- CGCallee Callee = EmitCallee(E->getCallee());
- return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
-}
-
-static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
- if (auto builtinID = FD->getBuiltinID()) {
- return CGCallee::forBuiltin(builtinID, FD);
- }
-
- llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
- return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
-}
-
-CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
- E = E->IgnoreParens();
-
- // Look through function-to-pointer decay.
- if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
- if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
- ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
- return EmitCallee(ICE->getSubExpr());
- }
-
- // Resolve direct calls.
- } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
- if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
- return EmitDirectCallee(*this, FD);
- }
- } else if (auto ME = dyn_cast<MemberExpr>(E)) {
- if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
- EmitIgnoredExpr(ME->getBase());
- return EmitDirectCallee(*this, FD);
- }
-
- // Look through template substitutions.
- } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
- return EmitCallee(NTTP->getReplacement());
-
- // Treat pseudo-destructor calls differently.
- } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
- return CGCallee::forPseudoDestructor(PDE);
- }
-
- // Otherwise, we have an indirect reference.
- llvm::Value *calleePtr;
- QualType functionType;
- if (auto ptrType = E->getType()->getAs<PointerType>()) {
- calleePtr = EmitScalarExpr(E);
- functionType = ptrType->getPointeeType();
- } else {
- functionType = E->getType();
- calleePtr = EmitLValue(E).getPointer();
- }
- assert(functionType->isFunctionType());
-
- GlobalDecl GD;
- if (const auto *VD =
- dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
- GD = GlobalDecl(VD);
-
- CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
- CGCallee callee(calleeInfo, calleePtr);
- return callee;
-}
-
-LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
- // Comma expressions just emit their LHS then their RHS as an l-value.
- if (E->getOpcode() == BO_Comma) {
- EmitIgnoredExpr(E->getLHS());
- EnsureInsertPoint();
- return EmitLValue(E->getRHS());
- }
-
- if (E->getOpcode() == BO_PtrMemD ||
- E->getOpcode() == BO_PtrMemI)
- return EmitPointerToDataMemberBinaryExpr(E);
-
- assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
-
- // Note that in all of these cases, __block variables need the RHS
- // evaluated first just in case the variable gets moved by the RHS.
-
- switch (getEvaluationKind(E->getType())) {
- case TEK_Scalar: {
- switch (E->getLHS()->getType().getObjCLifetime()) {
- case Qualifiers::OCL_Strong:
- return EmitARCStoreStrong(E, /*ignored*/ false).first;
-
- case Qualifiers::OCL_Autoreleasing:
- return EmitARCStoreAutoreleasing(E).first;
-
- // No reason to do any of these differently.
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- case Qualifiers::OCL_Weak:
- break;
- }
-
- RValue RV = EmitAnyExpr(E->getRHS());
- LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
- if (RV.isScalar())
- EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
- EmitStoreThroughLValue(RV, LV);
- return LV;
- }
-
- case TEK_Complex:
- return EmitComplexAssignmentLValue(E);
-
- case TEK_Aggregate:
- return EmitAggExprToLValue(E);
- }
- llvm_unreachable("bad evaluation kind");
-}
-
-LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
- RValue RV = EmitCallExpr(E);
-
- if (!RV.isScalar())
- return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
- AlignmentSource::Decl);
-
- assert(E->getCallReturnType(getContext())->isReferenceType() &&
- "Can't have a scalar return unless the return type is a "
- "reference type!");
-
- return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
-}
-
-LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
- // FIXME: This shouldn't require another copy.
- return EmitAggExprToLValue(E);
-}
-
-LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
- assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
- && "binding l-value to type which needs a temporary");
- AggValueSlot Slot = CreateAggTemp(E->getType());
- EmitCXXConstructExpr(E, Slot);
- return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
-}
-
-LValue
-CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
- return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
-}
-
-Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
- return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
- ConvertType(E->getType()));
-}
-
-LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
- return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
- AlignmentSource::Decl);
-}
-
-LValue
-CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
- AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
- Slot.setExternallyDestructed();
- EmitAggExpr(E->getSubExpr(), Slot);
- EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
- return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
-}
-
-LValue
-CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
- AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
- EmitLambdaExpr(E, Slot);
- return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
-}
-
-LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
- RValue RV = EmitObjCMessageExpr(E);
-
- if (!RV.isScalar())
- return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
- AlignmentSource::Decl);
-
- assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
- "Can't have a scalar return unless the return type is a "
- "reference type!");
-
- return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
-}
-
-LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
- Address V =
- CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
- return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
-}
-
-llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
- const ObjCIvarDecl *Ivar) {
- return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
-}
-
-LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
- llvm::Value *BaseValue,
- const ObjCIvarDecl *Ivar,
- unsigned CVRQualifiers) {
- return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
- Ivar, CVRQualifiers);
-}
-
-LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
- // FIXME: A lot of the code below could be shared with EmitMemberExpr.
- llvm::Value *BaseValue = nullptr;
- const Expr *BaseExpr = E->getBase();
- Qualifiers BaseQuals;
- QualType ObjectTy;
- if (E->isArrow()) {
- BaseValue = EmitScalarExpr(BaseExpr);
- ObjectTy = BaseExpr->getType()->getPointeeType();
- BaseQuals = ObjectTy.getQualifiers();
- } else {
- LValue BaseLV = EmitLValue(BaseExpr);
- BaseValue = BaseLV.getPointer();
- ObjectTy = BaseExpr->getType();
- BaseQuals = ObjectTy.getQualifiers();
- }
-
- LValue LV =
- EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
- BaseQuals.getCVRQualifiers());
- setObjCGCLValueClass(getContext(), E, LV);
- return LV;
-}
-
-LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
- // Can only get l-value for message expression returning aggregate type
- RValue RV = EmitAnyExprToTemp(E);
- return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
- AlignmentSource::Decl);
-}
-
-RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
- const CallExpr *E, ReturnValueSlot ReturnValue,
- llvm::Value *Chain) {
- // Get the actual function type. The callee type will always be a pointer to
- // function type or a block pointer type.
- assert(CalleeType->isFunctionPointerType() &&
- "Call must have function pointer type!");
-
- const Decl *TargetDecl =
- OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
-
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
- // We can only guarantee that a function is called from the correct
- // context/function based on the appropriate target attributes,
- // so only check in the case where we have both always_inline and target
- // since otherwise we could be making a conditional call after a check for
- // the proper cpu features (and it won't cause code generation issues due to
- // function based code generation).
- if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
- TargetDecl->hasAttr<TargetAttr>())
- checkTargetFeatures(E, FD);
-
- CalleeType = getContext().getCanonicalType(CalleeType);
-
- auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
-
- CGCallee Callee = OrigCallee;
-
- if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
- (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
- if (llvm::Constant *PrefixSig =
- CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
- SanitizerScope SanScope(this);
- // Remove any (C++17) exception specifications, to allow calling e.g. a
- // noexcept function through a non-noexcept pointer.
- auto ProtoTy =
- getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
- llvm::Constant *FTRTTIConst =
- CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
- llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
- llvm::StructType *PrefixStructTy = llvm::StructType::get(
- CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
-
- llvm::Value *CalleePtr = Callee.getFunctionPointer();
-
- llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
- CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
- llvm::Value *CalleeSigPtr =
- Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
- llvm::Value *CalleeSig =
- Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
- llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
-
- llvm::BasicBlock *Cont = createBasicBlock("cont");
- llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
- Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
-
- EmitBlock(TypeCheck);
- llvm::Value *CalleeRTTIPtr =
- Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
- llvm::Value *CalleeRTTIEncoded =
- Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
- llvm::Value *CalleeRTTI =
- DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
- llvm::Value *CalleeRTTIMatch =
- Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
- llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
- EmitCheckTypeDescriptor(CalleeType)};
- EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
- SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
-
- Builder.CreateBr(Cont);
- EmitBlock(Cont);
- }
- }
-
- const auto *FnType = cast<FunctionType>(PointeeType);
-
- // If we are checking indirect calls and this call is indirect, check that the
- // function pointer is a member of the bit set for the function type.
- if (SanOpts.has(SanitizerKind::CFIICall) &&
- (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
- SanitizerScope SanScope(this);
- EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
-
- llvm::Metadata *MD;
- if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
- MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
- else
- MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
-
- llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
-
- llvm::Value *CalleePtr = Callee.getFunctionPointer();
- llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
- llvm::Value *TypeTest = Builder.CreateCall(
- CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
-
- auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
- llvm::Constant *StaticData[] = {
- llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
- EmitCheckSourceLocation(E->getBeginLoc()),
- EmitCheckTypeDescriptor(QualType(FnType, 0)),
- };
- if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
- EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
- CastedCallee, StaticData);
- } else {
- EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
- SanitizerHandler::CFICheckFail, StaticData,
- {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
- }
- }
-
- CallArgList Args;
- if (Chain)
- Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
- CGM.getContext().VoidPtrTy);
-
- // C++17 requires that we evaluate arguments to a call using assignment syntax
- // right-to-left, and that we evaluate arguments to certain other operators
- // left-to-right. Note that we allow this to override the order dictated by
- // the calling convention on the MS ABI, which means that parameter
- // destruction order is not necessarily reverse construction order.
- // FIXME: Revisit this based on C++ committee response to unimplementability.
- EvaluationOrder Order = EvaluationOrder::Default;
- if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
- if (OCE->isAssignmentOp())
- Order = EvaluationOrder::ForceRightToLeft;
- else {
- switch (OCE->getOperator()) {
- case OO_LessLess:
- case OO_GreaterGreater:
- case OO_AmpAmp:
- case OO_PipePipe:
- case OO_Comma:
- case OO_ArrowStar:
- Order = EvaluationOrder::ForceLeftToRight;
- break;
- default:
- break;
- }
- }
- }
-
- EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
- E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
-
- const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
- Args, FnType, /*isChainCall=*/Chain);
-
- // C99 6.5.2.2p6:
- // If the expression that denotes the called function has a type
- // that does not include a prototype, [the default argument
- // promotions are performed]. If the number of arguments does not
- // equal the number of parameters, the behavior is undefined. If
- // the function is defined with a type that includes a prototype,
- // and either the prototype ends with an ellipsis (, ...) or the
- // types of the arguments after promotion are not compatible with
- // the types of the parameters, the behavior is undefined. If the
- // function is defined with a type that does not include a
- // prototype, and the types of the arguments after promotion are
- // not compatible with those of the parameters after promotion,
- // the behavior is undefined [except in some trivial cases].
- // That is, in the general case, we should assume that a call
- // through an unprototyped function type works like a *non-variadic*
- // call. The way we make this work is to cast to the exact type
- // of the promoted arguments.
- //
- // Chain calls use this same code path to add the invisible chain parameter
- // to the function type.
- if (isa<FunctionNoProtoType>(FnType) || Chain) {
- llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
- CalleeTy = CalleeTy->getPointerTo();
-
- llvm::Value *CalleePtr = Callee.getFunctionPointer();
- CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
- Callee.setFunctionPointer(CalleePtr);
- }
-
- return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
-}
-
-LValue CodeGenFunction::
-EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
- Address BaseAddr = Address::invalid();
- if (E->getOpcode() == BO_PtrMemI) {
- BaseAddr = EmitPointerWithAlignment(E->getLHS());
- } else {
- BaseAddr = EmitLValue(E->getLHS()).getAddress();
- }
-
- llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
-
- const MemberPointerType *MPT
- = E->getRHS()->getType()->getAs<MemberPointerType>();
-
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- Address MemberAddr =
- EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
- &TBAAInfo);
-
- return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
-}
-
-/// Given the address of a temporary variable, produce an r-value of
-/// its type.
-RValue CodeGenFunction::convertTempToRValue(Address addr,
- QualType type,
- SourceLocation loc) {
- LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
- switch (getEvaluationKind(type)) {
- case TEK_Complex:
- return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
- case TEK_Aggregate:
- return lvalue.asAggregateRValue();
- case TEK_Scalar:
- return RValue::get(EmitLoadOfScalar(lvalue, loc));
- }
- llvm_unreachable("bad evaluation kind");
-}
-
-void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
- assert(Val->getType()->isFPOrFPVectorTy());
- if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
- return;
-
- llvm::MDBuilder MDHelper(getLLVMContext());
- llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
-
- cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
-}
-
-namespace {
- struct LValueOrRValue {
- LValue LV;
- RValue RV;
- };
-}
-
-static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
- const PseudoObjectExpr *E,
- bool forLValue,
- AggValueSlot slot) {
- SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
-
- // Find the result expression, if any.
- const Expr *resultExpr = E->getResultExpr();
- LValueOrRValue result;
-
- for (PseudoObjectExpr::const_semantics_iterator
- i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
- const Expr *semantic = *i;
-
- // If this semantic expression is an opaque value, bind it
- // to the result of its source expression.
- if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
- // Skip unique OVEs.
- if (ov->isUnique()) {
- assert(ov != resultExpr &&
- "A unique OVE cannot be used as the result expression");
- continue;
- }
-
- // If this is the result expression, we may need to evaluate
- // directly into the slot.
- typedef CodeGenFunction::OpaqueValueMappingData OVMA;
- OVMA opaqueData;
- if (ov == resultExpr && ov->isRValue() && !forLValue &&
- CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
- CGF.EmitAggExpr(ov->getSourceExpr(), slot);
- LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
- AlignmentSource::Decl);
- opaqueData = OVMA::bind(CGF, ov, LV);
- result.RV = slot.asRValue();
-
- // Otherwise, emit as normal.
- } else {
- opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
-
- // If this is the result, also evaluate the result now.
- if (ov == resultExpr) {
- if (forLValue)
- result.LV = CGF.EmitLValue(ov);
- else
- result.RV = CGF.EmitAnyExpr(ov, slot);
- }
- }
-
- opaques.push_back(opaqueData);
-
- // Otherwise, if the expression is the result, evaluate it
- // and remember the result.
- } else if (semantic == resultExpr) {
- if (forLValue)
- result.LV = CGF.EmitLValue(semantic);
- else
- result.RV = CGF.EmitAnyExpr(semantic, slot);
-
- // Otherwise, evaluate the expression in an ignored context.
- } else {
- CGF.EmitIgnoredExpr(semantic);
- }
- }
-
- // Unbind all the opaques now.
- for (unsigned i = 0, e = opaques.size(); i != e; ++i)
- opaques[i].unbind(CGF);
-
- return result;
-}
-
-RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
- AggValueSlot slot) {
- return emitPseudoObjectExpr(*this, E, false, slot).RV;
-}
-
-LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
- return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
-}