summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp')
-rw-r--r--gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp960
1 files changed, 0 insertions, 960 deletions
diff --git a/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp b/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp
deleted file mode 100644
index ffc72889858..00000000000
--- a/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp
+++ /dev/null
@@ -1,960 +0,0 @@
-//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-/// \file
-/// This file implements semantic analysis for CUDA constructs.
-///
-//===----------------------------------------------------------------------===//
-
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/Decl.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/Lex/Preprocessor.h"
-#include "clang/Sema/Lookup.h"
-#include "clang/Sema/Sema.h"
-#include "clang/Sema/SemaDiagnostic.h"
-#include "clang/Sema/SemaInternal.h"
-#include "clang/Sema/Template.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/SmallVector.h"
-using namespace clang;
-
-void Sema::PushForceCUDAHostDevice() {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- ForceCUDAHostDeviceDepth++;
-}
-
-bool Sema::PopForceCUDAHostDevice() {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- if (ForceCUDAHostDeviceDepth == 0)
- return false;
- ForceCUDAHostDeviceDepth--;
- return true;
-}
-
-ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
- MultiExprArg ExecConfig,
- SourceLocation GGGLoc) {
- FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
- if (!ConfigDecl)
- return ExprError(
- Diag(LLLLoc, diag::err_undeclared_var_use)
- << (getLangOpts().HIP ? "hipConfigureCall" : "cudaConfigureCall"));
- QualType ConfigQTy = ConfigDecl->getType();
-
- DeclRefExpr *ConfigDR = new (Context)
- DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
- MarkFunctionReferenced(LLLLoc, ConfigDecl);
-
- return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
- /*IsExecConfig=*/true);
-}
-
-Sema::CUDAFunctionTarget
-Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
- bool HasHostAttr = false;
- bool HasDeviceAttr = false;
- bool HasGlobalAttr = false;
- bool HasInvalidTargetAttr = false;
- for (const ParsedAttr &AL : Attrs) {
- switch (AL.getKind()) {
- case ParsedAttr::AT_CUDAGlobal:
- HasGlobalAttr = true;
- break;
- case ParsedAttr::AT_CUDAHost:
- HasHostAttr = true;
- break;
- case ParsedAttr::AT_CUDADevice:
- HasDeviceAttr = true;
- break;
- case ParsedAttr::AT_CUDAInvalidTarget:
- HasInvalidTargetAttr = true;
- break;
- default:
- break;
- }
- }
-
- if (HasInvalidTargetAttr)
- return CFT_InvalidTarget;
-
- if (HasGlobalAttr)
- return CFT_Global;
-
- if (HasHostAttr && HasDeviceAttr)
- return CFT_HostDevice;
-
- if (HasDeviceAttr)
- return CFT_Device;
-
- return CFT_Host;
-}
-
-template <typename A>
-static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
- return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
- return isa<A>(Attribute) &&
- !(IgnoreImplicitAttr && Attribute->isImplicit());
- });
-}
-
-/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
-Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
- bool IgnoreImplicitHDAttr) {
- // Code that lives outside a function is run on the host.
- if (D == nullptr)
- return CFT_Host;
-
- if (D->hasAttr<CUDAInvalidTargetAttr>())
- return CFT_InvalidTarget;
-
- if (D->hasAttr<CUDAGlobalAttr>())
- return CFT_Global;
-
- if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
- if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
- return CFT_HostDevice;
- return CFT_Device;
- } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
- return CFT_Host;
- } else if (D->isImplicit() && !IgnoreImplicitHDAttr) {
- // Some implicit declarations (like intrinsic functions) are not marked.
- // Set the most lenient target on them for maximal flexibility.
- return CFT_HostDevice;
- }
-
- return CFT_Host;
-}
-
-// * CUDA Call preference table
-//
-// F - from,
-// T - to
-// Ph - preference in host mode
-// Pd - preference in device mode
-// H - handled in (x)
-// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
-//
-// | F | T | Ph | Pd | H |
-// |----+----+-----+-----+-----+
-// | d | d | N | N | (c) |
-// | d | g | -- | -- | (a) |
-// | d | h | -- | -- | (e) |
-// | d | hd | HD | HD | (b) |
-// | g | d | N | N | (c) |
-// | g | g | -- | -- | (a) |
-// | g | h | -- | -- | (e) |
-// | g | hd | HD | HD | (b) |
-// | h | d | -- | -- | (e) |
-// | h | g | N | N | (c) |
-// | h | h | N | N | (c) |
-// | h | hd | HD | HD | (b) |
-// | hd | d | WS | SS | (d) |
-// | hd | g | SS | -- |(d/a)|
-// | hd | h | SS | WS | (d) |
-// | hd | hd | HD | HD | (b) |
-
-Sema::CUDAFunctionPreference
-Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
- const FunctionDecl *Callee) {
- assert(Callee && "Callee must be valid.");
- CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
- CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
-
- // If one of the targets is invalid, the check always fails, no matter what
- // the other target is.
- if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
- return CFP_Never;
-
- // (a) Can't call global from some contexts until we support CUDA's
- // dynamic parallelism.
- if (CalleeTarget == CFT_Global &&
- (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
- return CFP_Never;
-
- // (b) Calling HostDevice is OK for everyone.
- if (CalleeTarget == CFT_HostDevice)
- return CFP_HostDevice;
-
- // (c) Best case scenarios
- if (CalleeTarget == CallerTarget ||
- (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
- (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
- return CFP_Native;
-
- // (d) HostDevice behavior depends on compilation mode.
- if (CallerTarget == CFT_HostDevice) {
- // It's OK to call a compilation-mode matching function from an HD one.
- if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
- (!getLangOpts().CUDAIsDevice &&
- (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
- return CFP_SameSide;
-
- // Calls from HD to non-mode-matching functions (i.e., to host functions
- // when compiling in device mode or to device functions when compiling in
- // host mode) are allowed at the sema level, but eventually rejected if
- // they're ever codegened. TODO: Reject said calls earlier.
- return CFP_WrongSide;
- }
-
- // (e) Calling across device/host boundary is not something you should do.
- if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
- (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
- (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
- return CFP_Never;
-
- llvm_unreachable("All cases should've been handled by now.");
-}
-
-void Sema::EraseUnwantedCUDAMatches(
- const FunctionDecl *Caller,
- SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
- if (Matches.size() <= 1)
- return;
-
- using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
-
- // Gets the CUDA function preference for a call from Caller to Match.
- auto GetCFP = [&](const Pair &Match) {
- return IdentifyCUDAPreference(Caller, Match.second);
- };
-
- // Find the best call preference among the functions in Matches.
- CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
- Matches.begin(), Matches.end(),
- [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
-
- // Erase all functions with lower priority.
- llvm::erase_if(Matches,
- [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
-}
-
-/// When an implicitly-declared special member has to invoke more than one
-/// base/field special member, conflicts may occur in the targets of these
-/// members. For example, if one base's member __host__ and another's is
-/// __device__, it's a conflict.
-/// This function figures out if the given targets \param Target1 and
-/// \param Target2 conflict, and if they do not it fills in
-/// \param ResolvedTarget with a target that resolves for both calls.
-/// \return true if there's a conflict, false otherwise.
-static bool
-resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
- Sema::CUDAFunctionTarget Target2,
- Sema::CUDAFunctionTarget *ResolvedTarget) {
- // Only free functions and static member functions may be global.
- assert(Target1 != Sema::CFT_Global);
- assert(Target2 != Sema::CFT_Global);
-
- if (Target1 == Sema::CFT_HostDevice) {
- *ResolvedTarget = Target2;
- } else if (Target2 == Sema::CFT_HostDevice) {
- *ResolvedTarget = Target1;
- } else if (Target1 != Target2) {
- return true;
- } else {
- *ResolvedTarget = Target1;
- }
-
- return false;
-}
-
-bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
- CXXSpecialMember CSM,
- CXXMethodDecl *MemberDecl,
- bool ConstRHS,
- bool Diagnose) {
- llvm::Optional<CUDAFunctionTarget> InferredTarget;
-
- // We're going to invoke special member lookup; mark that these special
- // members are called from this one, and not from its caller.
- ContextRAII MethodContext(*this, MemberDecl);
-
- // Look for special members in base classes that should be invoked from here.
- // Infer the target of this member base on the ones it should call.
- // Skip direct and indirect virtual bases for abstract classes.
- llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
- for (const auto &B : ClassDecl->bases()) {
- if (!B.isVirtual()) {
- Bases.push_back(&B);
- }
- }
-
- if (!ClassDecl->isAbstract()) {
- for (const auto &VB : ClassDecl->vbases()) {
- Bases.push_back(&VB);
- }
- }
-
- for (const auto *B : Bases) {
- const RecordType *BaseType = B->getType()->getAs<RecordType>();
- if (!BaseType) {
- continue;
- }
-
- CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
- Sema::SpecialMemberOverloadResult SMOR =
- LookupSpecialMember(BaseClassDecl, CSM,
- /* ConstArg */ ConstRHS,
- /* VolatileArg */ false,
- /* RValueThis */ false,
- /* ConstThis */ false,
- /* VolatileThis */ false);
-
- if (!SMOR.getMethod())
- continue;
-
- CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
- if (!InferredTarget.hasValue()) {
- InferredTarget = BaseMethodTarget;
- } else {
- bool ResolutionError = resolveCalleeCUDATargetConflict(
- InferredTarget.getValue(), BaseMethodTarget,
- InferredTarget.getPointer());
- if (ResolutionError) {
- if (Diagnose) {
- Diag(ClassDecl->getLocation(),
- diag::note_implicit_member_target_infer_collision)
- << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
- }
- MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
- return true;
- }
- }
- }
-
- // Same as for bases, but now for special members of fields.
- for (const auto *F : ClassDecl->fields()) {
- if (F->isInvalidDecl()) {
- continue;
- }
-
- const RecordType *FieldType =
- Context.getBaseElementType(F->getType())->getAs<RecordType>();
- if (!FieldType) {
- continue;
- }
-
- CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
- Sema::SpecialMemberOverloadResult SMOR =
- LookupSpecialMember(FieldRecDecl, CSM,
- /* ConstArg */ ConstRHS && !F->isMutable(),
- /* VolatileArg */ false,
- /* RValueThis */ false,
- /* ConstThis */ false,
- /* VolatileThis */ false);
-
- if (!SMOR.getMethod())
- continue;
-
- CUDAFunctionTarget FieldMethodTarget =
- IdentifyCUDATarget(SMOR.getMethod());
- if (!InferredTarget.hasValue()) {
- InferredTarget = FieldMethodTarget;
- } else {
- bool ResolutionError = resolveCalleeCUDATargetConflict(
- InferredTarget.getValue(), FieldMethodTarget,
- InferredTarget.getPointer());
- if (ResolutionError) {
- if (Diagnose) {
- Diag(ClassDecl->getLocation(),
- diag::note_implicit_member_target_infer_collision)
- << (unsigned)CSM << InferredTarget.getValue()
- << FieldMethodTarget;
- }
- MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
- return true;
- }
- }
- }
-
- if (InferredTarget.hasValue()) {
- if (InferredTarget.getValue() == CFT_Device) {
- MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- } else if (InferredTarget.getValue() == CFT_Host) {
- MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
- } else {
- MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
- }
- } else {
- // If no target was inferred, mark this member as __host__ __device__;
- // it's the least restrictive option that can be invoked from any target.
- MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
- }
-
- return false;
-}
-
-bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
- if (!CD->isDefined() && CD->isTemplateInstantiation())
- InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
-
- // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
- // empty at a point in the translation unit, if it is either a
- // trivial constructor
- if (CD->isTrivial())
- return true;
-
- // ... or it satisfies all of the following conditions:
- // The constructor function has been defined.
- // The constructor function has no parameters,
- // and the function body is an empty compound statement.
- if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
- return false;
-
- // Its class has no virtual functions and no virtual base classes.
- if (CD->getParent()->isDynamicClass())
- return false;
-
- // The only form of initializer allowed is an empty constructor.
- // This will recursively check all base classes and member initializers
- if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
- if (const CXXConstructExpr *CE =
- dyn_cast<CXXConstructExpr>(CI->getInit()))
- return isEmptyCudaConstructor(Loc, CE->getConstructor());
- return false;
- }))
- return false;
-
- return true;
-}
-
-bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
- // No destructor -> no problem.
- if (!DD)
- return true;
-
- if (!DD->isDefined() && DD->isTemplateInstantiation())
- InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
-
- // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
- // empty at a point in the translation unit, if it is either a
- // trivial constructor
- if (DD->isTrivial())
- return true;
-
- // ... or it satisfies all of the following conditions:
- // The destructor function has been defined.
- // and the function body is an empty compound statement.
- if (!DD->hasTrivialBody())
- return false;
-
- const CXXRecordDecl *ClassDecl = DD->getParent();
-
- // Its class has no virtual functions and no virtual base classes.
- if (ClassDecl->isDynamicClass())
- return false;
-
- // Only empty destructors are allowed. This will recursively check
- // destructors for all base classes...
- if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
- if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
- return isEmptyCudaDestructor(Loc, RD->getDestructor());
- return true;
- }))
- return false;
-
- // ... and member fields.
- if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
- if (CXXRecordDecl *RD = Field->getType()
- ->getBaseElementTypeUnsafe()
- ->getAsCXXRecordDecl())
- return isEmptyCudaDestructor(Loc, RD->getDestructor());
- return true;
- }))
- return false;
-
- return true;
-}
-
-void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
- if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
- return;
- const Expr *Init = VD->getInit();
- if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
- VD->hasAttr<CUDASharedAttr>()) {
- assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
- bool AllowedInit = false;
- if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
- AllowedInit =
- isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
- // We'll allow constant initializers even if it's a non-empty
- // constructor according to CUDA rules. This deviates from NVCC,
- // but allows us to handle things like constexpr constructors.
- if (!AllowedInit &&
- (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
- AllowedInit = VD->getInit()->isConstantInitializer(
- Context, VD->getType()->isReferenceType());
-
- // Also make sure that destructor, if there is one, is empty.
- if (AllowedInit)
- if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
- AllowedInit =
- isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
-
- if (!AllowedInit) {
- Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
- ? diag::err_shared_var_init
- : diag::err_dynamic_var_init)
- << Init->getSourceRange();
- VD->setInvalidDecl();
- }
- } else {
- // This is a host-side global variable. Check that the initializer is
- // callable from the host side.
- const FunctionDecl *InitFn = nullptr;
- if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
- InitFn = CE->getConstructor();
- } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
- InitFn = CE->getDirectCallee();
- }
- if (InitFn) {
- CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
- if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
- Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
- << InitFnTarget << InitFn;
- Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
- VD->setInvalidDecl();
- }
- }
- }
-}
-
-// With -fcuda-host-device-constexpr, an unattributed constexpr function is
-// treated as implicitly __host__ __device__, unless:
-// * it is a variadic function (device-side variadic functions are not
-// allowed), or
-// * a __device__ function with this signature was already declared, in which
-// case in which case we output an error, unless the __device__ decl is in a
-// system header, in which case we leave the constexpr function unattributed.
-//
-// In addition, all function decls are treated as __host__ __device__ when
-// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
-// #pragma clang force_cuda_host_device_begin/end
-// pair).
-void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
- const LookupResult &Previous) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
-
- if (ForceCUDAHostDeviceDepth > 0) {
- if (!NewD->hasAttr<CUDAHostAttr>())
- NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
- if (!NewD->hasAttr<CUDADeviceAttr>())
- NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- return;
- }
-
- if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
- NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
- NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
- return;
-
- // Is D a __device__ function with the same signature as NewD, ignoring CUDA
- // attributes?
- auto IsMatchingDeviceFn = [&](NamedDecl *D) {
- if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
- D = Using->getTargetDecl();
- FunctionDecl *OldD = D->getAsFunction();
- return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
- !OldD->hasAttr<CUDAHostAttr>() &&
- !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
- /* ConsiderCudaAttrs = */ false);
- };
- auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
- if (It != Previous.end()) {
- // We found a __device__ function with the same name and signature as NewD
- // (ignoring CUDA attrs). This is an error unless that function is defined
- // in a system header, in which case we simply return without making NewD
- // host+device.
- NamedDecl *Match = *It;
- if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
- Diag(NewD->getLocation(),
- diag::err_cuda_unattributed_constexpr_cannot_overload_device)
- << NewD;
- Diag(Match->getLocation(),
- diag::note_cuda_conflicting_device_function_declared_here);
- }
- return;
- }
-
- NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
- NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
-}
-
-// In CUDA, there are some constructs which may appear in semantically-valid
-// code, but trigger errors if we ever generate code for the function in which
-// they appear. Essentially every construct you're not allowed to use on the
-// device falls into this category, because you are allowed to use these
-// constructs in a __host__ __device__ function, but only if that function is
-// never codegen'ed on the device.
-//
-// To handle semantic checking for these constructs, we keep track of the set of
-// functions we know will be emitted, either because we could tell a priori that
-// they would be emitted, or because they were transitively called by a
-// known-emitted function.
-//
-// We also keep a partial call graph of which not-known-emitted functions call
-// which other not-known-emitted functions.
-//
-// When we see something which is illegal if the current function is emitted
-// (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
-// CheckCUDACall), we first check if the current function is known-emitted. If
-// so, we immediately output the diagnostic.
-//
-// Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags
-// until we discover that the function is known-emitted, at which point we take
-// it out of this map and emit the diagnostic.
-
-Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc,
- unsigned DiagID, FunctionDecl *Fn,
- Sema &S)
- : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
- ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
- switch (K) {
- case K_Nop:
- break;
- case K_Immediate:
- case K_ImmediateWithCallStack:
- ImmediateDiag.emplace(S.Diag(Loc, DiagID));
- break;
- case K_Deferred:
- assert(Fn && "Must have a function to attach the deferred diag to.");
- PartialDiag.emplace(S.PDiag(DiagID));
- break;
- }
-}
-
-// Print notes showing how we can reach FD starting from an a priori
-// known-callable function.
-static void EmitCallStackNotes(Sema &S, FunctionDecl *FD) {
- auto FnIt = S.CUDAKnownEmittedFns.find(FD);
- while (FnIt != S.CUDAKnownEmittedFns.end()) {
- DiagnosticBuilder Builder(
- S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
- Builder << FnIt->second.FD;
- Builder.setForceEmit();
-
- FnIt = S.CUDAKnownEmittedFns.find(FnIt->second.FD);
- }
-}
-
-Sema::CUDADiagBuilder::~CUDADiagBuilder() {
- if (ImmediateDiag) {
- // Emit our diagnostic and, if it was a warning or error, output a callstack
- // if Fn isn't a priori known-emitted.
- bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
- DiagID, Loc) >= DiagnosticsEngine::Warning;
- ImmediateDiag.reset(); // Emit the immediate diag.
- if (IsWarningOrError && ShowCallStack)
- EmitCallStackNotes(S, Fn);
- } else if (PartialDiag) {
- assert(ShowCallStack && "Must always show call stack for deferred diags.");
- S.CUDADeferredDiags[Fn].push_back({Loc, std::move(*PartialDiag)});
- }
-}
-
-// Do we know that we will eventually codegen the given function?
-static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) {
- // Templates are emitted when they're instantiated.
- if (FD->isDependentContext())
- return false;
-
- // When compiling for device, host functions are never emitted. Similarly,
- // when compiling for host, device and global functions are never emitted.
- // (Technically, we do emit a host-side stub for global functions, but this
- // doesn't count for our purposes here.)
- Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD);
- if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host)
- return false;
- if (!S.getLangOpts().CUDAIsDevice &&
- (T == Sema::CFT_Device || T == Sema::CFT_Global))
- return false;
-
- // Check whether this function is externally visible -- if so, it's
- // known-emitted.
- //
- // We have to check the GVA linkage of the function's *definition* -- if we
- // only have a declaration, we don't know whether or not the function will be
- // emitted, because (say) the definition could include "inline".
- FunctionDecl *Def = FD->getDefinition();
-
- if (Def &&
- !isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def)))
- return true;
-
- // Otherwise, the function is known-emitted if it's in our set of
- // known-emitted functions.
- return S.CUDAKnownEmittedFns.count(FD) > 0;
-}
-
-Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
- unsigned DiagID) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- CUDADiagBuilder::Kind DiagKind = [&] {
- switch (CurrentCUDATarget()) {
- case CFT_Global:
- case CFT_Device:
- return CUDADiagBuilder::K_Immediate;
- case CFT_HostDevice:
- // An HD function counts as host code if we're compiling for host, and
- // device code if we're compiling for device. Defer any errors in device
- // mode until the function is known-emitted.
- if (getLangOpts().CUDAIsDevice) {
- return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
- ? CUDADiagBuilder::K_ImmediateWithCallStack
- : CUDADiagBuilder::K_Deferred;
- }
- return CUDADiagBuilder::K_Nop;
-
- default:
- return CUDADiagBuilder::K_Nop;
- }
- }();
- return CUDADiagBuilder(DiagKind, Loc, DiagID,
- dyn_cast<FunctionDecl>(CurContext), *this);
-}
-
-Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
- unsigned DiagID) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- CUDADiagBuilder::Kind DiagKind = [&] {
- switch (CurrentCUDATarget()) {
- case CFT_Host:
- return CUDADiagBuilder::K_Immediate;
- case CFT_HostDevice:
- // An HD function counts as host code if we're compiling for host, and
- // device code if we're compiling for device. Defer any errors in device
- // mode until the function is known-emitted.
- if (getLangOpts().CUDAIsDevice)
- return CUDADiagBuilder::K_Nop;
-
- return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
- ? CUDADiagBuilder::K_ImmediateWithCallStack
- : CUDADiagBuilder::K_Deferred;
- default:
- return CUDADiagBuilder::K_Nop;
- }
- }();
- return CUDADiagBuilder(DiagKind, Loc, DiagID,
- dyn_cast<FunctionDecl>(CurContext), *this);
-}
-
-// Emit any deferred diagnostics for FD and erase them from the map in which
-// they're stored.
-static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) {
- auto It = S.CUDADeferredDiags.find(FD);
- if (It == S.CUDADeferredDiags.end())
- return;
- bool HasWarningOrError = false;
- for (PartialDiagnosticAt &PDAt : It->second) {
- const SourceLocation &Loc = PDAt.first;
- const PartialDiagnostic &PD = PDAt.second;
- HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(
- PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning;
- DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
- Builder.setForceEmit();
- PD.Emit(Builder);
- }
- S.CUDADeferredDiags.erase(It);
-
- // FIXME: Should this be called after every warning/error emitted in the loop
- // above, instead of just once per function? That would be consistent with
- // how we handle immediate errors, but it also seems like a bit much.
- if (HasWarningOrError)
- EmitCallStackNotes(S, FD);
-}
-
-// Indicate that this function (and thus everything it transtively calls) will
-// be codegen'ed, and emit any deferred diagnostics on this function and its
-// (transitive) callees.
-static void MarkKnownEmitted(Sema &S, FunctionDecl *OrigCaller,
- FunctionDecl *OrigCallee, SourceLocation OrigLoc) {
- // Nothing to do if we already know that FD is emitted.
- if (IsKnownEmitted(S, OrigCallee)) {
- assert(!S.CUDACallGraph.count(OrigCallee));
- return;
- }
-
- // We've just discovered that OrigCallee is known-emitted. Walk our call
- // graph to see what else we can now discover also must be emitted.
-
- struct CallInfo {
- FunctionDecl *Caller;
- FunctionDecl *Callee;
- SourceLocation Loc;
- };
- llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}};
- llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen;
- Seen.insert(OrigCallee);
- while (!Worklist.empty()) {
- CallInfo C = Worklist.pop_back_val();
- assert(!IsKnownEmitted(S, C.Callee) &&
- "Worklist should not contain known-emitted functions.");
- S.CUDAKnownEmittedFns[C.Callee] = {C.Caller, C.Loc};
- EmitDeferredDiags(S, C.Callee);
-
- // If this is a template instantiation, explore its callgraph as well:
- // Non-dependent calls are part of the template's callgraph, while dependent
- // calls are part of to the instantiation's call graph.
- if (auto *Templ = C.Callee->getPrimaryTemplate()) {
- FunctionDecl *TemplFD = Templ->getAsFunction();
- if (!Seen.count(TemplFD) && !S.CUDAKnownEmittedFns.count(TemplFD)) {
- Seen.insert(TemplFD);
- Worklist.push_back(
- {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc});
- }
- }
-
- // Add all functions called by Callee to our worklist.
- auto CGIt = S.CUDACallGraph.find(C.Callee);
- if (CGIt == S.CUDACallGraph.end())
- continue;
-
- for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc :
- CGIt->second) {
- FunctionDecl *NewCallee = FDLoc.first;
- SourceLocation CallLoc = FDLoc.second;
- if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee))
- continue;
- Seen.insert(NewCallee);
- Worklist.push_back(
- {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc});
- }
-
- // C.Callee is now known-emitted, so we no longer need to maintain its list
- // of callees in CUDACallGraph.
- S.CUDACallGraph.erase(CGIt);
- }
-}
-
-bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- assert(Callee && "Callee may not be null.");
- // FIXME: Is bailing out early correct here? Should we instead assume that
- // the caller is a global initializer?
- FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
- if (!Caller)
- return true;
-
- // If the caller is known-emitted, mark the callee as known-emitted.
- // Otherwise, mark the call in our call graph so we can traverse it later.
- bool CallerKnownEmitted = IsKnownEmitted(*this, Caller);
- if (CallerKnownEmitted) {
- // Host-side references to a __global__ function refer to the stub, so the
- // function itself is never emitted and therefore should not be marked.
- if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
- MarkKnownEmitted(*this, Caller, Callee, Loc);
- } else {
- // If we have
- // host fn calls kernel fn calls host+device,
- // the HD function does not get instantiated on the host. We model this by
- // omitting at the call to the kernel from the callgraph. This ensures
- // that, when compiling for host, only HD functions actually called from the
- // host get marked as known-emitted.
- if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
- CUDACallGraph[Caller].insert({Callee, Loc});
- }
-
- CUDADiagBuilder::Kind DiagKind = [&] {
- switch (IdentifyCUDAPreference(Caller, Callee)) {
- case CFP_Never:
- return CUDADiagBuilder::K_Immediate;
- case CFP_WrongSide:
- assert(Caller && "WrongSide calls require a non-null caller");
- // If we know the caller will be emitted, we know this wrong-side call
- // will be emitted, so it's an immediate error. Otherwise, defer the
- // error until we know the caller is emitted.
- return CallerKnownEmitted ? CUDADiagBuilder::K_ImmediateWithCallStack
- : CUDADiagBuilder::K_Deferred;
- default:
- return CUDADiagBuilder::K_Nop;
- }
- }();
-
- if (DiagKind == CUDADiagBuilder::K_Nop)
- return true;
-
- // Avoid emitting this error twice for the same location. Using a hashtable
- // like this is unfortunate, but because we must continue parsing as normal
- // after encountering a deferred error, it's otherwise very tricky for us to
- // ensure that we only emit this deferred error once.
- if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
- return true;
-
- CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
- << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
- CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
- Caller, *this)
- << Callee;
- return DiagKind != CUDADiagBuilder::K_Immediate &&
- DiagKind != CUDADiagBuilder::K_ImmediateWithCallStack;
-}
-
-void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
- return;
- FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
- if (!CurFn)
- return;
- CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
- if (Target == CFT_Global || Target == CFT_Device) {
- Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- } else if (Target == CFT_HostDevice) {
- Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
- }
-}
-
-void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
- const LookupResult &Previous) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
- for (NamedDecl *OldND : Previous) {
- FunctionDecl *OldFD = OldND->getAsFunction();
- if (!OldFD)
- continue;
-
- CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
- // Don't allow HD and global functions to overload other functions with the
- // same signature. We allow overloading based on CUDA attributes so that
- // functions can have different implementations on the host and device, but
- // HD/global functions "exist" in some sense on both the host and device, so
- // should have the same implementation on both sides.
- if (NewTarget != OldTarget &&
- ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
- (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
- !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
- /* ConsiderCudaAttrs = */ false)) {
- Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
- << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
- Diag(OldFD->getLocation(), diag::note_previous_declaration);
- NewFD->setInvalidDecl();
- break;
- }
- }
-}
-
-template <typename AttrTy>
-static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
- const FunctionDecl &TemplateFD) {
- if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
- AttrTy *Clone = Attribute->clone(S.Context);
- Clone->setInherited(true);
- FD->addAttr(Clone);
- }
-}
-
-void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
- const FunctionTemplateDecl &TD) {
- const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
- copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
- copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
- copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
-}