diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp')
| -rw-r--r-- | gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp | 3834 |
1 files changed, 0 insertions, 3834 deletions
diff --git a/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp b/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp deleted file mode 100644 index 5b4229e6468..00000000000 --- a/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp +++ /dev/null @@ -1,3834 +0,0 @@ -//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This tablegen backend emits a target specifier matcher for converting parsed -// assembly operands in the MCInst structures. It also emits a matcher for -// custom operand parsing. -// -// Converting assembly operands into MCInst structures -// --------------------------------------------------- -// -// The input to the target specific matcher is a list of literal tokens and -// operands. The target specific parser should generally eliminate any syntax -// which is not relevant for matching; for example, comma tokens should have -// already been consumed and eliminated by the parser. Most instructions will -// end up with a single literal token (the instruction name) and some number of -// operands. -// -// Some example inputs, for X86: -// 'addl' (immediate ...) (register ...) -// 'add' (immediate ...) (memory ...) -// 'call' '*' %epc -// -// The assembly matcher is responsible for converting this input into a precise -// machine instruction (i.e., an instruction with a well defined encoding). This -// mapping has several properties which complicate matching: -// -// - It may be ambiguous; many architectures can legally encode particular -// variants of an instruction in different ways (for example, using a smaller -// encoding for small immediates). Such ambiguities should never be -// arbitrarily resolved by the assembler, the assembler is always responsible -// for choosing the "best" available instruction. -// -// - It may depend on the subtarget or the assembler context. Instructions -// which are invalid for the current mode, but otherwise unambiguous (e.g., -// an SSE instruction in a file being assembled for i486) should be accepted -// and rejected by the assembler front end. However, if the proper encoding -// for an instruction is dependent on the assembler context then the matcher -// is responsible for selecting the correct machine instruction for the -// current mode. -// -// The core matching algorithm attempts to exploit the regularity in most -// instruction sets to quickly determine the set of possibly matching -// instructions, and the simplify the generated code. Additionally, this helps -// to ensure that the ambiguities are intentionally resolved by the user. -// -// The matching is divided into two distinct phases: -// -// 1. Classification: Each operand is mapped to the unique set which (a) -// contains it, and (b) is the largest such subset for which a single -// instruction could match all members. -// -// For register classes, we can generate these subgroups automatically. For -// arbitrary operands, we expect the user to define the classes and their -// relations to one another (for example, 8-bit signed immediates as a -// subset of 32-bit immediates). -// -// By partitioning the operands in this way, we guarantee that for any -// tuple of classes, any single instruction must match either all or none -// of the sets of operands which could classify to that tuple. -// -// In addition, the subset relation amongst classes induces a partial order -// on such tuples, which we use to resolve ambiguities. -// -// 2. The input can now be treated as a tuple of classes (static tokens are -// simple singleton sets). Each such tuple should generally map to a single -// instruction (we currently ignore cases where this isn't true, whee!!!), -// which we can emit a simple matcher for. -// -// Custom Operand Parsing -// ---------------------- -// -// Some targets need a custom way to parse operands, some specific instructions -// can contain arguments that can represent processor flags and other kinds of -// identifiers that need to be mapped to specific values in the final encoded -// instructions. The target specific custom operand parsing works in the -// following way: -// -// 1. A operand match table is built, each entry contains a mnemonic, an -// operand class, a mask for all operand positions for that same -// class/mnemonic and target features to be checked while trying to match. -// -// 2. The operand matcher will try every possible entry with the same -// mnemonic and will check if the target feature for this mnemonic also -// matches. After that, if the operand to be matched has its index -// present in the mask, a successful match occurs. Otherwise, fallback -// to the regular operand parsing. -// -// 3. For a match success, each operand class that has a 'ParserMethod' -// becomes part of a switch from where the custom method is called. -// -//===----------------------------------------------------------------------===// - -#include "CodeGenTarget.h" -#include "SubtargetFeatureInfo.h" -#include "Types.h" -#include "llvm/ADT/CachedHashString.h" -#include "llvm/ADT/PointerUnion.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/TableGen/Error.h" -#include "llvm/TableGen/Record.h" -#include "llvm/TableGen/StringMatcher.h" -#include "llvm/TableGen/StringToOffsetTable.h" -#include "llvm/TableGen/TableGenBackend.h" -#include <cassert> -#include <cctype> -#include <forward_list> -#include <map> -#include <set> - -using namespace llvm; - -#define DEBUG_TYPE "asm-matcher-emitter" - -cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); - -static cl::opt<std::string> - MatchPrefix("match-prefix", cl::init(""), - cl::desc("Only match instructions with the given prefix"), - cl::cat(AsmMatcherEmitterCat)); - -namespace { -class AsmMatcherInfo; - -// Register sets are used as keys in some second-order sets TableGen creates -// when generating its data structures. This means that the order of two -// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and -// can even affect compiler output (at least seen in diagnostics produced when -// all matches fail). So we use a type that sorts them consistently. -typedef std::set<Record*, LessRecordByID> RegisterSet; - -class AsmMatcherEmitter { - RecordKeeper &Records; -public: - AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} - - void run(raw_ostream &o); -}; - -/// ClassInfo - Helper class for storing the information about a particular -/// class of operands which can be matched. -struct ClassInfo { - enum ClassInfoKind { - /// Invalid kind, for use as a sentinel value. - Invalid = 0, - - /// The class for a particular token. - Token, - - /// The (first) register class, subsequent register classes are - /// RegisterClass0+1, and so on. - RegisterClass0, - - /// The (first) user defined class, subsequent user defined classes are - /// UserClass0+1, and so on. - UserClass0 = 1<<16 - }; - - /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + - /// N) for the Nth user defined class. - unsigned Kind; - - /// SuperClasses - The super classes of this class. Note that for simplicities - /// sake user operands only record their immediate super class, while register - /// operands include all superclasses. - std::vector<ClassInfo*> SuperClasses; - - /// Name - The full class name, suitable for use in an enum. - std::string Name; - - /// ClassName - The unadorned generic name for this class (e.g., Token). - std::string ClassName; - - /// ValueName - The name of the value this class represents; for a token this - /// is the literal token string, for an operand it is the TableGen class (or - /// empty if this is a derived class). - std::string ValueName; - - /// PredicateMethod - The name of the operand method to test whether the - /// operand matches this class; this is not valid for Token or register kinds. - std::string PredicateMethod; - - /// RenderMethod - The name of the operand method to add this operand to an - /// MCInst; this is not valid for Token or register kinds. - std::string RenderMethod; - - /// ParserMethod - The name of the operand method to do a target specific - /// parsing on the operand. - std::string ParserMethod; - - /// For register classes: the records for all the registers in this class. - RegisterSet Registers; - - /// For custom match classes: the diagnostic kind for when the predicate fails. - std::string DiagnosticType; - - /// For custom match classes: the diagnostic string for when the predicate fails. - std::string DiagnosticString; - - /// Is this operand optional and not always required. - bool IsOptional; - - /// DefaultMethod - The name of the method that returns the default operand - /// for optional operand - std::string DefaultMethod; - -public: - /// isRegisterClass() - Check if this is a register class. - bool isRegisterClass() const { - return Kind >= RegisterClass0 && Kind < UserClass0; - } - - /// isUserClass() - Check if this is a user defined class. - bool isUserClass() const { - return Kind >= UserClass0; - } - - /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes - /// are related if they are in the same class hierarchy. - bool isRelatedTo(const ClassInfo &RHS) const { - // Tokens are only related to tokens. - if (Kind == Token || RHS.Kind == Token) - return Kind == Token && RHS.Kind == Token; - - // Registers classes are only related to registers classes, and only if - // their intersection is non-empty. - if (isRegisterClass() || RHS.isRegisterClass()) { - if (!isRegisterClass() || !RHS.isRegisterClass()) - return false; - - RegisterSet Tmp; - std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); - std::set_intersection(Registers.begin(), Registers.end(), - RHS.Registers.begin(), RHS.Registers.end(), - II, LessRecordByID()); - - return !Tmp.empty(); - } - - // Otherwise we have two users operands; they are related if they are in the - // same class hierarchy. - // - // FIXME: This is an oversimplification, they should only be related if they - // intersect, however we don't have that information. - assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); - const ClassInfo *Root = this; - while (!Root->SuperClasses.empty()) - Root = Root->SuperClasses.front(); - - const ClassInfo *RHSRoot = &RHS; - while (!RHSRoot->SuperClasses.empty()) - RHSRoot = RHSRoot->SuperClasses.front(); - - return Root == RHSRoot; - } - - /// isSubsetOf - Test whether this class is a subset of \p RHS. - bool isSubsetOf(const ClassInfo &RHS) const { - // This is a subset of RHS if it is the same class... - if (this == &RHS) - return true; - - // ... or if any of its super classes are a subset of RHS. - SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), - SuperClasses.end()); - SmallPtrSet<const ClassInfo *, 16> Visited; - while (!Worklist.empty()) { - auto *CI = Worklist.pop_back_val(); - if (CI == &RHS) - return true; - for (auto *Super : CI->SuperClasses) - if (Visited.insert(Super).second) - Worklist.push_back(Super); - } - - return false; - } - - int getTreeDepth() const { - int Depth = 0; - const ClassInfo *Root = this; - while (!Root->SuperClasses.empty()) { - Depth++; - Root = Root->SuperClasses.front(); - } - return Depth; - } - - const ClassInfo *findRoot() const { - const ClassInfo *Root = this; - while (!Root->SuperClasses.empty()) - Root = Root->SuperClasses.front(); - return Root; - } - - /// Compare two classes. This does not produce a total ordering, but does - /// guarantee that subclasses are sorted before their parents, and that the - /// ordering is transitive. - bool operator<(const ClassInfo &RHS) const { - if (this == &RHS) - return false; - - // First, enforce the ordering between the three different types of class. - // Tokens sort before registers, which sort before user classes. - if (Kind == Token) { - if (RHS.Kind != Token) - return true; - assert(RHS.Kind == Token); - } else if (isRegisterClass()) { - if (RHS.Kind == Token) - return false; - else if (RHS.isUserClass()) - return true; - assert(RHS.isRegisterClass()); - } else if (isUserClass()) { - if (!RHS.isUserClass()) - return false; - assert(RHS.isUserClass()); - } else { - llvm_unreachable("Unknown ClassInfoKind"); - } - - if (Kind == Token || isUserClass()) { - // Related tokens and user classes get sorted by depth in the inheritence - // tree (so that subclasses are before their parents). - if (isRelatedTo(RHS)) { - if (getTreeDepth() > RHS.getTreeDepth()) - return true; - if (getTreeDepth() < RHS.getTreeDepth()) - return false; - } else { - // Unrelated tokens and user classes are ordered by the name of their - // root nodes, so that there is a consistent ordering between - // unconnected trees. - return findRoot()->ValueName < RHS.findRoot()->ValueName; - } - } else if (isRegisterClass()) { - // For register sets, sort by number of registers. This guarantees that - // a set will always sort before all of it's strict supersets. - if (Registers.size() != RHS.Registers.size()) - return Registers.size() < RHS.Registers.size(); - } else { - llvm_unreachable("Unknown ClassInfoKind"); - } - - // FIXME: We should be able to just return false here, as we only need a - // partial order (we use stable sorts, so this is deterministic) and the - // name of a class shouldn't be significant. However, some of the backends - // accidentally rely on this behaviour, so it will have to stay like this - // until they are fixed. - return ValueName < RHS.ValueName; - } -}; - -class AsmVariantInfo { -public: - StringRef RegisterPrefix; - StringRef TokenizingCharacters; - StringRef SeparatorCharacters; - StringRef BreakCharacters; - StringRef Name; - int AsmVariantNo; -}; - -/// MatchableInfo - Helper class for storing the necessary information for an -/// instruction or alias which is capable of being matched. -struct MatchableInfo { - struct AsmOperand { - /// Token - This is the token that the operand came from. - StringRef Token; - - /// The unique class instance this operand should match. - ClassInfo *Class; - - /// The operand name this is, if anything. - StringRef SrcOpName; - - /// The operand name this is, before renaming for tied operands. - StringRef OrigSrcOpName; - - /// The suboperand index within SrcOpName, or -1 for the entire operand. - int SubOpIdx; - - /// Whether the token is "isolated", i.e., it is preceded and followed - /// by separators. - bool IsIsolatedToken; - - /// Register record if this token is singleton register. - Record *SingletonReg; - - explicit AsmOperand(bool IsIsolatedToken, StringRef T) - : Token(T), Class(nullptr), SubOpIdx(-1), - IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} - }; - - /// ResOperand - This represents a single operand in the result instruction - /// generated by the match. In cases (like addressing modes) where a single - /// assembler operand expands to multiple MCOperands, this represents the - /// single assembler operand, not the MCOperand. - struct ResOperand { - enum { - /// RenderAsmOperand - This represents an operand result that is - /// generated by calling the render method on the assembly operand. The - /// corresponding AsmOperand is specified by AsmOperandNum. - RenderAsmOperand, - - /// TiedOperand - This represents a result operand that is a duplicate of - /// a previous result operand. - TiedOperand, - - /// ImmOperand - This represents an immediate value that is dumped into - /// the operand. - ImmOperand, - - /// RegOperand - This represents a fixed register that is dumped in. - RegOperand - } Kind; - - /// Tuple containing the index of the (earlier) result operand that should - /// be copied from, as well as the indices of the corresponding (parsed) - /// operands in the asm string. - struct TiedOperandsTuple { - unsigned ResOpnd; - unsigned SrcOpnd1Idx; - unsigned SrcOpnd2Idx; - }; - - union { - /// This is the operand # in the AsmOperands list that this should be - /// copied from. - unsigned AsmOperandNum; - - /// Description of tied operands. - TiedOperandsTuple TiedOperands; - - /// ImmVal - This is the immediate value added to the instruction. - int64_t ImmVal; - - /// Register - This is the register record. - Record *Register; - }; - - /// MINumOperands - The number of MCInst operands populated by this - /// operand. - unsigned MINumOperands; - - static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { - ResOperand X; - X.Kind = RenderAsmOperand; - X.AsmOperandNum = AsmOpNum; - X.MINumOperands = NumOperands; - return X; - } - - static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, - unsigned SrcOperand2) { - ResOperand X; - X.Kind = TiedOperand; - X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; - X.MINumOperands = 1; - return X; - } - - static ResOperand getImmOp(int64_t Val) { - ResOperand X; - X.Kind = ImmOperand; - X.ImmVal = Val; - X.MINumOperands = 1; - return X; - } - - static ResOperand getRegOp(Record *Reg) { - ResOperand X; - X.Kind = RegOperand; - X.Register = Reg; - X.MINumOperands = 1; - return X; - } - }; - - /// AsmVariantID - Target's assembly syntax variant no. - int AsmVariantID; - - /// AsmString - The assembly string for this instruction (with variants - /// removed), e.g. "movsx $src, $dst". - std::string AsmString; - - /// TheDef - This is the definition of the instruction or InstAlias that this - /// matchable came from. - Record *const TheDef; - - /// DefRec - This is the definition that it came from. - PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; - - const CodeGenInstruction *getResultInst() const { - if (DefRec.is<const CodeGenInstruction*>()) - return DefRec.get<const CodeGenInstruction*>(); - return DefRec.get<const CodeGenInstAlias*>()->ResultInst; - } - - /// ResOperands - This is the operand list that should be built for the result - /// MCInst. - SmallVector<ResOperand, 8> ResOperands; - - /// Mnemonic - This is the first token of the matched instruction, its - /// mnemonic. - StringRef Mnemonic; - - /// AsmOperands - The textual operands that this instruction matches, - /// annotated with a class and where in the OperandList they were defined. - /// This directly corresponds to the tokenized AsmString after the mnemonic is - /// removed. - SmallVector<AsmOperand, 8> AsmOperands; - - /// Predicates - The required subtarget features to match this instruction. - SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; - - /// ConversionFnKind - The enum value which is passed to the generated - /// convertToMCInst to convert parsed operands into an MCInst for this - /// function. - std::string ConversionFnKind; - - /// If this instruction is deprecated in some form. - bool HasDeprecation; - - /// If this is an alias, this is use to determine whether or not to using - /// the conversion function defined by the instruction's AsmMatchConverter - /// or to use the function generated by the alias. - bool UseInstAsmMatchConverter; - - MatchableInfo(const CodeGenInstruction &CGI) - : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), - UseInstAsmMatchConverter(true) { - } - - MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) - : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), - DefRec(Alias.release()), - UseInstAsmMatchConverter( - TheDef->getValueAsBit("UseInstAsmMatchConverter")) { - } - - // Could remove this and the dtor if PointerUnion supported unique_ptr - // elements with a dynamic failure/assertion (like the one below) in the case - // where it was copied while being in an owning state. - MatchableInfo(const MatchableInfo &RHS) - : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), - TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), - Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), - RequiredFeatures(RHS.RequiredFeatures), - ConversionFnKind(RHS.ConversionFnKind), - HasDeprecation(RHS.HasDeprecation), - UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { - assert(!DefRec.is<const CodeGenInstAlias *>()); - } - - ~MatchableInfo() { - delete DefRec.dyn_cast<const CodeGenInstAlias*>(); - } - - // Two-operand aliases clone from the main matchable, but mark the second - // operand as a tied operand of the first for purposes of the assembler. - void formTwoOperandAlias(StringRef Constraint); - - void initialize(const AsmMatcherInfo &Info, - SmallPtrSetImpl<Record*> &SingletonRegisters, - AsmVariantInfo const &Variant, - bool HasMnemonicFirst); - - /// validate - Return true if this matchable is a valid thing to match against - /// and perform a bunch of validity checking. - bool validate(StringRef CommentDelimiter, bool IsAlias) const; - - /// findAsmOperand - Find the AsmOperand with the specified name and - /// suboperand index. - int findAsmOperand(StringRef N, int SubOpIdx) const { - auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { - return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; - }); - return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; - } - - /// findAsmOperandNamed - Find the first AsmOperand with the specified name. - /// This does not check the suboperand index. - int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { - auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), - [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); - return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; - } - - int findAsmOperandOriginallyNamed(StringRef N) const { - auto I = - find_if(AsmOperands, - [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); - return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; - } - - void buildInstructionResultOperands(); - void buildAliasResultOperands(bool AliasConstraintsAreChecked); - - /// operator< - Compare two matchables. - bool operator<(const MatchableInfo &RHS) const { - // The primary comparator is the instruction mnemonic. - if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) - return Cmp == -1; - - if (AsmOperands.size() != RHS.AsmOperands.size()) - return AsmOperands.size() < RHS.AsmOperands.size(); - - // Compare lexicographically by operand. The matcher validates that other - // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). - for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { - if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) - return true; - if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) - return false; - } - - // Give matches that require more features higher precedence. This is useful - // because we cannot define AssemblerPredicates with the negation of - // processor features. For example, ARM v6 "nop" may be either a HINT or - // MOV. With v6, we want to match HINT. The assembler has no way to - // predicate MOV under "NoV6", but HINT will always match first because it - // requires V6 while MOV does not. - if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) - return RequiredFeatures.size() > RHS.RequiredFeatures.size(); - - return false; - } - - /// couldMatchAmbiguouslyWith - Check whether this matchable could - /// ambiguously match the same set of operands as \p RHS (without being a - /// strictly superior match). - bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { - // The primary comparator is the instruction mnemonic. - if (Mnemonic != RHS.Mnemonic) - return false; - - // Different variants can't conflict. - if (AsmVariantID != RHS.AsmVariantID) - return false; - - // The number of operands is unambiguous. - if (AsmOperands.size() != RHS.AsmOperands.size()) - return false; - - // Otherwise, make sure the ordering of the two instructions is unambiguous - // by checking that either (a) a token or operand kind discriminates them, - // or (b) the ordering among equivalent kinds is consistent. - - // Tokens and operand kinds are unambiguous (assuming a correct target - // specific parser). - for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) - if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || - AsmOperands[i].Class->Kind == ClassInfo::Token) - if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || - *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) - return false; - - // Otherwise, this operand could commute if all operands are equivalent, or - // there is a pair of operands that compare less than and a pair that - // compare greater than. - bool HasLT = false, HasGT = false; - for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { - if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) - HasLT = true; - if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) - HasGT = true; - } - - return HasLT == HasGT; - } - - void dump() const; - -private: - void tokenizeAsmString(AsmMatcherInfo const &Info, - AsmVariantInfo const &Variant); - void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); -}; - -struct OperandMatchEntry { - unsigned OperandMask; - const MatchableInfo* MI; - ClassInfo *CI; - - static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, - unsigned opMask) { - OperandMatchEntry X; - X.OperandMask = opMask; - X.CI = ci; - X.MI = mi; - return X; - } -}; - -class AsmMatcherInfo { -public: - /// Tracked Records - RecordKeeper &Records; - - /// The tablegen AsmParser record. - Record *AsmParser; - - /// Target - The target information. - CodeGenTarget &Target; - - /// The classes which are needed for matching. - std::forward_list<ClassInfo> Classes; - - /// The information on the matchables to match. - std::vector<std::unique_ptr<MatchableInfo>> Matchables; - - /// Info for custom matching operands by user defined methods. - std::vector<OperandMatchEntry> OperandMatchInfo; - - /// Map of Register records to their class information. - typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; - RegisterClassesTy RegisterClasses; - - /// Map of Predicate records to their subtarget information. - std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; - - /// Map of AsmOperandClass records to their class information. - std::map<Record*, ClassInfo*> AsmOperandClasses; - - /// Map of RegisterClass records to their class information. - std::map<Record*, ClassInfo*> RegisterClassClasses; - -private: - /// Map of token to class information which has already been constructed. - std::map<std::string, ClassInfo*> TokenClasses; - -private: - /// getTokenClass - Lookup or create the class for the given token. - ClassInfo *getTokenClass(StringRef Token); - - /// getOperandClass - Lookup or create the class for the given operand. - ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, - int SubOpIdx); - ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); - - /// buildRegisterClasses - Build the ClassInfo* instances for register - /// classes. - void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); - - /// buildOperandClasses - Build the ClassInfo* instances for user defined - /// operand classes. - void buildOperandClasses(); - - void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, - unsigned AsmOpIdx); - void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, - MatchableInfo::AsmOperand &Op); - -public: - AsmMatcherInfo(Record *AsmParser, - CodeGenTarget &Target, - RecordKeeper &Records); - - /// Construct the various tables used during matching. - void buildInfo(); - - /// buildOperandMatchInfo - Build the necessary information to handle user - /// defined operand parsing methods. - void buildOperandMatchInfo(); - - /// getSubtargetFeature - Lookup or create the subtarget feature info for the - /// given operand. - const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { - assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); - const auto &I = SubtargetFeatures.find(Def); - return I == SubtargetFeatures.end() ? nullptr : &I->second; - } - - RecordKeeper &getRecords() const { - return Records; - } - - bool hasOptionalOperands() const { - return find_if(Classes, [](const ClassInfo &Class) { - return Class.IsOptional; - }) != Classes.end(); - } -}; - -} // end anonymous namespace - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void MatchableInfo::dump() const { - errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; - - errs() << " variant: " << AsmVariantID << "\n"; - - for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { - const AsmOperand &Op = AsmOperands[i]; - errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; - errs() << '\"' << Op.Token << "\"\n"; - } -} -#endif - -static std::pair<StringRef, StringRef> -parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { - // Split via the '='. - std::pair<StringRef, StringRef> Ops = S.split('='); - if (Ops.second == "") - PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); - // Trim whitespace and the leading '$' on the operand names. - size_t start = Ops.first.find_first_of('$'); - if (start == std::string::npos) - PrintFatalError(Loc, "expected '$' prefix on asm operand name"); - Ops.first = Ops.first.slice(start + 1, std::string::npos); - size_t end = Ops.first.find_last_of(" \t"); - Ops.first = Ops.first.slice(0, end); - // Now the second operand. - start = Ops.second.find_first_of('$'); - if (start == std::string::npos) - PrintFatalError(Loc, "expected '$' prefix on asm operand name"); - Ops.second = Ops.second.slice(start + 1, std::string::npos); - end = Ops.second.find_last_of(" \t"); - Ops.first = Ops.first.slice(0, end); - return Ops; -} - -void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { - // Figure out which operands are aliased and mark them as tied. - std::pair<StringRef, StringRef> Ops = - parseTwoOperandConstraint(Constraint, TheDef->getLoc()); - - // Find the AsmOperands that refer to the operands we're aliasing. - int SrcAsmOperand = findAsmOperandNamed(Ops.first); - int DstAsmOperand = findAsmOperandNamed(Ops.second); - if (SrcAsmOperand == -1) - PrintFatalError(TheDef->getLoc(), - "unknown source two-operand alias operand '" + Ops.first + - "'."); - if (DstAsmOperand == -1) - PrintFatalError(TheDef->getLoc(), - "unknown destination two-operand alias operand '" + - Ops.second + "'."); - - // Find the ResOperand that refers to the operand we're aliasing away - // and update it to refer to the combined operand instead. - for (ResOperand &Op : ResOperands) { - if (Op.Kind == ResOperand::RenderAsmOperand && - Op.AsmOperandNum == (unsigned)SrcAsmOperand) { - Op.AsmOperandNum = DstAsmOperand; - break; - } - } - // Remove the AsmOperand for the alias operand. - AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); - // Adjust the ResOperand references to any AsmOperands that followed - // the one we just deleted. - for (ResOperand &Op : ResOperands) { - switch(Op.Kind) { - default: - // Nothing to do for operands that don't reference AsmOperands. - break; - case ResOperand::RenderAsmOperand: - if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) - --Op.AsmOperandNum; - break; - } - } -} - -/// extractSingletonRegisterForAsmOperand - Extract singleton register, -/// if present, from specified token. -static void -extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, - const AsmMatcherInfo &Info, - StringRef RegisterPrefix) { - StringRef Tok = Op.Token; - - // If this token is not an isolated token, i.e., it isn't separated from - // other tokens (e.g. with whitespace), don't interpret it as a register name. - if (!Op.IsIsolatedToken) - return; - - if (RegisterPrefix.empty()) { - std::string LoweredTok = Tok.lower(); - if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) - Op.SingletonReg = Reg->TheDef; - return; - } - - if (!Tok.startswith(RegisterPrefix)) - return; - - StringRef RegName = Tok.substr(RegisterPrefix.size()); - if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) - Op.SingletonReg = Reg->TheDef; - - // If there is no register prefix (i.e. "%" in "%eax"), then this may - // be some random non-register token, just ignore it. -} - -void MatchableInfo::initialize(const AsmMatcherInfo &Info, - SmallPtrSetImpl<Record*> &SingletonRegisters, - AsmVariantInfo const &Variant, - bool HasMnemonicFirst) { - AsmVariantID = Variant.AsmVariantNo; - AsmString = - CodeGenInstruction::FlattenAsmStringVariants(AsmString, - Variant.AsmVariantNo); - - tokenizeAsmString(Info, Variant); - - // The first token of the instruction is the mnemonic, which must be a - // simple string, not a $foo variable or a singleton register. - if (AsmOperands.empty()) - PrintFatalError(TheDef->getLoc(), - "Instruction '" + TheDef->getName() + "' has no tokens"); - - assert(!AsmOperands[0].Token.empty()); - if (HasMnemonicFirst) { - Mnemonic = AsmOperands[0].Token; - if (Mnemonic[0] == '$') - PrintFatalError(TheDef->getLoc(), - "Invalid instruction mnemonic '" + Mnemonic + "'!"); - - // Remove the first operand, it is tracked in the mnemonic field. - AsmOperands.erase(AsmOperands.begin()); - } else if (AsmOperands[0].Token[0] != '$') - Mnemonic = AsmOperands[0].Token; - - // Compute the require features. - for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) - if (const SubtargetFeatureInfo *Feature = - Info.getSubtargetFeature(Predicate)) - RequiredFeatures.push_back(Feature); - - // Collect singleton registers, if used. - for (MatchableInfo::AsmOperand &Op : AsmOperands) { - extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); - if (Record *Reg = Op.SingletonReg) - SingletonRegisters.insert(Reg); - } - - const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); - if (!DepMask) - DepMask = TheDef->getValue("ComplexDeprecationPredicate"); - - HasDeprecation = - DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; -} - -/// Append an AsmOperand for the given substring of AsmString. -void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { - AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); -} - -/// tokenizeAsmString - Tokenize a simplified assembly string. -void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, - AsmVariantInfo const &Variant) { - StringRef String = AsmString; - size_t Prev = 0; - bool InTok = false; - bool IsIsolatedToken = true; - for (size_t i = 0, e = String.size(); i != e; ++i) { - char Char = String[i]; - if (Variant.BreakCharacters.find(Char) != std::string::npos) { - if (InTok) { - addAsmOperand(String.slice(Prev, i), false); - Prev = i; - IsIsolatedToken = false; - } - InTok = true; - continue; - } - if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { - if (InTok) { - addAsmOperand(String.slice(Prev, i), IsIsolatedToken); - InTok = false; - IsIsolatedToken = false; - } - addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); - Prev = i + 1; - IsIsolatedToken = true; - continue; - } - if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { - if (InTok) { - addAsmOperand(String.slice(Prev, i), IsIsolatedToken); - InTok = false; - } - Prev = i + 1; - IsIsolatedToken = true; - continue; - } - - switch (Char) { - case '\\': - if (InTok) { - addAsmOperand(String.slice(Prev, i), false); - InTok = false; - IsIsolatedToken = false; - } - ++i; - assert(i != String.size() && "Invalid quoted character"); - addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); - Prev = i + 1; - IsIsolatedToken = false; - break; - - case '$': { - if (InTok) { - addAsmOperand(String.slice(Prev, i), false); - InTok = false; - IsIsolatedToken = false; - } - - // If this isn't "${", start new identifier looking like "$xxx" - if (i + 1 == String.size() || String[i + 1] != '{') { - Prev = i; - break; - } - - size_t EndPos = String.find('}', i); - assert(EndPos != StringRef::npos && - "Missing brace in operand reference!"); - addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); - Prev = EndPos + 1; - i = EndPos; - IsIsolatedToken = false; - break; - } - - default: - InTok = true; - break; - } - } - if (InTok && Prev != String.size()) - addAsmOperand(String.substr(Prev), IsIsolatedToken); -} - -bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { - // Reject matchables with no .s string. - if (AsmString.empty()) - PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); - - // Reject any matchables with a newline in them, they should be marked - // isCodeGenOnly if they are pseudo instructions. - if (AsmString.find('\n') != std::string::npos) - PrintFatalError(TheDef->getLoc(), - "multiline instruction is not valid for the asmparser, " - "mark it isCodeGenOnly"); - - // Remove comments from the asm string. We know that the asmstring only - // has one line. - if (!CommentDelimiter.empty() && - StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) - PrintFatalError(TheDef->getLoc(), - "asmstring for instruction has comment character in it, " - "mark it isCodeGenOnly"); - - // Reject matchables with operand modifiers, these aren't something we can - // handle, the target should be refactored to use operands instead of - // modifiers. - // - // Also, check for instructions which reference the operand multiple times; - // this implies a constraint we would not honor. - std::set<std::string> OperandNames; - for (const AsmOperand &Op : AsmOperands) { - StringRef Tok = Op.Token; - if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) - PrintFatalError(TheDef->getLoc(), - "matchable with operand modifier '" + Tok + - "' not supported by asm matcher. Mark isCodeGenOnly!"); - // Verify that any operand is only mentioned once. - // We reject aliases and ignore instructions for now. - if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) { - LLVM_DEBUG({ - errs() << "warning: '" << TheDef->getName() << "': " - << "ignoring instruction with tied operand '" - << Tok << "'\n"; - }); - return false; - } - } - - return true; -} - -static std::string getEnumNameForToken(StringRef Str) { - std::string Res; - - for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { - switch (*it) { - case '*': Res += "_STAR_"; break; - case '%': Res += "_PCT_"; break; - case ':': Res += "_COLON_"; break; - case '!': Res += "_EXCLAIM_"; break; - case '.': Res += "_DOT_"; break; - case '<': Res += "_LT_"; break; - case '>': Res += "_GT_"; break; - case '-': Res += "_MINUS_"; break; - default: - if ((*it >= 'A' && *it <= 'Z') || - (*it >= 'a' && *it <= 'z') || - (*it >= '0' && *it <= '9')) - Res += *it; - else - Res += "_" + utostr((unsigned) *it) + "_"; - } - } - - return Res; -} - -ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { - ClassInfo *&Entry = TokenClasses[Token]; - - if (!Entry) { - Classes.emplace_front(); - Entry = &Classes.front(); - Entry->Kind = ClassInfo::Token; - Entry->ClassName = "Token"; - Entry->Name = "MCK_" + getEnumNameForToken(Token); - Entry->ValueName = Token; - Entry->PredicateMethod = "<invalid>"; - Entry->RenderMethod = "<invalid>"; - Entry->ParserMethod = ""; - Entry->DiagnosticType = ""; - Entry->IsOptional = false; - Entry->DefaultMethod = "<invalid>"; - } - - return Entry; -} - -ClassInfo * -AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, - int SubOpIdx) { - Record *Rec = OI.Rec; - if (SubOpIdx != -1) - Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); - return getOperandClass(Rec, SubOpIdx); -} - -ClassInfo * -AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { - if (Rec->isSubClassOf("RegisterOperand")) { - // RegisterOperand may have an associated ParserMatchClass. If it does, - // use it, else just fall back to the underlying register class. - const RecordVal *R = Rec->getValue("ParserMatchClass"); - if (!R || !R->getValue()) - PrintFatalError("Record `" + Rec->getName() + - "' does not have a ParserMatchClass!\n"); - - if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { - Record *MatchClass = DI->getDef(); - if (ClassInfo *CI = AsmOperandClasses[MatchClass]) - return CI; - } - - // No custom match class. Just use the register class. - Record *ClassRec = Rec->getValueAsDef("RegClass"); - if (!ClassRec) - PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + - "' has no associated register class!\n"); - if (ClassInfo *CI = RegisterClassClasses[ClassRec]) - return CI; - PrintFatalError(Rec->getLoc(), "register class has no class info!"); - } - - if (Rec->isSubClassOf("RegisterClass")) { - if (ClassInfo *CI = RegisterClassClasses[Rec]) - return CI; - PrintFatalError(Rec->getLoc(), "register class has no class info!"); - } - - if (!Rec->isSubClassOf("Operand")) - PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + - "' does not derive from class Operand!\n"); - Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); - if (ClassInfo *CI = AsmOperandClasses[MatchClass]) - return CI; - - PrintFatalError(Rec->getLoc(), "operand has no match class!"); -} - -struct LessRegisterSet { - bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { - // std::set<T> defines its own compariso "operator<", but it - // performs a lexicographical comparison by T's innate comparison - // for some reason. We don't want non-deterministic pointer - // comparisons so use this instead. - return std::lexicographical_compare(LHS.begin(), LHS.end(), - RHS.begin(), RHS.end(), - LessRecordByID()); - } -}; - -void AsmMatcherInfo:: -buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { - const auto &Registers = Target.getRegBank().getRegisters(); - auto &RegClassList = Target.getRegBank().getRegClasses(); - - typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; - - // The register sets used for matching. - RegisterSetSet RegisterSets; - - // Gather the defined sets. - for (const CodeGenRegisterClass &RC : RegClassList) - RegisterSets.insert( - RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); - - // Add any required singleton sets. - for (Record *Rec : SingletonRegisters) { - RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); - } - - // Introduce derived sets where necessary (when a register does not determine - // a unique register set class), and build the mapping of registers to the set - // they should classify to. - std::map<Record*, RegisterSet> RegisterMap; - for (const CodeGenRegister &CGR : Registers) { - // Compute the intersection of all sets containing this register. - RegisterSet ContainingSet; - - for (const RegisterSet &RS : RegisterSets) { - if (!RS.count(CGR.TheDef)) - continue; - - if (ContainingSet.empty()) { - ContainingSet = RS; - continue; - } - - RegisterSet Tmp; - std::swap(Tmp, ContainingSet); - std::insert_iterator<RegisterSet> II(ContainingSet, - ContainingSet.begin()); - std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, - LessRecordByID()); - } - - if (!ContainingSet.empty()) { - RegisterSets.insert(ContainingSet); - RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); - } - } - - // Construct the register classes. - std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; - unsigned Index = 0; - for (const RegisterSet &RS : RegisterSets) { - Classes.emplace_front(); - ClassInfo *CI = &Classes.front(); - CI->Kind = ClassInfo::RegisterClass0 + Index; - CI->ClassName = "Reg" + utostr(Index); - CI->Name = "MCK_Reg" + utostr(Index); - CI->ValueName = ""; - CI->PredicateMethod = ""; // unused - CI->RenderMethod = "addRegOperands"; - CI->Registers = RS; - // FIXME: diagnostic type. - CI->DiagnosticType = ""; - CI->IsOptional = false; - CI->DefaultMethod = ""; // unused - RegisterSetClasses.insert(std::make_pair(RS, CI)); - ++Index; - } - - // Find the superclasses; we could compute only the subgroup lattice edges, - // but there isn't really a point. - for (const RegisterSet &RS : RegisterSets) { - ClassInfo *CI = RegisterSetClasses[RS]; - for (const RegisterSet &RS2 : RegisterSets) - if (RS != RS2 && - std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), - LessRecordByID())) - CI->SuperClasses.push_back(RegisterSetClasses[RS2]); - } - - // Name the register classes which correspond to a user defined RegisterClass. - for (const CodeGenRegisterClass &RC : RegClassList) { - // Def will be NULL for non-user defined register classes. - Record *Def = RC.getDef(); - if (!Def) - continue; - ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), - RC.getOrder().end())]; - if (CI->ValueName.empty()) { - CI->ClassName = RC.getName(); - CI->Name = "MCK_" + RC.getName(); - CI->ValueName = RC.getName(); - } else - CI->ValueName = CI->ValueName + "," + RC.getName(); - - Init *DiagnosticType = Def->getValueInit("DiagnosticType"); - if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) - CI->DiagnosticType = SI->getValue(); - - Init *DiagnosticString = Def->getValueInit("DiagnosticString"); - if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) - CI->DiagnosticString = SI->getValue(); - - // If we have a diagnostic string but the diagnostic type is not specified - // explicitly, create an anonymous diagnostic type. - if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) - CI->DiagnosticType = RC.getName(); - - RegisterClassClasses.insert(std::make_pair(Def, CI)); - } - - // Populate the map for individual registers. - for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), - ie = RegisterMap.end(); it != ie; ++it) - RegisterClasses[it->first] = RegisterSetClasses[it->second]; - - // Name the register classes which correspond to singleton registers. - for (Record *Rec : SingletonRegisters) { - ClassInfo *CI = RegisterClasses[Rec]; - assert(CI && "Missing singleton register class info!"); - - if (CI->ValueName.empty()) { - CI->ClassName = Rec->getName(); - CI->Name = "MCK_" + Rec->getName().str(); - CI->ValueName = Rec->getName(); - } else - CI->ValueName = CI->ValueName + "," + Rec->getName().str(); - } -} - -void AsmMatcherInfo::buildOperandClasses() { - std::vector<Record*> AsmOperands = - Records.getAllDerivedDefinitions("AsmOperandClass"); - - // Pre-populate AsmOperandClasses map. - for (Record *Rec : AsmOperands) { - Classes.emplace_front(); - AsmOperandClasses[Rec] = &Classes.front(); - } - - unsigned Index = 0; - for (Record *Rec : AsmOperands) { - ClassInfo *CI = AsmOperandClasses[Rec]; - CI->Kind = ClassInfo::UserClass0 + Index; - - ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); - for (Init *I : Supers->getValues()) { - DefInit *DI = dyn_cast<DefInit>(I); - if (!DI) { - PrintError(Rec->getLoc(), "Invalid super class reference!"); - continue; - } - - ClassInfo *SC = AsmOperandClasses[DI->getDef()]; - if (!SC) - PrintError(Rec->getLoc(), "Invalid super class reference!"); - else - CI->SuperClasses.push_back(SC); - } - CI->ClassName = Rec->getValueAsString("Name"); - CI->Name = "MCK_" + CI->ClassName; - CI->ValueName = Rec->getName(); - - // Get or construct the predicate method name. - Init *PMName = Rec->getValueInit("PredicateMethod"); - if (StringInit *SI = dyn_cast<StringInit>(PMName)) { - CI->PredicateMethod = SI->getValue(); - } else { - assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); - CI->PredicateMethod = "is" + CI->ClassName; - } - - // Get or construct the render method name. - Init *RMName = Rec->getValueInit("RenderMethod"); - if (StringInit *SI = dyn_cast<StringInit>(RMName)) { - CI->RenderMethod = SI->getValue(); - } else { - assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); - CI->RenderMethod = "add" + CI->ClassName + "Operands"; - } - - // Get the parse method name or leave it as empty. - Init *PRMName = Rec->getValueInit("ParserMethod"); - if (StringInit *SI = dyn_cast<StringInit>(PRMName)) - CI->ParserMethod = SI->getValue(); - - // Get the diagnostic type and string or leave them as empty. - Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); - if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) - CI->DiagnosticType = SI->getValue(); - Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); - if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) - CI->DiagnosticString = SI->getValue(); - // If we have a DiagnosticString, we need a DiagnosticType for use within - // the matcher. - if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) - CI->DiagnosticType = CI->ClassName; - - Init *IsOptional = Rec->getValueInit("IsOptional"); - if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) - CI->IsOptional = BI->getValue(); - - // Get or construct the default method name. - Init *DMName = Rec->getValueInit("DefaultMethod"); - if (StringInit *SI = dyn_cast<StringInit>(DMName)) { - CI->DefaultMethod = SI->getValue(); - } else { - assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); - CI->DefaultMethod = "default" + CI->ClassName + "Operands"; - } - - ++Index; - } -} - -AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, - CodeGenTarget &target, - RecordKeeper &records) - : Records(records), AsmParser(asmParser), Target(target) { -} - -/// buildOperandMatchInfo - Build the necessary information to handle user -/// defined operand parsing methods. -void AsmMatcherInfo::buildOperandMatchInfo() { - - /// Map containing a mask with all operands indices that can be found for - /// that class inside a instruction. - typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; - OpClassMaskTy OpClassMask; - - for (const auto &MI : Matchables) { - OpClassMask.clear(); - - // Keep track of all operands of this instructions which belong to the - // same class. - for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { - const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; - if (Op.Class->ParserMethod.empty()) - continue; - unsigned &OperandMask = OpClassMask[Op.Class]; - OperandMask |= (1 << i); - } - - // Generate operand match info for each mnemonic/operand class pair. - for (const auto &OCM : OpClassMask) { - unsigned OpMask = OCM.second; - ClassInfo *CI = OCM.first; - OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, - OpMask)); - } - } -} - -void AsmMatcherInfo::buildInfo() { - // Build information about all of the AssemblerPredicates. - const std::vector<std::pair<Record *, SubtargetFeatureInfo>> - &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); - SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), - SubtargetFeaturePairs.end()); -#ifndef NDEBUG - for (const auto &Pair : SubtargetFeatures) - LLVM_DEBUG(Pair.second.dump()); -#endif // NDEBUG - assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); - - bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); - bool ReportMultipleNearMisses = - AsmParser->getValueAsBit("ReportMultipleNearMisses"); - - // Parse the instructions; we need to do this first so that we can gather the - // singleton register classes. - SmallPtrSet<Record*, 16> SingletonRegisters; - unsigned VariantCount = Target.getAsmParserVariantCount(); - for (unsigned VC = 0; VC != VariantCount; ++VC) { - Record *AsmVariant = Target.getAsmParserVariant(VC); - StringRef CommentDelimiter = - AsmVariant->getValueAsString("CommentDelimiter"); - AsmVariantInfo Variant; - Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); - Variant.TokenizingCharacters = - AsmVariant->getValueAsString("TokenizingCharacters"); - Variant.SeparatorCharacters = - AsmVariant->getValueAsString("SeparatorCharacters"); - Variant.BreakCharacters = - AsmVariant->getValueAsString("BreakCharacters"); - Variant.Name = AsmVariant->getValueAsString("Name"); - Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); - - for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { - - // If the tblgen -match-prefix option is specified (for tblgen hackers), - // filter the set of instructions we consider. - if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) - continue; - - // Ignore "codegen only" instructions. - if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) - continue; - - // Ignore instructions for different instructions - StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); - if (!V.empty() && V != Variant.Name) - continue; - - auto II = llvm::make_unique<MatchableInfo>(*CGI); - - II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); - - // Ignore instructions which shouldn't be matched and diagnose invalid - // instruction definitions with an error. - if (!II->validate(CommentDelimiter, false)) - continue; - - Matchables.push_back(std::move(II)); - } - - // Parse all of the InstAlias definitions and stick them in the list of - // matchables. - std::vector<Record*> AllInstAliases = - Records.getAllDerivedDefinitions("InstAlias"); - for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { - auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], - Target); - - // If the tblgen -match-prefix option is specified (for tblgen hackers), - // filter the set of instruction aliases we consider, based on the target - // instruction. - if (!StringRef(Alias->ResultInst->TheDef->getName()) - .startswith( MatchPrefix)) - continue; - - StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); - if (!V.empty() && V != Variant.Name) - continue; - - auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); - - II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); - - // Validate the alias definitions. - II->validate(CommentDelimiter, true); - - Matchables.push_back(std::move(II)); - } - } - - // Build info for the register classes. - buildRegisterClasses(SingletonRegisters); - - // Build info for the user defined assembly operand classes. - buildOperandClasses(); - - // Build the information about matchables, now that we have fully formed - // classes. - std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; - for (auto &II : Matchables) { - // Parse the tokens after the mnemonic. - // Note: buildInstructionOperandReference may insert new AsmOperands, so - // don't precompute the loop bound. - for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { - MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; - StringRef Token = Op.Token; - - // Check for singleton registers. - if (Record *RegRecord = Op.SingletonReg) { - Op.Class = RegisterClasses[RegRecord]; - assert(Op.Class && Op.Class->Registers.size() == 1 && - "Unexpected class for singleton register"); - continue; - } - - // Check for simple tokens. - if (Token[0] != '$') { - Op.Class = getTokenClass(Token); - continue; - } - - if (Token.size() > 1 && isdigit(Token[1])) { - Op.Class = getTokenClass(Token); - continue; - } - - // Otherwise this is an operand reference. - StringRef OperandName; - if (Token[1] == '{') - OperandName = Token.substr(2, Token.size() - 3); - else - OperandName = Token.substr(1); - - if (II->DefRec.is<const CodeGenInstruction*>()) - buildInstructionOperandReference(II.get(), OperandName, i); - else - buildAliasOperandReference(II.get(), OperandName, Op); - } - - if (II->DefRec.is<const CodeGenInstruction*>()) { - II->buildInstructionResultOperands(); - // If the instruction has a two-operand alias, build up the - // matchable here. We'll add them in bulk at the end to avoid - // confusing this loop. - StringRef Constraint = - II->TheDef->getValueAsString("TwoOperandAliasConstraint"); - if (Constraint != "") { - // Start by making a copy of the original matchable. - auto AliasII = llvm::make_unique<MatchableInfo>(*II); - - // Adjust it to be a two-operand alias. - AliasII->formTwoOperandAlias(Constraint); - - // Add the alias to the matchables list. - NewMatchables.push_back(std::move(AliasII)); - } - } else - // FIXME: The tied operands checking is not yet integrated with the - // framework for reporting multiple near misses. To prevent invalid - // formats from being matched with an alias if a tied-operands check - // would otherwise have disallowed it, we just disallow such constructs - // in TableGen completely. - II->buildAliasResultOperands(!ReportMultipleNearMisses); - } - if (!NewMatchables.empty()) - Matchables.insert(Matchables.end(), - std::make_move_iterator(NewMatchables.begin()), - std::make_move_iterator(NewMatchables.end())); - - // Process token alias definitions and set up the associated superclass - // information. - std::vector<Record*> AllTokenAliases = - Records.getAllDerivedDefinitions("TokenAlias"); - for (Record *Rec : AllTokenAliases) { - ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); - ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); - if (FromClass == ToClass) - PrintFatalError(Rec->getLoc(), - "error: Destination value identical to source value."); - FromClass->SuperClasses.push_back(ToClass); - } - - // Reorder classes so that classes precede super classes. - Classes.sort(); - -#ifdef EXPENSIVE_CHECKS - // Verify that the table is sorted and operator < works transitively. - for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { - for (auto J = I; J != E; ++J) { - assert(!(*J < *I)); - assert(I == J || !J->isSubsetOf(*I)); - } - } -#endif -} - -/// buildInstructionOperandReference - The specified operand is a reference to a -/// named operand such as $src. Resolve the Class and OperandInfo pointers. -void AsmMatcherInfo:: -buildInstructionOperandReference(MatchableInfo *II, - StringRef OperandName, - unsigned AsmOpIdx) { - const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); - const CGIOperandList &Operands = CGI.Operands; - MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; - - // Map this token to an operand. - unsigned Idx; - if (!Operands.hasOperandNamed(OperandName, Idx)) - PrintFatalError(II->TheDef->getLoc(), - "error: unable to find operand: '" + OperandName + "'"); - - // If the instruction operand has multiple suboperands, but the parser - // match class for the asm operand is still the default "ImmAsmOperand", - // then handle each suboperand separately. - if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { - Record *Rec = Operands[Idx].Rec; - assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); - Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); - if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { - // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. - StringRef Token = Op->Token; // save this in case Op gets moved - for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { - MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); - NewAsmOp.SubOpIdx = SI; - II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); - } - // Replace Op with first suboperand. - Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved - Op->SubOpIdx = 0; - } - } - - // Set up the operand class. - Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); - Op->OrigSrcOpName = OperandName; - - // If the named operand is tied, canonicalize it to the untied operand. - // For example, something like: - // (outs GPR:$dst), (ins GPR:$src) - // with an asmstring of - // "inc $src" - // we want to canonicalize to: - // "inc $dst" - // so that we know how to provide the $dst operand when filling in the result. - int OITied = -1; - if (Operands[Idx].MINumOperands == 1) - OITied = Operands[Idx].getTiedRegister(); - if (OITied != -1) { - // The tied operand index is an MIOperand index, find the operand that - // contains it. - std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); - OperandName = Operands[Idx.first].Name; - Op->SubOpIdx = Idx.second; - } - - Op->SrcOpName = OperandName; -} - -/// buildAliasOperandReference - When parsing an operand reference out of the -/// matching string (e.g. "movsx $src, $dst"), determine what the class of the -/// operand reference is by looking it up in the result pattern definition. -void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, - StringRef OperandName, - MatchableInfo::AsmOperand &Op) { - const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); - - // Set up the operand class. - for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) - if (CGA.ResultOperands[i].isRecord() && - CGA.ResultOperands[i].getName() == OperandName) { - // It's safe to go with the first one we find, because CodeGenInstAlias - // validates that all operands with the same name have the same record. - Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; - // Use the match class from the Alias definition, not the - // destination instruction, as we may have an immediate that's - // being munged by the match class. - Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), - Op.SubOpIdx); - Op.SrcOpName = OperandName; - Op.OrigSrcOpName = OperandName; - return; - } - - PrintFatalError(II->TheDef->getLoc(), - "error: unable to find operand: '" + OperandName + "'"); -} - -void MatchableInfo::buildInstructionResultOperands() { - const CodeGenInstruction *ResultInst = getResultInst(); - - // Loop over all operands of the result instruction, determining how to - // populate them. - for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { - // If this is a tied operand, just copy from the previously handled operand. - int TiedOp = -1; - if (OpInfo.MINumOperands == 1) - TiedOp = OpInfo.getTiedRegister(); - if (TiedOp != -1) { - int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); - if (TiedSrcOperand != -1 && - ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) - ResOperands.push_back(ResOperand::getTiedOp( - TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); - else - ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); - continue; - } - - int SrcOperand = findAsmOperandNamed(OpInfo.Name); - if (OpInfo.Name.empty() || SrcOperand == -1) { - // This may happen for operands that are tied to a suboperand of a - // complex operand. Simply use a dummy value here; nobody should - // use this operand slot. - // FIXME: The long term goal is for the MCOperand list to not contain - // tied operands at all. - ResOperands.push_back(ResOperand::getImmOp(0)); - continue; - } - - // Check if the one AsmOperand populates the entire operand. - unsigned NumOperands = OpInfo.MINumOperands; - if (AsmOperands[SrcOperand].SubOpIdx == -1) { - ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); - continue; - } - - // Add a separate ResOperand for each suboperand. - for (unsigned AI = 0; AI < NumOperands; ++AI) { - assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && - AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && - "unexpected AsmOperands for suboperands"); - ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); - } - } -} - -void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { - const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); - const CodeGenInstruction *ResultInst = getResultInst(); - - // Map of: $reg -> #lastref - // where $reg is the name of the operand in the asm string - // where #lastref is the last processed index where $reg was referenced in - // the asm string. - SmallDenseMap<StringRef, int> OperandRefs; - - // Loop over all operands of the result instruction, determining how to - // populate them. - unsigned AliasOpNo = 0; - unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); - for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { - const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; - - // If this is a tied operand, just copy from the previously handled operand. - int TiedOp = -1; - if (OpInfo->MINumOperands == 1) - TiedOp = OpInfo->getTiedRegister(); - if (TiedOp != -1) { - unsigned SrcOp1 = 0; - unsigned SrcOp2 = 0; - - // If an operand has been specified twice in the asm string, - // add the two source operand's indices to the TiedOp so that - // at runtime the 'tied' constraint is checked. - if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { - SrcOp1 = ResOperands[TiedOp].AsmOperandNum; - - // Find the next operand (similarly named operand) in the string. - StringRef Name = AsmOperands[SrcOp1].SrcOpName; - auto Insert = OperandRefs.try_emplace(Name, SrcOp1); - SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); - - // Not updating the record in OperandRefs will cause TableGen - // to fail with an error at the end of this function. - if (AliasConstraintsAreChecked) - Insert.first->second = SrcOp2; - - // In case it only has one reference in the asm string, - // it doesn't need to be checked for tied constraints. - SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; - } - - // If the alias operand is of a different operand class, we only want - // to benefit from the tied-operands check and just match the operand - // as a normal, but not copy the original (TiedOp) to the result - // instruction. We do this by passing -1 as the tied operand to copy. - if (ResultInst->Operands[i].Rec->getName() != - ResultInst->Operands[TiedOp].Rec->getName()) { - SrcOp1 = ResOperands[TiedOp].AsmOperandNum; - int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; - StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); - SrcOp2 = findAsmOperand(Name, SubIdx); - ResOperands.push_back( - ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); - } else { - ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); - continue; - } - } - - // Handle all the suboperands for this operand. - const std::string &OpName = OpInfo->Name; - for ( ; AliasOpNo < LastOpNo && - CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { - int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; - - // Find out what operand from the asmparser that this MCInst operand - // comes from. - switch (CGA.ResultOperands[AliasOpNo].Kind) { - case CodeGenInstAlias::ResultOperand::K_Record: { - StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); - int SrcOperand = findAsmOperand(Name, SubIdx); - if (SrcOperand == -1) - PrintFatalError(TheDef->getLoc(), "Instruction '" + - TheDef->getName() + "' has operand '" + OpName + - "' that doesn't appear in asm string!"); - - // Add it to the operand references. If it is added a second time, the - // record won't be updated and it will fail later on. - OperandRefs.try_emplace(Name, SrcOperand); - - unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); - ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, - NumOperands)); - break; - } - case CodeGenInstAlias::ResultOperand::K_Imm: { - int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); - ResOperands.push_back(ResOperand::getImmOp(ImmVal)); - break; - } - case CodeGenInstAlias::ResultOperand::K_Reg: { - Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); - ResOperands.push_back(ResOperand::getRegOp(Reg)); - break; - } - } - } - } - - // Check that operands are not repeated more times than is supported. - for (auto &T : OperandRefs) { - if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) - PrintFatalError(TheDef->getLoc(), - "Operand '" + T.first + "' can never be matched"); - } -} - -static unsigned -getConverterOperandID(const std::string &Name, - SmallSetVector<CachedHashString, 16> &Table, - bool &IsNew) { - IsNew = Table.insert(CachedHashString(Name)); - - unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); - - assert(ID < Table.size()); - - return ID; -} - -static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, - std::vector<std::unique_ptr<MatchableInfo>> &Infos, - bool HasMnemonicFirst, bool HasOptionalOperands, - raw_ostream &OS) { - SmallSetVector<CachedHashString, 16> OperandConversionKinds; - SmallSetVector<CachedHashString, 16> InstructionConversionKinds; - std::vector<std::vector<uint8_t> > ConversionTable; - size_t MaxRowLength = 2; // minimum is custom converter plus terminator. - - // TargetOperandClass - This is the target's operand class, like X86Operand. - std::string TargetOperandClass = Target.getName().str() + "Operand"; - - // Write the convert function to a separate stream, so we can drop it after - // the enum. We'll build up the conversion handlers for the individual - // operand types opportunistically as we encounter them. - std::string ConvertFnBody; - raw_string_ostream CvtOS(ConvertFnBody); - // Start the unified conversion function. - if (HasOptionalOperands) { - CvtOS << "void " << Target.getName() << ClassName << "::\n" - << "convertToMCInst(unsigned Kind, MCInst &Inst, " - << "unsigned Opcode,\n" - << " const OperandVector &Operands,\n" - << " const SmallBitVector &OptionalOperandsMask) {\n"; - } else { - CvtOS << "void " << Target.getName() << ClassName << "::\n" - << "convertToMCInst(unsigned Kind, MCInst &Inst, " - << "unsigned Opcode,\n" - << " const OperandVector &Operands) {\n"; - } - CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; - CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; - if (HasOptionalOperands) { - size_t MaxNumOperands = 0; - for (const auto &MI : Infos) { - MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); - } - CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) - << "] = { 0 };\n"; - CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) - << ");\n"; - CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) - << "; ++i) {\n"; - CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; - CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; - CvtOS << " }\n"; - } - CvtOS << " unsigned OpIdx;\n"; - CvtOS << " Inst.setOpcode(Opcode);\n"; - CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; - if (HasOptionalOperands) { - CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; - } else { - CvtOS << " OpIdx = *(p + 1);\n"; - } - CvtOS << " switch (*p) {\n"; - CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; - CvtOS << " case CVT_Reg:\n"; - CvtOS << " static_cast<" << TargetOperandClass - << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; - CvtOS << " break;\n"; - CvtOS << " case CVT_Tied: {\n"; - CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; - CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; - CvtOS << " \"Tied operand not found\");\n"; - CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; - CvtOS << " if (TiedResOpnd != (uint8_t) -1)\n"; - CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; - CvtOS << " break;\n"; - CvtOS << " }\n"; - - std::string OperandFnBody; - raw_string_ostream OpOS(OperandFnBody); - // Start the operand number lookup function. - OpOS << "void " << Target.getName() << ClassName << "::\n" - << "convertToMapAndConstraints(unsigned Kind,\n"; - OpOS.indent(27); - OpOS << "const OperandVector &Operands) {\n" - << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" - << " unsigned NumMCOperands = 0;\n" - << " const uint8_t *Converter = ConversionTable[Kind];\n" - << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" - << " switch (*p) {\n" - << " default: llvm_unreachable(\"invalid conversion entry!\");\n" - << " case CVT_Reg:\n" - << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" - << " Operands[*(p + 1)]->setConstraint(\"r\");\n" - << " ++NumMCOperands;\n" - << " break;\n" - << " case CVT_Tied:\n" - << " ++NumMCOperands;\n" - << " break;\n"; - - // Pre-populate the operand conversion kinds with the standard always - // available entries. - OperandConversionKinds.insert(CachedHashString("CVT_Done")); - OperandConversionKinds.insert(CachedHashString("CVT_Reg")); - OperandConversionKinds.insert(CachedHashString("CVT_Tied")); - enum { CVT_Done, CVT_Reg, CVT_Tied }; - - // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. - std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> - TiedOperandsEnumMap; - - for (auto &II : Infos) { - // Check if we have a custom match function. - StringRef AsmMatchConverter = - II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); - if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { - std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); - II->ConversionFnKind = Signature; - - // Check if we have already generated this signature. - if (!InstructionConversionKinds.insert(CachedHashString(Signature))) - continue; - - // Remember this converter for the kind enum. - unsigned KindID = OperandConversionKinds.size(); - OperandConversionKinds.insert( - CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); - - // Add the converter row for this instruction. - ConversionTable.emplace_back(); - ConversionTable.back().push_back(KindID); - ConversionTable.back().push_back(CVT_Done); - - // Add the handler to the conversion driver function. - CvtOS << " case CVT_" - << getEnumNameForToken(AsmMatchConverter) << ":\n" - << " " << AsmMatchConverter << "(Inst, Operands);\n" - << " break;\n"; - - // FIXME: Handle the operand number lookup for custom match functions. - continue; - } - - // Build the conversion function signature. - std::string Signature = "Convert"; - - std::vector<uint8_t> ConversionRow; - - // Compute the convert enum and the case body. - MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); - - for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { - const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; - - // Generate code to populate each result operand. - switch (OpInfo.Kind) { - case MatchableInfo::ResOperand::RenderAsmOperand: { - // This comes from something we parsed. - const MatchableInfo::AsmOperand &Op = - II->AsmOperands[OpInfo.AsmOperandNum]; - - // Registers are always converted the same, don't duplicate the - // conversion function based on them. - Signature += "__"; - std::string Class; - Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; - Signature += Class; - Signature += utostr(OpInfo.MINumOperands); - Signature += "_" + itostr(OpInfo.AsmOperandNum); - - // Add the conversion kind, if necessary, and get the associated ID - // the index of its entry in the vector). - std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : - Op.Class->RenderMethod); - if (Op.Class->IsOptional) { - // For optional operands we must also care about DefaultMethod - assert(HasOptionalOperands); - Name += "_" + Op.Class->DefaultMethod; - } - Name = getEnumNameForToken(Name); - - bool IsNewConverter = false; - unsigned ID = getConverterOperandID(Name, OperandConversionKinds, - IsNewConverter); - - // Add the operand entry to the instruction kind conversion row. - ConversionRow.push_back(ID); - ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); - - if (!IsNewConverter) - break; - - // This is a new operand kind. Add a handler for it to the - // converter driver. - CvtOS << " case " << Name << ":\n"; - if (Op.Class->IsOptional) { - // If optional operand is not present in actual instruction then we - // should call its DefaultMethod before RenderMethod - assert(HasOptionalOperands); - CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" - << " " << Op.Class->DefaultMethod << "()" - << "->" << Op.Class->RenderMethod << "(Inst, " - << OpInfo.MINumOperands << ");\n" - << " } else {\n" - << " static_cast<" << TargetOperandClass - << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod - << "(Inst, " << OpInfo.MINumOperands << ");\n" - << " }\n"; - } else { - CvtOS << " static_cast<" << TargetOperandClass - << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod - << "(Inst, " << OpInfo.MINumOperands << ");\n"; - } - CvtOS << " break;\n"; - - // Add a handler for the operand number lookup. - OpOS << " case " << Name << ":\n" - << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; - - if (Op.Class->isRegisterClass()) - OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; - else - OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; - OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" - << " break;\n"; - break; - } - case MatchableInfo::ResOperand::TiedOperand: { - // If this operand is tied to a previous one, just copy the MCInst - // operand from the earlier one.We can only tie single MCOperand values. - assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); - uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; - uint8_t SrcOp1 = - OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; - uint8_t SrcOp2 = - OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; - assert((i > TiedOp || TiedOp == (uint8_t)-1) && - "Tied operand precedes its target!"); - auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + - utostr(SrcOp1) + '_' + utostr(SrcOp2); - Signature += "__" + TiedTupleName; - ConversionRow.push_back(CVT_Tied); - ConversionRow.push_back(TiedOp); - ConversionRow.push_back(SrcOp1); - ConversionRow.push_back(SrcOp2); - - // Also create an 'enum' for this combination of tied operands. - auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); - TiedOperandsEnumMap.emplace(Key, TiedTupleName); - break; - } - case MatchableInfo::ResOperand::ImmOperand: { - int64_t Val = OpInfo.ImmVal; - std::string Ty = "imm_" + itostr(Val); - Ty = getEnumNameForToken(Ty); - Signature += "__" + Ty; - - std::string Name = "CVT_" + Ty; - bool IsNewConverter = false; - unsigned ID = getConverterOperandID(Name, OperandConversionKinds, - IsNewConverter); - // Add the operand entry to the instruction kind conversion row. - ConversionRow.push_back(ID); - ConversionRow.push_back(0); - - if (!IsNewConverter) - break; - - CvtOS << " case " << Name << ":\n" - << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" - << " break;\n"; - - OpOS << " case " << Name << ":\n" - << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" - << " Operands[*(p + 1)]->setConstraint(\"\");\n" - << " ++NumMCOperands;\n" - << " break;\n"; - break; - } - case MatchableInfo::ResOperand::RegOperand: { - std::string Reg, Name; - if (!OpInfo.Register) { - Name = "reg0"; - Reg = "0"; - } else { - Reg = getQualifiedName(OpInfo.Register); - Name = "reg" + OpInfo.Register->getName().str(); - } - Signature += "__" + Name; - Name = "CVT_" + Name; - bool IsNewConverter = false; - unsigned ID = getConverterOperandID(Name, OperandConversionKinds, - IsNewConverter); - // Add the operand entry to the instruction kind conversion row. - ConversionRow.push_back(ID); - ConversionRow.push_back(0); - - if (!IsNewConverter) - break; - CvtOS << " case " << Name << ":\n" - << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" - << " break;\n"; - - OpOS << " case " << Name << ":\n" - << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" - << " Operands[*(p + 1)]->setConstraint(\"m\");\n" - << " ++NumMCOperands;\n" - << " break;\n"; - } - } - } - - // If there were no operands, add to the signature to that effect - if (Signature == "Convert") - Signature += "_NoOperands"; - - II->ConversionFnKind = Signature; - - // Save the signature. If we already have it, don't add a new row - // to the table. - if (!InstructionConversionKinds.insert(CachedHashString(Signature))) - continue; - - // Add the row to the table. - ConversionTable.push_back(std::move(ConversionRow)); - } - - // Finish up the converter driver function. - CvtOS << " }\n }\n}\n\n"; - - // Finish up the operand number lookup function. - OpOS << " }\n }\n}\n\n"; - - // Output a static table for tied operands. - if (TiedOperandsEnumMap.size()) { - // The number of tied operand combinations will be small in practice, - // but just add the assert to be sure. - assert(TiedOperandsEnumMap.size() <= 254 && - "Too many tied-operand combinations to reference with " - "an 8bit offset from the conversion table, where index " - "'255' is reserved as operand not to be copied."); - - OS << "enum {\n"; - for (auto &KV : TiedOperandsEnumMap) { - OS << " " << KV.second << ",\n"; - } - OS << "};\n\n"; - - OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; - for (auto &KV : TiedOperandsEnumMap) { - OS << " /* " << KV.second << " */ { " - << utostr(std::get<0>(KV.first)) << ", " - << utostr(std::get<1>(KV.first)) << ", " - << utostr(std::get<2>(KV.first)) << " },\n"; - } - OS << "};\n\n"; - } else - OS << "static const uint8_t TiedAsmOperandTable[][3] = " - "{ /* empty */ {0, 0, 0} };\n\n"; - - OS << "namespace {\n"; - - // Output the operand conversion kind enum. - OS << "enum OperatorConversionKind {\n"; - for (const auto &Converter : OperandConversionKinds) - OS << " " << Converter << ",\n"; - OS << " CVT_NUM_CONVERTERS\n"; - OS << "};\n\n"; - - // Output the instruction conversion kind enum. - OS << "enum InstructionConversionKind {\n"; - for (const auto &Signature : InstructionConversionKinds) - OS << " " << Signature << ",\n"; - OS << " CVT_NUM_SIGNATURES\n"; - OS << "};\n\n"; - - OS << "} // end anonymous namespace\n\n"; - - // Output the conversion table. - OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" - << MaxRowLength << "] = {\n"; - - for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { - assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); - OS << " // " << InstructionConversionKinds[Row] << "\n"; - OS << " { "; - for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { - OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; - if (OperandConversionKinds[ConversionTable[Row][i]] != - CachedHashString("CVT_Tied")) { - OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; - continue; - } - - // For a tied operand, emit a reference to the TiedAsmOperandTable - // that contains the operand to copy, and the parsed operands to - // check for their tied constraints. - auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], - (uint8_t)ConversionTable[Row][i + 2], - (uint8_t)ConversionTable[Row][i + 3]); - auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); - assert(TiedOpndEnum != TiedOperandsEnumMap.end() && - "No record for tied operand pair"); - OS << TiedOpndEnum->second << ", "; - i += 2; - } - OS << "CVT_Done },\n"; - } - - OS << "};\n\n"; - - // Spit out the conversion driver function. - OS << CvtOS.str(); - - // Spit out the operand number lookup function. - OS << OpOS.str(); -} - -/// emitMatchClassEnumeration - Emit the enumeration for match class kinds. -static void emitMatchClassEnumeration(CodeGenTarget &Target, - std::forward_list<ClassInfo> &Infos, - raw_ostream &OS) { - OS << "namespace {\n\n"; - - OS << "/// MatchClassKind - The kinds of classes which participate in\n" - << "/// instruction matching.\n"; - OS << "enum MatchClassKind {\n"; - OS << " InvalidMatchClass = 0,\n"; - OS << " OptionalMatchClass = 1,\n"; - ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; - StringRef LastName = "OptionalMatchClass"; - for (const auto &CI : Infos) { - if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { - OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; - } else if (LastKind < ClassInfo::UserClass0 && - CI.Kind >= ClassInfo::UserClass0) { - OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; - } - LastKind = (ClassInfo::ClassInfoKind)CI.Kind; - LastName = CI.Name; - - OS << " " << CI.Name << ", // "; - if (CI.Kind == ClassInfo::Token) { - OS << "'" << CI.ValueName << "'\n"; - } else if (CI.isRegisterClass()) { - if (!CI.ValueName.empty()) - OS << "register class '" << CI.ValueName << "'\n"; - else - OS << "derived register class\n"; - } else { - OS << "user defined class '" << CI.ValueName << "'\n"; - } - } - OS << " NumMatchClassKinds\n"; - OS << "};\n\n"; - - OS << "}\n\n"; -} - -/// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be -/// used when an assembly operand does not match the expected operand class. -static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { - // If the target does not use DiagnosticString for any operands, don't emit - // an unused function. - if (std::all_of( - Info.Classes.begin(), Info.Classes.end(), - [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); })) - return; - - OS << "static const char *getMatchKindDiag(" << Info.Target.getName() - << "AsmParser::" << Info.Target.getName() - << "MatchResultTy MatchResult) {\n"; - OS << " switch (MatchResult) {\n"; - - for (const auto &CI: Info.Classes) { - if (!CI.DiagnosticString.empty()) { - assert(!CI.DiagnosticType.empty() && - "DiagnosticString set without DiagnosticType"); - OS << " case " << Info.Target.getName() - << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; - OS << " return \"" << CI.DiagnosticString << "\";\n"; - } - } - - OS << " default:\n"; - OS << " return nullptr;\n"; - - OS << " }\n"; - OS << "}\n\n"; -} - -static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { - OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " - "RegisterClass) {\n"; - if (none_of(Info.Classes, [](const ClassInfo &CI) { - return CI.isRegisterClass() && !CI.DiagnosticType.empty(); - })) { - OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; - } else { - OS << " switch (RegisterClass) {\n"; - for (const auto &CI: Info.Classes) { - if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { - OS << " case " << CI.Name << ":\n"; - OS << " return " << Info.Target.getName() << "AsmParser::Match_" - << CI.DiagnosticType << ";\n"; - } - } - - OS << " default:\n"; - OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; - - OS << " }\n"; - } - OS << "}\n\n"; -} - -/// emitValidateOperandClass - Emit the function to validate an operand class. -static void emitValidateOperandClass(AsmMatcherInfo &Info, - raw_ostream &OS) { - OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " - << "MatchClassKind Kind) {\n"; - OS << " " << Info.Target.getName() << "Operand &Operand = (" - << Info.Target.getName() << "Operand&)GOp;\n"; - - // The InvalidMatchClass is not to match any operand. - OS << " if (Kind == InvalidMatchClass)\n"; - OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; - - // Check for Token operands first. - // FIXME: Use a more specific diagnostic type. - OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; - OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" - << " MCTargetAsmParser::Match_Success :\n" - << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; - - // Check the user classes. We don't care what order since we're only - // actually matching against one of them. - OS << " switch (Kind) {\n" - " default: break;\n"; - for (const auto &CI : Info.Classes) { - if (!CI.isUserClass()) - continue; - - OS << " // '" << CI.ClassName << "' class\n"; - OS << " case " << CI.Name << ": {\n"; - OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod - << "());\n"; - OS << " if (DP.isMatch())\n"; - OS << " return MCTargetAsmParser::Match_Success;\n"; - if (!CI.DiagnosticType.empty()) { - OS << " if (DP.isNearMatch())\n"; - OS << " return " << Info.Target.getName() << "AsmParser::Match_" - << CI.DiagnosticType << ";\n"; - OS << " break;\n"; - } - else - OS << " break;\n"; - OS << " }\n"; - } - OS << " } // end switch (Kind)\n\n"; - - // Check for register operands, including sub-classes. - OS << " if (Operand.isReg()) {\n"; - OS << " MatchClassKind OpKind;\n"; - OS << " switch (Operand.getReg()) {\n"; - OS << " default: OpKind = InvalidMatchClass; break;\n"; - for (const auto &RC : Info.RegisterClasses) - OS << " case " << RC.first->getValueAsString("Namespace") << "::" - << RC.first->getName() << ": OpKind = " << RC.second->Name - << "; break;\n"; - OS << " }\n"; - OS << " return isSubclass(OpKind, Kind) ? " - << "(unsigned)MCTargetAsmParser::Match_Success :\n " - << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; - - // Expected operand is a register, but actual is not. - OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; - OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; - - // Generic fallthrough match failure case for operands that don't have - // specialized diagnostic types. - OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; - OS << "}\n\n"; -} - -/// emitIsSubclass - Emit the subclass predicate function. -static void emitIsSubclass(CodeGenTarget &Target, - std::forward_list<ClassInfo> &Infos, - raw_ostream &OS) { - OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; - OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; - OS << " if (A == B)\n"; - OS << " return true;\n\n"; - - bool EmittedSwitch = false; - for (const auto &A : Infos) { - std::vector<StringRef> SuperClasses; - if (A.IsOptional) - SuperClasses.push_back("OptionalMatchClass"); - for (const auto &B : Infos) { - if (&A != &B && A.isSubsetOf(B)) - SuperClasses.push_back(B.Name); - } - - if (SuperClasses.empty()) - continue; - - // If this is the first SuperClass, emit the switch header. - if (!EmittedSwitch) { - OS << " switch (A) {\n"; - OS << " default:\n"; - OS << " return false;\n"; - EmittedSwitch = true; - } - - OS << "\n case " << A.Name << ":\n"; - - if (SuperClasses.size() == 1) { - OS << " return B == " << SuperClasses.back() << ";\n"; - continue; - } - - if (!SuperClasses.empty()) { - OS << " switch (B) {\n"; - OS << " default: return false;\n"; - for (StringRef SC : SuperClasses) - OS << " case " << SC << ": return true;\n"; - OS << " }\n"; - } else { - // No case statement to emit - OS << " return false;\n"; - } - } - - // If there were case statements emitted into the string stream write the - // default. - if (EmittedSwitch) - OS << " }\n"; - else - OS << " return false;\n"; - - OS << "}\n\n"; -} - -/// emitMatchTokenString - Emit the function to match a token string to the -/// appropriate match class value. -static void emitMatchTokenString(CodeGenTarget &Target, - std::forward_list<ClassInfo> &Infos, - raw_ostream &OS) { - // Construct the match list. - std::vector<StringMatcher::StringPair> Matches; - for (const auto &CI : Infos) { - if (CI.Kind == ClassInfo::Token) - Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); - } - - OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; - - StringMatcher("Name", Matches, OS).Emit(); - - OS << " return InvalidMatchClass;\n"; - OS << "}\n\n"; -} - -/// emitMatchRegisterName - Emit the function to match a string to the target -/// specific register enum. -static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, - raw_ostream &OS) { - // Construct the match list. - std::vector<StringMatcher::StringPair> Matches; - const auto &Regs = Target.getRegBank().getRegisters(); - for (const CodeGenRegister &Reg : Regs) { - if (Reg.TheDef->getValueAsString("AsmName").empty()) - continue; - - Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), - "return " + utostr(Reg.EnumValue) + ";"); - } - - OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; - - bool IgnoreDuplicates = - AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); - StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); - - OS << " return 0;\n"; - OS << "}\n\n"; -} - -/// Emit the function to match a string to the target -/// specific register enum. -static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, - raw_ostream &OS) { - // Construct the match list. - std::vector<StringMatcher::StringPair> Matches; - const auto &Regs = Target.getRegBank().getRegisters(); - for (const CodeGenRegister &Reg : Regs) { - - auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); - - for (auto AltName : AltNames) { - AltName = StringRef(AltName).trim(); - - // don't handle empty alternative names - if (AltName.empty()) - continue; - - Matches.emplace_back(AltName, - "return " + utostr(Reg.EnumValue) + ";"); - } - } - - OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; - - bool IgnoreDuplicates = - AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); - StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); - - OS << " return 0;\n"; - OS << "}\n\n"; -} - -/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. -static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { - // Get the set of diagnostic types from all of the operand classes. - std::set<StringRef> Types; - for (const auto &OpClassEntry : Info.AsmOperandClasses) { - if (!OpClassEntry.second->DiagnosticType.empty()) - Types.insert(OpClassEntry.second->DiagnosticType); - } - for (const auto &OpClassEntry : Info.RegisterClassClasses) { - if (!OpClassEntry.second->DiagnosticType.empty()) - Types.insert(OpClassEntry.second->DiagnosticType); - } - - if (Types.empty()) return; - - // Now emit the enum entries. - for (StringRef Type : Types) - OS << " Match_" << Type << ",\n"; - OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; -} - -/// emitGetSubtargetFeatureName - Emit the helper function to get the -/// user-level name for a subtarget feature. -static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { - OS << "// User-level names for subtarget features that participate in\n" - << "// instruction matching.\n" - << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; - if (!Info.SubtargetFeatures.empty()) { - OS << " switch(Val) {\n"; - for (const auto &SF : Info.SubtargetFeatures) { - const SubtargetFeatureInfo &SFI = SF.second; - // FIXME: Totally just a placeholder name to get the algorithm working. - OS << " case " << SFI.getEnumName() << ": return \"" - << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; - } - OS << " default: return \"(unknown)\";\n"; - OS << " }\n"; - } else { - // Nothing to emit, so skip the switch - OS << " return \"(unknown)\";\n"; - } - OS << "}\n\n"; -} - -static std::string GetAliasRequiredFeatures(Record *R, - const AsmMatcherInfo &Info) { - std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); - std::string Result; - unsigned NumFeatures = 0; - for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { - const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); - - if (!F) - PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + - "' is not marked as an AssemblerPredicate!"); - - if (NumFeatures) - Result += '|'; - - Result += F->getEnumName(); - ++NumFeatures; - } - - if (NumFeatures > 1) - Result = '(' + Result + ')'; - return Result; -} - -static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, - std::vector<Record*> &Aliases, - unsigned Indent = 0, - StringRef AsmParserVariantName = StringRef()){ - // Keep track of all the aliases from a mnemonic. Use an std::map so that the - // iteration order of the map is stable. - std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; - - for (Record *R : Aliases) { - // FIXME: Allow AssemblerVariantName to be a comma separated list. - StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); - if (AsmVariantName != AsmParserVariantName) - continue; - AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); - } - if (AliasesFromMnemonic.empty()) - return; - - // Process each alias a "from" mnemonic at a time, building the code executed - // by the string remapper. - std::vector<StringMatcher::StringPair> Cases; - for (const auto &AliasEntry : AliasesFromMnemonic) { - const std::vector<Record*> &ToVec = AliasEntry.second; - - // Loop through each alias and emit code that handles each case. If there - // are two instructions without predicates, emit an error. If there is one, - // emit it last. - std::string MatchCode; - int AliasWithNoPredicate = -1; - - for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { - Record *R = ToVec[i]; - std::string FeatureMask = GetAliasRequiredFeatures(R, Info); - - // If this unconditionally matches, remember it for later and diagnose - // duplicates. - if (FeatureMask.empty()) { - if (AliasWithNoPredicate != -1) { - // We can't have two aliases from the same mnemonic with no predicate. - PrintError(ToVec[AliasWithNoPredicate]->getLoc(), - "two MnemonicAliases with the same 'from' mnemonic!"); - PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); - } - - AliasWithNoPredicate = i; - continue; - } - if (R->getValueAsString("ToMnemonic") == AliasEntry.first) - PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); - - if (!MatchCode.empty()) - MatchCode += "else "; - MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; - MatchCode += " Mnemonic = \""; - MatchCode += R->getValueAsString("ToMnemonic"); - MatchCode += "\";\n"; - } - - if (AliasWithNoPredicate != -1) { - Record *R = ToVec[AliasWithNoPredicate]; - if (!MatchCode.empty()) - MatchCode += "else\n "; - MatchCode += "Mnemonic = \""; - MatchCode += R->getValueAsString("ToMnemonic"); - MatchCode += "\";\n"; - } - - MatchCode += "return;"; - - Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); - } - StringMatcher("Mnemonic", Cases, OS).Emit(Indent); -} - -/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, -/// emit a function for them and return true, otherwise return false. -static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, - CodeGenTarget &Target) { - // Ignore aliases when match-prefix is set. - if (!MatchPrefix.empty()) - return false; - - std::vector<Record*> Aliases = - Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); - if (Aliases.empty()) return false; - - OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " - "uint64_t Features, unsigned VariantID) {\n"; - OS << " switch (VariantID) {\n"; - unsigned VariantCount = Target.getAsmParserVariantCount(); - for (unsigned VC = 0; VC != VariantCount; ++VC) { - Record *AsmVariant = Target.getAsmParserVariant(VC); - int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); - StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); - OS << " case " << AsmParserVariantNo << ":\n"; - emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, - AsmParserVariantName); - OS << " break;\n"; - } - OS << " }\n"; - - // Emit aliases that apply to all variants. - emitMnemonicAliasVariant(OS, Info, Aliases); - - OS << "}\n\n"; - - return true; -} - -static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, - const AsmMatcherInfo &Info, StringRef ClassName, - StringToOffsetTable &StringTable, - unsigned MaxMnemonicIndex, bool HasMnemonicFirst) { - unsigned MaxMask = 0; - for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { - MaxMask |= OMI.OperandMask; - } - - // Emit the static custom operand parsing table; - OS << "namespace {\n"; - OS << " struct OperandMatchEntry {\n"; - OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) - << " RequiredFeatures;\n"; - OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) - << " Mnemonic;\n"; - OS << " " << getMinimalTypeForRange(std::distance( - Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; - OS << " " << getMinimalTypeForRange(MaxMask) - << " OperandMask;\n\n"; - OS << " StringRef getMnemonic() const {\n"; - OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; - OS << " MnemonicTable[Mnemonic]);\n"; - OS << " }\n"; - OS << " };\n\n"; - - OS << " // Predicate for searching for an opcode.\n"; - OS << " struct LessOpcodeOperand {\n"; - OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; - OS << " return LHS.getMnemonic() < RHS;\n"; - OS << " }\n"; - OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; - OS << " return LHS < RHS.getMnemonic();\n"; - OS << " }\n"; - OS << " bool operator()(const OperandMatchEntry &LHS,"; - OS << " const OperandMatchEntry &RHS) {\n"; - OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; - OS << " }\n"; - OS << " };\n"; - - OS << "} // end anonymous namespace.\n\n"; - - OS << "static const OperandMatchEntry OperandMatchTable[" - << Info.OperandMatchInfo.size() << "] = {\n"; - - OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; - for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { - const MatchableInfo &II = *OMI.MI; - - OS << " { "; - - // Write the required features mask. - if (!II.RequiredFeatures.empty()) { - for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { - if (i) OS << "|"; - OS << II.RequiredFeatures[i]->getEnumName(); - } - } else - OS << "0"; - - // Store a pascal-style length byte in the mnemonic. - std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); - OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) - << " /* " << II.Mnemonic << " */, "; - - OS << OMI.CI->Name; - - OS << ", " << OMI.OperandMask; - OS << " /* "; - bool printComma = false; - for (int i = 0, e = 31; i !=e; ++i) - if (OMI.OperandMask & (1 << i)) { - if (printComma) - OS << ", "; - OS << i; - printComma = true; - } - OS << " */"; - - OS << " },\n"; - } - OS << "};\n\n"; - - // Emit the operand class switch to call the correct custom parser for - // the found operand class. - OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" - << "tryCustomParseOperand(OperandVector" - << " &Operands,\n unsigned MCK) {\n\n" - << " switch(MCK) {\n"; - - for (const auto &CI : Info.Classes) { - if (CI.ParserMethod.empty()) - continue; - OS << " case " << CI.Name << ":\n" - << " return " << CI.ParserMethod << "(Operands);\n"; - } - - OS << " default:\n"; - OS << " return MatchOperand_NoMatch;\n"; - OS << " }\n"; - OS << " return MatchOperand_NoMatch;\n"; - OS << "}\n\n"; - - // Emit the static custom operand parser. This code is very similar with - // the other matcher. Also use MatchResultTy here just in case we go for - // a better error handling. - OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" - << "MatchOperandParserImpl(OperandVector" - << " &Operands,\n StringRef Mnemonic,\n" - << " bool ParseForAllFeatures) {\n"; - - // Emit code to get the available features. - OS << " // Get the current feature set.\n"; - OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; - - OS << " // Get the next operand index.\n"; - OS << " unsigned NextOpNum = Operands.size()" - << (HasMnemonicFirst ? " - 1" : "") << ";\n"; - - // Emit code to search the table. - OS << " // Search the table.\n"; - if (HasMnemonicFirst) { - OS << " auto MnemonicRange =\n"; - OS << " std::equal_range(std::begin(OperandMatchTable), " - "std::end(OperandMatchTable),\n"; - OS << " Mnemonic, LessOpcodeOperand());\n\n"; - } else { - OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," - " std::end(OperandMatchTable));\n"; - OS << " if (!Mnemonic.empty())\n"; - OS << " MnemonicRange =\n"; - OS << " std::equal_range(std::begin(OperandMatchTable), " - "std::end(OperandMatchTable),\n"; - OS << " Mnemonic, LessOpcodeOperand());\n\n"; - } - - OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; - OS << " return MatchOperand_NoMatch;\n\n"; - - OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" - << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; - - OS << " // equal_range guarantees that instruction mnemonic matches.\n"; - OS << " assert(Mnemonic == it->getMnemonic());\n\n"; - - // Emit check that the required features are available. - OS << " // check if the available features match\n"; - OS << " if (!ParseForAllFeatures && (AvailableFeatures & " - "it->RequiredFeatures) != it->RequiredFeatures)\n"; - OS << " continue;\n\n"; - - // Emit check to ensure the operand number matches. - OS << " // check if the operand in question has a custom parser.\n"; - OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; - OS << " continue;\n\n"; - - // Emit call to the custom parser method - OS << " // call custom parse method to handle the operand\n"; - OS << " OperandMatchResultTy Result = "; - OS << "tryCustomParseOperand(Operands, it->Class);\n"; - OS << " if (Result != MatchOperand_NoMatch)\n"; - OS << " return Result;\n"; - OS << " }\n\n"; - - OS << " // Okay, we had no match.\n"; - OS << " return MatchOperand_NoMatch;\n"; - OS << "}\n\n"; -} - -static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, - AsmMatcherInfo &Info, - raw_ostream &OS) { - std::string AsmParserName = - Info.AsmParser->getValueAsString("AsmParserClassName"); - OS << "static bool "; - OS << "checkAsmTiedOperandConstraints(const " << Target.getName() - << AsmParserName << "&AsmParser,\n"; - OS << " unsigned Kind,\n"; - OS << " const OperandVector &Operands,\n"; - OS << " uint64_t &ErrorInfo) {\n"; - OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; - OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; - OS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; - OS << " switch (*p) {\n"; - OS << " case CVT_Tied: {\n"; - OS << " unsigned OpIdx = *(p+1);\n"; - OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; - OS << " std::begin(TiedAsmOperandTable)) &&\n"; - OS << " \"Tied operand not found\");\n"; - OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; - OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; - OS << " if (OpndNum1 != OpndNum2) {\n"; - OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; - OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; - OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; - OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; - OS << " ErrorInfo = OpndNum2;\n"; - OS << " return false;\n"; - OS << " }\n"; - OS << " }\n"; - OS << " }\n"; - OS << " break;\n"; - OS << " }\n"; - OS << " default:\n"; - OS << " break;\n"; - OS << " }\n"; - OS << " }\n"; - OS << " return true;\n"; - OS << "}\n\n"; -} - -static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, - unsigned VariantCount) { - OS << "static std::string " << Target.getName() - << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n"; - if (!VariantCount) - OS << " return \"\";"; - else { - OS << " const unsigned MaxEditDist = 2;\n"; - OS << " std::vector<StringRef> Candidates;\n"; - OS << " StringRef Prev = \"\";\n\n"; - - OS << " // Find the appropriate table for this asm variant.\n"; - OS << " const MatchEntry *Start, *End;\n"; - OS << " switch (VariantID) {\n"; - OS << " default: llvm_unreachable(\"invalid variant!\");\n"; - for (unsigned VC = 0; VC != VariantCount; ++VC) { - Record *AsmVariant = Target.getAsmParserVariant(VC); - int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); - OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC - << "); End = std::end(MatchTable" << VC << "); break;\n"; - } - OS << " }\n\n"; - OS << " for (auto I = Start; I < End; I++) {\n"; - OS << " // Ignore unsupported instructions.\n"; - OS << " if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n"; - OS << " continue;\n"; - OS << "\n"; - OS << " StringRef T = I->getMnemonic();\n"; - OS << " // Avoid recomputing the edit distance for the same string.\n"; - OS << " if (T.equals(Prev))\n"; - OS << " continue;\n"; - OS << "\n"; - OS << " Prev = T;\n"; - OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; - OS << " if (Dist <= MaxEditDist)\n"; - OS << " Candidates.push_back(T);\n"; - OS << " }\n"; - OS << "\n"; - OS << " if (Candidates.empty())\n"; - OS << " return \"\";\n"; - OS << "\n"; - OS << " std::string Res = \", did you mean: \";\n"; - OS << " unsigned i = 0;\n"; - OS << " for( ; i < Candidates.size() - 1; i++)\n"; - OS << " Res += Candidates[i].str() + \", \";\n"; - OS << " return Res + Candidates[i].str() + \"?\";\n"; - } - OS << "}\n"; - OS << "\n"; -} - - -// Emit a function mapping match classes to strings, for debugging. -static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, - raw_ostream &OS) { - OS << "#ifndef NDEBUG\n"; - OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; - OS << " switch (Kind) {\n"; - - OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; - OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; - for (const auto &CI : Infos) { - OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; - } - OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; - - OS << " }\n"; - OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; - OS << "}\n\n"; - OS << "#endif // NDEBUG\n"; -} - -void AsmMatcherEmitter::run(raw_ostream &OS) { - CodeGenTarget Target(Records); - Record *AsmParser = Target.getAsmParser(); - StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); - - // Compute the information on the instructions to match. - AsmMatcherInfo Info(AsmParser, Target, Records); - Info.buildInfo(); - - // Sort the instruction table using the partial order on classes. We use - // stable_sort to ensure that ambiguous instructions are still - // deterministically ordered. - std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), - [](const std::unique_ptr<MatchableInfo> &a, - const std::unique_ptr<MatchableInfo> &b){ - return *a < *b;}); - -#ifdef EXPENSIVE_CHECKS - // Verify that the table is sorted and operator < works transitively. - for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; - ++I) { - for (auto J = I; J != E; ++J) { - assert(!(**J < **I)); - } - } -#endif - - DEBUG_WITH_TYPE("instruction_info", { - for (const auto &MI : Info.Matchables) - MI->dump(); - }); - - // Check for ambiguous matchables. - DEBUG_WITH_TYPE("ambiguous_instrs", { - unsigned NumAmbiguous = 0; - for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; - ++I) { - for (auto J = std::next(I); J != E; ++J) { - const MatchableInfo &A = **I; - const MatchableInfo &B = **J; - - if (A.couldMatchAmbiguouslyWith(B)) { - errs() << "warning: ambiguous matchables:\n"; - A.dump(); - errs() << "\nis incomparable with:\n"; - B.dump(); - errs() << "\n\n"; - ++NumAmbiguous; - } - } - } - if (NumAmbiguous) - errs() << "warning: " << NumAmbiguous - << " ambiguous matchables!\n"; - }); - - // Compute the information on the custom operand parsing. - Info.buildOperandMatchInfo(); - - bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); - bool HasOptionalOperands = Info.hasOptionalOperands(); - bool ReportMultipleNearMisses = - AsmParser->getValueAsBit("ReportMultipleNearMisses"); - - // Write the output. - - // Information for the class declaration. - OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; - OS << "#undef GET_ASSEMBLER_HEADER\n"; - OS << " // This should be included into the middle of the declaration of\n"; - OS << " // your subclasses implementation of MCTargetAsmParser.\n"; - OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; - if (HasOptionalOperands) { - OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " - << "unsigned Opcode,\n" - << " const OperandVector &Operands,\n" - << " const SmallBitVector &OptionalOperandsMask);\n"; - } else { - OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " - << "unsigned Opcode,\n" - << " const OperandVector &Operands);\n"; - } - OS << " void convertToMapAndConstraints(unsigned Kind,\n "; - OS << " const OperandVector &Operands) override;\n"; - OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" - << " MCInst &Inst,\n"; - if (ReportMultipleNearMisses) - OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; - else - OS << " uint64_t &ErrorInfo,\n"; - OS << " bool matchingInlineAsm,\n" - << " unsigned VariantID = 0);\n"; - - if (!Info.OperandMatchInfo.empty()) { - OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; - OS << " OperandVector &Operands,\n"; - OS << " StringRef Mnemonic,\n"; - OS << " bool ParseForAllFeatures = false);\n"; - - OS << " OperandMatchResultTy tryCustomParseOperand(\n"; - OS << " OperandVector &Operands,\n"; - OS << " unsigned MCK);\n\n"; - } - - OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; - - // Emit the operand match diagnostic enum names. - OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; - OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; - emitOperandDiagnosticTypes(Info, OS); - OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; - - OS << "\n#ifdef GET_REGISTER_MATCHER\n"; - OS << "#undef GET_REGISTER_MATCHER\n\n"; - - // Emit the subtarget feature enumeration. - SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration( - Info.SubtargetFeatures, OS); - - // Emit the function to match a register name to number. - // This should be omitted for Mips target - if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) - emitMatchRegisterName(Target, AsmParser, OS); - - if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) - emitMatchRegisterAltName(Target, AsmParser, OS); - - OS << "#endif // GET_REGISTER_MATCHER\n\n"; - - OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; - OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; - - // Generate the helper function to get the names for subtarget features. - emitGetSubtargetFeatureName(Info, OS); - - OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; - - OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; - OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; - - // Generate the function that remaps for mnemonic aliases. - bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); - - // Generate the convertToMCInst function to convert operands into an MCInst. - // Also, generate the convertToMapAndConstraints function for MS-style inline - // assembly. The latter doesn't actually generate a MCInst. - emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, - HasOptionalOperands, OS); - - // Emit the enumeration for classes which participate in matching. - emitMatchClassEnumeration(Target, Info.Classes, OS); - - // Emit a function to get the user-visible string to describe an operand - // match failure in diagnostics. - emitOperandMatchErrorDiagStrings(Info, OS); - - // Emit a function to map register classes to operand match failure codes. - emitRegisterMatchErrorFunc(Info, OS); - - // Emit the routine to match token strings to their match class. - emitMatchTokenString(Target, Info.Classes, OS); - - // Emit the subclass predicate routine. - emitIsSubclass(Target, Info.Classes, OS); - - // Emit the routine to validate an operand against a match class. - emitValidateOperandClass(Info, OS); - - emitMatchClassKindNames(Info.Classes, OS); - - // Emit the available features compute function. - SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( - Info.Target.getName(), ClassName, "ComputeAvailableFeatures", - Info.SubtargetFeatures, OS); - - if (!ReportMultipleNearMisses) - emitAsmTiedOperandConstraints(Target, Info, OS); - - StringToOffsetTable StringTable; - - size_t MaxNumOperands = 0; - unsigned MaxMnemonicIndex = 0; - bool HasDeprecation = false; - for (const auto &MI : Info.Matchables) { - MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); - HasDeprecation |= MI->HasDeprecation; - - // Store a pascal-style length byte in the mnemonic. - std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); - MaxMnemonicIndex = std::max(MaxMnemonicIndex, - StringTable.GetOrAddStringOffset(LenMnemonic, false)); - } - - OS << "static const char *const MnemonicTable =\n"; - StringTable.EmitString(OS); - OS << ";\n\n"; - - // Emit the static match table; unused classes get initialized to 0 which is - // guaranteed to be InvalidMatchClass. - // - // FIXME: We can reduce the size of this table very easily. First, we change - // it so that store the kinds in separate bit-fields for each index, which - // only needs to be the max width used for classes at that index (we also need - // to reject based on this during classification). If we then make sure to - // order the match kinds appropriately (putting mnemonics last), then we - // should only end up using a few bits for each class, especially the ones - // following the mnemonic. - OS << "namespace {\n"; - OS << " struct MatchEntry {\n"; - OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) - << " Mnemonic;\n"; - OS << " uint16_t Opcode;\n"; - OS << " " << getMinimalTypeForRange(Info.Matchables.size()) - << " ConvertFn;\n"; - OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) - << " RequiredFeatures;\n"; - OS << " " << getMinimalTypeForRange( - std::distance(Info.Classes.begin(), Info.Classes.end())) - << " Classes[" << MaxNumOperands << "];\n"; - OS << " StringRef getMnemonic() const {\n"; - OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; - OS << " MnemonicTable[Mnemonic]);\n"; - OS << " }\n"; - OS << " };\n\n"; - - OS << " // Predicate for searching for an opcode.\n"; - OS << " struct LessOpcode {\n"; - OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; - OS << " return LHS.getMnemonic() < RHS;\n"; - OS << " }\n"; - OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; - OS << " return LHS < RHS.getMnemonic();\n"; - OS << " }\n"; - OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; - OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; - OS << " }\n"; - OS << " };\n"; - - OS << "} // end anonymous namespace.\n\n"; - - unsigned VariantCount = Target.getAsmParserVariantCount(); - for (unsigned VC = 0; VC != VariantCount; ++VC) { - Record *AsmVariant = Target.getAsmParserVariant(VC); - int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); - - OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; - - for (const auto &MI : Info.Matchables) { - if (MI->AsmVariantID != AsmVariantNo) - continue; - - // Store a pascal-style length byte in the mnemonic. - std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); - OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) - << " /* " << MI->Mnemonic << " */, " - << Target.getInstNamespace() << "::" - << MI->getResultInst()->TheDef->getName() << ", " - << MI->ConversionFnKind << ", "; - - // Write the required features mask. - if (!MI->RequiredFeatures.empty()) { - for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { - if (i) OS << "|"; - OS << MI->RequiredFeatures[i]->getEnumName(); - } - } else - OS << "0"; - - OS << ", { "; - for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { - const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; - - if (i) OS << ", "; - OS << Op.Class->Name; - } - OS << " }, },\n"; - } - - OS << "};\n\n"; - } - - OS << "#include \"llvm/Support/Debug.h\"\n"; - OS << "#include \"llvm/Support/Format.h\"\n\n"; - - // Finally, build the match function. - OS << "unsigned " << Target.getName() << ClassName << "::\n" - << "MatchInstructionImpl(const OperandVector &Operands,\n"; - OS << " MCInst &Inst,\n"; - if (ReportMultipleNearMisses) - OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; - else - OS << " uint64_t &ErrorInfo,\n"; - OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; - - if (!ReportMultipleNearMisses) { - OS << " // Eliminate obvious mismatches.\n"; - OS << " if (Operands.size() > " - << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; - OS << " ErrorInfo = " - << (MaxNumOperands + HasMnemonicFirst) << ";\n"; - OS << " return Match_InvalidOperand;\n"; - OS << " }\n\n"; - } - - // Emit code to get the available features. - OS << " // Get the current feature set.\n"; - OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; - - OS << " // Get the instruction mnemonic, which is the first token.\n"; - if (HasMnemonicFirst) { - OS << " StringRef Mnemonic = ((" << Target.getName() - << "Operand&)*Operands[0]).getToken();\n\n"; - } else { - OS << " StringRef Mnemonic;\n"; - OS << " if (Operands[0]->isToken())\n"; - OS << " Mnemonic = ((" << Target.getName() - << "Operand&)*Operands[0]).getToken();\n\n"; - } - - if (HasMnemonicAliases) { - OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; - OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; - } - - // Emit code to compute the class list for this operand vector. - if (!ReportMultipleNearMisses) { - OS << " // Some state to try to produce better error messages.\n"; - OS << " bool HadMatchOtherThanFeatures = false;\n"; - OS << " bool HadMatchOtherThanPredicate = false;\n"; - OS << " unsigned RetCode = Match_InvalidOperand;\n"; - OS << " uint64_t MissingFeatures = ~0ULL;\n"; - OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; - OS << " // wrong for all instances of the instruction.\n"; - OS << " ErrorInfo = ~0ULL;\n"; - } - - if (HasOptionalOperands) { - OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; - } - - // Emit code to search the table. - OS << " // Find the appropriate table for this asm variant.\n"; - OS << " const MatchEntry *Start, *End;\n"; - OS << " switch (VariantID) {\n"; - OS << " default: llvm_unreachable(\"invalid variant!\");\n"; - for (unsigned VC = 0; VC != VariantCount; ++VC) { - Record *AsmVariant = Target.getAsmParserVariant(VC); - int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); - OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC - << "); End = std::end(MatchTable" << VC << "); break;\n"; - } - OS << " }\n"; - - OS << " // Search the table.\n"; - if (HasMnemonicFirst) { - OS << " auto MnemonicRange = " - "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; - } else { - OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; - OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; - OS << " if (!Mnemonic.empty())\n"; - OS << " MnemonicRange = " - "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; - } - - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" - << " std::distance(MnemonicRange.first, MnemonicRange.second) << \n" - << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; - - OS << " // Return a more specific error code if no mnemonics match.\n"; - OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; - OS << " return Match_MnemonicFail;\n\n"; - - OS << " for (const MatchEntry *it = MnemonicRange.first, " - << "*ie = MnemonicRange.second;\n"; - OS << " it != ie; ++it) {\n"; - OS << " bool HasRequiredFeatures =\n"; - OS << " (AvailableFeatures & it->RequiredFeatures) == " - "it->RequiredFeatures;\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; - OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; - - if (ReportMultipleNearMisses) { - OS << " // Some state to record ways in which this instruction did not match.\n"; - OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; - OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; - OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; - OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; - OS << " bool MultipleInvalidOperands = false;\n"; - } - - if (HasMnemonicFirst) { - OS << " // equal_range guarantees that instruction mnemonic matches.\n"; - OS << " assert(Mnemonic == it->getMnemonic());\n"; - } - - // Emit check that the subclasses match. - if (!ReportMultipleNearMisses) - OS << " bool OperandsValid = true;\n"; - if (HasOptionalOperands) { - OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; - } - OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") - << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") - << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; - OS << " auto Formal = " - << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; - OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; - OS << " << \" against actual operand at index \" << ActualIdx);\n"; - OS << " if (ActualIdx < Operands.size())\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; - OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; - OS << " else\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; - OS << " if (ActualIdx >= Operands.size()) {\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; - if (ReportMultipleNearMisses) { - OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " - "isSubclass(Formal, OptionalMatchClass);\n"; - OS << " if (!ThisOperandValid) {\n"; - OS << " if (!OperandNearMiss) {\n"; - OS << " // Record info about match failure for later use.\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; - OS << " OperandNearMiss =\n"; - OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; - OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; - OS << " // If more than one operand is invalid, give up on this match entry.\n"; - OS << " DEBUG_WITH_TYPE(\n"; - OS << " \"asm-matcher\",\n"; - OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; - OS << " MultipleInvalidOperands = true;\n"; - OS << " break;\n"; - OS << " }\n"; - OS << " } else {\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; - OS << " break;\n"; - OS << " }\n"; - OS << " continue;\n"; - } else { - OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; - OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; - if (HasOptionalOperands) { - OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands - << ");\n"; - } - OS << " break;\n"; - } - OS << " }\n"; - OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; - OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; - OS << " if (Diag == Match_Success) {\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; - OS << " dbgs() << \"match success using generic matcher\\n\");\n"; - OS << " ++ActualIdx;\n"; - OS << " continue;\n"; - OS << " }\n"; - OS << " // If the generic handler indicates an invalid operand\n"; - OS << " // failure, check for a special case.\n"; - OS << " if (Diag != Match_Success) {\n"; - OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; - OS << " if (TargetDiag == Match_Success) {\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; - OS << " dbgs() << \"match success using target matcher\\n\");\n"; - OS << " ++ActualIdx;\n"; - OS << " continue;\n"; - OS << " }\n"; - OS << " // If the target matcher returned a specific error code use\n"; - OS << " // that, else use the one from the generic matcher.\n"; - OS << " if (TargetDiag != Match_InvalidOperand && " - "HasRequiredFeatures)\n"; - OS << " Diag = TargetDiag;\n"; - OS << " }\n"; - OS << " // If current formal operand wasn't matched and it is optional\n" - << " // then try to match next formal operand\n"; - OS << " if (Diag == Match_InvalidOperand " - << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; - if (HasOptionalOperands) { - OS << " OptionalOperandsMask.set(FormalIdx);\n"; - } - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; - OS << " continue;\n"; - OS << " }\n"; - - if (ReportMultipleNearMisses) { - OS << " if (!OperandNearMiss) {\n"; - OS << " // If this is the first invalid operand we have seen, record some\n"; - OS << " // information about it.\n"; - OS << " DEBUG_WITH_TYPE(\n"; - OS << " \"asm-matcher\",\n"; - OS << " dbgs()\n"; - OS << " << \"operand match failed, recording near-miss with diag code \"\n"; - OS << " << Diag << \"\\n\");\n"; - OS << " OperandNearMiss =\n"; - OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; - OS << " ++ActualIdx;\n"; - OS << " } else {\n"; - OS << " // If more than one operand is invalid, give up on this match entry.\n"; - OS << " DEBUG_WITH_TYPE(\n"; - OS << " \"asm-matcher\",\n"; - OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; - OS << " MultipleInvalidOperands = true;\n"; - OS << " break;\n"; - OS << " }\n"; - OS << " }\n\n"; - } else { - OS << " // If this operand is broken for all of the instances of this\n"; - OS << " // mnemonic, keep track of it so we can report loc info.\n"; - OS << " // If we already had a match that only failed due to a\n"; - OS << " // target predicate, that diagnostic is preferred.\n"; - OS << " if (!HadMatchOtherThanPredicate &&\n"; - OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; - OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " - "!= Match_InvalidOperand))\n"; - OS << " RetCode = Diag;\n"; - OS << " ErrorInfo = ActualIdx;\n"; - OS << " }\n"; - OS << " // Otherwise, just reject this instance of the mnemonic.\n"; - OS << " OperandsValid = false;\n"; - OS << " break;\n"; - OS << " }\n\n"; - } - - if (ReportMultipleNearMisses) - OS << " if (MultipleInvalidOperands) {\n"; - else - OS << " if (!OperandsValid) {\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; - OS << " \"operand mismatches, ignoring \"\n"; - OS << " \"this opcode\\n\");\n"; - OS << " continue;\n"; - OS << " }\n"; - - // Emit check that the required features are available. - OS << " if (!HasRequiredFeatures) {\n"; - if (!ReportMultipleNearMisses) - OS << " HadMatchOtherThanFeatures = true;\n"; - OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " - "~AvailableFeatures;\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n"; - OS << " << format_hex(NewMissingFeatures, 18)\n"; - OS << " << \"\\n\");\n"; - if (ReportMultipleNearMisses) { - OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; - } else { - OS << " if (countPopulation(NewMissingFeatures) <=\n" - " countPopulation(MissingFeatures))\n"; - OS << " MissingFeatures = NewMissingFeatures;\n"; - OS << " continue;\n"; - } - OS << " }\n"; - OS << "\n"; - OS << " Inst.clear();\n\n"; - OS << " Inst.setOpcode(it->Opcode);\n"; - // Verify the instruction with the target-specific match predicate function. - OS << " // We have a potential match but have not rendered the operands.\n" - << " // Check the target predicate to handle any context sensitive\n" - " // constraints.\n" - << " // For example, Ties that are referenced multiple times must be\n" - " // checked here to ensure the input is the same for each match\n" - " // constraints. If we leave it any later the ties will have been\n" - " // canonicalized\n" - << " unsigned MatchResult;\n" - << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " - "Operands)) != Match_Success) {\n" - << " Inst.clear();\n"; - OS << " DEBUG_WITH_TYPE(\n"; - OS << " \"asm-matcher\",\n"; - OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; - OS << " << MatchResult << \"\\n\");\n"; - if (ReportMultipleNearMisses) { - OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; - } else { - OS << " RetCode = MatchResult;\n" - << " HadMatchOtherThanPredicate = true;\n" - << " continue;\n"; - } - OS << " }\n\n"; - - if (ReportMultipleNearMisses) { - OS << " // If we did not successfully match the operands, then we can't convert to\n"; - OS << " // an MCInst, so bail out on this instruction variant now.\n"; - OS << " if (OperandNearMiss) {\n"; - OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; - OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; - OS << " DEBUG_WITH_TYPE(\n"; - OS << " \"asm-matcher\",\n"; - OS << " dbgs()\n"; - OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; - OS << " NearMisses->push_back(OperandNearMiss);\n"; - OS << " } else {\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; - OS << " \"types of mismatch, so not \"\n"; - OS << " \"reporting near-miss\\n\");\n"; - OS << " }\n"; - OS << " continue;\n"; - OS << " }\n\n"; - } - - OS << " if (matchingInlineAsm) {\n"; - OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; - if (!ReportMultipleNearMisses) { - OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " - "Operands, ErrorInfo))\n"; - OS << " return Match_InvalidTiedOperand;\n"; - OS << "\n"; - } - OS << " return Match_Success;\n"; - OS << " }\n\n"; - OS << " // We have selected a definite instruction, convert the parsed\n" - << " // operands into the appropriate MCInst.\n"; - if (HasOptionalOperands) { - OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" - << " OptionalOperandsMask);\n"; - } else { - OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; - } - OS << "\n"; - - // Verify the instruction with the target-specific match predicate function. - OS << " // We have a potential match. Check the target predicate to\n" - << " // handle any context sensitive constraints.\n" - << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" - << " Match_Success) {\n" - << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" - << " dbgs() << \"Target match predicate failed with diag code \"\n" - << " << MatchResult << \"\\n\");\n" - << " Inst.clear();\n"; - if (ReportMultipleNearMisses) { - OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; - } else { - OS << " RetCode = MatchResult;\n" - << " HadMatchOtherThanPredicate = true;\n" - << " continue;\n"; - } - OS << " }\n\n"; - - if (ReportMultipleNearMisses) { - OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; - OS << " (int)(bool)FeaturesNearMiss +\n"; - OS << " (int)(bool)EarlyPredicateNearMiss +\n"; - OS << " (int)(bool)LatePredicateNearMiss);\n"; - OS << " if (NumNearMisses == 1) {\n"; - OS << " // We had exactly one type of near-miss, so add that to the list.\n"; - OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; - OS << " \"mismatch, so reporting a \"\n"; - OS << " \"near-miss\\n\");\n"; - OS << " if (NearMisses && FeaturesNearMiss)\n"; - OS << " NearMisses->push_back(FeaturesNearMiss);\n"; - OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; - OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; - OS << " else if (NearMisses && LatePredicateNearMiss)\n"; - OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; - OS << "\n"; - OS << " continue;\n"; - OS << " } else if (NumNearMisses > 1) {\n"; - OS << " // This instruction missed in more than one way, so ignore it.\n"; - OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; - OS << " \"types of mismatch, so not \"\n"; - OS << " \"reporting near-miss\\n\");\n"; - OS << " continue;\n"; - OS << " }\n"; - } - - // Call the post-processing function, if used. - StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); - if (!InsnCleanupFn.empty()) - OS << " " << InsnCleanupFn << "(Inst);\n"; - - if (HasDeprecation) { - OS << " std::string Info;\n"; - OS << " if (!getParser().getTargetParser().\n"; - OS << " getTargetOptions().MCNoDeprecatedWarn &&\n"; - OS << " MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; - OS << " SMLoc Loc = ((" << Target.getName() - << "Operand&)*Operands[0]).getStartLoc();\n"; - OS << " getParser().Warning(Loc, Info, None);\n"; - OS << " }\n"; - } - - if (!ReportMultipleNearMisses) { - OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " - "Operands, ErrorInfo))\n"; - OS << " return Match_InvalidTiedOperand;\n"; - OS << "\n"; - } - - OS << " DEBUG_WITH_TYPE(\n"; - OS << " \"asm-matcher\",\n"; - OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; - OS << " return Match_Success;\n"; - OS << " }\n\n"; - - if (ReportMultipleNearMisses) { - OS << " // No instruction variants matched exactly.\n"; - OS << " return Match_NearMisses;\n"; - } else { - OS << " // Okay, we had no match. Try to return a useful error code.\n"; - OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; - OS << " return RetCode;\n\n"; - OS << " // Missing feature matches return which features were missing\n"; - OS << " ErrorInfo = MissingFeatures;\n"; - OS << " return Match_MissingFeature;\n"; - } - OS << "}\n\n"; - - if (!Info.OperandMatchInfo.empty()) - emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, - MaxMnemonicIndex, HasMnemonicFirst); - - OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; - - OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; - OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; - - emitMnemonicSpellChecker(OS, Target, VariantCount); - - OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; -} - -namespace llvm { - -void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { - emitSourceFileHeader("Assembly Matcher Source Fragment", OS); - AsmMatcherEmitter(RK).run(OS); -} - -} // end namespace llvm |
