summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp')
-rw-r--r--gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp3834
1 files changed, 0 insertions, 3834 deletions
diff --git a/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp b/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp
deleted file mode 100644
index 5b4229e6468..00000000000
--- a/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp
+++ /dev/null
@@ -1,3834 +0,0 @@
-//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This tablegen backend emits a target specifier matcher for converting parsed
-// assembly operands in the MCInst structures. It also emits a matcher for
-// custom operand parsing.
-//
-// Converting assembly operands into MCInst structures
-// ---------------------------------------------------
-//
-// The input to the target specific matcher is a list of literal tokens and
-// operands. The target specific parser should generally eliminate any syntax
-// which is not relevant for matching; for example, comma tokens should have
-// already been consumed and eliminated by the parser. Most instructions will
-// end up with a single literal token (the instruction name) and some number of
-// operands.
-//
-// Some example inputs, for X86:
-// 'addl' (immediate ...) (register ...)
-// 'add' (immediate ...) (memory ...)
-// 'call' '*' %epc
-//
-// The assembly matcher is responsible for converting this input into a precise
-// machine instruction (i.e., an instruction with a well defined encoding). This
-// mapping has several properties which complicate matching:
-//
-// - It may be ambiguous; many architectures can legally encode particular
-// variants of an instruction in different ways (for example, using a smaller
-// encoding for small immediates). Such ambiguities should never be
-// arbitrarily resolved by the assembler, the assembler is always responsible
-// for choosing the "best" available instruction.
-//
-// - It may depend on the subtarget or the assembler context. Instructions
-// which are invalid for the current mode, but otherwise unambiguous (e.g.,
-// an SSE instruction in a file being assembled for i486) should be accepted
-// and rejected by the assembler front end. However, if the proper encoding
-// for an instruction is dependent on the assembler context then the matcher
-// is responsible for selecting the correct machine instruction for the
-// current mode.
-//
-// The core matching algorithm attempts to exploit the regularity in most
-// instruction sets to quickly determine the set of possibly matching
-// instructions, and the simplify the generated code. Additionally, this helps
-// to ensure that the ambiguities are intentionally resolved by the user.
-//
-// The matching is divided into two distinct phases:
-//
-// 1. Classification: Each operand is mapped to the unique set which (a)
-// contains it, and (b) is the largest such subset for which a single
-// instruction could match all members.
-//
-// For register classes, we can generate these subgroups automatically. For
-// arbitrary operands, we expect the user to define the classes and their
-// relations to one another (for example, 8-bit signed immediates as a
-// subset of 32-bit immediates).
-//
-// By partitioning the operands in this way, we guarantee that for any
-// tuple of classes, any single instruction must match either all or none
-// of the sets of operands which could classify to that tuple.
-//
-// In addition, the subset relation amongst classes induces a partial order
-// on such tuples, which we use to resolve ambiguities.
-//
-// 2. The input can now be treated as a tuple of classes (static tokens are
-// simple singleton sets). Each such tuple should generally map to a single
-// instruction (we currently ignore cases where this isn't true, whee!!!),
-// which we can emit a simple matcher for.
-//
-// Custom Operand Parsing
-// ----------------------
-//
-// Some targets need a custom way to parse operands, some specific instructions
-// can contain arguments that can represent processor flags and other kinds of
-// identifiers that need to be mapped to specific values in the final encoded
-// instructions. The target specific custom operand parsing works in the
-// following way:
-//
-// 1. A operand match table is built, each entry contains a mnemonic, an
-// operand class, a mask for all operand positions for that same
-// class/mnemonic and target features to be checked while trying to match.
-//
-// 2. The operand matcher will try every possible entry with the same
-// mnemonic and will check if the target feature for this mnemonic also
-// matches. After that, if the operand to be matched has its index
-// present in the mask, a successful match occurs. Otherwise, fallback
-// to the regular operand parsing.
-//
-// 3. For a match success, each operand class that has a 'ParserMethod'
-// becomes part of a switch from where the custom method is called.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CodeGenTarget.h"
-#include "SubtargetFeatureInfo.h"
-#include "Types.h"
-#include "llvm/ADT/CachedHashString.h"
-#include "llvm/ADT/PointerUnion.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/TableGen/Error.h"
-#include "llvm/TableGen/Record.h"
-#include "llvm/TableGen/StringMatcher.h"
-#include "llvm/TableGen/StringToOffsetTable.h"
-#include "llvm/TableGen/TableGenBackend.h"
-#include <cassert>
-#include <cctype>
-#include <forward_list>
-#include <map>
-#include <set>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "asm-matcher-emitter"
-
-cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
-
-static cl::opt<std::string>
- MatchPrefix("match-prefix", cl::init(""),
- cl::desc("Only match instructions with the given prefix"),
- cl::cat(AsmMatcherEmitterCat));
-
-namespace {
-class AsmMatcherInfo;
-
-// Register sets are used as keys in some second-order sets TableGen creates
-// when generating its data structures. This means that the order of two
-// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
-// can even affect compiler output (at least seen in diagnostics produced when
-// all matches fail). So we use a type that sorts them consistently.
-typedef std::set<Record*, LessRecordByID> RegisterSet;
-
-class AsmMatcherEmitter {
- RecordKeeper &Records;
-public:
- AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
-
- void run(raw_ostream &o);
-};
-
-/// ClassInfo - Helper class for storing the information about a particular
-/// class of operands which can be matched.
-struct ClassInfo {
- enum ClassInfoKind {
- /// Invalid kind, for use as a sentinel value.
- Invalid = 0,
-
- /// The class for a particular token.
- Token,
-
- /// The (first) register class, subsequent register classes are
- /// RegisterClass0+1, and so on.
- RegisterClass0,
-
- /// The (first) user defined class, subsequent user defined classes are
- /// UserClass0+1, and so on.
- UserClass0 = 1<<16
- };
-
- /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
- /// N) for the Nth user defined class.
- unsigned Kind;
-
- /// SuperClasses - The super classes of this class. Note that for simplicities
- /// sake user operands only record their immediate super class, while register
- /// operands include all superclasses.
- std::vector<ClassInfo*> SuperClasses;
-
- /// Name - The full class name, suitable for use in an enum.
- std::string Name;
-
- /// ClassName - The unadorned generic name for this class (e.g., Token).
- std::string ClassName;
-
- /// ValueName - The name of the value this class represents; for a token this
- /// is the literal token string, for an operand it is the TableGen class (or
- /// empty if this is a derived class).
- std::string ValueName;
-
- /// PredicateMethod - The name of the operand method to test whether the
- /// operand matches this class; this is not valid for Token or register kinds.
- std::string PredicateMethod;
-
- /// RenderMethod - The name of the operand method to add this operand to an
- /// MCInst; this is not valid for Token or register kinds.
- std::string RenderMethod;
-
- /// ParserMethod - The name of the operand method to do a target specific
- /// parsing on the operand.
- std::string ParserMethod;
-
- /// For register classes: the records for all the registers in this class.
- RegisterSet Registers;
-
- /// For custom match classes: the diagnostic kind for when the predicate fails.
- std::string DiagnosticType;
-
- /// For custom match classes: the diagnostic string for when the predicate fails.
- std::string DiagnosticString;
-
- /// Is this operand optional and not always required.
- bool IsOptional;
-
- /// DefaultMethod - The name of the method that returns the default operand
- /// for optional operand
- std::string DefaultMethod;
-
-public:
- /// isRegisterClass() - Check if this is a register class.
- bool isRegisterClass() const {
- return Kind >= RegisterClass0 && Kind < UserClass0;
- }
-
- /// isUserClass() - Check if this is a user defined class.
- bool isUserClass() const {
- return Kind >= UserClass0;
- }
-
- /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
- /// are related if they are in the same class hierarchy.
- bool isRelatedTo(const ClassInfo &RHS) const {
- // Tokens are only related to tokens.
- if (Kind == Token || RHS.Kind == Token)
- return Kind == Token && RHS.Kind == Token;
-
- // Registers classes are only related to registers classes, and only if
- // their intersection is non-empty.
- if (isRegisterClass() || RHS.isRegisterClass()) {
- if (!isRegisterClass() || !RHS.isRegisterClass())
- return false;
-
- RegisterSet Tmp;
- std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
- std::set_intersection(Registers.begin(), Registers.end(),
- RHS.Registers.begin(), RHS.Registers.end(),
- II, LessRecordByID());
-
- return !Tmp.empty();
- }
-
- // Otherwise we have two users operands; they are related if they are in the
- // same class hierarchy.
- //
- // FIXME: This is an oversimplification, they should only be related if they
- // intersect, however we don't have that information.
- assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
- const ClassInfo *Root = this;
- while (!Root->SuperClasses.empty())
- Root = Root->SuperClasses.front();
-
- const ClassInfo *RHSRoot = &RHS;
- while (!RHSRoot->SuperClasses.empty())
- RHSRoot = RHSRoot->SuperClasses.front();
-
- return Root == RHSRoot;
- }
-
- /// isSubsetOf - Test whether this class is a subset of \p RHS.
- bool isSubsetOf(const ClassInfo &RHS) const {
- // This is a subset of RHS if it is the same class...
- if (this == &RHS)
- return true;
-
- // ... or if any of its super classes are a subset of RHS.
- SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
- SuperClasses.end());
- SmallPtrSet<const ClassInfo *, 16> Visited;
- while (!Worklist.empty()) {
- auto *CI = Worklist.pop_back_val();
- if (CI == &RHS)
- return true;
- for (auto *Super : CI->SuperClasses)
- if (Visited.insert(Super).second)
- Worklist.push_back(Super);
- }
-
- return false;
- }
-
- int getTreeDepth() const {
- int Depth = 0;
- const ClassInfo *Root = this;
- while (!Root->SuperClasses.empty()) {
- Depth++;
- Root = Root->SuperClasses.front();
- }
- return Depth;
- }
-
- const ClassInfo *findRoot() const {
- const ClassInfo *Root = this;
- while (!Root->SuperClasses.empty())
- Root = Root->SuperClasses.front();
- return Root;
- }
-
- /// Compare two classes. This does not produce a total ordering, but does
- /// guarantee that subclasses are sorted before their parents, and that the
- /// ordering is transitive.
- bool operator<(const ClassInfo &RHS) const {
- if (this == &RHS)
- return false;
-
- // First, enforce the ordering between the three different types of class.
- // Tokens sort before registers, which sort before user classes.
- if (Kind == Token) {
- if (RHS.Kind != Token)
- return true;
- assert(RHS.Kind == Token);
- } else if (isRegisterClass()) {
- if (RHS.Kind == Token)
- return false;
- else if (RHS.isUserClass())
- return true;
- assert(RHS.isRegisterClass());
- } else if (isUserClass()) {
- if (!RHS.isUserClass())
- return false;
- assert(RHS.isUserClass());
- } else {
- llvm_unreachable("Unknown ClassInfoKind");
- }
-
- if (Kind == Token || isUserClass()) {
- // Related tokens and user classes get sorted by depth in the inheritence
- // tree (so that subclasses are before their parents).
- if (isRelatedTo(RHS)) {
- if (getTreeDepth() > RHS.getTreeDepth())
- return true;
- if (getTreeDepth() < RHS.getTreeDepth())
- return false;
- } else {
- // Unrelated tokens and user classes are ordered by the name of their
- // root nodes, so that there is a consistent ordering between
- // unconnected trees.
- return findRoot()->ValueName < RHS.findRoot()->ValueName;
- }
- } else if (isRegisterClass()) {
- // For register sets, sort by number of registers. This guarantees that
- // a set will always sort before all of it's strict supersets.
- if (Registers.size() != RHS.Registers.size())
- return Registers.size() < RHS.Registers.size();
- } else {
- llvm_unreachable("Unknown ClassInfoKind");
- }
-
- // FIXME: We should be able to just return false here, as we only need a
- // partial order (we use stable sorts, so this is deterministic) and the
- // name of a class shouldn't be significant. However, some of the backends
- // accidentally rely on this behaviour, so it will have to stay like this
- // until they are fixed.
- return ValueName < RHS.ValueName;
- }
-};
-
-class AsmVariantInfo {
-public:
- StringRef RegisterPrefix;
- StringRef TokenizingCharacters;
- StringRef SeparatorCharacters;
- StringRef BreakCharacters;
- StringRef Name;
- int AsmVariantNo;
-};
-
-/// MatchableInfo - Helper class for storing the necessary information for an
-/// instruction or alias which is capable of being matched.
-struct MatchableInfo {
- struct AsmOperand {
- /// Token - This is the token that the operand came from.
- StringRef Token;
-
- /// The unique class instance this operand should match.
- ClassInfo *Class;
-
- /// The operand name this is, if anything.
- StringRef SrcOpName;
-
- /// The operand name this is, before renaming for tied operands.
- StringRef OrigSrcOpName;
-
- /// The suboperand index within SrcOpName, or -1 for the entire operand.
- int SubOpIdx;
-
- /// Whether the token is "isolated", i.e., it is preceded and followed
- /// by separators.
- bool IsIsolatedToken;
-
- /// Register record if this token is singleton register.
- Record *SingletonReg;
-
- explicit AsmOperand(bool IsIsolatedToken, StringRef T)
- : Token(T), Class(nullptr), SubOpIdx(-1),
- IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
- };
-
- /// ResOperand - This represents a single operand in the result instruction
- /// generated by the match. In cases (like addressing modes) where a single
- /// assembler operand expands to multiple MCOperands, this represents the
- /// single assembler operand, not the MCOperand.
- struct ResOperand {
- enum {
- /// RenderAsmOperand - This represents an operand result that is
- /// generated by calling the render method on the assembly operand. The
- /// corresponding AsmOperand is specified by AsmOperandNum.
- RenderAsmOperand,
-
- /// TiedOperand - This represents a result operand that is a duplicate of
- /// a previous result operand.
- TiedOperand,
-
- /// ImmOperand - This represents an immediate value that is dumped into
- /// the operand.
- ImmOperand,
-
- /// RegOperand - This represents a fixed register that is dumped in.
- RegOperand
- } Kind;
-
- /// Tuple containing the index of the (earlier) result operand that should
- /// be copied from, as well as the indices of the corresponding (parsed)
- /// operands in the asm string.
- struct TiedOperandsTuple {
- unsigned ResOpnd;
- unsigned SrcOpnd1Idx;
- unsigned SrcOpnd2Idx;
- };
-
- union {
- /// This is the operand # in the AsmOperands list that this should be
- /// copied from.
- unsigned AsmOperandNum;
-
- /// Description of tied operands.
- TiedOperandsTuple TiedOperands;
-
- /// ImmVal - This is the immediate value added to the instruction.
- int64_t ImmVal;
-
- /// Register - This is the register record.
- Record *Register;
- };
-
- /// MINumOperands - The number of MCInst operands populated by this
- /// operand.
- unsigned MINumOperands;
-
- static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
- ResOperand X;
- X.Kind = RenderAsmOperand;
- X.AsmOperandNum = AsmOpNum;
- X.MINumOperands = NumOperands;
- return X;
- }
-
- static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
- unsigned SrcOperand2) {
- ResOperand X;
- X.Kind = TiedOperand;
- X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
- X.MINumOperands = 1;
- return X;
- }
-
- static ResOperand getImmOp(int64_t Val) {
- ResOperand X;
- X.Kind = ImmOperand;
- X.ImmVal = Val;
- X.MINumOperands = 1;
- return X;
- }
-
- static ResOperand getRegOp(Record *Reg) {
- ResOperand X;
- X.Kind = RegOperand;
- X.Register = Reg;
- X.MINumOperands = 1;
- return X;
- }
- };
-
- /// AsmVariantID - Target's assembly syntax variant no.
- int AsmVariantID;
-
- /// AsmString - The assembly string for this instruction (with variants
- /// removed), e.g. "movsx $src, $dst".
- std::string AsmString;
-
- /// TheDef - This is the definition of the instruction or InstAlias that this
- /// matchable came from.
- Record *const TheDef;
-
- /// DefRec - This is the definition that it came from.
- PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
-
- const CodeGenInstruction *getResultInst() const {
- if (DefRec.is<const CodeGenInstruction*>())
- return DefRec.get<const CodeGenInstruction*>();
- return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
- }
-
- /// ResOperands - This is the operand list that should be built for the result
- /// MCInst.
- SmallVector<ResOperand, 8> ResOperands;
-
- /// Mnemonic - This is the first token of the matched instruction, its
- /// mnemonic.
- StringRef Mnemonic;
-
- /// AsmOperands - The textual operands that this instruction matches,
- /// annotated with a class and where in the OperandList they were defined.
- /// This directly corresponds to the tokenized AsmString after the mnemonic is
- /// removed.
- SmallVector<AsmOperand, 8> AsmOperands;
-
- /// Predicates - The required subtarget features to match this instruction.
- SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
-
- /// ConversionFnKind - The enum value which is passed to the generated
- /// convertToMCInst to convert parsed operands into an MCInst for this
- /// function.
- std::string ConversionFnKind;
-
- /// If this instruction is deprecated in some form.
- bool HasDeprecation;
-
- /// If this is an alias, this is use to determine whether or not to using
- /// the conversion function defined by the instruction's AsmMatchConverter
- /// or to use the function generated by the alias.
- bool UseInstAsmMatchConverter;
-
- MatchableInfo(const CodeGenInstruction &CGI)
- : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
- UseInstAsmMatchConverter(true) {
- }
-
- MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
- : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
- DefRec(Alias.release()),
- UseInstAsmMatchConverter(
- TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
- }
-
- // Could remove this and the dtor if PointerUnion supported unique_ptr
- // elements with a dynamic failure/assertion (like the one below) in the case
- // where it was copied while being in an owning state.
- MatchableInfo(const MatchableInfo &RHS)
- : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
- TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
- Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
- RequiredFeatures(RHS.RequiredFeatures),
- ConversionFnKind(RHS.ConversionFnKind),
- HasDeprecation(RHS.HasDeprecation),
- UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
- assert(!DefRec.is<const CodeGenInstAlias *>());
- }
-
- ~MatchableInfo() {
- delete DefRec.dyn_cast<const CodeGenInstAlias*>();
- }
-
- // Two-operand aliases clone from the main matchable, but mark the second
- // operand as a tied operand of the first for purposes of the assembler.
- void formTwoOperandAlias(StringRef Constraint);
-
- void initialize(const AsmMatcherInfo &Info,
- SmallPtrSetImpl<Record*> &SingletonRegisters,
- AsmVariantInfo const &Variant,
- bool HasMnemonicFirst);
-
- /// validate - Return true if this matchable is a valid thing to match against
- /// and perform a bunch of validity checking.
- bool validate(StringRef CommentDelimiter, bool IsAlias) const;
-
- /// findAsmOperand - Find the AsmOperand with the specified name and
- /// suboperand index.
- int findAsmOperand(StringRef N, int SubOpIdx) const {
- auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
- return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
- });
- return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
- }
-
- /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
- /// This does not check the suboperand index.
- int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
- auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
- [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
- return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
- }
-
- int findAsmOperandOriginallyNamed(StringRef N) const {
- auto I =
- find_if(AsmOperands,
- [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
- return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
- }
-
- void buildInstructionResultOperands();
- void buildAliasResultOperands(bool AliasConstraintsAreChecked);
-
- /// operator< - Compare two matchables.
- bool operator<(const MatchableInfo &RHS) const {
- // The primary comparator is the instruction mnemonic.
- if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
- return Cmp == -1;
-
- if (AsmOperands.size() != RHS.AsmOperands.size())
- return AsmOperands.size() < RHS.AsmOperands.size();
-
- // Compare lexicographically by operand. The matcher validates that other
- // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
- for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
- if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
- return true;
- if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
- return false;
- }
-
- // Give matches that require more features higher precedence. This is useful
- // because we cannot define AssemblerPredicates with the negation of
- // processor features. For example, ARM v6 "nop" may be either a HINT or
- // MOV. With v6, we want to match HINT. The assembler has no way to
- // predicate MOV under "NoV6", but HINT will always match first because it
- // requires V6 while MOV does not.
- if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
- return RequiredFeatures.size() > RHS.RequiredFeatures.size();
-
- return false;
- }
-
- /// couldMatchAmbiguouslyWith - Check whether this matchable could
- /// ambiguously match the same set of operands as \p RHS (without being a
- /// strictly superior match).
- bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
- // The primary comparator is the instruction mnemonic.
- if (Mnemonic != RHS.Mnemonic)
- return false;
-
- // Different variants can't conflict.
- if (AsmVariantID != RHS.AsmVariantID)
- return false;
-
- // The number of operands is unambiguous.
- if (AsmOperands.size() != RHS.AsmOperands.size())
- return false;
-
- // Otherwise, make sure the ordering of the two instructions is unambiguous
- // by checking that either (a) a token or operand kind discriminates them,
- // or (b) the ordering among equivalent kinds is consistent.
-
- // Tokens and operand kinds are unambiguous (assuming a correct target
- // specific parser).
- for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
- if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
- AsmOperands[i].Class->Kind == ClassInfo::Token)
- if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
- *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
- return false;
-
- // Otherwise, this operand could commute if all operands are equivalent, or
- // there is a pair of operands that compare less than and a pair that
- // compare greater than.
- bool HasLT = false, HasGT = false;
- for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
- if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
- HasLT = true;
- if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
- HasGT = true;
- }
-
- return HasLT == HasGT;
- }
-
- void dump() const;
-
-private:
- void tokenizeAsmString(AsmMatcherInfo const &Info,
- AsmVariantInfo const &Variant);
- void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
-};
-
-struct OperandMatchEntry {
- unsigned OperandMask;
- const MatchableInfo* MI;
- ClassInfo *CI;
-
- static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
- unsigned opMask) {
- OperandMatchEntry X;
- X.OperandMask = opMask;
- X.CI = ci;
- X.MI = mi;
- return X;
- }
-};
-
-class AsmMatcherInfo {
-public:
- /// Tracked Records
- RecordKeeper &Records;
-
- /// The tablegen AsmParser record.
- Record *AsmParser;
-
- /// Target - The target information.
- CodeGenTarget &Target;
-
- /// The classes which are needed for matching.
- std::forward_list<ClassInfo> Classes;
-
- /// The information on the matchables to match.
- std::vector<std::unique_ptr<MatchableInfo>> Matchables;
-
- /// Info for custom matching operands by user defined methods.
- std::vector<OperandMatchEntry> OperandMatchInfo;
-
- /// Map of Register records to their class information.
- typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
- RegisterClassesTy RegisterClasses;
-
- /// Map of Predicate records to their subtarget information.
- std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
-
- /// Map of AsmOperandClass records to their class information.
- std::map<Record*, ClassInfo*> AsmOperandClasses;
-
- /// Map of RegisterClass records to their class information.
- std::map<Record*, ClassInfo*> RegisterClassClasses;
-
-private:
- /// Map of token to class information which has already been constructed.
- std::map<std::string, ClassInfo*> TokenClasses;
-
-private:
- /// getTokenClass - Lookup or create the class for the given token.
- ClassInfo *getTokenClass(StringRef Token);
-
- /// getOperandClass - Lookup or create the class for the given operand.
- ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
- int SubOpIdx);
- ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
-
- /// buildRegisterClasses - Build the ClassInfo* instances for register
- /// classes.
- void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
-
- /// buildOperandClasses - Build the ClassInfo* instances for user defined
- /// operand classes.
- void buildOperandClasses();
-
- void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
- unsigned AsmOpIdx);
- void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
- MatchableInfo::AsmOperand &Op);
-
-public:
- AsmMatcherInfo(Record *AsmParser,
- CodeGenTarget &Target,
- RecordKeeper &Records);
-
- /// Construct the various tables used during matching.
- void buildInfo();
-
- /// buildOperandMatchInfo - Build the necessary information to handle user
- /// defined operand parsing methods.
- void buildOperandMatchInfo();
-
- /// getSubtargetFeature - Lookup or create the subtarget feature info for the
- /// given operand.
- const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
- assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
- const auto &I = SubtargetFeatures.find(Def);
- return I == SubtargetFeatures.end() ? nullptr : &I->second;
- }
-
- RecordKeeper &getRecords() const {
- return Records;
- }
-
- bool hasOptionalOperands() const {
- return find_if(Classes, [](const ClassInfo &Class) {
- return Class.IsOptional;
- }) != Classes.end();
- }
-};
-
-} // end anonymous namespace
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void MatchableInfo::dump() const {
- errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
-
- errs() << " variant: " << AsmVariantID << "\n";
-
- for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
- const AsmOperand &Op = AsmOperands[i];
- errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
- errs() << '\"' << Op.Token << "\"\n";
- }
-}
-#endif
-
-static std::pair<StringRef, StringRef>
-parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
- // Split via the '='.
- std::pair<StringRef, StringRef> Ops = S.split('=');
- if (Ops.second == "")
- PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
- // Trim whitespace and the leading '$' on the operand names.
- size_t start = Ops.first.find_first_of('$');
- if (start == std::string::npos)
- PrintFatalError(Loc, "expected '$' prefix on asm operand name");
- Ops.first = Ops.first.slice(start + 1, std::string::npos);
- size_t end = Ops.first.find_last_of(" \t");
- Ops.first = Ops.first.slice(0, end);
- // Now the second operand.
- start = Ops.second.find_first_of('$');
- if (start == std::string::npos)
- PrintFatalError(Loc, "expected '$' prefix on asm operand name");
- Ops.second = Ops.second.slice(start + 1, std::string::npos);
- end = Ops.second.find_last_of(" \t");
- Ops.first = Ops.first.slice(0, end);
- return Ops;
-}
-
-void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
- // Figure out which operands are aliased and mark them as tied.
- std::pair<StringRef, StringRef> Ops =
- parseTwoOperandConstraint(Constraint, TheDef->getLoc());
-
- // Find the AsmOperands that refer to the operands we're aliasing.
- int SrcAsmOperand = findAsmOperandNamed(Ops.first);
- int DstAsmOperand = findAsmOperandNamed(Ops.second);
- if (SrcAsmOperand == -1)
- PrintFatalError(TheDef->getLoc(),
- "unknown source two-operand alias operand '" + Ops.first +
- "'.");
- if (DstAsmOperand == -1)
- PrintFatalError(TheDef->getLoc(),
- "unknown destination two-operand alias operand '" +
- Ops.second + "'.");
-
- // Find the ResOperand that refers to the operand we're aliasing away
- // and update it to refer to the combined operand instead.
- for (ResOperand &Op : ResOperands) {
- if (Op.Kind == ResOperand::RenderAsmOperand &&
- Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
- Op.AsmOperandNum = DstAsmOperand;
- break;
- }
- }
- // Remove the AsmOperand for the alias operand.
- AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
- // Adjust the ResOperand references to any AsmOperands that followed
- // the one we just deleted.
- for (ResOperand &Op : ResOperands) {
- switch(Op.Kind) {
- default:
- // Nothing to do for operands that don't reference AsmOperands.
- break;
- case ResOperand::RenderAsmOperand:
- if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
- --Op.AsmOperandNum;
- break;
- }
- }
-}
-
-/// extractSingletonRegisterForAsmOperand - Extract singleton register,
-/// if present, from specified token.
-static void
-extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
- const AsmMatcherInfo &Info,
- StringRef RegisterPrefix) {
- StringRef Tok = Op.Token;
-
- // If this token is not an isolated token, i.e., it isn't separated from
- // other tokens (e.g. with whitespace), don't interpret it as a register name.
- if (!Op.IsIsolatedToken)
- return;
-
- if (RegisterPrefix.empty()) {
- std::string LoweredTok = Tok.lower();
- if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
- Op.SingletonReg = Reg->TheDef;
- return;
- }
-
- if (!Tok.startswith(RegisterPrefix))
- return;
-
- StringRef RegName = Tok.substr(RegisterPrefix.size());
- if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
- Op.SingletonReg = Reg->TheDef;
-
- // If there is no register prefix (i.e. "%" in "%eax"), then this may
- // be some random non-register token, just ignore it.
-}
-
-void MatchableInfo::initialize(const AsmMatcherInfo &Info,
- SmallPtrSetImpl<Record*> &SingletonRegisters,
- AsmVariantInfo const &Variant,
- bool HasMnemonicFirst) {
- AsmVariantID = Variant.AsmVariantNo;
- AsmString =
- CodeGenInstruction::FlattenAsmStringVariants(AsmString,
- Variant.AsmVariantNo);
-
- tokenizeAsmString(Info, Variant);
-
- // The first token of the instruction is the mnemonic, which must be a
- // simple string, not a $foo variable or a singleton register.
- if (AsmOperands.empty())
- PrintFatalError(TheDef->getLoc(),
- "Instruction '" + TheDef->getName() + "' has no tokens");
-
- assert(!AsmOperands[0].Token.empty());
- if (HasMnemonicFirst) {
- Mnemonic = AsmOperands[0].Token;
- if (Mnemonic[0] == '$')
- PrintFatalError(TheDef->getLoc(),
- "Invalid instruction mnemonic '" + Mnemonic + "'!");
-
- // Remove the first operand, it is tracked in the mnemonic field.
- AsmOperands.erase(AsmOperands.begin());
- } else if (AsmOperands[0].Token[0] != '$')
- Mnemonic = AsmOperands[0].Token;
-
- // Compute the require features.
- for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
- if (const SubtargetFeatureInfo *Feature =
- Info.getSubtargetFeature(Predicate))
- RequiredFeatures.push_back(Feature);
-
- // Collect singleton registers, if used.
- for (MatchableInfo::AsmOperand &Op : AsmOperands) {
- extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
- if (Record *Reg = Op.SingletonReg)
- SingletonRegisters.insert(Reg);
- }
-
- const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
- if (!DepMask)
- DepMask = TheDef->getValue("ComplexDeprecationPredicate");
-
- HasDeprecation =
- DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
-}
-
-/// Append an AsmOperand for the given substring of AsmString.
-void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
- AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
-}
-
-/// tokenizeAsmString - Tokenize a simplified assembly string.
-void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
- AsmVariantInfo const &Variant) {
- StringRef String = AsmString;
- size_t Prev = 0;
- bool InTok = false;
- bool IsIsolatedToken = true;
- for (size_t i = 0, e = String.size(); i != e; ++i) {
- char Char = String[i];
- if (Variant.BreakCharacters.find(Char) != std::string::npos) {
- if (InTok) {
- addAsmOperand(String.slice(Prev, i), false);
- Prev = i;
- IsIsolatedToken = false;
- }
- InTok = true;
- continue;
- }
- if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
- if (InTok) {
- addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
- InTok = false;
- IsIsolatedToken = false;
- }
- addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
- Prev = i + 1;
- IsIsolatedToken = true;
- continue;
- }
- if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
- if (InTok) {
- addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
- InTok = false;
- }
- Prev = i + 1;
- IsIsolatedToken = true;
- continue;
- }
-
- switch (Char) {
- case '\\':
- if (InTok) {
- addAsmOperand(String.slice(Prev, i), false);
- InTok = false;
- IsIsolatedToken = false;
- }
- ++i;
- assert(i != String.size() && "Invalid quoted character");
- addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
- Prev = i + 1;
- IsIsolatedToken = false;
- break;
-
- case '$': {
- if (InTok) {
- addAsmOperand(String.slice(Prev, i), false);
- InTok = false;
- IsIsolatedToken = false;
- }
-
- // If this isn't "${", start new identifier looking like "$xxx"
- if (i + 1 == String.size() || String[i + 1] != '{') {
- Prev = i;
- break;
- }
-
- size_t EndPos = String.find('}', i);
- assert(EndPos != StringRef::npos &&
- "Missing brace in operand reference!");
- addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
- Prev = EndPos + 1;
- i = EndPos;
- IsIsolatedToken = false;
- break;
- }
-
- default:
- InTok = true;
- break;
- }
- }
- if (InTok && Prev != String.size())
- addAsmOperand(String.substr(Prev), IsIsolatedToken);
-}
-
-bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
- // Reject matchables with no .s string.
- if (AsmString.empty())
- PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
-
- // Reject any matchables with a newline in them, they should be marked
- // isCodeGenOnly if they are pseudo instructions.
- if (AsmString.find('\n') != std::string::npos)
- PrintFatalError(TheDef->getLoc(),
- "multiline instruction is not valid for the asmparser, "
- "mark it isCodeGenOnly");
-
- // Remove comments from the asm string. We know that the asmstring only
- // has one line.
- if (!CommentDelimiter.empty() &&
- StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
- PrintFatalError(TheDef->getLoc(),
- "asmstring for instruction has comment character in it, "
- "mark it isCodeGenOnly");
-
- // Reject matchables with operand modifiers, these aren't something we can
- // handle, the target should be refactored to use operands instead of
- // modifiers.
- //
- // Also, check for instructions which reference the operand multiple times;
- // this implies a constraint we would not honor.
- std::set<std::string> OperandNames;
- for (const AsmOperand &Op : AsmOperands) {
- StringRef Tok = Op.Token;
- if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
- PrintFatalError(TheDef->getLoc(),
- "matchable with operand modifier '" + Tok +
- "' not supported by asm matcher. Mark isCodeGenOnly!");
- // Verify that any operand is only mentioned once.
- // We reject aliases and ignore instructions for now.
- if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) {
- LLVM_DEBUG({
- errs() << "warning: '" << TheDef->getName() << "': "
- << "ignoring instruction with tied operand '"
- << Tok << "'\n";
- });
- return false;
- }
- }
-
- return true;
-}
-
-static std::string getEnumNameForToken(StringRef Str) {
- std::string Res;
-
- for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
- switch (*it) {
- case '*': Res += "_STAR_"; break;
- case '%': Res += "_PCT_"; break;
- case ':': Res += "_COLON_"; break;
- case '!': Res += "_EXCLAIM_"; break;
- case '.': Res += "_DOT_"; break;
- case '<': Res += "_LT_"; break;
- case '>': Res += "_GT_"; break;
- case '-': Res += "_MINUS_"; break;
- default:
- if ((*it >= 'A' && *it <= 'Z') ||
- (*it >= 'a' && *it <= 'z') ||
- (*it >= '0' && *it <= '9'))
- Res += *it;
- else
- Res += "_" + utostr((unsigned) *it) + "_";
- }
- }
-
- return Res;
-}
-
-ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
- ClassInfo *&Entry = TokenClasses[Token];
-
- if (!Entry) {
- Classes.emplace_front();
- Entry = &Classes.front();
- Entry->Kind = ClassInfo::Token;
- Entry->ClassName = "Token";
- Entry->Name = "MCK_" + getEnumNameForToken(Token);
- Entry->ValueName = Token;
- Entry->PredicateMethod = "<invalid>";
- Entry->RenderMethod = "<invalid>";
- Entry->ParserMethod = "";
- Entry->DiagnosticType = "";
- Entry->IsOptional = false;
- Entry->DefaultMethod = "<invalid>";
- }
-
- return Entry;
-}
-
-ClassInfo *
-AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
- int SubOpIdx) {
- Record *Rec = OI.Rec;
- if (SubOpIdx != -1)
- Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
- return getOperandClass(Rec, SubOpIdx);
-}
-
-ClassInfo *
-AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
- if (Rec->isSubClassOf("RegisterOperand")) {
- // RegisterOperand may have an associated ParserMatchClass. If it does,
- // use it, else just fall back to the underlying register class.
- const RecordVal *R = Rec->getValue("ParserMatchClass");
- if (!R || !R->getValue())
- PrintFatalError("Record `" + Rec->getName() +
- "' does not have a ParserMatchClass!\n");
-
- if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
- Record *MatchClass = DI->getDef();
- if (ClassInfo *CI = AsmOperandClasses[MatchClass])
- return CI;
- }
-
- // No custom match class. Just use the register class.
- Record *ClassRec = Rec->getValueAsDef("RegClass");
- if (!ClassRec)
- PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
- "' has no associated register class!\n");
- if (ClassInfo *CI = RegisterClassClasses[ClassRec])
- return CI;
- PrintFatalError(Rec->getLoc(), "register class has no class info!");
- }
-
- if (Rec->isSubClassOf("RegisterClass")) {
- if (ClassInfo *CI = RegisterClassClasses[Rec])
- return CI;
- PrintFatalError(Rec->getLoc(), "register class has no class info!");
- }
-
- if (!Rec->isSubClassOf("Operand"))
- PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
- "' does not derive from class Operand!\n");
- Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
- if (ClassInfo *CI = AsmOperandClasses[MatchClass])
- return CI;
-
- PrintFatalError(Rec->getLoc(), "operand has no match class!");
-}
-
-struct LessRegisterSet {
- bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
- // std::set<T> defines its own compariso "operator<", but it
- // performs a lexicographical comparison by T's innate comparison
- // for some reason. We don't want non-deterministic pointer
- // comparisons so use this instead.
- return std::lexicographical_compare(LHS.begin(), LHS.end(),
- RHS.begin(), RHS.end(),
- LessRecordByID());
- }
-};
-
-void AsmMatcherInfo::
-buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
- const auto &Registers = Target.getRegBank().getRegisters();
- auto &RegClassList = Target.getRegBank().getRegClasses();
-
- typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
-
- // The register sets used for matching.
- RegisterSetSet RegisterSets;
-
- // Gather the defined sets.
- for (const CodeGenRegisterClass &RC : RegClassList)
- RegisterSets.insert(
- RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
-
- // Add any required singleton sets.
- for (Record *Rec : SingletonRegisters) {
- RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
- }
-
- // Introduce derived sets where necessary (when a register does not determine
- // a unique register set class), and build the mapping of registers to the set
- // they should classify to.
- std::map<Record*, RegisterSet> RegisterMap;
- for (const CodeGenRegister &CGR : Registers) {
- // Compute the intersection of all sets containing this register.
- RegisterSet ContainingSet;
-
- for (const RegisterSet &RS : RegisterSets) {
- if (!RS.count(CGR.TheDef))
- continue;
-
- if (ContainingSet.empty()) {
- ContainingSet = RS;
- continue;
- }
-
- RegisterSet Tmp;
- std::swap(Tmp, ContainingSet);
- std::insert_iterator<RegisterSet> II(ContainingSet,
- ContainingSet.begin());
- std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
- LessRecordByID());
- }
-
- if (!ContainingSet.empty()) {
- RegisterSets.insert(ContainingSet);
- RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
- }
- }
-
- // Construct the register classes.
- std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
- unsigned Index = 0;
- for (const RegisterSet &RS : RegisterSets) {
- Classes.emplace_front();
- ClassInfo *CI = &Classes.front();
- CI->Kind = ClassInfo::RegisterClass0 + Index;
- CI->ClassName = "Reg" + utostr(Index);
- CI->Name = "MCK_Reg" + utostr(Index);
- CI->ValueName = "";
- CI->PredicateMethod = ""; // unused
- CI->RenderMethod = "addRegOperands";
- CI->Registers = RS;
- // FIXME: diagnostic type.
- CI->DiagnosticType = "";
- CI->IsOptional = false;
- CI->DefaultMethod = ""; // unused
- RegisterSetClasses.insert(std::make_pair(RS, CI));
- ++Index;
- }
-
- // Find the superclasses; we could compute only the subgroup lattice edges,
- // but there isn't really a point.
- for (const RegisterSet &RS : RegisterSets) {
- ClassInfo *CI = RegisterSetClasses[RS];
- for (const RegisterSet &RS2 : RegisterSets)
- if (RS != RS2 &&
- std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
- LessRecordByID()))
- CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
- }
-
- // Name the register classes which correspond to a user defined RegisterClass.
- for (const CodeGenRegisterClass &RC : RegClassList) {
- // Def will be NULL for non-user defined register classes.
- Record *Def = RC.getDef();
- if (!Def)
- continue;
- ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
- RC.getOrder().end())];
- if (CI->ValueName.empty()) {
- CI->ClassName = RC.getName();
- CI->Name = "MCK_" + RC.getName();
- CI->ValueName = RC.getName();
- } else
- CI->ValueName = CI->ValueName + "," + RC.getName();
-
- Init *DiagnosticType = Def->getValueInit("DiagnosticType");
- if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
- CI->DiagnosticType = SI->getValue();
-
- Init *DiagnosticString = Def->getValueInit("DiagnosticString");
- if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
- CI->DiagnosticString = SI->getValue();
-
- // If we have a diagnostic string but the diagnostic type is not specified
- // explicitly, create an anonymous diagnostic type.
- if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
- CI->DiagnosticType = RC.getName();
-
- RegisterClassClasses.insert(std::make_pair(Def, CI));
- }
-
- // Populate the map for individual registers.
- for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
- ie = RegisterMap.end(); it != ie; ++it)
- RegisterClasses[it->first] = RegisterSetClasses[it->second];
-
- // Name the register classes which correspond to singleton registers.
- for (Record *Rec : SingletonRegisters) {
- ClassInfo *CI = RegisterClasses[Rec];
- assert(CI && "Missing singleton register class info!");
-
- if (CI->ValueName.empty()) {
- CI->ClassName = Rec->getName();
- CI->Name = "MCK_" + Rec->getName().str();
- CI->ValueName = Rec->getName();
- } else
- CI->ValueName = CI->ValueName + "," + Rec->getName().str();
- }
-}
-
-void AsmMatcherInfo::buildOperandClasses() {
- std::vector<Record*> AsmOperands =
- Records.getAllDerivedDefinitions("AsmOperandClass");
-
- // Pre-populate AsmOperandClasses map.
- for (Record *Rec : AsmOperands) {
- Classes.emplace_front();
- AsmOperandClasses[Rec] = &Classes.front();
- }
-
- unsigned Index = 0;
- for (Record *Rec : AsmOperands) {
- ClassInfo *CI = AsmOperandClasses[Rec];
- CI->Kind = ClassInfo::UserClass0 + Index;
-
- ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
- for (Init *I : Supers->getValues()) {
- DefInit *DI = dyn_cast<DefInit>(I);
- if (!DI) {
- PrintError(Rec->getLoc(), "Invalid super class reference!");
- continue;
- }
-
- ClassInfo *SC = AsmOperandClasses[DI->getDef()];
- if (!SC)
- PrintError(Rec->getLoc(), "Invalid super class reference!");
- else
- CI->SuperClasses.push_back(SC);
- }
- CI->ClassName = Rec->getValueAsString("Name");
- CI->Name = "MCK_" + CI->ClassName;
- CI->ValueName = Rec->getName();
-
- // Get or construct the predicate method name.
- Init *PMName = Rec->getValueInit("PredicateMethod");
- if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
- CI->PredicateMethod = SI->getValue();
- } else {
- assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
- CI->PredicateMethod = "is" + CI->ClassName;
- }
-
- // Get or construct the render method name.
- Init *RMName = Rec->getValueInit("RenderMethod");
- if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
- CI->RenderMethod = SI->getValue();
- } else {
- assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
- CI->RenderMethod = "add" + CI->ClassName + "Operands";
- }
-
- // Get the parse method name or leave it as empty.
- Init *PRMName = Rec->getValueInit("ParserMethod");
- if (StringInit *SI = dyn_cast<StringInit>(PRMName))
- CI->ParserMethod = SI->getValue();
-
- // Get the diagnostic type and string or leave them as empty.
- Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
- if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
- CI->DiagnosticType = SI->getValue();
- Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
- if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
- CI->DiagnosticString = SI->getValue();
- // If we have a DiagnosticString, we need a DiagnosticType for use within
- // the matcher.
- if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
- CI->DiagnosticType = CI->ClassName;
-
- Init *IsOptional = Rec->getValueInit("IsOptional");
- if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
- CI->IsOptional = BI->getValue();
-
- // Get or construct the default method name.
- Init *DMName = Rec->getValueInit("DefaultMethod");
- if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
- CI->DefaultMethod = SI->getValue();
- } else {
- assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
- CI->DefaultMethod = "default" + CI->ClassName + "Operands";
- }
-
- ++Index;
- }
-}
-
-AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
- CodeGenTarget &target,
- RecordKeeper &records)
- : Records(records), AsmParser(asmParser), Target(target) {
-}
-
-/// buildOperandMatchInfo - Build the necessary information to handle user
-/// defined operand parsing methods.
-void AsmMatcherInfo::buildOperandMatchInfo() {
-
- /// Map containing a mask with all operands indices that can be found for
- /// that class inside a instruction.
- typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
- OpClassMaskTy OpClassMask;
-
- for (const auto &MI : Matchables) {
- OpClassMask.clear();
-
- // Keep track of all operands of this instructions which belong to the
- // same class.
- for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
- const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
- if (Op.Class->ParserMethod.empty())
- continue;
- unsigned &OperandMask = OpClassMask[Op.Class];
- OperandMask |= (1 << i);
- }
-
- // Generate operand match info for each mnemonic/operand class pair.
- for (const auto &OCM : OpClassMask) {
- unsigned OpMask = OCM.second;
- ClassInfo *CI = OCM.first;
- OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
- OpMask));
- }
- }
-}
-
-void AsmMatcherInfo::buildInfo() {
- // Build information about all of the AssemblerPredicates.
- const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
- &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
- SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
- SubtargetFeaturePairs.end());
-#ifndef NDEBUG
- for (const auto &Pair : SubtargetFeatures)
- LLVM_DEBUG(Pair.second.dump());
-#endif // NDEBUG
- assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
-
- bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
- bool ReportMultipleNearMisses =
- AsmParser->getValueAsBit("ReportMultipleNearMisses");
-
- // Parse the instructions; we need to do this first so that we can gather the
- // singleton register classes.
- SmallPtrSet<Record*, 16> SingletonRegisters;
- unsigned VariantCount = Target.getAsmParserVariantCount();
- for (unsigned VC = 0; VC != VariantCount; ++VC) {
- Record *AsmVariant = Target.getAsmParserVariant(VC);
- StringRef CommentDelimiter =
- AsmVariant->getValueAsString("CommentDelimiter");
- AsmVariantInfo Variant;
- Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
- Variant.TokenizingCharacters =
- AsmVariant->getValueAsString("TokenizingCharacters");
- Variant.SeparatorCharacters =
- AsmVariant->getValueAsString("SeparatorCharacters");
- Variant.BreakCharacters =
- AsmVariant->getValueAsString("BreakCharacters");
- Variant.Name = AsmVariant->getValueAsString("Name");
- Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
-
- for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
-
- // If the tblgen -match-prefix option is specified (for tblgen hackers),
- // filter the set of instructions we consider.
- if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
- continue;
-
- // Ignore "codegen only" instructions.
- if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
- continue;
-
- // Ignore instructions for different instructions
- StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
- if (!V.empty() && V != Variant.Name)
- continue;
-
- auto II = llvm::make_unique<MatchableInfo>(*CGI);
-
- II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
-
- // Ignore instructions which shouldn't be matched and diagnose invalid
- // instruction definitions with an error.
- if (!II->validate(CommentDelimiter, false))
- continue;
-
- Matchables.push_back(std::move(II));
- }
-
- // Parse all of the InstAlias definitions and stick them in the list of
- // matchables.
- std::vector<Record*> AllInstAliases =
- Records.getAllDerivedDefinitions("InstAlias");
- for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
- auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
- Target);
-
- // If the tblgen -match-prefix option is specified (for tblgen hackers),
- // filter the set of instruction aliases we consider, based on the target
- // instruction.
- if (!StringRef(Alias->ResultInst->TheDef->getName())
- .startswith( MatchPrefix))
- continue;
-
- StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
- if (!V.empty() && V != Variant.Name)
- continue;
-
- auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
-
- II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
-
- // Validate the alias definitions.
- II->validate(CommentDelimiter, true);
-
- Matchables.push_back(std::move(II));
- }
- }
-
- // Build info for the register classes.
- buildRegisterClasses(SingletonRegisters);
-
- // Build info for the user defined assembly operand classes.
- buildOperandClasses();
-
- // Build the information about matchables, now that we have fully formed
- // classes.
- std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
- for (auto &II : Matchables) {
- // Parse the tokens after the mnemonic.
- // Note: buildInstructionOperandReference may insert new AsmOperands, so
- // don't precompute the loop bound.
- for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
- MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
- StringRef Token = Op.Token;
-
- // Check for singleton registers.
- if (Record *RegRecord = Op.SingletonReg) {
- Op.Class = RegisterClasses[RegRecord];
- assert(Op.Class && Op.Class->Registers.size() == 1 &&
- "Unexpected class for singleton register");
- continue;
- }
-
- // Check for simple tokens.
- if (Token[0] != '$') {
- Op.Class = getTokenClass(Token);
- continue;
- }
-
- if (Token.size() > 1 && isdigit(Token[1])) {
- Op.Class = getTokenClass(Token);
- continue;
- }
-
- // Otherwise this is an operand reference.
- StringRef OperandName;
- if (Token[1] == '{')
- OperandName = Token.substr(2, Token.size() - 3);
- else
- OperandName = Token.substr(1);
-
- if (II->DefRec.is<const CodeGenInstruction*>())
- buildInstructionOperandReference(II.get(), OperandName, i);
- else
- buildAliasOperandReference(II.get(), OperandName, Op);
- }
-
- if (II->DefRec.is<const CodeGenInstruction*>()) {
- II->buildInstructionResultOperands();
- // If the instruction has a two-operand alias, build up the
- // matchable here. We'll add them in bulk at the end to avoid
- // confusing this loop.
- StringRef Constraint =
- II->TheDef->getValueAsString("TwoOperandAliasConstraint");
- if (Constraint != "") {
- // Start by making a copy of the original matchable.
- auto AliasII = llvm::make_unique<MatchableInfo>(*II);
-
- // Adjust it to be a two-operand alias.
- AliasII->formTwoOperandAlias(Constraint);
-
- // Add the alias to the matchables list.
- NewMatchables.push_back(std::move(AliasII));
- }
- } else
- // FIXME: The tied operands checking is not yet integrated with the
- // framework for reporting multiple near misses. To prevent invalid
- // formats from being matched with an alias if a tied-operands check
- // would otherwise have disallowed it, we just disallow such constructs
- // in TableGen completely.
- II->buildAliasResultOperands(!ReportMultipleNearMisses);
- }
- if (!NewMatchables.empty())
- Matchables.insert(Matchables.end(),
- std::make_move_iterator(NewMatchables.begin()),
- std::make_move_iterator(NewMatchables.end()));
-
- // Process token alias definitions and set up the associated superclass
- // information.
- std::vector<Record*> AllTokenAliases =
- Records.getAllDerivedDefinitions("TokenAlias");
- for (Record *Rec : AllTokenAliases) {
- ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
- ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
- if (FromClass == ToClass)
- PrintFatalError(Rec->getLoc(),
- "error: Destination value identical to source value.");
- FromClass->SuperClasses.push_back(ToClass);
- }
-
- // Reorder classes so that classes precede super classes.
- Classes.sort();
-
-#ifdef EXPENSIVE_CHECKS
- // Verify that the table is sorted and operator < works transitively.
- for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
- for (auto J = I; J != E; ++J) {
- assert(!(*J < *I));
- assert(I == J || !J->isSubsetOf(*I));
- }
- }
-#endif
-}
-
-/// buildInstructionOperandReference - The specified operand is a reference to a
-/// named operand such as $src. Resolve the Class and OperandInfo pointers.
-void AsmMatcherInfo::
-buildInstructionOperandReference(MatchableInfo *II,
- StringRef OperandName,
- unsigned AsmOpIdx) {
- const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
- const CGIOperandList &Operands = CGI.Operands;
- MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
-
- // Map this token to an operand.
- unsigned Idx;
- if (!Operands.hasOperandNamed(OperandName, Idx))
- PrintFatalError(II->TheDef->getLoc(),
- "error: unable to find operand: '" + OperandName + "'");
-
- // If the instruction operand has multiple suboperands, but the parser
- // match class for the asm operand is still the default "ImmAsmOperand",
- // then handle each suboperand separately.
- if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
- Record *Rec = Operands[Idx].Rec;
- assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
- Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
- if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
- // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
- StringRef Token = Op->Token; // save this in case Op gets moved
- for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
- MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
- NewAsmOp.SubOpIdx = SI;
- II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
- }
- // Replace Op with first suboperand.
- Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
- Op->SubOpIdx = 0;
- }
- }
-
- // Set up the operand class.
- Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
- Op->OrigSrcOpName = OperandName;
-
- // If the named operand is tied, canonicalize it to the untied operand.
- // For example, something like:
- // (outs GPR:$dst), (ins GPR:$src)
- // with an asmstring of
- // "inc $src"
- // we want to canonicalize to:
- // "inc $dst"
- // so that we know how to provide the $dst operand when filling in the result.
- int OITied = -1;
- if (Operands[Idx].MINumOperands == 1)
- OITied = Operands[Idx].getTiedRegister();
- if (OITied != -1) {
- // The tied operand index is an MIOperand index, find the operand that
- // contains it.
- std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
- OperandName = Operands[Idx.first].Name;
- Op->SubOpIdx = Idx.second;
- }
-
- Op->SrcOpName = OperandName;
-}
-
-/// buildAliasOperandReference - When parsing an operand reference out of the
-/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
-/// operand reference is by looking it up in the result pattern definition.
-void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
- StringRef OperandName,
- MatchableInfo::AsmOperand &Op) {
- const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
-
- // Set up the operand class.
- for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
- if (CGA.ResultOperands[i].isRecord() &&
- CGA.ResultOperands[i].getName() == OperandName) {
- // It's safe to go with the first one we find, because CodeGenInstAlias
- // validates that all operands with the same name have the same record.
- Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
- // Use the match class from the Alias definition, not the
- // destination instruction, as we may have an immediate that's
- // being munged by the match class.
- Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
- Op.SubOpIdx);
- Op.SrcOpName = OperandName;
- Op.OrigSrcOpName = OperandName;
- return;
- }
-
- PrintFatalError(II->TheDef->getLoc(),
- "error: unable to find operand: '" + OperandName + "'");
-}
-
-void MatchableInfo::buildInstructionResultOperands() {
- const CodeGenInstruction *ResultInst = getResultInst();
-
- // Loop over all operands of the result instruction, determining how to
- // populate them.
- for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
- // If this is a tied operand, just copy from the previously handled operand.
- int TiedOp = -1;
- if (OpInfo.MINumOperands == 1)
- TiedOp = OpInfo.getTiedRegister();
- if (TiedOp != -1) {
- int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
- if (TiedSrcOperand != -1 &&
- ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
- ResOperands.push_back(ResOperand::getTiedOp(
- TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
- else
- ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
- continue;
- }
-
- int SrcOperand = findAsmOperandNamed(OpInfo.Name);
- if (OpInfo.Name.empty() || SrcOperand == -1) {
- // This may happen for operands that are tied to a suboperand of a
- // complex operand. Simply use a dummy value here; nobody should
- // use this operand slot.
- // FIXME: The long term goal is for the MCOperand list to not contain
- // tied operands at all.
- ResOperands.push_back(ResOperand::getImmOp(0));
- continue;
- }
-
- // Check if the one AsmOperand populates the entire operand.
- unsigned NumOperands = OpInfo.MINumOperands;
- if (AsmOperands[SrcOperand].SubOpIdx == -1) {
- ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
- continue;
- }
-
- // Add a separate ResOperand for each suboperand.
- for (unsigned AI = 0; AI < NumOperands; ++AI) {
- assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
- AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
- "unexpected AsmOperands for suboperands");
- ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
- }
- }
-}
-
-void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
- const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
- const CodeGenInstruction *ResultInst = getResultInst();
-
- // Map of: $reg -> #lastref
- // where $reg is the name of the operand in the asm string
- // where #lastref is the last processed index where $reg was referenced in
- // the asm string.
- SmallDenseMap<StringRef, int> OperandRefs;
-
- // Loop over all operands of the result instruction, determining how to
- // populate them.
- unsigned AliasOpNo = 0;
- unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
- for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
- const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
-
- // If this is a tied operand, just copy from the previously handled operand.
- int TiedOp = -1;
- if (OpInfo->MINumOperands == 1)
- TiedOp = OpInfo->getTiedRegister();
- if (TiedOp != -1) {
- unsigned SrcOp1 = 0;
- unsigned SrcOp2 = 0;
-
- // If an operand has been specified twice in the asm string,
- // add the two source operand's indices to the TiedOp so that
- // at runtime the 'tied' constraint is checked.
- if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
- SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
-
- // Find the next operand (similarly named operand) in the string.
- StringRef Name = AsmOperands[SrcOp1].SrcOpName;
- auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
- SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
-
- // Not updating the record in OperandRefs will cause TableGen
- // to fail with an error at the end of this function.
- if (AliasConstraintsAreChecked)
- Insert.first->second = SrcOp2;
-
- // In case it only has one reference in the asm string,
- // it doesn't need to be checked for tied constraints.
- SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
- }
-
- // If the alias operand is of a different operand class, we only want
- // to benefit from the tied-operands check and just match the operand
- // as a normal, but not copy the original (TiedOp) to the result
- // instruction. We do this by passing -1 as the tied operand to copy.
- if (ResultInst->Operands[i].Rec->getName() !=
- ResultInst->Operands[TiedOp].Rec->getName()) {
- SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
- int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
- StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
- SrcOp2 = findAsmOperand(Name, SubIdx);
- ResOperands.push_back(
- ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
- } else {
- ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
- continue;
- }
- }
-
- // Handle all the suboperands for this operand.
- const std::string &OpName = OpInfo->Name;
- for ( ; AliasOpNo < LastOpNo &&
- CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
- int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
-
- // Find out what operand from the asmparser that this MCInst operand
- // comes from.
- switch (CGA.ResultOperands[AliasOpNo].Kind) {
- case CodeGenInstAlias::ResultOperand::K_Record: {
- StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
- int SrcOperand = findAsmOperand(Name, SubIdx);
- if (SrcOperand == -1)
- PrintFatalError(TheDef->getLoc(), "Instruction '" +
- TheDef->getName() + "' has operand '" + OpName +
- "' that doesn't appear in asm string!");
-
- // Add it to the operand references. If it is added a second time, the
- // record won't be updated and it will fail later on.
- OperandRefs.try_emplace(Name, SrcOperand);
-
- unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
- ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
- NumOperands));
- break;
- }
- case CodeGenInstAlias::ResultOperand::K_Imm: {
- int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
- ResOperands.push_back(ResOperand::getImmOp(ImmVal));
- break;
- }
- case CodeGenInstAlias::ResultOperand::K_Reg: {
- Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
- ResOperands.push_back(ResOperand::getRegOp(Reg));
- break;
- }
- }
- }
- }
-
- // Check that operands are not repeated more times than is supported.
- for (auto &T : OperandRefs) {
- if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
- PrintFatalError(TheDef->getLoc(),
- "Operand '" + T.first + "' can never be matched");
- }
-}
-
-static unsigned
-getConverterOperandID(const std::string &Name,
- SmallSetVector<CachedHashString, 16> &Table,
- bool &IsNew) {
- IsNew = Table.insert(CachedHashString(Name));
-
- unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
-
- assert(ID < Table.size());
-
- return ID;
-}
-
-static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
- std::vector<std::unique_ptr<MatchableInfo>> &Infos,
- bool HasMnemonicFirst, bool HasOptionalOperands,
- raw_ostream &OS) {
- SmallSetVector<CachedHashString, 16> OperandConversionKinds;
- SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
- std::vector<std::vector<uint8_t> > ConversionTable;
- size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
-
- // TargetOperandClass - This is the target's operand class, like X86Operand.
- std::string TargetOperandClass = Target.getName().str() + "Operand";
-
- // Write the convert function to a separate stream, so we can drop it after
- // the enum. We'll build up the conversion handlers for the individual
- // operand types opportunistically as we encounter them.
- std::string ConvertFnBody;
- raw_string_ostream CvtOS(ConvertFnBody);
- // Start the unified conversion function.
- if (HasOptionalOperands) {
- CvtOS << "void " << Target.getName() << ClassName << "::\n"
- << "convertToMCInst(unsigned Kind, MCInst &Inst, "
- << "unsigned Opcode,\n"
- << " const OperandVector &Operands,\n"
- << " const SmallBitVector &OptionalOperandsMask) {\n";
- } else {
- CvtOS << "void " << Target.getName() << ClassName << "::\n"
- << "convertToMCInst(unsigned Kind, MCInst &Inst, "
- << "unsigned Opcode,\n"
- << " const OperandVector &Operands) {\n";
- }
- CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
- CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
- if (HasOptionalOperands) {
- size_t MaxNumOperands = 0;
- for (const auto &MI : Infos) {
- MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
- }
- CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
- << "] = { 0 };\n";
- CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
- << ");\n";
- CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
- << "; ++i) {\n";
- CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n";
- CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
- CvtOS << " }\n";
- }
- CvtOS << " unsigned OpIdx;\n";
- CvtOS << " Inst.setOpcode(Opcode);\n";
- CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n";
- if (HasOptionalOperands) {
- CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
- } else {
- CvtOS << " OpIdx = *(p + 1);\n";
- }
- CvtOS << " switch (*p) {\n";
- CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
- CvtOS << " case CVT_Reg:\n";
- CvtOS << " static_cast<" << TargetOperandClass
- << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
- CvtOS << " break;\n";
- CvtOS << " case CVT_Tied: {\n";
- CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
- CvtOS << " std::begin(TiedAsmOperandTable)) &&\n";
- CvtOS << " \"Tied operand not found\");\n";
- CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
- CvtOS << " if (TiedResOpnd != (uint8_t) -1)\n";
- CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
- CvtOS << " break;\n";
- CvtOS << " }\n";
-
- std::string OperandFnBody;
- raw_string_ostream OpOS(OperandFnBody);
- // Start the operand number lookup function.
- OpOS << "void " << Target.getName() << ClassName << "::\n"
- << "convertToMapAndConstraints(unsigned Kind,\n";
- OpOS.indent(27);
- OpOS << "const OperandVector &Operands) {\n"
- << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
- << " unsigned NumMCOperands = 0;\n"
- << " const uint8_t *Converter = ConversionTable[Kind];\n"
- << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
- << " switch (*p) {\n"
- << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
- << " case CVT_Reg:\n"
- << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
- << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
- << " ++NumMCOperands;\n"
- << " break;\n"
- << " case CVT_Tied:\n"
- << " ++NumMCOperands;\n"
- << " break;\n";
-
- // Pre-populate the operand conversion kinds with the standard always
- // available entries.
- OperandConversionKinds.insert(CachedHashString("CVT_Done"));
- OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
- OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
- enum { CVT_Done, CVT_Reg, CVT_Tied };
-
- // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
- std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
- TiedOperandsEnumMap;
-
- for (auto &II : Infos) {
- // Check if we have a custom match function.
- StringRef AsmMatchConverter =
- II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
- if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
- std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
- II->ConversionFnKind = Signature;
-
- // Check if we have already generated this signature.
- if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
- continue;
-
- // Remember this converter for the kind enum.
- unsigned KindID = OperandConversionKinds.size();
- OperandConversionKinds.insert(
- CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
-
- // Add the converter row for this instruction.
- ConversionTable.emplace_back();
- ConversionTable.back().push_back(KindID);
- ConversionTable.back().push_back(CVT_Done);
-
- // Add the handler to the conversion driver function.
- CvtOS << " case CVT_"
- << getEnumNameForToken(AsmMatchConverter) << ":\n"
- << " " << AsmMatchConverter << "(Inst, Operands);\n"
- << " break;\n";
-
- // FIXME: Handle the operand number lookup for custom match functions.
- continue;
- }
-
- // Build the conversion function signature.
- std::string Signature = "Convert";
-
- std::vector<uint8_t> ConversionRow;
-
- // Compute the convert enum and the case body.
- MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
-
- for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
- const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
-
- // Generate code to populate each result operand.
- switch (OpInfo.Kind) {
- case MatchableInfo::ResOperand::RenderAsmOperand: {
- // This comes from something we parsed.
- const MatchableInfo::AsmOperand &Op =
- II->AsmOperands[OpInfo.AsmOperandNum];
-
- // Registers are always converted the same, don't duplicate the
- // conversion function based on them.
- Signature += "__";
- std::string Class;
- Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
- Signature += Class;
- Signature += utostr(OpInfo.MINumOperands);
- Signature += "_" + itostr(OpInfo.AsmOperandNum);
-
- // Add the conversion kind, if necessary, and get the associated ID
- // the index of its entry in the vector).
- std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
- Op.Class->RenderMethod);
- if (Op.Class->IsOptional) {
- // For optional operands we must also care about DefaultMethod
- assert(HasOptionalOperands);
- Name += "_" + Op.Class->DefaultMethod;
- }
- Name = getEnumNameForToken(Name);
-
- bool IsNewConverter = false;
- unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
- IsNewConverter);
-
- // Add the operand entry to the instruction kind conversion row.
- ConversionRow.push_back(ID);
- ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
-
- if (!IsNewConverter)
- break;
-
- // This is a new operand kind. Add a handler for it to the
- // converter driver.
- CvtOS << " case " << Name << ":\n";
- if (Op.Class->IsOptional) {
- // If optional operand is not present in actual instruction then we
- // should call its DefaultMethod before RenderMethod
- assert(HasOptionalOperands);
- CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
- << " " << Op.Class->DefaultMethod << "()"
- << "->" << Op.Class->RenderMethod << "(Inst, "
- << OpInfo.MINumOperands << ");\n"
- << " } else {\n"
- << " static_cast<" << TargetOperandClass
- << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
- << "(Inst, " << OpInfo.MINumOperands << ");\n"
- << " }\n";
- } else {
- CvtOS << " static_cast<" << TargetOperandClass
- << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
- << "(Inst, " << OpInfo.MINumOperands << ");\n";
- }
- CvtOS << " break;\n";
-
- // Add a handler for the operand number lookup.
- OpOS << " case " << Name << ":\n"
- << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
-
- if (Op.Class->isRegisterClass())
- OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
- else
- OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
- OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
- << " break;\n";
- break;
- }
- case MatchableInfo::ResOperand::TiedOperand: {
- // If this operand is tied to a previous one, just copy the MCInst
- // operand from the earlier one.We can only tie single MCOperand values.
- assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
- uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
- uint8_t SrcOp1 =
- OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
- uint8_t SrcOp2 =
- OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
- assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
- "Tied operand precedes its target!");
- auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
- utostr(SrcOp1) + '_' + utostr(SrcOp2);
- Signature += "__" + TiedTupleName;
- ConversionRow.push_back(CVT_Tied);
- ConversionRow.push_back(TiedOp);
- ConversionRow.push_back(SrcOp1);
- ConversionRow.push_back(SrcOp2);
-
- // Also create an 'enum' for this combination of tied operands.
- auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
- TiedOperandsEnumMap.emplace(Key, TiedTupleName);
- break;
- }
- case MatchableInfo::ResOperand::ImmOperand: {
- int64_t Val = OpInfo.ImmVal;
- std::string Ty = "imm_" + itostr(Val);
- Ty = getEnumNameForToken(Ty);
- Signature += "__" + Ty;
-
- std::string Name = "CVT_" + Ty;
- bool IsNewConverter = false;
- unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
- IsNewConverter);
- // Add the operand entry to the instruction kind conversion row.
- ConversionRow.push_back(ID);
- ConversionRow.push_back(0);
-
- if (!IsNewConverter)
- break;
-
- CvtOS << " case " << Name << ":\n"
- << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
- << " break;\n";
-
- OpOS << " case " << Name << ":\n"
- << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
- << " Operands[*(p + 1)]->setConstraint(\"\");\n"
- << " ++NumMCOperands;\n"
- << " break;\n";
- break;
- }
- case MatchableInfo::ResOperand::RegOperand: {
- std::string Reg, Name;
- if (!OpInfo.Register) {
- Name = "reg0";
- Reg = "0";
- } else {
- Reg = getQualifiedName(OpInfo.Register);
- Name = "reg" + OpInfo.Register->getName().str();
- }
- Signature += "__" + Name;
- Name = "CVT_" + Name;
- bool IsNewConverter = false;
- unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
- IsNewConverter);
- // Add the operand entry to the instruction kind conversion row.
- ConversionRow.push_back(ID);
- ConversionRow.push_back(0);
-
- if (!IsNewConverter)
- break;
- CvtOS << " case " << Name << ":\n"
- << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
- << " break;\n";
-
- OpOS << " case " << Name << ":\n"
- << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
- << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
- << " ++NumMCOperands;\n"
- << " break;\n";
- }
- }
- }
-
- // If there were no operands, add to the signature to that effect
- if (Signature == "Convert")
- Signature += "_NoOperands";
-
- II->ConversionFnKind = Signature;
-
- // Save the signature. If we already have it, don't add a new row
- // to the table.
- if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
- continue;
-
- // Add the row to the table.
- ConversionTable.push_back(std::move(ConversionRow));
- }
-
- // Finish up the converter driver function.
- CvtOS << " }\n }\n}\n\n";
-
- // Finish up the operand number lookup function.
- OpOS << " }\n }\n}\n\n";
-
- // Output a static table for tied operands.
- if (TiedOperandsEnumMap.size()) {
- // The number of tied operand combinations will be small in practice,
- // but just add the assert to be sure.
- assert(TiedOperandsEnumMap.size() <= 254 &&
- "Too many tied-operand combinations to reference with "
- "an 8bit offset from the conversion table, where index "
- "'255' is reserved as operand not to be copied.");
-
- OS << "enum {\n";
- for (auto &KV : TiedOperandsEnumMap) {
- OS << " " << KV.second << ",\n";
- }
- OS << "};\n\n";
-
- OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
- for (auto &KV : TiedOperandsEnumMap) {
- OS << " /* " << KV.second << " */ { "
- << utostr(std::get<0>(KV.first)) << ", "
- << utostr(std::get<1>(KV.first)) << ", "
- << utostr(std::get<2>(KV.first)) << " },\n";
- }
- OS << "};\n\n";
- } else
- OS << "static const uint8_t TiedAsmOperandTable[][3] = "
- "{ /* empty */ {0, 0, 0} };\n\n";
-
- OS << "namespace {\n";
-
- // Output the operand conversion kind enum.
- OS << "enum OperatorConversionKind {\n";
- for (const auto &Converter : OperandConversionKinds)
- OS << " " << Converter << ",\n";
- OS << " CVT_NUM_CONVERTERS\n";
- OS << "};\n\n";
-
- // Output the instruction conversion kind enum.
- OS << "enum InstructionConversionKind {\n";
- for (const auto &Signature : InstructionConversionKinds)
- OS << " " << Signature << ",\n";
- OS << " CVT_NUM_SIGNATURES\n";
- OS << "};\n\n";
-
- OS << "} // end anonymous namespace\n\n";
-
- // Output the conversion table.
- OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
- << MaxRowLength << "] = {\n";
-
- for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
- assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
- OS << " // " << InstructionConversionKinds[Row] << "\n";
- OS << " { ";
- for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
- OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
- if (OperandConversionKinds[ConversionTable[Row][i]] !=
- CachedHashString("CVT_Tied")) {
- OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
- continue;
- }
-
- // For a tied operand, emit a reference to the TiedAsmOperandTable
- // that contains the operand to copy, and the parsed operands to
- // check for their tied constraints.
- auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
- (uint8_t)ConversionTable[Row][i + 2],
- (uint8_t)ConversionTable[Row][i + 3]);
- auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
- assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
- "No record for tied operand pair");
- OS << TiedOpndEnum->second << ", ";
- i += 2;
- }
- OS << "CVT_Done },\n";
- }
-
- OS << "};\n\n";
-
- // Spit out the conversion driver function.
- OS << CvtOS.str();
-
- // Spit out the operand number lookup function.
- OS << OpOS.str();
-}
-
-/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
-static void emitMatchClassEnumeration(CodeGenTarget &Target,
- std::forward_list<ClassInfo> &Infos,
- raw_ostream &OS) {
- OS << "namespace {\n\n";
-
- OS << "/// MatchClassKind - The kinds of classes which participate in\n"
- << "/// instruction matching.\n";
- OS << "enum MatchClassKind {\n";
- OS << " InvalidMatchClass = 0,\n";
- OS << " OptionalMatchClass = 1,\n";
- ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
- StringRef LastName = "OptionalMatchClass";
- for (const auto &CI : Infos) {
- if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
- OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
- } else if (LastKind < ClassInfo::UserClass0 &&
- CI.Kind >= ClassInfo::UserClass0) {
- OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
- }
- LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
- LastName = CI.Name;
-
- OS << " " << CI.Name << ", // ";
- if (CI.Kind == ClassInfo::Token) {
- OS << "'" << CI.ValueName << "'\n";
- } else if (CI.isRegisterClass()) {
- if (!CI.ValueName.empty())
- OS << "register class '" << CI.ValueName << "'\n";
- else
- OS << "derived register class\n";
- } else {
- OS << "user defined class '" << CI.ValueName << "'\n";
- }
- }
- OS << " NumMatchClassKinds\n";
- OS << "};\n\n";
-
- OS << "}\n\n";
-}
-
-/// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
-/// used when an assembly operand does not match the expected operand class.
-static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
- // If the target does not use DiagnosticString for any operands, don't emit
- // an unused function.
- if (std::all_of(
- Info.Classes.begin(), Info.Classes.end(),
- [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); }))
- return;
-
- OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
- << "AsmParser::" << Info.Target.getName()
- << "MatchResultTy MatchResult) {\n";
- OS << " switch (MatchResult) {\n";
-
- for (const auto &CI: Info.Classes) {
- if (!CI.DiagnosticString.empty()) {
- assert(!CI.DiagnosticType.empty() &&
- "DiagnosticString set without DiagnosticType");
- OS << " case " << Info.Target.getName()
- << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
- OS << " return \"" << CI.DiagnosticString << "\";\n";
- }
- }
-
- OS << " default:\n";
- OS << " return nullptr;\n";
-
- OS << " }\n";
- OS << "}\n\n";
-}
-
-static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
- OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
- "RegisterClass) {\n";
- if (none_of(Info.Classes, [](const ClassInfo &CI) {
- return CI.isRegisterClass() && !CI.DiagnosticType.empty();
- })) {
- OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
- } else {
- OS << " switch (RegisterClass) {\n";
- for (const auto &CI: Info.Classes) {
- if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
- OS << " case " << CI.Name << ":\n";
- OS << " return " << Info.Target.getName() << "AsmParser::Match_"
- << CI.DiagnosticType << ";\n";
- }
- }
-
- OS << " default:\n";
- OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
-
- OS << " }\n";
- }
- OS << "}\n\n";
-}
-
-/// emitValidateOperandClass - Emit the function to validate an operand class.
-static void emitValidateOperandClass(AsmMatcherInfo &Info,
- raw_ostream &OS) {
- OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
- << "MatchClassKind Kind) {\n";
- OS << " " << Info.Target.getName() << "Operand &Operand = ("
- << Info.Target.getName() << "Operand&)GOp;\n";
-
- // The InvalidMatchClass is not to match any operand.
- OS << " if (Kind == InvalidMatchClass)\n";
- OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
-
- // Check for Token operands first.
- // FIXME: Use a more specific diagnostic type.
- OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
- OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
- << " MCTargetAsmParser::Match_Success :\n"
- << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
-
- // Check the user classes. We don't care what order since we're only
- // actually matching against one of them.
- OS << " switch (Kind) {\n"
- " default: break;\n";
- for (const auto &CI : Info.Classes) {
- if (!CI.isUserClass())
- continue;
-
- OS << " // '" << CI.ClassName << "' class\n";
- OS << " case " << CI.Name << ": {\n";
- OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
- << "());\n";
- OS << " if (DP.isMatch())\n";
- OS << " return MCTargetAsmParser::Match_Success;\n";
- if (!CI.DiagnosticType.empty()) {
- OS << " if (DP.isNearMatch())\n";
- OS << " return " << Info.Target.getName() << "AsmParser::Match_"
- << CI.DiagnosticType << ";\n";
- OS << " break;\n";
- }
- else
- OS << " break;\n";
- OS << " }\n";
- }
- OS << " } // end switch (Kind)\n\n";
-
- // Check for register operands, including sub-classes.
- OS << " if (Operand.isReg()) {\n";
- OS << " MatchClassKind OpKind;\n";
- OS << " switch (Operand.getReg()) {\n";
- OS << " default: OpKind = InvalidMatchClass; break;\n";
- for (const auto &RC : Info.RegisterClasses)
- OS << " case " << RC.first->getValueAsString("Namespace") << "::"
- << RC.first->getName() << ": OpKind = " << RC.second->Name
- << "; break;\n";
- OS << " }\n";
- OS << " return isSubclass(OpKind, Kind) ? "
- << "(unsigned)MCTargetAsmParser::Match_Success :\n "
- << " getDiagKindFromRegisterClass(Kind);\n }\n\n";
-
- // Expected operand is a register, but actual is not.
- OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
- OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
-
- // Generic fallthrough match failure case for operands that don't have
- // specialized diagnostic types.
- OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
- OS << "}\n\n";
-}
-
-/// emitIsSubclass - Emit the subclass predicate function.
-static void emitIsSubclass(CodeGenTarget &Target,
- std::forward_list<ClassInfo> &Infos,
- raw_ostream &OS) {
- OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
- OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
- OS << " if (A == B)\n";
- OS << " return true;\n\n";
-
- bool EmittedSwitch = false;
- for (const auto &A : Infos) {
- std::vector<StringRef> SuperClasses;
- if (A.IsOptional)
- SuperClasses.push_back("OptionalMatchClass");
- for (const auto &B : Infos) {
- if (&A != &B && A.isSubsetOf(B))
- SuperClasses.push_back(B.Name);
- }
-
- if (SuperClasses.empty())
- continue;
-
- // If this is the first SuperClass, emit the switch header.
- if (!EmittedSwitch) {
- OS << " switch (A) {\n";
- OS << " default:\n";
- OS << " return false;\n";
- EmittedSwitch = true;
- }
-
- OS << "\n case " << A.Name << ":\n";
-
- if (SuperClasses.size() == 1) {
- OS << " return B == " << SuperClasses.back() << ";\n";
- continue;
- }
-
- if (!SuperClasses.empty()) {
- OS << " switch (B) {\n";
- OS << " default: return false;\n";
- for (StringRef SC : SuperClasses)
- OS << " case " << SC << ": return true;\n";
- OS << " }\n";
- } else {
- // No case statement to emit
- OS << " return false;\n";
- }
- }
-
- // If there were case statements emitted into the string stream write the
- // default.
- if (EmittedSwitch)
- OS << " }\n";
- else
- OS << " return false;\n";
-
- OS << "}\n\n";
-}
-
-/// emitMatchTokenString - Emit the function to match a token string to the
-/// appropriate match class value.
-static void emitMatchTokenString(CodeGenTarget &Target,
- std::forward_list<ClassInfo> &Infos,
- raw_ostream &OS) {
- // Construct the match list.
- std::vector<StringMatcher::StringPair> Matches;
- for (const auto &CI : Infos) {
- if (CI.Kind == ClassInfo::Token)
- Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
- }
-
- OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
-
- StringMatcher("Name", Matches, OS).Emit();
-
- OS << " return InvalidMatchClass;\n";
- OS << "}\n\n";
-}
-
-/// emitMatchRegisterName - Emit the function to match a string to the target
-/// specific register enum.
-static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
- raw_ostream &OS) {
- // Construct the match list.
- std::vector<StringMatcher::StringPair> Matches;
- const auto &Regs = Target.getRegBank().getRegisters();
- for (const CodeGenRegister &Reg : Regs) {
- if (Reg.TheDef->getValueAsString("AsmName").empty())
- continue;
-
- Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
- "return " + utostr(Reg.EnumValue) + ";");
- }
-
- OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
-
- bool IgnoreDuplicates =
- AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
- StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
-
- OS << " return 0;\n";
- OS << "}\n\n";
-}
-
-/// Emit the function to match a string to the target
-/// specific register enum.
-static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
- raw_ostream &OS) {
- // Construct the match list.
- std::vector<StringMatcher::StringPair> Matches;
- const auto &Regs = Target.getRegBank().getRegisters();
- for (const CodeGenRegister &Reg : Regs) {
-
- auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
-
- for (auto AltName : AltNames) {
- AltName = StringRef(AltName).trim();
-
- // don't handle empty alternative names
- if (AltName.empty())
- continue;
-
- Matches.emplace_back(AltName,
- "return " + utostr(Reg.EnumValue) + ";");
- }
- }
-
- OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
-
- bool IgnoreDuplicates =
- AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
- StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
-
- OS << " return 0;\n";
- OS << "}\n\n";
-}
-
-/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
-static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
- // Get the set of diagnostic types from all of the operand classes.
- std::set<StringRef> Types;
- for (const auto &OpClassEntry : Info.AsmOperandClasses) {
- if (!OpClassEntry.second->DiagnosticType.empty())
- Types.insert(OpClassEntry.second->DiagnosticType);
- }
- for (const auto &OpClassEntry : Info.RegisterClassClasses) {
- if (!OpClassEntry.second->DiagnosticType.empty())
- Types.insert(OpClassEntry.second->DiagnosticType);
- }
-
- if (Types.empty()) return;
-
- // Now emit the enum entries.
- for (StringRef Type : Types)
- OS << " Match_" << Type << ",\n";
- OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
-}
-
-/// emitGetSubtargetFeatureName - Emit the helper function to get the
-/// user-level name for a subtarget feature.
-static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
- OS << "// User-level names for subtarget features that participate in\n"
- << "// instruction matching.\n"
- << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
- if (!Info.SubtargetFeatures.empty()) {
- OS << " switch(Val) {\n";
- for (const auto &SF : Info.SubtargetFeatures) {
- const SubtargetFeatureInfo &SFI = SF.second;
- // FIXME: Totally just a placeholder name to get the algorithm working.
- OS << " case " << SFI.getEnumName() << ": return \""
- << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
- }
- OS << " default: return \"(unknown)\";\n";
- OS << " }\n";
- } else {
- // Nothing to emit, so skip the switch
- OS << " return \"(unknown)\";\n";
- }
- OS << "}\n\n";
-}
-
-static std::string GetAliasRequiredFeatures(Record *R,
- const AsmMatcherInfo &Info) {
- std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
- std::string Result;
- unsigned NumFeatures = 0;
- for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
- const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
-
- if (!F)
- PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
- "' is not marked as an AssemblerPredicate!");
-
- if (NumFeatures)
- Result += '|';
-
- Result += F->getEnumName();
- ++NumFeatures;
- }
-
- if (NumFeatures > 1)
- Result = '(' + Result + ')';
- return Result;
-}
-
-static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
- std::vector<Record*> &Aliases,
- unsigned Indent = 0,
- StringRef AsmParserVariantName = StringRef()){
- // Keep track of all the aliases from a mnemonic. Use an std::map so that the
- // iteration order of the map is stable.
- std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
-
- for (Record *R : Aliases) {
- // FIXME: Allow AssemblerVariantName to be a comma separated list.
- StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
- if (AsmVariantName != AsmParserVariantName)
- continue;
- AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
- }
- if (AliasesFromMnemonic.empty())
- return;
-
- // Process each alias a "from" mnemonic at a time, building the code executed
- // by the string remapper.
- std::vector<StringMatcher::StringPair> Cases;
- for (const auto &AliasEntry : AliasesFromMnemonic) {
- const std::vector<Record*> &ToVec = AliasEntry.second;
-
- // Loop through each alias and emit code that handles each case. If there
- // are two instructions without predicates, emit an error. If there is one,
- // emit it last.
- std::string MatchCode;
- int AliasWithNoPredicate = -1;
-
- for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
- Record *R = ToVec[i];
- std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
-
- // If this unconditionally matches, remember it for later and diagnose
- // duplicates.
- if (FeatureMask.empty()) {
- if (AliasWithNoPredicate != -1) {
- // We can't have two aliases from the same mnemonic with no predicate.
- PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
- "two MnemonicAliases with the same 'from' mnemonic!");
- PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
- }
-
- AliasWithNoPredicate = i;
- continue;
- }
- if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
- PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
-
- if (!MatchCode.empty())
- MatchCode += "else ";
- MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
- MatchCode += " Mnemonic = \"";
- MatchCode += R->getValueAsString("ToMnemonic");
- MatchCode += "\";\n";
- }
-
- if (AliasWithNoPredicate != -1) {
- Record *R = ToVec[AliasWithNoPredicate];
- if (!MatchCode.empty())
- MatchCode += "else\n ";
- MatchCode += "Mnemonic = \"";
- MatchCode += R->getValueAsString("ToMnemonic");
- MatchCode += "\";\n";
- }
-
- MatchCode += "return;";
-
- Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
- }
- StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
-}
-
-/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
-/// emit a function for them and return true, otherwise return false.
-static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
- CodeGenTarget &Target) {
- // Ignore aliases when match-prefix is set.
- if (!MatchPrefix.empty())
- return false;
-
- std::vector<Record*> Aliases =
- Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
- if (Aliases.empty()) return false;
-
- OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
- "uint64_t Features, unsigned VariantID) {\n";
- OS << " switch (VariantID) {\n";
- unsigned VariantCount = Target.getAsmParserVariantCount();
- for (unsigned VC = 0; VC != VariantCount; ++VC) {
- Record *AsmVariant = Target.getAsmParserVariant(VC);
- int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
- StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
- OS << " case " << AsmParserVariantNo << ":\n";
- emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
- AsmParserVariantName);
- OS << " break;\n";
- }
- OS << " }\n";
-
- // Emit aliases that apply to all variants.
- emitMnemonicAliasVariant(OS, Info, Aliases);
-
- OS << "}\n\n";
-
- return true;
-}
-
-static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
- const AsmMatcherInfo &Info, StringRef ClassName,
- StringToOffsetTable &StringTable,
- unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
- unsigned MaxMask = 0;
- for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
- MaxMask |= OMI.OperandMask;
- }
-
- // Emit the static custom operand parsing table;
- OS << "namespace {\n";
- OS << " struct OperandMatchEntry {\n";
- OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
- << " RequiredFeatures;\n";
- OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
- << " Mnemonic;\n";
- OS << " " << getMinimalTypeForRange(std::distance(
- Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
- OS << " " << getMinimalTypeForRange(MaxMask)
- << " OperandMask;\n\n";
- OS << " StringRef getMnemonic() const {\n";
- OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
- OS << " MnemonicTable[Mnemonic]);\n";
- OS << " }\n";
- OS << " };\n\n";
-
- OS << " // Predicate for searching for an opcode.\n";
- OS << " struct LessOpcodeOperand {\n";
- OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
- OS << " return LHS.getMnemonic() < RHS;\n";
- OS << " }\n";
- OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
- OS << " return LHS < RHS.getMnemonic();\n";
- OS << " }\n";
- OS << " bool operator()(const OperandMatchEntry &LHS,";
- OS << " const OperandMatchEntry &RHS) {\n";
- OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
- OS << " }\n";
- OS << " };\n";
-
- OS << "} // end anonymous namespace.\n\n";
-
- OS << "static const OperandMatchEntry OperandMatchTable["
- << Info.OperandMatchInfo.size() << "] = {\n";
-
- OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
- for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
- const MatchableInfo &II = *OMI.MI;
-
- OS << " { ";
-
- // Write the required features mask.
- if (!II.RequiredFeatures.empty()) {
- for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
- if (i) OS << "|";
- OS << II.RequiredFeatures[i]->getEnumName();
- }
- } else
- OS << "0";
-
- // Store a pascal-style length byte in the mnemonic.
- std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
- OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
- << " /* " << II.Mnemonic << " */, ";
-
- OS << OMI.CI->Name;
-
- OS << ", " << OMI.OperandMask;
- OS << " /* ";
- bool printComma = false;
- for (int i = 0, e = 31; i !=e; ++i)
- if (OMI.OperandMask & (1 << i)) {
- if (printComma)
- OS << ", ";
- OS << i;
- printComma = true;
- }
- OS << " */";
-
- OS << " },\n";
- }
- OS << "};\n\n";
-
- // Emit the operand class switch to call the correct custom parser for
- // the found operand class.
- OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
- << "tryCustomParseOperand(OperandVector"
- << " &Operands,\n unsigned MCK) {\n\n"
- << " switch(MCK) {\n";
-
- for (const auto &CI : Info.Classes) {
- if (CI.ParserMethod.empty())
- continue;
- OS << " case " << CI.Name << ":\n"
- << " return " << CI.ParserMethod << "(Operands);\n";
- }
-
- OS << " default:\n";
- OS << " return MatchOperand_NoMatch;\n";
- OS << " }\n";
- OS << " return MatchOperand_NoMatch;\n";
- OS << "}\n\n";
-
- // Emit the static custom operand parser. This code is very similar with
- // the other matcher. Also use MatchResultTy here just in case we go for
- // a better error handling.
- OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
- << "MatchOperandParserImpl(OperandVector"
- << " &Operands,\n StringRef Mnemonic,\n"
- << " bool ParseForAllFeatures) {\n";
-
- // Emit code to get the available features.
- OS << " // Get the current feature set.\n";
- OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
-
- OS << " // Get the next operand index.\n";
- OS << " unsigned NextOpNum = Operands.size()"
- << (HasMnemonicFirst ? " - 1" : "") << ";\n";
-
- // Emit code to search the table.
- OS << " // Search the table.\n";
- if (HasMnemonicFirst) {
- OS << " auto MnemonicRange =\n";
- OS << " std::equal_range(std::begin(OperandMatchTable), "
- "std::end(OperandMatchTable),\n";
- OS << " Mnemonic, LessOpcodeOperand());\n\n";
- } else {
- OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
- " std::end(OperandMatchTable));\n";
- OS << " if (!Mnemonic.empty())\n";
- OS << " MnemonicRange =\n";
- OS << " std::equal_range(std::begin(OperandMatchTable), "
- "std::end(OperandMatchTable),\n";
- OS << " Mnemonic, LessOpcodeOperand());\n\n";
- }
-
- OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
- OS << " return MatchOperand_NoMatch;\n\n";
-
- OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
- << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
-
- OS << " // equal_range guarantees that instruction mnemonic matches.\n";
- OS << " assert(Mnemonic == it->getMnemonic());\n\n";
-
- // Emit check that the required features are available.
- OS << " // check if the available features match\n";
- OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
- "it->RequiredFeatures) != it->RequiredFeatures)\n";
- OS << " continue;\n\n";
-
- // Emit check to ensure the operand number matches.
- OS << " // check if the operand in question has a custom parser.\n";
- OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
- OS << " continue;\n\n";
-
- // Emit call to the custom parser method
- OS << " // call custom parse method to handle the operand\n";
- OS << " OperandMatchResultTy Result = ";
- OS << "tryCustomParseOperand(Operands, it->Class);\n";
- OS << " if (Result != MatchOperand_NoMatch)\n";
- OS << " return Result;\n";
- OS << " }\n\n";
-
- OS << " // Okay, we had no match.\n";
- OS << " return MatchOperand_NoMatch;\n";
- OS << "}\n\n";
-}
-
-static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
- AsmMatcherInfo &Info,
- raw_ostream &OS) {
- std::string AsmParserName =
- Info.AsmParser->getValueAsString("AsmParserClassName");
- OS << "static bool ";
- OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
- << AsmParserName << "&AsmParser,\n";
- OS << " unsigned Kind,\n";
- OS << " const OperandVector &Operands,\n";
- OS << " uint64_t &ErrorInfo) {\n";
- OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
- OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
- OS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n";
- OS << " switch (*p) {\n";
- OS << " case CVT_Tied: {\n";
- OS << " unsigned OpIdx = *(p+1);\n";
- OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
- OS << " std::begin(TiedAsmOperandTable)) &&\n";
- OS << " \"Tied operand not found\");\n";
- OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
- OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
- OS << " if (OpndNum1 != OpndNum2) {\n";
- OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
- OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
- OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
- OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
- OS << " ErrorInfo = OpndNum2;\n";
- OS << " return false;\n";
- OS << " }\n";
- OS << " }\n";
- OS << " }\n";
- OS << " break;\n";
- OS << " }\n";
- OS << " default:\n";
- OS << " break;\n";
- OS << " }\n";
- OS << " }\n";
- OS << " return true;\n";
- OS << "}\n\n";
-}
-
-static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
- unsigned VariantCount) {
- OS << "static std::string " << Target.getName()
- << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n";
- if (!VariantCount)
- OS << " return \"\";";
- else {
- OS << " const unsigned MaxEditDist = 2;\n";
- OS << " std::vector<StringRef> Candidates;\n";
- OS << " StringRef Prev = \"\";\n\n";
-
- OS << " // Find the appropriate table for this asm variant.\n";
- OS << " const MatchEntry *Start, *End;\n";
- OS << " switch (VariantID) {\n";
- OS << " default: llvm_unreachable(\"invalid variant!\");\n";
- for (unsigned VC = 0; VC != VariantCount; ++VC) {
- Record *AsmVariant = Target.getAsmParserVariant(VC);
- int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
- OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
- << "); End = std::end(MatchTable" << VC << "); break;\n";
- }
- OS << " }\n\n";
- OS << " for (auto I = Start; I < End; I++) {\n";
- OS << " // Ignore unsupported instructions.\n";
- OS << " if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n";
- OS << " continue;\n";
- OS << "\n";
- OS << " StringRef T = I->getMnemonic();\n";
- OS << " // Avoid recomputing the edit distance for the same string.\n";
- OS << " if (T.equals(Prev))\n";
- OS << " continue;\n";
- OS << "\n";
- OS << " Prev = T;\n";
- OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
- OS << " if (Dist <= MaxEditDist)\n";
- OS << " Candidates.push_back(T);\n";
- OS << " }\n";
- OS << "\n";
- OS << " if (Candidates.empty())\n";
- OS << " return \"\";\n";
- OS << "\n";
- OS << " std::string Res = \", did you mean: \";\n";
- OS << " unsigned i = 0;\n";
- OS << " for( ; i < Candidates.size() - 1; i++)\n";
- OS << " Res += Candidates[i].str() + \", \";\n";
- OS << " return Res + Candidates[i].str() + \"?\";\n";
- }
- OS << "}\n";
- OS << "\n";
-}
-
-
-// Emit a function mapping match classes to strings, for debugging.
-static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
- raw_ostream &OS) {
- OS << "#ifndef NDEBUG\n";
- OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
- OS << " switch (Kind) {\n";
-
- OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
- OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
- for (const auto &CI : Infos) {
- OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
- }
- OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
-
- OS << " }\n";
- OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
- OS << "}\n\n";
- OS << "#endif // NDEBUG\n";
-}
-
-void AsmMatcherEmitter::run(raw_ostream &OS) {
- CodeGenTarget Target(Records);
- Record *AsmParser = Target.getAsmParser();
- StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
-
- // Compute the information on the instructions to match.
- AsmMatcherInfo Info(AsmParser, Target, Records);
- Info.buildInfo();
-
- // Sort the instruction table using the partial order on classes. We use
- // stable_sort to ensure that ambiguous instructions are still
- // deterministically ordered.
- std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
- [](const std::unique_ptr<MatchableInfo> &a,
- const std::unique_ptr<MatchableInfo> &b){
- return *a < *b;});
-
-#ifdef EXPENSIVE_CHECKS
- // Verify that the table is sorted and operator < works transitively.
- for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
- ++I) {
- for (auto J = I; J != E; ++J) {
- assert(!(**J < **I));
- }
- }
-#endif
-
- DEBUG_WITH_TYPE("instruction_info", {
- for (const auto &MI : Info.Matchables)
- MI->dump();
- });
-
- // Check for ambiguous matchables.
- DEBUG_WITH_TYPE("ambiguous_instrs", {
- unsigned NumAmbiguous = 0;
- for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
- ++I) {
- for (auto J = std::next(I); J != E; ++J) {
- const MatchableInfo &A = **I;
- const MatchableInfo &B = **J;
-
- if (A.couldMatchAmbiguouslyWith(B)) {
- errs() << "warning: ambiguous matchables:\n";
- A.dump();
- errs() << "\nis incomparable with:\n";
- B.dump();
- errs() << "\n\n";
- ++NumAmbiguous;
- }
- }
- }
- if (NumAmbiguous)
- errs() << "warning: " << NumAmbiguous
- << " ambiguous matchables!\n";
- });
-
- // Compute the information on the custom operand parsing.
- Info.buildOperandMatchInfo();
-
- bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
- bool HasOptionalOperands = Info.hasOptionalOperands();
- bool ReportMultipleNearMisses =
- AsmParser->getValueAsBit("ReportMultipleNearMisses");
-
- // Write the output.
-
- // Information for the class declaration.
- OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
- OS << "#undef GET_ASSEMBLER_HEADER\n";
- OS << " // This should be included into the middle of the declaration of\n";
- OS << " // your subclasses implementation of MCTargetAsmParser.\n";
- OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
- if (HasOptionalOperands) {
- OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
- << "unsigned Opcode,\n"
- << " const OperandVector &Operands,\n"
- << " const SmallBitVector &OptionalOperandsMask);\n";
- } else {
- OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
- << "unsigned Opcode,\n"
- << " const OperandVector &Operands);\n";
- }
- OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
- OS << " const OperandVector &Operands) override;\n";
- OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
- << " MCInst &Inst,\n";
- if (ReportMultipleNearMisses)
- OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
- else
- OS << " uint64_t &ErrorInfo,\n";
- OS << " bool matchingInlineAsm,\n"
- << " unsigned VariantID = 0);\n";
-
- if (!Info.OperandMatchInfo.empty()) {
- OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
- OS << " OperandVector &Operands,\n";
- OS << " StringRef Mnemonic,\n";
- OS << " bool ParseForAllFeatures = false);\n";
-
- OS << " OperandMatchResultTy tryCustomParseOperand(\n";
- OS << " OperandVector &Operands,\n";
- OS << " unsigned MCK);\n\n";
- }
-
- OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
-
- // Emit the operand match diagnostic enum names.
- OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
- OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
- emitOperandDiagnosticTypes(Info, OS);
- OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
-
- OS << "\n#ifdef GET_REGISTER_MATCHER\n";
- OS << "#undef GET_REGISTER_MATCHER\n\n";
-
- // Emit the subtarget feature enumeration.
- SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
- Info.SubtargetFeatures, OS);
-
- // Emit the function to match a register name to number.
- // This should be omitted for Mips target
- if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
- emitMatchRegisterName(Target, AsmParser, OS);
-
- if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
- emitMatchRegisterAltName(Target, AsmParser, OS);
-
- OS << "#endif // GET_REGISTER_MATCHER\n\n";
-
- OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
- OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
-
- // Generate the helper function to get the names for subtarget features.
- emitGetSubtargetFeatureName(Info, OS);
-
- OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
-
- OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
- OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
-
- // Generate the function that remaps for mnemonic aliases.
- bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
-
- // Generate the convertToMCInst function to convert operands into an MCInst.
- // Also, generate the convertToMapAndConstraints function for MS-style inline
- // assembly. The latter doesn't actually generate a MCInst.
- emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
- HasOptionalOperands, OS);
-
- // Emit the enumeration for classes which participate in matching.
- emitMatchClassEnumeration(Target, Info.Classes, OS);
-
- // Emit a function to get the user-visible string to describe an operand
- // match failure in diagnostics.
- emitOperandMatchErrorDiagStrings(Info, OS);
-
- // Emit a function to map register classes to operand match failure codes.
- emitRegisterMatchErrorFunc(Info, OS);
-
- // Emit the routine to match token strings to their match class.
- emitMatchTokenString(Target, Info.Classes, OS);
-
- // Emit the subclass predicate routine.
- emitIsSubclass(Target, Info.Classes, OS);
-
- // Emit the routine to validate an operand against a match class.
- emitValidateOperandClass(Info, OS);
-
- emitMatchClassKindNames(Info.Classes, OS);
-
- // Emit the available features compute function.
- SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
- Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
- Info.SubtargetFeatures, OS);
-
- if (!ReportMultipleNearMisses)
- emitAsmTiedOperandConstraints(Target, Info, OS);
-
- StringToOffsetTable StringTable;
-
- size_t MaxNumOperands = 0;
- unsigned MaxMnemonicIndex = 0;
- bool HasDeprecation = false;
- for (const auto &MI : Info.Matchables) {
- MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
- HasDeprecation |= MI->HasDeprecation;
-
- // Store a pascal-style length byte in the mnemonic.
- std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
- MaxMnemonicIndex = std::max(MaxMnemonicIndex,
- StringTable.GetOrAddStringOffset(LenMnemonic, false));
- }
-
- OS << "static const char *const MnemonicTable =\n";
- StringTable.EmitString(OS);
- OS << ";\n\n";
-
- // Emit the static match table; unused classes get initialized to 0 which is
- // guaranteed to be InvalidMatchClass.
- //
- // FIXME: We can reduce the size of this table very easily. First, we change
- // it so that store the kinds in separate bit-fields for each index, which
- // only needs to be the max width used for classes at that index (we also need
- // to reject based on this during classification). If we then make sure to
- // order the match kinds appropriately (putting mnemonics last), then we
- // should only end up using a few bits for each class, especially the ones
- // following the mnemonic.
- OS << "namespace {\n";
- OS << " struct MatchEntry {\n";
- OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
- << " Mnemonic;\n";
- OS << " uint16_t Opcode;\n";
- OS << " " << getMinimalTypeForRange(Info.Matchables.size())
- << " ConvertFn;\n";
- OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
- << " RequiredFeatures;\n";
- OS << " " << getMinimalTypeForRange(
- std::distance(Info.Classes.begin(), Info.Classes.end()))
- << " Classes[" << MaxNumOperands << "];\n";
- OS << " StringRef getMnemonic() const {\n";
- OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
- OS << " MnemonicTable[Mnemonic]);\n";
- OS << " }\n";
- OS << " };\n\n";
-
- OS << " // Predicate for searching for an opcode.\n";
- OS << " struct LessOpcode {\n";
- OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
- OS << " return LHS.getMnemonic() < RHS;\n";
- OS << " }\n";
- OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
- OS << " return LHS < RHS.getMnemonic();\n";
- OS << " }\n";
- OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
- OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
- OS << " }\n";
- OS << " };\n";
-
- OS << "} // end anonymous namespace.\n\n";
-
- unsigned VariantCount = Target.getAsmParserVariantCount();
- for (unsigned VC = 0; VC != VariantCount; ++VC) {
- Record *AsmVariant = Target.getAsmParserVariant(VC);
- int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
-
- OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
-
- for (const auto &MI : Info.Matchables) {
- if (MI->AsmVariantID != AsmVariantNo)
- continue;
-
- // Store a pascal-style length byte in the mnemonic.
- std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
- OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
- << " /* " << MI->Mnemonic << " */, "
- << Target.getInstNamespace() << "::"
- << MI->getResultInst()->TheDef->getName() << ", "
- << MI->ConversionFnKind << ", ";
-
- // Write the required features mask.
- if (!MI->RequiredFeatures.empty()) {
- for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
- if (i) OS << "|";
- OS << MI->RequiredFeatures[i]->getEnumName();
- }
- } else
- OS << "0";
-
- OS << ", { ";
- for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
- const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
-
- if (i) OS << ", ";
- OS << Op.Class->Name;
- }
- OS << " }, },\n";
- }
-
- OS << "};\n\n";
- }
-
- OS << "#include \"llvm/Support/Debug.h\"\n";
- OS << "#include \"llvm/Support/Format.h\"\n\n";
-
- // Finally, build the match function.
- OS << "unsigned " << Target.getName() << ClassName << "::\n"
- << "MatchInstructionImpl(const OperandVector &Operands,\n";
- OS << " MCInst &Inst,\n";
- if (ReportMultipleNearMisses)
- OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
- else
- OS << " uint64_t &ErrorInfo,\n";
- OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
-
- if (!ReportMultipleNearMisses) {
- OS << " // Eliminate obvious mismatches.\n";
- OS << " if (Operands.size() > "
- << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
- OS << " ErrorInfo = "
- << (MaxNumOperands + HasMnemonicFirst) << ";\n";
- OS << " return Match_InvalidOperand;\n";
- OS << " }\n\n";
- }
-
- // Emit code to get the available features.
- OS << " // Get the current feature set.\n";
- OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
-
- OS << " // Get the instruction mnemonic, which is the first token.\n";
- if (HasMnemonicFirst) {
- OS << " StringRef Mnemonic = ((" << Target.getName()
- << "Operand&)*Operands[0]).getToken();\n\n";
- } else {
- OS << " StringRef Mnemonic;\n";
- OS << " if (Operands[0]->isToken())\n";
- OS << " Mnemonic = ((" << Target.getName()
- << "Operand&)*Operands[0]).getToken();\n\n";
- }
-
- if (HasMnemonicAliases) {
- OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
- OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
- }
-
- // Emit code to compute the class list for this operand vector.
- if (!ReportMultipleNearMisses) {
- OS << " // Some state to try to produce better error messages.\n";
- OS << " bool HadMatchOtherThanFeatures = false;\n";
- OS << " bool HadMatchOtherThanPredicate = false;\n";
- OS << " unsigned RetCode = Match_InvalidOperand;\n";
- OS << " uint64_t MissingFeatures = ~0ULL;\n";
- OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
- OS << " // wrong for all instances of the instruction.\n";
- OS << " ErrorInfo = ~0ULL;\n";
- }
-
- if (HasOptionalOperands) {
- OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
- }
-
- // Emit code to search the table.
- OS << " // Find the appropriate table for this asm variant.\n";
- OS << " const MatchEntry *Start, *End;\n";
- OS << " switch (VariantID) {\n";
- OS << " default: llvm_unreachable(\"invalid variant!\");\n";
- for (unsigned VC = 0; VC != VariantCount; ++VC) {
- Record *AsmVariant = Target.getAsmParserVariant(VC);
- int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
- OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
- << "); End = std::end(MatchTable" << VC << "); break;\n";
- }
- OS << " }\n";
-
- OS << " // Search the table.\n";
- if (HasMnemonicFirst) {
- OS << " auto MnemonicRange = "
- "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
- } else {
- OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
- OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
- OS << " if (!Mnemonic.empty())\n";
- OS << " MnemonicRange = "
- "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
- }
-
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
- << " std::distance(MnemonicRange.first, MnemonicRange.second) << \n"
- << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
-
- OS << " // Return a more specific error code if no mnemonics match.\n";
- OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
- OS << " return Match_MnemonicFail;\n\n";
-
- OS << " for (const MatchEntry *it = MnemonicRange.first, "
- << "*ie = MnemonicRange.second;\n";
- OS << " it != ie; ++it) {\n";
- OS << " bool HasRequiredFeatures =\n";
- OS << " (AvailableFeatures & it->RequiredFeatures) == "
- "it->RequiredFeatures;\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
- OS << " << MII.getName(it->Opcode) << \"\\n\");\n";
-
- if (ReportMultipleNearMisses) {
- OS << " // Some state to record ways in which this instruction did not match.\n";
- OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
- OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
- OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
- OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
- OS << " bool MultipleInvalidOperands = false;\n";
- }
-
- if (HasMnemonicFirst) {
- OS << " // equal_range guarantees that instruction mnemonic matches.\n";
- OS << " assert(Mnemonic == it->getMnemonic());\n";
- }
-
- // Emit check that the subclasses match.
- if (!ReportMultipleNearMisses)
- OS << " bool OperandsValid = true;\n";
- if (HasOptionalOperands) {
- OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
- }
- OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
- << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
- << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
- OS << " auto Formal = "
- << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
- OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n";
- OS << " << \" against actual operand at index \" << ActualIdx);\n";
- OS << " if (ActualIdx < Operands.size())\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
- OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
- OS << " else\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
- OS << " if (ActualIdx >= Operands.size()) {\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
- if (ReportMultipleNearMisses) {
- OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
- "isSubclass(Formal, OptionalMatchClass);\n";
- OS << " if (!ThisOperandValid) {\n";
- OS << " if (!OperandNearMiss) {\n";
- OS << " // Record info about match failure for later use.\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
- OS << " OperandNearMiss =\n";
- OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
- OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
- OS << " // If more than one operand is invalid, give up on this match entry.\n";
- OS << " DEBUG_WITH_TYPE(\n";
- OS << " \"asm-matcher\",\n";
- OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
- OS << " MultipleInvalidOperands = true;\n";
- OS << " break;\n";
- OS << " }\n";
- OS << " } else {\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
- OS << " break;\n";
- OS << " }\n";
- OS << " continue;\n";
- } else {
- OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
- OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n";
- if (HasOptionalOperands) {
- OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
- << ");\n";
- }
- OS << " break;\n";
- }
- OS << " }\n";
- OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
- OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
- OS << " if (Diag == Match_Success) {\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
- OS << " dbgs() << \"match success using generic matcher\\n\");\n";
- OS << " ++ActualIdx;\n";
- OS << " continue;\n";
- OS << " }\n";
- OS << " // If the generic handler indicates an invalid operand\n";
- OS << " // failure, check for a special case.\n";
- OS << " if (Diag != Match_Success) {\n";
- OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
- OS << " if (TargetDiag == Match_Success) {\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
- OS << " dbgs() << \"match success using target matcher\\n\");\n";
- OS << " ++ActualIdx;\n";
- OS << " continue;\n";
- OS << " }\n";
- OS << " // If the target matcher returned a specific error code use\n";
- OS << " // that, else use the one from the generic matcher.\n";
- OS << " if (TargetDiag != Match_InvalidOperand && "
- "HasRequiredFeatures)\n";
- OS << " Diag = TargetDiag;\n";
- OS << " }\n";
- OS << " // If current formal operand wasn't matched and it is optional\n"
- << " // then try to match next formal operand\n";
- OS << " if (Diag == Match_InvalidOperand "
- << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
- if (HasOptionalOperands) {
- OS << " OptionalOperandsMask.set(FormalIdx);\n";
- }
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
- OS << " continue;\n";
- OS << " }\n";
-
- if (ReportMultipleNearMisses) {
- OS << " if (!OperandNearMiss) {\n";
- OS << " // If this is the first invalid operand we have seen, record some\n";
- OS << " // information about it.\n";
- OS << " DEBUG_WITH_TYPE(\n";
- OS << " \"asm-matcher\",\n";
- OS << " dbgs()\n";
- OS << " << \"operand match failed, recording near-miss with diag code \"\n";
- OS << " << Diag << \"\\n\");\n";
- OS << " OperandNearMiss =\n";
- OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
- OS << " ++ActualIdx;\n";
- OS << " } else {\n";
- OS << " // If more than one operand is invalid, give up on this match entry.\n";
- OS << " DEBUG_WITH_TYPE(\n";
- OS << " \"asm-matcher\",\n";
- OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
- OS << " MultipleInvalidOperands = true;\n";
- OS << " break;\n";
- OS << " }\n";
- OS << " }\n\n";
- } else {
- OS << " // If this operand is broken for all of the instances of this\n";
- OS << " // mnemonic, keep track of it so we can report loc info.\n";
- OS << " // If we already had a match that only failed due to a\n";
- OS << " // target predicate, that diagnostic is preferred.\n";
- OS << " if (!HadMatchOtherThanPredicate &&\n";
- OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
- OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
- "!= Match_InvalidOperand))\n";
- OS << " RetCode = Diag;\n";
- OS << " ErrorInfo = ActualIdx;\n";
- OS << " }\n";
- OS << " // Otherwise, just reject this instance of the mnemonic.\n";
- OS << " OperandsValid = false;\n";
- OS << " break;\n";
- OS << " }\n\n";
- }
-
- if (ReportMultipleNearMisses)
- OS << " if (MultipleInvalidOperands) {\n";
- else
- OS << " if (!OperandsValid) {\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
- OS << " \"operand mismatches, ignoring \"\n";
- OS << " \"this opcode\\n\");\n";
- OS << " continue;\n";
- OS << " }\n";
-
- // Emit check that the required features are available.
- OS << " if (!HasRequiredFeatures) {\n";
- if (!ReportMultipleNearMisses)
- OS << " HadMatchOtherThanFeatures = true;\n";
- OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & "
- "~AvailableFeatures;\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n";
- OS << " << format_hex(NewMissingFeatures, 18)\n";
- OS << " << \"\\n\");\n";
- if (ReportMultipleNearMisses) {
- OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
- } else {
- OS << " if (countPopulation(NewMissingFeatures) <=\n"
- " countPopulation(MissingFeatures))\n";
- OS << " MissingFeatures = NewMissingFeatures;\n";
- OS << " continue;\n";
- }
- OS << " }\n";
- OS << "\n";
- OS << " Inst.clear();\n\n";
- OS << " Inst.setOpcode(it->Opcode);\n";
- // Verify the instruction with the target-specific match predicate function.
- OS << " // We have a potential match but have not rendered the operands.\n"
- << " // Check the target predicate to handle any context sensitive\n"
- " // constraints.\n"
- << " // For example, Ties that are referenced multiple times must be\n"
- " // checked here to ensure the input is the same for each match\n"
- " // constraints. If we leave it any later the ties will have been\n"
- " // canonicalized\n"
- << " unsigned MatchResult;\n"
- << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
- "Operands)) != Match_Success) {\n"
- << " Inst.clear();\n";
- OS << " DEBUG_WITH_TYPE(\n";
- OS << " \"asm-matcher\",\n";
- OS << " dbgs() << \"Early target match predicate failed with diag code \"\n";
- OS << " << MatchResult << \"\\n\");\n";
- if (ReportMultipleNearMisses) {
- OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
- } else {
- OS << " RetCode = MatchResult;\n"
- << " HadMatchOtherThanPredicate = true;\n"
- << " continue;\n";
- }
- OS << " }\n\n";
-
- if (ReportMultipleNearMisses) {
- OS << " // If we did not successfully match the operands, then we can't convert to\n";
- OS << " // an MCInst, so bail out on this instruction variant now.\n";
- OS << " if (OperandNearMiss) {\n";
- OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
- OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
- OS << " DEBUG_WITH_TYPE(\n";
- OS << " \"asm-matcher\",\n";
- OS << " dbgs()\n";
- OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
- OS << " NearMisses->push_back(OperandNearMiss);\n";
- OS << " } else {\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
- OS << " \"types of mismatch, so not \"\n";
- OS << " \"reporting near-miss\\n\");\n";
- OS << " }\n";
- OS << " continue;\n";
- OS << " }\n\n";
- }
-
- OS << " if (matchingInlineAsm) {\n";
- OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
- if (!ReportMultipleNearMisses) {
- OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
- "Operands, ErrorInfo))\n";
- OS << " return Match_InvalidTiedOperand;\n";
- OS << "\n";
- }
- OS << " return Match_Success;\n";
- OS << " }\n\n";
- OS << " // We have selected a definite instruction, convert the parsed\n"
- << " // operands into the appropriate MCInst.\n";
- if (HasOptionalOperands) {
- OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
- << " OptionalOperandsMask);\n";
- } else {
- OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
- }
- OS << "\n";
-
- // Verify the instruction with the target-specific match predicate function.
- OS << " // We have a potential match. Check the target predicate to\n"
- << " // handle any context sensitive constraints.\n"
- << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
- << " Match_Success) {\n"
- << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
- << " dbgs() << \"Target match predicate failed with diag code \"\n"
- << " << MatchResult << \"\\n\");\n"
- << " Inst.clear();\n";
- if (ReportMultipleNearMisses) {
- OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
- } else {
- OS << " RetCode = MatchResult;\n"
- << " HadMatchOtherThanPredicate = true;\n"
- << " continue;\n";
- }
- OS << " }\n\n";
-
- if (ReportMultipleNearMisses) {
- OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
- OS << " (int)(bool)FeaturesNearMiss +\n";
- OS << " (int)(bool)EarlyPredicateNearMiss +\n";
- OS << " (int)(bool)LatePredicateNearMiss);\n";
- OS << " if (NumNearMisses == 1) {\n";
- OS << " // We had exactly one type of near-miss, so add that to the list.\n";
- OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
- OS << " \"mismatch, so reporting a \"\n";
- OS << " \"near-miss\\n\");\n";
- OS << " if (NearMisses && FeaturesNearMiss)\n";
- OS << " NearMisses->push_back(FeaturesNearMiss);\n";
- OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
- OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
- OS << " else if (NearMisses && LatePredicateNearMiss)\n";
- OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
- OS << "\n";
- OS << " continue;\n";
- OS << " } else if (NumNearMisses > 1) {\n";
- OS << " // This instruction missed in more than one way, so ignore it.\n";
- OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
- OS << " \"types of mismatch, so not \"\n";
- OS << " \"reporting near-miss\\n\");\n";
- OS << " continue;\n";
- OS << " }\n";
- }
-
- // Call the post-processing function, if used.
- StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
- if (!InsnCleanupFn.empty())
- OS << " " << InsnCleanupFn << "(Inst);\n";
-
- if (HasDeprecation) {
- OS << " std::string Info;\n";
- OS << " if (!getParser().getTargetParser().\n";
- OS << " getTargetOptions().MCNoDeprecatedWarn &&\n";
- OS << " MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
- OS << " SMLoc Loc = ((" << Target.getName()
- << "Operand&)*Operands[0]).getStartLoc();\n";
- OS << " getParser().Warning(Loc, Info, None);\n";
- OS << " }\n";
- }
-
- if (!ReportMultipleNearMisses) {
- OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
- "Operands, ErrorInfo))\n";
- OS << " return Match_InvalidTiedOperand;\n";
- OS << "\n";
- }
-
- OS << " DEBUG_WITH_TYPE(\n";
- OS << " \"asm-matcher\",\n";
- OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
- OS << " return Match_Success;\n";
- OS << " }\n\n";
-
- if (ReportMultipleNearMisses) {
- OS << " // No instruction variants matched exactly.\n";
- OS << " return Match_NearMisses;\n";
- } else {
- OS << " // Okay, we had no match. Try to return a useful error code.\n";
- OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
- OS << " return RetCode;\n\n";
- OS << " // Missing feature matches return which features were missing\n";
- OS << " ErrorInfo = MissingFeatures;\n";
- OS << " return Match_MissingFeature;\n";
- }
- OS << "}\n\n";
-
- if (!Info.OperandMatchInfo.empty())
- emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
- MaxMnemonicIndex, HasMnemonicFirst);
-
- OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
-
- OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
- OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
-
- emitMnemonicSpellChecker(OS, Target, VariantCount);
-
- OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
-}
-
-namespace llvm {
-
-void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
- emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
- AsmMatcherEmitter(RK).run(OS);
-}
-
-} // end namespace llvm