summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp')
-rw-r--r--gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp2419
1 files changed, 0 insertions, 2419 deletions
diff --git a/gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp b/gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp
deleted file mode 100644
index 5e621fc0efd..00000000000
--- a/gnu/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp
+++ /dev/null
@@ -1,2419 +0,0 @@
-//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// It contains the tablegen backend that emits the decoder functions for
-// targets with fixed length instruction set.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CodeGenInstruction.h"
-#include "CodeGenTarget.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/CachedHashString.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/MC/MCFixedLenDisassembler.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/LEB128.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/TableGen/Error.h"
-#include "llvm/TableGen/Record.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <map>
-#include <memory>
-#include <set>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "decoder-emitter"
-
-namespace {
-
-struct EncodingField {
- unsigned Base, Width, Offset;
- EncodingField(unsigned B, unsigned W, unsigned O)
- : Base(B), Width(W), Offset(O) { }
-};
-
-struct OperandInfo {
- std::vector<EncodingField> Fields;
- std::string Decoder;
- bool HasCompleteDecoder;
-
- OperandInfo(std::string D, bool HCD)
- : Decoder(std::move(D)), HasCompleteDecoder(HCD) {}
-
- void addField(unsigned Base, unsigned Width, unsigned Offset) {
- Fields.push_back(EncodingField(Base, Width, Offset));
- }
-
- unsigned numFields() const { return Fields.size(); }
-
- typedef std::vector<EncodingField>::const_iterator const_iterator;
-
- const_iterator begin() const { return Fields.begin(); }
- const_iterator end() const { return Fields.end(); }
-};
-
-typedef std::vector<uint8_t> DecoderTable;
-typedef uint32_t DecoderFixup;
-typedef std::vector<DecoderFixup> FixupList;
-typedef std::vector<FixupList> FixupScopeList;
-typedef SmallSetVector<CachedHashString, 16> PredicateSet;
-typedef SmallSetVector<CachedHashString, 16> DecoderSet;
-struct DecoderTableInfo {
- DecoderTable Table;
- FixupScopeList FixupStack;
- PredicateSet Predicates;
- DecoderSet Decoders;
-};
-
-struct EncodingAndInst {
- const Record *EncodingDef;
- const CodeGenInstruction *Inst;
-
- EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst)
- : EncodingDef(EncodingDef), Inst(Inst) {}
-};
-
-raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
- if (Value.EncodingDef != Value.Inst->TheDef)
- OS << Value.EncodingDef->getName() << ":";
- OS << Value.Inst->TheDef->getName();
- return OS;
-}
-
-class FixedLenDecoderEmitter {
- std::vector<EncodingAndInst> NumberedEncodings;
-
-public:
- // Defaults preserved here for documentation, even though they aren't
- // strictly necessary given the way that this is currently being called.
- FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
- std::string GPrefix = "if (",
- std::string GPostfix = " == MCDisassembler::Fail)",
- std::string ROK = "MCDisassembler::Success",
- std::string RFail = "MCDisassembler::Fail",
- std::string L = "")
- : Target(R), PredicateNamespace(std::move(PredicateNamespace)),
- GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
- ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
- Locals(std::move(L)) {}
-
- // Emit the decoder state machine table.
- void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
- unsigned Indentation, unsigned BitWidth,
- StringRef Namespace) const;
- void emitPredicateFunction(formatted_raw_ostream &OS,
- PredicateSet &Predicates,
- unsigned Indentation) const;
- void emitDecoderFunction(formatted_raw_ostream &OS,
- DecoderSet &Decoders,
- unsigned Indentation) const;
-
- // run - Output the code emitter
- void run(raw_ostream &o);
-
-private:
- CodeGenTarget Target;
-
-public:
- std::string PredicateNamespace;
- std::string GuardPrefix, GuardPostfix;
- std::string ReturnOK, ReturnFail;
- std::string Locals;
-};
-
-} // end anonymous namespace
-
-// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
-// for a bit value.
-//
-// BIT_UNFILTERED is used as the init value for a filter position. It is used
-// only for filter processings.
-typedef enum {
- BIT_TRUE, // '1'
- BIT_FALSE, // '0'
- BIT_UNSET, // '?'
- BIT_UNFILTERED // unfiltered
-} bit_value_t;
-
-static bool ValueSet(bit_value_t V) {
- return (V == BIT_TRUE || V == BIT_FALSE);
-}
-
-static bool ValueNotSet(bit_value_t V) {
- return (V == BIT_UNSET);
-}
-
-static int Value(bit_value_t V) {
- return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
-}
-
-static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
- if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
- return bit->getValue() ? BIT_TRUE : BIT_FALSE;
-
- // The bit is uninitialized.
- return BIT_UNSET;
-}
-
-// Prints the bit value for each position.
-static void dumpBits(raw_ostream &o, const BitsInit &bits) {
- for (unsigned index = bits.getNumBits(); index > 0; --index) {
- switch (bitFromBits(bits, index - 1)) {
- case BIT_TRUE:
- o << "1";
- break;
- case BIT_FALSE:
- o << "0";
- break;
- case BIT_UNSET:
- o << "_";
- break;
- default:
- llvm_unreachable("unexpected return value from bitFromBits");
- }
- }
-}
-
-static BitsInit &getBitsField(const Record &def, StringRef str) {
- BitsInit *bits = def.getValueAsBitsInit(str);
- return *bits;
-}
-
-// Representation of the instruction to work on.
-typedef std::vector<bit_value_t> insn_t;
-
-namespace {
-
-class FilterChooser;
-
-/// Filter - Filter works with FilterChooser to produce the decoding tree for
-/// the ISA.
-///
-/// It is useful to think of a Filter as governing the switch stmts of the
-/// decoding tree in a certain level. Each case stmt delegates to an inferior
-/// FilterChooser to decide what further decoding logic to employ, or in another
-/// words, what other remaining bits to look at. The FilterChooser eventually
-/// chooses a best Filter to do its job.
-///
-/// This recursive scheme ends when the number of Opcodes assigned to the
-/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
-/// the Filter/FilterChooser combo does not know how to distinguish among the
-/// Opcodes assigned.
-///
-/// An example of a conflict is
-///
-/// Conflict:
-/// 111101000.00........00010000....
-/// 111101000.00........0001........
-/// 1111010...00........0001........
-/// 1111010...00....................
-/// 1111010.........................
-/// 1111............................
-/// ................................
-/// VST4q8a 111101000_00________00010000____
-/// VST4q8b 111101000_00________00010000____
-///
-/// The Debug output shows the path that the decoding tree follows to reach the
-/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
-/// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
-///
-/// The encoding info in the .td files does not specify this meta information,
-/// which could have been used by the decoder to resolve the conflict. The
-/// decoder could try to decode the even/odd register numbering and assign to
-/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
-/// version and return the Opcode since the two have the same Asm format string.
-class Filter {
-protected:
- const FilterChooser *Owner;// points to the FilterChooser who owns this filter
- unsigned StartBit; // the starting bit position
- unsigned NumBits; // number of bits to filter
- bool Mixed; // a mixed region contains both set and unset bits
-
- // Map of well-known segment value to the set of uid's with that value.
- std::map<uint64_t, std::vector<unsigned>> FilteredInstructions;
-
- // Set of uid's with non-constant segment values.
- std::vector<unsigned> VariableInstructions;
-
- // Map of well-known segment value to its delegate.
- std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
-
- // Number of instructions which fall under FilteredInstructions category.
- unsigned NumFiltered;
-
- // Keeps track of the last opcode in the filtered bucket.
- unsigned LastOpcFiltered;
-
-public:
- Filter(Filter &&f);
- Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
-
- ~Filter() = default;
-
- unsigned getNumFiltered() const { return NumFiltered; }
-
- unsigned getSingletonOpc() const {
- assert(NumFiltered == 1);
- return LastOpcFiltered;
- }
-
- // Return the filter chooser for the group of instructions without constant
- // segment values.
- const FilterChooser &getVariableFC() const {
- assert(NumFiltered == 1);
- assert(FilterChooserMap.size() == 1);
- return *(FilterChooserMap.find((unsigned)-1)->second);
- }
-
- // Divides the decoding task into sub tasks and delegates them to the
- // inferior FilterChooser's.
- //
- // A special case arises when there's only one entry in the filtered
- // instructions. In order to unambiguously decode the singleton, we need to
- // match the remaining undecoded encoding bits against the singleton.
- void recurse();
-
- // Emit table entries to decode instructions given a segment or segments of
- // bits.
- void emitTableEntry(DecoderTableInfo &TableInfo) const;
-
- // Returns the number of fanout produced by the filter. More fanout implies
- // the filter distinguishes more categories of instructions.
- unsigned usefulness() const;
-}; // end class Filter
-
-} // end anonymous namespace
-
-// These are states of our finite state machines used in FilterChooser's
-// filterProcessor() which produces the filter candidates to use.
-typedef enum {
- ATTR_NONE,
- ATTR_FILTERED,
- ATTR_ALL_SET,
- ATTR_ALL_UNSET,
- ATTR_MIXED
-} bitAttr_t;
-
-/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
-/// in order to perform the decoding of instructions at the current level.
-///
-/// Decoding proceeds from the top down. Based on the well-known encoding bits
-/// of instructions available, FilterChooser builds up the possible Filters that
-/// can further the task of decoding by distinguishing among the remaining
-/// candidate instructions.
-///
-/// Once a filter has been chosen, it is called upon to divide the decoding task
-/// into sub-tasks and delegates them to its inferior FilterChoosers for further
-/// processings.
-///
-/// It is useful to think of a Filter as governing the switch stmts of the
-/// decoding tree. And each case is delegated to an inferior FilterChooser to
-/// decide what further remaining bits to look at.
-namespace {
-
-class FilterChooser {
-protected:
- friend class Filter;
-
- // Vector of codegen instructions to choose our filter.
- ArrayRef<EncodingAndInst> AllInstructions;
-
- // Vector of uid's for this filter chooser to work on.
- const std::vector<unsigned> &Opcodes;
-
- // Lookup table for the operand decoding of instructions.
- const std::map<unsigned, std::vector<OperandInfo>> &Operands;
-
- // Vector of candidate filters.
- std::vector<Filter> Filters;
-
- // Array of bit values passed down from our parent.
- // Set to all BIT_UNFILTERED's for Parent == NULL.
- std::vector<bit_value_t> FilterBitValues;
-
- // Links to the FilterChooser above us in the decoding tree.
- const FilterChooser *Parent;
-
- // Index of the best filter from Filters.
- int BestIndex;
-
- // Width of instructions
- unsigned BitWidth;
-
- // Parent emitter
- const FixedLenDecoderEmitter *Emitter;
-
-public:
- FilterChooser(ArrayRef<EncodingAndInst> Insts,
- const std::vector<unsigned> &IDs,
- const std::map<unsigned, std::vector<OperandInfo>> &Ops,
- unsigned BW, const FixedLenDecoderEmitter *E)
- : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
- FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
- BitWidth(BW), Emitter(E) {
- doFilter();
- }
-
- FilterChooser(ArrayRef<EncodingAndInst> Insts,
- const std::vector<unsigned> &IDs,
- const std::map<unsigned, std::vector<OperandInfo>> &Ops,
- const std::vector<bit_value_t> &ParentFilterBitValues,
- const FilterChooser &parent)
- : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
- FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
- BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
- doFilter();
- }
-
- FilterChooser(const FilterChooser &) = delete;
- void operator=(const FilterChooser &) = delete;
-
- unsigned getBitWidth() const { return BitWidth; }
-
-protected:
- // Populates the insn given the uid.
- void insnWithID(insn_t &Insn, unsigned Opcode) const {
- BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
-
- // We may have a SoftFail bitmask, which specifies a mask where an encoding
- // may differ from the value in "Inst" and yet still be valid, but the
- // disassembler should return SoftFail instead of Success.
- //
- // This is used for marking UNPREDICTABLE instructions in the ARM world.
- BitsInit *SFBits =
- AllInstructions[Opcode].EncodingDef->getValueAsBitsInit("SoftFail");
-
- for (unsigned i = 0; i < BitWidth; ++i) {
- if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
- Insn.push_back(BIT_UNSET);
- else
- Insn.push_back(bitFromBits(Bits, i));
- }
- }
-
- // Populates the field of the insn given the start position and the number of
- // consecutive bits to scan for.
- //
- // Returns false if there exists any uninitialized bit value in the range.
- // Returns true, otherwise.
- bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
- unsigned NumBits) const;
-
- /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
- /// filter array as a series of chars.
- void dumpFilterArray(raw_ostream &o,
- const std::vector<bit_value_t> & filter) const;
-
- /// dumpStack - dumpStack traverses the filter chooser chain and calls
- /// dumpFilterArray on each filter chooser up to the top level one.
- void dumpStack(raw_ostream &o, const char *prefix) const;
-
- Filter &bestFilter() {
- assert(BestIndex != -1 && "BestIndex not set");
- return Filters[BestIndex];
- }
-
- bool PositionFiltered(unsigned i) const {
- return ValueSet(FilterBitValues[i]);
- }
-
- // Calculates the island(s) needed to decode the instruction.
- // This returns a lit of undecoded bits of an instructions, for example,
- // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
- // decoded bits in order to verify that the instruction matches the Opcode.
- unsigned getIslands(std::vector<unsigned> &StartBits,
- std::vector<unsigned> &EndBits,
- std::vector<uint64_t> &FieldVals,
- const insn_t &Insn) const;
-
- // Emits code to check the Predicates member of an instruction are true.
- // Returns true if predicate matches were emitted, false otherwise.
- bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
- unsigned Opc) const;
-
- bool doesOpcodeNeedPredicate(unsigned Opc) const;
- unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
- void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
- unsigned Opc) const;
-
- void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
- unsigned Opc) const;
-
- // Emits table entries to decode the singleton.
- void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
- unsigned Opc) const;
-
- // Emits code to decode the singleton, and then to decode the rest.
- void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
- const Filter &Best) const;
-
- void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
- const OperandInfo &OpInfo,
- bool &OpHasCompleteDecoder) const;
-
- void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
- bool &HasCompleteDecoder) const;
- unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
- bool &HasCompleteDecoder) const;
-
- // Assign a single filter and run with it.
- void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
-
- // reportRegion is a helper function for filterProcessor to mark a region as
- // eligible for use as a filter region.
- void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
- bool AllowMixed);
-
- // FilterProcessor scans the well-known encoding bits of the instructions and
- // builds up a list of candidate filters. It chooses the best filter and
- // recursively descends down the decoding tree.
- bool filterProcessor(bool AllowMixed, bool Greedy = true);
-
- // Decides on the best configuration of filter(s) to use in order to decode
- // the instructions. A conflict of instructions may occur, in which case we
- // dump the conflict set to the standard error.
- void doFilter();
-
-public:
- // emitTableEntries - Emit state machine entries to decode our share of
- // instructions.
- void emitTableEntries(DecoderTableInfo &TableInfo) const;
-};
-
-} // end anonymous namespace
-
-///////////////////////////
-// //
-// Filter Implementation //
-// //
-///////////////////////////
-
-Filter::Filter(Filter &&f)
- : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
- FilteredInstructions(std::move(f.FilteredInstructions)),
- VariableInstructions(std::move(f.VariableInstructions)),
- FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
- LastOpcFiltered(f.LastOpcFiltered) {
-}
-
-Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
- bool mixed)
- : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
- assert(StartBit + NumBits - 1 < Owner->BitWidth);
-
- NumFiltered = 0;
- LastOpcFiltered = 0;
-
- for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
- insn_t Insn;
-
- // Populates the insn given the uid.
- Owner->insnWithID(Insn, Owner->Opcodes[i]);
-
- uint64_t Field;
- // Scans the segment for possibly well-specified encoding bits.
- bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
-
- if (ok) {
- // The encoding bits are well-known. Lets add the uid of the
- // instruction into the bucket keyed off the constant field value.
- LastOpcFiltered = Owner->Opcodes[i];
- FilteredInstructions[Field].push_back(LastOpcFiltered);
- ++NumFiltered;
- } else {
- // Some of the encoding bit(s) are unspecified. This contributes to
- // one additional member of "Variable" instructions.
- VariableInstructions.push_back(Owner->Opcodes[i]);
- }
- }
-
- assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
- && "Filter returns no instruction categories");
-}
-
-// Divides the decoding task into sub tasks and delegates them to the
-// inferior FilterChooser's.
-//
-// A special case arises when there's only one entry in the filtered
-// instructions. In order to unambiguously decode the singleton, we need to
-// match the remaining undecoded encoding bits against the singleton.
-void Filter::recurse() {
- // Starts by inheriting our parent filter chooser's filter bit values.
- std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
-
- if (!VariableInstructions.empty()) {
- // Conservatively marks each segment position as BIT_UNSET.
- for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
- BitValueArray[StartBit + bitIndex] = BIT_UNSET;
-
- // Delegates to an inferior filter chooser for further processing on this
- // group of instructions whose segment values are variable.
- FilterChooserMap.insert(
- std::make_pair(-1U, llvm::make_unique<FilterChooser>(
- Owner->AllInstructions, VariableInstructions,
- Owner->Operands, BitValueArray, *Owner)));
- }
-
- // No need to recurse for a singleton filtered instruction.
- // See also Filter::emit*().
- if (getNumFiltered() == 1) {
- assert(FilterChooserMap.size() == 1);
- return;
- }
-
- // Otherwise, create sub choosers.
- for (const auto &Inst : FilteredInstructions) {
-
- // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
- for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
- if (Inst.first & (1ULL << bitIndex))
- BitValueArray[StartBit + bitIndex] = BIT_TRUE;
- else
- BitValueArray[StartBit + bitIndex] = BIT_FALSE;
- }
-
- // Delegates to an inferior filter chooser for further processing on this
- // category of instructions.
- FilterChooserMap.insert(std::make_pair(
- Inst.first, llvm::make_unique<FilterChooser>(
- Owner->AllInstructions, Inst.second,
- Owner->Operands, BitValueArray, *Owner)));
- }
-}
-
-static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
- uint32_t DestIdx) {
- // Any NumToSkip fixups in the current scope can resolve to the
- // current location.
- for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
- E = Fixups.rend();
- I != E; ++I) {
- // Calculate the distance from the byte following the fixup entry byte
- // to the destination. The Target is calculated from after the 16-bit
- // NumToSkip entry itself, so subtract two from the displacement here
- // to account for that.
- uint32_t FixupIdx = *I;
- uint32_t Delta = DestIdx - FixupIdx - 3;
- // Our NumToSkip entries are 24-bits. Make sure our table isn't too
- // big.
- assert(Delta < (1u << 24));
- Table[FixupIdx] = (uint8_t)Delta;
- Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
- Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
- }
-}
-
-// Emit table entries to decode instructions given a segment or segments
-// of bits.
-void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
- TableInfo.Table.push_back(MCD::OPC_ExtractField);
- TableInfo.Table.push_back(StartBit);
- TableInfo.Table.push_back(NumBits);
-
- // A new filter entry begins a new scope for fixup resolution.
- TableInfo.FixupStack.emplace_back();
-
- DecoderTable &Table = TableInfo.Table;
-
- size_t PrevFilter = 0;
- bool HasFallthrough = false;
- for (auto &Filter : FilterChooserMap) {
- // Field value -1 implies a non-empty set of variable instructions.
- // See also recurse().
- if (Filter.first == (unsigned)-1) {
- HasFallthrough = true;
-
- // Each scope should always have at least one filter value to check
- // for.
- assert(PrevFilter != 0 && "empty filter set!");
- FixupList &CurScope = TableInfo.FixupStack.back();
- // Resolve any NumToSkip fixups in the current scope.
- resolveTableFixups(Table, CurScope, Table.size());
- CurScope.clear();
- PrevFilter = 0; // Don't re-process the filter's fallthrough.
- } else {
- Table.push_back(MCD::OPC_FilterValue);
- // Encode and emit the value to filter against.
- uint8_t Buffer[16];
- unsigned Len = encodeULEB128(Filter.first, Buffer);
- Table.insert(Table.end(), Buffer, Buffer + Len);
- // Reserve space for the NumToSkip entry. We'll backpatch the value
- // later.
- PrevFilter = Table.size();
- Table.push_back(0);
- Table.push_back(0);
- Table.push_back(0);
- }
-
- // We arrive at a category of instructions with the same segment value.
- // Now delegate to the sub filter chooser for further decodings.
- // The case may fallthrough, which happens if the remaining well-known
- // encoding bits do not match exactly.
- Filter.second->emitTableEntries(TableInfo);
-
- // Now that we've emitted the body of the handler, update the NumToSkip
- // of the filter itself to be able to skip forward when false. Subtract
- // two as to account for the width of the NumToSkip field itself.
- if (PrevFilter) {
- uint32_t NumToSkip = Table.size() - PrevFilter - 3;
- assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
- Table[PrevFilter] = (uint8_t)NumToSkip;
- Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
- Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
- }
- }
-
- // Any remaining unresolved fixups bubble up to the parent fixup scope.
- assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
- FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
- FixupScopeList::iterator Dest = Source - 1;
- Dest->insert(Dest->end(), Source->begin(), Source->end());
- TableInfo.FixupStack.pop_back();
-
- // If there is no fallthrough, then the final filter should get fixed
- // up according to the enclosing scope rather than the current position.
- if (!HasFallthrough)
- TableInfo.FixupStack.back().push_back(PrevFilter);
-}
-
-// Returns the number of fanout produced by the filter. More fanout implies
-// the filter distinguishes more categories of instructions.
-unsigned Filter::usefulness() const {
- if (!VariableInstructions.empty())
- return FilteredInstructions.size();
- else
- return FilteredInstructions.size() + 1;
-}
-
-//////////////////////////////////
-// //
-// Filterchooser Implementation //
-// //
-//////////////////////////////////
-
-// Emit the decoder state machine table.
-void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
- DecoderTable &Table,
- unsigned Indentation,
- unsigned BitWidth,
- StringRef Namespace) const {
- OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
- << BitWidth << "[] = {\n";
-
- Indentation += 2;
-
- // FIXME: We may be able to use the NumToSkip values to recover
- // appropriate indentation levels.
- DecoderTable::const_iterator I = Table.begin();
- DecoderTable::const_iterator E = Table.end();
- while (I != E) {
- assert (I < E && "incomplete decode table entry!");
-
- uint64_t Pos = I - Table.begin();
- OS << "/* " << Pos << " */";
- OS.PadToColumn(12);
-
- switch (*I) {
- default:
- PrintFatalError("invalid decode table opcode");
- case MCD::OPC_ExtractField: {
- ++I;
- unsigned Start = *I++;
- unsigned Len = *I++;
- OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
- << Len << ", // Inst{";
- if (Len > 1)
- OS << (Start + Len - 1) << "-";
- OS << Start << "} ...\n";
- break;
- }
- case MCD::OPC_FilterValue: {
- ++I;
- OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
- // The filter value is ULEB128 encoded.
- while (*I >= 128)
- OS << (unsigned)*I++ << ", ";
- OS << (unsigned)*I++ << ", ";
-
- // 24-bit numtoskip value.
- uint8_t Byte = *I++;
- uint32_t NumToSkip = Byte;
- OS << (unsigned)Byte << ", ";
- Byte = *I++;
- OS << (unsigned)Byte << ", ";
- NumToSkip |= Byte << 8;
- Byte = *I++;
- OS << utostr(Byte) << ", ";
- NumToSkip |= Byte << 16;
- OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
- break;
- }
- case MCD::OPC_CheckField: {
- ++I;
- unsigned Start = *I++;
- unsigned Len = *I++;
- OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
- << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
- // ULEB128 encoded field value.
- for (; *I >= 128; ++I)
- OS << (unsigned)*I << ", ";
- OS << (unsigned)*I++ << ", ";
- // 24-bit numtoskip value.
- uint8_t Byte = *I++;
- uint32_t NumToSkip = Byte;
- OS << (unsigned)Byte << ", ";
- Byte = *I++;
- OS << (unsigned)Byte << ", ";
- NumToSkip |= Byte << 8;
- Byte = *I++;
- OS << utostr(Byte) << ", ";
- NumToSkip |= Byte << 16;
- OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
- break;
- }
- case MCD::OPC_CheckPredicate: {
- ++I;
- OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
- for (; *I >= 128; ++I)
- OS << (unsigned)*I << ", ";
- OS << (unsigned)*I++ << ", ";
-
- // 24-bit numtoskip value.
- uint8_t Byte = *I++;
- uint32_t NumToSkip = Byte;
- OS << (unsigned)Byte << ", ";
- Byte = *I++;
- OS << (unsigned)Byte << ", ";
- NumToSkip |= Byte << 8;
- Byte = *I++;
- OS << utostr(Byte) << ", ";
- NumToSkip |= Byte << 16;
- OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
- break;
- }
- case MCD::OPC_Decode:
- case MCD::OPC_TryDecode: {
- bool IsTry = *I == MCD::OPC_TryDecode;
- ++I;
- // Extract the ULEB128 encoded Opcode to a buffer.
- uint8_t Buffer[16], *p = Buffer;
- while ((*p++ = *I++) >= 128)
- assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
- && "ULEB128 value too large!");
- // Decode the Opcode value.
- unsigned Opc = decodeULEB128(Buffer);
- OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
- << "Decode, ";
- for (p = Buffer; *p >= 128; ++p)
- OS << (unsigned)*p << ", ";
- OS << (unsigned)*p << ", ";
-
- // Decoder index.
- for (; *I >= 128; ++I)
- OS << (unsigned)*I << ", ";
- OS << (unsigned)*I++ << ", ";
-
- if (!IsTry) {
- OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
- break;
- }
-
- // Fallthrough for OPC_TryDecode.
-
- // 24-bit numtoskip value.
- uint8_t Byte = *I++;
- uint32_t NumToSkip = Byte;
- OS << (unsigned)Byte << ", ";
- Byte = *I++;
- OS << (unsigned)Byte << ", ";
- NumToSkip |= Byte << 8;
- Byte = *I++;
- OS << utostr(Byte) << ", ";
- NumToSkip |= Byte << 16;
-
- OS << "// Opcode: " << NumberedEncodings[Opc]
- << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
- break;
- }
- case MCD::OPC_SoftFail: {
- ++I;
- OS.indent(Indentation) << "MCD::OPC_SoftFail";
- // Positive mask
- uint64_t Value = 0;
- unsigned Shift = 0;
- do {
- OS << ", " << (unsigned)*I;
- Value += (*I & 0x7f) << Shift;
- Shift += 7;
- } while (*I++ >= 128);
- if (Value > 127) {
- OS << " /* 0x";
- OS.write_hex(Value);
- OS << " */";
- }
- // Negative mask
- Value = 0;
- Shift = 0;
- do {
- OS << ", " << (unsigned)*I;
- Value += (*I & 0x7f) << Shift;
- Shift += 7;
- } while (*I++ >= 128);
- if (Value > 127) {
- OS << " /* 0x";
- OS.write_hex(Value);
- OS << " */";
- }
- OS << ",\n";
- break;
- }
- case MCD::OPC_Fail: {
- ++I;
- OS.indent(Indentation) << "MCD::OPC_Fail,\n";
- break;
- }
- }
- }
- OS.indent(Indentation) << "0\n";
-
- Indentation -= 2;
-
- OS.indent(Indentation) << "};\n\n";
-}
-
-void FixedLenDecoderEmitter::
-emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
- unsigned Indentation) const {
- // The predicate function is just a big switch statement based on the
- // input predicate index.
- OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
- << "const FeatureBitset& Bits) {\n";
- Indentation += 2;
- if (!Predicates.empty()) {
- OS.indent(Indentation) << "switch (Idx) {\n";
- OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
- unsigned Index = 0;
- for (const auto &Predicate : Predicates) {
- OS.indent(Indentation) << "case " << Index++ << ":\n";
- OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
- }
- OS.indent(Indentation) << "}\n";
- } else {
- // No case statement to emit
- OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
- }
- Indentation -= 2;
- OS.indent(Indentation) << "}\n\n";
-}
-
-void FixedLenDecoderEmitter::
-emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
- unsigned Indentation) const {
- // The decoder function is just a big switch statement based on the
- // input decoder index.
- OS.indent(Indentation) << "template<typename InsnType>\n";
- OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
- << " unsigned Idx, InsnType insn, MCInst &MI,\n";
- OS.indent(Indentation) << " uint64_t "
- << "Address, const void *Decoder, bool &DecodeComplete) {\n";
- Indentation += 2;
- OS.indent(Indentation) << "DecodeComplete = true;\n";
- OS.indent(Indentation) << "InsnType tmp;\n";
- OS.indent(Indentation) << "switch (Idx) {\n";
- OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
- unsigned Index = 0;
- for (const auto &Decoder : Decoders) {
- OS.indent(Indentation) << "case " << Index++ << ":\n";
- OS << Decoder;
- OS.indent(Indentation+2) << "return S;\n";
- }
- OS.indent(Indentation) << "}\n";
- Indentation -= 2;
- OS.indent(Indentation) << "}\n\n";
-}
-
-// Populates the field of the insn given the start position and the number of
-// consecutive bits to scan for.
-//
-// Returns false if and on the first uninitialized bit value encountered.
-// Returns true, otherwise.
-bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
- unsigned StartBit, unsigned NumBits) const {
- Field = 0;
-
- for (unsigned i = 0; i < NumBits; ++i) {
- if (Insn[StartBit + i] == BIT_UNSET)
- return false;
-
- if (Insn[StartBit + i] == BIT_TRUE)
- Field = Field | (1ULL << i);
- }
-
- return true;
-}
-
-/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
-/// filter array as a series of chars.
-void FilterChooser::dumpFilterArray(raw_ostream &o,
- const std::vector<bit_value_t> &filter) const {
- for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
- switch (filter[bitIndex - 1]) {
- case BIT_UNFILTERED:
- o << ".";
- break;
- case BIT_UNSET:
- o << "_";
- break;
- case BIT_TRUE:
- o << "1";
- break;
- case BIT_FALSE:
- o << "0";
- break;
- }
- }
-}
-
-/// dumpStack - dumpStack traverses the filter chooser chain and calls
-/// dumpFilterArray on each filter chooser up to the top level one.
-void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
- const FilterChooser *current = this;
-
- while (current) {
- o << prefix;
- dumpFilterArray(o, current->FilterBitValues);
- o << '\n';
- current = current->Parent;
- }
-}
-
-// Calculates the island(s) needed to decode the instruction.
-// This returns a list of undecoded bits of an instructions, for example,
-// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
-// decoded bits in order to verify that the instruction matches the Opcode.
-unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
- std::vector<unsigned> &EndBits,
- std::vector<uint64_t> &FieldVals,
- const insn_t &Insn) const {
- unsigned Num, BitNo;
- Num = BitNo = 0;
-
- uint64_t FieldVal = 0;
-
- // 0: Init
- // 1: Water (the bit value does not affect decoding)
- // 2: Island (well-known bit value needed for decoding)
- int State = 0;
- int Val = -1;
-
- for (unsigned i = 0; i < BitWidth; ++i) {
- Val = Value(Insn[i]);
- bool Filtered = PositionFiltered(i);
- switch (State) {
- default: llvm_unreachable("Unreachable code!");
- case 0:
- case 1:
- if (Filtered || Val == -1)
- State = 1; // Still in Water
- else {
- State = 2; // Into the Island
- BitNo = 0;
- StartBits.push_back(i);
- FieldVal = Val;
- }
- break;
- case 2:
- if (Filtered || Val == -1) {
- State = 1; // Into the Water
- EndBits.push_back(i - 1);
- FieldVals.push_back(FieldVal);
- ++Num;
- } else {
- State = 2; // Still in Island
- ++BitNo;
- FieldVal = FieldVal | Val << BitNo;
- }
- break;
- }
- }
- // If we are still in Island after the loop, do some housekeeping.
- if (State == 2) {
- EndBits.push_back(BitWidth - 1);
- FieldVals.push_back(FieldVal);
- ++Num;
- }
-
- assert(StartBits.size() == Num && EndBits.size() == Num &&
- FieldVals.size() == Num);
- return Num;
-}
-
-void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
- const OperandInfo &OpInfo,
- bool &OpHasCompleteDecoder) const {
- const std::string &Decoder = OpInfo.Decoder;
-
- if (OpInfo.numFields() != 1)
- o.indent(Indentation) << "tmp = 0;\n";
-
- for (const EncodingField &EF : OpInfo) {
- o.indent(Indentation) << "tmp ";
- if (OpInfo.numFields() != 1) o << '|';
- o << "= fieldFromInstruction"
- << "(insn, " << EF.Base << ", " << EF.Width << ')';
- if (OpInfo.numFields() != 1 || EF.Offset != 0)
- o << " << " << EF.Offset;
- o << ";\n";
- }
-
- if (Decoder != "") {
- OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
- o.indent(Indentation) << Emitter->GuardPrefix << Decoder
- << "(MI, tmp, Address, Decoder)"
- << Emitter->GuardPostfix
- << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
- << "return MCDisassembler::Fail; }\n";
- } else {
- OpHasCompleteDecoder = true;
- o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
- }
-}
-
-void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
- unsigned Opc, bool &HasCompleteDecoder) const {
- HasCompleteDecoder = true;
-
- for (const auto &Op : Operands.find(Opc)->second) {
- // If a custom instruction decoder was specified, use that.
- if (Op.numFields() == 0 && !Op.Decoder.empty()) {
- HasCompleteDecoder = Op.HasCompleteDecoder;
- OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
- << "(MI, insn, Address, Decoder)"
- << Emitter->GuardPostfix
- << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
- << "return MCDisassembler::Fail; }\n";
- break;
- }
-
- bool OpHasCompleteDecoder;
- emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
- if (!OpHasCompleteDecoder)
- HasCompleteDecoder = false;
- }
-}
-
-unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
- unsigned Opc,
- bool &HasCompleteDecoder) const {
- // Build up the predicate string.
- SmallString<256> Decoder;
- // FIXME: emitDecoder() function can take a buffer directly rather than
- // a stream.
- raw_svector_ostream S(Decoder);
- unsigned I = 4;
- emitDecoder(S, I, Opc, HasCompleteDecoder);
-
- // Using the full decoder string as the key value here is a bit
- // heavyweight, but is effective. If the string comparisons become a
- // performance concern, we can implement a mangling of the predicate
- // data easily enough with a map back to the actual string. That's
- // overkill for now, though.
-
- // Make sure the predicate is in the table.
- Decoders.insert(CachedHashString(Decoder));
- // Now figure out the index for when we write out the table.
- DecoderSet::const_iterator P = find(Decoders, Decoder.str());
- return (unsigned)(P - Decoders.begin());
-}
-
-static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
- const std::string &PredicateNamespace) {
- if (str[0] == '!')
- o << "!Bits[" << PredicateNamespace << "::"
- << str.slice(1,str.size()) << "]";
- else
- o << "Bits[" << PredicateNamespace << "::" << str << "]";
-}
-
-bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
- unsigned Opc) const {
- ListInit *Predicates =
- AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
- bool IsFirstEmission = true;
- for (unsigned i = 0; i < Predicates->size(); ++i) {
- Record *Pred = Predicates->getElementAsRecord(i);
- if (!Pred->getValue("AssemblerMatcherPredicate"))
- continue;
-
- StringRef P = Pred->getValueAsString("AssemblerCondString");
-
- if (P.empty())
- continue;
-
- if (!IsFirstEmission)
- o << " && ";
-
- std::pair<StringRef, StringRef> pairs = P.split(',');
- while (!pairs.second.empty()) {
- emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
- o << " && ";
- pairs = pairs.second.split(',');
- }
- emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
- IsFirstEmission = false;
- }
- return !Predicates->empty();
-}
-
-bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
- ListInit *Predicates =
- AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
- for (unsigned i = 0; i < Predicates->size(); ++i) {
- Record *Pred = Predicates->getElementAsRecord(i);
- if (!Pred->getValue("AssemblerMatcherPredicate"))
- continue;
-
- StringRef P = Pred->getValueAsString("AssemblerCondString");
-
- if (P.empty())
- continue;
-
- return true;
- }
- return false;
-}
-
-unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
- StringRef Predicate) const {
- // Using the full predicate string as the key value here is a bit
- // heavyweight, but is effective. If the string comparisons become a
- // performance concern, we can implement a mangling of the predicate
- // data easily enough with a map back to the actual string. That's
- // overkill for now, though.
-
- // Make sure the predicate is in the table.
- TableInfo.Predicates.insert(CachedHashString(Predicate));
- // Now figure out the index for when we write out the table.
- PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
- return (unsigned)(P - TableInfo.Predicates.begin());
-}
-
-void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
- unsigned Opc) const {
- if (!doesOpcodeNeedPredicate(Opc))
- return;
-
- // Build up the predicate string.
- SmallString<256> Predicate;
- // FIXME: emitPredicateMatch() functions can take a buffer directly rather
- // than a stream.
- raw_svector_ostream PS(Predicate);
- unsigned I = 0;
- emitPredicateMatch(PS, I, Opc);
-
- // Figure out the index into the predicate table for the predicate just
- // computed.
- unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
- SmallString<16> PBytes;
- raw_svector_ostream S(PBytes);
- encodeULEB128(PIdx, S);
-
- TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
- // Predicate index
- for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
- TableInfo.Table.push_back(PBytes[i]);
- // Push location for NumToSkip backpatching.
- TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
- TableInfo.Table.push_back(0);
- TableInfo.Table.push_back(0);
- TableInfo.Table.push_back(0);
-}
-
-void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
- unsigned Opc) const {
- BitsInit *SFBits =
- AllInstructions[Opc].EncodingDef->getValueAsBitsInit("SoftFail");
- if (!SFBits) return;
- BitsInit *InstBits =
- AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
-
- APInt PositiveMask(BitWidth, 0ULL);
- APInt NegativeMask(BitWidth, 0ULL);
- for (unsigned i = 0; i < BitWidth; ++i) {
- bit_value_t B = bitFromBits(*SFBits, i);
- bit_value_t IB = bitFromBits(*InstBits, i);
-
- if (B != BIT_TRUE) continue;
-
- switch (IB) {
- case BIT_FALSE:
- // The bit is meant to be false, so emit a check to see if it is true.
- PositiveMask.setBit(i);
- break;
- case BIT_TRUE:
- // The bit is meant to be true, so emit a check to see if it is false.
- NegativeMask.setBit(i);
- break;
- default:
- // The bit is not set; this must be an error!
- errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
- << AllInstructions[Opc] << " is set but Inst{" << i
- << "} is unset!\n"
- << " - You can only mark a bit as SoftFail if it is fully defined"
- << " (1/0 - not '?') in Inst\n";
- return;
- }
- }
-
- bool NeedPositiveMask = PositiveMask.getBoolValue();
- bool NeedNegativeMask = NegativeMask.getBoolValue();
-
- if (!NeedPositiveMask && !NeedNegativeMask)
- return;
-
- TableInfo.Table.push_back(MCD::OPC_SoftFail);
-
- SmallString<16> MaskBytes;
- raw_svector_ostream S(MaskBytes);
- if (NeedPositiveMask) {
- encodeULEB128(PositiveMask.getZExtValue(), S);
- for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
- TableInfo.Table.push_back(MaskBytes[i]);
- } else
- TableInfo.Table.push_back(0);
- if (NeedNegativeMask) {
- MaskBytes.clear();
- encodeULEB128(NegativeMask.getZExtValue(), S);
- for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
- TableInfo.Table.push_back(MaskBytes[i]);
- } else
- TableInfo.Table.push_back(0);
-}
-
-// Emits table entries to decode the singleton.
-void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
- unsigned Opc) const {
- std::vector<unsigned> StartBits;
- std::vector<unsigned> EndBits;
- std::vector<uint64_t> FieldVals;
- insn_t Insn;
- insnWithID(Insn, Opc);
-
- // Look for islands of undecoded bits of the singleton.
- getIslands(StartBits, EndBits, FieldVals, Insn);
-
- unsigned Size = StartBits.size();
-
- // Emit the predicate table entry if one is needed.
- emitPredicateTableEntry(TableInfo, Opc);
-
- // Check any additional encoding fields needed.
- for (unsigned I = Size; I != 0; --I) {
- unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
- TableInfo.Table.push_back(MCD::OPC_CheckField);
- TableInfo.Table.push_back(StartBits[I-1]);
- TableInfo.Table.push_back(NumBits);
- uint8_t Buffer[16], *p;
- encodeULEB128(FieldVals[I-1], Buffer);
- for (p = Buffer; *p >= 128 ; ++p)
- TableInfo.Table.push_back(*p);
- TableInfo.Table.push_back(*p);
- // Push location for NumToSkip backpatching.
- TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
- // The fixup is always 24-bits, so go ahead and allocate the space
- // in the table so all our relative position calculations work OK even
- // before we fully resolve the real value here.
- TableInfo.Table.push_back(0);
- TableInfo.Table.push_back(0);
- TableInfo.Table.push_back(0);
- }
-
- // Check for soft failure of the match.
- emitSoftFailTableEntry(TableInfo, Opc);
-
- bool HasCompleteDecoder;
- unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc, HasCompleteDecoder);
-
- // Produce OPC_Decode or OPC_TryDecode opcode based on the information
- // whether the instruction decoder is complete or not. If it is complete
- // then it handles all possible values of remaining variable/unfiltered bits
- // and for any value can determine if the bitpattern is a valid instruction
- // or not. This means OPC_Decode will be the final step in the decoding
- // process. If it is not complete, then the Fail return code from the
- // decoder method indicates that additional processing should be done to see
- // if there is any other instruction that also matches the bitpattern and
- // can decode it.
- TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
- MCD::OPC_TryDecode);
- uint8_t Buffer[16], *p;
- encodeULEB128(Opc, Buffer);
- for (p = Buffer; *p >= 128 ; ++p)
- TableInfo.Table.push_back(*p);
- TableInfo.Table.push_back(*p);
-
- SmallString<16> Bytes;
- raw_svector_ostream S(Bytes);
- encodeULEB128(DIdx, S);
-
- // Decoder index
- for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
- TableInfo.Table.push_back(Bytes[i]);
-
- if (!HasCompleteDecoder) {
- // Push location for NumToSkip backpatching.
- TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
- // Allocate the space for the fixup.
- TableInfo.Table.push_back(0);
- TableInfo.Table.push_back(0);
- TableInfo.Table.push_back(0);
- }
-}
-
-// Emits table entries to decode the singleton, and then to decode the rest.
-void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
- const Filter &Best) const {
- unsigned Opc = Best.getSingletonOpc();
-
- // complex singletons need predicate checks from the first singleton
- // to refer forward to the variable filterchooser that follows.
- TableInfo.FixupStack.emplace_back();
-
- emitSingletonTableEntry(TableInfo, Opc);
-
- resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
- TableInfo.Table.size());
- TableInfo.FixupStack.pop_back();
-
- Best.getVariableFC().emitTableEntries(TableInfo);
-}
-
-// Assign a single filter and run with it. Top level API client can initialize
-// with a single filter to start the filtering process.
-void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
- bool mixed) {
- Filters.clear();
- Filters.emplace_back(*this, startBit, numBit, true);
- BestIndex = 0; // Sole Filter instance to choose from.
- bestFilter().recurse();
-}
-
-// reportRegion is a helper function for filterProcessor to mark a region as
-// eligible for use as a filter region.
-void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
- unsigned BitIndex, bool AllowMixed) {
- if (RA == ATTR_MIXED && AllowMixed)
- Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
- else if (RA == ATTR_ALL_SET && !AllowMixed)
- Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
-}
-
-// FilterProcessor scans the well-known encoding bits of the instructions and
-// builds up a list of candidate filters. It chooses the best filter and
-// recursively descends down the decoding tree.
-bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
- Filters.clear();
- BestIndex = -1;
- unsigned numInstructions = Opcodes.size();
-
- assert(numInstructions && "Filter created with no instructions");
-
- // No further filtering is necessary.
- if (numInstructions == 1)
- return true;
-
- // Heuristics. See also doFilter()'s "Heuristics" comment when num of
- // instructions is 3.
- if (AllowMixed && !Greedy) {
- assert(numInstructions == 3);
-
- for (unsigned i = 0; i < Opcodes.size(); ++i) {
- std::vector<unsigned> StartBits;
- std::vector<unsigned> EndBits;
- std::vector<uint64_t> FieldVals;
- insn_t Insn;
-
- insnWithID(Insn, Opcodes[i]);
-
- // Look for islands of undecoded bits of any instruction.
- if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
- // Found an instruction with island(s). Now just assign a filter.
- runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
- return true;
- }
- }
- }
-
- unsigned BitIndex;
-
- // We maintain BIT_WIDTH copies of the bitAttrs automaton.
- // The automaton consumes the corresponding bit from each
- // instruction.
- //
- // Input symbols: 0, 1, and _ (unset).
- // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
- // Initial state: NONE.
- //
- // (NONE) ------- [01] -> (ALL_SET)
- // (NONE) ------- _ ----> (ALL_UNSET)
- // (ALL_SET) ---- [01] -> (ALL_SET)
- // (ALL_SET) ---- _ ----> (MIXED)
- // (ALL_UNSET) -- [01] -> (MIXED)
- // (ALL_UNSET) -- _ ----> (ALL_UNSET)
- // (MIXED) ------ . ----> (MIXED)
- // (FILTERED)---- . ----> (FILTERED)
-
- std::vector<bitAttr_t> bitAttrs;
-
- // FILTERED bit positions provide no entropy and are not worthy of pursuing.
- // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
- for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
- if (FilterBitValues[BitIndex] == BIT_TRUE ||
- FilterBitValues[BitIndex] == BIT_FALSE)
- bitAttrs.push_back(ATTR_FILTERED);
- else
- bitAttrs.push_back(ATTR_NONE);
-
- for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
- insn_t insn;
-
- insnWithID(insn, Opcodes[InsnIndex]);
-
- for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
- switch (bitAttrs[BitIndex]) {
- case ATTR_NONE:
- if (insn[BitIndex] == BIT_UNSET)
- bitAttrs[BitIndex] = ATTR_ALL_UNSET;
- else
- bitAttrs[BitIndex] = ATTR_ALL_SET;
- break;
- case ATTR_ALL_SET:
- if (insn[BitIndex] == BIT_UNSET)
- bitAttrs[BitIndex] = ATTR_MIXED;
- break;
- case ATTR_ALL_UNSET:
- if (insn[BitIndex] != BIT_UNSET)
- bitAttrs[BitIndex] = ATTR_MIXED;
- break;
- case ATTR_MIXED:
- case ATTR_FILTERED:
- break;
- }
- }
- }
-
- // The regionAttr automaton consumes the bitAttrs automatons' state,
- // lowest-to-highest.
- //
- // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
- // States: NONE, ALL_SET, MIXED
- // Initial state: NONE
- //
- // (NONE) ----- F --> (NONE)
- // (NONE) ----- S --> (ALL_SET) ; and set region start
- // (NONE) ----- U --> (NONE)
- // (NONE) ----- M --> (MIXED) ; and set region start
- // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
- // (ALL_SET) -- S --> (ALL_SET)
- // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
- // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
- // (MIXED) ---- F --> (NONE) ; and report a MIXED region
- // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
- // (MIXED) ---- U --> (NONE) ; and report a MIXED region
- // (MIXED) ---- M --> (MIXED)
-
- bitAttr_t RA = ATTR_NONE;
- unsigned StartBit = 0;
-
- for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
- bitAttr_t bitAttr = bitAttrs[BitIndex];
-
- assert(bitAttr != ATTR_NONE && "Bit without attributes");
-
- switch (RA) {
- case ATTR_NONE:
- switch (bitAttr) {
- case ATTR_FILTERED:
- break;
- case ATTR_ALL_SET:
- StartBit = BitIndex;
- RA = ATTR_ALL_SET;
- break;
- case ATTR_ALL_UNSET:
- break;
- case ATTR_MIXED:
- StartBit = BitIndex;
- RA = ATTR_MIXED;
- break;
- default:
- llvm_unreachable("Unexpected bitAttr!");
- }
- break;
- case ATTR_ALL_SET:
- switch (bitAttr) {
- case ATTR_FILTERED:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- RA = ATTR_NONE;
- break;
- case ATTR_ALL_SET:
- break;
- case ATTR_ALL_UNSET:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- RA = ATTR_NONE;
- break;
- case ATTR_MIXED:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- StartBit = BitIndex;
- RA = ATTR_MIXED;
- break;
- default:
- llvm_unreachable("Unexpected bitAttr!");
- }
- break;
- case ATTR_MIXED:
- switch (bitAttr) {
- case ATTR_FILTERED:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- StartBit = BitIndex;
- RA = ATTR_NONE;
- break;
- case ATTR_ALL_SET:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- StartBit = BitIndex;
- RA = ATTR_ALL_SET;
- break;
- case ATTR_ALL_UNSET:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- RA = ATTR_NONE;
- break;
- case ATTR_MIXED:
- break;
- default:
- llvm_unreachable("Unexpected bitAttr!");
- }
- break;
- case ATTR_ALL_UNSET:
- llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
- case ATTR_FILTERED:
- llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
- }
- }
-
- // At the end, if we're still in ALL_SET or MIXED states, report a region
- switch (RA) {
- case ATTR_NONE:
- break;
- case ATTR_FILTERED:
- break;
- case ATTR_ALL_SET:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- break;
- case ATTR_ALL_UNSET:
- break;
- case ATTR_MIXED:
- reportRegion(RA, StartBit, BitIndex, AllowMixed);
- break;
- }
-
- // We have finished with the filter processings. Now it's time to choose
- // the best performing filter.
- BestIndex = 0;
- bool AllUseless = true;
- unsigned BestScore = 0;
-
- for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
- unsigned Usefulness = Filters[i].usefulness();
-
- if (Usefulness)
- AllUseless = false;
-
- if (Usefulness > BestScore) {
- BestIndex = i;
- BestScore = Usefulness;
- }
- }
-
- if (!AllUseless)
- bestFilter().recurse();
-
- return !AllUseless;
-} // end of FilterChooser::filterProcessor(bool)
-
-// Decides on the best configuration of filter(s) to use in order to decode
-// the instructions. A conflict of instructions may occur, in which case we
-// dump the conflict set to the standard error.
-void FilterChooser::doFilter() {
- unsigned Num = Opcodes.size();
- assert(Num && "FilterChooser created with no instructions");
-
- // Try regions of consecutive known bit values first.
- if (filterProcessor(false))
- return;
-
- // Then regions of mixed bits (both known and unitialized bit values allowed).
- if (filterProcessor(true))
- return;
-
- // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
- // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
- // well-known encoding pattern. In such case, we backtrack and scan for the
- // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
- if (Num == 3 && filterProcessor(true, false))
- return;
-
- // If we come to here, the instruction decoding has failed.
- // Set the BestIndex to -1 to indicate so.
- BestIndex = -1;
-}
-
-// emitTableEntries - Emit state machine entries to decode our share of
-// instructions.
-void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
- if (Opcodes.size() == 1) {
- // There is only one instruction in the set, which is great!
- // Call emitSingletonDecoder() to see whether there are any remaining
- // encodings bits.
- emitSingletonTableEntry(TableInfo, Opcodes[0]);
- return;
- }
-
- // Choose the best filter to do the decodings!
- if (BestIndex != -1) {
- const Filter &Best = Filters[BestIndex];
- if (Best.getNumFiltered() == 1)
- emitSingletonTableEntry(TableInfo, Best);
- else
- Best.emitTableEntry(TableInfo);
- return;
- }
-
- // We don't know how to decode these instructions! Dump the
- // conflict set and bail.
-
- // Print out useful conflict information for postmortem analysis.
- errs() << "Decoding Conflict:\n";
-
- dumpStack(errs(), "\t\t");
-
- for (unsigned i = 0; i < Opcodes.size(); ++i) {
- errs() << '\t' << AllInstructions[Opcodes[i]] << " ";
- dumpBits(errs(),
- getBitsField(*AllInstructions[Opcodes[i]].EncodingDef, "Inst"));
- errs() << '\n';
- }
-}
-
-static std::string findOperandDecoderMethod(TypedInit *TI) {
- std::string Decoder;
-
- Record *Record = cast<DefInit>(TI)->getDef();
-
- RecordVal *DecoderString = Record->getValue("DecoderMethod");
- StringInit *String = DecoderString ?
- dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
- if (String) {
- Decoder = String->getValue();
- if (!Decoder.empty())
- return Decoder;
- }
-
- if (Record->isSubClassOf("RegisterOperand"))
- Record = Record->getValueAsDef("RegClass");
-
- if (Record->isSubClassOf("RegisterClass")) {
- Decoder = "Decode" + Record->getName().str() + "RegisterClass";
- } else if (Record->isSubClassOf("PointerLikeRegClass")) {
- Decoder = "DecodePointerLikeRegClass" +
- utostr(Record->getValueAsInt("RegClassKind"));
- }
-
- return Decoder;
-}
-
-static bool populateInstruction(CodeGenTarget &Target,
- const CodeGenInstruction &CGI, unsigned Opc,
- std::map<unsigned, std::vector<OperandInfo>> &Operands){
- const Record &Def = *CGI.TheDef;
- // If all the bit positions are not specified; do not decode this instruction.
- // We are bound to fail! For proper disassembly, the well-known encoding bits
- // of the instruction must be fully specified.
-
- BitsInit &Bits = getBitsField(Def, "Inst");
- if (Bits.allInComplete()) return false;
-
- std::vector<OperandInfo> InsnOperands;
-
- // If the instruction has specified a custom decoding hook, use that instead
- // of trying to auto-generate the decoder.
- StringRef InstDecoder = Def.getValueAsString("DecoderMethod");
- if (InstDecoder != "") {
- bool HasCompleteInstDecoder = Def.getValueAsBit("hasCompleteDecoder");
- InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder));
- Operands[Opc] = InsnOperands;
- return true;
- }
-
- // Generate a description of the operand of the instruction that we know
- // how to decode automatically.
- // FIXME: We'll need to have a way to manually override this as needed.
-
- // Gather the outputs/inputs of the instruction, so we can find their
- // positions in the encoding. This assumes for now that they appear in the
- // MCInst in the order that they're listed.
- std::vector<std::pair<Init*, StringRef>> InOutOperands;
- DagInit *Out = Def.getValueAsDag("OutOperandList");
- DagInit *In = Def.getValueAsDag("InOperandList");
- for (unsigned i = 0; i < Out->getNumArgs(); ++i)
- InOutOperands.push_back(std::make_pair(Out->getArg(i),
- Out->getArgNameStr(i)));
- for (unsigned i = 0; i < In->getNumArgs(); ++i)
- InOutOperands.push_back(std::make_pair(In->getArg(i),
- In->getArgNameStr(i)));
-
- // Search for tied operands, so that we can correctly instantiate
- // operands that are not explicitly represented in the encoding.
- std::map<std::string, std::string> TiedNames;
- for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
- int tiedTo = CGI.Operands[i].getTiedRegister();
- if (tiedTo != -1) {
- std::pair<unsigned, unsigned> SO =
- CGI.Operands.getSubOperandNumber(tiedTo);
- TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
- TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
- }
- }
-
- std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
- std::set<std::string> NumberedInsnOperandsNoTie;
- if (Target.getInstructionSet()->
- getValueAsBit("decodePositionallyEncodedOperands")) {
- const std::vector<RecordVal> &Vals = Def.getValues();
- unsigned NumberedOp = 0;
-
- std::set<unsigned> NamedOpIndices;
- if (Target.getInstructionSet()->
- getValueAsBit("noNamedPositionallyEncodedOperands"))
- // Collect the set of operand indices that might correspond to named
- // operand, and skip these when assigning operands based on position.
- for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
- unsigned OpIdx;
- if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
- continue;
-
- NamedOpIndices.insert(OpIdx);
- }
-
- for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
- // Ignore fixed fields in the record, we're looking for values like:
- // bits<5> RST = { ?, ?, ?, ?, ? };
- if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
- continue;
-
- // Determine if Vals[i] actually contributes to the Inst encoding.
- unsigned bi = 0;
- for (; bi < Bits.getNumBits(); ++bi) {
- VarInit *Var = nullptr;
- VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
- if (BI)
- Var = dyn_cast<VarInit>(BI->getBitVar());
- else
- Var = dyn_cast<VarInit>(Bits.getBit(bi));
-
- if (Var && Var->getName() == Vals[i].getName())
- break;
- }
-
- if (bi == Bits.getNumBits())
- continue;
-
- // Skip variables that correspond to explicitly-named operands.
- unsigned OpIdx;
- if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
- continue;
-
- // Get the bit range for this operand:
- unsigned bitStart = bi++, bitWidth = 1;
- for (; bi < Bits.getNumBits(); ++bi) {
- VarInit *Var = nullptr;
- VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
- if (BI)
- Var = dyn_cast<VarInit>(BI->getBitVar());
- else
- Var = dyn_cast<VarInit>(Bits.getBit(bi));
-
- if (!Var)
- break;
-
- if (Var->getName() != Vals[i].getName())
- break;
-
- ++bitWidth;
- }
-
- unsigned NumberOps = CGI.Operands.size();
- while (NumberedOp < NumberOps &&
- (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
- (!NamedOpIndices.empty() && NamedOpIndices.count(
- CGI.Operands.getSubOperandNumber(NumberedOp).first))))
- ++NumberedOp;
-
- OpIdx = NumberedOp++;
-
- // OpIdx now holds the ordered operand number of Vals[i].
- std::pair<unsigned, unsigned> SO =
- CGI.Operands.getSubOperandNumber(OpIdx);
- const std::string &Name = CGI.Operands[SO.first].Name;
-
- LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
- << ": " << Name << "(" << SO.first << ", " << SO.second
- << ") => " << Vals[i].getName() << "\n");
-
- std::string Decoder;
- Record *TypeRecord = CGI.Operands[SO.first].Rec;
-
- RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
- StringInit *String = DecoderString ?
- dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
- if (String && String->getValue() != "")
- Decoder = String->getValue();
-
- if (Decoder == "" &&
- CGI.Operands[SO.first].MIOperandInfo &&
- CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
- Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
- getArg(SO.second);
- if (DefInit *DI = cast<DefInit>(Arg))
- TypeRecord = DI->getDef();
- }
-
- bool isReg = false;
- if (TypeRecord->isSubClassOf("RegisterOperand"))
- TypeRecord = TypeRecord->getValueAsDef("RegClass");
- if (TypeRecord->isSubClassOf("RegisterClass")) {
- Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
- isReg = true;
- } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
- Decoder = "DecodePointerLikeRegClass" +
- utostr(TypeRecord->getValueAsInt("RegClassKind"));
- isReg = true;
- }
-
- DecoderString = TypeRecord->getValue("DecoderMethod");
- String = DecoderString ?
- dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
- if (!isReg && String && String->getValue() != "")
- Decoder = String->getValue();
-
- RecordVal *HasCompleteDecoderVal =
- TypeRecord->getValue("hasCompleteDecoder");
- BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
- dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
- bool HasCompleteDecoder = HasCompleteDecoderBit ?
- HasCompleteDecoderBit->getValue() : true;
-
- OperandInfo OpInfo(Decoder, HasCompleteDecoder);
- OpInfo.addField(bitStart, bitWidth, 0);
-
- NumberedInsnOperands[Name].push_back(OpInfo);
-
- // FIXME: For complex operands with custom decoders we can't handle tied
- // sub-operands automatically. Skip those here and assume that this is
- // fixed up elsewhere.
- if (CGI.Operands[SO.first].MIOperandInfo &&
- CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
- String && String->getValue() != "")
- NumberedInsnOperandsNoTie.insert(Name);
- }
- }
-
- // For each operand, see if we can figure out where it is encoded.
- for (const auto &Op : InOutOperands) {
- if (!NumberedInsnOperands[Op.second].empty()) {
- InsnOperands.insert(InsnOperands.end(),
- NumberedInsnOperands[Op.second].begin(),
- NumberedInsnOperands[Op.second].end());
- continue;
- }
- if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
- if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
- // Figure out to which (sub)operand we're tied.
- unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
- int tiedTo = CGI.Operands[i].getTiedRegister();
- if (tiedTo == -1) {
- i = CGI.Operands.getOperandNamed(Op.second);
- tiedTo = CGI.Operands[i].getTiedRegister();
- }
-
- if (tiedTo != -1) {
- std::pair<unsigned, unsigned> SO =
- CGI.Operands.getSubOperandNumber(tiedTo);
-
- InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
- [SO.second]);
- }
- }
- continue;
- }
-
- TypedInit *TI = cast<TypedInit>(Op.first);
-
- // At this point, we can locate the decoder field, but we need to know how
- // to interpret it. As a first step, require the target to provide
- // callbacks for decoding register classes.
- std::string Decoder = findOperandDecoderMethod(TI);
- Record *TypeRecord = cast<DefInit>(TI)->getDef();
-
- RecordVal *HasCompleteDecoderVal =
- TypeRecord->getValue("hasCompleteDecoder");
- BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
- dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
- bool HasCompleteDecoder = HasCompleteDecoderBit ?
- HasCompleteDecoderBit->getValue() : true;
-
- OperandInfo OpInfo(Decoder, HasCompleteDecoder);
- unsigned Base = ~0U;
- unsigned Width = 0;
- unsigned Offset = 0;
-
- for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
- VarInit *Var = nullptr;
- VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
- if (BI)
- Var = dyn_cast<VarInit>(BI->getBitVar());
- else
- Var = dyn_cast<VarInit>(Bits.getBit(bi));
-
- if (!Var) {
- if (Base != ~0U) {
- OpInfo.addField(Base, Width, Offset);
- Base = ~0U;
- Width = 0;
- Offset = 0;
- }
- continue;
- }
-
- if (Var->getName() != Op.second &&
- Var->getName() != TiedNames[Op.second]) {
- if (Base != ~0U) {
- OpInfo.addField(Base, Width, Offset);
- Base = ~0U;
- Width = 0;
- Offset = 0;
- }
- continue;
- }
-
- if (Base == ~0U) {
- Base = bi;
- Width = 1;
- Offset = BI ? BI->getBitNum() : 0;
- } else if (BI && BI->getBitNum() != Offset + Width) {
- OpInfo.addField(Base, Width, Offset);
- Base = bi;
- Width = 1;
- Offset = BI->getBitNum();
- } else {
- ++Width;
- }
- }
-
- if (Base != ~0U)
- OpInfo.addField(Base, Width, Offset);
-
- if (OpInfo.numFields() > 0)
- InsnOperands.push_back(OpInfo);
- }
-
- Operands[Opc] = InsnOperands;
-
-#if 0
- LLVM_DEBUG({
- // Dumps the instruction encoding bits.
- dumpBits(errs(), Bits);
-
- errs() << '\n';
-
- // Dumps the list of operand info.
- for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
- const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
- const std::string &OperandName = Info.Name;
- const Record &OperandDef = *Info.Rec;
-
- errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
- }
- });
-#endif
-
- return true;
-}
-
-// emitFieldFromInstruction - Emit the templated helper function
-// fieldFromInstruction().
-// On Windows we make sure that this function is not inlined when
-// using the VS compiler. It has a bug which causes the function
-// to be optimized out in some circustances. See llvm.org/pr38292
-static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
- OS << "// Helper functions for extracting fields from encoded instructions.\n"
- << "// InsnType must either be integral or an APInt-like object that "
- "must:\n"
- << "// * Have a static const max_size_in_bits equal to the number of bits "
- "in the\n"
- << "// encoding.\n"
- << "// * be default-constructible and copy-constructible\n"
- << "// * be constructible from a uint64_t\n"
- << "// * be constructible from an APInt (this can be private)\n"
- << "// * Support getBitsSet(loBit, hiBit)\n"
- << "// * be convertible to uint64_t\n"
- << "// * Support the ~, &, ==, !=, and |= operators with other objects of "
- "the same type\n"
- << "// * Support shift (<<, >>) with signed and unsigned integers on the "
- "RHS\n"
- << "// * Support put (<<) to raw_ostream&\n"
- << "template<typename InsnType>\n"
- << "#if defined(_MSC_VER) && !defined(__clang__)\n"
- << "__declspec(noinline)\n"
- << "#endif\n"
- << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
- "startBit,\n"
- << " unsigned numBits, "
- "std::true_type) {\n"
- << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
- "extractions!\");\n"
- << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
- << " \"Instruction field out of bounds!\");\n"
- << " InsnType fieldMask;\n"
- << " if (numBits == sizeof(InsnType) * 8)\n"
- << " fieldMask = (InsnType)(-1LL);\n"
- << " else\n"
- << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
- << " return (insn & fieldMask) >> startBit;\n"
- << "}\n"
- << "\n"
- << "template<typename InsnType>\n"
- << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
- "startBit,\n"
- << " unsigned numBits, "
- "std::false_type) {\n"
- << " assert(startBit + numBits <= InsnType::max_size_in_bits && "
- "\"Instruction field out of bounds!\");\n"
- << " InsnType fieldMask = InsnType::getBitsSet(0, numBits);\n"
- << " return (insn >> startBit) & fieldMask;\n"
- << "}\n"
- << "\n"
- << "template<typename InsnType>\n"
- << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
- "startBit,\n"
- << " unsigned numBits) {\n"
- << " return fieldFromInstruction(insn, startBit, numBits, "
- "std::is_integral<InsnType>());\n"
- << "}\n\n";
-}
-
-// emitDecodeInstruction - Emit the templated helper function
-// decodeInstruction().
-static void emitDecodeInstruction(formatted_raw_ostream &OS) {
- OS << "template<typename InsnType>\n"
- << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
- "MCInst &MI,\n"
- << " InsnType insn, uint64_t "
- "Address,\n"
- << " const void *DisAsm,\n"
- << " const MCSubtargetInfo &STI) {\n"
- << " const FeatureBitset& Bits = STI.getFeatureBits();\n"
- << "\n"
- << " const uint8_t *Ptr = DecodeTable;\n"
- << " uint32_t CurFieldValue = 0;\n"
- << " DecodeStatus S = MCDisassembler::Success;\n"
- << " while (true) {\n"
- << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
- << " switch (*Ptr) {\n"
- << " default:\n"
- << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
- << " return MCDisassembler::Fail;\n"
- << " case MCD::OPC_ExtractField: {\n"
- << " unsigned Start = *++Ptr;\n"
- << " unsigned Len = *++Ptr;\n"
- << " ++Ptr;\n"
- << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
- "\", \"\n"
- << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
- << " break;\n"
- << " }\n"
- << " case MCD::OPC_FilterValue: {\n"
- << " // Decode the field value.\n"
- << " unsigned Len;\n"
- << " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " // NumToSkip is a plain 24-bit integer.\n"
- << " unsigned NumToSkip = *Ptr++;\n"
- << " NumToSkip |= (*Ptr++) << 8;\n"
- << " NumToSkip |= (*Ptr++) << 16;\n"
- << "\n"
- << " // Perform the filter operation.\n"
- << " if (Val != CurFieldValue)\n"
- << " Ptr += NumToSkip;\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
- "\", \" << NumToSkip\n"
- << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
- ": \"PASS:\")\n"
- << " << \" continuing at \" << (Ptr - DecodeTable) << "
- "\"\\n\");\n"
- << "\n"
- << " break;\n"
- << " }\n"
- << " case MCD::OPC_CheckField: {\n"
- << " unsigned Start = *++Ptr;\n"
- << " unsigned Len = *++Ptr;\n"
- << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
- << " // Decode the field value.\n"
- << " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " // NumToSkip is a plain 24-bit integer.\n"
- << " unsigned NumToSkip = *Ptr++;\n"
- << " NumToSkip |= (*Ptr++) << 8;\n"
- << " NumToSkip |= (*Ptr++) << 16;\n"
- << "\n"
- << " // If the actual and expected values don't match, skip.\n"
- << " if (ExpectedValue != FieldValue)\n"
- << " Ptr += NumToSkip;\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
- "\", \"\n"
- << " << Len << \", \" << ExpectedValue << \", \" << "
- "NumToSkip\n"
- << " << \"): FieldValue = \" << FieldValue << \", "
- "ExpectedValue = \"\n"
- << " << ExpectedValue << \": \"\n"
- << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
- "\"FAIL\\n\"));\n"
- << " break;\n"
- << " }\n"
- << " case MCD::OPC_CheckPredicate: {\n"
- << " unsigned Len;\n"
- << " // Decode the Predicate Index value.\n"
- << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " // NumToSkip is a plain 24-bit integer.\n"
- << " unsigned NumToSkip = *Ptr++;\n"
- << " NumToSkip |= (*Ptr++) << 8;\n"
- << " NumToSkip |= (*Ptr++) << 16;\n"
- << " // Check the predicate.\n"
- << " bool Pred;\n"
- << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
- << " Ptr += NumToSkip;\n"
- << " (void)Pred;\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
- "<< \"): \"\n"
- << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
- << "\n"
- << " break;\n"
- << " }\n"
- << " case MCD::OPC_Decode: {\n"
- << " unsigned Len;\n"
- << " // Decode the Opcode value.\n"
- << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << "\n"
- << " MI.clear();\n"
- << " MI.setOpcode(Opc);\n"
- << " bool DecodeComplete;\n"
- << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
- "DecodeComplete);\n"
- << " assert(DecodeComplete);\n"
- << "\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
- << " << \", using decoder \" << DecodeIdx << \": \"\n"
- << " << (S != MCDisassembler::Fail ? \"PASS\" : "
- "\"FAIL\") << \"\\n\");\n"
- << " return S;\n"
- << " }\n"
- << " case MCD::OPC_TryDecode: {\n"
- << " unsigned Len;\n"
- << " // Decode the Opcode value.\n"
- << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " // NumToSkip is a plain 24-bit integer.\n"
- << " unsigned NumToSkip = *Ptr++;\n"
- << " NumToSkip |= (*Ptr++) << 8;\n"
- << " NumToSkip |= (*Ptr++) << 16;\n"
- << "\n"
- << " // Perform the decode operation.\n"
- << " MCInst TmpMI;\n"
- << " TmpMI.setOpcode(Opc);\n"
- << " bool DecodeComplete;\n"
- << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
- "DecodeComplete);\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
- "Opc\n"
- << " << \", using decoder \" << DecodeIdx << \": \");\n"
- << "\n"
- << " if (DecodeComplete) {\n"
- << " // Decoding complete.\n"
- << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
- "\"FAIL\") << \"\\n\");\n"
- << " MI = TmpMI;\n"
- << " return S;\n"
- << " } else {\n"
- << " assert(S == MCDisassembler::Fail);\n"
- << " // If the decoding was incomplete, skip.\n"
- << " Ptr += NumToSkip;\n"
- << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
- "DecodeTable) << \"\\n\");\n"
- << " // Reset decode status. This also drops a SoftFail status "
- "that could be\n"
- << " // set before the decode attempt.\n"
- << " S = MCDisassembler::Success;\n"
- << " }\n"
- << " break;\n"
- << " }\n"
- << " case MCD::OPC_SoftFail: {\n"
- << " // Decode the mask values.\n"
- << " unsigned Len;\n"
- << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
- << " Ptr += Len;\n"
- << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
- << " if (Fail)\n"
- << " S = MCDisassembler::SoftFail;\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
- "\"FAIL\\n\":\"PASS\\n\"));\n"
- << " break;\n"
- << " }\n"
- << " case MCD::OPC_Fail: {\n"
- << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
- << " return MCDisassembler::Fail;\n"
- << " }\n"
- << " }\n"
- << " }\n"
- << " llvm_unreachable(\"bogosity detected in disassembler state "
- "machine!\");\n"
- << "}\n\n";
-}
-
-// Emits disassembler code for instruction decoding.
-void FixedLenDecoderEmitter::run(raw_ostream &o) {
- formatted_raw_ostream OS(o);
- OS << "#include \"llvm/MC/MCInst.h\"\n";
- OS << "#include \"llvm/Support/Debug.h\"\n";
- OS << "#include \"llvm/Support/DataTypes.h\"\n";
- OS << "#include \"llvm/Support/LEB128.h\"\n";
- OS << "#include \"llvm/Support/raw_ostream.h\"\n";
- OS << "#include <assert.h>\n";
- OS << '\n';
- OS << "namespace llvm {\n\n";
-
- emitFieldFromInstruction(OS);
-
- Target.reverseBitsForLittleEndianEncoding();
-
- // Parameterize the decoders based on namespace and instruction width.
- const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
- NumberedEncodings.reserve(NumberedInstructions.size());
- for (const auto &NumberedInstruction : NumberedInstructions)
- NumberedEncodings.emplace_back(NumberedInstruction->TheDef, NumberedInstruction);
-
- std::map<std::pair<std::string, unsigned>,
- std::vector<unsigned>> OpcMap;
- std::map<unsigned, std::vector<OperandInfo>> Operands;
-
- for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
- const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
- const Record *Def = Inst->TheDef;
- unsigned Size = Def->getValueAsInt("Size");
- if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
- Def->getValueAsBit("isPseudo") ||
- Def->getValueAsBit("isAsmParserOnly") ||
- Def->getValueAsBit("isCodeGenOnly"))
- continue;
-
- StringRef DecoderNamespace = Def->getValueAsString("DecoderNamespace");
-
- if (Size) {
- if (populateInstruction(Target, *Inst, i, Operands)) {
- OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
- }
- }
- }
-
- DecoderTableInfo TableInfo;
- for (const auto &Opc : OpcMap) {
- // Emit the decoder for this namespace+width combination.
- ArrayRef<EncodingAndInst> NumberedEncodingsRef(NumberedEncodings.data(),
- NumberedEncodings.size());
- FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
- 8 * Opc.first.second, this);
-
- // The decode table is cleared for each top level decoder function. The
- // predicates and decoders themselves, however, are shared across all
- // decoders to give more opportunities for uniqueing.
- TableInfo.Table.clear();
- TableInfo.FixupStack.clear();
- TableInfo.Table.reserve(16384);
- TableInfo.FixupStack.emplace_back();
- FC.emitTableEntries(TableInfo);
- // Any NumToSkip fixups in the top level scope can resolve to the
- // OPC_Fail at the end of the table.
- assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
- // Resolve any NumToSkip fixups in the current scope.
- resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
- TableInfo.Table.size());
- TableInfo.FixupStack.clear();
-
- TableInfo.Table.push_back(MCD::OPC_Fail);
-
- // Print the table to the output stream.
- emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
- OS.flush();
- }
-
- // Emit the predicate function.
- emitPredicateFunction(OS, TableInfo.Predicates, 0);
-
- // Emit the decoder function.
- emitDecoderFunction(OS, TableInfo.Decoders, 0);
-
- // Emit the main entry point for the decoder, decodeInstruction().
- emitDecodeInstruction(OS);
-
- OS << "\n} // End llvm namespace\n";
-}
-
-namespace llvm {
-
-void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
- const std::string &PredicateNamespace,
- const std::string &GPrefix,
- const std::string &GPostfix, const std::string &ROK,
- const std::string &RFail, const std::string &L) {
- FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
- ROK, RFail, L).run(OS);
-}
-
-} // end namespace llvm