diff options
| author | 2017-02-05 00:31:51 +0000 | |
|---|---|---|
| committer | 2017-02-05 00:31:51 +0000 | |
| commit | b8851fcc53cbe24fd20b090f26dd149e353f6174 (patch) | |
| tree | 4b7c1695865f00ab7a0da30b5632d514848ea3a2 /gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt.pm | |
| parent | Add option PCIVERBOSE. (diff) | |
| download | wireguard-openbsd-b8851fcc53cbe24fd20b090f26dd149e353f6174.tar.xz wireguard-openbsd-b8851fcc53cbe24fd20b090f26dd149e353f6174.zip | |
Fix merge issues, remove excess files - match perl-5.24.1 dist
Diffstat (limited to 'gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt.pm')
| -rw-r--r-- | gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt.pm | 5733 |
1 files changed, 5733 insertions, 0 deletions
diff --git a/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt.pm b/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt.pm new file mode 100644 index 00000000000..a50b37e832a --- /dev/null +++ b/gnu/usr.bin/perl/cpan/Math-BigInt/lib/Math/BigInt.pm @@ -0,0 +1,5733 @@ +package Math::BigInt; + +# +# "Mike had an infinite amount to do and a negative amount of time in which +# to do it." - Before and After +# + +# The following hash values are used: +# value: unsigned int with actual value (as a Math::BigInt::Calc or similar) +# sign : +,-,NaN,+inf,-inf +# _a : accuracy +# _p : precision +# _f : flags, used by MBF to flag parts of a float as untouchable + +# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since +# underlying lib might change the reference! + +use 5.006001; +use strict; +use warnings; + +our $VERSION = '1.999715'; +$VERSION = eval $VERSION; + +our @ISA = qw(Exporter); +our @EXPORT_OK = qw(objectify bgcd blcm); + +# _trap_inf and _trap_nan are internal and should never be accessed from the +# outside +our ($round_mode, $accuracy, $precision, $div_scale, $rnd_mode, + $upgrade, $downgrade, $_trap_nan, $_trap_inf); + +my $class = "Math::BigInt"; + +# Inside overload, the first arg is always an object. If the original code had +# it reversed (like $x = 2 * $y), then the third parameter is true. +# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes +# no difference, but in some cases it does. + +# For overloaded ops with only one argument we simple use $_[0]->copy() to +# preserve the argument. + +# Thus inheritance of overload operators becomes possible and transparent for +# our subclasses without the need to repeat the entire overload section there. + +# We register ops that are not registerable yet, so suppress warnings +{ no warnings; +use overload +'=' => sub { $_[0]->copy(); }, + +# some shortcuts for speed (assumes that reversed order of arguments is routed +# to normal '+' and we thus can always modify first arg. If this is changed, +# this breaks and must be adjusted.) +'+=' => sub { $_[0]->badd($_[1]); }, +'-=' => sub { $_[0]->bsub($_[1]); }, +'*=' => sub { $_[0]->bmul($_[1]); }, +'/=' => sub { scalar $_[0]->bdiv($_[1]); }, +'%=' => sub { $_[0]->bmod($_[1]); }, +'^=' => sub { $_[0]->bxor($_[1]); }, +'&=' => sub { $_[0]->band($_[1]); }, +'|=' => sub { $_[0]->bior($_[1]); }, + +'**=' => sub { $_[0]->bpow($_[1]); }, +'<<=' => sub { $_[0]->blsft($_[1]); }, +'>>=' => sub { $_[0]->brsft($_[1]); }, + +# not supported by Perl yet +'..' => \&_pointpoint, + +'<=>' => sub { my $rc = $_[2] ? + ref($_[0])->bcmp($_[1],$_[0]) : + $_[0]->bcmp($_[1]); + $rc = 1 unless defined $rc; + $rc <=> 0; + }, +# we need '>=' to get things like "1 >= NaN" right: +'>=' => sub { my $rc = $_[2] ? + ref($_[0])->bcmp($_[1],$_[0]) : + $_[0]->bcmp($_[1]); + # if there was a NaN involved, return false + return '' unless defined $rc; + $rc >= 0; + }, +'cmp' => sub { + $_[2] ? + "$_[1]" cmp $_[0]->bstr() : + $_[0]->bstr() cmp "$_[1]" }, + +'cos' => sub { $_[0]->copy->bcos(); }, +'sin' => sub { $_[0]->copy->bsin(); }, +'atan2' => sub { $_[2] ? + ref($_[0])->new($_[1])->batan2($_[0]) : + $_[0]->copy()->batan2($_[1]) }, + +# are not yet overloadable +#'hex' => sub { print "hex"; $_[0]; }, +#'oct' => sub { print "oct"; $_[0]; }, + +# log(N) is log(N, e), where e is Euler's number +'log' => sub { $_[0]->copy()->blog(); }, +'exp' => sub { $_[0]->copy()->bexp($_[1]); }, +'int' => sub { $_[0]->copy(); }, +'neg' => sub { $_[0]->copy()->bneg(); }, +'abs' => sub { $_[0]->copy()->babs(); }, +'sqrt' => sub { $_[0]->copy()->bsqrt(); }, +'~' => sub { $_[0]->copy()->bnot(); }, + +# for subtract it's a bit tricky to not modify b: b-a => -a+b +'-' => sub { my $c = $_[0]->copy; $_[2] ? + $c->bneg()->badd( $_[1]) : + $c->bsub( $_[1]) }, +'+' => sub { $_[0]->copy()->badd($_[1]); }, +'*' => sub { $_[0]->copy()->bmul($_[1]); }, + +'/' => sub { + $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]); + }, +'%' => sub { + $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]); + }, +'**' => sub { + $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]); + }, +'<<' => sub { + $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]); + }, +'>>' => sub { + $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]); + }, +'&' => sub { + $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]); + }, +'|' => sub { + $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]); + }, +'^' => sub { + $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]); + }, + +# can modify arg of ++ and --, so avoid a copy() for speed, but don't +# use $_[0]->bone(), it would modify $_[0] to be 1! +'++' => sub { $_[0]->binc() }, +'--' => sub { $_[0]->bdec() }, + +# if overloaded, O(1) instead of O(N) and twice as fast for small numbers +'bool' => sub { + # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/ + # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-( + my $t = undef; + $t = 1 if !$_[0]->is_zero(); + $t; + }, + +# the original qw() does not work with the TIESCALAR below, why? +# Order of arguments insignificant +'""' => sub { $_[0]->bstr(); }, +'0+' => sub { $_[0]->numify(); } +; +} # no warnings scope + +############################################################################## +# global constants, flags and accessory + +# These vars are public, but their direct usage is not recommended, use the +# accessor methods instead + +$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common' +$accuracy = undef; +$precision = undef; +$div_scale = 40; + +$upgrade = undef; # default is no upgrade +$downgrade = undef; # default is no downgrade + +# These are internally, and not to be used from the outside at all + +$_trap_nan = 0; # are NaNs ok? set w/ config() +$_trap_inf = 0; # are infs ok? set w/ config() +my $nan = 'NaN'; # constants for easier life + +my $CALC = 'Math::BigInt::Calc'; # module to do the low level math + # default is Calc.pm +my $IMPORT = 0; # was import() called yet? + # used to make require work +my %WARN; # warn only once for low-level libs +my %CAN; # cache for $CALC->can(...) +my %CALLBACKS; # callbacks to notify on lib loads +my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math + +############################################################################## +# the old code had $rnd_mode, so we need to support it, too + +$rnd_mode = 'even'; +sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; } +sub FETCH { return $round_mode; } +sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); } + +BEGIN + { + # tie to enable $rnd_mode to work transparently + tie $rnd_mode, 'Math::BigInt'; + + # set up some handy alias names + *as_int = \&as_number; + *is_pos = \&is_positive; + *is_neg = \&is_negative; + } + +############################################################################## + +sub round_mode + { + no strict 'refs'; + # make Class->round_mode() work + my $self = shift; + my $class = ref($self) || $self || __PACKAGE__; + if (defined $_[0]) + { + my $m = shift; + if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) + { + require Carp; Carp::croak ("Unknown round mode '$m'"); + } + return ${"${class}::round_mode"} = $m; + } + ${"${class}::round_mode"}; + } + +sub upgrade + { + no strict 'refs'; + # make Class->upgrade() work + my $self = shift; + my $class = ref($self) || $self || __PACKAGE__; + # need to set new value? + if (@_ > 0) + { + return ${"${class}::upgrade"} = $_[0]; + } + ${"${class}::upgrade"}; + } + +sub downgrade + { + no strict 'refs'; + # make Class->downgrade() work + my $self = shift; + my $class = ref($self) || $self || __PACKAGE__; + # need to set new value? + if (@_ > 0) + { + return ${"${class}::downgrade"} = $_[0]; + } + ${"${class}::downgrade"}; + } + +sub div_scale + { + no strict 'refs'; + # make Class->div_scale() work + my $self = shift; + my $class = ref($self) || $self || __PACKAGE__; + if (defined $_[0]) + { + if ($_[0] < 0) + { + require Carp; Carp::croak ('div_scale must be greater than zero'); + } + ${"${class}::div_scale"} = $_[0]; + } + ${"${class}::div_scale"}; + } + +sub accuracy + { + # $x->accuracy($a); ref($x) $a + # $x->accuracy(); ref($x) + # Class->accuracy(); class + # Class->accuracy($a); class $a + + my $x = shift; + my $class = ref($x) || $x || __PACKAGE__; + + no strict 'refs'; + # need to set new value? + if (@_ > 0) + { + my $a = shift; + # convert objects to scalars to avoid deep recursion. If object doesn't + # have numify(), then hopefully it will have overloading for int() and + # boolean test without wandering into a deep recursion path... + $a = $a->numify() if ref($a) && $a->can('numify'); + + if (defined $a) + { + # also croak on non-numerical + if (!$a || $a <= 0) + { + require Carp; + Carp::croak ('Argument to accuracy must be greater than zero'); + } + if (int($a) != $a) + { + require Carp; + Carp::croak ('Argument to accuracy must be an integer'); + } + } + if (ref($x)) + { + # $object->accuracy() or fallback to global + $x->bround($a) if $a; # not for undef, 0 + $x->{_a} = $a; # set/overwrite, even if not rounded + delete $x->{_p}; # clear P + $a = ${"${class}::accuracy"} unless defined $a; # proper return value + } + else + { + ${"${class}::accuracy"} = $a; # set global A + ${"${class}::precision"} = undef; # clear global P + } + return $a; # shortcut + } + + my $a; + # $object->accuracy() or fallback to global + $a = $x->{_a} if ref($x); + # but don't return global undef, when $x's accuracy is 0! + $a = ${"${class}::accuracy"} if !defined $a; + $a; + } + +sub precision + { + # $x->precision($p); ref($x) $p + # $x->precision(); ref($x) + # Class->precision(); class + # Class->precision($p); class $p + + my $x = shift; + my $class = ref($x) || $x || __PACKAGE__; + + no strict 'refs'; + if (@_ > 0) + { + my $p = shift; + # convert objects to scalars to avoid deep recursion. If object doesn't + # have numify(), then hopefully it will have overloading for int() and + # boolean test without wandering into a deep recursion path... + $p = $p->numify() if ref($p) && $p->can('numify'); + if ((defined $p) && (int($p) != $p)) + { + require Carp; Carp::croak ('Argument to precision must be an integer'); + } + if (ref($x)) + { + # $object->precision() or fallback to global + $x->bfround($p) if $p; # not for undef, 0 + $x->{_p} = $p; # set/overwrite, even if not rounded + delete $x->{_a}; # clear A + $p = ${"${class}::precision"} unless defined $p; # proper return value + } + else + { + ${"${class}::precision"} = $p; # set global P + ${"${class}::accuracy"} = undef; # clear global A + } + return $p; # shortcut + } + + my $p; + # $object->precision() or fallback to global + $p = $x->{_p} if ref($x); + # but don't return global undef, when $x's precision is 0! + $p = ${"${class}::precision"} if !defined $p; + $p; + } + +sub config + { + # return (or set) configuration data as hash ref + my $class = shift || 'Math::BigInt'; + + no strict 'refs'; + if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH'))) + { + # try to set given options as arguments from hash + + my $args = $_[0]; + if (ref($args) ne 'HASH') + { + $args = { @_ }; + } + # these values can be "set" + my $set_args = {}; + foreach my $key ( + qw/trap_inf trap_nan + upgrade downgrade precision accuracy round_mode div_scale/ + ) + { + $set_args->{$key} = $args->{$key} if exists $args->{$key}; + delete $args->{$key}; + } + if (keys %$args > 0) + { + require Carp; + Carp::croak ("Illegal key(s) '", + join("','",keys %$args),"' passed to $class\->config()"); + } + foreach my $key (keys %$set_args) + { + if ($key =~ /^trap_(inf|nan)\z/) + { + ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0); + next; + } + # use a call instead of just setting the $variable to check argument + $class->$key($set_args->{$key}); + } + } + + # now return actual configuration + + my $cfg = { + lib => $CALC, + lib_version => ${"${CALC}::VERSION"}, + class => $class, + trap_nan => ${"${class}::_trap_nan"}, + trap_inf => ${"${class}::_trap_inf"}, + version => ${"${class}::VERSION"}, + }; + foreach my $key (qw/ + upgrade downgrade precision accuracy round_mode div_scale + /) + { + $cfg->{$key} = ${"${class}::$key"}; + }; + if (@_ == 1 && (ref($_[0]) ne 'HASH')) + { + # calls of the style config('lib') return just this value + return $cfg->{$_[0]}; + } + $cfg; + } + +sub _scale_a + { + # select accuracy parameter based on precedence, + # used by bround() and bfround(), may return undef for scale (means no op) + my ($x,$scale,$mode) = @_; + + $scale = $x->{_a} unless defined $scale; + + no strict 'refs'; + my $class = ref($x); + + $scale = ${ $class . '::accuracy' } unless defined $scale; + $mode = ${ $class . '::round_mode' } unless defined $mode; + + if (defined $scale) + { + $scale = $scale->can('numify') ? $scale->numify() + : "$scale" if ref($scale); + $scale = int($scale); + } + + ($scale,$mode); + } + +sub _scale_p + { + # select precision parameter based on precedence, + # used by bround() and bfround(), may return undef for scale (means no op) + my ($x,$scale,$mode) = @_; + + $scale = $x->{_p} unless defined $scale; + + no strict 'refs'; + my $class = ref($x); + + $scale = ${ $class . '::precision' } unless defined $scale; + $mode = ${ $class . '::round_mode' } unless defined $mode; + + if (defined $scale) + { + $scale = $scale->can('numify') ? $scale->numify() + : "$scale" if ref($scale); + $scale = int($scale); + } + + ($scale,$mode); + } + +############################################################################## +# constructors + +sub copy { + my $self = shift; + my $selfref = ref $self; + my $class = $selfref || $self; + + # If called as a class method, the object to copy is the next argument. + + $self = shift() unless $selfref; + + my $copy = bless {}, $class; + + $copy->{sign} = $self->{sign}; + $copy->{value} = $CALC->_copy($self->{value}); + $copy->{_a} = $self->{_a} if exists $self->{_a}; + $copy->{_p} = $self->{_p} if exists $self->{_p}; + + return $copy; +} + +sub new { + # Create a new Math::BigInt object from a string or another Math::BigInt + # object. See hash keys documented at top. + + # The argument could be an object, so avoid ||, && etc. on it. This would + # cause costly overloaded code to be called. The only allowed ops are ref() + # and defined. + + my $self = shift; + my $selfref = ref $self; + my $class = $selfref || $self; + + my ($wanted, $a, $p, $r) = @_; + + # If called as a class method, initialize a new object. + + $self = bless {}, $class unless $selfref; + + unless (defined $wanted) { + require Carp; + Carp::carp("Use of uninitialized value in new"); + return $self->bzero($a, $p, $r); + } + + if (ref($wanted) && $wanted->isa($class)) { # MBI or subclass + # Using "$copy = $wanted -> copy()" here fails some tests. Fixme! + my $copy = $class -> copy($wanted); + if ($selfref) { + %$self = %$copy; + } else { + $self = $copy; + } + return $self; + } + + $class->import() if $IMPORT == 0; # make require work + + # Shortcut for non-zero scalar integers with no non-zero exponent. + + if (!ref($wanted) && + $wanted =~ / ^ + ([+-]?) # optional sign + ([1-9][0-9]*) # non-zero significand + (\.0*)? # ... with optional zero fraction + ([Ee][+-]?0+)? # optional zero exponent + \z + /x) + { + my $sgn = $1; + my $abs = $2; + $self->{sign} = $sgn || '+'; + $self->{value} = $CALC->_new($abs); + + no strict 'refs'; + if (defined($a) || defined($p) + || defined(${"${class}::precision"}) + || defined(${"${class}::accuracy"})) + { + $self->round($a, $p, $r) + unless @_ == 4 && !defined $a && !defined $p; + } + + return $self; + } + + # Handle Infs. + + if ($wanted =~ /^\s*([+-]?)inf(inity)?\s*\z/i) { + my $sgn = $1 || '+'; + $self->{sign} = $sgn . 'inf'; # set a default sign for bstr() + return $self->binf($sgn); + } + + # Handle explicit NaNs (not the ones returned due to invalid input). + + if ($wanted =~ /^\s*([+-]?)nan\s*\z/i) { + return $self->bnan(); + } + + if ($wanted =~ /^\s*[+-]?0[Xx]/) { + return $class -> from_hex($wanted); + } + + if ($wanted =~ /^\s*[+-]?0[Bb]/) { + return $class -> from_bin($wanted); + } + + # Split string into mantissa, exponent, integer, fraction, value, and sign. + my ($mis, $miv, $mfv, $es, $ev) = _split($wanted); + if (!ref $mis) { + if ($_trap_nan) { + require Carp; Carp::croak("$wanted is not a number in $class"); + } + $self->{value} = $CALC->_zero(); + $self->{sign} = $nan; + return $self; + } + + if (!ref $miv) { + # _from_hex or _from_bin + $self->{value} = $mis->{value}; + $self->{sign} = $mis->{sign}; + return $self; # throw away $mis + } + + # Make integer from mantissa by adjusting exponent, then convert to a + # Math::BigInt. + $self->{sign} = $$mis; # store sign + $self->{value} = $CALC->_zero(); # for all the NaN cases + my $e = int("$$es$$ev"); # exponent (avoid recursion) + if ($e > 0) { + my $diff = $e - CORE::length($$mfv); + if ($diff < 0) { # Not integer + if ($_trap_nan) { + require Carp; Carp::croak("$wanted not an integer in $class"); + } + #print "NOI 1\n"; + return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade; + $self->{sign} = $nan; + } else { # diff >= 0 + # adjust fraction and add it to value + #print "diff > 0 $$miv\n"; + $$miv = $$miv . ($$mfv . '0' x $diff); + } + } + + else { + if ($$mfv ne '') { # e <= 0 + # fraction and negative/zero E => NOI + if ($_trap_nan) { + require Carp; Carp::croak("$wanted not an integer in $class"); + } + #print "NOI 2 \$\$mfv '$$mfv'\n"; + return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade; + $self->{sign} = $nan; + } elsif ($e < 0) { + # xE-y, and empty mfv + # Split the mantissa at the decimal point. E.g., if + # $$miv = 12345 and $e = -2, then $frac = 45 and $$miv = 123. + + my $frac = substr($$miv, $e); # $frac is fraction part + substr($$miv, $e) = ""; # $$miv is now integer part + + if ($frac =~ /[^0]/) { + if ($_trap_nan) { + require Carp; Carp::croak("$wanted not an integer in $class"); + } + #print "NOI 3\n"; + return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade; + $self->{sign} = $nan; + } + } + } + + unless ($self->{sign} eq $nan) { + $self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0 + $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/; + } + + # If any of the globals are set, use them to round, and store them inside + # $self. Do not round for new($x, undef, undef) since that is used by MBF + # to signal no rounding. + + $self->round($a, $p, $r) unless @_ == 4 && !defined $a && !defined $p; + $self; +} + +sub bnan + { + # create a bigint 'NaN', if given a BigInt, set it to 'NaN' + my $self = shift; + $self = $class if !defined $self; + if (!ref($self)) + { + my $c = $self; $self = {}; bless $self, $c; + } + no strict 'refs'; + if (${"${class}::_trap_nan"}) + { + require Carp; + Carp::croak ("Tried to set $self to NaN in $class\::bnan()"); + } + $self->import() if $IMPORT == 0; # make require work + return if $self->modify('bnan'); + if ($self->can('_bnan')) + { + # use subclass to initialize + $self->_bnan(); + } + else + { + # otherwise do our own thing + $self->{value} = $CALC->_zero(); + } + $self->{sign} = $nan; + delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly + $self; + } + +sub binf + { + # create a bigint '+-inf', if given a BigInt, set it to '+-inf' + # the sign is either '+', or if given, used from there + my $self = shift; + my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/; + $self = $class if !defined $self; + if (!ref($self)) + { + my $c = $self; $self = {}; bless $self, $c; + } + no strict 'refs'; + if (${"${class}::_trap_inf"}) + { + require Carp; + Carp::croak ("Tried to set $self to +-inf in $class\::binf()"); + } + $self->import() if $IMPORT == 0; # make require work + return if $self->modify('binf'); + if ($self->can('_binf')) + { + # use subclass to initialize + $self->_binf(); + } + else + { + # otherwise do our own thing + $self->{value} = $CALC->_zero(); + } + $sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf + $self->{sign} = $sign; + ($self->{_a},$self->{_p}) = @_; # take over requested rounding + $self; + } + +sub bzero + { + # create a bigint '+0', if given a BigInt, set it to 0 + my $self = shift; + $self = __PACKAGE__ if !defined $self; + + if (!ref($self)) + { + my $c = $self; $self = {}; bless $self, $c; + } + $self->import() if $IMPORT == 0; # make require work + return if $self->modify('bzero'); + + if ($self->can('_bzero')) + { + # use subclass to initialize + $self->_bzero(); + } + else + { + # otherwise do our own thing + $self->{value} = $CALC->_zero(); + } + $self->{sign} = '+'; + if (@_ > 0) + { + if (@_ > 3) + { + # call like: $x->bzero($a,$p,$r,$y); + ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_); + } + else + { + $self->{_a} = $_[0] + if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a})); + $self->{_p} = $_[1] + if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p})); + } + } + $self; + } + +sub bone + { + # create a bigint '+1' (or -1 if given sign '-'), + # if given a BigInt, set it to +1 or -1, respectively + my $self = shift; + my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-'; + $self = $class if !defined $self; + + if (!ref($self)) + { + my $c = $self; $self = {}; bless $self, $c; + } + $self->import() if $IMPORT == 0; # make require work + return if $self->modify('bone'); + + if ($self->can('_bone')) + { + # use subclass to initialize + $self->_bone(); + } + else + { + # otherwise do our own thing + $self->{value} = $CALC->_one(); + } + $self->{sign} = $sign; + if (@_ > 0) + { + if (@_ > 3) + { + # call like: $x->bone($sign,$a,$p,$r,$y); + ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_); + } + else + { + # call like: $x->bone($sign,$a,$p,$r); + $self->{_a} = $_[0] + if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a})); + $self->{_p} = $_[1] + if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p})); + } + } + $self; + } + +############################################################################## +# string conversion + +sub bsstr + { + # (ref to BFLOAT or num_str ) return num_str + # Convert number from internal format to scientific string format. + # internal format is always normalized (no leading zeros, "-0E0" => "+0E0") + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + if ($x->{sign} !~ /^[+-]$/) + { + return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN + return 'inf'; # +inf + } + my ($m,$e) = $x->parts(); + #$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt + # 'e+' because E can only be positive in BigInt + $m->bstr() . 'e+' . $CALC->_str($e->{value}); + } + +sub bstr + { + # make a string from bigint object + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + if ($x->{sign} !~ /^[+-]$/) + { + return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN + return 'inf'; # +inf + } + my $es = ''; $es = $x->{sign} if $x->{sign} eq '-'; + $es.$CALC->_str($x->{value}); + } + +sub numify + { + # Make a Perl scalar number from a Math::BigInt object. + my $x = shift; $x = $class->new($x) unless ref $x; + + if ($x -> is_nan()) { + require Math::Complex; + my $inf = Math::Complex::Inf(); + return $inf - $inf; + } + + if ($x -> is_inf()) { + require Math::Complex; + my $inf = Math::Complex::Inf(); + return $x -> is_negative() ? -$inf : $inf; + } + + my $num = 0 + $CALC->_num($x->{value}); + return $x->{sign} eq '-' ? -$num : $num; + } + +############################################################################## +# public stuff (usually prefixed with "b") + +sub sign + { + # return the sign of the number: +/-/-inf/+inf/NaN + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + $x->{sign}; + } + +sub _find_round_parameters { + # After any operation or when calling round(), the result is rounded by + # regarding the A & P from arguments, local parameters, or globals. + + # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!! + + # This procedure finds the round parameters, but it is for speed reasons + # duplicated in round. Otherwise, it is tested by the testsuite and used + # by bdiv(). + + # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P + # were requested/defined (locally or globally or both) + + my ($self, $a, $p, $r, @args) = @_; + # $a accuracy, if given by caller + # $p precision, if given by caller + # $r round_mode, if given by caller + # @args all 'other' arguments (0 for unary, 1 for binary ops) + + my $class = ref($self); # find out class of argument(s) + no strict 'refs'; + + # convert to normal scalar for speed and correctness in inner parts + $a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a); + $p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p); + + # now pick $a or $p, but only if we have got "arguments" + if (!defined $a) { + foreach ($self, @args) { + # take the defined one, or if both defined, the one that is smaller + $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); + } + } + if (!defined $p) { + # even if $a is defined, take $p, to signal error for both defined + foreach ($self, @args) { + # take the defined one, or if both defined, the one that is bigger + # -2 > -3, and 3 > 2 + $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); + } + } + + # if still none defined, use globals (#2) + $a = ${"$class\::accuracy"} unless defined $a; + $p = ${"$class\::precision"} unless defined $p; + + # A == 0 is useless, so undef it to signal no rounding + $a = undef if defined $a && $a == 0; + + # no rounding today? + return ($self) unless defined $a || defined $p; # early out + + # set A and set P is an fatal error + return ($self->bnan()) if defined $a && defined $p; # error + + $r = ${"$class\::round_mode"} unless defined $r; + if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) { + require Carp; Carp::croak ("Unknown round mode '$r'"); + } + + $a = int($a) if defined $a; + $p = int($p) if defined $p; + + ($self, $a, $p, $r); +} + +sub round { + # Round $self according to given parameters, or given second argument's + # parameters or global defaults + + # for speed reasons, _find_round_parameters is embedded here: + + my ($self, $a, $p, $r, @args) = @_; + # $a accuracy, if given by caller + # $p precision, if given by caller + # $r round_mode, if given by caller + # @args all 'other' arguments (0 for unary, 1 for binary ops) + + my $class = ref($self); # find out class of argument(s) + no strict 'refs'; + + # now pick $a or $p, but only if we have got "arguments" + if (!defined $a) { + foreach ($self, @args) { + # take the defined one, or if both defined, the one that is smaller + $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); + } + } + if (!defined $p) { + # even if $a is defined, take $p, to signal error for both defined + foreach ($self, @args) { + # take the defined one, or if both defined, the one that is bigger + # -2 > -3, and 3 > 2 + $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); + } + } + + # if still none defined, use globals (#2) + $a = ${"$class\::accuracy"} unless defined $a; + $p = ${"$class\::precision"} unless defined $p; + + # A == 0 is useless, so undef it to signal no rounding + $a = undef if defined $a && $a == 0; + + # no rounding today? + return $self unless defined $a || defined $p; # early out + + # set A and set P is an fatal error + return $self->bnan() if defined $a && defined $p; + + $r = ${"$class\::round_mode"} unless defined $r; + if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) { + require Carp; Carp::croak ("Unknown round mode '$r'"); + } + + # now round, by calling either bround or bfround: + if (defined $a) { + $self->bround(int($a), $r) if !defined $self->{_a} || $self->{_a} >= $a; + } else { # both can't be undefined due to early out + $self->bfround(int($p), $r) if !defined $self->{_p} || $self->{_p} <= $p; + } + + # bround() or bfround() already called bnorm() if nec. + $self; +} + +sub bnorm + { + # (numstr or BINT) return BINT + # Normalize number -- no-op here + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + $x; + } + +sub babs + { + # (BINT or num_str) return BINT + # make number absolute, or return absolute BINT from string + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + return $x if $x->modify('babs'); + # post-normalized abs for internal use (does nothing for NaN) + $x->{sign} =~ s/^-/+/; + $x; + } + +sub bsgn { + # Signum function. + + my $self = shift; + + return $self if $self->modify('bsgn'); + + return $self -> bone("+") if $self -> is_pos(); + return $self -> bone("-") if $self -> is_neg(); + return $self; # zero or NaN +} + +sub bneg + { + # (BINT or num_str) return BINT + # negate number or make a negated number from string + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + return $x if $x->modify('bneg'); + + # for +0 do not negate (to have always normalized +0). Does nothing for 'NaN' + $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value})); + $x; + } + +sub bcmp + { + # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort) + # (BINT or num_str, BINT or num_str) return cond_code + + # set up parameters + my ($self,$x,$y) = (ref($_[0]),@_); + + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y) = objectify(2,@_); + } + + return $upgrade->bcmp($x,$y) if defined $upgrade && + ((!$x->isa($self)) || (!$y->isa($self))); + + if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) + { + # handle +-inf and NaN + return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); + return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/; + return +1 if $x->{sign} eq '+inf'; + return -1 if $x->{sign} eq '-inf'; + return -1 if $y->{sign} eq '+inf'; + return +1; + } + # check sign for speed first + return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y + return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0 + + # have same sign, so compare absolute values. Don't make tests for zero + # here because it's actually slower than testing in Calc (especially w/ Pari + # et al) + + # post-normalized compare for internal use (honors signs) + if ($x->{sign} eq '+') + { + # $x and $y both > 0 + return $CALC->_acmp($x->{value},$y->{value}); + } + + # $x && $y both < 0 + $CALC->_acmp($y->{value},$x->{value}); # swapped acmp (lib returns 0,1,-1) + } + +sub bacmp + { + # Compares 2 values, ignoring their signs. + # Returns one of undef, <0, =0, >0. (suitable for sort) + # (BINT, BINT) return cond_code + + # set up parameters + my ($self,$x,$y) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y) = objectify(2,@_); + } + + return $upgrade->bacmp($x,$y) if defined $upgrade && + ((!$x->isa($self)) || (!$y->isa($self))); + + if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) + { + # handle +-inf and NaN + return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); + return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/; + return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/; + return -1; + } + $CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1 + } + +sub badd + { + # add second arg (BINT or string) to first (BINT) (modifies first) + # return result as BINT + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('badd'); + return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade && + ((!$x->isa($self)) || (!$y->isa($self))); + + $r[3] = $y; # no push! + # inf and NaN handling + if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) + { + # NaN first + return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); + # inf handling + if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) + { + # +inf++inf or -inf+-inf => same, rest is NaN + return $x if $x->{sign} eq $y->{sign}; + return $x->bnan(); + } + # +-inf + something => +inf + # something +-inf => +-inf + $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/; + return $x; + } + + my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs + + if ($sx eq $sy) + { + $x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add + } + else + { + my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare + if ($a > 0) + { + $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap + $x->{sign} = $sy; + } + elsif ($a == 0) + { + # speedup, if equal, set result to 0 + $x->{value} = $CALC->_zero(); + $x->{sign} = '+'; + } + else # a < 0 + { + $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub + } + } + $x->round(@r); + } + +sub bsub + { + # (BINT or num_str, BINT or num_str) return BINT + # subtract second arg from first, modify first + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bsub'); + + return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade && + ((!$x->isa($self)) || (!$y->isa($self))); + + return $x->round(@r) if $y->is_zero(); + + # To correctly handle the lone special case $x->bsub($x), we note the sign + # of $x, then flip the sign from $y, and if the sign of $x did change, too, + # then we caught the special case: + my $xsign = $x->{sign}; + $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN + if ($xsign ne $x->{sign}) + { + # special case of $x->bsub($x) results in 0 + return $x->bzero(@r) if $xsign =~ /^[+-]$/; + return $x->bnan(); # NaN, -inf, +inf + } + $x->badd($y,@r); # badd does not leave internal zeros + $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN) + $x; # already rounded by badd() or no round nec. + } + +sub binc + { + # increment arg by one + my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); + return $x if $x->modify('binc'); + + if ($x->{sign} eq '+') + { + $x->{value} = $CALC->_inc($x->{value}); + return $x->round($a,$p,$r); + } + elsif ($x->{sign} eq '-') + { + $x->{value} = $CALC->_dec($x->{value}); + $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0 + return $x->round($a,$p,$r); + } + # inf, nan handling etc + $x->badd($self->bone(),$a,$p,$r); # badd does round + } + +sub bdec + { + # decrement arg by one + my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); + return $x if $x->modify('bdec'); + + if ($x->{sign} eq '-') + { + # x already < 0 + $x->{value} = $CALC->_inc($x->{value}); + } + else + { + return $x->badd($self->bone('-'),@r) + unless $x->{sign} eq '+'; # inf or NaN + # >= 0 + if ($CALC->_is_zero($x->{value})) + { + # == 0 + $x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1 + } + else + { + # > 0 + $x->{value} = $CALC->_dec($x->{value}); + } + } + $x->round(@r); + } + +sub blog + { + # Return the logarithm of the operand. If a second operand is defined, that + # value is used as the base, otherwise the base is assumed to be Euler's + # constant. + + # Don't objectify the base, since an undefined base, as in $x->blog() or + # $x->blog(undef) signals that the base is Euler's number. + + # set up parameters + my ($self,$x,$base,@r) = (undef,@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { + ($self,$x,$base,@r) = objectify(1,@_); + } + + return $x if $x->modify('blog'); + + # Handle all exception cases and all trivial cases. I have used Wolfram Alpha + # (http://www.wolframalpha.com) as the reference for these cases. + + return $x -> bnan() if $x -> is_nan(); + + if (defined $base) { + $base = $self -> new($base) unless ref $base; + if ($base -> is_nan() || $base -> is_one()) { + return $x -> bnan(); + } elsif ($base -> is_inf() || $base -> is_zero()) { + return $x -> bnan() if $x -> is_inf() || $x -> is_zero(); + return $x -> bzero(); + } elsif ($base -> is_negative()) { # -inf < base < 0 + return $x -> bzero() if $x -> is_one(); # x = 1 + return $x -> bone() if $x == $base; # x = base + return $x -> bnan(); # otherwise + } + return $x -> bone() if $x == $base; # 0 < base && 0 < x < inf + } + + # We now know that the base is either undefined or >= 2 and finite. + + return $x -> binf('+') if $x -> is_inf(); # x = +/-inf + return $x -> bnan() if $x -> is_neg(); # -inf < x < 0 + return $x -> bzero() if $x -> is_one(); # x = 1 + return $x -> binf('-') if $x -> is_zero(); # x = 0 + + # At this point we are done handling all exception cases and trivial cases. + + return $upgrade -> blog($upgrade -> new($x), $base, @r) if defined $upgrade; + + # fix for bug #24969: + # the default base is e (Euler's number) which is not an integer + if (!defined $base) + { + require Math::BigFloat; + my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int(); + # modify $x in place + $x->{value} = $u->{value}; + $x->{sign} = $u->{sign}; + return $x; + } + + my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value}); + return $x->bnan() unless defined $rc; # not possible to take log? + $x->{value} = $rc; + $x->round(@r); + } + +sub bnok + { + # Calculate n over k (binomial coefficient or "choose" function) as integer. + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bnok'); + return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN'; + return $x->binf() if $x->{sign} eq '+inf'; + + # k > n or k < 0 => 0 + my $cmp = $x->bacmp($y); + return $x->bzero() if $cmp < 0 || $y->{sign} =~ /^-/; + # k == n => 1 + return $x->bone(@r) if $cmp == 0; + + if ($CALC->can('_nok')) + { + $x->{value} = $CALC->_nok($x->{value},$y->{value}); + } + else + { + # ( 7 ) 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7 + # ( - ) = --------- = --------------- = --------- = 5 * - * - + # ( 3 ) (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3 + + if (!$y->is_zero()) + { + my $z = $x - $y; + $z->binc(); + my $r = $z->copy(); $z->binc(); + my $d = $self->new(2); + while ($z->bacmp($x) <= 0) # f <= x ? + { + $r->bmul($z); $r->bdiv($d); + $z->binc(); $d->binc(); + } + $x->{value} = $r->{value}; $x->{sign} = '+'; + } + else { $x->bone(); } + } + $x->round(@r); + } + +sub bexp + { + # Calculate e ** $x (Euler's number to the power of X), truncated to + # an integer value. + my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); + return $x if $x->modify('bexp'); + + # inf, -inf, NaN, <0 => NaN + return $x->bnan() if $x->{sign} eq 'NaN'; + return $x->bone() if $x->is_zero(); + return $x if $x->{sign} eq '+inf'; + return $x->bzero() if $x->{sign} eq '-inf'; + + my $u; + { + # run through Math::BigFloat unless told otherwise + require Math::BigFloat unless defined $upgrade; + local $upgrade = 'Math::BigFloat' unless defined $upgrade; + # calculate result, truncate it to integer + $u = $upgrade->bexp($upgrade->new($x),@r); + } + + if (!defined $upgrade) + { + $u = $u->as_int(); + # modify $x in place + $x->{value} = $u->{value}; + $x->round(@r); + } + else { $x = $u; } + } + +sub blcm + { + # (BINT or num_str, BINT or num_str) return BINT + # does not modify arguments, but returns new object + # Lowest Common Multiple + + my $y = shift; my ($x); + if (ref($y)) + { + $x = $y->copy(); + } + else + { + $x = $class->new($y); + } + my $self = ref($x); + while (@_) + { + my $y = shift; $y = $self->new($y) if !ref ($y); + $x = __lcm($x,$y); + } + $x; + } + +sub bgcd + { + # (BINT or num_str, BINT or num_str) return BINT + # does not modify arguments, but returns new object + # GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff) + + my $y = shift; + $y = $class->new($y) if !ref($y); + my $self = ref($y); + my $x = $y->copy()->babs(); # keep arguments + return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN? + + while (@_) + { + $y = shift; $y = $self->new($y) if !ref($y); + return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN? + $x->{value} = $CALC->_gcd($x->{value},$y->{value}); + last if $CALC->_is_one($x->{value}); + } + $x; + } + +sub bnot + { + # (num_str or BINT) return BINT + # represent ~x as twos-complement number + # we don't need $self, so undef instead of ref($_[0]) make it slightly faster + my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + return $x if $x->modify('bnot'); + $x->binc()->bneg(); # binc already does round + } + +############################################################################## +# is_foo test routines +# we don't need $self, so undef instead of ref($_[0]) make it slightly faster + +sub is_zero + { + # return true if arg (BINT or num_str) is zero (array '+', '0') + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't + $CALC->_is_zero($x->{value}); + } + +sub is_nan + { + # return true if arg (BINT or num_str) is NaN + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + $x->{sign} eq $nan ? 1 : 0; + } + +sub is_inf + { + # return true if arg (BINT or num_str) is +-inf + my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + if (defined $sign) + { + $sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf + $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-' + return $x->{sign} =~ /^$sign$/ ? 1 : 0; + } + $x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity + } + +sub is_one + { + # return true if arg (BINT or num_str) is +1, or -1 if sign is given + my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + $sign = '+' if !defined $sign || $sign ne '-'; + + return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either + $CALC->_is_one($x->{value}); + } + +sub is_odd + { + # return true when arg (BINT or num_str) is odd, false for even + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't + $CALC->_is_odd($x->{value}); + } + +sub is_even + { + # return true when arg (BINT or num_str) is even, false for odd + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't + $CALC->_is_even($x->{value}); + } + +sub is_positive + { + # return true when arg (BINT or num_str) is positive (> 0) + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + return 1 if $x->{sign} eq '+inf'; # +inf is positive + + # 0+ is neither positive nor negative + ($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0; + } + +sub is_negative + { + # return true when arg (BINT or num_str) is negative (< 0) + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + $x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not + } + +sub is_int + { + # return true when arg (BINT or num_str) is an integer + # always true for BigInt, but different for BigFloats + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + $x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't + } + +############################################################################### + +sub bmul + { + # multiply the first number by the second number + # (BINT or num_str, BINT or num_str) return BINT + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bmul'); + + return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); + + # inf handling + if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) + { + return $x->bnan() if $x->is_zero() || $y->is_zero(); + # result will always be +-inf: + # +inf * +/+inf => +inf, -inf * -/-inf => +inf + # +inf * -/-inf => -inf, -inf * +/+inf => -inf + return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); + return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); + return $x->binf('-'); + } + + return $upgrade->bmul($x,$upgrade->new($y),@r) + if defined $upgrade && !$y->isa($self); + + $r[3] = $y; # no push here + + $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + + + $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math + $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0 + + $x->round(@r); + } + +sub bmuladd + { + # multiply two numbers and then add the third to the result + # (BINT or num_str, BINT or num_str, BINT or num_str) return BINT + + # set up parameters + my ($self,$x,$y,$z,@r) = objectify(3,@_); + + return $x if $x->modify('bmuladd'); + + return $x->bnan() if ($x->{sign} eq $nan) || + ($y->{sign} eq $nan) || + ($z->{sign} eq $nan); + + # inf handling of x and y + if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) + { + return $x->bnan() if $x->is_zero() || $y->is_zero(); + # result will always be +-inf: + # +inf * +/+inf => +inf, -inf * -/-inf => +inf + # +inf * -/-inf => -inf, -inf * +/+inf => -inf + return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); + return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); + return $x->binf('-'); + } + # inf handling x*y and z + if (($z->{sign} =~ /^[+-]inf$/)) + { + # something +-inf => +-inf + $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/; + } + + return $upgrade->bmuladd($x,$upgrade->new($y),$upgrade->new($z),@r) + if defined $upgrade && (!$y->isa($self) || !$z->isa($self) || !$x->isa($self)); + + # TODO: what if $y and $z have A or P set? + $r[3] = $z; # no push here + + $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + + + $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math + $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0 + + my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs + + if ($sx eq $sz) + { + $x->{value} = $CALC->_add($x->{value},$z->{value}); # same sign, abs add + } + else + { + my $a = $CALC->_acmp ($z->{value},$x->{value}); # absolute compare + if ($a > 0) + { + $x->{value} = $CALC->_sub($z->{value},$x->{value},1); # abs sub w/ swap + $x->{sign} = $sz; + } + elsif ($a == 0) + { + # speedup, if equal, set result to 0 + $x->{value} = $CALC->_zero(); + $x->{sign} = '+'; + } + else # a < 0 + { + $x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub + } + } + $x->round(@r); + } + +sub bdiv + { + + # This does floored division, where the quotient is floored toward negative + # infinity and the remainder has the same sign as the divisor. + + # Set up parameters. + my ($self,$x,$y,@r) = (ref($_[0]),@_); + + # objectify() is costly, so avoid it if we can. + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bdiv'); + + my $wantarray = wantarray; # call only once + + # At least one argument is NaN. Return NaN for both quotient and the + # modulo/remainder. + + if ($x -> is_nan() || $y -> is_nan()) { + return $wantarray ? ($x -> bnan(), $self -> bnan()) : $x -> bnan(); + } + + # Divide by zero and modulo zero. + # + # Division: Use the common convention that x / 0 is inf with the same sign + # as x, except when x = 0, where we return NaN. This is also what earlier + # versions did. + # + # Modulo: In modular arithmetic, the congruence relation z = x (mod y) + # means that there is some integer k such that z - x = k y. If y = 0, we + # get z - x = 0 or z = x. This is also what earlier versions did, except + # that 0 % 0 returned NaN. + # + # inf / 0 = inf inf % 0 = inf + # 5 / 0 = inf 5 % 0 = 5 + # 0 / 0 = NaN 0 % 0 = 0 (before: NaN) + # -5 / 0 = -inf -5 % 0 = -5 + # -inf / 0 = -inf -inf % 0 = -inf + + if ($y -> is_zero()) { + my ($quo, $rem); + if ($wantarray) { + $rem = $x -> copy(); + } + if ($x -> is_zero()) { + $quo = $x -> bnan(); + } else { + $quo = $x -> binf($x -> {sign}); + } + return $wantarray ? ($quo, $rem) : $quo; + } + + # Numerator (dividend) is +/-inf, and denominator is finite and non-zero. + # The divide by zero cases are covered above. In all of the cases listed + # below we return the same as core Perl. + # + # inf / -inf = NaN inf % -inf = NaN + # inf / -5 = -inf inf % -5 = NaN (before: 0) + # inf / 5 = inf inf % 5 = NaN (before: 0) + # inf / inf = NaN inf % inf = NaN + # + # -inf / -inf = NaN -inf % -inf = NaN + # -inf / -5 = inf -inf % -5 = NaN (before: 0) + # -inf / 5 = -inf -inf % 5 = NaN (before: 0) + # -inf / inf = NaN -inf % inf = NaN + + if ($x -> is_inf()) { + my ($quo, $rem); + $rem = $self -> bnan() if $wantarray; + if ($y -> is_inf()) { + $quo = $x -> bnan(); + } else { + my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-'; + $quo = $x -> binf($sign); + } + return $wantarray ? ($quo, $rem) : $quo; + } + + # Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf + # are covered above. In the modulo cases (in the right column) we return + # the same as core Perl, which does floored division, so for consistency we + # also do floored division in the division cases (in the left column). + # + # -5 / inf = -1 (before: 0) -5 % inf = inf (before: -5) + # 0 / inf = 0 0 % inf = 0 + # 5 / inf = 0 5 % inf = 5 + # + # -5 / -inf = 0 -5 % -inf = -5 + # 0 / -inf = 0 0 % -inf = 0 + # 5 / -inf = -1 (before: 0) 5 % -inf = -inf (before: 5) + + if ($y -> is_inf()) { + my ($quo, $rem); + if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) { + $rem = $x -> copy() if $wantarray; + $quo = $x -> bzero(); + } else { + $rem = $self -> binf($y -> {sign}) if $wantarray; + $quo = $x -> bone('-'); + } + return $wantarray ? ($quo, $rem) : $quo; + } + + # At this point, both the numerator and denominator are finite numbers, and + # the denominator (divisor) is non-zero. + + return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r) + if defined $upgrade; + + $r[3] = $y; # no push! + + # Inialize remainder. + + my $rem = $self->bzero(); + + # Are both operands the same object, i.e., like $x -> bdiv($x)? + # If so, flipping the sign of $y also flips the sign of $x. + + my $xsign = $x->{sign}; + my $ysign = $y->{sign}; + + $y->{sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ... + my $same = $xsign ne $x->{sign}; # ... if that changed the sign of $x. + $y->{sign} = $ysign; # Re-insert the original sign. + + if ($same) { + $x -> bone(); + } else { + ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value}); + + if ($CALC -> _is_zero($rem->{value})) { + if ($xsign eq $ysign || $CALC -> _is_zero($x->{value})) { + $x->{sign} = '+'; + } else { + $x->{sign} = '-'; + } + } else { + if ($xsign eq $ysign) { + $x->{sign} = '+'; + } else { + if ($xsign eq '+') { + $x -> badd(1); + } else { + $x -> bsub(1); + } + $x->{sign} = '-'; + } + } + } + + $x->round(@r); + + if ($wantarray) { + unless ($CALC -> _is_zero($rem->{value})) { + if ($xsign ne $ysign) { + $rem = $y -> copy() -> babs() -> bsub($rem); + } + $rem->{sign} = $ysign; + } + $rem->{_a} = $x->{_a}; + $rem->{_p} = $x->{_p}; + $rem->round(@r); + return ($x,$rem); + } + + return $x; + } + +############################################################################### +# modulus functions + +sub bmod + { + + # This is the remainder after floored division, where the quotient is + # floored toward negative infinity and the remainder has the same sign as + # the divisor. + + # Set up parameters. + my ($self,$x,$y,@r) = (ref($_[0]),@_); + + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bmod'); + $r[3] = $y; # no push! + + # At least one argument is NaN. + + if ($x -> is_nan() || $y -> is_nan()) { + return $x -> bnan(); + } + + # Modulo zero. See documentation for bdiv(). + + if ($y -> is_zero()) { + return $x; + } + + # Numerator (dividend) is +/-inf. + + if ($x -> is_inf()) { + return $x -> bnan(); + } + + # Denominator (divisor) is +/-inf. + + if ($y -> is_inf()) { + if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) { + return $x; + } else { + return $x -> binf($y -> sign()); + } + } + + # Calc new sign and in case $y == +/- 1, return $x. + + $x->{value} = $CALC->_mod($x->{value},$y->{value}); + if ($CALC -> _is_zero($x->{value})) + { + $x->{sign} = '+'; # do not leave -0 + } + else + { + $x->{value} = $CALC->_sub($y->{value},$x->{value},1) # $y-$x + if ($x->{sign} ne $y->{sign}); + $x->{sign} = $y->{sign}; + } + + $x->round(@r); + } + +sub bmodinv + { + # Return modular multiplicative inverse: + # + # z is the modular inverse of x (mod y) if and only if + # + # x*z ≡ 1 (mod y) + # + # If the modulus y is larger than one, x and z are relative primes (i.e., + # their greatest common divisor is one). + # + # If no modular multiplicative inverse exists, NaN is returned. + + # set up parameters + my ($self,$x,$y,@r) = (undef,@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bmodinv'); + + # Return NaN if one or both arguments is +inf, -inf, or nan. + + return $x->bnan() if ($y->{sign} !~ /^[+-]$/ || + $x->{sign} !~ /^[+-]$/); + + # Return NaN if $y is zero; 1 % 0 makes no sense. + + return $x->bnan() if $y->is_zero(); + + # Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite + # integers $x. + + return $x->bzero() if ($y->is_one() || + $y->is_one('-')); + + # Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when + # $x = 0 is when $y = 1 or $y = -1, but that was covered above. + # + # Note that computing $x modulo $y here affects the value we'll feed to + # $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x = + # 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and + # $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7. + # The value if $x is affected only when $x and $y have opposite signs. + + $x->bmod($y); + return $x->bnan() if $x->is_zero(); + + # Compute the modular multiplicative inverse of the absolute values. We'll + # correct for the signs of $x and $y later. Return NaN if no GCD is found. + + ($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value}); + return $x->bnan() if !defined $x->{value}; + + # Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions + # <= 1.32 return undef rather than a "+" for the sign. + + $x->{sign} = '+' unless defined $x->{sign}; + + # When one or both arguments are negative, we have the following + # relations. If x and y are positive: + # + # modinv(-x, -y) = -modinv(x, y) + # modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y) + # modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y) + + # We must swap the sign of the result if the original $x is negative. + # However, we must compensate for ignoring the signs when computing the + # inverse modulo. The net effect is that we must swap the sign of the + # result if $y is negative. + + $x -> bneg() if $y->{sign} eq '-'; + + # Compute $x modulo $y again after correcting the sign. + + $x -> bmod($y) if $x->{sign} ne $y->{sign}; + + return $x; + } + +sub bmodpow + { + # Modular exponentiation. Raises a very large number to a very large exponent + # in a given very large modulus quickly, thanks to binary exponentiation. + # Supports negative exponents. + my ($self,$num,$exp,$mod,@r) = objectify(3,@_); + + return $num if $num->modify('bmodpow'); + + # When the exponent 'e' is negative, use the following relation, which is + # based on finding the multiplicative inverse 'd' of 'b' modulo 'm': + # + # b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m) + + $num->bmodinv($mod) if ($exp->{sign} eq '-'); + + # Check for valid input. All operands must be finite, and the modulus must be + # non-zero. + + return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf + $exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf + $mod->{sign} =~ /NaN|inf/); # NaN, -inf, +inf + + # Modulo zero. See documentation for Math::BigInt's bmod() method. + + if ($mod -> is_zero()) { + if ($num -> is_zero()) { + return $self -> bnan(); + } else { + return $num -> copy(); + } + } + + # Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting + # value is zero, the output is also zero, regardless of the signs on 'a' and + # 'm'. + + my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value}); + my $sign = '+'; + + # If the resulting value is non-zero, we have four special cases, depending + # on the signs on 'a' and 'm'. + + unless ($CALC->_is_zero($value)) { + + # There is a negative sign on 'a' (= $num**$exp) only if the number we + # are exponentiating ($num) is negative and the exponent ($exp) is odd. + + if ($num->{sign} eq '-' && $exp->is_odd()) { + + # When both the number 'a' and the modulus 'm' have a negative sign, + # use this relation: + # + # -a (mod -m) = -(a (mod m)) + + if ($mod->{sign} eq '-') { + $sign = '-'; + } + + # When only the number 'a' has a negative sign, use this relation: + # + # -a (mod m) = m - (a (mod m)) + + else { + # Use copy of $mod since _sub() modifies the first argument. + my $mod = $CALC->_copy($mod->{value}); + $value = $CALC->_sub($mod, $value); + $sign = '+'; + } + + } else { + + # When only the modulus 'm' has a negative sign, use this relation: + # + # a (mod -m) = (a (mod m)) - m + # = -(m - (a (mod m))) + + if ($mod->{sign} eq '-') { + # Use copy of $mod since _sub() modifies the first argument. + my $mod = $CALC->_copy($mod->{value}); + $value = $CALC->_sub($mod, $value); + $sign = '-'; + } + + # When neither the number 'a' nor the modulus 'm' have a negative + # sign, directly return the already computed value. + # + # (a (mod m)) + + } + + } + + $num->{value} = $value; + $num->{sign} = $sign; + + return $num; + } + +############################################################################### + +sub bfac + { + # (BINT or num_str, BINT or num_str) return BINT + # compute factorial number from $x, modify $x in place + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf + return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN + + $x->{value} = $CALC->_fac($x->{value}); + $x->round(@r); + } + +sub bpow + { + # (BINT or num_str, BINT or num_str) return BINT + # compute power of two numbers -- stolen from Knuth Vol 2 pg 233 + # modifies first argument + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bpow'); + + return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan; + + # inf handling + if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) + { + if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) + { + # +-inf ** +-inf + return $x->bnan(); + } + # +-inf ** Y + if ($x->{sign} =~ /^[+-]inf/) + { + # +inf ** 0 => NaN + return $x->bnan() if $y->is_zero(); + # -inf ** -1 => 1/inf => 0 + return $x->bzero() if $y->is_one('-') && $x->is_negative(); + + # +inf ** Y => inf + return $x if $x->{sign} eq '+inf'; + + # -inf ** Y => -inf if Y is odd + return $x if $y->is_odd(); + return $x->babs(); + } + # X ** +-inf + + # 1 ** +inf => 1 + return $x if $x->is_one(); + + # 0 ** inf => 0 + return $x if $x->is_zero() && $y->{sign} =~ /^[+]/; + + # 0 ** -inf => inf + return $x->binf() if $x->is_zero(); + + # -1 ** -inf => NaN + return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/; + + # -X ** -inf => 0 + return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/; + + # -1 ** inf => NaN + return $x->bnan() if $x->{sign} eq '-'; + + # X ** inf => inf + return $x->binf() if $y->{sign} =~ /^[+]/; + # X ** -inf => 0 + return $x->bzero(); + } + + return $upgrade->bpow($upgrade->new($x),$y,@r) + if defined $upgrade && (!$y->isa($self) || $y->{sign} eq '-'); + + $r[3] = $y; # no push! + + # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu + + my $new_sign = '+'; + $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+'); + + # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf + return $x->binf() + if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value}); + # 1 ** -y => 1 / (1 ** |y|) + # so do test for negative $y after above's clause + return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value}); + + $x->{value} = $CALC->_pow($x->{value},$y->{value}); + $x->{sign} = $new_sign; + $x->{sign} = '+' if $CALC->_is_zero($y->{value}); + $x->round(@r); + } + +sub blsft + { + # (BINT or num_str, BINT or num_str) return BINT + # compute x << y, base n, y >= 0 + + # set up parameters + my ($self,$x,$y,$n,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,$n,@r) = objectify(2,@_); + } + + return $x if $x->modify('blsft'); + return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); + return $x->round(@r) if $y->is_zero(); + + $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-'; + + $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n); + $x->round(@r); + } + +sub brsft + { + # (BINT or num_str, BINT or num_str) return BINT + # compute x >> y, base n, y >= 0 + + # set up parameters + my ($self,$x,$y,$n,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,$n,@r) = objectify(2,@_); + } + + return $x if $x->modify('brsft'); + return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); + return $x->round(@r) if $y->is_zero(); + return $x->bzero(@r) if $x->is_zero(); # 0 => 0 + + $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-'; + + # this only works for negative numbers when shifting in base 2 + if (($x->{sign} eq '-') && ($n == 2)) + { + return $x->round(@r) if $x->is_one('-'); # -1 => -1 + if (!$y->is_one()) + { + # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al + # but perhaps there is a better emulation for two's complement shift... + # if $y != 1, we must simulate it by doing: + # convert to bin, flip all bits, shift, and be done + $x->binc(); # -3 => -2 + my $bin = $x->as_bin(); + $bin =~ s/^-0b//; # strip '-0b' prefix + $bin =~ tr/10/01/; # flip bits + # now shift + if ($y >= CORE::length($bin)) + { + $bin = '0'; # shifting to far right creates -1 + # 0, because later increment makes + # that 1, attached '-' makes it '-1' + # because -1 >> x == -1 ! + } + else + { + $bin =~ s/.{$y}$//; # cut off at the right side + $bin = '1' . $bin; # extend left side by one dummy '1' + $bin =~ tr/10/01/; # flip bits back + } + my $res = $self->new('0b'.$bin); # add prefix and convert back + $res->binc(); # remember to increment + $x->{value} = $res->{value}; # take over value + return $x->round(@r); # we are done now, magic, isn't? + } + # x < 0, n == 2, y == 1 + $x->bdec(); # n == 2, but $y == 1: this fixes it + } + + $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n); + $x->round(@r); + } + +sub band + { + #(BINT or num_str, BINT or num_str) return BINT + # compute x & y + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('band'); + + $r[3] = $y; # no push! + + return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); + + my $sx = $x->{sign} eq '+' ? 1 : -1; + my $sy = $y->{sign} eq '+' ? 1 : -1; + + if ($sx == 1 && $sy == 1) + { + $x->{value} = $CALC->_and($x->{value},$y->{value}); + return $x->round(@r); + } + + if ($CAN{signed_and}) + { + $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy); + return $x->round(@r); + } + + require $EMU_LIB; + __emu_band($self,$x,$y,$sx,$sy,@r); + } + +sub bior + { + #(BINT or num_str, BINT or num_str) return BINT + # compute x | y + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bior'); + $r[3] = $y; # no push! + + return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); + + my $sx = $x->{sign} eq '+' ? 1 : -1; + my $sy = $y->{sign} eq '+' ? 1 : -1; + + # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior() + + # don't use lib for negative values + if ($sx == 1 && $sy == 1) + { + $x->{value} = $CALC->_or($x->{value},$y->{value}); + return $x->round(@r); + } + + # if lib can do negative values, let it handle this + if ($CAN{signed_or}) + { + $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy); + return $x->round(@r); + } + + require $EMU_LIB; + __emu_bior($self,$x,$y,$sx,$sy,@r); + } + +sub bxor + { + #(BINT or num_str, BINT or num_str) return BINT + # compute x ^ y + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$x,$y,@r) = objectify(2,@_); + } + + return $x if $x->modify('bxor'); + $r[3] = $y; # no push! + + return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); + + my $sx = $x->{sign} eq '+' ? 1 : -1; + my $sy = $y->{sign} eq '+' ? 1 : -1; + + # don't use lib for negative values + if ($sx == 1 && $sy == 1) + { + $x->{value} = $CALC->_xor($x->{value},$y->{value}); + return $x->round(@r); + } + + # if lib can do negative values, let it handle this + if ($CAN{signed_xor}) + { + $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy); + return $x->round(@r); + } + + require $EMU_LIB; + __emu_bxor($self,$x,$y,$sx,$sy,@r); + } + +sub length + { + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + my $e = $CALC->_len($x->{value}); + wantarray ? ($e,0) : $e; + } + +sub digit + { + # return the nth decimal digit, negative values count backward, 0 is right + my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + $n = $n->numify() if ref($n); + $CALC->_digit($x->{value},$n||0); + } + +sub _trailing_zeros + { + # return the amount of trailing zeros in $x (as scalar) + my $x = shift; + $x = $class->new($x) unless ref $x; + + return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc + + $CALC->_zeros($x->{value}); # must handle odd values, 0 etc + } + +sub bsqrt + { + # calculate square root of $x + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + return $x if $x->modify('bsqrt'); + + return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN + return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf + + return $upgrade->bsqrt($x,@r) if defined $upgrade; + + $x->{value} = $CALC->_sqrt($x->{value}); + $x->round(@r); + } + +sub broot + { + # calculate $y'th root of $x + + # set up parameters + my ($self,$x,$y,@r) = (ref($_[0]),@_); + + $y = $self->new(2) unless defined $y; + + # objectify is costly, so avoid it + if ((!ref($x)) || (ref($x) ne ref($y))) + { + ($self,$x,$y,@r) = objectify(2,$self || $class,@_); + } + + return $x if $x->modify('broot'); + + # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0 + return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() || + $y->{sign} !~ /^\+$/; + + return $x->round(@r) + if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one(); + + return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade; + + $x->{value} = $CALC->_root($x->{value},$y->{value}); + $x->round(@r); + } + +sub exponent + { + # return a copy of the exponent (here always 0, NaN or 1 for $m == 0) + my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); + + if ($x->{sign} !~ /^[+-]$/) + { + my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf + return $self->new($s); + } + return $self->bzero() if $x->is_zero(); + + # 12300 => 2 trailing zeros => exponent is 2 + $self->new( $CALC->_zeros($x->{value}) ); + } + +sub mantissa + { + # return the mantissa (compatible to Math::BigFloat, e.g. reduced) + my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); + + if ($x->{sign} !~ /^[+-]$/) + { + # for NaN, +inf, -inf: keep the sign + return $self->new($x->{sign}); + } + my $m = $x->copy(); delete $m->{_p}; delete $m->{_a}; + + # that's a bit inefficient: + my $zeros = $CALC->_zeros($m->{value}); + $m->brsft($zeros,10) if $zeros != 0; + $m; + } + +sub parts + { + # return a copy of both the exponent and the mantissa + my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); + + ($x->mantissa(),$x->exponent()); + } + +############################################################################## +# rounding functions + +sub bfround + { + # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.' + # $n == 0 || $n == 1 => round to integer + my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x; + + my ($scale,$mode) = $x->_scale_p(@_); + + return $x if !defined $scale || $x->modify('bfround'); # no-op + + # no-op for BigInts if $n <= 0 + $x->bround( $x->length()-$scale, $mode) if $scale > 0; + + delete $x->{_a}; # delete to save memory + $x->{_p} = $scale; # store new _p + $x; + } + +sub _scan_for_nonzero + { + # internal, used by bround() to scan for non-zeros after a '5' + my ($x,$pad,$xs,$len) = @_; + + return 0 if $len == 1; # "5" is trailed by invisible zeros + my $follow = $pad - 1; + return 0 if $follow > $len || $follow < 1; + + # use the string form to check whether only '0's follow or not + substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0; + } + +sub fround + { + # Exists to make life easier for switch between MBF and MBI (should we + # autoload fxxx() like MBF does for bxxx()?) + my $x = shift; $x = $class->new($x) unless ref $x; + $x->bround(@_); + } + +sub bround + { + # accuracy: +$n preserve $n digits from left, + # -$n preserve $n digits from right (f.i. for 0.1234 style in MBF) + # no-op for $n == 0 + # and overwrite the rest with 0's, return normalized number + # do not return $x->bnorm(), but $x + + my $x = shift; $x = $class->new($x) unless ref $x; + my ($scale,$mode) = $x->_scale_a(@_); + return $x if !defined $scale || $x->modify('bround'); # no-op + + if ($x->is_zero() || $scale == 0) + { + $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 + return $x; + } + return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN + + # we have fewer digits than we want to scale to + my $len = $x->length(); + # convert $scale to a scalar in case it is an object (put's a limit on the + # number length, but this would already limited by memory constraints), makes + # it faster + $scale = $scale->numify() if ref ($scale); + + # scale < 0, but > -len (not >=!) + if (($scale < 0 && $scale < -$len-1) || ($scale >= $len)) + { + $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 + return $x; + } + + # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6 + my ($pad,$digit_round,$digit_after); + $pad = $len - $scale; + $pad = abs($scale-1) if $scale < 0; + + # do not use digit(), it is very costly for binary => decimal + # getting the entire string is also costly, but we need to do it only once + my $xs = $CALC->_str($x->{value}); + my $pl = -$pad-1; + + # pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4 + # pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3 + $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len; + $pl++; $pl ++ if $pad >= $len; + $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0; + + # in case of 01234 we round down, for 6789 up, and only in case 5 we look + # closer at the remaining digits of the original $x, remember decision + my $round_up = 1; # default round up + $round_up -- if + ($mode eq 'trunc') || # trunc by round down + ($digit_after =~ /[01234]/) || # round down anyway, + # 6789 => round up + ($digit_after eq '5') && # not 5000...0000 + ($x->_scan_for_nonzero($pad,$xs,$len) == 0) && + ( + ($mode eq 'even') && ($digit_round =~ /[24680]/) || + ($mode eq 'odd') && ($digit_round =~ /[13579]/) || + ($mode eq '+inf') && ($x->{sign} eq '-') || + ($mode eq '-inf') && ($x->{sign} eq '+') || + ($mode eq 'zero') # round down if zero, sign adjusted below + ); + my $put_back = 0; # not yet modified + + if (($pad > 0) && ($pad <= $len)) + { + substr($xs,-$pad,$pad) = '0' x $pad; # replace with '00...' + $put_back = 1; # need to put back + } + elsif ($pad > $len) + { + $x->bzero(); # round to '0' + } + + if ($round_up) # what gave test above? + { + $put_back = 1; # need to put back + $pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0 + + # we modify directly the string variant instead of creating a number and + # adding it, since that is faster (we already have the string) + my $c = 0; $pad ++; # for $pad == $len case + while ($pad <= $len) + { + $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10'; + substr($xs,-$pad,1) = $c; $pad++; + last if $c != 0; # no overflow => early out + } + $xs = '1'.$xs if $c == 0; + + } + $x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed + + $x->{_a} = $scale if $scale >= 0; + if ($scale < 0) + { + $x->{_a} = $len+$scale; + $x->{_a} = 0 if $scale < -$len; + } + $x; + } + +sub bfloor + { + # round towards minus infinity; no-op since it's already integer + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + $x->round(@r); + } + +sub bceil + { + # round towards plus infinity; no-op since it's already int + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + $x->round(@r); + } + +sub bint { + # round towards zero; no-op since it's already integer + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + $x->round(@r); +} + +sub as_number + { + # An object might be asked to return itself as bigint on certain overloaded + # operations. This does exactly this, so that sub classes can simple inherit + # it or override with their own integer conversion routine. + $_[0]->copy(); + } + +sub as_hex + { + # return as hex string, with prefixed 0x + my $x = shift; $x = $class->new($x) if !ref($x); + + return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc + + my $s = ''; + $s = $x->{sign} if $x->{sign} eq '-'; + $s . $CALC->_as_hex($x->{value}); + } + +sub as_bin + { + # return as binary string, with prefixed 0b + my $x = shift; $x = $class->new($x) if !ref($x); + + return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc + + my $s = ''; $s = $x->{sign} if $x->{sign} eq '-'; + return $s . $CALC->_as_bin($x->{value}); + } + +sub as_oct + { + # return as octal string, with prefixed 0 + my $x = shift; $x = $class->new($x) if !ref($x); + + return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc + + my $oct = $CALC->_as_oct($x->{value}); + return $x->{sign} eq '-' ? "-$oct" : $oct; + } + +############################################################################## +# private stuff (internal use only) + +sub objectify { + # Convert strings and "foreign objects" to the objects we want. + + # The first argument, $count, is the number of following arguments that + # objectify() looks at and converts to objects. The first is a classname. + # If the given count is 0, all arguments will be used. + + # After the count is read, objectify obtains the name of the class to which + # the following arguments are converted. If the second argument is a + # reference, use the reference type as the class name. Otherwise, if it is + # a string that looks like a class name, use that. Otherwise, use $class. + + # Caller: Gives us: + # + # $x->badd(1); => ref x, scalar y + # Class->badd(1,2); => classname x (scalar), scalar x, scalar y + # Class->badd(Class->(1),2); => classname x (scalar), ref x, scalar y + # Math::BigInt::badd(1,2); => scalar x, scalar y + + # A shortcut for the common case $x->unary_op(): + + return (ref($_[1]), $_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]); + + # Check the context. + + unless (wantarray) { + require Carp; + Carp::croak ("${class}::objectify() needs list context"); + } + + # Get the number of arguments to objectify. + + my $count = shift; + $count ||= @_; + + # Initialize the output array. + + my @a = @_; + + # If the first argument is a reference, use that reference type as our + # class name. Otherwise, if the first argument looks like a class name, + # then use that as our class name. Otherwise, use the default class name. + + { + if (ref($a[0])) { # reference? + unshift @a, ref($a[0]); + last; + } + if ($a[0] =~ /^[A-Z].*::/) { # string with class name? + last; + } + unshift @a, $class; # default class name + } + + no strict 'refs'; + + # What we upgrade to, if anything. + + my $up = ${"$a[0]::upgrade"}; + + # Disable downgrading, because Math::BigFloat -> foo('1.0','2.0') needs + # floats. + + my $down; + if (defined ${"$a[0]::downgrade"}) { + $down = ${"$a[0]::downgrade"}; + ${"$a[0]::downgrade"} = undef; + } + + for my $i (1 .. $count) { + my $ref = ref $a[$i]; + + # Perl scalars are fed to the appropriate constructor. + + unless ($ref) { + $a[$i] = $a[0] -> new($a[$i]); + next; + } + + # If it is an object of the right class, all is fine. + + next if $ref -> isa($a[0]); + + # Upgrading is OK, so skip further tests if the argument is upgraded. + + if (defined $up && $ref -> isa($up)) { + next; + } + + # See if we can call one of the as_xxx() methods. We don't know whether + # the as_xxx() method returns an object or a scalar, so re-check + # afterwards. + + my $recheck = 0; + + if ($a[0] -> isa('Math::BigInt')) { + if ($a[$i] -> can('as_int')) { + $a[$i] = $a[$i] -> as_int(); + $recheck = 1; + } elsif ($a[$i] -> can('as_number')) { + $a[$i] = $a[$i] -> as_number(); + $recheck = 1; + } + } + + elsif ($a[0] -> isa('Math::BigFloat')) { + if ($a[$i] -> can('as_float')) { + $a[$i] = $a[$i] -> as_float(); + $recheck = $1; + } + } + + # If we called one of the as_xxx() methods, recheck. + + if ($recheck) { + $ref = ref($a[$i]); + + # Perl scalars are fed to the appropriate constructor. + + unless ($ref) { + $a[$i] = $a[0] -> new($a[$i]); + next; + } + + # If it is an object of the right class, all is fine. + + next if $ref -> isa($a[0]); + } + + # Last resort. + + $a[$i] = $a[0] -> new($a[$i]); + } + + # Reset the downgrading. + + ${"$a[0]::downgrade"} = $down; + + return @a; +} + +sub _register_callback + { + my ($class,$callback) = @_; + + if (ref($callback) ne 'CODE') + { + require Carp; + Carp::croak ("$callback is not a coderef"); + } + $CALLBACKS{$class} = $callback; + } + +sub import + { + my $self = shift; + + $IMPORT++; # remember we did import() + my @a; my $l = scalar @_; + my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die + for ( my $i = 0; $i < $l ; $i++ ) + { + if ($_[$i] eq ':constant') + { + # this causes overlord er load to step in + overload::constant + integer => sub { $self->new(shift) }, + binary => sub { $self->new(shift) }; + } + elsif ($_[$i] eq 'upgrade') + { + # this causes upgrading + $upgrade = $_[$i+1]; # or undef to disable + $i++; + } + elsif ($_[$i] =~ /^(lib|try|only)\z/) + { + # this causes a different low lib to take care... + $CALC = $_[$i+1] || ''; + # lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback) + $warn_or_die = 1 if $_[$i] eq 'lib'; + $warn_or_die = 2 if $_[$i] eq 'only'; + $i++; + } + else + { + push @a, $_[$i]; + } + } + # any non :constant stuff is handled by our parent, Exporter + if (@a > 0) + { + require Exporter; + + $self->SUPER::import(@a); # need it for subclasses + $self->export_to_level(1,$self,@a); # need it for MBF + } + + # try to load core math lib + my @c = split /\s*,\s*/,$CALC; + foreach (@c) + { + $_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters + } + push @c, \'Calc' # if all fail, try these + if $warn_or_die < 2; # but not for "only" + $CALC = ''; # signal error + foreach my $l (@c) + { + # fallback libraries are "marked" as \'string', extract string if nec. + my $lib = $l; $lib = $$l if ref($l); + + next if ($lib || '') eq ''; + $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i; + $lib =~ s/\.pm$//; + if ($] < 5.006) + { + # Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is + # used in the same script, or eval("") inside import(). + my @parts = split /::/, $lib; # Math::BigInt => Math BigInt + my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm + require File::Spec; + $file = File::Spec->catfile (@parts, $file); + eval { require "$file"; $lib->import( @c ); } + } + else + { + eval "use $lib qw/@c/;"; + } + if ($@ eq '') + { + my $ok = 1; + # loaded it ok, see if the api_version() is high enough + if ($lib->can('api_version') && $lib->api_version() >= 1.0) + { + $ok = 0; + # api_version matches, check if it really provides anything we need + for my $method (qw/ + one two ten + str num + add mul div sub dec inc + acmp len digit is_one is_zero is_even is_odd + is_two is_ten + zeros new copy check + from_hex from_oct from_bin as_hex as_bin as_oct + rsft lsft xor and or + mod sqrt root fac pow modinv modpow log_int gcd + /) + { + if (!$lib->can("_$method")) + { + if (($WARN{$lib}||0) < 2) + { + require Carp; + Carp::carp ("$lib is missing method '_$method'"); + $WARN{$lib} = 1; # still warn about the lib + } + $ok++; last; + } + } + } + if ($ok == 0) + { + $CALC = $lib; + if ($warn_or_die > 0 && ref($l)) + { + require Carp; + my $msg = + "Math::BigInt: couldn't load specified math lib(s), fallback to $lib"; + Carp::carp ($msg) if $warn_or_die == 1; + Carp::croak ($msg) if $warn_or_die == 2; + } + last; # found a usable one, break + } + else + { + if (($WARN{$lib}||0) < 2) + { + my $ver = eval "\$$lib\::VERSION" || 'unknown'; + require Carp; + Carp::carp ("Cannot load outdated $lib v$ver, please upgrade"); + $WARN{$lib} = 2; # never warn again + } + } + } + } + if ($CALC eq '') + { + require Carp; + if ($warn_or_die == 2) + { + Carp::croak( + "Couldn't load specified math lib(s) and fallback disallowed"); + } + else + { + Carp::croak( + "Couldn't load any math lib(s), not even fallback to Calc.pm"); + } + } + + # notify callbacks + foreach my $class (keys %CALLBACKS) + { + &{$CALLBACKS{$class}}($CALC); + } + + # Fill $CAN with the results of $CALC->can(...) for emulating lower math lib + # functions + + %CAN = (); + for my $method (qw/ signed_and signed_or signed_xor /) + { + $CAN{$method} = $CALC->can("_$method") ? 1 : 0; + } + + # import done + } + +# Create a Math::BigInt from a hexadecimal string. + +sub from_hex { + my $self = shift; + my $selfref = ref $self; + my $class = $selfref || $self; + + my $str = shift; + + # If called as a class method, initialize a new object. + + $self = $class -> bzero() unless $selfref; + + if ($str =~ s/ + ^ + ( [+-]? ) + (0?x)? + ( + [0-9a-fA-F]* + ( _ [0-9a-fA-F]+ )* + ) + $ + //x) + { + # Get a "clean" version of the string, i.e., non-emtpy and with no + # underscores or invalid characters. + + my $sign = $1; + my $chrs = $3; + $chrs =~ tr/_//d; + $chrs = '0' unless CORE::length $chrs; + + # The library method requires a prefix. + + $self->{value} = $CALC->_from_hex('0x' . $chrs); + + # Place the sign. + + if ($sign eq '-' && ! $CALC->_is_zero($self->{value})) { + $self->{sign} = '-'; + } + + return $self; + } + + # CORE::hex() parses as much as it can, and ignores any trailing garbage. + # For backwards compatibility, we return NaN. + + return $self->bnan(); +} + +# Create a Math::BigInt from an octal string. + +sub from_oct { + my $self = shift; + my $selfref = ref $self; + my $class = $selfref || $self; + + my $str = shift; + + # If called as a class method, initialize a new object. + + $self = $class -> bzero() unless $selfref; + + if ($str =~ s/ + ^ + ( [+-]? ) + ( + [0-7]* + ( _ [0-7]+ )* + ) + $ + //x) + { + # Get a "clean" version of the string, i.e., non-emtpy and with no + # underscores or invalid characters. + + my $sign = $1; + my $chrs = $2; + $chrs =~ tr/_//d; + $chrs = '0' unless CORE::length $chrs; + + # The library method requires a prefix. + + $self->{value} = $CALC->_from_oct('0' . $chrs); + + # Place the sign. + + if ($sign eq '-' && ! $CALC->_is_zero($self->{value})) { + $self->{sign} = '-'; + } + + return $self; + } + + # CORE::oct() parses as much as it can, and ignores any trailing garbage. + # For backwards compatibility, we return NaN. + + return $self->bnan(); +} + +# Create a Math::BigInt from a binary string. + +sub from_bin { + my $self = shift; + my $selfref = ref $self; + my $class = $selfref || $self; + + my $str = shift; + + # If called as a class method, initialize a new object. + + $self = $class -> bzero() unless $selfref; + + if ($str =~ s/ + ^ + ( [+-]? ) + (0?b)? + ( + [01]* + ( _ [01]+ )* + ) + $ + //x) + { + # Get a "clean" version of the string, i.e., non-emtpy and with no + # underscores or invalid characters. + + my $sign = $1; + my $chrs = $3; + $chrs =~ tr/_//d; + $chrs = '0' unless CORE::length $chrs; + + # The library method requires a prefix. + + $self->{value} = $CALC->_from_bin('0b' . $chrs); + + # Place the sign. + + if ($sign eq '-' && ! $CALC->_is_zero($self->{value})) { + $self->{sign} = '-'; + } + + return $self; + } + + # For consistency with from_hex() and from_oct(), we return NaN when the + # input is invalid. + + return $self->bnan(); +} + +sub _split_dec_string { + my $str = shift; + + if ($str =~ s/ + ^ + + # leading whitespace + ( \s* ) + + # optional sign + ( [+-]? ) + + # significand + ( + \d+ (?: _ \d+ )* + (?: + \. + (?: \d+ (?: _ \d+ )* )? + )? + | + \. + \d+ (?: _ \d+ )* + ) + + # optional exponent + (?: + [Ee] + ( [+-]? ) + ( \d+ (?: _ \d+ )* ) + )? + + # trailing stuff + ( \D .*? )? + + \z + //x) + { + my $leading = $1; + my $significand_sgn = $2 || '+'; + my $significand_abs = $3; + my $exponent_sgn = $4 || '+'; + my $exponent_abs = $5 || '0'; + my $trailing = $6; + + # Remove underscores and leading zeros. + + $significand_abs =~ tr/_//d; + $exponent_abs =~ tr/_//d; + + $significand_abs =~ s/^0+(.)/$1/; + $exponent_abs =~ s/^0+(.)/$1/; + + # If the significand contains a dot, remove it and adjust the exponent + # accordingly. E.g., "1234.56789e+3" -> "123456789e-2" + + my $idx = index $significand_abs, '.'; + if ($idx > -1) { + $significand_abs =~ s/0+\z//; + substr($significand_abs, $idx, 1) = ''; + my $exponent = $exponent_sgn . $exponent_abs; + $exponent .= $idx - CORE::length($significand_abs); + $exponent_abs = abs $exponent; + $exponent_sgn = $exponent < 0 ? '-' : '+'; + } + + return($leading, + $significand_sgn, $significand_abs, + $exponent_sgn, $exponent_abs, + $trailing); + } + + return undef; +} + +sub _split + { + # input: num_str; output: undef for invalid or + # (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction, + # \$exp_sign,\$exp_value) + # Internal, take apart a string and return the pieces. + # Strip leading/trailing whitespace, leading zeros, underscore and reject + # invalid input. + my $x = shift; + + # strip white space at front, also extraneous leading zeros + $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2' + $x =~ s/^\s+//; # but this will + $x =~ s/\s+$//g; # strip white space at end + + # shortcut, if nothing to split, return early + if ($x =~ /^[+-]?[0-9]+\z/) + { + $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+'; + return (\$sign, \$x, \'', \'', \0); + } + + # invalid starting char? + return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/; + + return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string + return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string + + # strip underscores between digits + $x =~ s/([0-9])_([0-9])/$1$2/g; + $x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3 + + # some possible inputs: + # 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 + # .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999 + + my ($m,$e,$last) = split /[Ee]/,$x; + return if defined $last; # last defined => 1e2E3 or others + $e = '0' if !defined $e || $e eq ""; + + # sign,value for exponent,mantint,mantfrac + my ($es,$ev,$mis,$miv,$mfv); + # valid exponent? + if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros + { + $es = $1; $ev = $2; + # valid mantissa? + return if $m eq '.' || $m eq ''; + my ($mi,$mf,$lastf) = split /\./,$m; + return if defined $lastf; # lastf defined => 1.2.3 or others + $mi = '0' if !defined $mi; + $mi .= '0' if $mi =~ /^[\-\+]?$/; + $mf = '0' if !defined $mf || $mf eq ''; + if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros + { + $mis = $1||'+'; $miv = $2; + return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros + $mfv = $1; + # handle the 0e999 case here + $ev = 0 if $miv eq '0' && $mfv eq ''; + return (\$mis,\$miv,\$mfv,\$es,\$ev); + } + } + return; # NaN, not a number + } + +############################################################################## +# internal calculation routines (others are in Math::BigInt::Calc etc) + +sub __lcm + { + # (BINT or num_str, BINT or num_str) return BINT + # does modify first argument + # LCM + + my ($x,$ty) = @_; + return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan); + my $method = ref($x) . '::bgcd'; + no strict 'refs'; + $x * $ty / &$method($x,$ty); + } + +############################################################################### +# trigonometric functions + +sub bpi + { + # Calculate PI to N digits. Unless upgrading is in effect, returns the + # result truncated to an integer, that is, always returns '3'. + my ($self,$n) = @_; + if (@_ == 1) + { + # called like Math::BigInt::bpi(10); + $n = $self; $self = $class; + } + $self = ref($self) if ref($self); + + return $upgrade->new($n) if defined $upgrade; + + # hard-wired to "3" + $self->new(3); + } + +sub bcos + { + # Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the + # result truncated to an integer. + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + return $x if $x->modify('bcos'); + + return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN + + return $upgrade->new($x)->bcos(@r) if defined $upgrade; + + require Math::BigFloat; + # calculate the result and truncate it to integer + my $t = Math::BigFloat->new($x)->bcos(@r)->as_int(); + + $x->bone() if $t->is_one(); + $x->bzero() if $t->is_zero(); + $x->round(@r); + } + +sub bsin + { + # Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the + # result truncated to an integer. + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + return $x if $x->modify('bsin'); + + return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN + + return $upgrade->new($x)->bsin(@r) if defined $upgrade; + + require Math::BigFloat; + # calculate the result and truncate it to integer + my $t = Math::BigFloat->new($x)->bsin(@r)->as_int(); + + $x->bone() if $t->is_one(); + $x->bzero() if $t->is_zero(); + $x->round(@r); + } + +sub batan2 + { + # calculate arcus tangens of ($y/$x) + + # set up parameters + my ($self,$y,$x,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it + if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) + { + ($self,$y,$x,@r) = objectify(2,@_); + } + + return $y if $y->modify('batan2'); + + return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan); + + # Y X + # != 0 -inf result is +- pi + if ($x->is_inf() || $y->is_inf()) + { + # upgrade to BigFloat etc. + return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade; + if ($y->is_inf()) + { + if ($x->{sign} eq '-inf') + { + # calculate 3 pi/4 => 2.3.. => 2 + $y->bone( substr($y->{sign},0,1) ); + $y->bmul($self->new(2)); + } + elsif ($x->{sign} eq '+inf') + { + # calculate pi/4 => 0.7 => 0 + $y->bzero(); + } + else + { + # calculate pi/2 => 1.5 => 1 + $y->bone( substr($y->{sign},0,1) ); + } + } + else + { + if ($x->{sign} eq '+inf') + { + # calculate pi/4 => 0.7 => 0 + $y->bzero(); + } + else + { + # PI => 3.1415.. => 3 + $y->bone( substr($y->{sign},0,1) ); + $y->bmul($self->new(3)); + } + } + return $y; + } + + return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade; + + require Math::BigFloat; + my $r = Math::BigFloat->new($y) + ->batan2(Math::BigFloat->new($x),@r) + ->as_int(); + + $x->{value} = $r->{value}; + $x->{sign} = $r->{sign}; + + $x; + } + +sub batan + { + # Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the + # result truncated to an integer. + my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); + + return $x if $x->modify('batan'); + + return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN + + return $upgrade->new($x)->batan(@r) if defined $upgrade; + + # calculate the result and truncate it to integer + my $t = Math::BigFloat->new($x)->batan(@r); + + $x->{value} = $CALC->_new( $x->as_int()->bstr() ); + $x->round(@r); + } + +############################################################################### +# this method returns 0 if the object can be modified, or 1 if not. +# We use a fast constant sub() here, to avoid costly calls. Subclasses +# may override it with special code (f.i. Math::BigInt::Constant does so) + +sub modify () { 0; } + +1; +__END__ + +=pod + +=head1 NAME + +Math::BigInt - Arbitrary size integer/float math package + +=head1 SYNOPSIS + + use Math::BigInt; + + # or make it faster with huge numbers: install (optional) + # Math::BigInt::GMP and always use (it will fall back to + # pure Perl if the GMP library is not installed): + # (See also the L<MATH LIBRARY> section!) + + # will warn if Math::BigInt::GMP cannot be found + use Math::BigInt lib => 'GMP'; + + # to suppress the warning use this: + # use Math::BigInt try => 'GMP'; + + # dies if GMP cannot be loaded: + # use Math::BigInt only => 'GMP'; + + my $str = '1234567890'; + my @values = (64,74,18); + my $n = 1; my $sign = '-'; + + # Number creation + my $x = Math::BigInt->new($str); # defaults to 0 + my $y = $x->copy(); # make a true copy + my $nan = Math::BigInt->bnan(); # create a NotANumber + my $zero = Math::BigInt->bzero(); # create a +0 + my $inf = Math::BigInt->binf(); # create a +inf + my $inf = Math::BigInt->binf('-'); # create a -inf + my $one = Math::BigInt->bone(); # create a +1 + my $mone = Math::BigInt->bone('-'); # create a -1 + + my $pi = Math::BigInt->bpi(); # returns '3' + # see Math::BigFloat::bpi() + + $h = Math::BigInt->new('0x123'); # from hexadecimal + $b = Math::BigInt->new('0b101'); # from binary + $o = Math::BigInt->from_oct('0101'); # from octal + $h = Math::BigInt->from_hex('cafe'); # from hexadecimal + $b = Math::BigInt->from_bin('0101'); # from binary + + # Testing (don't modify their arguments) + # (return true if the condition is met, otherwise false) + + $x->is_zero(); # if $x is +0 + $x->is_nan(); # if $x is NaN + $x->is_one(); # if $x is +1 + $x->is_one('-'); # if $x is -1 + $x->is_odd(); # if $x is odd + $x->is_even(); # if $x is even + $x->is_pos(); # if $x > 0 + $x->is_neg(); # if $x < 0 + $x->is_inf($sign); # if $x is +inf, or -inf (sign is default '+') + $x->is_int(); # if $x is an integer (not a float) + + # comparing and digit/sign extraction + $x->bcmp($y); # compare numbers (undef,<0,=0,>0) + $x->bacmp($y); # compare absolutely (undef,<0,=0,>0) + $x->sign(); # return the sign, either +,- or NaN + $x->digit($n); # return the nth digit, counting from right + $x->digit(-$n); # return the nth digit, counting from left + + # The following all modify their first argument. If you want to pre- + # serve $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for + # why this is necessary when mixing $a = $b assignments with non-over- + # loaded math. + + $x->bzero(); # set $x to 0 + $x->bnan(); # set $x to NaN + $x->bone(); # set $x to +1 + $x->bone('-'); # set $x to -1 + $x->binf(); # set $x to inf + $x->binf('-'); # set $x to -inf + + $x->bneg(); # negation + $x->babs(); # absolute value + $x->bsgn(); # sign function (-1, 0, 1, or NaN) + $x->bnorm(); # normalize (no-op in BigInt) + $x->bnot(); # two's complement (bit wise not) + $x->binc(); # increment $x by 1 + $x->bdec(); # decrement $x by 1 + + $x->badd($y); # addition (add $y to $x) + $x->bsub($y); # subtraction (subtract $y from $x) + $x->bmul($y); # multiplication (multiply $x by $y) + $x->bdiv($y); # divide, set $x to quotient + # return (quo,rem) or quo if scalar + + $x->bmuladd($y,$z); # $x = $x * $y + $z + + $x->bmod($y); # modulus (x % y) + $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod) + $x->bmodinv($mod); # modular multiplicative inverse + $x->bpow($y); # power of arguments (x ** y) + $x->blsft($y); # left shift in base 2 + $x->brsft($y); # right shift in base 2 + # returns (quo,rem) or quo if in sca- + # lar context + $x->blsft($y,$n); # left shift by $y places in base $n + $x->brsft($y,$n); # right shift by $y places in base $n + # returns (quo,rem) or quo if in sca- + # lar context + + $x->band($y); # bitwise and + $x->bior($y); # bitwise inclusive or + $x->bxor($y); # bitwise exclusive or + $x->bnot(); # bitwise not (two's complement) + + $x->bsqrt(); # calculate square-root + $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root) + $x->bfac(); # factorial of $x (1*2*3*4*..$x) + + $x->bnok($y); # x over y (binomial coefficient n over k) + + $x->blog(); # logarithm of $x to base e (Euler's number) + $x->blog($base); # logarithm of $x to base $base (f.i. 2) + $x->bexp(); # calculate e ** $x where e is Euler's number + + $x->round($A,$P,$mode); # round to accuracy or precision using + # mode $mode + $x->bround($n); # accuracy: preserve $n digits + $x->bfround($n); # $n > 0: round $nth digits, + # $n < 0: round to the $nth digit after the + # dot, no-op for BigInts + + # The following do not modify their arguments in BigInt (are no-ops), + # but do so in BigFloat: + + $x->bfloor(); # round towards minus infinity + $x->bceil(); # round towards plus infinity + $x->bint(); # round towards zero + + # The following do not modify their arguments: + + # greatest common divisor (no OO style) + my $gcd = Math::BigInt::bgcd(@values); + # lowest common multiple (no OO style) + my $lcm = Math::BigInt::blcm(@values); + + $x->length(); # return number of digits in number + ($xl,$f) = $x->length(); # length of number and length of fraction + # part, latter is always 0 digits long + # for BigInts + + $x->exponent(); # return exponent as BigInt + $x->mantissa(); # return (signed) mantissa as BigInt + $x->parts(); # return (mantissa,exponent) as BigInt + $x->copy(); # make a true copy of $x (unlike $y = $x;) + $x->as_int(); # return as BigInt (in BigInt: same as copy()) + $x->numify(); # return as scalar (might overflow!) + + # conversion to string (do not modify their argument) + $x->bstr(); # normalized string (e.g. '3') + $x->bsstr(); # norm. string in scientific notation (e.g. '3E0') + $x->as_hex(); # as signed hexadecimal string with prefixed 0x + $x->as_bin(); # as signed binary string with prefixed 0b + $x->as_oct(); # as signed octal string with prefixed 0 + + + # precision and accuracy (see section about rounding for more) + $x->precision(); # return P of $x (or global, if P of $x undef) + $x->precision($n); # set P of $x to $n + $x->accuracy(); # return A of $x (or global, if A of $x undef) + $x->accuracy($n); # set A $x to $n + + # Global methods + Math::BigInt->precision(); # get/set global P for all BigInt objects + Math::BigInt->accuracy(); # get/set global A for all BigInt objects + Math::BigInt->round_mode(); # get/set global round mode, one of + # 'even', 'odd', '+inf', '-inf', 'zero', + # 'trunc' or 'common' + Math::BigInt->config(); # return hash containing configuration + +=head1 DESCRIPTION + +All operators (including basic math operations) are overloaded if you +declare your big integers as + + $i = Math::BigInt -> new('123_456_789_123_456_789'); + +Operations with overloaded operators preserve the arguments which is +exactly what you expect. + +=head2 Input + +Input values to these routines may be any string, that looks like a number +and results in an integer, including hexadecimal and binary numbers. + +Scalars holding numbers may also be passed, but note that non-integer numbers +may already have lost precision due to the conversion to float. Quote +your input if you want BigInt to see all the digits: + + $x = Math::BigInt->new(12345678890123456789); # bad + $x = Math::BigInt->new('12345678901234567890'); # good + +You can include one underscore between any two digits. + +This means integer values like 1.01E2 or even 1000E-2 are also accepted. +Non-integer values result in NaN. + +Hexadecimal (prefixed with "0x") and binary numbers (prefixed with "0b") +are accepted, too. Please note that octal numbers are not recognized +by new(), so the following will print "123": + + perl -MMath::BigInt -le 'print Math::BigInt->new("0123")' + +To convert an octal number, use from_oct(); + + perl -MMath::BigInt -le 'print Math::BigInt->from_oct("0123")' + +Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('') +results in 'NaN'. This might change in the future, so use always the following +explicit forms to get a zero or NaN: + + $zero = Math::BigInt->bzero(); + $nan = Math::BigInt->bnan(); + +C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers +are always stored in normalized form. If passed a string, creates a BigInt +object from the input. + +=head2 Output + +Output values are BigInt objects (normalized), except for the methods which +return a string (see L</SYNOPSIS>). + +Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>, +C<is_nan()>, etc.) return true or false, while others (C<bcmp()>, C<bacmp()>) +return either undef (if NaN is involved), <0, 0 or >0 and are suited for sort. + +=head1 METHODS + +Each of the methods below (except config(), accuracy() and precision()) +accepts three additional parameters. These arguments C<$A>, C<$P> and C<$R> +are C<accuracy>, C<precision> and C<round_mode>. Please see the section about +L</ACCURACY and PRECISION> for more information. + +=over + +=item config() + + use Data::Dumper; + + print Dumper ( Math::BigInt->config() ); + print Math::BigInt->config()->{lib},"\n"; + +Returns a hash containing the configuration, e.g. the version number, lib +loaded etc. The following hash keys are currently filled in with the +appropriate information. + + key Description + Example + ============================================================ + lib Name of the low-level math library + Math::BigInt::Calc + lib_version Version of low-level math library (see 'lib') + 0.30 + class The class name of config() you just called + Math::BigInt + upgrade To which class math operations might be + upgraded Math::BigFloat + downgrade To which class math operations might be + downgraded undef + precision Global precision + undef + accuracy Global accuracy + undef + round_mode Global round mode + even + version version number of the class you used + 1.61 + div_scale Fallback accuracy for div + 40 + trap_nan If true, traps creation of NaN via croak() + 1 + trap_inf If true, traps creation of +inf/-inf via croak() + 1 + +The following values can be set by passing C<config()> a reference to a hash: + + trap_inf trap_nan + upgrade downgrade precision accuracy round_mode div_scale + +Example: + + $new_cfg = Math::BigInt->config( + { trap_inf => 1, precision => 5 } + ); + +=item accuracy() + + $x->accuracy(5); # local for $x + CLASS->accuracy(5); # global for all members of CLASS + # Note: This also applies to new()! + + $A = $x->accuracy(); # read out accuracy that affects $x + $A = CLASS->accuracy(); # read out global accuracy + +Set or get the global or local accuracy, aka how many significant digits the +results have. If you set a global accuracy, then this also applies to new()! + +Warning! The accuracy I<sticks>, e.g. once you created a number under the +influence of C<< CLASS->accuracy($A) >>, all results from math operations with +that number will also be rounded. + +In most cases, you should probably round the results explicitly using one of +L</round()>, L</bround()> or L</bfround()> or by passing the desired accuracy +to the math operation as additional parameter: + + my $x = Math::BigInt->new(30000); + my $y = Math::BigInt->new(7); + print scalar $x->copy()->bdiv($y, 2); # print 4300 + print scalar $x->copy()->bdiv($y)->bround(2); # print 4300 + +Please see the section about L</ACCURACY and PRECISION> for further details. + +Value must be greater than zero. Pass an undef value to disable it: + + $x->accuracy(undef); + Math::BigInt->accuracy(undef); + +Returns the current accuracy. For C<< $x->accuracy() >> it will return either +the local accuracy, or if not defined, the global. This means the return value +represents the accuracy that will be in effect for $x: + + $y = Math::BigInt->new(1234567); # unrounded + print Math::BigInt->accuracy(4),"\n"; # set 4, print 4 + $x = Math::BigInt->new(123456); # $x will be automatic- + # ally rounded! + print "$x $y\n"; # '123500 1234567' + print $x->accuracy(),"\n"; # will be 4 + print $y->accuracy(),"\n"; # also 4, since + # global is 4 + print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5 + print $x->accuracy(),"\n"; # still 4 + print $y->accuracy(),"\n"; # 5, since global is 5 + +Note: Works also for subclasses like Math::BigFloat. Each class has it's own +globals separated from Math::BigInt, but it is possible to subclass +Math::BigInt and make the globals of the subclass aliases to the ones from +Math::BigInt. + +=item precision() + + $x->precision(-2); # local for $x, round at the second + # digit right of the dot + $x->precision(2); # ditto, round at the second digit + # left of the dot + + CLASS->precision(5); # Global for all members of CLASS + # This also applies to new()! + CLASS->precision(-5); # ditto + + $P = CLASS->precision(); # read out global precision + $P = $x->precision(); # read out precision that affects $x + +Note: You probably want to use L</accuracy()> instead. With L</accuracy()> you +set the number of digits each result should have, with L</precision()> you +set the place where to round! + +C<precision()> sets or gets the global or local precision, aka at which digit +before or after the dot to round all results. A set global precision also +applies to all newly created numbers! + +In Math::BigInt, passing a negative number precision has no effect since no +numbers have digits after the dot. In L<Math::BigFloat>, it will round all +results to P digits after the dot. + +Please see the section about L</ACCURACY and PRECISION> for further details. + +Pass an undef value to disable it: + + $x->precision(undef); + Math::BigInt->precision(undef); + +Returns the current precision. For C<< $x->precision() >> it will return either +the local precision of $x, or if not defined, the global. This means the return +value represents the prevision that will be in effect for $x: + + $y = Math::BigInt->new(1234567); # unrounded + print Math::BigInt->precision(4),"\n"; # set 4, print 4 + $x = Math::BigInt->new(123456); # will be automatically rounded + print $x; # print "120000"! + +Note: Works also for subclasses like L<Math::BigFloat>. Each class has its +own globals separated from Math::BigInt, but it is possible to subclass +Math::BigInt and make the globals of the subclass aliases to the ones from +Math::BigInt. + +=item brsft() + + $x->brsft($y,$n); + +Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and +2, but others work, too. + +Right shifting usually amounts to dividing $x by $n ** $y and truncating the +result: + + + $x = Math::BigInt->new(10); + $x->brsft(1); # same as $x >> 1: 5 + $x = Math::BigInt->new(1234); + $x->brsft(2,10); # result 12 + +There is one exception, and that is base 2 with negative $x: + + + $x = Math::BigInt->new(-5); + print $x->brsft(1); + +This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the +result). + +=item new() + + $x = Math::BigInt->new($str,$A,$P,$R); + +Creates a new BigInt object from a scalar or another BigInt object. The +input is accepted as decimal, hex (with leading '0x') or binary (with leading +'0b'). + +See L</Input> for more info on accepted input formats. + +=item from_oct() + + $x = Math::BigInt->from_oct("0775"); # input is octal + +Interpret the input as an octal string and return the corresponding value. A +"0" (zero) prefix is optional. A single underscore character may be placed +right after the prefix, if present, or between any two digits. If the input is +invalid, a NaN is returned. + +=item from_hex() + + $x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal + +Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A +single underscore character may be placed right after the prefix, if present, +or between any two digits. If the input is invalid, a NaN is returned. + +=item from_bin() + + $x = Math::BigInt->from_bin("0b10011"); # input is binary + +Interpret the input as a binary string. A "0b" or "b" prefix is optional. A +single underscore character may be placed right after the prefix, if present, +or between any two digits. If the input is invalid, a NaN is returned. + +=item bnan() + + $x = Math::BigInt->bnan(); + +Creates a new BigInt object representing NaN (Not A Number). +If used on an object, it will set it to NaN: + + $x->bnan(); + +=item bzero() + + $x = Math::BigInt->bzero(); + +Creates a new BigInt object representing zero. +If used on an object, it will set it to zero: + + $x->bzero(); + +=item binf() + + $x = Math::BigInt->binf($sign); + +Creates a new BigInt object representing infinity. The optional argument is +either '-' or '+', indicating whether you want infinity or minus infinity. +If used on an object, it will set it to infinity: + + $x->binf(); + $x->binf('-'); + +=item bone() + + $x = Math::BigInt->binf($sign); + +Creates a new BigInt object representing one. The optional argument is +either '-' or '+', indicating whether you want one or minus one. +If used on an object, it will set it to one: + + $x->bone(); # +1 + $x->bone('-'); # -1 + +=item is_one()/is_zero()/is_nan()/is_inf() + + $x->is_zero(); # true if arg is +0 + $x->is_nan(); # true if arg is NaN + $x->is_one(); # true if arg is +1 + $x->is_one('-'); # true if arg is -1 + $x->is_inf(); # true if +inf + $x->is_inf('-'); # true if -inf (sign is default '+') + +These methods all test the BigInt for being one specific value and return +true or false depending on the input. These are faster than doing something +like: + + if ($x == 0) + +=item is_pos()/is_neg()/is_positive()/is_negative() + + $x->is_pos(); # true if > 0 + $x->is_neg(); # true if < 0 + +The methods return true if the argument is positive or negative, respectively. +C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and +C<-inf> is negative. A C<zero> is neither positive nor negative. + +These methods are only testing the sign, and not the value. + +C<is_positive()> and C<is_negative()> are aliases to C<is_pos()> and +C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were +introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced +in v1.68. + +=item is_odd()/is_even()/is_int() + + $x->is_odd(); # true if odd, false for even + $x->is_even(); # true if even, false for odd + $x->is_int(); # true if $x is an integer + +The return true when the argument satisfies the condition. C<NaN>, C<+inf>, +C<-inf> are not integers and are neither odd nor even. + +In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers. + +=item bcmp() + + $x->bcmp($y); + +Compares $x with $y and takes the sign into account. +Returns -1, 0, 1 or undef. + +=item bacmp() + + $x->bacmp($y); + +Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef. + +=item sign() + + $x->sign(); + +Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN. + +If you want $x to have a certain sign, use one of the following methods: + + $x->babs(); # '+' + $x->babs()->bneg(); # '-' + $x->bnan(); # 'NaN' + $x->binf(); # '+inf' + $x->binf('-'); # '-inf' + +=item digit() + + $x->digit($n); # return the nth digit, counting from right + +If C<$n> is negative, returns the digit counting from left. + +=item bneg() + + $x->bneg(); + +Negate the number, e.g. change the sign between '+' and '-', or between '+inf' +and '-inf', respectively. Does nothing for NaN or zero. + +=item babs() + + $x->babs(); + +Set the number to its absolute value, e.g. change the sign from '-' to '+' +and from '-inf' to '+inf', respectively. Does nothing for NaN or positive +numbers. + +=item bsgn() + + $x->bsgn(); + +Signum function. Set the number to -1, 0, or 1, depending on whether the +number is negative, zero, or positive, respectively. Does not modify NaNs. + +=item bnorm() + + $x->bnorm(); # normalize (no-op) + +=item bnot() + + $x->bnot(); + +Two's complement (bitwise not). This is equivalent to + + $x->binc()->bneg(); + +but faster. + +=item binc() + + $x->binc(); # increment x by 1 + +=item bdec() + + $x->bdec(); # decrement x by 1 + +=item badd() + + $x->badd($y); # addition (add $y to $x) + +=item bsub() + + $x->bsub($y); # subtraction (subtract $y from $x) + +=item bmul() + + $x->bmul($y); # multiplication (multiply $x by $y) + +=item bmuladd() + + $x->bmuladd($y,$z); + +Multiply $x by $y, and then add $z to the result, + +This method was added in v1.87 of Math::BigInt (June 2007). + +=item bdiv() + + $x->bdiv($y); # divide, set $x to quotient + +Returns $x divided by $y. In list context, does floored division (F-division), +where the quotient is the greatest integer less than or equal to the quotient +of the two operands. Consequently, the remainder is either zero or has the same +sign as the second operand. In scalar context, only the quotient is returned. + +=item bmod() + + $x->bmod($y); # modulus (x % y) + +Returns $x modulo $y. When $x is finite, and $y is finite and non-zero, the +result is identical to the remainder after floored division (F-division), i.e., +identical to the result from Perl's % operator. + +=item bmodinv() + + $x->bmodinv($mod); # modular multiplicative inverse + +Returns the multiplicative inverse of C<$x> modulo C<$mod>. If + + $y = $x -> copy() -> bmodinv($mod) + +then C<$y> is the number closest to zero, and with the same sign as C<$mod>, +satisfying + + ($x * $y) % $mod = 1 % $mod + +If C<$x> and C<$y> are non-zero, they must be relative primes, i.e., +C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative +inverse exists. + +=item bmodpow() + + $num->bmodpow($exp,$mod); # modular exponentiation + # ($num**$exp % $mod) + +Returns the value of C<$num> taken to the power C<$exp> in the modulus +C<$mod> using binary exponentiation. C<bmodpow> is far superior to +writing + + $num ** $exp % $mod + +because it is much faster - it reduces internal variables into +the modulus whenever possible, so it operates on smaller numbers. + +C<bmodpow> also supports negative exponents. + + bmodpow($num, -1, $mod) + +is exactly equivalent to + + bmodinv($num, $mod) + +=item bpow() + + $x->bpow($y); # power of arguments (x ** y) + +=item blog() + + $x->blog($base, $accuracy); # logarithm of x to the base $base + +If C<$base> is not defined, Euler's number (e) is used: + + print $x->blog(undef, 100); # log(x) to 100 digits + +=item bexp() + + $x->bexp($accuracy); # calculate e ** X + +Calculates the expression C<e ** $x> where C<e> is Euler's number. + +This method was added in v1.82 of Math::BigInt (April 2007). + +See also L</blog()>. + +=item bnok() + + $x->bnok($y); # x over y (binomial coefficient n over k) + +Calculates the binomial coefficient n over k, also called the "choose" +function. The result is equivalent to: + + ( n ) n! + | - | = ------- + ( k ) k!(n-k)! + +This method was added in v1.84 of Math::BigInt (April 2007). + +=item bpi() + + print Math::BigInt->bpi(100), "\n"; # 3 + +Returns PI truncated to an integer, with the argument being ignored. This means +under BigInt this always returns C<3>. + +If upgrading is in effect, returns PI, rounded to N digits with the +current rounding mode: + + use Math::BigFloat; + use Math::BigInt upgrade => Math::BigFloat; + print Math::BigInt->bpi(3), "\n"; # 3.14 + print Math::BigInt->bpi(100), "\n"; # 3.1415.... + +This method was added in v1.87 of Math::BigInt (June 2007). + +=item bcos() + + my $x = Math::BigInt->new(1); + print $x->bcos(100), "\n"; + +Calculate the cosinus of $x, modifying $x in place. + +In BigInt, unless upgrading is in effect, the result is truncated to an +integer. + +This method was added in v1.87 of Math::BigInt (June 2007). + +=item bsin() + + my $x = Math::BigInt->new(1); + print $x->bsin(100), "\n"; + +Calculate the sinus of $x, modifying $x in place. + +In BigInt, unless upgrading is in effect, the result is truncated to an +integer. + +This method was added in v1.87 of Math::BigInt (June 2007). + +=item batan2() + + my $x = Math::BigInt->new(1); + my $y = Math::BigInt->new(1); + print $y->batan2($x), "\n"; + +Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place. + +In BigInt, unless upgrading is in effect, the result is truncated to an +integer. + +This method was added in v1.87 of Math::BigInt (June 2007). + +=item batan() + + my $x = Math::BigFloat->new(0.5); + print $x->batan(100), "\n"; + +Calculate the arcus tangens of $x, modifying $x in place. + +In BigInt, unless upgrading is in effect, the result is truncated to an +integer. + +This method was added in v1.87 of Math::BigInt (June 2007). + +=item blsft() + + $x->blsft($y); # left shift in base 2 + $x->blsft($y,$n); # left shift, in base $n (like 10) + +=item brsft() + + $x->brsft($y); # right shift in base 2 + $x->brsft($y,$n); # right shift, in base $n (like 10) + +=item band() + + $x->band($y); # bitwise and + +=item bior() + + $x->bior($y); # bitwise inclusive or + +=item bxor() + + $x->bxor($y); # bitwise exclusive or + +=item bnot() + + $x->bnot(); # bitwise not (two's complement) + +=item bsqrt() + + $x->bsqrt(); # calculate square-root + +=item broot() + + $x->broot($N); + +Calculates the N'th root of C<$x>. + +=item bfac() + + $x->bfac(); # factorial of $x (1*2*3*4*..$x) + +=item round() + + $x->round($A,$P,$round_mode); + +Round $x to accuracy C<$A> or precision C<$P> using the round mode +C<$round_mode>. + +=item bround() + + $x->bround($N); # accuracy: preserve $N digits + +=item bfround() + + $x->bfround($N); + +If N is > 0, rounds to the Nth digit from the left. If N < 0, rounds to +the Nth digit after the dot. Since BigInts are integers, the case N < 0 +is a no-op for them. + +Examples: + + Input N Result + =================================================== + 123456.123456 3 123500 + 123456.123456 2 123450 + 123456.123456 -2 123456.12 + 123456.123456 -3 123456.123 + +=item bfloor() + + $x->bfloor(); + +Round $x towards minus infinity (i.e., set $x to the largest integer less than +or equal to $x). This is a no-op in BigInt, but changes $x in BigFloat, if $x +is not an integer. + +=item bceil() + + $x->bceil(); + +Round $x towards plus infinity (i.e., set $x to the smallest integer greater +than or equal to $x). This is a no-op in BigInt, but changes $x in BigFloat, if +$x is not an integer. + +=item bint() + + $x->bint(); + +Round $x towards zero. This is a no-op in BigInt, but changes $x in BigFloat, +if $x is not an integer. + +=item bgcd() + + bgcd(@values); # greatest common divisor (no OO style) + +=item blcm() + + blcm(@values); # lowest common multiple (no OO style) + +=item length() + + $x->length(); + ($xl,$fl) = $x->length(); + +Returns the number of digits in the decimal representation of the number. +In list context, returns the length of the integer and fraction part. For +BigInt's, the length of the fraction part will always be 0. + +=item exponent() + + $x->exponent(); + +Return the exponent of $x as BigInt. + +=item mantissa() + + $x->mantissa(); + +Return the signed mantissa of $x as BigInt. + +=item parts() + + $x->parts(); # return (mantissa,exponent) as BigInt + +=item copy() + + $x->copy(); # make a true copy of $x (unlike $y = $x;) + +=item as_int() + +=item as_number() + +These methods are called when Math::BigInt encounters an object it doesn't know +how to handle. For instance, assume $x is a Math::BigInt, or subclass thereof, +and $y is defined, but not a Math::BigInt, or subclass thereof. If you do + + $x -> badd($y); + +$y needs to be converted into an object that $x can deal with. This is done by +first checking if $y is something that $x might be upgraded to. If that is the +case, no further attempts are made. The next is to see if $y supports the +method C<as_int()>. If it does, C<as_int()> is called, but if it doesn't, the +next thing is to see if $y supports the method C<as_number()>. If it does, +C<as_number()> is called. The method C<as_int()> (and C<as_number()>) is +expected to return either an object that has the same class as $x, a subclass +thereof, or a string that C<ref($x)-E<gt>new()> can parse to create an object. + +C<as_number()> is an alias to C<as_int()>. C<as_number> was introduced in +v1.22, while C<as_int()> was introduced in v1.68. + +In Math::BigInt, C<as_int()> has the same effect as C<copy()>. + +=item bstr() + + $x->bstr(); + +Returns a normalized string representation of C<$x>. + +=item bsstr() + + $x->bsstr(); # normalized string in scientific notation + +=item as_hex() + + $x->as_hex(); # as signed hexadecimal string with prefixed 0x + +=item as_bin() + + $x->as_bin(); # as signed binary string with prefixed 0b + +=item as_oct() + + $x->as_oct(); # as signed octal string with prefixed 0 + +=item numify() + + print $x->numify(); + +This returns a normal Perl scalar from $x. It is used automatically +whenever a scalar is needed, for instance in array index operations. + +This loses precision, to avoid this use L</as_int()> instead. + +=item modify() + + $x->modify('bpowd'); + +This method returns 0 if the object can be modified with the given +operation, or 1 if not. + +This is used for instance by L<Math::BigInt::Constant>. + +=item upgrade()/downgrade() + +Set/get the class for downgrade/upgrade operations. Thuis is used +for instance by L<bignum>. The defaults are '', thus the following +operation will create a BigInt, not a BigFloat: + + my $i = Math::BigInt->new(123); + my $f = Math::BigFloat->new('123.1'); + + print $i + $f,"\n"; # print 246 + +=item div_scale() + +Set/get the number of digits for the default precision in divide +operations. + +=item round_mode() + +Set/get the current round mode. + +=back + +=head1 ACCURACY and PRECISION + +Since version v1.33, Math::BigInt and Math::BigFloat have full support for +accuracy and precision based rounding, both automatically after every +operation, as well as manually. + +This section describes the accuracy/precision handling in Math::Big* as it +used to be and as it is now, complete with an explanation of all terms and +abbreviations. + +Not yet implemented things (but with correct description) are marked with '!', +things that need to be answered are marked with '?'. + +In the next paragraph follows a short description of terms used here (because +these may differ from terms used by others people or documentation). + +During the rest of this document, the shortcuts A (for accuracy), P (for +precision), F (fallback) and R (rounding mode) will be used. + +=head2 Precision P + +A fixed number of digits before (positive) or after (negative) +the decimal point. For example, 123.45 has a precision of -2. 0 means an +integer like 123 (or 120). A precision of 2 means two digits to the left +of the decimal point are zero, so 123 with P = 1 becomes 120. Note that +numbers with zeros before the decimal point may have different precisions, +because 1200 can have p = 0, 1 or 2 (depending on what the initial value +was). It could also have p < 0, when the digits after the decimal point +are zero. + +The string output (of floating point numbers) will be padded with zeros: + + Initial value P A Result String + ------------------------------------------------------------ + 1234.01 -3 1000 1000 + 1234 -2 1200 1200 + 1234.5 -1 1230 1230 + 1234.001 1 1234 1234.0 + 1234.01 0 1234 1234 + 1234.01 2 1234.01 1234.01 + 1234.01 5 1234.01 1234.01000 + +For BigInts, no padding occurs. + +=head2 Accuracy A + +Number of significant digits. Leading zeros are not counted. A +number may have an accuracy greater than the non-zero digits +when there are zeros in it or trailing zeros. For example, 123.456 has +A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3. + +The string output (of floating point numbers) will be padded with zeros: + + Initial value P A Result String + ------------------------------------------------------------ + 1234.01 3 1230 1230 + 1234.01 6 1234.01 1234.01 + 1234.1 8 1234.1 1234.1000 + +For BigInts, no padding occurs. + +=head2 Fallback F + +When both A and P are undefined, this is used as a fallback accuracy when +dividing numbers. + +=head2 Rounding mode R + +When rounding a number, different 'styles' or 'kinds' +of rounding are possible. (Note that random rounding, as in +Math::Round, is not implemented.) + +=over + +=item 'trunc' + +truncation invariably removes all digits following the +rounding place, replacing them with zeros. Thus, 987.65 rounded +to tens (P=1) becomes 980, and rounded to the fourth sigdig +becomes 987.6 (A=4). 123.456 rounded to the second place after the +decimal point (P=-2) becomes 123.46. + +All other implemented styles of rounding attempt to round to the +"nearest digit." If the digit D immediately to the right of the +rounding place (skipping the decimal point) is greater than 5, the +number is incremented at the rounding place (possibly causing a +cascade of incrementation): e.g. when rounding to units, 0.9 rounds +to 1, and -19.9 rounds to -20. If D < 5, the number is similarly +truncated at the rounding place: e.g. when rounding to units, 0.4 +rounds to 0, and -19.4 rounds to -19. + +However the results of other styles of rounding differ if the +digit immediately to the right of the rounding place (skipping the +decimal point) is 5 and if there are no digits, or no digits other +than 0, after that 5. In such cases: + +=item 'even' + +rounds the digit at the rounding place to 0, 2, 4, 6, or 8 +if it is not already. E.g., when rounding to the first sigdig, 0.45 +becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5. + +=item 'odd' + +rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if +it is not already. E.g., when rounding to the first sigdig, 0.45 +becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6. + +=item '+inf' + +round to plus infinity, i.e. always round up. E.g., when +rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5, +and 0.4501 also becomes 0.5. + +=item '-inf' + +round to minus infinity, i.e. always round down. E.g., when +rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6, +but 0.4501 becomes 0.5. + +=item 'zero' + +round to zero, i.e. positive numbers down, negative ones up. +E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55 +becomes -0.5, but 0.4501 becomes 0.5. + +=item 'common' + +round up if the digit immediately to the right of the rounding place +is 5 or greater, otherwise round down. E.g., 0.15 becomes 0.2 and +0.149 becomes 0.1. + +=back + +The handling of A & P in MBI/MBF (the old core code shipped with Perl +versions <= 5.7.2) is like this: + +=over + +=item Precision + + * bfround($p) is able to round to $p number of digits after the decimal + point + * otherwise P is unused + +=item Accuracy (significant digits) + + * bround($a) rounds to $a significant digits + * only bdiv() and bsqrt() take A as (optional) parameter + + other operations simply create the same number (bneg etc), or + more (bmul) of digits + + rounding/truncating is only done when explicitly calling one + of bround or bfround, and never for BigInt (not implemented) + * bsqrt() simply hands its accuracy argument over to bdiv. + * the documentation and the comment in the code indicate two + different ways on how bdiv() determines the maximum number + of digits it should calculate, and the actual code does yet + another thing + POD: + max($Math::BigFloat::div_scale,length(dividend)+length(divisor)) + Comment: + result has at most max(scale, length(dividend), length(divisor)) digits + Actual code: + scale = max(scale, length(dividend)-1,length(divisor)-1); + scale += length(divisor) - length(dividend); + So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10 + So for lx = 3, ly = 9, scale = 10, scale will actually be 16 + (10+9-3). Actually, the 'difference' added to the scale is cal- + culated from the number of "significant digits" in dividend and + divisor, which is derived by looking at the length of the man- + tissa. Which is wrong, since it includes the + sign (oops) and + actually gets 2 for '+100' and 4 for '+101'. Oops again. Thus + 124/3 with div_scale=1 will get you '41.3' based on the strange + assumption that 124 has 3 significant digits, while 120/7 will + get you '17', not '17.1' since 120 is thought to have 2 signif- + icant digits. The rounding after the division then uses the + remainder and $y to determine whether it must round up or down. + ? I have no idea which is the right way. That's why I used a slightly more + ? simple scheme and tweaked the few failing testcases to match it. + +=back + +This is how it works now: + +=over + +=item Setting/Accessing + + * You can set the A global via Math::BigInt->accuracy() or + Math::BigFloat->accuracy() or whatever class you are using. + * You can also set P globally by using Math::SomeClass->precision() + likewise. + * Globals are classwide, and not inherited by subclasses. + * to undefine A, use Math::SomeCLass->accuracy(undef); + * to undefine P, use Math::SomeClass->precision(undef); + * Setting Math::SomeClass->accuracy() clears automatically + Math::SomeClass->precision(), and vice versa. + * To be valid, A must be > 0, P can have any value. + * If P is negative, this means round to the P'th place to the right of the + decimal point; positive values mean to the left of the decimal point. + P of 0 means round to integer. + * to find out the current global A, use Math::SomeClass->accuracy() + * to find out the current global P, use Math::SomeClass->precision() + * use $x->accuracy() respective $x->precision() for the local + setting of $x. + * Please note that $x->accuracy() respective $x->precision() + return eventually defined global A or P, when $x's A or P is not + set. + +=item Creating numbers + + * When you create a number, you can give the desired A or P via: + $x = Math::BigInt->new($number,$A,$P); + * Only one of A or P can be defined, otherwise the result is NaN + * If no A or P is give ($x = Math::BigInt->new($number) form), then the + globals (if set) will be used. Thus changing the global defaults later on + will not change the A or P of previously created numbers (i.e., A and P of + $x will be what was in effect when $x was created) + * If given undef for A and P, NO rounding will occur, and the globals will + NOT be used. This is used by subclasses to create numbers without + suffering rounding in the parent. Thus a subclass is able to have its own + globals enforced upon creation of a number by using + $x = Math::BigInt->new($number,undef,undef): + + use Math::BigInt::SomeSubclass; + use Math::BigInt; + + Math::BigInt->accuracy(2); + Math::BigInt::SomeSubClass->accuracy(3); + $x = Math::BigInt::SomeSubClass->new(1234); + + $x is now 1230, and not 1200. A subclass might choose to implement + this otherwise, e.g. falling back to the parent's A and P. + +=item Usage + + * If A or P are enabled/defined, they are used to round the result of each + operation according to the rules below + * Negative P is ignored in Math::BigInt, since BigInts never have digits + after the decimal point + * Math::BigFloat uses Math::BigInt internally, but setting A or P inside + Math::BigInt as globals does not tamper with the parts of a BigFloat. + A flag is used to mark all Math::BigFloat numbers as 'never round'. + +=item Precedence + + * It only makes sense that a number has only one of A or P at a time. + If you set either A or P on one object, or globally, the other one will + be automatically cleared. + * If two objects are involved in an operation, and one of them has A in + effect, and the other P, this results in an error (NaN). + * A takes precedence over P (Hint: A comes before P). + If neither of them is defined, nothing is used, i.e. the result will have + as many digits as it can (with an exception for bdiv/bsqrt) and will not + be rounded. + * There is another setting for bdiv() (and thus for bsqrt()). If neither of + A or P is defined, bdiv() will use a fallback (F) of $div_scale digits. + If either the dividend's or the divisor's mantissa has more digits than + the value of F, the higher value will be used instead of F. + This is to limit the digits (A) of the result (just consider what would + happen with unlimited A and P in the case of 1/3 :-) + * bdiv will calculate (at least) 4 more digits than required (determined by + A, P or F), and, if F is not used, round the result + (this will still fail in the case of a result like 0.12345000000001 with A + or P of 5, but this can not be helped - or can it?) + * Thus you can have the math done by on Math::Big* class in two modi: + + never round (this is the default): + This is done by setting A and P to undef. No math operation + will round the result, with bdiv() and bsqrt() as exceptions to guard + against overflows. You must explicitly call bround(), bfround() or + round() (the latter with parameters). + Note: Once you have rounded a number, the settings will 'stick' on it + and 'infect' all other numbers engaged in math operations with it, since + local settings have the highest precedence. So, to get SaferRound[tm], + use a copy() before rounding like this: + + $x = Math::BigFloat->new(12.34); + $y = Math::BigFloat->new(98.76); + $z = $x * $y; # 1218.6984 + print $x->copy()->bround(3); # 12.3 (but A is now 3!) + $z = $x * $y; # still 1218.6984, without + # copy would have been 1210! + + + round after each op: + After each single operation (except for testing like is_zero()), the + method round() is called and the result is rounded appropriately. By + setting proper values for A and P, you can have all-the-same-A or + all-the-same-P modes. For example, Math::Currency might set A to undef, + and P to -2, globally. + + ?Maybe an extra option that forbids local A & P settings would be in order, + ?so that intermediate rounding does not 'poison' further math? + +=item Overriding globals + + * you will be able to give A, P and R as an argument to all the calculation + routines; the second parameter is A, the third one is P, and the fourth is + R (shift right by one for binary operations like badd). P is used only if + the first parameter (A) is undefined. These three parameters override the + globals in the order detailed as follows, i.e. the first defined value + wins: + (local: per object, global: global default, parameter: argument to sub) + + parameter A + + parameter P + + local A (if defined on both of the operands: smaller one is taken) + + local P (if defined on both of the operands: bigger one is taken) + + global A + + global P + + global F + * bsqrt() will hand its arguments to bdiv(), as it used to, only now for two + arguments (A and P) instead of one + +=item Local settings + + * You can set A or P locally by using $x->accuracy() or + $x->precision() + and thus force different A and P for different objects/numbers. + * Setting A or P this way immediately rounds $x to the new value. + * $x->accuracy() clears $x->precision(), and vice versa. + +=item Rounding + + * the rounding routines will use the respective global or local settings. + bround() is for accuracy rounding, while bfround() is for precision + * the two rounding functions take as the second parameter one of the + following rounding modes (R): + 'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common' + * you can set/get the global R by using Math::SomeClass->round_mode() + or by setting $Math::SomeClass::round_mode + * after each operation, $result->round() is called, and the result may + eventually be rounded (that is, if A or P were set either locally, + globally or as parameter to the operation) + * to manually round a number, call $x->round($A,$P,$round_mode); + this will round the number by using the appropriate rounding function + and then normalize it. + * rounding modifies the local settings of the number: + + $x = Math::BigFloat->new(123.456); + $x->accuracy(5); + $x->bround(4); + + Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy() + will be 4 from now on. + +=item Default values + + * R: 'even' + * F: 40 + * A: undef + * P: undef + +=item Remarks + + * The defaults are set up so that the new code gives the same results as + the old code (except in a few cases on bdiv): + + Both A and P are undefined and thus will not be used for rounding + after each operation. + + round() is thus a no-op, unless given extra parameters A and P + +=back + +=head1 Infinity and Not a Number + +While BigInt has extensive handling of inf and NaN, certain quirks remain. + +=over + +=item oct()/hex() + +These perl routines currently (as of Perl v.5.8.6) cannot handle passed +inf. + + te@linux:~> perl -wle 'print 2 ** 3333' + Inf + te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333' + 1 + te@linux:~> perl -wle 'print oct(2 ** 3333)' + 0 + te@linux:~> perl -wle 'print hex(2 ** 3333)' + Illegal hexadecimal digit 'I' ignored at -e line 1. + 0 + +The same problems occur if you pass them Math::BigInt->binf() objects. Since +overloading these routines is not possible, this cannot be fixed from BigInt. + +=item ==, !=, <, >, <=, >= with NaNs + +BigInt's bcmp() routine currently returns undef to signal that a NaN was +involved in a comparison. However, the overload code turns that into +either 1 or '' and thus operations like C<< NaN != NaN >> might return +wrong values. + +=item log(-inf) + +C<< log(-inf) >> is highly weird. Since log(-x)=pi*i+log(x), then +log(-inf)=pi*i+inf. However, since the imaginary part is finite, the real +infinity "overshadows" it, so the number might as well just be infinity. +However, the result is a complex number, and since BigInt/BigFloat can only +have real numbers as results, the result is NaN. + +=item exp(), cos(), sin(), atan2() + +These all might have problems handling infinity right. + +=back + +=head1 INTERNALS + +The actual numbers are stored as unsigned big integers (with separate sign). + +You should neither care about nor depend on the internal representation; it +might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >> +instead relying on the internal representation. + +=head2 MATH LIBRARY + +Math with the numbers is done (by default) by a module called +C<Math::BigInt::Calc>. This is equivalent to saying: + + use Math::BigInt try => 'Calc'; + +You can change this backend library by using: + + use Math::BigInt try => 'GMP'; + +B<Note>: General purpose packages should not be explicit about the library +to use; let the script author decide which is best. + +If your script works with huge numbers and Calc is too slow for them, +you can also for the loading of one of these libraries and if none +of them can be used, the code will die: + + use Math::BigInt only => 'GMP,Pari'; + +The following would first try to find Math::BigInt::Foo, then +Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc: + + use Math::BigInt try => 'Foo,Math::BigInt::Bar'; + +The library that is loaded last will be used. Note that this can be +overwritten at any time by loading a different library, and numbers +constructed with different libraries cannot be used in math operations +together. + +=head3 What library to use? + +B<Note>: General purpose packages should not be explicit about the library +to use; let the script author decide which is best. + +L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big +numbers much faster than Calc, however it is slower when dealing with very +small numbers (less than about 20 digits) and when converting very large +numbers to decimal (for instance for printing, rounding, calculating their +length in decimal etc). + +So please select carefully what library you want to use. + +Different low-level libraries use different formats to store the numbers. +However, you should B<NOT> depend on the number having a specific format +internally. + +See the respective math library module documentation for further details. + +=head2 SIGN + +The sign is either '+', '-', 'NaN', '+inf' or '-inf'. + +A sign of 'NaN' is used to represent the result when input arguments are not +numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively +minus infinity. You will get '+inf' when dividing a positive number by 0, and +'-inf' when dividing any negative number by 0. + +=head2 mantissa(), exponent() and parts() + +C<mantissa()> and C<exponent()> return the said parts of the BigInt such +that: + + $m = $x->mantissa(); + $e = $x->exponent(); + $y = $m * ( 10 ** $e ); + print "ok\n" if $x == $y; + +C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them +in one go. Both the returned mantissa and exponent have a sign. + +Currently, for BigInts C<$e> is always 0, except +inf and -inf, where it is +C<+inf>; and for NaN, where it is C<NaN>; and for C<$x == 0>, where it is C<1> +(to be compatible with Math::BigFloat's internal representation of a zero as +C<0E1>). + +C<$m> is currently just a copy of the original number. The relation between +C<$e> and C<$m> will stay always the same, though their real values might +change. + +=head1 EXAMPLES + + use Math::BigInt; + + sub bigint { Math::BigInt->new(shift); } + + $x = Math::BigInt->bstr("1234") # string "1234" + $x = "$x"; # same as bstr() + $x = Math::BigInt->bneg("1234"); # BigInt "-1234" + $x = Math::BigInt->babs("-12345"); # BigInt "12345" + $x = Math::BigInt->bnorm("-0.00"); # BigInt "0" + $x = bigint(1) + bigint(2); # BigInt "3" + $x = bigint(1) + "2"; # ditto (auto-BigIntify of "2") + $x = bigint(1); # BigInt "1" + $x = $x + 5 / 2; # BigInt "3" + $x = $x ** 3; # BigInt "27" + $x *= 2; # BigInt "54" + $x = Math::BigInt->new(0); # BigInt "0" + $x--; # BigInt "-1" + $x = Math::BigInt->badd(4,5) # BigInt "9" + print $x->bsstr(); # 9e+0 + +Examples for rounding: + + use Math::BigFloat; + use Test::More; + + $x = Math::BigFloat->new(123.4567); + $y = Math::BigFloat->new(123.456789); + Math::BigFloat->accuracy(4); # no more A than 4 + + is ($x->copy()->bround(),123.4); # even rounding + print $x->copy()->bround(),"\n"; # 123.4 + Math::BigFloat->round_mode('odd'); # round to odd + print $x->copy()->bround(),"\n"; # 123.5 + Math::BigFloat->accuracy(5); # no more A than 5 + Math::BigFloat->round_mode('odd'); # round to odd + print $x->copy()->bround(),"\n"; # 123.46 + $y = $x->copy()->bround(4),"\n"; # A = 4: 123.4 + print "$y, ",$y->accuracy(),"\n"; # 123.4, 4 + + Math::BigFloat->accuracy(undef); # A not important now + Math::BigFloat->precision(2); # P important + print $x->copy()->bnorm(),"\n"; # 123.46 + print $x->copy()->bround(),"\n"; # 123.46 + +Examples for converting: + + my $x = Math::BigInt->new('0b1'.'01' x 123); + print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n"; + +=head1 Autocreating constants + +After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal +and binary constants in the given scope are converted to C<Math::BigInt>. +This conversion happens at compile time. + +In particular, + + perl -MMath::BigInt=:constant -e 'print 2**100,"\n"' + +prints the integer value of C<2**100>. Note that without conversion of +constants the expression 2**100 will be calculated as perl scalar. + +Please note that strings and floating point constants are not affected, +so that + + use Math::BigInt qw/:constant/; + + $x = 1234567890123456789012345678901234567890 + + 123456789123456789; + $y = '1234567890123456789012345678901234567890' + + '123456789123456789'; + +do not work. You need an explicit Math::BigInt->new() around one of the +operands. You should also quote large constants to protect loss of precision: + + use Math::BigInt; + + $x = Math::BigInt->new('1234567889123456789123456789123456789'); + +Without the quotes Perl would convert the large number to a floating point +constant at compile time and then hand the result to BigInt, which results in +an truncated result or a NaN. + +This also applies to integers that look like floating point constants: + + use Math::BigInt ':constant'; + + print ref(123e2),"\n"; + print ref(123.2e2),"\n"; + +will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat> +to get this to work. + +=head1 PERFORMANCE + +Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x +must be made in the second case. For long numbers, the copy can eat up to 20% +of the work (in the case of addition/subtraction, less for +multiplication/division). If $y is very small compared to $x, the form +$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes +more time then the actual addition. + +With a technique called copy-on-write, the cost of copying with overload could +be minimized or even completely avoided. A test implementation of COW did show +performance gains for overloaded math, but introduced a performance loss due +to a constant overhead for all other operations. So Math::BigInt does currently +not COW. + +The rewritten version of this module (vs. v0.01) is slower on certain +operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it +does now more work and handles much more cases. The time spent in these +operations is usually gained in the other math operations so that code on +the average should get (much) faster. If they don't, please contact the author. + +Some operations may be slower for small numbers, but are significantly faster +for big numbers. Other operations are now constant (O(1), like C<bneg()>, +C<babs()> etc), instead of O(N) and thus nearly always take much less time. +These optimizations were done on purpose. + +If you find the Calc module to slow, try to install any of the replacement +modules and see if they help you. + +=head2 Alternative math libraries + +You can use an alternative library to drive Math::BigInt. See the section +L</MATH LIBRARY> for more information. + +For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>. + +=head1 SUBCLASSING + +=head2 Subclassing Math::BigInt + +The basic design of Math::BigInt allows simple subclasses with very little +work, as long as a few simple rules are followed: + +=over + +=item * + +The public API must remain consistent, i.e. if a sub-class is overloading +addition, the sub-class must use the same name, in this case badd(). The +reason for this is that Math::BigInt is optimized to call the object methods +directly. + +=item * + +The private object hash keys like C<< $x->{sign} >> may not be changed, but +additional keys can be added, like C<< $x->{_custom} >>. + +=item * + +Accessor functions are available for all existing object hash keys and should +be used instead of directly accessing the internal hash keys. The reason for +this is that Math::BigInt itself has a pluggable interface which permits it +to support different storage methods. + +=back + +More complex sub-classes may have to replicate more of the logic internal of +Math::BigInt if they need to change more basic behaviors. A subclass that +needs to merely change the output only needs to overload C<bstr()>. + +All other object methods and overloaded functions can be directly inherited +from the parent class. + +At the very minimum, any subclass will need to provide its own C<new()> and can +store additional hash keys in the object. There are also some package globals +that must be defined, e.g.: + + # Globals + $accuracy = undef; + $precision = -2; # round to 2 decimal places + $round_mode = 'even'; + $div_scale = 40; + +Additionally, you might want to provide the following two globals to allow +auto-upgrading and auto-downgrading to work correctly: + + $upgrade = undef; + $downgrade = undef; + +This allows Math::BigInt to correctly retrieve package globals from the +subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or +t/Math/BigFloat/SubClass.pm completely functional subclass examples. + +Don't forget to + + use overload; + +in your subclass to automatically inherit the overloading from the parent. If +you like, you can change part of the overloading, look at Math::String for an +example. + +=head1 UPGRADING + +When used like this: + + use Math::BigInt upgrade => 'Foo::Bar'; + +certain operations will 'upgrade' their calculation and thus the result to +the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat: + + use Math::BigInt upgrade => 'Math::BigFloat'; + +As a shortcut, you can use the module L<bignum>: + + use bignum; + +Also good for one-liners: + + perl -Mbignum -le 'print 2 ** 255' + +This makes it possible to mix arguments of different classes (as in 2.5 + 2) +as well es preserve accuracy (as in sqrt(3)). + +Beware: This feature is not fully implemented yet. + +=head2 Auto-upgrade + +The following methods upgrade themselves unconditionally; that is if upgrade +is in effect, they will always hand up their work: + +=over + +=item bsqrt() + +=item div() + +=item blog() + +=item bexp() + +=item bpi() + +=item bcos() + +=item bsin() + +=item batan2() + +=item batan() + +=back + +All other methods upgrade themselves only when one (or all) of their +arguments are of the class mentioned in $upgrade. + +=head1 EXPORTS + +C<Math::BigInt> exports nothing by default, but can export the following methods: + + bgcd + blcm + +=head1 CAVEATS + +Some things might not work as you expect them. Below is documented what is +known to be troublesome: + +=over + +=item bstr(), bsstr() and 'cmp' + +Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now +drop the leading '+'. The old code would return '+3', the new returns '3'. +This is to be consistent with Perl and to make C<cmp> (especially with +overloading) to work as you expect. It also solves problems with C<Test.pm> +and L<Test::More>, which stringify arguments before comparing them. + +Mark Biggar said, when asked about to drop the '+' altogether, or make only +C<cmp> work: + + I agree (with the first alternative), don't add the '+' on positive + numbers. It's not as important anymore with the new internal + form for numbers. It made doing things like abs and neg easier, + but those have to be done differently now anyway. + +So, the following examples will now work all as expected: + + use Test::More tests => 1; + use Math::BigInt; + + my $x = Math::BigInt -> new(3*3); + my $y = Math::BigInt -> new(3*3); + + is ($x,3*3, 'multiplication'); + print "$x eq 9" if $x eq $y; + print "$x eq 9" if $x eq '9'; + print "$x eq 9" if $x eq 3*3; + +Additionally, the following still works: + + print "$x == 9" if $x == $y; + print "$x == 9" if $x == 9; + print "$x == 9" if $x == 3*3; + +There is now a C<bsstr()> method to get the string in scientific notation aka +C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr() +for comparison, but Perl will represent some numbers as 100 and others +as 1e+308. If in doubt, convert both arguments to Math::BigInt before +comparing them as strings: + + use Test::More tests => 3; + use Math::BigInt; + + $x = Math::BigInt->new('1e56'); $y = 1e56; + is ($x,$y); # will fail + is ($x->bsstr(),$y); # okay + $y = Math::BigInt->new($y); + is ($x,$y); # okay + +Alternatively, simply use C<< <=> >> for comparisons, this will get it +always right. There is not yet a way to get a number automatically represented +as a string that matches exactly the way Perl represents it. + +See also the section about L<Infinity and Not a Number> for problems in +comparing NaNs. + +=item int() + +C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a +Perl scalar: + + $x = Math::BigInt->new(123); + $y = int($x); # BigInt 123 + $x = Math::BigFloat->new(123.45); + $y = int($x); # BigInt 123 + +In all Perl versions you can use C<as_number()> or C<as_int> for the same +effect: + + $x = Math::BigFloat->new(123.45); + $y = $x->as_number(); # BigInt 123 + $y = $x->as_int(); # ditto + +This also works for other subclasses, like Math::String. + +If you want a real Perl scalar, use C<numify()>: + + $y = $x->numify(); # 123 as scalar + +This is seldom necessary, though, because this is done automatically, like +when you access an array: + + $z = $array[$x]; # does work automatically + +=item length() + +The following will probably not do what you expect: + + $c = Math::BigInt->new(123); + print $c->length(),"\n"; # prints 30 + +It prints both the number of digits in the number and in the fraction part +since print calls C<length()> in list context. Use something like: + + print scalar $c->length(),"\n"; # prints 3 + +=item bdiv() + +The following will probably not do what you expect: + + print $c->bdiv(10000),"\n"; + +It prints both quotient and remainder since print calls C<bdiv()> in list +context. Also, C<bdiv()> will modify $c, so be careful. You probably want +to use + + print $c / 10000,"\n"; + +or, if you want to modify $c instead, + + print scalar $c->bdiv(10000),"\n"; + +The quotient is always the greatest integer less than or equal to the +real-valued quotient of the two operands, and the remainder (when it is +non-zero) always has the same sign as the second operand; so, for +example, + + 1 / 4 => ( 0, 1) + 1 / -4 => (-1,-3) + -3 / 4 => (-1, 1) + -3 / -4 => ( 0,-3) + -11 / 2 => (-5,1) + 11 /-2 => (-5,-1) + +As a consequence, the behavior of the operator % agrees with the +behavior of Perl's built-in % operator (as documented in the perlop +manpage), and the equation + + $x == ($x / $y) * $y + ($x % $y) + +holds true for any $x and $y, which justifies calling the two return +values of bdiv() the quotient and remainder. The only exception to this rule +are when $y == 0 and $x is negative, then the remainder will also be +negative. See below under "infinity handling" for the reasoning behind this. + +Perl's 'use integer;' changes the behaviour of % and / for scalars, but will +not change BigInt's way to do things. This is because under 'use integer' Perl +will do what the underlying C thinks is right and this is different for each +system. If you need BigInt's behaving exactly like Perl's 'use integer', bug +the author to implement it ;) + +=item infinity handling + +Here are some examples that explain the reasons why certain results occur while +handling infinity: + +The following table shows the result of the division and the remainder, so that +the equation above holds true. Some "ordinary" cases are strewn in to show more +clearly the reasoning: + + A / B = C, R so that C * B + R = A + ========================================================= + 5 / 8 = 0, 5 0 * 8 + 5 = 5 + 0 / 8 = 0, 0 0 * 8 + 0 = 0 + 0 / inf = 0, 0 0 * inf + 0 = 0 + 0 /-inf = 0, 0 0 * -inf + 0 = 0 + 5 / inf = 0, 5 0 * inf + 5 = 5 + 5 /-inf = 0, 5 0 * -inf + 5 = 5 + -5/ inf = 0, -5 0 * inf + -5 = -5 + -5/-inf = 0, -5 0 * -inf + -5 = -5 + inf/ 5 = inf, 0 inf * 5 + 0 = inf + -inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf + inf/ -5 = -inf, 0 -inf * -5 + 0 = inf + -inf/ -5 = inf, 0 inf * -5 + 0 = -inf + 5/ 5 = 1, 0 1 * 5 + 0 = 5 + -5/ -5 = 1, 0 1 * -5 + 0 = -5 + inf/ inf = 1, 0 1 * inf + 0 = inf + -inf/-inf = 1, 0 1 * -inf + 0 = -inf + inf/-inf = -1, 0 -1 * -inf + 0 = inf + -inf/ inf = -1, 0 1 * -inf + 0 = -inf + 8/ 0 = inf, 8 inf * 0 + 8 = 8 + inf/ 0 = inf, inf inf * 0 + inf = inf + 0/ 0 = NaN + +These cases below violate the "remainder has the sign of the second of the two +arguments", since they wouldn't match up otherwise. + + A / B = C, R so that C * B + R = A + ======================================================== + -inf/ 0 = -inf, -inf -inf * 0 + inf = -inf + -8/ 0 = -inf, -8 -inf * 0 + 8 = -8 + +=item Modifying and = + +Beware of: + + $x = Math::BigFloat->new(5); + $y = $x; + +It will not do what you think, e.g. making a copy of $x. Instead it just makes +a second reference to the B<same> object and stores it in $y. Thus anything +that modifies $x (except overloaded operators) will modify $y, and vice versa. +Or in other words, C<=> is only safe if you modify your BigInts only via +overloaded math. As soon as you use a method call it breaks: + + $x->bmul(2); + print "$x, $y\n"; # prints '10, 10' + +If you want a true copy of $x, use: + + $y = $x->copy(); + +You can also chain the calls like this, this will make first a copy and then +multiply it by 2: + + $y = $x->copy()->bmul(2); + +See also the documentation for overload.pm regarding C<=>. + +=item bpow + +C<bpow()> (and the rounding functions) now modifies the first argument and +returns it, unlike the old code which left it alone and only returned the +result. This is to be consistent with C<badd()> etc. The first three will +modify $x, the last one won't: + + print bpow($x,$i),"\n"; # modify $x + print $x->bpow($i),"\n"; # ditto + print $x **= $i,"\n"; # the same + print $x ** $i,"\n"; # leave $x alone + +The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though. + +=item Overloading -$x + +The following: + + $x = -$x; + +is slower than + + $x->bneg(); + +since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant +needs to preserve $x since it does not know that it later will get overwritten. +This makes a copy of $x and takes O(N), but $x->bneg() is O(1). + +=item Mixing different object types + +With overloaded operators, it is the first (dominating) operand that determines +which method is called. Here are some examples showing what actually gets +called in various cases. + + use Math::BigInt; + use Math::BigFloat; + + $mbf = Math::BigFloat->new(5); + $mbi2 = Math::BigInt->new(5); + $mbi = Math::BigInt->new(2); + # what actually gets called: + $float = $mbf + $mbi; # $mbf->badd($mbi) + $float = $mbf / $mbi; # $mbf->bdiv($mbi) + $integer = $mbi + $mbf; # $mbi->badd($mbf) + $integer = $mbi2 / $mbi; # $mbi2->bdiv($mbi) + $integer = $mbi2 / $mbf; # $mbi2->bdiv($mbf) + +For instance, Math::BigInt->bdiv() will always return a Math::BigInt, regardless of +whether the second operant is a Math::BigFloat. To get a Math::BigFloat you +either need to call the operation manually, make sure each operand already is a +Math::BigFloat, or cast to that type via Math::BigFloat->new(): + + $float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5 + +Beware of casting the entire expression, as this would cast the +result, at which point it is too late: + + $float = Math::BigFloat->new($mbi2 / $mbi); # = 2 + +Beware also of the order of more complicated expressions like: + + $integer = ($mbi2 + $mbi) / $mbf; # int / float => int + $integer = $mbi2 / Math::BigFloat->new($mbi); # ditto + +If in doubt, break the expression into simpler terms, or cast all operands +to the desired resulting type. + +Scalar values are a bit different, since: + + $float = 2 + $mbf; + $float = $mbf + 2; + +will both result in the proper type due to the way the overloaded math works. + +This section also applies to other overloaded math packages, like Math::String. + +One solution to you problem might be autoupgrading|upgrading. See the +pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this. + +=item bsqrt() + +C<bsqrt()> works only good if the result is a big integer, e.g. the square +root of 144 is 12, but from 12 the square root is 3, regardless of rounding +mode. The reason is that the result is always truncated to an integer. + +If you want a better approximation of the square root, then use: + + $x = Math::BigFloat->new(12); + Math::BigFloat->precision(0); + Math::BigFloat->round_mode('even'); + print $x->copy->bsqrt(),"\n"; # 4 + + Math::BigFloat->precision(2); + print $x->bsqrt(),"\n"; # 3.46 + print $x->bsqrt(3),"\n"; # 3.464 + +=item brsft() + +For negative numbers in base see also L<brsft|/brsft()>. + +=back + +=head1 BUGS + +Please report any bugs or feature requests to +C<bug-math-bigint at rt.cpan.org>, or through the web interface at +L<https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> +(requires login). +We will be notified, and then you'll automatically be notified of progress on +your bug as I make changes. + +=head1 SUPPORT + +You can find documentation for this module with the perldoc command. + + perldoc Math::BigInt + +You can also look for information at: + +=over 4 + +=item * RT: CPAN's request tracker + +L<https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt> + +=item * AnnoCPAN: Annotated CPAN documentation + +L<http://annocpan.org/dist/Math-BigInt> + +=item * CPAN Ratings + +L<http://cpanratings.perl.org/dist/Math-BigInt> + +=item * Search CPAN + +L<http://search.cpan.org/dist/Math-BigInt/> + +=item * CPAN Testers Matrix + +L<http://matrix.cpantesters.org/?dist=Math-BigInt> + +=item * The Bignum mailing list + +=over 4 + +=item * Post to mailing list + +C<bignum at lists.scsys.co.uk> + +=item * View mailing list + +L<http://lists.scsys.co.uk/pipermail/bignum/> + +=item * Subscribe/Unsubscribe + +L<http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum> + +=back + +=back + +=head1 LICENSE + +This program is free software; you may redistribute it and/or modify it under +the same terms as Perl itself. + +=head1 SEE ALSO + +L<Math::BigFloat> and L<Math::BigRat> as well as the backends +L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and L<Math::BigInt::Pari>. + +The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest +because they solve the autoupgrading/downgrading issue, at least partly. + +=head1 AUTHORS + +=over 4 + +=item * + +Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001. + +=item * + +Completely rewritten by Tels L<http://bloodgate.com>, 2001-2008. + +=item * + +Florian Ragwitz E<lt>flora@cpan.orgE<gt>, 2010. + +=item * + +Peter John Acklam E<lt>pjacklam@online.noE<gt>, 2011-. + +=back + +Many people contributed in one or more ways to the final beast, see the file +CREDITS for an (incomplete) list. If you miss your name, please drop me a +mail. Thank you! + +=cut |
