diff options
author | 2017-02-05 00:31:51 +0000 | |
---|---|---|
committer | 2017-02-05 00:31:51 +0000 | |
commit | b8851fcc53cbe24fd20b090f26dd149e353f6174 (patch) | |
tree | 4b7c1695865f00ab7a0da30b5632d514848ea3a2 /gnu/usr.bin/perl/dist/Math-BigInt/lib/Math/BigInt.pm | |
parent | Add option PCIVERBOSE. (diff) | |
download | wireguard-openbsd-b8851fcc53cbe24fd20b090f26dd149e353f6174.tar.xz wireguard-openbsd-b8851fcc53cbe24fd20b090f26dd149e353f6174.zip |
Fix merge issues, remove excess files - match perl-5.24.1 dist
Diffstat (limited to 'gnu/usr.bin/perl/dist/Math-BigInt/lib/Math/BigInt.pm')
-rw-r--r-- | gnu/usr.bin/perl/dist/Math-BigInt/lib/Math/BigInt.pm | 5376 |
1 files changed, 0 insertions, 5376 deletions
diff --git a/gnu/usr.bin/perl/dist/Math-BigInt/lib/Math/BigInt.pm b/gnu/usr.bin/perl/dist/Math-BigInt/lib/Math/BigInt.pm deleted file mode 100644 index a2aabc18648..00000000000 --- a/gnu/usr.bin/perl/dist/Math-BigInt/lib/Math/BigInt.pm +++ /dev/null @@ -1,5376 +0,0 @@ -package Math::BigInt; - -# -# "Mike had an infinite amount to do and a negative amount of time in which -# to do it." - Before and After -# - -# The following hash values are used: -# value: unsigned int with actual value (as a Math::BigInt::Calc or similar) -# sign : +,-,NaN,+inf,-inf -# _a : accuracy -# _p : precision -# _f : flags, used by MBF to flag parts of a float as untouchable - -# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since -# underlying lib might change the reference! - -my $class = "Math::BigInt"; -use 5.006002; - -$VERSION = '1.9993'; - -@ISA = qw(Exporter); -@EXPORT_OK = qw(objectify bgcd blcm); - -# _trap_inf and _trap_nan are internal and should never be accessed from the -# outside -use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode - $upgrade $downgrade $_trap_nan $_trap_inf/; -use strict; - -# Inside overload, the first arg is always an object. If the original code had -# it reversed (like $x = 2 * $y), then the third parameter is true. -# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes -# no difference, but in some cases it does. - -# For overloaded ops with only one argument we simple use $_[0]->copy() to -# preserve the argument. - -# Thus inheritance of overload operators becomes possible and transparent for -# our subclasses without the need to repeat the entire overload section there. - -# We register ops that are not registerable yet, so suppress warnings -{ no warnings; -use overload -'=' => sub { $_[0]->copy(); }, - -# some shortcuts for speed (assumes that reversed order of arguments is routed -# to normal '+' and we thus can always modify first arg. If this is changed, -# this breaks and must be adjusted.) -'+=' => sub { $_[0]->badd($_[1]); }, -'-=' => sub { $_[0]->bsub($_[1]); }, -'*=' => sub { $_[0]->bmul($_[1]); }, -'/=' => sub { scalar $_[0]->bdiv($_[1]); }, -'%=' => sub { $_[0]->bmod($_[1]); }, -'^=' => sub { $_[0]->bxor($_[1]); }, -'&=' => sub { $_[0]->band($_[1]); }, -'|=' => sub { $_[0]->bior($_[1]); }, - -'**=' => sub { $_[0]->bpow($_[1]); }, -'<<=' => sub { $_[0]->blsft($_[1]); }, -'>>=' => sub { $_[0]->brsft($_[1]); }, - -# not supported by Perl yet -'..' => \&_pointpoint, - -'<=>' => sub { my $rc = $_[2] ? - ref($_[0])->bcmp($_[1],$_[0]) : - $_[0]->bcmp($_[1]); - $rc = 1 unless defined $rc; - $rc <=> 0; - }, -# we need '>=' to get things like "1 >= NaN" right: -'>=' => sub { my $rc = $_[2] ? - ref($_[0])->bcmp($_[1],$_[0]) : - $_[0]->bcmp($_[1]); - # if there was a NaN involved, return false - return '' unless defined $rc; - $rc >= 0; - }, -'cmp' => sub { - $_[2] ? - "$_[1]" cmp $_[0]->bstr() : - $_[0]->bstr() cmp "$_[1]" }, - -'cos' => sub { $_[0]->copy->bcos(); }, -'sin' => sub { $_[0]->copy->bsin(); }, -'atan2' => sub { $_[2] ? - ref($_[0])->new($_[1])->batan2($_[0]) : - $_[0]->copy()->batan2($_[1]) }, - -# are not yet overloadable -#'hex' => sub { print "hex"; $_[0]; }, -#'oct' => sub { print "oct"; $_[0]; }, - -# log(N) is log(N, e), where e is Euler's number -'log' => sub { $_[0]->copy()->blog($_[1], undef); }, -'exp' => sub { $_[0]->copy()->bexp($_[1]); }, -'int' => sub { $_[0]->copy(); }, -'neg' => sub { $_[0]->copy()->bneg(); }, -'abs' => sub { $_[0]->copy()->babs(); }, -'sqrt' => sub { $_[0]->copy()->bsqrt(); }, -'~' => sub { $_[0]->copy()->bnot(); }, - -# for subtract it's a bit tricky to not modify b: b-a => -a+b -'-' => sub { my $c = $_[0]->copy; $_[2] ? - $c->bneg()->badd( $_[1]) : - $c->bsub( $_[1]) }, -'+' => sub { $_[0]->copy()->badd($_[1]); }, -'*' => sub { $_[0]->copy()->bmul($_[1]); }, - -'/' => sub { - $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]); - }, -'%' => sub { - $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]); - }, -'**' => sub { - $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]); - }, -'<<' => sub { - $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]); - }, -'>>' => sub { - $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]); - }, -'&' => sub { - $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]); - }, -'|' => sub { - $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]); - }, -'^' => sub { - $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]); - }, - -# can modify arg of ++ and --, so avoid a copy() for speed, but don't -# use $_[0]->bone(), it would modify $_[0] to be 1! -'++' => sub { $_[0]->binc() }, -'--' => sub { $_[0]->bdec() }, - -# if overloaded, O(1) instead of O(N) and twice as fast for small numbers -'bool' => sub { - # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/ - # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-( - my $t = undef; - $t = 1 if !$_[0]->is_zero(); - $t; - }, - -# the original qw() does not work with the TIESCALAR below, why? -# Order of arguments insignificant -'""' => sub { $_[0]->bstr(); }, -'0+' => sub { $_[0]->numify(); } -; -} # no warnings scope - -############################################################################## -# global constants, flags and accessory - -# These vars are public, but their direct usage is not recommended, use the -# accessor methods instead - -$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common' -$accuracy = undef; -$precision = undef; -$div_scale = 40; - -$upgrade = undef; # default is no upgrade -$downgrade = undef; # default is no downgrade - -# These are internally, and not to be used from the outside at all - -$_trap_nan = 0; # are NaNs ok? set w/ config() -$_trap_inf = 0; # are infs ok? set w/ config() -my $nan = 'NaN'; # constants for easier life - -my $CALC = 'Math::BigInt::Calc'; # module to do the low level math - # default is Calc.pm -my $IMPORT = 0; # was import() called yet? - # used to make require work -my %WARN; # warn only once for low-level libs -my %CAN; # cache for $CALC->can(...) -my %CALLBACKS; # callbacks to notify on lib loads -my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math - -############################################################################## -# the old code had $rnd_mode, so we need to support it, too - -$rnd_mode = 'even'; -sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; } -sub FETCH { return $round_mode; } -sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); } - -BEGIN - { - # tie to enable $rnd_mode to work transparently - tie $rnd_mode, 'Math::BigInt'; - - # set up some handy alias names - *as_int = \&as_number; - *is_pos = \&is_positive; - *is_neg = \&is_negative; - } - -############################################################################## - -sub round_mode - { - no strict 'refs'; - # make Class->round_mode() work - my $self = shift; - my $class = ref($self) || $self || __PACKAGE__; - if (defined $_[0]) - { - my $m = shift; - if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) - { - require Carp; Carp::croak ("Unknown round mode '$m'"); - } - return ${"${class}::round_mode"} = $m; - } - ${"${class}::round_mode"}; - } - -sub upgrade - { - no strict 'refs'; - # make Class->upgrade() work - my $self = shift; - my $class = ref($self) || $self || __PACKAGE__; - # need to set new value? - if (@_ > 0) - { - return ${"${class}::upgrade"} = $_[0]; - } - ${"${class}::upgrade"}; - } - -sub downgrade - { - no strict 'refs'; - # make Class->downgrade() work - my $self = shift; - my $class = ref($self) || $self || __PACKAGE__; - # need to set new value? - if (@_ > 0) - { - return ${"${class}::downgrade"} = $_[0]; - } - ${"${class}::downgrade"}; - } - -sub div_scale - { - no strict 'refs'; - # make Class->div_scale() work - my $self = shift; - my $class = ref($self) || $self || __PACKAGE__; - if (defined $_[0]) - { - if ($_[0] < 0) - { - require Carp; Carp::croak ('div_scale must be greater than zero'); - } - ${"${class}::div_scale"} = $_[0]; - } - ${"${class}::div_scale"}; - } - -sub accuracy - { - # $x->accuracy($a); ref($x) $a - # $x->accuracy(); ref($x) - # Class->accuracy(); class - # Class->accuracy($a); class $a - - my $x = shift; - my $class = ref($x) || $x || __PACKAGE__; - - no strict 'refs'; - # need to set new value? - if (@_ > 0) - { - my $a = shift; - # convert objects to scalars to avoid deep recursion. If object doesn't - # have numify(), then hopefully it will have overloading for int() and - # boolean test without wandering into a deep recursion path... - $a = $a->numify() if ref($a) && $a->can('numify'); - - if (defined $a) - { - # also croak on non-numerical - if (!$a || $a <= 0) - { - require Carp; - Carp::croak ('Argument to accuracy must be greater than zero'); - } - if (int($a) != $a) - { - require Carp; - Carp::croak ('Argument to accuracy must be an integer'); - } - } - if (ref($x)) - { - # $object->accuracy() or fallback to global - $x->bround($a) if $a; # not for undef, 0 - $x->{_a} = $a; # set/overwrite, even if not rounded - delete $x->{_p}; # clear P - $a = ${"${class}::accuracy"} unless defined $a; # proper return value - } - else - { - ${"${class}::accuracy"} = $a; # set global A - ${"${class}::precision"} = undef; # clear global P - } - return $a; # shortcut - } - - my $a; - # $object->accuracy() or fallback to global - $a = $x->{_a} if ref($x); - # but don't return global undef, when $x's accuracy is 0! - $a = ${"${class}::accuracy"} if !defined $a; - $a; - } - -sub precision - { - # $x->precision($p); ref($x) $p - # $x->precision(); ref($x) - # Class->precision(); class - # Class->precision($p); class $p - - my $x = shift; - my $class = ref($x) || $x || __PACKAGE__; - - no strict 'refs'; - if (@_ > 0) - { - my $p = shift; - # convert objects to scalars to avoid deep recursion. If object doesn't - # have numify(), then hopefully it will have overloading for int() and - # boolean test without wandering into a deep recursion path... - $p = $p->numify() if ref($p) && $p->can('numify'); - if ((defined $p) && (int($p) != $p)) - { - require Carp; Carp::croak ('Argument to precision must be an integer'); - } - if (ref($x)) - { - # $object->precision() or fallback to global - $x->bfround($p) if $p; # not for undef, 0 - $x->{_p} = $p; # set/overwrite, even if not rounded - delete $x->{_a}; # clear A - $p = ${"${class}::precision"} unless defined $p; # proper return value - } - else - { - ${"${class}::precision"} = $p; # set global P - ${"${class}::accuracy"} = undef; # clear global A - } - return $p; # shortcut - } - - my $p; - # $object->precision() or fallback to global - $p = $x->{_p} if ref($x); - # but don't return global undef, when $x's precision is 0! - $p = ${"${class}::precision"} if !defined $p; - $p; - } - -sub config - { - # return (or set) configuration data as hash ref - my $class = shift || 'Math::BigInt'; - - no strict 'refs'; - if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH'))) - { - # try to set given options as arguments from hash - - my $args = $_[0]; - if (ref($args) ne 'HASH') - { - $args = { @_ }; - } - # these values can be "set" - my $set_args = {}; - foreach my $key ( - qw/trap_inf trap_nan - upgrade downgrade precision accuracy round_mode div_scale/ - ) - { - $set_args->{$key} = $args->{$key} if exists $args->{$key}; - delete $args->{$key}; - } - if (keys %$args > 0) - { - require Carp; - Carp::croak ("Illegal key(s) '", - join("','",keys %$args),"' passed to $class\->config()"); - } - foreach my $key (keys %$set_args) - { - if ($key =~ /^trap_(inf|nan)\z/) - { - ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0); - next; - } - # use a call instead of just setting the $variable to check argument - $class->$key($set_args->{$key}); - } - } - - # now return actual configuration - - my $cfg = { - lib => $CALC, - lib_version => ${"${CALC}::VERSION"}, - class => $class, - trap_nan => ${"${class}::_trap_nan"}, - trap_inf => ${"${class}::_trap_inf"}, - version => ${"${class}::VERSION"}, - }; - foreach my $key (qw/ - upgrade downgrade precision accuracy round_mode div_scale - /) - { - $cfg->{$key} = ${"${class}::$key"}; - }; - if (@_ == 1 && (ref($_[0]) ne 'HASH')) - { - # calls of the style config('lib') return just this value - return $cfg->{$_[0]}; - } - $cfg; - } - -sub _scale_a - { - # select accuracy parameter based on precedence, - # used by bround() and bfround(), may return undef for scale (means no op) - my ($x,$scale,$mode) = @_; - - $scale = $x->{_a} unless defined $scale; - - no strict 'refs'; - my $class = ref($x); - - $scale = ${ $class . '::accuracy' } unless defined $scale; - $mode = ${ $class . '::round_mode' } unless defined $mode; - - if (defined $scale) - { - $scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale); - $scale = int($scale); - } - - ($scale,$mode); - } - -sub _scale_p - { - # select precision parameter based on precedence, - # used by bround() and bfround(), may return undef for scale (means no op) - my ($x,$scale,$mode) = @_; - - $scale = $x->{_p} unless defined $scale; - - no strict 'refs'; - my $class = ref($x); - - $scale = ${ $class . '::precision' } unless defined $scale; - $mode = ${ $class . '::round_mode' } unless defined $mode; - - if (defined $scale) - { - $scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale); - $scale = int($scale); - } - - ($scale,$mode); - } - -############################################################################## -# constructors - -sub copy - { - # if two arguments, the first one is the class to "swallow" subclasses - if (@_ > 1) - { - my $self = bless { - sign => $_[1]->{sign}, - value => $CALC->_copy($_[1]->{value}), - }, $_[0] if @_ > 1; - - $self->{_a} = $_[1]->{_a} if defined $_[1]->{_a}; - $self->{_p} = $_[1]->{_p} if defined $_[1]->{_p}; - return $self; - } - - my $self = bless { - sign => $_[0]->{sign}, - value => $CALC->_copy($_[0]->{value}), - }, ref($_[0]); - - $self->{_a} = $_[0]->{_a} if defined $_[0]->{_a}; - $self->{_p} = $_[0]->{_p} if defined $_[0]->{_p}; - $self; - } - -sub new - { - # create a new BigInt object from a string or another BigInt object. - # see hash keys documented at top - - # the argument could be an object, so avoid ||, && etc on it, this would - # cause costly overloaded code to be called. The only allowed ops are - # ref() and defined. - - my ($class,$wanted,$a,$p,$r) = @_; - - # avoid numify-calls by not using || on $wanted! - return $class->bzero($a,$p) if !defined $wanted; # default to 0 - return $class->copy($wanted,$a,$p,$r) - if ref($wanted) && $wanted->isa($class); # MBI or subclass - - $class->import() if $IMPORT == 0; # make require work - - my $self = bless {}, $class; - - # shortcut for "normal" numbers - if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/)) - { - $self->{sign} = $1 || '+'; - - if ($wanted =~ /^[+-]/) - { - # remove sign without touching wanted to make it work with constants - my $t = $wanted; $t =~ s/^[+-]//; - $self->{value} = $CALC->_new($t); - } - else - { - $self->{value} = $CALC->_new($wanted); - } - no strict 'refs'; - if ( (defined $a) || (defined $p) - || (defined ${"${class}::precision"}) - || (defined ${"${class}::accuracy"}) - ) - { - $self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p); - } - return $self; - } - - # handle '+inf', '-inf' first - if ($wanted =~ /^[+-]?inf\z/) - { - $self->{sign} = $wanted; # set a default sign for bstr() - return $self->binf($wanted); - } - # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign - my ($mis,$miv,$mfv,$es,$ev) = _split($wanted); - if (!ref $mis) - { - if ($_trap_nan) - { - require Carp; Carp::croak("$wanted is not a number in $class"); - } - $self->{value} = $CALC->_zero(); - $self->{sign} = $nan; - return $self; - } - if (!ref $miv) - { - # _from_hex or _from_bin - $self->{value} = $mis->{value}; - $self->{sign} = $mis->{sign}; - return $self; # throw away $mis - } - # make integer from mantissa by adjusting exp, then convert to bigint - $self->{sign} = $$mis; # store sign - $self->{value} = $CALC->_zero(); # for all the NaN cases - my $e = int("$$es$$ev"); # exponent (avoid recursion) - if ($e > 0) - { - my $diff = $e - CORE::length($$mfv); - if ($diff < 0) # Not integer - { - if ($_trap_nan) - { - require Carp; Carp::croak("$wanted not an integer in $class"); - } - #print "NOI 1\n"; - return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade; - $self->{sign} = $nan; - } - else # diff >= 0 - { - # adjust fraction and add it to value - #print "diff > 0 $$miv\n"; - $$miv = $$miv . ($$mfv . '0' x $diff); - } - } - else - { - if ($$mfv ne '') # e <= 0 - { - # fraction and negative/zero E => NOI - if ($_trap_nan) - { - require Carp; Carp::croak("$wanted not an integer in $class"); - } - #print "NOI 2 \$\$mfv '$$mfv'\n"; - return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade; - $self->{sign} = $nan; - } - elsif ($e < 0) - { - # xE-y, and empty mfv - #print "xE-y\n"; - $e = abs($e); - if ($$miv !~ s/0{$e}$//) # can strip so many zero's? - { - if ($_trap_nan) - { - require Carp; Carp::croak("$wanted not an integer in $class"); - } - #print "NOI 3\n"; - return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade; - $self->{sign} = $nan; - } - } - } - $self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0 - $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/; - # if any of the globals is set, use them to round and store them inside $self - # do not round for new($x,undef,undef) since that is used by MBF to signal - # no rounding - $self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p; - $self; - } - -sub bnan - { - # create a bigint 'NaN', if given a BigInt, set it to 'NaN' - my $self = shift; - $self = $class if !defined $self; - if (!ref($self)) - { - my $c = $self; $self = {}; bless $self, $c; - } - no strict 'refs'; - if (${"${class}::_trap_nan"}) - { - require Carp; - Carp::croak ("Tried to set $self to NaN in $class\::bnan()"); - } - $self->import() if $IMPORT == 0; # make require work - return if $self->modify('bnan'); - if ($self->can('_bnan')) - { - # use subclass to initialize - $self->_bnan(); - } - else - { - # otherwise do our own thing - $self->{value} = $CALC->_zero(); - } - $self->{sign} = $nan; - delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly - $self; - } - -sub binf - { - # create a bigint '+-inf', if given a BigInt, set it to '+-inf' - # the sign is either '+', or if given, used from there - my $self = shift; - my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/; - $self = $class if !defined $self; - if (!ref($self)) - { - my $c = $self; $self = {}; bless $self, $c; - } - no strict 'refs'; - if (${"${class}::_trap_inf"}) - { - require Carp; - Carp::croak ("Tried to set $self to +-inf in $class\::binf()"); - } - $self->import() if $IMPORT == 0; # make require work - return if $self->modify('binf'); - if ($self->can('_binf')) - { - # use subclass to initialize - $self->_binf(); - } - else - { - # otherwise do our own thing - $self->{value} = $CALC->_zero(); - } - $sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf - $self->{sign} = $sign; - ($self->{_a},$self->{_p}) = @_; # take over requested rounding - $self; - } - -sub bzero - { - # create a bigint '+0', if given a BigInt, set it to 0 - my $self = shift; - $self = __PACKAGE__ if !defined $self; - - if (!ref($self)) - { - my $c = $self; $self = {}; bless $self, $c; - } - $self->import() if $IMPORT == 0; # make require work - return if $self->modify('bzero'); - - if ($self->can('_bzero')) - { - # use subclass to initialize - $self->_bzero(); - } - else - { - # otherwise do our own thing - $self->{value} = $CALC->_zero(); - } - $self->{sign} = '+'; - if (@_ > 0) - { - if (@_ > 3) - { - # call like: $x->bzero($a,$p,$r,$y); - ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_); - } - else - { - $self->{_a} = $_[0] - if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a})); - $self->{_p} = $_[1] - if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p})); - } - } - $self; - } - -sub bone - { - # create a bigint '+1' (or -1 if given sign '-'), - # if given a BigInt, set it to +1 or -1, respectively - my $self = shift; - my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-'; - $self = $class if !defined $self; - - if (!ref($self)) - { - my $c = $self; $self = {}; bless $self, $c; - } - $self->import() if $IMPORT == 0; # make require work - return if $self->modify('bone'); - - if ($self->can('_bone')) - { - # use subclass to initialize - $self->_bone(); - } - else - { - # otherwise do our own thing - $self->{value} = $CALC->_one(); - } - $self->{sign} = $sign; - if (@_ > 0) - { - if (@_ > 3) - { - # call like: $x->bone($sign,$a,$p,$r,$y); - ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_); - } - else - { - # call like: $x->bone($sign,$a,$p,$r); - $self->{_a} = $_[0] - if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a})); - $self->{_p} = $_[1] - if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p})); - } - } - $self; - } - -############################################################################## -# string conversion - -sub bsstr - { - # (ref to BFLOAT or num_str ) return num_str - # Convert number from internal format to scientific string format. - # internal format is always normalized (no leading zeros, "-0E0" => "+0E0") - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - if ($x->{sign} !~ /^[+-]$/) - { - return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN - return 'inf'; # +inf - } - my ($m,$e) = $x->parts(); - #$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt - # 'e+' because E can only be positive in BigInt - $m->bstr() . 'e+' . $CALC->_str($e->{value}); - } - -sub bstr - { - # make a string from bigint object - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - if ($x->{sign} !~ /^[+-]$/) - { - return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN - return 'inf'; # +inf - } - my $es = ''; $es = $x->{sign} if $x->{sign} eq '-'; - $es.$CALC->_str($x->{value}); - } - -sub numify - { - # Make a "normal" scalar from a BigInt object - my $x = shift; $x = $class->new($x) unless ref $x; - - return $x->bstr() if $x->{sign} !~ /^[+-]$/; - my $num = $CALC->_num($x->{value}); - return -$num if $x->{sign} eq '-'; - $num; - } - -############################################################################## -# public stuff (usually prefixed with "b") - -sub sign - { - # return the sign of the number: +/-/-inf/+inf/NaN - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - $x->{sign}; - } - -sub _find_round_parameters - { - # After any operation or when calling round(), the result is rounded by - # regarding the A & P from arguments, local parameters, or globals. - - # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!! - - # This procedure finds the round parameters, but it is for speed reasons - # duplicated in round. Otherwise, it is tested by the testsuite and used - # by fdiv(). - - # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P - # were requested/defined (locally or globally or both) - - my ($self,$a,$p,$r,@args) = @_; - # $a accuracy, if given by caller - # $p precision, if given by caller - # $r round_mode, if given by caller - # @args all 'other' arguments (0 for unary, 1 for binary ops) - - my $c = ref($self); # find out class of argument(s) - no strict 'refs'; - - # convert to normal scalar for speed and correctness in inner parts - $a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a); - $p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p); - - # now pick $a or $p, but only if we have got "arguments" - if (!defined $a) - { - foreach ($self,@args) - { - # take the defined one, or if both defined, the one that is smaller - $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); - } - } - if (!defined $p) - { - # even if $a is defined, take $p, to signal error for both defined - foreach ($self,@args) - { - # take the defined one, or if both defined, the one that is bigger - # -2 > -3, and 3 > 2 - $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); - } - } - # if still none defined, use globals (#2) - $a = ${"$c\::accuracy"} unless defined $a; - $p = ${"$c\::precision"} unless defined $p; - - # A == 0 is useless, so undef it to signal no rounding - $a = undef if defined $a && $a == 0; - - # no rounding today? - return ($self) unless defined $a || defined $p; # early out - - # set A and set P is an fatal error - return ($self->bnan()) if defined $a && defined $p; # error - - $r = ${"$c\::round_mode"} unless defined $r; - if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) - { - require Carp; Carp::croak ("Unknown round mode '$r'"); - } - - $a = int($a) if defined $a; - $p = int($p) if defined $p; - - ($self,$a,$p,$r); - } - -sub round - { - # Round $self according to given parameters, or given second argument's - # parameters or global defaults - - # for speed reasons, _find_round_parameters is embedded here: - - my ($self,$a,$p,$r,@args) = @_; - # $a accuracy, if given by caller - # $p precision, if given by caller - # $r round_mode, if given by caller - # @args all 'other' arguments (0 for unary, 1 for binary ops) - - my $c = ref($self); # find out class of argument(s) - no strict 'refs'; - - # now pick $a or $p, but only if we have got "arguments" - if (!defined $a) - { - foreach ($self,@args) - { - # take the defined one, or if both defined, the one that is smaller - $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); - } - } - if (!defined $p) - { - # even if $a is defined, take $p, to signal error for both defined - foreach ($self,@args) - { - # take the defined one, or if both defined, the one that is bigger - # -2 > -3, and 3 > 2 - $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); - } - } - # if still none defined, use globals (#2) - $a = ${"$c\::accuracy"} unless defined $a; - $p = ${"$c\::precision"} unless defined $p; - - # A == 0 is useless, so undef it to signal no rounding - $a = undef if defined $a && $a == 0; - - # no rounding today? - return $self unless defined $a || defined $p; # early out - - # set A and set P is an fatal error - return $self->bnan() if defined $a && defined $p; - - $r = ${"$c\::round_mode"} unless defined $r; - if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) - { - require Carp; Carp::croak ("Unknown round mode '$r'"); - } - - # now round, by calling either fround or ffround: - if (defined $a) - { - $self->bround(int($a),$r) if !defined $self->{_a} || $self->{_a} >= $a; - } - else # both can't be undefined due to early out - { - $self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p; - } - # bround() or bfround() already called bnorm() if nec. - $self; - } - -sub bnorm - { - # (numstr or BINT) return BINT - # Normalize number -- no-op here - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - $x; - } - -sub babs - { - # (BINT or num_str) return BINT - # make number absolute, or return absolute BINT from string - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - return $x if $x->modify('babs'); - # post-normalized abs for internal use (does nothing for NaN) - $x->{sign} =~ s/^-/+/; - $x; - } - -sub bsgn { - # Signum function. - - my $self = shift; - - return $self if $self->modify('bsgn'); - - return $self -> bone("+") if $self -> is_pos(); - return $self -> bone("-") if $self -> is_neg(); - return $self; # zero or NaN -} - -sub bneg - { - # (BINT or num_str) return BINT - # negate number or make a negated number from string - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - return $x if $x->modify('bneg'); - - # for +0 do not negate (to have always normalized +0). Does nothing for 'NaN' - $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value})); - $x; - } - -sub bcmp - { - # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort) - # (BINT or num_str, BINT or num_str) return cond_code - - # set up parameters - my ($self,$x,$y) = (ref($_[0]),@_); - - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y) = objectify(2,@_); - } - - return $upgrade->bcmp($x,$y) if defined $upgrade && - ((!$x->isa($self)) || (!$y->isa($self))); - - if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) - { - # handle +-inf and NaN - return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); - return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/; - return +1 if $x->{sign} eq '+inf'; - return -1 if $x->{sign} eq '-inf'; - return -1 if $y->{sign} eq '+inf'; - return +1; - } - # check sign for speed first - return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y - return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0 - - # have same sign, so compare absolute values. Don't make tests for zero here - # because it's actually slower than testing in Calc (especially w/ Pari et al) - - # post-normalized compare for internal use (honors signs) - if ($x->{sign} eq '+') - { - # $x and $y both > 0 - return $CALC->_acmp($x->{value},$y->{value}); - } - - # $x && $y both < 0 - $CALC->_acmp($y->{value},$x->{value}); # swapped acmp (lib returns 0,1,-1) - } - -sub bacmp - { - # Compares 2 values, ignoring their signs. - # Returns one of undef, <0, =0, >0. (suitable for sort) - # (BINT, BINT) return cond_code - - # set up parameters - my ($self,$x,$y) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y) = objectify(2,@_); - } - - return $upgrade->bacmp($x,$y) if defined $upgrade && - ((!$x->isa($self)) || (!$y->isa($self))); - - if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) - { - # handle +-inf and NaN - return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); - return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/; - return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/; - return -1; - } - $CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1 - } - -sub badd - { - # add second arg (BINT or string) to first (BINT) (modifies first) - # return result as BINT - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('badd'); - return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade && - ((!$x->isa($self)) || (!$y->isa($self))); - - $r[3] = $y; # no push! - # inf and NaN handling - if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) - { - # NaN first - return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); - # inf handling - if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) - { - # +inf++inf or -inf+-inf => same, rest is NaN - return $x if $x->{sign} eq $y->{sign}; - return $x->bnan(); - } - # +-inf + something => +inf - # something +-inf => +-inf - $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/; - return $x; - } - - my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs - - if ($sx eq $sy) - { - $x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add - } - else - { - my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare - if ($a > 0) - { - $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap - $x->{sign} = $sy; - } - elsif ($a == 0) - { - # speedup, if equal, set result to 0 - $x->{value} = $CALC->_zero(); - $x->{sign} = '+'; - } - else # a < 0 - { - $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub - } - } - $x->round(@r); - } - -sub bsub - { - # (BINT or num_str, BINT or num_str) return BINT - # subtract second arg from first, modify first - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bsub'); - - return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade && - ((!$x->isa($self)) || (!$y->isa($self))); - - return $x->round(@r) if $y->is_zero(); - - # To correctly handle the lone special case $x->bsub($x), we note the sign - # of $x, then flip the sign from $y, and if the sign of $x did change, too, - # then we caught the special case: - my $xsign = $x->{sign}; - $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN - if ($xsign ne $x->{sign}) - { - # special case of $x->bsub($x) results in 0 - return $x->bzero(@r) if $xsign =~ /^[+-]$/; - return $x->bnan(); # NaN, -inf, +inf - } - $x->badd($y,@r); # badd does not leave internal zeros - $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN) - $x; # already rounded by badd() or no round nec. - } - -sub binc - { - # increment arg by one - my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); - return $x if $x->modify('binc'); - - if ($x->{sign} eq '+') - { - $x->{value} = $CALC->_inc($x->{value}); - return $x->round($a,$p,$r); - } - elsif ($x->{sign} eq '-') - { - $x->{value} = $CALC->_dec($x->{value}); - $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0 - return $x->round($a,$p,$r); - } - # inf, nan handling etc - $x->badd($self->bone(),$a,$p,$r); # badd does round - } - -sub bdec - { - # decrement arg by one - my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); - return $x if $x->modify('bdec'); - - if ($x->{sign} eq '-') - { - # x already < 0 - $x->{value} = $CALC->_inc($x->{value}); - } - else - { - return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf or NaN - # >= 0 - if ($CALC->_is_zero($x->{value})) - { - # == 0 - $x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1 - } - else - { - # > 0 - $x->{value} = $CALC->_dec($x->{value}); - } - } - $x->round(@r); - } - -sub blog - { - # calculate $x = $a ** $base + $b and return $a (e.g. the log() to base - # $base of $x) - - # set up parameters - my ($self,$x,$base,@r) = (undef,@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$base,@r) = objectify(2,@_); - } - - return $x if $x->modify('blog'); - - $base = $self->new($base) if defined $base && !ref $base; - - # inf, -inf, NaN, <0 => NaN - return $x->bnan() - if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+'); - - return $upgrade->blog($upgrade->new($x),$base,@r) if - defined $upgrade; - - # fix for bug #24969: - # the default base is e (Euler's number) which is not an integer - if (!defined $base) - { - require Math::BigFloat; - my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int(); - # modify $x in place - $x->{value} = $u->{value}; - $x->{sign} = $u->{sign}; - return $x; - } - - my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value}); - return $x->bnan() unless defined $rc; # not possible to take log? - $x->{value} = $rc; - $x->round(@r); - } - -sub bnok - { - # Calculate n over k (binomial coefficient or "choose" function) as integer. - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bnok'); - return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN'; - return $x->binf() if $x->{sign} eq '+inf'; - - # k > n or k < 0 => 0 - my $cmp = $x->bacmp($y); - return $x->bzero() if $cmp < 0 || $y->{sign} =~ /^-/; - # k == n => 1 - return $x->bone(@r) if $cmp == 0; - - if ($CALC->can('_nok')) - { - $x->{value} = $CALC->_nok($x->{value},$y->{value}); - } - else - { - # ( 7 ) 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7 - # ( - ) = --------- = --------------- = --------- = 5 * - * - - # ( 3 ) (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3 - - if (!$y->is_zero()) - { - my $z = $x - $y; - $z->binc(); - my $r = $z->copy(); $z->binc(); - my $d = $self->new(2); - while ($z->bacmp($x) <= 0) # f <= x ? - { - $r->bmul($z); $r->bdiv($d); - $z->binc(); $d->binc(); - } - $x->{value} = $r->{value}; $x->{sign} = '+'; - } - else { $x->bone(); } - } - $x->round(@r); - } - -sub bexp - { - # Calculate e ** $x (Euler's number to the power of X), truncated to - # an integer value. - my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); - return $x if $x->modify('bexp'); - - # inf, -inf, NaN, <0 => NaN - return $x->bnan() if $x->{sign} eq 'NaN'; - return $x->bone() if $x->is_zero(); - return $x if $x->{sign} eq '+inf'; - return $x->bzero() if $x->{sign} eq '-inf'; - - my $u; - { - # run through Math::BigFloat unless told otherwise - require Math::BigFloat unless defined $upgrade; - local $upgrade = 'Math::BigFloat' unless defined $upgrade; - # calculate result, truncate it to integer - $u = $upgrade->bexp($upgrade->new($x),@r); - } - - if (!defined $upgrade) - { - $u = $u->as_int(); - # modify $x in place - $x->{value} = $u->{value}; - $x->round(@r); - } - else { $x = $u; } - } - -sub blcm - { - # (BINT or num_str, BINT or num_str) return BINT - # does not modify arguments, but returns new object - # Lowest Common Multiple - - my $y = shift; my ($x); - if (ref($y)) - { - $x = $y->copy(); - } - else - { - $x = $class->new($y); - } - my $self = ref($x); - while (@_) - { - my $y = shift; $y = $self->new($y) if !ref ($y); - $x = __lcm($x,$y); - } - $x; - } - -sub bgcd - { - # (BINT or num_str, BINT or num_str) return BINT - # does not modify arguments, but returns new object - # GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff) - - my $y = shift; - $y = $class->new($y) if !ref($y); - my $self = ref($y); - my $x = $y->copy()->babs(); # keep arguments - return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN? - - while (@_) - { - $y = shift; $y = $self->new($y) if !ref($y); - return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN? - $x->{value} = $CALC->_gcd($x->{value},$y->{value}); - last if $CALC->_is_one($x->{value}); - } - $x; - } - -sub bnot - { - # (num_str or BINT) return BINT - # represent ~x as twos-complement number - # we don't need $self, so undef instead of ref($_[0]) make it slightly faster - my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - return $x if $x->modify('bnot'); - $x->binc()->bneg(); # binc already does round - } - -############################################################################## -# is_foo test routines -# we don't need $self, so undef instead of ref($_[0]) make it slightly faster - -sub is_zero - { - # return true if arg (BINT or num_str) is zero (array '+', '0') - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't - $CALC->_is_zero($x->{value}); - } - -sub is_nan - { - # return true if arg (BINT or num_str) is NaN - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - $x->{sign} eq $nan ? 1 : 0; - } - -sub is_inf - { - # return true if arg (BINT or num_str) is +-inf - my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - if (defined $sign) - { - $sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf - $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-' - return $x->{sign} =~ /^$sign$/ ? 1 : 0; - } - $x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity - } - -sub is_one - { - # return true if arg (BINT or num_str) is +1, or -1 if sign is given - my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - $sign = '+' if !defined $sign || $sign ne '-'; - - return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either - $CALC->_is_one($x->{value}); - } - -sub is_odd - { - # return true when arg (BINT or num_str) is odd, false for even - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't - $CALC->_is_odd($x->{value}); - } - -sub is_even - { - # return true when arg (BINT or num_str) is even, false for odd - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't - $CALC->_is_even($x->{value}); - } - -sub is_positive - { - # return true when arg (BINT or num_str) is positive (> 0) - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - return 1 if $x->{sign} eq '+inf'; # +inf is positive - - # 0+ is neither positive nor negative - ($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0; - } - -sub is_negative - { - # return true when arg (BINT or num_str) is negative (< 0) - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - $x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not - } - -sub is_int - { - # return true when arg (BINT or num_str) is an integer - # always true for BigInt, but different for BigFloats - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - $x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't - } - -############################################################################### - -sub bmul - { - # multiply the first number by the second number - # (BINT or num_str, BINT or num_str) return BINT - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bmul'); - - return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); - - # inf handling - if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) - { - return $x->bnan() if $x->is_zero() || $y->is_zero(); - # result will always be +-inf: - # +inf * +/+inf => +inf, -inf * -/-inf => +inf - # +inf * -/-inf => -inf, -inf * +/+inf => -inf - return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); - return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); - return $x->binf('-'); - } - - return $upgrade->bmul($x,$upgrade->new($y),@r) - if defined $upgrade && !$y->isa($self); - - $r[3] = $y; # no push here - - $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + - - $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math - $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0 - - $x->round(@r); - } - -sub bmuladd - { - # multiply two numbers and then add the third to the result - # (BINT or num_str, BINT or num_str, BINT or num_str) return BINT - - # set up parameters - my ($self,$x,$y,$z,@r) = objectify(3,@_); - - return $x if $x->modify('bmuladd'); - - return $x->bnan() if ($x->{sign} eq $nan) || - ($y->{sign} eq $nan) || - ($z->{sign} eq $nan); - - # inf handling of x and y - if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) - { - return $x->bnan() if $x->is_zero() || $y->is_zero(); - # result will always be +-inf: - # +inf * +/+inf => +inf, -inf * -/-inf => +inf - # +inf * -/-inf => -inf, -inf * +/+inf => -inf - return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); - return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); - return $x->binf('-'); - } - # inf handling x*y and z - if (($z->{sign} =~ /^[+-]inf$/)) - { - # something +-inf => +-inf - $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/; - } - - return $upgrade->bmuladd($x,$upgrade->new($y),$upgrade->new($z),@r) - if defined $upgrade && (!$y->isa($self) || !$z->isa($self) || !$x->isa($self)); - - # TODO: what if $y and $z have A or P set? - $r[3] = $z; # no push here - - $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + - - $x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math - $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0 - - my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs - - if ($sx eq $sz) - { - $x->{value} = $CALC->_add($x->{value},$z->{value}); # same sign, abs add - } - else - { - my $a = $CALC->_acmp ($z->{value},$x->{value}); # absolute compare - if ($a > 0) - { - $x->{value} = $CALC->_sub($z->{value},$x->{value},1); # abs sub w/ swap - $x->{sign} = $sz; - } - elsif ($a == 0) - { - # speedup, if equal, set result to 0 - $x->{value} = $CALC->_zero(); - $x->{sign} = '+'; - } - else # a < 0 - { - $x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub - } - } - $x->round(@r); - } - -sub _div_inf - { - # helper function that handles +-inf cases for bdiv()/bmod() to reuse code - my ($self,$x,$y) = @_; - - # NaN if x == NaN or y == NaN or x==y==0 - return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan() - if (($x->is_nan() || $y->is_nan()) || - ($x->is_zero() && $y->is_zero())); - - # +-inf / +-inf == NaN, remainder also NaN - if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) - { - return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan(); - } - # x / +-inf => 0, remainder x (works even if x == 0) - if ($y->{sign} =~ /^[+-]inf$/) - { - my $t = $x->copy(); # bzero clobbers up $x - return wantarray ? ($x->bzero(),$t) : $x->bzero() - } - - # 5 / 0 => +inf, -6 / 0 => -inf - # +inf / 0 = inf, inf, and -inf / 0 => -inf, -inf - # exception: -8 / 0 has remainder -8, not 8 - # exception: -inf / 0 has remainder -inf, not inf - if ($y->is_zero()) - { - # +-inf / 0 => special case for -inf - return wantarray ? ($x,$x->copy()) : $x if $x->is_inf(); - if (!$x->is_zero() && !$x->is_inf()) - { - my $t = $x->copy(); # binf clobbers up $x - return wantarray ? - ($x->binf($x->{sign}),$t) : $x->binf($x->{sign}) - } - } - - # last case: +-inf / ordinary number - my $sign = '+inf'; - $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign}; - $x->{sign} = $sign; - return wantarray ? ($x,$self->bzero()) : $x; - } - -sub bdiv - { - # (dividend: BINT or num_str, divisor: BINT or num_str) return - # (BINT,BINT) (quo,rem) or BINT (only rem) - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bdiv'); - - return $self->_div_inf($x,$y) - if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero()); - - return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r) - if defined $upgrade; - - $r[3] = $y; # no push! - - # calc new sign and in case $y == +/- 1, return $x - my $xsign = $x->{sign}; # keep - $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+'); - - if (wantarray) - { - my $rem = $self->bzero(); - ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value}); - $x->{sign} = '+' if $CALC->_is_zero($x->{value}); - $rem->{_a} = $x->{_a}; - $rem->{_p} = $x->{_p}; - $x->round(@r); - if (! $CALC->_is_zero($rem->{value})) - { - $rem->{sign} = $y->{sign}; - $rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-' - } - else - { - $rem->{sign} = '+'; # do not leave -0 - } - $rem->round(@r); - return ($x,$rem); - } - - $x->{value} = $CALC->_div($x->{value},$y->{value}); - $x->{sign} = '+' if $CALC->_is_zero($x->{value}); - - $x->round(@r); - } - -############################################################################### -# modulus functions - -sub bmod - { - # modulus (or remainder) - # (BINT or num_str, BINT or num_str) return BINT - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bmod'); - $r[3] = $y; # no push! - if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero()) - { - my ($d,$r) = $self->_div_inf($x,$y); - $x->{sign} = $r->{sign}; - $x->{value} = $r->{value}; - return $x->round(@r); - } - - # calc new sign and in case $y == +/- 1, return $x - $x->{value} = $CALC->_mod($x->{value},$y->{value}); - if (!$CALC->_is_zero($x->{value})) - { - $x->{value} = $CALC->_sub($y->{value},$x->{value},1) # $y-$x - if ($x->{sign} ne $y->{sign}); - $x->{sign} = $y->{sign}; - } - else - { - $x->{sign} = '+'; # do not leave -0 - } - $x->round(@r); - } - -sub bmodinv - { - # Return modular multiplicative inverse: z is the modular inverse of x (mod - # y) if and only if x*z (mod y) = 1 (mod y). If the modulus y is larger than - # one, x and z are relative primes (i.e., their greatest common divisor is - # one). - # - # If no modular multiplicative inverse exists, NaN is returned. - - # set up parameters - my ($self,$x,$y,@r) = (undef,@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bmodinv'); - - # Return NaN if one or both arguments is +inf, -inf, or nan. - - return $x->bnan() if ($y->{sign} !~ /^[+-]$/ || - $x->{sign} !~ /^[+-]$/); - - # Return NaN if $y is zero; 1 % 0 makes no sense. - - return $x->bnan() if $y->is_zero(); - - # Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite - # integers $x. - - return $x->bzero() if ($y->is_one() || - $y->is_one('-')); - - # Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when - # $x = 0 is when $y = 1 or $y = -1, but that was covered above. - # - # Note that computing $x modulo $y here affects the value we'll feed to - # $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x = - # 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and - # $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7. - # The value if $x is affected only when $x and $y have opposite signs. - - $x->bmod($y); - return $x->bnan() if $x->is_zero(); - - # Compute the modular multiplicative inverse of the absolute values. We'll - # correct for the signs of $x and $y later. Return NaN if no GCD is found. - - ($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value}); - return $x->bnan() if !defined $x->{value}; - - # Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions - # <= 1.32 return undef rather than a "+" for the sign. - - $x->{sign} = '+' unless defined $x->{sign}; - - # When one or both arguments are negative, we have the following - # relations. If x and y are positive: - # - # modinv(-x, -y) = -modinv(x, y) - # modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y) - # modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y) - - # We must swap the sign of the result if the original $x is negative. - # However, we must compensate for ignoring the signs when computing the - # inverse modulo. The net effect is that we must swap the sign of the - # result if $y is negative. - - $x -> bneg() if $y->{sign} eq '-'; - - # Compute $x modulo $y again after correcting the sign. - - $x -> bmod($y) if $x->{sign} ne $y->{sign}; - - return $x; - } - -sub bmodpow - { - # Modular exponentiation. Raises a very large number to a very large exponent - # in a given very large modulus quickly, thanks to binary exponentiation. - # Supports negative exponents. - my ($self,$num,$exp,$mod,@r) = objectify(3,@_); - - return $num if $num->modify('bmodpow'); - - # When the exponent 'e' is negative, use the following relation, which is - # based on finding the multiplicative inverse 'd' of 'b' modulo 'm': - # - # b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m) - - $num->bmodinv($mod) if ($exp->{sign} eq '-'); - - # Check for valid input. All operands must be finite, and the modulus must be - # non-zero. - - return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf - $exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf - $mod->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf - $mod->is_zero()); - - # Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting - # value is zero, the output is also zero, regardless of the signs on 'a' and - # 'm'. - - my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value}); - my $sign = '+'; - - # If the resulting value is non-zero, we have four special cases, depending - # on the signs on 'a' and 'm'. - - unless ($CALC->_is_zero($value)) { - - # There is a negative sign on 'a' (= $num**$exp) only if the number we - # are exponentiating ($num) is negative and the exponent ($exp) is odd. - - if ($num->{sign} eq '-' && $exp->is_odd()) { - - # When both the number 'a' and the modulus 'm' have a negative sign, - # use this relation: - # - # -a (mod -m) = -(a (mod m)) - - if ($mod->{sign} eq '-') { - $sign = '-'; - } - - # When only the number 'a' has a negative sign, use this relation: - # - # -a (mod m) = m - (a (mod m)) - - else { - # Use copy of $mod since _sub() modifies the first argument. - my $mod = $CALC->_copy($mod->{value}); - $value = $CALC->_sub($mod, $value); - $sign = '+'; - } - - } else { - - # When only the modulus 'm' has a negative sign, use this relation: - # - # a (mod -m) = (a (mod m)) - m - # = -(m - (a (mod m))) - - if ($mod->{sign} eq '-') { - # Use copy of $mod since _sub() modifies the first argument. - my $mod = $CALC->_copy($mod->{value}); - $value = $CALC->_sub($mod, $value); - $sign = '-'; - } - - # When neither the number 'a' nor the modulus 'm' have a negative - # sign, directly return the already computed value. - # - # (a (mod m)) - - } - - } - - $num->{value} = $value; - $num->{sign} = $sign; - - return $num; - } - -############################################################################### - -sub bfac - { - # (BINT or num_str, BINT or num_str) return BINT - # compute factorial number from $x, modify $x in place - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf - return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN - - $x->{value} = $CALC->_fac($x->{value}); - $x->round(@r); - } - -sub bpow - { - # (BINT or num_str, BINT or num_str) return BINT - # compute power of two numbers -- stolen from Knuth Vol 2 pg 233 - # modifies first argument - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bpow'); - - return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan; - - # inf handling - if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) - { - if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) - { - # +-inf ** +-inf - return $x->bnan(); - } - # +-inf ** Y - if ($x->{sign} =~ /^[+-]inf/) - { - # +inf ** 0 => NaN - return $x->bnan() if $y->is_zero(); - # -inf ** -1 => 1/inf => 0 - return $x->bzero() if $y->is_one('-') && $x->is_negative(); - - # +inf ** Y => inf - return $x if $x->{sign} eq '+inf'; - - # -inf ** Y => -inf if Y is odd - return $x if $y->is_odd(); - return $x->babs(); - } - # X ** +-inf - - # 1 ** +inf => 1 - return $x if $x->is_one(); - - # 0 ** inf => 0 - return $x if $x->is_zero() && $y->{sign} =~ /^[+]/; - - # 0 ** -inf => inf - return $x->binf() if $x->is_zero(); - - # -1 ** -inf => NaN - return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/; - - # -X ** -inf => 0 - return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/; - - # -1 ** inf => NaN - return $x->bnan() if $x->{sign} eq '-'; - - # X ** inf => inf - return $x->binf() if $y->{sign} =~ /^[+]/; - # X ** -inf => 0 - return $x->bzero(); - } - - return $upgrade->bpow($upgrade->new($x),$y,@r) - if defined $upgrade && (!$y->isa($self) || $y->{sign} eq '-'); - - $r[3] = $y; # no push! - - # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu - - my $new_sign = '+'; - $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+'); - - # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf - return $x->binf() - if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value}); - # 1 ** -y => 1 / (1 ** |y|) - # so do test for negative $y after above's clause - return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value}); - - $x->{value} = $CALC->_pow($x->{value},$y->{value}); - $x->{sign} = $new_sign; - $x->{sign} = '+' if $CALC->_is_zero($y->{value}); - $x->round(@r); - } - -sub blsft - { - # (BINT or num_str, BINT or num_str) return BINT - # compute x << y, base n, y >= 0 - - # set up parameters - my ($self,$x,$y,$n,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,$n,@r) = objectify(2,@_); - } - - return $x if $x->modify('blsft'); - return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); - return $x->round(@r) if $y->is_zero(); - - $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-'; - - $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n); - $x->round(@r); - } - -sub brsft - { - # (BINT or num_str, BINT or num_str) return BINT - # compute x >> y, base n, y >= 0 - - # set up parameters - my ($self,$x,$y,$n,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,$n,@r) = objectify(2,@_); - } - - return $x if $x->modify('brsft'); - return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); - return $x->round(@r) if $y->is_zero(); - return $x->bzero(@r) if $x->is_zero(); # 0 => 0 - - $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-'; - - # this only works for negative numbers when shifting in base 2 - if (($x->{sign} eq '-') && ($n == 2)) - { - return $x->round(@r) if $x->is_one('-'); # -1 => -1 - if (!$y->is_one()) - { - # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al - # but perhaps there is a better emulation for two's complement shift... - # if $y != 1, we must simulate it by doing: - # convert to bin, flip all bits, shift, and be done - $x->binc(); # -3 => -2 - my $bin = $x->as_bin(); - $bin =~ s/^-0b//; # strip '-0b' prefix - $bin =~ tr/10/01/; # flip bits - # now shift - if ($y >= CORE::length($bin)) - { - $bin = '0'; # shifting to far right creates -1 - # 0, because later increment makes - # that 1, attached '-' makes it '-1' - # because -1 >> x == -1 ! - } - else - { - $bin =~ s/.{$y}$//; # cut off at the right side - $bin = '1' . $bin; # extend left side by one dummy '1' - $bin =~ tr/10/01/; # flip bits back - } - my $res = $self->new('0b'.$bin); # add prefix and convert back - $res->binc(); # remember to increment - $x->{value} = $res->{value}; # take over value - return $x->round(@r); # we are done now, magic, isn't? - } - # x < 0, n == 2, y == 1 - $x->bdec(); # n == 2, but $y == 1: this fixes it - } - - $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n); - $x->round(@r); - } - -sub band - { - #(BINT or num_str, BINT or num_str) return BINT - # compute x & y - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('band'); - - $r[3] = $y; # no push! - - return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); - - my $sx = $x->{sign} eq '+' ? 1 : -1; - my $sy = $y->{sign} eq '+' ? 1 : -1; - - if ($sx == 1 && $sy == 1) - { - $x->{value} = $CALC->_and($x->{value},$y->{value}); - return $x->round(@r); - } - - if ($CAN{signed_and}) - { - $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy); - return $x->round(@r); - } - - require $EMU_LIB; - __emu_band($self,$x,$y,$sx,$sy,@r); - } - -sub bior - { - #(BINT or num_str, BINT or num_str) return BINT - # compute x | y - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bior'); - $r[3] = $y; # no push! - - return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); - - my $sx = $x->{sign} eq '+' ? 1 : -1; - my $sy = $y->{sign} eq '+' ? 1 : -1; - - # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior() - - # don't use lib for negative values - if ($sx == 1 && $sy == 1) - { - $x->{value} = $CALC->_or($x->{value},$y->{value}); - return $x->round(@r); - } - - # if lib can do negative values, let it handle this - if ($CAN{signed_or}) - { - $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy); - return $x->round(@r); - } - - require $EMU_LIB; - __emu_bior($self,$x,$y,$sx,$sy,@r); - } - -sub bxor - { - #(BINT or num_str, BINT or num_str) return BINT - # compute x ^ y - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$x,$y,@r) = objectify(2,@_); - } - - return $x if $x->modify('bxor'); - $r[3] = $y; # no push! - - return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); - - my $sx = $x->{sign} eq '+' ? 1 : -1; - my $sy = $y->{sign} eq '+' ? 1 : -1; - - # don't use lib for negative values - if ($sx == 1 && $sy == 1) - { - $x->{value} = $CALC->_xor($x->{value},$y->{value}); - return $x->round(@r); - } - - # if lib can do negative values, let it handle this - if ($CAN{signed_xor}) - { - $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy); - return $x->round(@r); - } - - require $EMU_LIB; - __emu_bxor($self,$x,$y,$sx,$sy,@r); - } - -sub length - { - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - my $e = $CALC->_len($x->{value}); - wantarray ? ($e,0) : $e; - } - -sub digit - { - # return the nth decimal digit, negative values count backward, 0 is right - my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - $n = $n->numify() if ref($n); - $CALC->_digit($x->{value},$n||0); - } - -sub _trailing_zeros - { - # return the amount of trailing zeros in $x (as scalar) - my $x = shift; - $x = $class->new($x) unless ref $x; - - return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc - - $CALC->_zeros($x->{value}); # must handle odd values, 0 etc - } - -sub bsqrt - { - # calculate square root of $x - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - return $x if $x->modify('bsqrt'); - - return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN - return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf - - return $upgrade->bsqrt($x,@r) if defined $upgrade; - - $x->{value} = $CALC->_sqrt($x->{value}); - $x->round(@r); - } - -sub broot - { - # calculate $y'th root of $x - - # set up parameters - my ($self,$x,$y,@r) = (ref($_[0]),@_); - - $y = $self->new(2) unless defined $y; - - # objectify is costly, so avoid it - if ((!ref($x)) || (ref($x) ne ref($y))) - { - ($self,$x,$y,@r) = objectify(2,$self || $class,@_); - } - - return $x if $x->modify('broot'); - - # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0 - return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() || - $y->{sign} !~ /^\+$/; - - return $x->round(@r) - if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one(); - - return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade; - - $x->{value} = $CALC->_root($x->{value},$y->{value}); - $x->round(@r); - } - -sub exponent - { - # return a copy of the exponent (here always 0, NaN or 1 for $m == 0) - my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); - - if ($x->{sign} !~ /^[+-]$/) - { - my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf - return $self->new($s); - } - return $self->bone() if $x->is_zero(); - - # 12300 => 2 trailing zeros => exponent is 2 - $self->new( $CALC->_zeros($x->{value}) ); - } - -sub mantissa - { - # return the mantissa (compatible to Math::BigFloat, e.g. reduced) - my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); - - if ($x->{sign} !~ /^[+-]$/) - { - # for NaN, +inf, -inf: keep the sign - return $self->new($x->{sign}); - } - my $m = $x->copy(); delete $m->{_p}; delete $m->{_a}; - - # that's a bit inefficient: - my $zeros = $CALC->_zeros($m->{value}); - $m->brsft($zeros,10) if $zeros != 0; - $m; - } - -sub parts - { - # return a copy of both the exponent and the mantissa - my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); - - ($x->mantissa(),$x->exponent()); - } - -############################################################################## -# rounding functions - -sub bfround - { - # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.' - # $n == 0 || $n == 1 => round to integer - my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x; - - my ($scale,$mode) = $x->_scale_p(@_); - - return $x if !defined $scale || $x->modify('bfround'); # no-op - - # no-op for BigInts if $n <= 0 - $x->bround( $x->length()-$scale, $mode) if $scale > 0; - - delete $x->{_a}; # delete to save memory - $x->{_p} = $scale; # store new _p - $x; - } - -sub _scan_for_nonzero - { - # internal, used by bround() to scan for non-zeros after a '5' - my ($x,$pad,$xs,$len) = @_; - - return 0 if $len == 1; # "5" is trailed by invisible zeros - my $follow = $pad - 1; - return 0 if $follow > $len || $follow < 1; - - # use the string form to check whether only '0's follow or not - substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0; - } - -sub fround - { - # Exists to make life easier for switch between MBF and MBI (should we - # autoload fxxx() like MBF does for bxxx()?) - my $x = shift; $x = $class->new($x) unless ref $x; - $x->bround(@_); - } - -sub bround - { - # accuracy: +$n preserve $n digits from left, - # -$n preserve $n digits from right (f.i. for 0.1234 style in MBF) - # no-op for $n == 0 - # and overwrite the rest with 0's, return normalized number - # do not return $x->bnorm(), but $x - - my $x = shift; $x = $class->new($x) unless ref $x; - my ($scale,$mode) = $x->_scale_a(@_); - return $x if !defined $scale || $x->modify('bround'); # no-op - - if ($x->is_zero() || $scale == 0) - { - $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 - return $x; - } - return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN - - # we have fewer digits than we want to scale to - my $len = $x->length(); - # convert $scale to a scalar in case it is an object (put's a limit on the - # number length, but this would already limited by memory constraints), makes - # it faster - $scale = $scale->numify() if ref ($scale); - - # scale < 0, but > -len (not >=!) - if (($scale < 0 && $scale < -$len-1) || ($scale >= $len)) - { - $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 - return $x; - } - - # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6 - my ($pad,$digit_round,$digit_after); - $pad = $len - $scale; - $pad = abs($scale-1) if $scale < 0; - - # do not use digit(), it is very costly for binary => decimal - # getting the entire string is also costly, but we need to do it only once - my $xs = $CALC->_str($x->{value}); - my $pl = -$pad-1; - - # pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4 - # pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3 - $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len; - $pl++; $pl ++ if $pad >= $len; - $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0; - - # in case of 01234 we round down, for 6789 up, and only in case 5 we look - # closer at the remaining digits of the original $x, remember decision - my $round_up = 1; # default round up - $round_up -- if - ($mode eq 'trunc') || # trunc by round down - ($digit_after =~ /[01234]/) || # round down anyway, - # 6789 => round up - ($digit_after eq '5') && # not 5000...0000 - ($x->_scan_for_nonzero($pad,$xs,$len) == 0) && - ( - ($mode eq 'even') && ($digit_round =~ /[24680]/) || - ($mode eq 'odd') && ($digit_round =~ /[13579]/) || - ($mode eq '+inf') && ($x->{sign} eq '-') || - ($mode eq '-inf') && ($x->{sign} eq '+') || - ($mode eq 'zero') # round down if zero, sign adjusted below - ); - my $put_back = 0; # not yet modified - - if (($pad > 0) && ($pad <= $len)) - { - substr($xs,-$pad,$pad) = '0' x $pad; # replace with '00...' - $put_back = 1; # need to put back - } - elsif ($pad > $len) - { - $x->bzero(); # round to '0' - } - - if ($round_up) # what gave test above? - { - $put_back = 1; # need to put back - $pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0 - - # we modify directly the string variant instead of creating a number and - # adding it, since that is faster (we already have the string) - my $c = 0; $pad ++; # for $pad == $len case - while ($pad <= $len) - { - $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10'; - substr($xs,-$pad,1) = $c; $pad++; - last if $c != 0; # no overflow => early out - } - $xs = '1'.$xs if $c == 0; - - } - $x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed - - $x->{_a} = $scale if $scale >= 0; - if ($scale < 0) - { - $x->{_a} = $len+$scale; - $x->{_a} = 0 if $scale < -$len; - } - $x; - } - -sub bfloor - { - # round towards minus infinity; no-op since it's already integer - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - $x->round(@r); - } - -sub bceil - { - # round towards plus infinity; no-op since it's already int - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - $x->round(@r); - } - -sub bint { - # round towards zero; no-op since it's already integer - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - $x->round(@r); -} - -sub as_number - { - # An object might be asked to return itself as bigint on certain overloaded - # operations. This does exactly this, so that sub classes can simple inherit - # it or override with their own integer conversion routine. - $_[0]->copy(); - } - -sub as_hex - { - # return as hex string, with prefixed 0x - my $x = shift; $x = $class->new($x) if !ref($x); - - return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc - - my $s = ''; - $s = $x->{sign} if $x->{sign} eq '-'; - $s . $CALC->_as_hex($x->{value}); - } - -sub as_bin - { - # return as binary string, with prefixed 0b - my $x = shift; $x = $class->new($x) if !ref($x); - - return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc - - my $s = ''; $s = $x->{sign} if $x->{sign} eq '-'; - return $s . $CALC->_as_bin($x->{value}); - } - -sub as_oct - { - # return as octal string, with prefixed 0 - my $x = shift; $x = $class->new($x) if !ref($x); - - return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc - - my $s = ''; $s = $x->{sign} if $x->{sign} eq '-'; - return $s . $CALC->_as_oct($x->{value}); - } - -############################################################################## -# private stuff (internal use only) - -sub objectify { - # Convert strings and "foreign objects" to the objects we want. - - # The first argument, $count, is the number of following arguments that - # objectify() looks at and converts to objects. The first is a classname. - # If the given count is 0, all arguments will be used. - - # After the count is read, objectify obtains the name of the class to which - # the following arguments are converted. If the second argument is a - # reference, use the reference type as the class name. Otherwise, if it is - # a string that looks like a class name, use that. Otherwise, use $class. - - # Caller: Gives us: - # - # $x->badd(1); => ref x, scalar y - # Class->badd(1,2); => classname x (scalar), scalar x, scalar y - # Class->badd(Class->(1),2); => classname x (scalar), ref x, scalar y - # Math::BigInt::badd(1,2); => scalar x, scalar y - - # A shortcut for the common case $x->unary_op(): - - return (ref($_[1]), $_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]); - - # Check the context. - - unless (wantarray) { - require Carp; - Carp::croak ("${class}::objectify() needs list context"); - } - - # Get the number of arguments to objectify. - - my $count = shift; - $count ||= @_; - - # Initialize the output array. - - my @a = @_; - - # If the first argument is a reference, use that reference type as our - # class name. Otherwise, if the first argument looks like a class name, - # then use that as our class name. Otherwise, use the default class name. - - { - if (ref($a[0])) { # reference? - unshift @a, ref($a[0]); - last; - } - if ($a[0] =~ /^[A-Z].*::/) { # string with class name? - last; - } - unshift @a, $class; # default class name - } - - no strict 'refs'; - - # What we upgrade to, if anything. - - my $up = ${"$a[0]::upgrade"}; - - # Disable downgrading, because Math::BigFloat -> foo('1.0','2.0') needs - # floats. - - my $down; - if (defined ${"$a[0]::downgrade"}) { - $down = ${"$a[0]::downgrade"}; - ${"$a[0]::downgrade"} = undef; - } - - for my $i (1 .. $count) { - my $ref = ref $a[$i]; - - # If it is an object of the right class, all is fine. - - if ($ref eq $a[0]) { - next; - } - -# # Don't do anything with undefs. -# -# unless (defined($a[$i])) { -# next; -# } - $a[$i] //= 0; - - # Perl scalars are fed to the appropriate constructor. - - unless ($ref) { - $a[$i] = $a[0] -> new($a[$i]); - next; - } - - # Upgrading is OK, so skip further tests if the argument is upgraded. - - if (defined $up && $ref eq $up) { - next; - } - - # If we want a Math::BigInt, see if the object can become one. - # Support the old misnomer as_number(). - - if ($a[0] eq 'Math::BigInt') { - if ($a[$i] -> can('as_int')) { - $a[$i] = $a[$i] -> as_int(); - next; - } - if ($a[$i] -> can('as_number')) { - $a[$i] = $a[$i] -> as_number(); - next; - } - } - - # If we want a Math::BigFloat, see if the object can become one. - - if ($a[0] eq 'Math::BigFloat') { - if ($a[$i] -> can('as_float')) { - $a[$i] = $a[$i] -> as_float(); - next; - } - } - - # Last resort. - - $a[$i] = $a[0] -> new($a[$i]); - } - - # Reset the downgrading. - - ${"$a[0]::downgrade"} = $down; - - return @a; -} - -sub _register_callback - { - my ($class,$callback) = @_; - - if (ref($callback) ne 'CODE') - { - require Carp; - Carp::croak ("$callback is not a coderef"); - } - $CALLBACKS{$class} = $callback; - } - -sub import - { - my $self = shift; - - $IMPORT++; # remember we did import() - my @a; my $l = scalar @_; - my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die - for ( my $i = 0; $i < $l ; $i++ ) - { - if ($_[$i] eq ':constant') - { - # this causes overlord er load to step in - overload::constant - integer => sub { $self->new(shift) }, - binary => sub { $self->new(shift) }; - } - elsif ($_[$i] eq 'upgrade') - { - # this causes upgrading - $upgrade = $_[$i+1]; # or undef to disable - $i++; - } - elsif ($_[$i] =~ /^(lib|try|only)\z/) - { - # this causes a different low lib to take care... - $CALC = $_[$i+1] || ''; - # lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback) - $warn_or_die = 1 if $_[$i] eq 'lib'; - $warn_or_die = 2 if $_[$i] eq 'only'; - $i++; - } - else - { - push @a, $_[$i]; - } - } - # any non :constant stuff is handled by our parent, Exporter - if (@a > 0) - { - require Exporter; - - $self->SUPER::import(@a); # need it for subclasses - $self->export_to_level(1,$self,@a); # need it for MBF - } - - # try to load core math lib - my @c = split /\s*,\s*/,$CALC; - foreach (@c) - { - $_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters - } - push @c, \'Calc' # if all fail, try these - if $warn_or_die < 2; # but not for "only" - $CALC = ''; # signal error - foreach my $l (@c) - { - # fallback libraries are "marked" as \'string', extract string if nec. - my $lib = $l; $lib = $$l if ref($l); - - next if ($lib || '') eq ''; - $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i; - $lib =~ s/\.pm$//; - if ($] < 5.006) - { - # Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is - # used in the same script, or eval("") inside import(). - my @parts = split /::/, $lib; # Math::BigInt => Math BigInt - my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm - require File::Spec; - $file = File::Spec->catfile (@parts, $file); - eval { require "$file"; $lib->import( @c ); } - } - else - { - eval "use $lib qw/@c/;"; - } - if ($@ eq '') - { - my $ok = 1; - # loaded it ok, see if the api_version() is high enough - if ($lib->can('api_version') && $lib->api_version() >= 1.0) - { - $ok = 0; - # api_version matches, check if it really provides anything we need - for my $method (qw/ - one two ten - str num - add mul div sub dec inc - acmp len digit is_one is_zero is_even is_odd - is_two is_ten - zeros new copy check - from_hex from_oct from_bin as_hex as_bin as_oct - rsft lsft xor and or - mod sqrt root fac pow modinv modpow log_int gcd - /) - { - if (!$lib->can("_$method")) - { - if (($WARN{$lib}||0) < 2) - { - require Carp; - Carp::carp ("$lib is missing method '_$method'"); - $WARN{$lib} = 1; # still warn about the lib - } - $ok++; last; - } - } - } - if ($ok == 0) - { - $CALC = $lib; - if ($warn_or_die > 0 && ref($l)) - { - require Carp; - my $msg = "Math::BigInt: couldn't load specified math lib(s), fallback to $lib"; - Carp::carp ($msg) if $warn_or_die == 1; - Carp::croak ($msg) if $warn_or_die == 2; - } - last; # found a usable one, break - } - else - { - if (($WARN{$lib}||0) < 2) - { - my $ver = eval "\$$lib\::VERSION" || 'unknown'; - require Carp; - Carp::carp ("Cannot load outdated $lib v$ver, please upgrade"); - $WARN{$lib} = 2; # never warn again - } - } - } - } - if ($CALC eq '') - { - require Carp; - if ($warn_or_die == 2) - { - Carp::croak ("Couldn't load specified math lib(s) and fallback disallowed"); - } - else - { - Carp::croak ("Couldn't load any math lib(s), not even fallback to Calc.pm"); - } - } - - # notify callbacks - foreach my $class (keys %CALLBACKS) - { - &{$CALLBACKS{$class}}($CALC); - } - - # Fill $CAN with the results of $CALC->can(...) for emulating lower math lib - # functions - - %CAN = (); - for my $method (qw/ signed_and signed_or signed_xor /) - { - $CAN{$method} = $CALC->can("_$method") ? 1 : 0; - } - - # import done - } - -sub from_hex { - # Create a bigint from a hexadecimal string. - - my ($self, $str) = @_; - - if ($str =~ s/ - ^ - ( [+-]? ) - (0?x)? - ( - [0-9a-fA-F]* - ( _ [0-9a-fA-F]+ )* - ) - $ - //x) - { - # Get a "clean" version of the string, i.e., non-emtpy and with no - # underscores or invalid characters. - - my $sign = $1; - my $chrs = $3; - $chrs =~ tr/_//d; - $chrs = '0' unless CORE::length $chrs; - - # Initialize output. - - my $x = Math::BigInt->bzero(); - - # The library method requires a prefix. - - $x->{value} = $CALC->_from_hex('0x' . $chrs); - - # Place the sign. - - if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) { - $x->{sign} = '-'; - } - - return $x; - } - - # CORE::hex() parses as much as it can, and ignores any trailing garbage. - # For backwards compatibility, we return NaN. - - return $self->bnan(); -} - -sub from_oct { - # Create a bigint from an octal string. - - my ($self, $str) = @_; - - if ($str =~ s/ - ^ - ( [+-]? ) - ( - [0-7]* - ( _ [0-7]+ )* - ) - $ - //x) - { - # Get a "clean" version of the string, i.e., non-emtpy and with no - # underscores or invalid characters. - - my $sign = $1; - my $chrs = $2; - $chrs =~ tr/_//d; - $chrs = '0' unless CORE::length $chrs; - - # Initialize output. - - my $x = Math::BigInt->bzero(); - - # The library method requires a prefix. - - $x->{value} = $CALC->_from_oct('0' . $chrs); - - # Place the sign. - - if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) { - $x->{sign} = '-'; - } - - return $x; - } - - # CORE::oct() parses as much as it can, and ignores any trailing garbage. - # For backwards compatibility, we return NaN. - - return $self->bnan(); -} - -sub from_bin { - # Create a bigint from a binary string. - - my ($self, $str) = @_; - - if ($str =~ s/ - ^ - ( [+-]? ) - (0?b)? - ( - [01]* - ( _ [01]+ )* - ) - $ - //x) - { - # Get a "clean" version of the string, i.e., non-emtpy and with no - # underscores or invalid characters. - - my $sign = $1; - my $chrs = $3; - $chrs =~ tr/_//d; - $chrs = '0' unless CORE::length $chrs; - - # Initialize output. - - my $x = Math::BigInt->bzero(); - - # The library method requires a prefix. - - $x->{value} = $CALC->_from_bin('0b' . $chrs); - - # Place the sign. - - if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) { - $x->{sign} = '-'; - } - - return $x; - } - - # For consistency with from_hex() and from_oct(), we return NaN when the - # input is invalid. - - return $self->bnan(); -} - -sub _split - { - # input: num_str; output: undef for invalid or - # (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction,\$exp_sign,\$exp_value) - # Internal, take apart a string and return the pieces. - # Strip leading/trailing whitespace, leading zeros, underscore and reject - # invalid input. - my $x = shift; - - # strip white space at front, also extraneous leading zeros - $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2' - $x =~ s/^\s+//; # but this will - $x =~ s/\s+$//g; # strip white space at end - - # shortcut, if nothing to split, return early - if ($x =~ /^[+-]?[0-9]+\z/) - { - $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+'; - return (\$sign, \$x, \'', \'', \0); - } - - # invalid starting char? - return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/; - - return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string - return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string - - # strip underscores between digits - $x =~ s/([0-9])_([0-9])/$1$2/g; - $x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3 - - # some possible inputs: - # 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 - # .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999 - - my ($m,$e,$last) = split /[Ee]/,$x; - return if defined $last; # last defined => 1e2E3 or others - $e = '0' if !defined $e || $e eq ""; - - # sign,value for exponent,mantint,mantfrac - my ($es,$ev,$mis,$miv,$mfv); - # valid exponent? - if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros - { - $es = $1; $ev = $2; - # valid mantissa? - return if $m eq '.' || $m eq ''; - my ($mi,$mf,$lastf) = split /\./,$m; - return if defined $lastf; # lastf defined => 1.2.3 or others - $mi = '0' if !defined $mi; - $mi .= '0' if $mi =~ /^[\-\+]?$/; - $mf = '0' if !defined $mf || $mf eq ''; - if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros - { - $mis = $1||'+'; $miv = $2; - return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros - $mfv = $1; - # handle the 0e999 case here - $ev = 0 if $miv eq '0' && $mfv eq ''; - return (\$mis,\$miv,\$mfv,\$es,\$ev); - } - } - return; # NaN, not a number - } - -############################################################################## -# internal calculation routines (others are in Math::BigInt::Calc etc) - -sub __lcm - { - # (BINT or num_str, BINT or num_str) return BINT - # does modify first argument - # LCM - - my ($x,$ty) = @_; - return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan); - my $method = ref($x) . '::bgcd'; - no strict 'refs'; - $x * $ty / &$method($x,$ty); - } - -############################################################################### -# trigonometric functions - -sub bpi - { - # Calculate PI to N digits. Unless upgrading is in effect, returns the - # result truncated to an integer, that is, always returns '3'. - my ($self,$n) = @_; - if (@_ == 1) - { - # called like Math::BigInt::bpi(10); - $n = $self; $self = $class; - } - $self = ref($self) if ref($self); - - return $upgrade->new($n) if defined $upgrade; - - # hard-wired to "3" - $self->new(3); - } - -sub bcos - { - # Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the - # result truncated to an integer. - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - return $x if $x->modify('bcos'); - - return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN - - return $upgrade->new($x)->bcos(@r) if defined $upgrade; - - require Math::BigFloat; - # calculate the result and truncate it to integer - my $t = Math::BigFloat->new($x)->bcos(@r)->as_int(); - - $x->bone() if $t->is_one(); - $x->bzero() if $t->is_zero(); - $x->round(@r); - } - -sub bsin - { - # Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the - # result truncated to an integer. - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - return $x if $x->modify('bsin'); - - return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN - - return $upgrade->new($x)->bsin(@r) if defined $upgrade; - - require Math::BigFloat; - # calculate the result and truncate it to integer - my $t = Math::BigFloat->new($x)->bsin(@r)->as_int(); - - $x->bone() if $t->is_one(); - $x->bzero() if $t->is_zero(); - $x->round(@r); - } - -sub batan2 - { - # calculate arcus tangens of ($y/$x) - - # set up parameters - my ($self,$y,$x,@r) = (ref($_[0]),@_); - # objectify is costly, so avoid it - if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) - { - ($self,$y,$x,@r) = objectify(2,@_); - } - - return $y if $y->modify('batan2'); - - return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan); - - # Y X - # != 0 -inf result is +- pi - if ($x->is_inf() || $y->is_inf()) - { - # upgrade to BigFloat etc. - return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade; - if ($y->is_inf()) - { - if ($x->{sign} eq '-inf') - { - # calculate 3 pi/4 => 2.3.. => 2 - $y->bone( substr($y->{sign},0,1) ); - $y->bmul($self->new(2)); - } - elsif ($x->{sign} eq '+inf') - { - # calculate pi/4 => 0.7 => 0 - $y->bzero(); - } - else - { - # calculate pi/2 => 1.5 => 1 - $y->bone( substr($y->{sign},0,1) ); - } - } - else - { - if ($x->{sign} eq '+inf') - { - # calculate pi/4 => 0.7 => 0 - $y->bzero(); - } - else - { - # PI => 3.1415.. => 3 - $y->bone( substr($y->{sign},0,1) ); - $y->bmul($self->new(3)); - } - } - return $y; - } - - return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade; - - require Math::BigFloat; - my $r = Math::BigFloat->new($y)->batan2(Math::BigFloat->new($x),@r)->as_int(); - - $x->{value} = $r->{value}; - $x->{sign} = $r->{sign}; - - $x; - } - -sub batan - { - # Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the - # result truncated to an integer. - my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_); - - return $x if $x->modify('batan'); - - return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN - - return $upgrade->new($x)->batan(@r) if defined $upgrade; - - # calculate the result and truncate it to integer - my $t = Math::BigFloat->new($x)->batan(@r); - - $x->{value} = $CALC->_new( $x->as_int()->bstr() ); - $x->round(@r); - } - -############################################################################### -# this method returns 0 if the object can be modified, or 1 if not. -# We use a fast constant sub() here, to avoid costly calls. Subclasses -# may override it with special code (f.i. Math::BigInt::Constant does so) - -sub modify () { 0; } - -1; -__END__ - -=pod - -=head1 NAME - -Math::BigInt - Arbitrary size integer/float math package - -=head1 SYNOPSIS - - use Math::BigInt; - - # or make it faster with huge numbers: install (optional) - # Math::BigInt::GMP and always use (it will fall back to - # pure Perl if the GMP library is not installed): - # (See also the L<MATH LIBRARY> section!) - - # will warn if Math::BigInt::GMP cannot be found - use Math::BigInt lib => 'GMP'; - - # to suppress the warning use this: - # use Math::BigInt try => 'GMP'; - - # dies if GMP cannot be loaded: - # use Math::BigInt only => 'GMP'; - - my $str = '1234567890'; - my @values = (64,74,18); - my $n = 1; my $sign = '-'; - - # Number creation - my $x = Math::BigInt->new($str); # defaults to 0 - my $y = $x->copy(); # make a true copy - my $nan = Math::BigInt->bnan(); # create a NotANumber - my $zero = Math::BigInt->bzero(); # create a +0 - my $inf = Math::BigInt->binf(); # create a +inf - my $inf = Math::BigInt->binf('-'); # create a -inf - my $one = Math::BigInt->bone(); # create a +1 - my $mone = Math::BigInt->bone('-'); # create a -1 - - my $pi = Math::BigInt->bpi(); # returns '3' - # see Math::BigFloat::bpi() - - $h = Math::BigInt->new('0x123'); # from hexadecimal - $b = Math::BigInt->new('0b101'); # from binary - $o = Math::BigInt->from_oct('0101'); # from octal - - # Testing (don't modify their arguments) - # (return true if the condition is met, otherwise false) - - $x->is_zero(); # if $x is +0 - $x->is_nan(); # if $x is NaN - $x->is_one(); # if $x is +1 - $x->is_one('-'); # if $x is -1 - $x->is_odd(); # if $x is odd - $x->is_even(); # if $x is even - $x->is_pos(); # if $x > 0 - $x->is_neg(); # if $x < 0 - $x->is_inf($sign); # if $x is +inf, or -inf (sign is default '+') - $x->is_int(); # if $x is an integer (not a float) - - # comparing and digit/sign extraction - $x->bcmp($y); # compare numbers (undef,<0,=0,>0) - $x->bacmp($y); # compare absolutely (undef,<0,=0,>0) - $x->sign(); # return the sign, either +,- or NaN - $x->digit($n); # return the nth digit, counting from right - $x->digit(-$n); # return the nth digit, counting from left - - # The following all modify their first argument. If you want to pre- - # serve $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for - # why this is necessary when mixing $a = $b assignments with non-over- - # loaded math. - - $x->bzero(); # set $x to 0 - $x->bnan(); # set $x to NaN - $x->bone(); # set $x to +1 - $x->bone('-'); # set $x to -1 - $x->binf(); # set $x to inf - $x->binf('-'); # set $x to -inf - - $x->bneg(); # negation - $x->babs(); # absolute value - $x->bsgn(); # sign function (-1, 0, 1, or NaN) - $x->bnorm(); # normalize (no-op in BigInt) - $x->bnot(); # two's complement (bit wise not) - $x->binc(); # increment $x by 1 - $x->bdec(); # decrement $x by 1 - - $x->badd($y); # addition (add $y to $x) - $x->bsub($y); # subtraction (subtract $y from $x) - $x->bmul($y); # multiplication (multiply $x by $y) - $x->bdiv($y); # divide, set $x to quotient - # return (quo,rem) or quo if scalar - - $x->bmuladd($y,$z); # $x = $x * $y + $z - - $x->bmod($y); # modulus (x % y) - $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod) - $x->bmodinv($mod); # modular multiplicative inverse - $x->bpow($y); # power of arguments (x ** y) - $x->blsft($y); # left shift in base 2 - $x->brsft($y); # right shift in base 2 - # returns (quo,rem) or quo if in sca- - # lar context - $x->blsft($y,$n); # left shift by $y places in base $n - $x->brsft($y,$n); # right shift by $y places in base $n - # returns (quo,rem) or quo if in sca- - # lar context - - $x->band($y); # bitwise and - $x->bior($y); # bitwise inclusive or - $x->bxor($y); # bitwise exclusive or - $x->bnot(); # bitwise not (two's complement) - - $x->bsqrt(); # calculate square-root - $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root) - $x->bfac(); # factorial of $x (1*2*3*4*..$x) - - $x->bnok($y); # x over y (binomial coefficient n over k) - - $x->blog(); # logarithm of $x to base e (Euler's number) - $x->blog($base); # logarithm of $x to base $base (f.i. 2) - $x->bexp(); # calculate e ** $x where e is Euler's number - - $x->round($A,$P,$mode); # round to accuracy or precision using - # mode $mode - $x->bround($n); # accuracy: preserve $n digits - $x->bfround($n); # $n > 0: round $nth digits, - # $n < 0: round to the $nth digit after the - # dot, no-op for BigInts - - # The following do not modify their arguments in BigInt (are no-ops), - # but do so in BigFloat: - - $x->bfloor(); # round towards minus infinity - $x->bceil(); # round towards plus infinity - $x->bint(); # round towards zero - - # The following do not modify their arguments: - - # greatest common divisor (no OO style) - my $gcd = Math::BigInt::bgcd(@values); - # lowest common multiple (no OO style) - my $lcm = Math::BigInt::blcm(@values); - - $x->length(); # return number of digits in number - ($xl,$f) = $x->length(); # length of number and length of fraction - # part, latter is always 0 digits long - # for BigInts - - $x->exponent(); # return exponent as BigInt - $x->mantissa(); # return (signed) mantissa as BigInt - $x->parts(); # return (mantissa,exponent) as BigInt - $x->copy(); # make a true copy of $x (unlike $y = $x;) - $x->as_int(); # return as BigInt (in BigInt: same as copy()) - $x->numify(); # return as scalar (might overflow!) - - # conversion to string (do not modify their argument) - $x->bstr(); # normalized string (e.g. '3') - $x->bsstr(); # norm. string in scientific notation (e.g. '3E0') - $x->as_hex(); # as signed hexadecimal string with prefixed 0x - $x->as_bin(); # as signed binary string with prefixed 0b - $x->as_oct(); # as signed octal string with prefixed 0 - - - # precision and accuracy (see section about rounding for more) - $x->precision(); # return P of $x (or global, if P of $x undef) - $x->precision($n); # set P of $x to $n - $x->accuracy(); # return A of $x (or global, if A of $x undef) - $x->accuracy($n); # set A $x to $n - - # Global methods - Math::BigInt->precision(); # get/set global P for all BigInt objects - Math::BigInt->accuracy(); # get/set global A for all BigInt objects - Math::BigInt->round_mode(); # get/set global round mode, one of - # 'even', 'odd', '+inf', '-inf', 'zero', - # 'trunc' or 'common' - Math::BigInt->config(); # return hash containing configuration - -=head1 DESCRIPTION - -All operators (including basic math operations) are overloaded if you -declare your big integers as - - $i = new Math::BigInt '123_456_789_123_456_789'; - -Operations with overloaded operators preserve the arguments which is -exactly what you expect. - -=head2 Input - -Input values to these routines may be any string, that looks like a number -and results in an integer, including hexadecimal and binary numbers. - -Scalars holding numbers may also be passed, but note that non-integer numbers -may already have lost precision due to the conversion to float. Quote -your input if you want BigInt to see all the digits: - - $x = Math::BigInt->new(12345678890123456789); # bad - $x = Math::BigInt->new('12345678901234567890'); # good - -You can include one underscore between any two digits. - -This means integer values like 1.01E2 or even 1000E-2 are also accepted. -Non-integer values result in NaN. - -Hexadecimal (prefixed with "0x") and binary numbers (prefixed with "0b") -are accepted, too. Please note that octal numbers are not recognized -by new(), so the following will print "123": - - perl -MMath::BigInt -le 'print Math::BigInt->new("0123")' - -To convert an octal number, use from_oct(); - - perl -MMath::BigInt -le 'print Math::BigInt->from_oct("0123")' - -Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('') -results in 'NaN'. This might change in the future, so use always the following -explicit forms to get a zero or NaN: - - $zero = Math::BigInt->bzero(); - $nan = Math::BigInt->bnan(); - -C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers -are always stored in normalized form. If passed a string, creates a BigInt -object from the input. - -=head2 Output - -Output values are BigInt objects (normalized), except for the methods which -return a string (see L</SYNOPSIS>). - -Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>, -C<is_nan()>, etc.) return true or false, while others (C<bcmp()>, C<bacmp()>) -return either undef (if NaN is involved), <0, 0 or >0 and are suited for sort. - -=head1 METHODS - -Each of the methods below (except config(), accuracy() and precision()) -accepts three additional parameters. These arguments C<$A>, C<$P> and C<$R> -are C<accuracy>, C<precision> and C<round_mode>. Please see the section about -L</ACCURACY and PRECISION> for more information. - -=over - -=item config() - - use Data::Dumper; - - print Dumper ( Math::BigInt->config() ); - print Math::BigInt->config()->{lib},"\n"; - -Returns a hash containing the configuration, e.g. the version number, lib -loaded etc. The following hash keys are currently filled in with the -appropriate information. - - key Description - Example - ============================================================ - lib Name of the low-level math library - Math::BigInt::Calc - lib_version Version of low-level math library (see 'lib') - 0.30 - class The class name of config() you just called - Math::BigInt - upgrade To which class math operations might be - upgraded Math::BigFloat - downgrade To which class math operations might be - downgraded undef - precision Global precision - undef - accuracy Global accuracy - undef - round_mode Global round mode - even - version version number of the class you used - 1.61 - div_scale Fallback accuracy for div - 40 - trap_nan If true, traps creation of NaN via croak() - 1 - trap_inf If true, traps creation of +inf/-inf via croak() - 1 - -The following values can be set by passing C<config()> a reference to a hash: - - trap_inf trap_nan - upgrade downgrade precision accuracy round_mode div_scale - -Example: - - $new_cfg = Math::BigInt->config( - { trap_inf => 1, precision => 5 } - ); - -=item accuracy() - - $x->accuracy(5); # local for $x - CLASS->accuracy(5); # global for all members of CLASS - # Note: This also applies to new()! - - $A = $x->accuracy(); # read out accuracy that affects $x - $A = CLASS->accuracy(); # read out global accuracy - -Set or get the global or local accuracy, aka how many significant digits the -results have. If you set a global accuracy, then this also applies to new()! - -Warning! The accuracy I<sticks>, e.g. once you created a number under the -influence of C<< CLASS->accuracy($A) >>, all results from math operations with -that number will also be rounded. - -In most cases, you should probably round the results explicitly using one of -L</round()>, L</bround()> or L</bfround()> or by passing the desired accuracy -to the math operation as additional parameter: - - my $x = Math::BigInt->new(30000); - my $y = Math::BigInt->new(7); - print scalar $x->copy()->bdiv($y, 2); # print 4300 - print scalar $x->copy()->bdiv($y)->bround(2); # print 4300 - -Please see the section about L</ACCURACY and PRECISION> for further details. - -Value must be greater than zero. Pass an undef value to disable it: - - $x->accuracy(undef); - Math::BigInt->accuracy(undef); - -Returns the current accuracy. For C<< $x->accuracy() >> it will return either -the local accuracy, or if not defined, the global. This means the return value -represents the accuracy that will be in effect for $x: - - $y = Math::BigInt->new(1234567); # unrounded - print Math::BigInt->accuracy(4),"\n"; # set 4, print 4 - $x = Math::BigInt->new(123456); # $x will be automatic- - # ally rounded! - print "$x $y\n"; # '123500 1234567' - print $x->accuracy(),"\n"; # will be 4 - print $y->accuracy(),"\n"; # also 4, since - # global is 4 - print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5 - print $x->accuracy(),"\n"; # still 4 - print $y->accuracy(),"\n"; # 5, since global is 5 - -Note: Works also for subclasses like Math::BigFloat. Each class has it's own -globals separated from Math::BigInt, but it is possible to subclass -Math::BigInt and make the globals of the subclass aliases to the ones from -Math::BigInt. - -=item precision() - - $x->precision(-2); # local for $x, round at the second - # digit right of the dot - $x->precision(2); # ditto, round at the second digit - # left of the dot - - CLASS->precision(5); # Global for all members of CLASS - # This also applies to new()! - CLASS->precision(-5); # ditto - - $P = CLASS->precision(); # read out global precision - $P = $x->precision(); # read out precision that affects $x - -Note: You probably want to use L</accuracy()> instead. With L</accuracy()> you -set the number of digits each result should have, with L</precision()> you -set the place where to round! - -C<precision()> sets or gets the global or local precision, aka at which digit -before or after the dot to round all results. A set global precision also -applies to all newly created numbers! - -In Math::BigInt, passing a negative number precision has no effect since no -numbers have digits after the dot. In L<Math::BigFloat>, it will round all -results to P digits after the dot. - -Please see the section about L</ACCURACY and PRECISION> for further details. - -Pass an undef value to disable it: - - $x->precision(undef); - Math::BigInt->precision(undef); - -Returns the current precision. For C<< $x->precision() >> it will return either -the local precision of $x, or if not defined, the global. This means the return -value represents the prevision that will be in effect for $x: - - $y = Math::BigInt->new(1234567); # unrounded - print Math::BigInt->precision(4),"\n"; # set 4, print 4 - $x = Math::BigInt->new(123456); # will be automatically rounded - print $x; # print "120000"! - -Note: Works also for subclasses like L<Math::BigFloat>. Each class has its -own globals separated from Math::BigInt, but it is possible to subclass -Math::BigInt and make the globals of the subclass aliases to the ones from -Math::BigInt. - -=item brsft() - - $x->brsft($y,$n); - -Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and -2, but others work, too. - -Right shifting usually amounts to dividing $x by $n ** $y and truncating the -result: - - - $x = Math::BigInt->new(10); - $x->brsft(1); # same as $x >> 1: 5 - $x = Math::BigInt->new(1234); - $x->brsft(2,10); # result 12 - -There is one exception, and that is base 2 with negative $x: - - - $x = Math::BigInt->new(-5); - print $x->brsft(1); - -This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the -result). - -=item new() - - $x = Math::BigInt->new($str,$A,$P,$R); - -Creates a new BigInt object from a scalar or another BigInt object. The -input is accepted as decimal, hex (with leading '0x') or binary (with leading -'0b'). - -See L</Input> for more info on accepted input formats. - -=item from_oct() - - $x = Math::BigInt->from_oct("0775"); # input is octal - -Interpret the input as an octal string and return the corresponding value. A -"0" (zero) prefix is optional. A single underscore character may be placed -right after the prefix, if present, or between any two digits. If the input is -invalid, a NaN is returned. - -=item from_hex() - - $x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal - -Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A -single underscore character may be placed right after the prefix, if present, -or between any two digits. If the input is invalid, a NaN is returned. - -=item from_bin() - - $x = Math::BigInt->from_bin("0b10011"); # input is binary - -Interpret the input as a binary string. A "0b" or "b" prefix is optional. A -single underscore character may be placed right after the prefix, if present, -or between any two digits. If the input is invalid, a NaN is returned. - -=item bnan() - - $x = Math::BigInt->bnan(); - -Creates a new BigInt object representing NaN (Not A Number). -If used on an object, it will set it to NaN: - - $x->bnan(); - -=item bzero() - - $x = Math::BigInt->bzero(); - -Creates a new BigInt object representing zero. -If used on an object, it will set it to zero: - - $x->bzero(); - -=item binf() - - $x = Math::BigInt->binf($sign); - -Creates a new BigInt object representing infinity. The optional argument is -either '-' or '+', indicating whether you want infinity or minus infinity. -If used on an object, it will set it to infinity: - - $x->binf(); - $x->binf('-'); - -=item bone() - - $x = Math::BigInt->binf($sign); - -Creates a new BigInt object representing one. The optional argument is -either '-' or '+', indicating whether you want one or minus one. -If used on an object, it will set it to one: - - $x->bone(); # +1 - $x->bone('-'); # -1 - -=item is_one()/is_zero()/is_nan()/is_inf() - - $x->is_zero(); # true if arg is +0 - $x->is_nan(); # true if arg is NaN - $x->is_one(); # true if arg is +1 - $x->is_one('-'); # true if arg is -1 - $x->is_inf(); # true if +inf - $x->is_inf('-'); # true if -inf (sign is default '+') - -These methods all test the BigInt for being one specific value and return -true or false depending on the input. These are faster than doing something -like: - - if ($x == 0) - -=item is_pos()/is_neg()/is_positive()/is_negative() - - $x->is_pos(); # true if > 0 - $x->is_neg(); # true if < 0 - -The methods return true if the argument is positive or negative, respectively. -C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and -C<-inf> is negative. A C<zero> is neither positive nor negative. - -These methods are only testing the sign, and not the value. - -C<is_positive()> and C<is_negative()> are aliases to C<is_pos()> and -C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were -introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced -in v1.68. - -=item is_odd()/is_even()/is_int() - - $x->is_odd(); # true if odd, false for even - $x->is_even(); # true if even, false for odd - $x->is_int(); # true if $x is an integer - -The return true when the argument satisfies the condition. C<NaN>, C<+inf>, -C<-inf> are not integers and are neither odd nor even. - -In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers. - -=item bcmp() - - $x->bcmp($y); - -Compares $x with $y and takes the sign into account. -Returns -1, 0, 1 or undef. - -=item bacmp() - - $x->bacmp($y); - -Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef. - -=item sign() - - $x->sign(); - -Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN. - -If you want $x to have a certain sign, use one of the following methods: - - $x->babs(); # '+' - $x->babs()->bneg(); # '-' - $x->bnan(); # 'NaN' - $x->binf(); # '+inf' - $x->binf('-'); # '-inf' - -=item digit() - - $x->digit($n); # return the nth digit, counting from right - -If C<$n> is negative, returns the digit counting from left. - -=item bneg() - - $x->bneg(); - -Negate the number, e.g. change the sign between '+' and '-', or between '+inf' -and '-inf', respectively. Does nothing for NaN or zero. - -=item babs() - - $x->babs(); - -Set the number to its absolute value, e.g. change the sign from '-' to '+' -and from '-inf' to '+inf', respectively. Does nothing for NaN or positive -numbers. - -=item bsgn() - - $x->bsgn(); - -Signum function. Set the number to -1, 0, or 1, depending on whether the -number is negative, zero, or positive, respectively. Does not modify NaNs. - -=item bnorm() - - $x->bnorm(); # normalize (no-op) - -=item bnot() - - $x->bnot(); - -Two's complement (bitwise not). This is equivalent to - - $x->binc()->bneg(); - -but faster. - -=item binc() - - $x->binc(); # increment x by 1 - -=item bdec() - - $x->bdec(); # decrement x by 1 - -=item badd() - - $x->badd($y); # addition (add $y to $x) - -=item bsub() - - $x->bsub($y); # subtraction (subtract $y from $x) - -=item bmul() - - $x->bmul($y); # multiplication (multiply $x by $y) - -=item bmuladd() - - $x->bmuladd($y,$z); - -Multiply $x by $y, and then add $z to the result, - -This method was added in v1.87 of Math::BigInt (June 2007). - -=item bdiv() - - $x->bdiv($y); # divide, set $x to quotient - # return (quo,rem) or quo if scalar - -=item bmod() - - $x->bmod($y); # modulus (x % y) - -=item bmodinv() - - $x->bmodinv($mod); # modular multiplicative inverse - -Returns the multiplicative inverse of C<$x> modulo C<$mod>. If - - $y = $x -> copy() -> bmodinv($mod) - -then C<$y> is the number closest to zero, and with the same sign as C<$mod>, -satisfying - - ($x * $y) % $mod = 1 % $mod - -If C<$x> and C<$y> are non-zero, they must be relative primes, i.e., -C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative -inverse exists. - -=item bmodpow() - - $num->bmodpow($exp,$mod); # modular exponentiation - # ($num**$exp % $mod) - -Returns the value of C<$num> taken to the power C<$exp> in the modulus -C<$mod> using binary exponentiation. C<bmodpow> is far superior to -writing - - $num ** $exp % $mod - -because it is much faster - it reduces internal variables into -the modulus whenever possible, so it operates on smaller numbers. - -C<bmodpow> also supports negative exponents. - - bmodpow($num, -1, $mod) - -is exactly equivalent to - - bmodinv($num, $mod) - -=item bpow() - - $x->bpow($y); # power of arguments (x ** y) - -=item blog() - - $x->blog($base, $accuracy); # logarithm of x to the base $base - -If C<$base> is not defined, Euler's number (e) is used: - - print $x->blog(undef, 100); # log(x) to 100 digits - -=item bexp() - - $x->bexp($accuracy); # calculate e ** X - -Calculates the expression C<e ** $x> where C<e> is Euler's number. - -This method was added in v1.82 of Math::BigInt (April 2007). - -See also L</blog()>. - -=item bnok() - - $x->bnok($y); # x over y (binomial coefficient n over k) - -Calculates the binomial coefficient n over k, also called the "choose" -function. The result is equivalent to: - - ( n ) n! - | - | = ------- - ( k ) k!(n-k)! - -This method was added in v1.84 of Math::BigInt (April 2007). - -=item bpi() - - print Math::BigInt->bpi(100), "\n"; # 3 - -Returns PI truncated to an integer, with the argument being ignored. This means -under BigInt this always returns C<3>. - -If upgrading is in effect, returns PI, rounded to N digits with the -current rounding mode: - - use Math::BigFloat; - use Math::BigInt upgrade => Math::BigFloat; - print Math::BigInt->bpi(3), "\n"; # 3.14 - print Math::BigInt->bpi(100), "\n"; # 3.1415.... - -This method was added in v1.87 of Math::BigInt (June 2007). - -=item bcos() - - my $x = Math::BigInt->new(1); - print $x->bcos(100), "\n"; - -Calculate the cosinus of $x, modifying $x in place. - -In BigInt, unless upgrading is in effect, the result is truncated to an -integer. - -This method was added in v1.87 of Math::BigInt (June 2007). - -=item bsin() - - my $x = Math::BigInt->new(1); - print $x->bsin(100), "\n"; - -Calculate the sinus of $x, modifying $x in place. - -In BigInt, unless upgrading is in effect, the result is truncated to an -integer. - -This method was added in v1.87 of Math::BigInt (June 2007). - -=item batan2() - - my $x = Math::BigInt->new(1); - my $y = Math::BigInt->new(1); - print $y->batan2($x), "\n"; - -Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place. - -In BigInt, unless upgrading is in effect, the result is truncated to an -integer. - -This method was added in v1.87 of Math::BigInt (June 2007). - -=item batan() - - my $x = Math::BigFloat->new(0.5); - print $x->batan(100), "\n"; - -Calculate the arcus tangens of $x, modifying $x in place. - -In BigInt, unless upgrading is in effect, the result is truncated to an -integer. - -This method was added in v1.87 of Math::BigInt (June 2007). - -=item blsft() - - $x->blsft($y); # left shift in base 2 - $x->blsft($y,$n); # left shift, in base $n (like 10) - -=item brsft() - - $x->brsft($y); # right shift in base 2 - $x->brsft($y,$n); # right shift, in base $n (like 10) - -=item band() - - $x->band($y); # bitwise and - -=item bior() - - $x->bior($y); # bitwise inclusive or - -=item bxor() - - $x->bxor($y); # bitwise exclusive or - -=item bnot() - - $x->bnot(); # bitwise not (two's complement) - -=item bsqrt() - - $x->bsqrt(); # calculate square-root - -=item broot() - - $x->broot($N); - -Calculates the N'th root of C<$x>. - -=item bfac() - - $x->bfac(); # factorial of $x (1*2*3*4*..$x) - -=item round() - - $x->round($A,$P,$round_mode); - -Round $x to accuracy C<$A> or precision C<$P> using the round mode -C<$round_mode>. - -=item bround() - - $x->bround($N); # accuracy: preserve $N digits - -=item bfround() - - $x->bfround($N); - -If N is > 0, rounds to the Nth digit from the left. If N < 0, rounds to -the Nth digit after the dot. Since BigInts are integers, the case N < 0 -is a no-op for them. - -Examples: - - Input N Result - =================================================== - 123456.123456 3 123500 - 123456.123456 2 123450 - 123456.123456 -2 123456.12 - 123456.123456 -3 123456.123 - -=item bfloor() - - $x->bfloor(); - -Round $x towards minus infinity (i.e., set $x to the largest integer less than -or equal to $x). This is a no-op in BigInt, but changes $x in BigFloat, if $x -is not an integer. - -=item bceil() - - $x->bceil(); - -Round $x towards plus infinity (i.e., set $x to the smallest integer greater -than or equal to $x). This is a no-op in BigInt, but changes $x in BigFloat, if -$x is not an integer. - -=item bint() - - $x->bint(); - -Round $x towards zero. This is a no-op in BigInt, but changes $x in BigFloat, -if $x is not an integer. - -=item bgcd() - - bgcd(@values); # greatest common divisor (no OO style) - -=item blcm() - - blcm(@values); # lowest common multiple (no OO style) - -=item length() - - $x->length(); - ($xl,$fl) = $x->length(); - -Returns the number of digits in the decimal representation of the number. -In list context, returns the length of the integer and fraction part. For -BigInt's, the length of the fraction part will always be 0. - -=item exponent() - - $x->exponent(); - -Return the exponent of $x as BigInt. - -=item mantissa() - - $x->mantissa(); - -Return the signed mantissa of $x as BigInt. - -=item parts() - - $x->parts(); # return (mantissa,exponent) as BigInt - -=item copy() - - $x->copy(); # make a true copy of $x (unlike $y = $x;) - -=item as_int()/as_number() - - $x->as_int(); - -Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as -C<copy()>. - -C<as_number()> is an alias to this method. C<as_number> was introduced in -v1.22, while C<as_int()> was only introduced in v1.68. - -=item bstr() - - $x->bstr(); - -Returns a normalized string representation of C<$x>. - -=item bsstr() - - $x->bsstr(); # normalized string in scientific notation - -=item as_hex() - - $x->as_hex(); # as signed hexadecimal string with prefixed 0x - -=item as_bin() - - $x->as_bin(); # as signed binary string with prefixed 0b - -=item as_oct() - - $x->as_oct(); # as signed octal string with prefixed 0 - -=item numify() - - print $x->numify(); - -This returns a normal Perl scalar from $x. It is used automatically -whenever a scalar is needed, for instance in array index operations. - -This loses precision, to avoid this use L<as_int()|/"as_int()/as_number()"> instead. - -=item modify() - - $x->modify('bpowd'); - -This method returns 0 if the object can be modified with the given -operation, or 1 if not. - -This is used for instance by L<Math::BigInt::Constant>. - -=item upgrade()/downgrade() - -Set/get the class for downgrade/upgrade operations. Thuis is used -for instance by L<bignum>. The defaults are '', thus the following -operation will create a BigInt, not a BigFloat: - - my $i = Math::BigInt->new(123); - my $f = Math::BigFloat->new('123.1'); - - print $i + $f,"\n"; # print 246 - -=item div_scale() - -Set/get the number of digits for the default precision in divide -operations. - -=item round_mode() - -Set/get the current round mode. - -=back - -=head1 ACCURACY and PRECISION - -Since version v1.33, Math::BigInt and Math::BigFloat have full support for -accuracy and precision based rounding, both automatically after every -operation, as well as manually. - -This section describes the accuracy/precision handling in Math::Big* as it -used to be and as it is now, complete with an explanation of all terms and -abbreviations. - -Not yet implemented things (but with correct description) are marked with '!', -things that need to be answered are marked with '?'. - -In the next paragraph follows a short description of terms used here (because -these may differ from terms used by others people or documentation). - -During the rest of this document, the shortcuts A (for accuracy), P (for -precision), F (fallback) and R (rounding mode) will be used. - -=head2 Precision P - -A fixed number of digits before (positive) or after (negative) -the decimal point. For example, 123.45 has a precision of -2. 0 means an -integer like 123 (or 120). A precision of 2 means two digits to the left -of the decimal point are zero, so 123 with P = 1 becomes 120. Note that -numbers with zeros before the decimal point may have different precisions, -because 1200 can have p = 0, 1 or 2 (depending on what the initial value -was). It could also have p < 0, when the digits after the decimal point -are zero. - -The string output (of floating point numbers) will be padded with zeros: - - Initial value P A Result String - ------------------------------------------------------------ - 1234.01 -3 1000 1000 - 1234 -2 1200 1200 - 1234.5 -1 1230 1230 - 1234.001 1 1234 1234.0 - 1234.01 0 1234 1234 - 1234.01 2 1234.01 1234.01 - 1234.01 5 1234.01 1234.01000 - -For BigInts, no padding occurs. - -=head2 Accuracy A - -Number of significant digits. Leading zeros are not counted. A -number may have an accuracy greater than the non-zero digits -when there are zeros in it or trailing zeros. For example, 123.456 has -A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3. - -The string output (of floating point numbers) will be padded with zeros: - - Initial value P A Result String - ------------------------------------------------------------ - 1234.01 3 1230 1230 - 1234.01 6 1234.01 1234.01 - 1234.1 8 1234.1 1234.1000 - -For BigInts, no padding occurs. - -=head2 Fallback F - -When both A and P are undefined, this is used as a fallback accuracy when -dividing numbers. - -=head2 Rounding mode R - -When rounding a number, different 'styles' or 'kinds' -of rounding are possible. (Note that random rounding, as in -Math::Round, is not implemented.) - -=over - -=item 'trunc' - -truncation invariably removes all digits following the -rounding place, replacing them with zeros. Thus, 987.65 rounded -to tens (P=1) becomes 980, and rounded to the fourth sigdig -becomes 987.6 (A=4). 123.456 rounded to the second place after the -decimal point (P=-2) becomes 123.46. - -All other implemented styles of rounding attempt to round to the -"nearest digit." If the digit D immediately to the right of the -rounding place (skipping the decimal point) is greater than 5, the -number is incremented at the rounding place (possibly causing a -cascade of incrementation): e.g. when rounding to units, 0.9 rounds -to 1, and -19.9 rounds to -20. If D < 5, the number is similarly -truncated at the rounding place: e.g. when rounding to units, 0.4 -rounds to 0, and -19.4 rounds to -19. - -However the results of other styles of rounding differ if the -digit immediately to the right of the rounding place (skipping the -decimal point) is 5 and if there are no digits, or no digits other -than 0, after that 5. In such cases: - -=item 'even' - -rounds the digit at the rounding place to 0, 2, 4, 6, or 8 -if it is not already. E.g., when rounding to the first sigdig, 0.45 -becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5. - -=item 'odd' - -rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if -it is not already. E.g., when rounding to the first sigdig, 0.45 -becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6. - -=item '+inf' - -round to plus infinity, i.e. always round up. E.g., when -rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5, -and 0.4501 also becomes 0.5. - -=item '-inf' - -round to minus infinity, i.e. always round down. E.g., when -rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6, -but 0.4501 becomes 0.5. - -=item 'zero' - -round to zero, i.e. positive numbers down, negative ones up. -E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55 -becomes -0.5, but 0.4501 becomes 0.5. - -=item 'common' - -round up if the digit immediately to the right of the rounding place -is 5 or greater, otherwise round down. E.g., 0.15 becomes 0.2 and -0.149 becomes 0.1. - -=back - -The handling of A & P in MBI/MBF (the old core code shipped with Perl -versions <= 5.7.2) is like this: - -=over - -=item Precision - - * ffround($p) is able to round to $p number of digits after the decimal - point - * otherwise P is unused - -=item Accuracy (significant digits) - - * fround($a) rounds to $a significant digits - * only fdiv() and fsqrt() take A as (optional) parameter - + other operations simply create the same number (fneg etc), or - more (fmul) of digits - + rounding/truncating is only done when explicitly calling one - of fround or ffround, and never for BigInt (not implemented) - * fsqrt() simply hands its accuracy argument over to fdiv. - * the documentation and the comment in the code indicate two - different ways on how fdiv() determines the maximum number - of digits it should calculate, and the actual code does yet - another thing - POD: - max($Math::BigFloat::div_scale,length(dividend)+length(divisor)) - Comment: - result has at most max(scale, length(dividend), length(divisor)) digits - Actual code: - scale = max(scale, length(dividend)-1,length(divisor)-1); - scale += length(divisor) - length(dividend); - So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10 - So for lx = 3, ly = 9, scale = 10, scale will actually be 16 - (10+9-3). Actually, the 'difference' added to the scale is cal- - culated from the number of "significant digits" in dividend and - divisor, which is derived by looking at the length of the man- - tissa. Which is wrong, since it includes the + sign (oops) and - actually gets 2 for '+100' and 4 for '+101'. Oops again. Thus - 124/3 with div_scale=1 will get you '41.3' based on the strange - assumption that 124 has 3 significant digits, while 120/7 will - get you '17', not '17.1' since 120 is thought to have 2 signif- - icant digits. The rounding after the division then uses the - remainder and $y to determine whether it must round up or down. - ? I have no idea which is the right way. That's why I used a slightly more - ? simple scheme and tweaked the few failing testcases to match it. - -=back - -This is how it works now: - -=over - -=item Setting/Accessing - - * You can set the A global via Math::BigInt->accuracy() or - Math::BigFloat->accuracy() or whatever class you are using. - * You can also set P globally by using Math::SomeClass->precision() - likewise. - * Globals are classwide, and not inherited by subclasses. - * to undefine A, use Math::SomeCLass->accuracy(undef); - * to undefine P, use Math::SomeClass->precision(undef); - * Setting Math::SomeClass->accuracy() clears automatically - Math::SomeClass->precision(), and vice versa. - * To be valid, A must be > 0, P can have any value. - * If P is negative, this means round to the P'th place to the right of the - decimal point; positive values mean to the left of the decimal point. - P of 0 means round to integer. - * to find out the current global A, use Math::SomeClass->accuracy() - * to find out the current global P, use Math::SomeClass->precision() - * use $x->accuracy() respective $x->precision() for the local - setting of $x. - * Please note that $x->accuracy() respective $x->precision() - return eventually defined global A or P, when $x's A or P is not - set. - -=item Creating numbers - - * When you create a number, you can give the desired A or P via: - $x = Math::BigInt->new($number,$A,$P); - * Only one of A or P can be defined, otherwise the result is NaN - * If no A or P is give ($x = Math::BigInt->new($number) form), then the - globals (if set) will be used. Thus changing the global defaults later on - will not change the A or P of previously created numbers (i.e., A and P of - $x will be what was in effect when $x was created) - * If given undef for A and P, NO rounding will occur, and the globals will - NOT be used. This is used by subclasses to create numbers without - suffering rounding in the parent. Thus a subclass is able to have its own - globals enforced upon creation of a number by using - $x = Math::BigInt->new($number,undef,undef): - - use Math::BigInt::SomeSubclass; - use Math::BigInt; - - Math::BigInt->accuracy(2); - Math::BigInt::SomeSubClass->accuracy(3); - $x = Math::BigInt::SomeSubClass->new(1234); - - $x is now 1230, and not 1200. A subclass might choose to implement - this otherwise, e.g. falling back to the parent's A and P. - -=item Usage - - * If A or P are enabled/defined, they are used to round the result of each - operation according to the rules below - * Negative P is ignored in Math::BigInt, since BigInts never have digits - after the decimal point - * Math::BigFloat uses Math::BigInt internally, but setting A or P inside - Math::BigInt as globals does not tamper with the parts of a BigFloat. - A flag is used to mark all Math::BigFloat numbers as 'never round'. - -=item Precedence - - * It only makes sense that a number has only one of A or P at a time. - If you set either A or P on one object, or globally, the other one will - be automatically cleared. - * If two objects are involved in an operation, and one of them has A in - effect, and the other P, this results in an error (NaN). - * A takes precedence over P (Hint: A comes before P). - If neither of them is defined, nothing is used, i.e. the result will have - as many digits as it can (with an exception for fdiv/fsqrt) and will not - be rounded. - * There is another setting for fdiv() (and thus for fsqrt()). If neither of - A or P is defined, fdiv() will use a fallback (F) of $div_scale digits. - If either the dividend's or the divisor's mantissa has more digits than - the value of F, the higher value will be used instead of F. - This is to limit the digits (A) of the result (just consider what would - happen with unlimited A and P in the case of 1/3 :-) - * fdiv will calculate (at least) 4 more digits than required (determined by - A, P or F), and, if F is not used, round the result - (this will still fail in the case of a result like 0.12345000000001 with A - or P of 5, but this can not be helped - or can it?) - * Thus you can have the math done by on Math::Big* class in two modi: - + never round (this is the default): - This is done by setting A and P to undef. No math operation - will round the result, with fdiv() and fsqrt() as exceptions to guard - against overflows. You must explicitly call bround(), bfround() or - round() (the latter with parameters). - Note: Once you have rounded a number, the settings will 'stick' on it - and 'infect' all other numbers engaged in math operations with it, since - local settings have the highest precedence. So, to get SaferRound[tm], - use a copy() before rounding like this: - - $x = Math::BigFloat->new(12.34); - $y = Math::BigFloat->new(98.76); - $z = $x * $y; # 1218.6984 - print $x->copy()->fround(3); # 12.3 (but A is now 3!) - $z = $x * $y; # still 1218.6984, without - # copy would have been 1210! - - + round after each op: - After each single operation (except for testing like is_zero()), the - method round() is called and the result is rounded appropriately. By - setting proper values for A and P, you can have all-the-same-A or - all-the-same-P modes. For example, Math::Currency might set A to undef, - and P to -2, globally. - - ?Maybe an extra option that forbids local A & P settings would be in order, - ?so that intermediate rounding does not 'poison' further math? - -=item Overriding globals - - * you will be able to give A, P and R as an argument to all the calculation - routines; the second parameter is A, the third one is P, and the fourth is - R (shift right by one for binary operations like badd). P is used only if - the first parameter (A) is undefined. These three parameters override the - globals in the order detailed as follows, i.e. the first defined value - wins: - (local: per object, global: global default, parameter: argument to sub) - + parameter A - + parameter P - + local A (if defined on both of the operands: smaller one is taken) - + local P (if defined on both of the operands: bigger one is taken) - + global A - + global P - + global F - * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two - arguments (A and P) instead of one - -=item Local settings - - * You can set A or P locally by using $x->accuracy() or - $x->precision() - and thus force different A and P for different objects/numbers. - * Setting A or P this way immediately rounds $x to the new value. - * $x->accuracy() clears $x->precision(), and vice versa. - -=item Rounding - - * the rounding routines will use the respective global or local settings. - fround()/bround() is for accuracy rounding, while ffround()/bfround() - is for precision - * the two rounding functions take as the second parameter one of the - following rounding modes (R): - 'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common' - * you can set/get the global R by using Math::SomeClass->round_mode() - or by setting $Math::SomeClass::round_mode - * after each operation, $result->round() is called, and the result may - eventually be rounded (that is, if A or P were set either locally, - globally or as parameter to the operation) - * to manually round a number, call $x->round($A,$P,$round_mode); - this will round the number by using the appropriate rounding function - and then normalize it. - * rounding modifies the local settings of the number: - - $x = Math::BigFloat->new(123.456); - $x->accuracy(5); - $x->bround(4); - - Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy() - will be 4 from now on. - -=item Default values - - * R: 'even' - * F: 40 - * A: undef - * P: undef - -=item Remarks - - * The defaults are set up so that the new code gives the same results as - the old code (except in a few cases on fdiv): - + Both A and P are undefined and thus will not be used for rounding - after each operation. - + round() is thus a no-op, unless given extra parameters A and P - -=back - -=head1 Infinity and Not a Number - -While BigInt has extensive handling of inf and NaN, certain quirks remain. - -=over - -=item oct()/hex() - -These perl routines currently (as of Perl v.5.8.6) cannot handle passed -inf. - - te@linux:~> perl -wle 'print 2 ** 3333' - inf - te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333' - 1 - te@linux:~> perl -wle 'print oct(2 ** 3333)' - 0 - te@linux:~> perl -wle 'print hex(2 ** 3333)' - Illegal hexadecimal digit 'i' ignored at -e line 1. - 0 - -The same problems occur if you pass them Math::BigInt->binf() objects. Since -overloading these routines is not possible, this cannot be fixed from BigInt. - -=item ==, !=, <, >, <=, >= with NaNs - -BigInt's bcmp() routine currently returns undef to signal that a NaN was -involved in a comparison. However, the overload code turns that into -either 1 or '' and thus operations like C<< NaN != NaN >> might return -wrong values. - -=item log(-inf) - -C<< log(-inf) >> is highly weird. Since log(-x)=pi*i+log(x), then -log(-inf)=pi*i+inf. However, since the imaginary part is finite, the real -infinity "overshadows" it, so the number might as well just be infinity. -However, the result is a complex number, and since BigInt/BigFloat can only -have real numbers as results, the result is NaN. - -=item exp(), cos(), sin(), atan2() - -These all might have problems handling infinity right. - -=back - -=head1 INTERNALS - -The actual numbers are stored as unsigned big integers (with separate sign). - -You should neither care about nor depend on the internal representation; it -might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >> -instead relying on the internal representation. - -=head2 MATH LIBRARY - -Math with the numbers is done (by default) by a module called -C<Math::BigInt::Calc>. This is equivalent to saying: - - use Math::BigInt try => 'Calc'; - -You can change this backend library by using: - - use Math::BigInt try => 'GMP'; - -B<Note>: General purpose packages should not be explicit about the library -to use; let the script author decide which is best. - -If your script works with huge numbers and Calc is too slow for them, -you can also for the loading of one of these libraries and if none -of them can be used, the code will die: - - use Math::BigInt only => 'GMP,Pari'; - -The following would first try to find Math::BigInt::Foo, then -Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc: - - use Math::BigInt try => 'Foo,Math::BigInt::Bar'; - -The library that is loaded last will be used. Note that this can be -overwritten at any time by loading a different library, and numbers -constructed with different libraries cannot be used in math operations -together. - -=head3 What library to use? - -B<Note>: General purpose packages should not be explicit about the library -to use; let the script author decide which is best. - -L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big -numbers much faster than Calc, however it is slower when dealing with very -small numbers (less than about 20 digits) and when converting very large -numbers to decimal (for instance for printing, rounding, calculating their -length in decimal etc). - -So please select carefully what library you want to use. - -Different low-level libraries use different formats to store the numbers. -However, you should B<NOT> depend on the number having a specific format -internally. - -See the respective math library module documentation for further details. - -=head2 SIGN - -The sign is either '+', '-', 'NaN', '+inf' or '-inf'. - -A sign of 'NaN' is used to represent the result when input arguments are not -numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively -minus infinity. You will get '+inf' when dividing a positive number by 0, and -'-inf' when dividing any negative number by 0. - -=head2 mantissa(), exponent() and parts() - -C<mantissa()> and C<exponent()> return the said parts of the BigInt such -that: - - $m = $x->mantissa(); - $e = $x->exponent(); - $y = $m * ( 10 ** $e ); - print "ok\n" if $x == $y; - -C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them -in one go. Both the returned mantissa and exponent have a sign. - -Currently, for BigInts C<$e> is always 0, except +inf and -inf, where it is -C<+inf>; and for NaN, where it is C<NaN>; and for C<$x == 0>, where it is C<1> -(to be compatible with Math::BigFloat's internal representation of a zero as -C<0E1>). - -C<$m> is currently just a copy of the original number. The relation between -C<$e> and C<$m> will stay always the same, though their real values might -change. - -=head1 EXAMPLES - - use Math::BigInt; - - sub bigint { Math::BigInt->new(shift); } - - $x = Math::BigInt->bstr("1234") # string "1234" - $x = "$x"; # same as bstr() - $x = Math::BigInt->bneg("1234"); # BigInt "-1234" - $x = Math::BigInt->babs("-12345"); # BigInt "12345" - $x = Math::BigInt->bnorm("-0.00"); # BigInt "0" - $x = bigint(1) + bigint(2); # BigInt "3" - $x = bigint(1) + "2"; # ditto (auto-BigIntify of "2") - $x = bigint(1); # BigInt "1" - $x = $x + 5 / 2; # BigInt "3" - $x = $x ** 3; # BigInt "27" - $x *= 2; # BigInt "54" - $x = Math::BigInt->new(0); # BigInt "0" - $x--; # BigInt "-1" - $x = Math::BigInt->badd(4,5) # BigInt "9" - print $x->bsstr(); # 9e+0 - -Examples for rounding: - - use Math::BigFloat; - use Test; - - $x = Math::BigFloat->new(123.4567); - $y = Math::BigFloat->new(123.456789); - Math::BigFloat->accuracy(4); # no more A than 4 - - ok ($x->copy()->fround(),123.4); # even rounding - print $x->copy()->fround(),"\n"; # 123.4 - Math::BigFloat->round_mode('odd'); # round to odd - print $x->copy()->fround(),"\n"; # 123.5 - Math::BigFloat->accuracy(5); # no more A than 5 - Math::BigFloat->round_mode('odd'); # round to odd - print $x->copy()->fround(),"\n"; # 123.46 - $y = $x->copy()->fround(4),"\n"; # A = 4: 123.4 - print "$y, ",$y->accuracy(),"\n"; # 123.4, 4 - - Math::BigFloat->accuracy(undef); # A not important now - Math::BigFloat->precision(2); # P important - print $x->copy()->bnorm(),"\n"; # 123.46 - print $x->copy()->fround(),"\n"; # 123.46 - -Examples for converting: - - my $x = Math::BigInt->new('0b1'.'01' x 123); - print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n"; - -=head1 Autocreating constants - -After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal -and binary constants in the given scope are converted to C<Math::BigInt>. -This conversion happens at compile time. - -In particular, - - perl -MMath::BigInt=:constant -e 'print 2**100,"\n"' - -prints the integer value of C<2**100>. Note that without conversion of -constants the expression 2**100 will be calculated as perl scalar. - -Please note that strings and floating point constants are not affected, -so that - - use Math::BigInt qw/:constant/; - - $x = 1234567890123456789012345678901234567890 - + 123456789123456789; - $y = '1234567890123456789012345678901234567890' - + '123456789123456789'; - -do not work. You need an explicit Math::BigInt->new() around one of the -operands. You should also quote large constants to protect loss of precision: - - use Math::BigInt; - - $x = Math::BigInt->new('1234567889123456789123456789123456789'); - -Without the quotes Perl would convert the large number to a floating point -constant at compile time and then hand the result to BigInt, which results in -an truncated result or a NaN. - -This also applies to integers that look like floating point constants: - - use Math::BigInt ':constant'; - - print ref(123e2),"\n"; - print ref(123.2e2),"\n"; - -will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat> -to get this to work. - -=head1 PERFORMANCE - -Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x -must be made in the second case. For long numbers, the copy can eat up to 20% -of the work (in the case of addition/subtraction, less for -multiplication/division). If $y is very small compared to $x, the form -$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes -more time then the actual addition. - -With a technique called copy-on-write, the cost of copying with overload could -be minimized or even completely avoided. A test implementation of COW did show -performance gains for overloaded math, but introduced a performance loss due -to a constant overhead for all other operations. So Math::BigInt does currently -not COW. - -The rewritten version of this module (vs. v0.01) is slower on certain -operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it -does now more work and handles much more cases. The time spent in these -operations is usually gained in the other math operations so that code on -the average should get (much) faster. If they don't, please contact the author. - -Some operations may be slower for small numbers, but are significantly faster -for big numbers. Other operations are now constant (O(1), like C<bneg()>, -C<babs()> etc), instead of O(N) and thus nearly always take much less time. -These optimizations were done on purpose. - -If you find the Calc module to slow, try to install any of the replacement -modules and see if they help you. - -=head2 Alternative math libraries - -You can use an alternative library to drive Math::BigInt. See the section -L</MATH LIBRARY> for more information. - -For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>. - -=head1 SUBCLASSING - -=head2 Subclassing Math::BigInt - -The basic design of Math::BigInt allows simple subclasses with very little -work, as long as a few simple rules are followed: - -=over - -=item * - -The public API must remain consistent, i.e. if a sub-class is overloading -addition, the sub-class must use the same name, in this case badd(). The -reason for this is that Math::BigInt is optimized to call the object methods -directly. - -=item * - -The private object hash keys like C<< $x->{sign} >> may not be changed, but -additional keys can be added, like C<< $x->{_custom} >>. - -=item * - -Accessor functions are available for all existing object hash keys and should -be used instead of directly accessing the internal hash keys. The reason for -this is that Math::BigInt itself has a pluggable interface which permits it -to support different storage methods. - -=back - -More complex sub-classes may have to replicate more of the logic internal of -Math::BigInt if they need to change more basic behaviors. A subclass that -needs to merely change the output only needs to overload C<bstr()>. - -All other object methods and overloaded functions can be directly inherited -from the parent class. - -At the very minimum, any subclass will need to provide its own C<new()> and can -store additional hash keys in the object. There are also some package globals -that must be defined, e.g.: - - # Globals - $accuracy = undef; - $precision = -2; # round to 2 decimal places - $round_mode = 'even'; - $div_scale = 40; - -Additionally, you might want to provide the following two globals to allow -auto-upgrading and auto-downgrading to work correctly: - - $upgrade = undef; - $downgrade = undef; - -This allows Math::BigInt to correctly retrieve package globals from the -subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or -t/Math/BigFloat/SubClass.pm completely functional subclass examples. - -Don't forget to - - use overload; - -in your subclass to automatically inherit the overloading from the parent. If -you like, you can change part of the overloading, look at Math::String for an -example. - -=head1 UPGRADING - -When used like this: - - use Math::BigInt upgrade => 'Foo::Bar'; - -certain operations will 'upgrade' their calculation and thus the result to -the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat: - - use Math::BigInt upgrade => 'Math::BigFloat'; - -As a shortcut, you can use the module L<bignum>: - - use bignum; - -Also good for one-liners: - - perl -Mbignum -le 'print 2 ** 255' - -This makes it possible to mix arguments of different classes (as in 2.5 + 2) -as well es preserve accuracy (as in sqrt(3)). - -Beware: This feature is not fully implemented yet. - -=head2 Auto-upgrade - -The following methods upgrade themselves unconditionally; that is if upgrade -is in effect, they will always hand up their work: - -=over - -=item bsqrt() - -=item div() - -=item blog() - -=item bexp() - -=back - -Beware: This list is not complete. - -All other methods upgrade themselves only when one (or all) of their -arguments are of the class mentioned in $upgrade (This might change in later -versions to a more sophisticated scheme): - -=head1 EXPORTS - -C<Math::BigInt> exports nothing by default, but can export the following methods: - - bgcd - blcm - -=head1 CAVEATS - -Some things might not work as you expect them. Below is documented what is -known to be troublesome: - -=over - -=item bstr(), bsstr() and 'cmp' - -Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now -drop the leading '+'. The old code would return '+3', the new returns '3'. -This is to be consistent with Perl and to make C<cmp> (especially with -overloading) to work as you expect. It also solves problems with C<Test.pm>, -because its C<ok()> uses 'eq' internally. - -Mark Biggar said, when asked about to drop the '+' altogether, or make only -C<cmp> work: - - I agree (with the first alternative), don't add the '+' on positive - numbers. It's not as important anymore with the new internal - form for numbers. It made doing things like abs and neg easier, - but those have to be done differently now anyway. - -So, the following examples will now work all as expected: - - use Test; - BEGIN { plan tests => 1 } - use Math::BigInt; - - my $x = new Math::BigInt 3*3; - my $y = new Math::BigInt 3*3; - - ok ($x,3*3); - print "$x eq 9" if $x eq $y; - print "$x eq 9" if $x eq '9'; - print "$x eq 9" if $x eq 3*3; - -Additionally, the following still works: - - print "$x == 9" if $x == $y; - print "$x == 9" if $x == 9; - print "$x == 9" if $x == 3*3; - -There is now a C<bsstr()> method to get the string in scientific notation aka -C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr() -for comparison, but Perl will represent some numbers as 100 and others -as 1e+308. If in doubt, convert both arguments to Math::BigInt before -comparing them as strings: - - use Test; - BEGIN { plan tests => 3 } - use Math::BigInt; - - $x = Math::BigInt->new('1e56'); $y = 1e56; - ok ($x,$y); # will fail - ok ($x->bsstr(),$y); # okay - $y = Math::BigInt->new($y); - ok ($x,$y); # okay - -Alternatively, simply use C<< <=> >> for comparisons, this will get it -always right. There is not yet a way to get a number automatically represented -as a string that matches exactly the way Perl represents it. - -See also the section about L<Infinity and Not a Number> for problems in -comparing NaNs. - -=item int() - -C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a -Perl scalar: - - $x = Math::BigInt->new(123); - $y = int($x); # BigInt 123 - $x = Math::BigFloat->new(123.45); - $y = int($x); # BigInt 123 - -In all Perl versions you can use C<as_number()> or C<as_int> for the same -effect: - - $x = Math::BigFloat->new(123.45); - $y = $x->as_number(); # BigInt 123 - $y = $x->as_int(); # ditto - -This also works for other subclasses, like Math::String. - -If you want a real Perl scalar, use C<numify()>: - - $y = $x->numify(); # 123 as scalar - -This is seldom necessary, though, because this is done automatically, like -when you access an array: - - $z = $array[$x]; # does work automatically - -=item length() - -The following will probably not do what you expect: - - $c = Math::BigInt->new(123); - print $c->length(),"\n"; # prints 30 - -It prints both the number of digits in the number and in the fraction part -since print calls C<length()> in list context. Use something like: - - print scalar $c->length(),"\n"; # prints 3 - -=item bdiv() - -The following will probably not do what you expect: - - print $c->bdiv(10000),"\n"; - -It prints both quotient and remainder since print calls C<bdiv()> in list -context. Also, C<bdiv()> will modify $c, so be careful. You probably want -to use - - print $c / 10000,"\n"; - -or, if you want to modify $c instead, - - print scalar $c->bdiv(10000),"\n"; - -The quotient is always the greatest integer less than or equal to the -real-valued quotient of the two operands, and the remainder (when it is -non-zero) always has the same sign as the second operand; so, for -example, - - 1 / 4 => ( 0, 1) - 1 / -4 => (-1,-3) - -3 / 4 => (-1, 1) - -3 / -4 => ( 0,-3) - -11 / 2 => (-5,1) - 11 /-2 => (-5,-1) - -As a consequence, the behavior of the operator % agrees with the -behavior of Perl's built-in % operator (as documented in the perlop -manpage), and the equation - - $x == ($x / $y) * $y + ($x % $y) - -holds true for any $x and $y, which justifies calling the two return -values of bdiv() the quotient and remainder. The only exception to this rule -are when $y == 0 and $x is negative, then the remainder will also be -negative. See below under "infinity handling" for the reasoning behind this. - -Perl's 'use integer;' changes the behaviour of % and / for scalars, but will -not change BigInt's way to do things. This is because under 'use integer' Perl -will do what the underlying C thinks is right and this is different for each -system. If you need BigInt's behaving exactly like Perl's 'use integer', bug -the author to implement it ;) - -=item infinity handling - -Here are some examples that explain the reasons why certain results occur while -handling infinity: - -The following table shows the result of the division and the remainder, so that -the equation above holds true. Some "ordinary" cases are strewn in to show more -clearly the reasoning: - - A / B = C, R so that C * B + R = A - ========================================================= - 5 / 8 = 0, 5 0 * 8 + 5 = 5 - 0 / 8 = 0, 0 0 * 8 + 0 = 0 - 0 / inf = 0, 0 0 * inf + 0 = 0 - 0 /-inf = 0, 0 0 * -inf + 0 = 0 - 5 / inf = 0, 5 0 * inf + 5 = 5 - 5 /-inf = 0, 5 0 * -inf + 5 = 5 - -5/ inf = 0, -5 0 * inf + -5 = -5 - -5/-inf = 0, -5 0 * -inf + -5 = -5 - inf/ 5 = inf, 0 inf * 5 + 0 = inf - -inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf - inf/ -5 = -inf, 0 -inf * -5 + 0 = inf - -inf/ -5 = inf, 0 inf * -5 + 0 = -inf - 5/ 5 = 1, 0 1 * 5 + 0 = 5 - -5/ -5 = 1, 0 1 * -5 + 0 = -5 - inf/ inf = 1, 0 1 * inf + 0 = inf - -inf/-inf = 1, 0 1 * -inf + 0 = -inf - inf/-inf = -1, 0 -1 * -inf + 0 = inf - -inf/ inf = -1, 0 1 * -inf + 0 = -inf - 8/ 0 = inf, 8 inf * 0 + 8 = 8 - inf/ 0 = inf, inf inf * 0 + inf = inf - 0/ 0 = NaN - -These cases below violate the "remainder has the sign of the second of the two -arguments", since they wouldn't match up otherwise. - - A / B = C, R so that C * B + R = A - ======================================================== - -inf/ 0 = -inf, -inf -inf * 0 + inf = -inf - -8/ 0 = -inf, -8 -inf * 0 + 8 = -8 - -=item Modifying and = - -Beware of: - - $x = Math::BigFloat->new(5); - $y = $x; - -It will not do what you think, e.g. making a copy of $x. Instead it just makes -a second reference to the B<same> object and stores it in $y. Thus anything -that modifies $x (except overloaded operators) will modify $y, and vice versa. -Or in other words, C<=> is only safe if you modify your BigInts only via -overloaded math. As soon as you use a method call it breaks: - - $x->bmul(2); - print "$x, $y\n"; # prints '10, 10' - -If you want a true copy of $x, use: - - $y = $x->copy(); - -You can also chain the calls like this, this will make first a copy and then -multiply it by 2: - - $y = $x->copy()->bmul(2); - -See also the documentation for overload.pm regarding C<=>. - -=item bpow - -C<bpow()> (and the rounding functions) now modifies the first argument and -returns it, unlike the old code which left it alone and only returned the -result. This is to be consistent with C<badd()> etc. The first three will -modify $x, the last one won't: - - print bpow($x,$i),"\n"; # modify $x - print $x->bpow($i),"\n"; # ditto - print $x **= $i,"\n"; # the same - print $x ** $i,"\n"; # leave $x alone - -The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though. - -=item Overloading -$x - -The following: - - $x = -$x; - -is slower than - - $x->bneg(); - -since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant -needs to preserve $x since it does not know that it later will get overwritten. -This makes a copy of $x and takes O(N), but $x->bneg() is O(1). - -=item Mixing different object types - -In Perl you will get a floating point value if you do one of the following: - - $float = 5.0 + 2; - $float = 2 + 5.0; - $float = 5 / 2; - -With overloaded math, only the first two variants will result in a BigFloat: - - use Math::BigInt; - use Math::BigFloat; - - $mbf = Math::BigFloat->new(5); - $mbi2 = Math::BigInteger->new(5); - $mbi = Math::BigInteger->new(2); - - # what actually gets called: - $float = $mbf + $mbi; # $mbf->badd() - $float = $mbf / $mbi; # $mbf->bdiv() - $integer = $mbi + $mbf; # $mbi->badd() - $integer = $mbi2 / $mbi; # $mbi2->bdiv() - $integer = $mbi2 / $mbf; # $mbi2->bdiv() - -This is because math with overloaded operators follows the first (dominating) -operand, and the operation of that is called and returns thus the result. So, -Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether -the result should be a Math::BigFloat or the second operant is one. - -To get a Math::BigFloat you either need to call the operation manually, -make sure the operands are already of the proper type or casted to that type -via Math::BigFloat->new(): - - $float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5 - -Beware of simple "casting" the entire expression, this would only convert -the already computed result: - - $float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong! - -Beware also of the order of more complicated expressions like: - - $integer = ($mbi2 + $mbi) / $mbf; # int / float => int - $integer = $mbi2 / Math::BigFloat->new($mbi); # ditto - -If in doubt, break the expression into simpler terms, or cast all operands -to the desired resulting type. - -Scalar values are a bit different, since: - - $float = 2 + $mbf; - $float = $mbf + 2; - -will both result in the proper type due to the way the overloaded math works. - -This section also applies to other overloaded math packages, like Math::String. - -One solution to you problem might be autoupgrading|upgrading. See the -pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this. - -=item bsqrt() - -C<bsqrt()> works only good if the result is a big integer, e.g. the square -root of 144 is 12, but from 12 the square root is 3, regardless of rounding -mode. The reason is that the result is always truncated to an integer. - -If you want a better approximation of the square root, then use: - - $x = Math::BigFloat->new(12); - Math::BigFloat->precision(0); - Math::BigFloat->round_mode('even'); - print $x->copy->bsqrt(),"\n"; # 4 - - Math::BigFloat->precision(2); - print $x->bsqrt(),"\n"; # 3.46 - print $x->bsqrt(3),"\n"; # 3.464 - -=item brsft() - -For negative numbers in base see also L<brsft|/brsft()>. - -=back - -=head1 LICENSE - -This program is free software; you may redistribute it and/or modify it under -the same terms as Perl itself. - -=head1 SEE ALSO - -L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as -L<Math::BigInt::Pari> and L<Math::BigInt::GMP>. - -The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest -because they solve the autoupgrading/downgrading issue, at least partly. - -The package at -L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains -more documentation including a full version history, testcases, empty -subclass files and benchmarks. - -=head1 AUTHORS - -Original code by Mark Biggar, overloaded interface by Ilya Zakharevich. -Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2006 -and still at it in 2007. - -Many people contributed in one or more ways to the final beast, see the file -CREDITS for an (incomplete) list. If you miss your name, please drop me a -mail. Thank you! - -=cut |