diff options
author | 2016-11-04 17:33:19 +0000 | |
---|---|---|
committer | 2016-11-04 17:33:19 +0000 | |
commit | 19f6c0ece67680c8969559b5d74802ca21c65d0c (patch) | |
tree | 53e4962ec2069f0efb745d17282646f56310f3b9 /lib/libcrypto/ec/asm | |
parent | Replace all uses of magic numbers when operating on OPENSSL_ia32_P[] by (diff) | |
download | wireguard-openbsd-19f6c0ece67680c8969559b5d74802ca21c65d0c.tar.xz wireguard-openbsd-19f6c0ece67680c8969559b5d74802ca21c65d0c.zip |
Add assembler code for the nist 256-bit GFp curve, written initially by
Intel. Obtained from BoringSSL, with some integration work borrowed from
OpenSSL 1.0.2; assembler code for arm and sparc64 borrowed from OpenSSL 1.1.0.
None of this code is enabled in libcrypto yet.
ok beck@ jsing@
Diffstat (limited to 'lib/libcrypto/ec/asm')
-rw-r--r-- | lib/libcrypto/ec/asm/ecp_nistz256-armv4.pl | 1733 | ||||
-rw-r--r-- | lib/libcrypto/ec/asm/ecp_nistz256-sparcv9.pl | 2890 | ||||
-rw-r--r-- | lib/libcrypto/ec/asm/ecp_nistz256-x86.pl | 1740 | ||||
-rw-r--r-- | lib/libcrypto/ec/asm/ecp_nistz256-x86_64.pl | 1971 |
4 files changed, 8334 insertions, 0 deletions
diff --git a/lib/libcrypto/ec/asm/ecp_nistz256-armv4.pl b/lib/libcrypto/ec/asm/ecp_nistz256-armv4.pl new file mode 100644 index 00000000000..f3205d673a7 --- /dev/null +++ b/lib/libcrypto/ec/asm/ecp_nistz256-armv4.pl @@ -0,0 +1,1733 @@ +#! /usr/bin/env perl +# $OpenBSD: ecp_nistz256-armv4.pl,v 1.1 2016/11/04 17:33:19 miod Exp $ +# +# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + + +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# ECP_NISTZ256 module for ARMv4. +# +# October 2014. +# +# Original ECP_NISTZ256 submission targeting x86_64 is detailed in +# http://eprint.iacr.org/2013/816. In the process of adaptation +# original .c module was made 32-bit savvy in order to make this +# implementation possible. +# +# with/without -DECP_NISTZ256_ASM +# Cortex-A8 +53-170% +# Cortex-A9 +76-205% +# Cortex-A15 +100-316% +# Snapdragon S4 +66-187% +# +# Ranges denote minimum and maximum improvement coefficients depending +# on benchmark. Lower coefficients are for ECDSA sign, server-side +# operation. Keep in mind that +200% means 3x improvement. + +$flavour = shift; +if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } +else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } + +if ($flavour && $flavour ne "void") { + $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; + ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or + ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or + die "can't locate arm-xlate.pl"; + + open STDOUT,"| \"$^X\" $xlate $flavour $output"; +} else { + open STDOUT,">$output"; +} + +$code.=<<___; +#include "arm_arch.h" + +.text +#if defined(__thumb2__) +.syntax unified +.thumb +#else +.code 32 +#endif +___ + +$code.=<<___; +.Lone: +.long 1,0,0,0,0,0,0,0 +.align 6 +___ + +######################################################################## +# common register layout, note that $t2 is link register, so that if +# internal subroutine uses $t2, then it has to offload lr... + +($r_ptr,$a_ptr,$b_ptr,$ff,$a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7,$t1,$t2)= + map("r$_",(0..12,14)); +($t0,$t3)=($ff,$a_ptr); + +$code.=<<___; +@ void ecp_nistz256_from_mont(BN_ULONG r0[8],const BN_ULONG r1[8]); +.globl ecp_nistz256_from_mont +.type ecp_nistz256_from_mont,%function +ecp_nistz256_from_mont: + adr $b_ptr,.Lone + b .Lecp_nistz256_mul_mont +.size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont + +@ void ecp_nistz256_mul_by_2(BN_ULONG r0[8],const BN_ULONG r1[8]); +.globl ecp_nistz256_mul_by_2 +.type ecp_nistz256_mul_by_2,%function +.align 4 +ecp_nistz256_mul_by_2: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_mul_by_2 +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 + +.type __ecp_nistz256_mul_by_2,%function +.align 4 +__ecp_nistz256_mul_by_2: + ldr $a0,[$a_ptr,#0] + ldr $a1,[$a_ptr,#4] + ldr $a2,[$a_ptr,#8] + adds $a0,$a0,$a0 @ a[0:7]+=a[0:7], i.e. add with itself + ldr $a3,[$a_ptr,#12] + adcs $a1,$a1,$a1 + ldr $a4,[$a_ptr,#16] + adcs $a2,$a2,$a2 + ldr $a5,[$a_ptr,#20] + adcs $a3,$a3,$a3 + ldr $a6,[$a_ptr,#24] + adcs $a4,$a4,$a4 + ldr $a7,[$a_ptr,#28] + adcs $a5,$a5,$a5 + adcs $a6,$a6,$a6 + mov $ff,#0 + adcs $a7,$a7,$a7 + adc $ff,$ff,#0 + + b .Lreduce_by_sub +.size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2 + +@ void ecp_nistz256_add(BN_ULONG r0[8],const BN_ULONG r1[8], +@ const BN_ULONG r2[8]); +.globl ecp_nistz256_add +.type ecp_nistz256_add,%function +.align 4 +ecp_nistz256_add: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_add +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_add,.-ecp_nistz256_add + +.type __ecp_nistz256_add,%function +.align 4 +__ecp_nistz256_add: + str lr,[sp,#-4]! @ push lr + + ldr $a0,[$a_ptr,#0] + ldr $a1,[$a_ptr,#4] + ldr $a2,[$a_ptr,#8] + ldr $a3,[$a_ptr,#12] + ldr $a4,[$a_ptr,#16] + ldr $t0,[$b_ptr,#0] + ldr $a5,[$a_ptr,#20] + ldr $t1,[$b_ptr,#4] + ldr $a6,[$a_ptr,#24] + ldr $t2,[$b_ptr,#8] + ldr $a7,[$a_ptr,#28] + ldr $t3,[$b_ptr,#12] + adds $a0,$a0,$t0 + ldr $t0,[$b_ptr,#16] + adcs $a1,$a1,$t1 + ldr $t1,[$b_ptr,#20] + adcs $a2,$a2,$t2 + ldr $t2,[$b_ptr,#24] + adcs $a3,$a3,$t3 + ldr $t3,[$b_ptr,#28] + adcs $a4,$a4,$t0 + adcs $a5,$a5,$t1 + adcs $a6,$a6,$t2 + mov $ff,#0 + adcs $a7,$a7,$t3 + adc $ff,$ff,#0 + ldr lr,[sp],#4 @ pop lr + +.Lreduce_by_sub: + + @ if a+b >= modulus, subtract modulus. + @ + @ But since comparison implies subtraction, we subtract + @ modulus and then add it back if subraction borrowed. + + subs $a0,$a0,#-1 + sbcs $a1,$a1,#-1 + sbcs $a2,$a2,#-1 + sbcs $a3,$a3,#0 + sbcs $a4,$a4,#0 + sbcs $a5,$a5,#0 + sbcs $a6,$a6,#1 + sbcs $a7,$a7,#-1 + sbc $ff,$ff,#0 + + @ Note that because mod has special form, i.e. consists of + @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by + @ using value of borrow as a whole or extracting single bit. + @ Follow $ff register... + + adds $a0,$a0,$ff @ add synthesized modulus + adcs $a1,$a1,$ff + str $a0,[$r_ptr,#0] + adcs $a2,$a2,$ff + str $a1,[$r_ptr,#4] + adcs $a3,$a3,#0 + str $a2,[$r_ptr,#8] + adcs $a4,$a4,#0 + str $a3,[$r_ptr,#12] + adcs $a5,$a5,#0 + str $a4,[$r_ptr,#16] + adcs $a6,$a6,$ff,lsr#31 + str $a5,[$r_ptr,#20] + adcs $a7,$a7,$ff + str $a6,[$r_ptr,#24] + str $a7,[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_add,.-__ecp_nistz256_add + +@ void ecp_nistz256_mul_by_3(BN_ULONG r0[8],const BN_ULONG r1[8]); +.globl ecp_nistz256_mul_by_3 +.type ecp_nistz256_mul_by_3,%function +.align 4 +ecp_nistz256_mul_by_3: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_mul_by_3 +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 + +.type __ecp_nistz256_mul_by_3,%function +.align 4 +__ecp_nistz256_mul_by_3: + str lr,[sp,#-4]! @ push lr + + @ As multiplication by 3 is performed as 2*n+n, below are inline + @ copies of __ecp_nistz256_mul_by_2 and __ecp_nistz256_add, see + @ corresponding subroutines for details. + + ldr $a0,[$a_ptr,#0] + ldr $a1,[$a_ptr,#4] + ldr $a2,[$a_ptr,#8] + adds $a0,$a0,$a0 @ a[0:7]+=a[0:7] + ldr $a3,[$a_ptr,#12] + adcs $a1,$a1,$a1 + ldr $a4,[$a_ptr,#16] + adcs $a2,$a2,$a2 + ldr $a5,[$a_ptr,#20] + adcs $a3,$a3,$a3 + ldr $a6,[$a_ptr,#24] + adcs $a4,$a4,$a4 + ldr $a7,[$a_ptr,#28] + adcs $a5,$a5,$a5 + adcs $a6,$a6,$a6 + mov $ff,#0 + adcs $a7,$a7,$a7 + adc $ff,$ff,#0 + + subs $a0,$a0,#-1 @ .Lreduce_by_sub but without stores + sbcs $a1,$a1,#-1 + sbcs $a2,$a2,#-1 + sbcs $a3,$a3,#0 + sbcs $a4,$a4,#0 + sbcs $a5,$a5,#0 + sbcs $a6,$a6,#1 + sbcs $a7,$a7,#-1 + sbc $ff,$ff,#0 + + adds $a0,$a0,$ff @ add synthesized modulus + adcs $a1,$a1,$ff + adcs $a2,$a2,$ff + adcs $a3,$a3,#0 + adcs $a4,$a4,#0 + ldr $b_ptr,[$a_ptr,#0] + adcs $a5,$a5,#0 + ldr $t1,[$a_ptr,#4] + adcs $a6,$a6,$ff,lsr#31 + ldr $t2,[$a_ptr,#8] + adc $a7,$a7,$ff + + ldr $t0,[$a_ptr,#12] + adds $a0,$a0,$b_ptr @ 2*a[0:7]+=a[0:7] + ldr $b_ptr,[$a_ptr,#16] + adcs $a1,$a1,$t1 + ldr $t1,[$a_ptr,#20] + adcs $a2,$a2,$t2 + ldr $t2,[$a_ptr,#24] + adcs $a3,$a3,$t0 + ldr $t3,[$a_ptr,#28] + adcs $a4,$a4,$b_ptr + adcs $a5,$a5,$t1 + adcs $a6,$a6,$t2 + mov $ff,#0 + adcs $a7,$a7,$t3 + adc $ff,$ff,#0 + ldr lr,[sp],#4 @ pop lr + + b .Lreduce_by_sub +.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 + +@ void ecp_nistz256_div_by_2(BN_ULONG r0[8],const BN_ULONG r1[8]); +.globl ecp_nistz256_div_by_2 +.type ecp_nistz256_div_by_2,%function +.align 4 +ecp_nistz256_div_by_2: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_div_by_2 +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 + +.type __ecp_nistz256_div_by_2,%function +.align 4 +__ecp_nistz256_div_by_2: + @ ret = (a is odd ? a+mod : a) >> 1 + + ldr $a0,[$a_ptr,#0] + ldr $a1,[$a_ptr,#4] + ldr $a2,[$a_ptr,#8] + mov $ff,$a0,lsl#31 @ place least significant bit to most + @ significant position, now arithmetic + @ right shift by 31 will produce -1 or + @ 0, while logical right shift 1 or 0, + @ this is how modulus is conditionally + @ synthesized in this case... + ldr $a3,[$a_ptr,#12] + adds $a0,$a0,$ff,asr#31 + ldr $a4,[$a_ptr,#16] + adcs $a1,$a1,$ff,asr#31 + ldr $a5,[$a_ptr,#20] + adcs $a2,$a2,$ff,asr#31 + ldr $a6,[$a_ptr,#24] + adcs $a3,$a3,#0 + ldr $a7,[$a_ptr,#28] + adcs $a4,$a4,#0 + mov $a0,$a0,lsr#1 @ a[0:7]>>=1, we can start early + @ because it doesn't affect flags + adcs $a5,$a5,#0 + orr $a0,$a0,$a1,lsl#31 + adcs $a6,$a6,$ff,lsr#31 + mov $b_ptr,#0 + adcs $a7,$a7,$ff,asr#31 + mov $a1,$a1,lsr#1 + adc $b_ptr,$b_ptr,#0 @ top-most carry bit from addition + + orr $a1,$a1,$a2,lsl#31 + mov $a2,$a2,lsr#1 + str $a0,[$r_ptr,#0] + orr $a2,$a2,$a3,lsl#31 + mov $a3,$a3,lsr#1 + str $a1,[$r_ptr,#4] + orr $a3,$a3,$a4,lsl#31 + mov $a4,$a4,lsr#1 + str $a2,[$r_ptr,#8] + orr $a4,$a4,$a5,lsl#31 + mov $a5,$a5,lsr#1 + str $a3,[$r_ptr,#12] + orr $a5,$a5,$a6,lsl#31 + mov $a6,$a6,lsr#1 + str $a4,[$r_ptr,#16] + orr $a6,$a6,$a7,lsl#31 + mov $a7,$a7,lsr#1 + str $a5,[$r_ptr,#20] + orr $a7,$a7,$b_ptr,lsl#31 @ don't forget the top-most carry bit + str $a6,[$r_ptr,#24] + str $a7,[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 + +@ void ecp_nistz256_sub(BN_ULONG r0[8],const BN_ULONG r1[8], +@ const BN_ULONG r2[8]); +.globl ecp_nistz256_sub +.type ecp_nistz256_sub,%function +.align 4 +ecp_nistz256_sub: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_sub +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_sub,.-ecp_nistz256_sub + +.type __ecp_nistz256_sub,%function +.align 4 +__ecp_nistz256_sub: + str lr,[sp,#-4]! @ push lr + + ldr $a0,[$a_ptr,#0] + ldr $a1,[$a_ptr,#4] + ldr $a2,[$a_ptr,#8] + ldr $a3,[$a_ptr,#12] + ldr $a4,[$a_ptr,#16] + ldr $t0,[$b_ptr,#0] + ldr $a5,[$a_ptr,#20] + ldr $t1,[$b_ptr,#4] + ldr $a6,[$a_ptr,#24] + ldr $t2,[$b_ptr,#8] + ldr $a7,[$a_ptr,#28] + ldr $t3,[$b_ptr,#12] + subs $a0,$a0,$t0 + ldr $t0,[$b_ptr,#16] + sbcs $a1,$a1,$t1 + ldr $t1,[$b_ptr,#20] + sbcs $a2,$a2,$t2 + ldr $t2,[$b_ptr,#24] + sbcs $a3,$a3,$t3 + ldr $t3,[$b_ptr,#28] + sbcs $a4,$a4,$t0 + sbcs $a5,$a5,$t1 + sbcs $a6,$a6,$t2 + sbcs $a7,$a7,$t3 + sbc $ff,$ff,$ff @ broadcast borrow bit + ldr lr,[sp],#4 @ pop lr + +.Lreduce_by_add: + + @ if a-b borrows, add modulus. + @ + @ Note that because mod has special form, i.e. consists of + @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by + @ broadcasting borrow bit to a register, $ff, and using it as + @ a whole or extracting single bit. + + adds $a0,$a0,$ff @ add synthesized modulus + adcs $a1,$a1,$ff + str $a0,[$r_ptr,#0] + adcs $a2,$a2,$ff + str $a1,[$r_ptr,#4] + adcs $a3,$a3,#0 + str $a2,[$r_ptr,#8] + adcs $a4,$a4,#0 + str $a3,[$r_ptr,#12] + adcs $a5,$a5,#0 + str $a4,[$r_ptr,#16] + adcs $a6,$a6,$ff,lsr#31 + str $a5,[$r_ptr,#20] + adcs $a7,$a7,$ff + str $a6,[$r_ptr,#24] + str $a7,[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_sub,.-__ecp_nistz256_sub + +@ void ecp_nistz256_neg(BN_ULONG r0[8],const BN_ULONG r1[8]); +.globl ecp_nistz256_neg +.type ecp_nistz256_neg,%function +.align 4 +ecp_nistz256_neg: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_neg +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_neg,.-ecp_nistz256_neg + +.type __ecp_nistz256_neg,%function +.align 4 +__ecp_nistz256_neg: + ldr $a0,[$a_ptr,#0] + eor $ff,$ff,$ff + ldr $a1,[$a_ptr,#4] + ldr $a2,[$a_ptr,#8] + subs $a0,$ff,$a0 + ldr $a3,[$a_ptr,#12] + sbcs $a1,$ff,$a1 + ldr $a4,[$a_ptr,#16] + sbcs $a2,$ff,$a2 + ldr $a5,[$a_ptr,#20] + sbcs $a3,$ff,$a3 + ldr $a6,[$a_ptr,#24] + sbcs $a4,$ff,$a4 + ldr $a7,[$a_ptr,#28] + sbcs $a5,$ff,$a5 + sbcs $a6,$ff,$a6 + sbcs $a7,$ff,$a7 + sbc $ff,$ff,$ff + + b .Lreduce_by_add +.size __ecp_nistz256_neg,.-__ecp_nistz256_neg +___ +{ +my @acc=map("r$_",(3..11)); +my ($t0,$t1,$bj,$t2,$t3)=map("r$_",(0,1,2,12,14)); + +$code.=<<___; +@ void ecp_nistz256_sqr_mont(BN_ULONG r0[8],const BN_ULONG r1[8]); +.globl ecp_nistz256_sqr_mont +.type ecp_nistz256_sqr_mont,%function +.align 4 +ecp_nistz256_sqr_mont: + mov $b_ptr,$a_ptr + b .Lecp_nistz256_mul_mont +.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont + +@ void ecp_nistz256_mul_mont(BN_ULONG r0[8],const BN_ULONG r1[8], +@ const BN_ULONG r2[8]); +.globl ecp_nistz256_mul_mont +.type ecp_nistz256_mul_mont,%function +.align 4 +ecp_nistz256_mul_mont: +.Lecp_nistz256_mul_mont: + stmdb sp!,{r4-r12,lr} + bl __ecp_nistz256_mul_mont +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont + +.type __ecp_nistz256_mul_mont,%function +.align 4 +__ecp_nistz256_mul_mont: + stmdb sp!,{r0-r2,lr} @ make a copy of arguments too + + ldr $bj,[$b_ptr,#0] @ b[0] + ldmia $a_ptr,{@acc[1]-@acc[8]} + + umull @acc[0],$t3,@acc[1],$bj @ r[0]=a[0]*b[0] + stmdb sp!,{$acc[1]-@acc[8]} @ copy a[0-7] to stack, so + @ that it can be addressed + @ without spending register + @ on address + umull @acc[1],$t0,@acc[2],$bj @ r[1]=a[1]*b[0] + umull @acc[2],$t1,@acc[3],$bj + adds @acc[1],@acc[1],$t3 @ accumulate high part of mult + umull @acc[3],$t2,@acc[4],$bj + adcs @acc[2],@acc[2],$t0 + umull @acc[4],$t3,@acc[5],$bj + adcs @acc[3],@acc[3],$t1 + umull @acc[5],$t0,@acc[6],$bj + adcs @acc[4],@acc[4],$t2 + umull @acc[6],$t1,@acc[7],$bj + adcs @acc[5],@acc[5],$t3 + umull @acc[7],$t2,@acc[8],$bj + adcs @acc[6],@acc[6],$t0 + adcs @acc[7],@acc[7],$t1 + eor $t3,$t3,$t3 @ first overflow bit is zero + adc @acc[8],$t2,#0 +___ +for(my $i=1;$i<8;$i++) { +my $t4=@acc[0]; + + # Reduction iteration is normally performed by accumulating + # result of multiplication of modulus by "magic" digit [and + # omitting least significant word, which is guaranteed to + # be 0], but thanks to special form of modulus and "magic" + # digit being equal to least significant word, it can be + # performed with additions and subtractions alone. Indeed: + # + # ffff.0001.0000.0000.0000.ffff.ffff.ffff + # * abcd + # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we + # rewrite above as: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 + # - abcd.0000.0000.0000.0000.0000.0000.abcd + # + # or marking redundant operations: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- + # + abcd.0000.abcd.0000.0000.abcd.----.----.---- + # - abcd.----.----.----.----.----.----.---- + +$code.=<<___; + @ multiplication-less reduction $i + adds @acc[3],@acc[3],@acc[0] @ r[3]+=r[0] + ldr $bj,[sp,#40] @ restore b_ptr + adcs @acc[4],@acc[4],#0 @ r[4]+=0 + adcs @acc[5],@acc[5],#0 @ r[5]+=0 + adcs @acc[6],@acc[6],@acc[0] @ r[6]+=r[0] + ldr $t1,[sp,#0] @ load a[0] + adcs @acc[7],@acc[7],#0 @ r[7]+=0 + ldr $bj,[$bj,#4*$i] @ load b[i] + adcs @acc[8],@acc[8],@acc[0] @ r[8]+=r[0] + eor $t0,$t0,$t0 + adc $t3,$t3,#0 @ overflow bit + subs @acc[7],@acc[7],@acc[0] @ r[7]-=r[0] + ldr $t2,[sp,#4] @ a[1] + sbcs @acc[8],@acc[8],#0 @ r[8]-=0 + umlal @acc[1],$t0,$t1,$bj @ "r[0]"+=a[0]*b[i] + eor $t1,$t1,$t1 + sbc @acc[0],$t3,#0 @ overflow bit, keep in mind + @ that netto result is + @ addition of a value which + @ makes underflow impossible + + ldr $t3,[sp,#8] @ a[2] + umlal @acc[2],$t1,$t2,$bj @ "r[1]"+=a[1]*b[i] + str @acc[0],[sp,#36] @ temporarily offload overflow + eor $t2,$t2,$t2 + ldr $t4,[sp,#12] @ a[3], $t4 is alias @acc[0] + umlal @acc[3],$t2,$t3,$bj @ "r[2]"+=a[2]*b[i] + eor $t3,$t3,$t3 + adds @acc[2],@acc[2],$t0 @ accumulate high part of mult + ldr $t0,[sp,#16] @ a[4] + umlal @acc[4],$t3,$t4,$bj @ "r[3]"+=a[3]*b[i] + eor $t4,$t4,$t4 + adcs @acc[3],@acc[3],$t1 + ldr $t1,[sp,#20] @ a[5] + umlal @acc[5],$t4,$t0,$bj @ "r[4]"+=a[4]*b[i] + eor $t0,$t0,$t0 + adcs @acc[4],@acc[4],$t2 + ldr $t2,[sp,#24] @ a[6] + umlal @acc[6],$t0,$t1,$bj @ "r[5]"+=a[5]*b[i] + eor $t1,$t1,$t1 + adcs @acc[5],@acc[5],$t3 + ldr $t3,[sp,#28] @ a[7] + umlal @acc[7],$t1,$t2,$bj @ "r[6]"+=a[6]*b[i] + eor $t2,$t2,$t2 + adcs @acc[6],@acc[6],$t4 + ldr @acc[0],[sp,#36] @ restore overflow bit + umlal @acc[8],$t2,$t3,$bj @ "r[7]"+=a[7]*b[i] + eor $t3,$t3,$t3 + adcs @acc[7],@acc[7],$t0 + adcs @acc[8],@acc[8],$t1 + adcs @acc[0],$acc[0],$t2 + adc $t3,$t3,#0 @ new overflow bit +___ + push(@acc,shift(@acc)); # rotate registers, so that + # "r[i]" becomes r[i] +} +$code.=<<___; + @ last multiplication-less reduction + adds @acc[3],@acc[3],@acc[0] + ldr $r_ptr,[sp,#32] @ restore r_ptr + adcs @acc[4],@acc[4],#0 + adcs @acc[5],@acc[5],#0 + adcs @acc[6],@acc[6],@acc[0] + adcs @acc[7],@acc[7],#0 + adcs @acc[8],@acc[8],@acc[0] + adc $t3,$t3,#0 + subs @acc[7],@acc[7],@acc[0] + sbcs @acc[8],@acc[8],#0 + sbc @acc[0],$t3,#0 @ overflow bit + + @ Final step is "if result > mod, subtract mod", but we do it + @ "other way around", namely subtract modulus from result + @ and if it borrowed, add modulus back. + + adds @acc[1],@acc[1],#1 @ subs @acc[1],@acc[1],#-1 + adcs @acc[2],@acc[2],#0 @ sbcs @acc[2],@acc[2],#-1 + adcs @acc[3],@acc[3],#0 @ sbcs @acc[3],@acc[3],#-1 + sbcs @acc[4],@acc[4],#0 + sbcs @acc[5],@acc[5],#0 + sbcs @acc[6],@acc[6],#0 + sbcs @acc[7],@acc[7],#1 + adcs @acc[8],@acc[8],#0 @ sbcs @acc[8],@acc[8],#-1 + ldr lr,[sp,#44] @ restore lr + sbc @acc[0],@acc[0],#0 @ broadcast borrow bit + add sp,sp,#48 + + @ Note that because mod has special form, i.e. consists of + @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by + @ broadcasting borrow bit to a register, @acc[0], and using it as + @ a whole or extracting single bit. + + adds @acc[1],@acc[1],@acc[0] @ add modulus or zero + adcs @acc[2],@acc[2],@acc[0] + str @acc[1],[$r_ptr,#0] + adcs @acc[3],@acc[3],@acc[0] + str @acc[2],[$r_ptr,#4] + adcs @acc[4],@acc[4],#0 + str @acc[3],[$r_ptr,#8] + adcs @acc[5],@acc[5],#0 + str @acc[4],[$r_ptr,#12] + adcs @acc[6],@acc[6],#0 + str @acc[5],[$r_ptr,#16] + adcs @acc[7],@acc[7],@acc[0],lsr#31 + str @acc[6],[$r_ptr,#20] + adc @acc[8],@acc[8],@acc[0] + str @acc[7],[$r_ptr,#24] + str @acc[8],[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont +___ +} + +{ +my ($out,$inp,$index,$mask)=map("r$_",(0..3)); +$code.=<<___; +@ void ecp_nistz256_select_w5(P256_POINT *r0,const void *r1, +@ int r2); +.globl ecp_nistz256_select_w5 +.type ecp_nistz256_select_w5,%function +.align 5 +ecp_nistz256_select_w5: + stmdb sp!,{r4-r11} + + cmp $index,#0 + mov $mask,#0 +#ifdef __thumb2__ + itt ne +#endif + subne $index,$index,#1 + movne $mask,#-1 + add $inp,$inp,$index,lsl#2 + + ldr r4,[$inp,#64*0] + ldr r5,[$inp,#64*1] + ldr r6,[$inp,#64*2] + and r4,r4,$mask + ldr r7,[$inp,#64*3] + and r5,r5,$mask + ldr r8,[$inp,#64*4] + and r6,r6,$mask + ldr r9,[$inp,#64*5] + and r7,r7,$mask + ldr r10,[$inp,#64*6] + and r8,r8,$mask + ldr r11,[$inp,#64*7] + add $inp,$inp,#64*8 + and r9,r9,$mask + and r10,r10,$mask + and r11,r11,$mask + stmia $out!,{r4-r11} @ X + + ldr r4,[$inp,#64*0] + ldr r5,[$inp,#64*1] + ldr r6,[$inp,#64*2] + and r4,r4,$mask + ldr r7,[$inp,#64*3] + and r5,r5,$mask + ldr r8,[$inp,#64*4] + and r6,r6,$mask + ldr r9,[$inp,#64*5] + and r7,r7,$mask + ldr r10,[$inp,#64*6] + and r8,r8,$mask + ldr r11,[$inp,#64*7] + add $inp,$inp,#64*8 + and r9,r9,$mask + and r10,r10,$mask + and r11,r11,$mask + stmia $out!,{r4-r11} @ Y + + ldr r4,[$inp,#64*0] + ldr r5,[$inp,#64*1] + ldr r6,[$inp,#64*2] + and r4,r4,$mask + ldr r7,[$inp,#64*3] + and r5,r5,$mask + ldr r8,[$inp,#64*4] + and r6,r6,$mask + ldr r9,[$inp,#64*5] + and r7,r7,$mask + ldr r10,[$inp,#64*6] + and r8,r8,$mask + ldr r11,[$inp,#64*7] + and r9,r9,$mask + and r10,r10,$mask + and r11,r11,$mask + stmia $out,{r4-r11} @ Z + + ldmia sp!,{r4-r11} +#if __ARM_ARCH__>=5 || defined(__thumb__) + bx lr +#else + mov pc,lr +#endif +.size ecp_nistz256_select_w5,.-ecp_nistz256_select_w5 + +@ void ecp_nistz256_select_w7(P256_POINT_AFFINE *r0,const void *r1, +@ int r2); +.globl ecp_nistz256_select_w7 +.type ecp_nistz256_select_w7,%function +.align 5 +ecp_nistz256_select_w7: + stmdb sp!,{r4-r7} + + cmp $index,#0 + mov $mask,#0 +#ifdef __thumb2__ + itt ne +#endif + subne $index,$index,#1 + movne $mask,#-1 + add $inp,$inp,$index + mov $index,#64/4 + nop +.Loop_select_w7: + ldrb r4,[$inp,#64*0] + subs $index,$index,#1 + ldrb r5,[$inp,#64*1] + ldrb r6,[$inp,#64*2] + ldrb r7,[$inp,#64*3] + add $inp,$inp,#64*4 + orr r4,r4,r5,lsl#8 + orr r4,r4,r6,lsl#16 + orr r4,r4,r7,lsl#24 + and r4,r4,$mask + str r4,[$out],#4 + bne .Loop_select_w7 + + ldmia sp!,{r4-r7} +#if __ARM_ARCH__>=5 || defined(__thumb__) + bx lr +#else + mov pc,lr +#endif +.size ecp_nistz256_select_w7,.-ecp_nistz256_select_w7 +___ +} +if (0) { +# In comparison to integer-only equivalent of below subroutine: +# +# Cortex-A8 +10% +# Cortex-A9 -10% +# Snapdragon S4 +5% +# +# As not all time is spent in multiplication, overall impact is deemed +# too low to care about. + +my ($A0,$A1,$A2,$A3,$Bi,$zero,$temp)=map("d$_",(0..7)); +my $mask="q4"; +my $mult="q5"; +my @AxB=map("q$_",(8..15)); + +my ($rptr,$aptr,$bptr,$toutptr)=map("r$_",(0..3)); + +$code.=<<___; +#if __ARM_ARCH__>=7 +.fpu neon + +.globl ecp_nistz256_mul_mont_neon +.type ecp_nistz256_mul_mont_neon,%function +.align 5 +ecp_nistz256_mul_mont_neon: + mov ip,sp + stmdb sp!,{r4-r9} + vstmdb sp!,{q4-q5} @ ABI specification says so + + sub $toutptr,sp,#40 + vld1.32 {${Bi}[0]},[$bptr,:32]! + veor $zero,$zero,$zero + vld1.32 {$A0-$A3}, [$aptr] @ can't specify :32 :-( + vzip.16 $Bi,$zero + mov sp,$toutptr @ alloca + vmov.i64 $mask,#0xffff + + vmull.u32 @AxB[0],$Bi,${A0}[0] + vmull.u32 @AxB[1],$Bi,${A0}[1] + vmull.u32 @AxB[2],$Bi,${A1}[0] + vmull.u32 @AxB[3],$Bi,${A1}[1] + vshr.u64 $temp,@AxB[0]#lo,#16 + vmull.u32 @AxB[4],$Bi,${A2}[0] + vadd.u64 @AxB[0]#hi,@AxB[0]#hi,$temp + vmull.u32 @AxB[5],$Bi,${A2}[1] + vshr.u64 $temp,@AxB[0]#hi,#16 @ upper 32 bits of a[0]*b[0] + vmull.u32 @AxB[6],$Bi,${A3}[0] + vand.u64 @AxB[0],@AxB[0],$mask @ lower 32 bits of a[0]*b[0] + vmull.u32 @AxB[7],$Bi,${A3}[1] +___ +for($i=1;$i<8;$i++) { +$code.=<<___; + vld1.32 {${Bi}[0]},[$bptr,:32]! + veor $zero,$zero,$zero + vadd.u64 @AxB[1]#lo,@AxB[1]#lo,$temp @ reduction + vshl.u64 $mult,@AxB[0],#32 + vadd.u64 @AxB[3],@AxB[3],@AxB[0] + vsub.u64 $mult,$mult,@AxB[0] + vzip.16 $Bi,$zero + vadd.u64 @AxB[6],@AxB[6],@AxB[0] + vadd.u64 @AxB[7],@AxB[7],$mult +___ + push(@AxB,shift(@AxB)); +$code.=<<___; + vmlal.u32 @AxB[0],$Bi,${A0}[0] + vmlal.u32 @AxB[1],$Bi,${A0}[1] + vmlal.u32 @AxB[2],$Bi,${A1}[0] + vmlal.u32 @AxB[3],$Bi,${A1}[1] + vshr.u64 $temp,@AxB[0]#lo,#16 + vmlal.u32 @AxB[4],$Bi,${A2}[0] + vadd.u64 @AxB[0]#hi,@AxB[0]#hi,$temp + vmlal.u32 @AxB[5],$Bi,${A2}[1] + vshr.u64 $temp,@AxB[0]#hi,#16 @ upper 33 bits of a[0]*b[i]+t[0] + vmlal.u32 @AxB[6],$Bi,${A3}[0] + vand.u64 @AxB[0],@AxB[0],$mask @ lower 32 bits of a[0]*b[0] + vmull.u32 @AxB[7],$Bi,${A3}[1] +___ +} +$code.=<<___; + vadd.u64 @AxB[1]#lo,@AxB[1]#lo,$temp @ last reduction + vshl.u64 $mult,@AxB[0],#32 + vadd.u64 @AxB[3],@AxB[3],@AxB[0] + vsub.u64 $mult,$mult,@AxB[0] + vadd.u64 @AxB[6],@AxB[6],@AxB[0] + vadd.u64 @AxB[7],@AxB[7],$mult + + vshr.u64 $temp,@AxB[1]#lo,#16 @ convert + vadd.u64 @AxB[1]#hi,@AxB[1]#hi,$temp + vshr.u64 $temp,@AxB[1]#hi,#16 + vzip.16 @AxB[1]#lo,@AxB[1]#hi +___ +foreach (2..7) { +$code.=<<___; + vadd.u64 @AxB[$_]#lo,@AxB[$_]#lo,$temp + vst1.32 {@AxB[$_-1]#lo[0]},[$toutptr,:32]! + vshr.u64 $temp,@AxB[$_]#lo,#16 + vadd.u64 @AxB[$_]#hi,@AxB[$_]#hi,$temp + vshr.u64 $temp,@AxB[$_]#hi,#16 + vzip.16 @AxB[$_]#lo,@AxB[$_]#hi +___ +} +$code.=<<___; + vst1.32 {@AxB[7]#lo[0]},[$toutptr,:32]! + vst1.32 {$temp},[$toutptr] @ upper 33 bits + + ldr r1,[sp,#0] + ldr r2,[sp,#4] + ldr r3,[sp,#8] + subs r1,r1,#-1 + ldr r4,[sp,#12] + sbcs r2,r2,#-1 + ldr r5,[sp,#16] + sbcs r3,r3,#-1 + ldr r6,[sp,#20] + sbcs r4,r4,#0 + ldr r7,[sp,#24] + sbcs r5,r5,#0 + ldr r8,[sp,#28] + sbcs r6,r6,#0 + ldr r9,[sp,#32] @ top-most bit + sbcs r7,r7,#1 + sub sp,ip,#40+16 + sbcs r8,r8,#-1 + sbc r9,r9,#0 + vldmia sp!,{q4-q5} + + adds r1,r1,r9 + adcs r2,r2,r9 + str r1,[$rptr,#0] + adcs r3,r3,r9 + str r2,[$rptr,#4] + adcs r4,r4,#0 + str r3,[$rptr,#8] + adcs r5,r5,#0 + str r4,[$rptr,#12] + adcs r6,r6,#0 + str r5,[$rptr,#16] + adcs r7,r7,r9,lsr#31 + str r6,[$rptr,#20] + adcs r8,r8,r9 + str r7,[$rptr,#24] + str r8,[$rptr,#28] + + ldmia sp!,{r4-r9} + bx lr +.size ecp_nistz256_mul_mont_neon,.-ecp_nistz256_mul_mont_neon +#endif +___ +} + +{{{ +######################################################################## +# Below $aN assignment matches order in which 256-bit result appears in +# register bank at return from __ecp_nistz256_mul_mont, so that we can +# skip over reloading it from memory. This means that below functions +# use custom calling sequence accepting 256-bit input in registers, +# output pointer in r0, $r_ptr, and optional pointer in r2, $b_ptr. +# +# See their "normal" counterparts for insights on calculations. + +my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7, + $t0,$t1,$t2,$t3)=map("r$_",(11,3..10,12,14,1)); +my $ff=$b_ptr; + +$code.=<<___; +.type __ecp_nistz256_sub_from,%function +.align 5 +__ecp_nistz256_sub_from: + str lr,[sp,#-4]! @ push lr + + ldr $t0,[$b_ptr,#0] + ldr $t1,[$b_ptr,#4] + ldr $t2,[$b_ptr,#8] + ldr $t3,[$b_ptr,#12] + subs $a0,$a0,$t0 + ldr $t0,[$b_ptr,#16] + sbcs $a1,$a1,$t1 + ldr $t1,[$b_ptr,#20] + sbcs $a2,$a2,$t2 + ldr $t2,[$b_ptr,#24] + sbcs $a3,$a3,$t3 + ldr $t3,[$b_ptr,#28] + sbcs $a4,$a4,$t0 + sbcs $a5,$a5,$t1 + sbcs $a6,$a6,$t2 + sbcs $a7,$a7,$t3 + sbc $ff,$ff,$ff @ broadcast borrow bit + ldr lr,[sp],#4 @ pop lr + + adds $a0,$a0,$ff @ add synthesized modulus + adcs $a1,$a1,$ff + str $a0,[$r_ptr,#0] + adcs $a2,$a2,$ff + str $a1,[$r_ptr,#4] + adcs $a3,$a3,#0 + str $a2,[$r_ptr,#8] + adcs $a4,$a4,#0 + str $a3,[$r_ptr,#12] + adcs $a5,$a5,#0 + str $a4,[$r_ptr,#16] + adcs $a6,$a6,$ff,lsr#31 + str $a5,[$r_ptr,#20] + adcs $a7,$a7,$ff + str $a6,[$r_ptr,#24] + str $a7,[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from + +.type __ecp_nistz256_sub_morf,%function +.align 5 +__ecp_nistz256_sub_morf: + str lr,[sp,#-4]! @ push lr + + ldr $t0,[$b_ptr,#0] + ldr $t1,[$b_ptr,#4] + ldr $t2,[$b_ptr,#8] + ldr $t3,[$b_ptr,#12] + subs $a0,$t0,$a0 + ldr $t0,[$b_ptr,#16] + sbcs $a1,$t1,$a1 + ldr $t1,[$b_ptr,#20] + sbcs $a2,$t2,$a2 + ldr $t2,[$b_ptr,#24] + sbcs $a3,$t3,$a3 + ldr $t3,[$b_ptr,#28] + sbcs $a4,$t0,$a4 + sbcs $a5,$t1,$a5 + sbcs $a6,$t2,$a6 + sbcs $a7,$t3,$a7 + sbc $ff,$ff,$ff @ broadcast borrow bit + ldr lr,[sp],#4 @ pop lr + + adds $a0,$a0,$ff @ add synthesized modulus + adcs $a1,$a1,$ff + str $a0,[$r_ptr,#0] + adcs $a2,$a2,$ff + str $a1,[$r_ptr,#4] + adcs $a3,$a3,#0 + str $a2,[$r_ptr,#8] + adcs $a4,$a4,#0 + str $a3,[$r_ptr,#12] + adcs $a5,$a5,#0 + str $a4,[$r_ptr,#16] + adcs $a6,$a6,$ff,lsr#31 + str $a5,[$r_ptr,#20] + adcs $a7,$a7,$ff + str $a6,[$r_ptr,#24] + str $a7,[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf + +.type __ecp_nistz256_add_self,%function +.align 4 +__ecp_nistz256_add_self: + adds $a0,$a0,$a0 @ a[0:7]+=a[0:7] + adcs $a1,$a1,$a1 + adcs $a2,$a2,$a2 + adcs $a3,$a3,$a3 + adcs $a4,$a4,$a4 + adcs $a5,$a5,$a5 + adcs $a6,$a6,$a6 + mov $ff,#0 + adcs $a7,$a7,$a7 + adc $ff,$ff,#0 + + @ if a+b >= modulus, subtract modulus. + @ + @ But since comparison implies subtraction, we subtract + @ modulus and then add it back if subraction borrowed. + + subs $a0,$a0,#-1 + sbcs $a1,$a1,#-1 + sbcs $a2,$a2,#-1 + sbcs $a3,$a3,#0 + sbcs $a4,$a4,#0 + sbcs $a5,$a5,#0 + sbcs $a6,$a6,#1 + sbcs $a7,$a7,#-1 + sbc $ff,$ff,#0 + + @ Note that because mod has special form, i.e. consists of + @ 0xffffffff, 1 and 0s, we can conditionally synthesize it by + @ using value of borrow as a whole or extracting single bit. + @ Follow $ff register... + + adds $a0,$a0,$ff @ add synthesized modulus + adcs $a1,$a1,$ff + str $a0,[$r_ptr,#0] + adcs $a2,$a2,$ff + str $a1,[$r_ptr,#4] + adcs $a3,$a3,#0 + str $a2,[$r_ptr,#8] + adcs $a4,$a4,#0 + str $a3,[$r_ptr,#12] + adcs $a5,$a5,#0 + str $a4,[$r_ptr,#16] + adcs $a6,$a6,$ff,lsr#31 + str $a5,[$r_ptr,#20] + adcs $a7,$a7,$ff + str $a6,[$r_ptr,#24] + str $a7,[$r_ptr,#28] + + mov pc,lr +.size __ecp_nistz256_add_self,.-__ecp_nistz256_add_self + +___ + +######################################################################## +# following subroutines are "literal" implementation of those found in +# ecp_nistz256.c +# +######################################################################## +# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); +# +{ +my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); +# above map() describes stack layout with 5 temporary +# 256-bit vectors on top. Then note that we push +# starting from r0, which means that we have copy of +# input arguments just below these temporary vectors. + +$code.=<<___; +.globl ecp_nistz256_point_double +.type ecp_nistz256_point_double,%function +.align 5 +ecp_nistz256_point_double: + stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional + sub sp,sp,#32*5 + +.Lpoint_double_shortcut: + add r3,sp,#$in_x + ldmia $a_ptr!,{r4-r11} @ copy in_x + stmia r3,{r4-r11} + + add $r_ptr,sp,#$S + bl __ecp_nistz256_mul_by_2 @ p256_mul_by_2(S, in_y); + + add $b_ptr,$a_ptr,#32 + add $a_ptr,$a_ptr,#32 + add $r_ptr,sp,#$Zsqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Zsqr, in_z); + + add $a_ptr,sp,#$S + add $b_ptr,sp,#$S + add $r_ptr,sp,#$S + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(S, S); + + ldr $b_ptr,[sp,#32*5+4] + add $a_ptr,$b_ptr,#32 + add $b_ptr,$b_ptr,#64 + add $r_ptr,sp,#$tmp0 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(tmp0, in_z, in_y); + + ldr $r_ptr,[sp,#32*5] + add $r_ptr,$r_ptr,#64 + bl __ecp_nistz256_add_self @ p256_mul_by_2(res_z, tmp0); + + add $a_ptr,sp,#$in_x + add $b_ptr,sp,#$Zsqr + add $r_ptr,sp,#$M + bl __ecp_nistz256_add @ p256_add(M, in_x, Zsqr); + + add $a_ptr,sp,#$in_x + add $b_ptr,sp,#$Zsqr + add $r_ptr,sp,#$Zsqr + bl __ecp_nistz256_sub @ p256_sub(Zsqr, in_x, Zsqr); + + add $a_ptr,sp,#$S + add $b_ptr,sp,#$S + add $r_ptr,sp,#$tmp0 + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(tmp0, S); + + add $a_ptr,sp,#$Zsqr + add $b_ptr,sp,#$M + add $r_ptr,sp,#$M + bl __ecp_nistz256_mul_mont @ p256_mul_mont(M, M, Zsqr); + + ldr $r_ptr,[sp,#32*5] + add $a_ptr,sp,#$tmp0 + add $r_ptr,$r_ptr,#32 + bl __ecp_nistz256_div_by_2 @ p256_div_by_2(res_y, tmp0); + + add $a_ptr,sp,#$M + add $r_ptr,sp,#$M + bl __ecp_nistz256_mul_by_3 @ p256_mul_by_3(M, M); + + add $a_ptr,sp,#$in_x + add $b_ptr,sp,#$S + add $r_ptr,sp,#$S + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, in_x); + + add $r_ptr,sp,#$tmp0 + bl __ecp_nistz256_add_self @ p256_mul_by_2(tmp0, S); + + ldr $r_ptr,[sp,#32*5] + add $a_ptr,sp,#$M + add $b_ptr,sp,#$M + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(res_x, M); + + add $b_ptr,sp,#$tmp0 + bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, tmp0); + + add $b_ptr,sp,#$S + add $r_ptr,sp,#$S + bl __ecp_nistz256_sub_morf @ p256_sub(S, S, res_x); + + add $a_ptr,sp,#$M + add $b_ptr,sp,#$S + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S, S, M); + + ldr $r_ptr,[sp,#32*5] + add $b_ptr,$r_ptr,#32 + add $r_ptr,$r_ptr,#32 + bl __ecp_nistz256_sub_from @ p256_sub(res_y, S, res_y); + + add sp,sp,#32*5+16 @ +16 means "skip even over saved r0-r3" +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_point_double,.-ecp_nistz256_point_double +___ +} + +######################################################################## +# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT *in2); +{ +my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y,$in2_z, + $H,$Hsqr,$R,$Rsqr,$Hcub, + $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); +my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); +# above map() describes stack layout with 18 temporary +# 256-bit vectors on top. Then note that we push +# starting from r0, which means that we have copy of +# input arguments just below these temporary vectors. +# We use three of them for !in1infty, !in2intfy and +# result of check for zero. + +$code.=<<___; +.globl ecp_nistz256_point_add +.type ecp_nistz256_point_add,%function +.align 5 +ecp_nistz256_point_add: + stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional + sub sp,sp,#32*18+16 + + ldmia $b_ptr!,{r4-r11} @ copy in2_x + add r3,sp,#$in2_x + stmia r3!,{r4-r11} + ldmia $b_ptr!,{r4-r11} @ copy in2_y + stmia r3!,{r4-r11} + ldmia $b_ptr,{r4-r11} @ copy in2_z + orr r12,r4,r5 + orr r12,r12,r6 + orr r12,r12,r7 + orr r12,r12,r8 + orr r12,r12,r9 + orr r12,r12,r10 + orr r12,r12,r11 + cmp r12,#0 +#ifdef __thumb2__ + it ne +#endif + movne r12,#-1 + stmia r3,{r4-r11} + str r12,[sp,#32*18+8] @ !in2infty + + ldmia $a_ptr!,{r4-r11} @ copy in1_x + add r3,sp,#$in1_x + stmia r3!,{r4-r11} + ldmia $a_ptr!,{r4-r11} @ copy in1_y + stmia r3!,{r4-r11} + ldmia $a_ptr,{r4-r11} @ copy in1_z + orr r12,r4,r5 + orr r12,r12,r6 + orr r12,r12,r7 + orr r12,r12,r8 + orr r12,r12,r9 + orr r12,r12,r10 + orr r12,r12,r11 + cmp r12,#0 +#ifdef __thumb2__ + it ne +#endif + movne r12,#-1 + stmia r3,{r4-r11} + str r12,[sp,#32*18+4] @ !in1infty + + add $a_ptr,sp,#$in2_z + add $b_ptr,sp,#$in2_z + add $r_ptr,sp,#$Z2sqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Z2sqr, in2_z); + + add $a_ptr,sp,#$in1_z + add $b_ptr,sp,#$in1_z + add $r_ptr,sp,#$Z1sqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Z1sqr, in1_z); + + add $a_ptr,sp,#$in2_z + add $b_ptr,sp,#$Z2sqr + add $r_ptr,sp,#$S1 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S1, Z2sqr, in2_z); + + add $a_ptr,sp,#$in1_z + add $b_ptr,sp,#$Z1sqr + add $r_ptr,sp,#$S2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, Z1sqr, in1_z); + + add $a_ptr,sp,#$in1_y + add $b_ptr,sp,#$S1 + add $r_ptr,sp,#$S1 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S1, S1, in1_y); + + add $a_ptr,sp,#$in2_y + add $b_ptr,sp,#$S2 + add $r_ptr,sp,#$S2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, S2, in2_y); + + add $b_ptr,sp,#$S1 + add $r_ptr,sp,#$R + bl __ecp_nistz256_sub_from @ p256_sub(R, S2, S1); + + orr $a0,$a0,$a1 @ see if result is zero + orr $a2,$a2,$a3 + orr $a4,$a4,$a5 + orr $a0,$a0,$a2 + orr $a4,$a4,$a6 + orr $a0,$a0,$a7 + add $a_ptr,sp,#$in1_x + orr $a0,$a0,$a4 + add $b_ptr,sp,#$Z2sqr + str $a0,[sp,#32*18+12] + + add $r_ptr,sp,#$U1 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(U1, in1_x, Z2sqr); + + add $a_ptr,sp,#$in2_x + add $b_ptr,sp,#$Z1sqr + add $r_ptr,sp,#$U2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, in2_x, Z1sqr); + + add $b_ptr,sp,#$U1 + add $r_ptr,sp,#$H + bl __ecp_nistz256_sub_from @ p256_sub(H, U2, U1); + + orr $a0,$a0,$a1 @ see if result is zero + orr $a2,$a2,$a3 + orr $a4,$a4,$a5 + orr $a0,$a0,$a2 + orr $a4,$a4,$a6 + orr $a0,$a0,$a7 + orrs $a0,$a0,$a4 + + bne .Ladd_proceed @ is_equal(U1,U2)? + + ldr $t0,[sp,#32*18+4] + ldr $t1,[sp,#32*18+8] + ldr $t2,[sp,#32*18+12] + tst $t0,$t1 + beq .Ladd_proceed @ (in1infty || in2infty)? + tst $t2,$t2 + beq .Ladd_double @ is_equal(S1,S2)? + + ldr $r_ptr,[sp,#32*18+16] + eor r4,r4,r4 + eor r5,r5,r5 + eor r6,r6,r6 + eor r7,r7,r7 + eor r8,r8,r8 + eor r9,r9,r9 + eor r10,r10,r10 + eor r11,r11,r11 + stmia $r_ptr!,{r4-r11} + stmia $r_ptr!,{r4-r11} + stmia $r_ptr!,{r4-r11} + b .Ladd_done + +.align 4 +.Ladd_double: + ldr $a_ptr,[sp,#32*18+20] + add sp,sp,#32*(18-5)+16 @ difference in frame sizes + b .Lpoint_double_shortcut + +.align 4 +.Ladd_proceed: + add $a_ptr,sp,#$R + add $b_ptr,sp,#$R + add $r_ptr,sp,#$Rsqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Rsqr, R); + + add $a_ptr,sp,#$H + add $b_ptr,sp,#$in1_z + add $r_ptr,sp,#$res_z + bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_z, H, in1_z); + + add $a_ptr,sp,#$H + add $b_ptr,sp,#$H + add $r_ptr,sp,#$Hsqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Hsqr, H); + + add $a_ptr,sp,#$in2_z + add $b_ptr,sp,#$res_z + add $r_ptr,sp,#$res_z + bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_z, res_z, in2_z); + + add $a_ptr,sp,#$H + add $b_ptr,sp,#$Hsqr + add $r_ptr,sp,#$Hcub + bl __ecp_nistz256_mul_mont @ p256_mul_mont(Hcub, Hsqr, H); + + add $a_ptr,sp,#$Hsqr + add $b_ptr,sp,#$U1 + add $r_ptr,sp,#$U2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, U1, Hsqr); + + add $r_ptr,sp,#$Hsqr + bl __ecp_nistz256_add_self @ p256_mul_by_2(Hsqr, U2); + + add $b_ptr,sp,#$Rsqr + add $r_ptr,sp,#$res_x + bl __ecp_nistz256_sub_morf @ p256_sub(res_x, Rsqr, Hsqr); + + add $b_ptr,sp,#$Hcub + bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, Hcub); + + add $b_ptr,sp,#$U2 + add $r_ptr,sp,#$res_y + bl __ecp_nistz256_sub_morf @ p256_sub(res_y, U2, res_x); + + add $a_ptr,sp,#$Hcub + add $b_ptr,sp,#$S1 + add $r_ptr,sp,#$S2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, S1, Hcub); + + add $a_ptr,sp,#$R + add $b_ptr,sp,#$res_y + add $r_ptr,sp,#$res_y + bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_y, res_y, R); + + add $b_ptr,sp,#$S2 + bl __ecp_nistz256_sub_from @ p256_sub(res_y, res_y, S2); + + ldr r11,[sp,#32*18+4] @ !in1intfy + ldr r12,[sp,#32*18+8] @ !in2intfy + add r1,sp,#$res_x + add r2,sp,#$in2_x + and r10,r11,r12 + mvn r11,r11 + add r3,sp,#$in1_x + and r11,r11,r12 + mvn r12,r12 + ldr $r_ptr,[sp,#32*18+16] +___ +for($i=0;$i<96;$i+=8) { # conditional moves +$code.=<<___; + ldmia r1!,{r4-r5} @ res_x + ldmia r2!,{r6-r7} @ in2_x + ldmia r3!,{r8-r9} @ in1_x + and r4,r4,r10 + and r5,r5,r10 + and r6,r6,r11 + and r7,r7,r11 + and r8,r8,r12 + and r9,r9,r12 + orr r4,r4,r6 + orr r5,r5,r7 + orr r4,r4,r8 + orr r5,r5,r9 + stmia $r_ptr!,{r4-r5} +___ +} +$code.=<<___; +.Ladd_done: + add sp,sp,#32*18+16+16 @ +16 means "skip even over saved r0-r3" +#if __ARM_ARCH__>=5 || defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_point_add,.-ecp_nistz256_point_add +___ +} + +######################################################################## +# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT_AFFINE *in2); +{ +my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y, + $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); +my $Z1sqr = $S2; +# above map() describes stack layout with 18 temporary +# 256-bit vectors on top. Then note that we push +# starting from r0, which means that we have copy of +# input arguments just below these temporary vectors. +# We use two of them for !in1infty, !in2intfy. + +my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); + +$code.=<<___; +.globl ecp_nistz256_point_add_affine +.type ecp_nistz256_point_add_affine,%function +.align 5 +ecp_nistz256_point_add_affine: + stmdb sp!,{r0-r12,lr} @ push from r0, unusual, but intentional + sub sp,sp,#32*15 + + ldmia $a_ptr!,{r4-r11} @ copy in1_x + add r3,sp,#$in1_x + stmia r3!,{r4-r11} + ldmia $a_ptr!,{r4-r11} @ copy in1_y + stmia r3!,{r4-r11} + ldmia $a_ptr,{r4-r11} @ copy in1_z + orr r12,r4,r5 + orr r12,r12,r6 + orr r12,r12,r7 + orr r12,r12,r8 + orr r12,r12,r9 + orr r12,r12,r10 + orr r12,r12,r11 + cmp r12,#0 +#ifdef __thumb2__ + it ne +#endif + movne r12,#-1 + stmia r3,{r4-r11} + str r12,[sp,#32*15+4] @ !in1infty + + ldmia $b_ptr!,{r4-r11} @ copy in2_x + add r3,sp,#$in2_x + orr r12,r4,r5 + orr r12,r12,r6 + orr r12,r12,r7 + orr r12,r12,r8 + orr r12,r12,r9 + orr r12,r12,r10 + orr r12,r12,r11 + stmia r3!,{r4-r11} + ldmia $b_ptr!,{r4-r11} @ copy in2_y + orr r12,r12,r4 + orr r12,r12,r5 + orr r12,r12,r6 + orr r12,r12,r7 + orr r12,r12,r8 + orr r12,r12,r9 + orr r12,r12,r10 + orr r12,r12,r11 + stmia r3!,{r4-r11} + cmp r12,#0 +#ifdef __thumb2__ + it ne +#endif + movne r12,#-1 + str r12,[sp,#32*15+8] @ !in2infty + + add $a_ptr,sp,#$in1_z + add $b_ptr,sp,#$in1_z + add $r_ptr,sp,#$Z1sqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Z1sqr, in1_z); + + add $a_ptr,sp,#$Z1sqr + add $b_ptr,sp,#$in2_x + add $r_ptr,sp,#$U2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, Z1sqr, in2_x); + + add $b_ptr,sp,#$in1_x + add $r_ptr,sp,#$H + bl __ecp_nistz256_sub_from @ p256_sub(H, U2, in1_x); + + add $a_ptr,sp,#$Z1sqr + add $b_ptr,sp,#$in1_z + add $r_ptr,sp,#$S2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, Z1sqr, in1_z); + + add $a_ptr,sp,#$H + add $b_ptr,sp,#$in1_z + add $r_ptr,sp,#$res_z + bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_z, H, in1_z); + + add $a_ptr,sp,#$in2_y + add $b_ptr,sp,#$S2 + add $r_ptr,sp,#$S2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, S2, in2_y); + + add $b_ptr,sp,#$in1_y + add $r_ptr,sp,#$R + bl __ecp_nistz256_sub_from @ p256_sub(R, S2, in1_y); + + add $a_ptr,sp,#$H + add $b_ptr,sp,#$H + add $r_ptr,sp,#$Hsqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Hsqr, H); + + add $a_ptr,sp,#$R + add $b_ptr,sp,#$R + add $r_ptr,sp,#$Rsqr + bl __ecp_nistz256_mul_mont @ p256_sqr_mont(Rsqr, R); + + add $a_ptr,sp,#$H + add $b_ptr,sp,#$Hsqr + add $r_ptr,sp,#$Hcub + bl __ecp_nistz256_mul_mont @ p256_mul_mont(Hcub, Hsqr, H); + + add $a_ptr,sp,#$Hsqr + add $b_ptr,sp,#$in1_x + add $r_ptr,sp,#$U2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(U2, in1_x, Hsqr); + + add $r_ptr,sp,#$Hsqr + bl __ecp_nistz256_add_self @ p256_mul_by_2(Hsqr, U2); + + add $b_ptr,sp,#$Rsqr + add $r_ptr,sp,#$res_x + bl __ecp_nistz256_sub_morf @ p256_sub(res_x, Rsqr, Hsqr); + + add $b_ptr,sp,#$Hcub + bl __ecp_nistz256_sub_from @ p256_sub(res_x, res_x, Hcub); + + add $b_ptr,sp,#$U2 + add $r_ptr,sp,#$res_y + bl __ecp_nistz256_sub_morf @ p256_sub(res_y, U2, res_x); + + add $a_ptr,sp,#$Hcub + add $b_ptr,sp,#$in1_y + add $r_ptr,sp,#$S2 + bl __ecp_nistz256_mul_mont @ p256_mul_mont(S2, in1_y, Hcub); + + add $a_ptr,sp,#$R + add $b_ptr,sp,#$res_y + add $r_ptr,sp,#$res_y + bl __ecp_nistz256_mul_mont @ p256_mul_mont(res_y, res_y, R); + + add $b_ptr,sp,#$S2 + bl __ecp_nistz256_sub_from @ p256_sub(res_y, res_y, S2); + + ldr r11,[sp,#32*15+4] @ !in1intfy + ldr r12,[sp,#32*15+8] @ !in2intfy + add r1,sp,#$res_x + add r2,sp,#$in2_x + and r10,r11,r12 + mvn r11,r11 + add r3,sp,#$in1_x + and r11,r11,r12 + mvn r12,r12 + ldr $r_ptr,[sp,#32*15] +___ +for($i=0;$i<64;$i+=8) { # conditional moves +$code.=<<___; + ldmia r1!,{r4-r5} @ res_x + ldmia r2!,{r6-r7} @ in2_x + ldmia r3!,{r8-r9} @ in1_x + and r4,r4,r10 + and r5,r5,r10 + and r6,r6,r11 + and r7,r7,r11 + and r8,r8,r12 + and r9,r9,r12 + orr r4,r4,r6 + orr r5,r5,r7 + orr r4,r4,r8 + orr r5,r5,r9 + stmia $r_ptr!,{r4-r5} +___ +} +for(;$i<96;$i+=8) { +my $j=($i-64)/4; +$code.=<<___; + ldmia r1!,{r4-r5} @ res_z + ldmia r3!,{r8-r9} @ in1_z + and r4,r4,r10 + and r5,r5,r10 + and r6,r11,#@ONE_mont[$j] + and r7,r11,#@ONE_mont[$j+1] + and r8,r8,r12 + and r9,r9,r12 + orr r4,r4,r6 + orr r5,r5,r7 + orr r4,r4,r8 + orr r5,r5,r9 + stmia $r_ptr!,{r4-r5} +___ +} +$code.=<<___; + add sp,sp,#32*15+16 @ +16 means "skip even over saved r0-r3" +#if __ARM_ARCH__>=5 || !defined(__thumb__) + ldmia sp!,{r4-r12,pc} +#else + ldmia sp!,{r4-r12,lr} + bx lr @ interoperable with Thumb ISA:-) +#endif +.size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine +___ +} }}} + +foreach (split("\n",$code)) { + s/\`([^\`]*)\`/eval $1/geo; + + s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo; + + print $_,"\n"; +} +close STDOUT; # enforce flush diff --git a/lib/libcrypto/ec/asm/ecp_nistz256-sparcv9.pl b/lib/libcrypto/ec/asm/ecp_nistz256-sparcv9.pl new file mode 100644 index 00000000000..044eb457b6a --- /dev/null +++ b/lib/libcrypto/ec/asm/ecp_nistz256-sparcv9.pl @@ -0,0 +1,2890 @@ +#! /usr/bin/env perl +# $OpenBSD: ecp_nistz256-sparcv9.pl,v 1.1 2016/11/04 17:33:20 miod Exp $ +# +# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + + +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# ECP_NISTZ256 module for SPARCv9. +# +# February 2015. +# +# Original ECP_NISTZ256 submission targeting x86_64 is detailed in +# http://eprint.iacr.org/2013/816. In the process of adaptation +# original .c module was made 32-bit savvy in order to make this +# implementation possible. +# +# with/without -DECP_NISTZ256_ASM +# UltraSPARC III +12-18% +# SPARC T4 +99-550% (+66-150% on 32-bit Solaris) +# +# Ranges denote minimum and maximum improvement coefficients depending +# on benchmark. Lower coefficients are for ECDSA sign, server-side +# operation. Keep in mind that +200% means 3x improvement. + +# Uncomment when all sparcv9 assembly generators are updated to take the output +# file as last argument... +# $output = pop; +# open STDOUT,">$output"; + +$code.=<<___; +#define STACK_FRAME 192 +#define STACK_BIAS 2047 + +#define LOCALS (STACK_BIAS+STACK_FRAME) +.register %g2,#scratch +.register %g3,#scratch +# define STACK64_FRAME STACK_FRAME +# define LOCALS64 LOCALS + +.section ".text",#alloc,#execinstr +___ + +{{{ +my ($rp,$ap,$bp)=map("%i$_",(0..2)); +my @acc=map("%l$_",(0..7)); +my ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7)=(map("%o$_",(0..5)),"%g4","%g5"); +my ($bi,$a0,$mask,$carry)=(map("%i$_",(3..5)),"%g1"); +my ($rp_real,$ap_real)=("%g2","%g3"); + +$code.=<<___; +.align 64 +.Lone: +.long 1,0,0,0,0,0,0,0 + +! void ecp_nistz256_from_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]); +.globl ecp_nistz256_from_mont +.align 32 +ecp_nistz256_from_mont: + save %sp,-STACK_FRAME,%sp + nop +1: call .+8 + add %o7,.Lone-1b,$bp + call __ecp_nistz256_mul_mont + nop + ret + restore +.type ecp_nistz256_from_mont,#function +.size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont + +! void ecp_nistz256_mul_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8], +! const BN_ULONG %i2[8]); +.globl ecp_nistz256_mul_mont +.align 32 +ecp_nistz256_mul_mont: + save %sp,-STACK_FRAME,%sp + nop + call __ecp_nistz256_mul_mont + nop + ret + restore +.type ecp_nistz256_mul_mont,#function +.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont + +! void ecp_nistz256_sqr_mont(BN_ULONG %i0[8],const BN_ULONG %i2[8]); +.globl ecp_nistz256_sqr_mont +.align 32 +ecp_nistz256_sqr_mont: + save %sp,-STACK_FRAME,%sp + mov $ap,$bp + call __ecp_nistz256_mul_mont + nop + ret + restore +.type ecp_nistz256_sqr_mont,#function +.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont +___ + +######################################################################## +# Special thing to keep in mind is that $t0-$t7 hold 64-bit values, +# while all others are meant to keep 32. "Meant to" means that additions +# to @acc[0-7] do "contaminate" upper bits, but they are cleared before +# they can affect outcome (follow 'and' with $mask). Also keep in mind +# that addition with carry is addition with 32-bit carry, even though +# CPU is 64-bit. [Addition with 64-bit carry was introduced in T3, see +# below for VIS3 code paths.] + +$code.=<<___; +.align 32 +__ecp_nistz256_mul_mont: + ld [$bp+0],$bi ! b[0] + mov -1,$mask + ld [$ap+0],$a0 + srl $mask,0,$mask ! 0xffffffff + ld [$ap+4],$t1 + ld [$ap+8],$t2 + ld [$ap+12],$t3 + ld [$ap+16],$t4 + ld [$ap+20],$t5 + ld [$ap+24],$t6 + ld [$ap+28],$t7 + mulx $a0,$bi,$t0 ! a[0-7]*b[0], 64-bit results + mulx $t1,$bi,$t1 + mulx $t2,$bi,$t2 + mulx $t3,$bi,$t3 + mulx $t4,$bi,$t4 + mulx $t5,$bi,$t5 + mulx $t6,$bi,$t6 + mulx $t7,$bi,$t7 + srlx $t0,32,@acc[1] ! extract high parts + srlx $t1,32,@acc[2] + srlx $t2,32,@acc[3] + srlx $t3,32,@acc[4] + srlx $t4,32,@acc[5] + srlx $t5,32,@acc[6] + srlx $t6,32,@acc[7] + srlx $t7,32,@acc[0] ! "@acc[8]" + mov 0,$carry +___ +for($i=1;$i<8;$i++) { +$code.=<<___; + addcc @acc[1],$t1,@acc[1] ! accumulate high parts + ld [$bp+4*$i],$bi ! b[$i] + ld [$ap+4],$t1 ! re-load a[1-7] + addccc @acc[2],$t2,@acc[2] + addccc @acc[3],$t3,@acc[3] + ld [$ap+8],$t2 + ld [$ap+12],$t3 + addccc @acc[4],$t4,@acc[4] + addccc @acc[5],$t5,@acc[5] + ld [$ap+16],$t4 + ld [$ap+20],$t5 + addccc @acc[6],$t6,@acc[6] + addccc @acc[7],$t7,@acc[7] + ld [$ap+24],$t6 + ld [$ap+28],$t7 + addccc @acc[0],$carry,@acc[0] ! "@acc[8]" + addc %g0,%g0,$carry +___ + # Reduction iteration is normally performed by accumulating + # result of multiplication of modulus by "magic" digit [and + # omitting least significant word, which is guaranteed to + # be 0], but thanks to special form of modulus and "magic" + # digit being equal to least significant word, it can be + # performed with additions and subtractions alone. Indeed: + # + # ffff.0001.0000.0000.0000.ffff.ffff.ffff + # * abcd + # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we + # rewrite above as: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 + # - abcd.0000.0000.0000.0000.0000.0000.abcd + # + # or marking redundant operations: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- + # + abcd.0000.abcd.0000.0000.abcd.----.----.---- + # - abcd.----.----.----.----.----.----.---- + +$code.=<<___; + ! multiplication-less reduction + addcc @acc[3],$t0,@acc[3] ! r[3]+=r[0] + addccc @acc[4],%g0,@acc[4] ! r[4]+=0 + and @acc[1],$mask,@acc[1] + and @acc[2],$mask,@acc[2] + addccc @acc[5],%g0,@acc[5] ! r[5]+=0 + addccc @acc[6],$t0,@acc[6] ! r[6]+=r[0] + and @acc[3],$mask,@acc[3] + and @acc[4],$mask,@acc[4] + addccc @acc[7],%g0,@acc[7] ! r[7]+=0 + addccc @acc[0],$t0,@acc[0] ! r[8]+=r[0] "@acc[8]" + and @acc[5],$mask,@acc[5] + and @acc[6],$mask,@acc[6] + addc $carry,%g0,$carry ! top-most carry + subcc @acc[7],$t0,@acc[7] ! r[7]-=r[0] + subccc @acc[0],%g0,@acc[0] ! r[8]-=0 "@acc[8]" + subc $carry,%g0,$carry ! top-most carry + and @acc[7],$mask,@acc[7] + and @acc[0],$mask,@acc[0] ! "@acc[8]" +___ + push(@acc,shift(@acc)); # rotate registers to "omit" acc[0] +$code.=<<___; + mulx $a0,$bi,$t0 ! a[0-7]*b[$i], 64-bit results + mulx $t1,$bi,$t1 + mulx $t2,$bi,$t2 + mulx $t3,$bi,$t3 + mulx $t4,$bi,$t4 + mulx $t5,$bi,$t5 + mulx $t6,$bi,$t6 + mulx $t7,$bi,$t7 + add @acc[0],$t0,$t0 ! accumulate low parts, can't overflow + add @acc[1],$t1,$t1 + srlx $t0,32,@acc[1] ! extract high parts + add @acc[2],$t2,$t2 + srlx $t1,32,@acc[2] + add @acc[3],$t3,$t3 + srlx $t2,32,@acc[3] + add @acc[4],$t4,$t4 + srlx $t3,32,@acc[4] + add @acc[5],$t5,$t5 + srlx $t4,32,@acc[5] + add @acc[6],$t6,$t6 + srlx $t5,32,@acc[6] + add @acc[7],$t7,$t7 + srlx $t6,32,@acc[7] + srlx $t7,32,@acc[0] ! "@acc[8]" +___ +} +$code.=<<___; + addcc @acc[1],$t1,@acc[1] ! accumulate high parts + addccc @acc[2],$t2,@acc[2] + addccc @acc[3],$t3,@acc[3] + addccc @acc[4],$t4,@acc[4] + addccc @acc[5],$t5,@acc[5] + addccc @acc[6],$t6,@acc[6] + addccc @acc[7],$t7,@acc[7] + addccc @acc[0],$carry,@acc[0] ! "@acc[8]" + addc %g0,%g0,$carry + + addcc @acc[3],$t0,@acc[3] ! multiplication-less reduction + addccc @acc[4],%g0,@acc[4] + addccc @acc[5],%g0,@acc[5] + addccc @acc[6],$t0,@acc[6] + addccc @acc[7],%g0,@acc[7] + addccc @acc[0],$t0,@acc[0] ! "@acc[8]" + addc $carry,%g0,$carry + subcc @acc[7],$t0,@acc[7] + subccc @acc[0],%g0,@acc[0] ! "@acc[8]" + subc $carry,%g0,$carry ! top-most carry +___ + push(@acc,shift(@acc)); # rotate registers to omit acc[0] +$code.=<<___; + ! Final step is "if result > mod, subtract mod", but we do it + ! "other way around", namely subtract modulus from result + ! and if it borrowed, add modulus back. + + subcc @acc[0],-1,@acc[0] ! subtract modulus + subccc @acc[1],-1,@acc[1] + subccc @acc[2],-1,@acc[2] + subccc @acc[3],0,@acc[3] + subccc @acc[4],0,@acc[4] + subccc @acc[5],0,@acc[5] + subccc @acc[6],1,@acc[6] + subccc @acc[7],-1,@acc[7] + subc $carry,0,$carry ! broadcast borrow bit + + ! Note that because mod has special form, i.e. consists of + ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by + ! using value of broadcasted borrow and the borrow bit itself. + ! To minimize dependency chain we first broadcast and then + ! extract the bit by negating (follow $bi). + + addcc @acc[0],$carry,@acc[0] ! add modulus or zero + addccc @acc[1],$carry,@acc[1] + neg $carry,$bi + st @acc[0],[$rp] + addccc @acc[2],$carry,@acc[2] + st @acc[1],[$rp+4] + addccc @acc[3],0,@acc[3] + st @acc[2],[$rp+8] + addccc @acc[4],0,@acc[4] + st @acc[3],[$rp+12] + addccc @acc[5],0,@acc[5] + st @acc[4],[$rp+16] + addccc @acc[6],$bi,@acc[6] + st @acc[5],[$rp+20] + addc @acc[7],$carry,@acc[7] + st @acc[6],[$rp+24] + retl + st @acc[7],[$rp+28] +.type __ecp_nistz256_mul_mont,#function +.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont + +! void ecp_nistz256_add(BN_ULONG %i0[8],const BN_ULONG %i1[8], +! const BN_ULONG %i2[8]); +.globl ecp_nistz256_add +.align 32 +ecp_nistz256_add: + save %sp,-STACK_FRAME,%sp + ld [$ap],@acc[0] + ld [$ap+4],@acc[1] + ld [$ap+8],@acc[2] + ld [$ap+12],@acc[3] + ld [$ap+16],@acc[4] + ld [$ap+20],@acc[5] + ld [$ap+24],@acc[6] + call __ecp_nistz256_add + ld [$ap+28],@acc[7] + ret + restore +.type ecp_nistz256_add,#function +.size ecp_nistz256_add,.-ecp_nistz256_add + +.align 32 +__ecp_nistz256_add: + ld [$bp+0],$t0 ! b[0] + ld [$bp+4],$t1 + ld [$bp+8],$t2 + ld [$bp+12],$t3 + addcc @acc[0],$t0,@acc[0] + ld [$bp+16],$t4 + ld [$bp+20],$t5 + addccc @acc[1],$t1,@acc[1] + ld [$bp+24],$t6 + ld [$bp+28],$t7 + addccc @acc[2],$t2,@acc[2] + addccc @acc[3],$t3,@acc[3] + addccc @acc[4],$t4,@acc[4] + addccc @acc[5],$t5,@acc[5] + addccc @acc[6],$t6,@acc[6] + addccc @acc[7],$t7,@acc[7] + addc %g0,%g0,$carry + +.Lreduce_by_sub: + + ! if a+b >= modulus, subtract modulus. + ! + ! But since comparison implies subtraction, we subtract + ! modulus and then add it back if subraction borrowed. + + subcc @acc[0],-1,@acc[0] + subccc @acc[1],-1,@acc[1] + subccc @acc[2],-1,@acc[2] + subccc @acc[3], 0,@acc[3] + subccc @acc[4], 0,@acc[4] + subccc @acc[5], 0,@acc[5] + subccc @acc[6], 1,@acc[6] + subccc @acc[7],-1,@acc[7] + subc $carry,0,$carry + + ! Note that because mod has special form, i.e. consists of + ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by + ! using value of borrow and its negative. + + addcc @acc[0],$carry,@acc[0] ! add synthesized modulus + addccc @acc[1],$carry,@acc[1] + neg $carry,$bi + st @acc[0],[$rp] + addccc @acc[2],$carry,@acc[2] + st @acc[1],[$rp+4] + addccc @acc[3],0,@acc[3] + st @acc[2],[$rp+8] + addccc @acc[4],0,@acc[4] + st @acc[3],[$rp+12] + addccc @acc[5],0,@acc[5] + st @acc[4],[$rp+16] + addccc @acc[6],$bi,@acc[6] + st @acc[5],[$rp+20] + addc @acc[7],$carry,@acc[7] + st @acc[6],[$rp+24] + retl + st @acc[7],[$rp+28] +.type __ecp_nistz256_add,#function +.size __ecp_nistz256_add,.-__ecp_nistz256_add + +! void ecp_nistz256_mul_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]); +.globl ecp_nistz256_mul_by_2 +.align 32 +ecp_nistz256_mul_by_2: + save %sp,-STACK_FRAME,%sp + ld [$ap],@acc[0] + ld [$ap+4],@acc[1] + ld [$ap+8],@acc[2] + ld [$ap+12],@acc[3] + ld [$ap+16],@acc[4] + ld [$ap+20],@acc[5] + ld [$ap+24],@acc[6] + call __ecp_nistz256_mul_by_2 + ld [$ap+28],@acc[7] + ret + restore +.type ecp_nistz256_mul_by_2,#function +.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 + +.align 32 +__ecp_nistz256_mul_by_2: + addcc @acc[0],@acc[0],@acc[0] ! a+a=2*a + addccc @acc[1],@acc[1],@acc[1] + addccc @acc[2],@acc[2],@acc[2] + addccc @acc[3],@acc[3],@acc[3] + addccc @acc[4],@acc[4],@acc[4] + addccc @acc[5],@acc[5],@acc[5] + addccc @acc[6],@acc[6],@acc[6] + addccc @acc[7],@acc[7],@acc[7] + b .Lreduce_by_sub + addc %g0,%g0,$carry +.type __ecp_nistz256_mul_by_2,#function +.size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2 + +! void ecp_nistz256_mul_by_3(BN_ULONG %i0[8],const BN_ULONG %i1[8]); +.globl ecp_nistz256_mul_by_3 +.align 32 +ecp_nistz256_mul_by_3: + save %sp,-STACK_FRAME,%sp + ld [$ap],@acc[0] + ld [$ap+4],@acc[1] + ld [$ap+8],@acc[2] + ld [$ap+12],@acc[3] + ld [$ap+16],@acc[4] + ld [$ap+20],@acc[5] + ld [$ap+24],@acc[6] + call __ecp_nistz256_mul_by_3 + ld [$ap+28],@acc[7] + ret + restore +.type ecp_nistz256_mul_by_3,#function +.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 + +.align 32 +__ecp_nistz256_mul_by_3: + addcc @acc[0],@acc[0],$t0 ! a+a=2*a + addccc @acc[1],@acc[1],$t1 + addccc @acc[2],@acc[2],$t2 + addccc @acc[3],@acc[3],$t3 + addccc @acc[4],@acc[4],$t4 + addccc @acc[5],@acc[5],$t5 + addccc @acc[6],@acc[6],$t6 + addccc @acc[7],@acc[7],$t7 + addc %g0,%g0,$carry + + subcc $t0,-1,$t0 ! .Lreduce_by_sub but without stores + subccc $t1,-1,$t1 + subccc $t2,-1,$t2 + subccc $t3, 0,$t3 + subccc $t4, 0,$t4 + subccc $t5, 0,$t5 + subccc $t6, 1,$t6 + subccc $t7,-1,$t7 + subc $carry,0,$carry + + addcc $t0,$carry,$t0 ! add synthesized modulus + addccc $t1,$carry,$t1 + neg $carry,$bi + addccc $t2,$carry,$t2 + addccc $t3,0,$t3 + addccc $t4,0,$t4 + addccc $t5,0,$t5 + addccc $t6,$bi,$t6 + addc $t7,$carry,$t7 + + addcc $t0,@acc[0],@acc[0] ! 2*a+a=3*a + addccc $t1,@acc[1],@acc[1] + addccc $t2,@acc[2],@acc[2] + addccc $t3,@acc[3],@acc[3] + addccc $t4,@acc[4],@acc[4] + addccc $t5,@acc[5],@acc[5] + addccc $t6,@acc[6],@acc[6] + addccc $t7,@acc[7],@acc[7] + b .Lreduce_by_sub + addc %g0,%g0,$carry +.type __ecp_nistz256_mul_by_3,#function +.size __ecp_nistz256_mul_by_3,.-__ecp_nistz256_mul_by_3 + +! void ecp_nistz256_neg(BN_ULONG %i0[8],const BN_ULONG %i1[8]); +.globl ecp_nistz256_neg +.align 32 +ecp_nistz256_neg: + save %sp,-STACK_FRAME,%sp + mov $ap,$bp + mov 0,@acc[0] + mov 0,@acc[1] + mov 0,@acc[2] + mov 0,@acc[3] + mov 0,@acc[4] + mov 0,@acc[5] + mov 0,@acc[6] + call __ecp_nistz256_sub_from + mov 0,@acc[7] + ret + restore +.type ecp_nistz256_neg,#function +.size ecp_nistz256_neg,.-ecp_nistz256_neg + +.align 32 +__ecp_nistz256_sub_from: + ld [$bp+0],$t0 ! b[0] + ld [$bp+4],$t1 + ld [$bp+8],$t2 + ld [$bp+12],$t3 + subcc @acc[0],$t0,@acc[0] + ld [$bp+16],$t4 + ld [$bp+20],$t5 + subccc @acc[1],$t1,@acc[1] + subccc @acc[2],$t2,@acc[2] + ld [$bp+24],$t6 + ld [$bp+28],$t7 + subccc @acc[3],$t3,@acc[3] + subccc @acc[4],$t4,@acc[4] + subccc @acc[5],$t5,@acc[5] + subccc @acc[6],$t6,@acc[6] + subccc @acc[7],$t7,@acc[7] + subc %g0,%g0,$carry ! broadcast borrow bit + +.Lreduce_by_add: + + ! if a-b borrows, add modulus. + ! + ! Note that because mod has special form, i.e. consists of + ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by + ! using value of broadcasted borrow and the borrow bit itself. + ! To minimize dependency chain we first broadcast and then + ! extract the bit by negating (follow $bi). + + addcc @acc[0],$carry,@acc[0] ! add synthesized modulus + addccc @acc[1],$carry,@acc[1] + neg $carry,$bi + st @acc[0],[$rp] + addccc @acc[2],$carry,@acc[2] + st @acc[1],[$rp+4] + addccc @acc[3],0,@acc[3] + st @acc[2],[$rp+8] + addccc @acc[4],0,@acc[4] + st @acc[3],[$rp+12] + addccc @acc[5],0,@acc[5] + st @acc[4],[$rp+16] + addccc @acc[6],$bi,@acc[6] + st @acc[5],[$rp+20] + addc @acc[7],$carry,@acc[7] + st @acc[6],[$rp+24] + retl + st @acc[7],[$rp+28] +.type __ecp_nistz256_sub_from,#function +.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from + +.align 32 +__ecp_nistz256_sub_morf: + ld [$bp+0],$t0 ! b[0] + ld [$bp+4],$t1 + ld [$bp+8],$t2 + ld [$bp+12],$t3 + subcc $t0,@acc[0],@acc[0] + ld [$bp+16],$t4 + ld [$bp+20],$t5 + subccc $t1,@acc[1],@acc[1] + subccc $t2,@acc[2],@acc[2] + ld [$bp+24],$t6 + ld [$bp+28],$t7 + subccc $t3,@acc[3],@acc[3] + subccc $t4,@acc[4],@acc[4] + subccc $t5,@acc[5],@acc[5] + subccc $t6,@acc[6],@acc[6] + subccc $t7,@acc[7],@acc[7] + b .Lreduce_by_add + subc %g0,%g0,$carry ! broadcast borrow bit +.type __ecp_nistz256_sub_morf,#function +.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf + +! void ecp_nistz256_div_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]); +.globl ecp_nistz256_div_by_2 +.align 32 +ecp_nistz256_div_by_2: + save %sp,-STACK_FRAME,%sp + ld [$ap],@acc[0] + ld [$ap+4],@acc[1] + ld [$ap+8],@acc[2] + ld [$ap+12],@acc[3] + ld [$ap+16],@acc[4] + ld [$ap+20],@acc[5] + ld [$ap+24],@acc[6] + call __ecp_nistz256_div_by_2 + ld [$ap+28],@acc[7] + ret + restore +.type ecp_nistz256_div_by_2,#function +.size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 + +.align 32 +__ecp_nistz256_div_by_2: + ! ret = (a is odd ? a+mod : a) >> 1 + + and @acc[0],1,$bi + neg $bi,$carry + addcc @acc[0],$carry,@acc[0] + addccc @acc[1],$carry,@acc[1] + addccc @acc[2],$carry,@acc[2] + addccc @acc[3],0,@acc[3] + addccc @acc[4],0,@acc[4] + addccc @acc[5],0,@acc[5] + addccc @acc[6],$bi,@acc[6] + addccc @acc[7],$carry,@acc[7] + addc %g0,%g0,$carry + + ! ret >>= 1 + + srl @acc[0],1,@acc[0] + sll @acc[1],31,$t0 + srl @acc[1],1,@acc[1] + or @acc[0],$t0,@acc[0] + sll @acc[2],31,$t1 + srl @acc[2],1,@acc[2] + or @acc[1],$t1,@acc[1] + sll @acc[3],31,$t2 + st @acc[0],[$rp] + srl @acc[3],1,@acc[3] + or @acc[2],$t2,@acc[2] + sll @acc[4],31,$t3 + st @acc[1],[$rp+4] + srl @acc[4],1,@acc[4] + or @acc[3],$t3,@acc[3] + sll @acc[5],31,$t4 + st @acc[2],[$rp+8] + srl @acc[5],1,@acc[5] + or @acc[4],$t4,@acc[4] + sll @acc[6],31,$t5 + st @acc[3],[$rp+12] + srl @acc[6],1,@acc[6] + or @acc[5],$t5,@acc[5] + sll @acc[7],31,$t6 + st @acc[4],[$rp+16] + srl @acc[7],1,@acc[7] + or @acc[6],$t6,@acc[6] + sll $carry,31,$t7 + st @acc[5],[$rp+20] + or @acc[7],$t7,@acc[7] + st @acc[6],[$rp+24] + retl + st @acc[7],[$rp+28] +.type __ecp_nistz256_div_by_2,#function +.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 +___ + +######################################################################## +# following subroutines are "literal" implementation of those found in +# ecp_nistz256.c +# +######################################################################## +# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); +# +{ +my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3)); +# above map() describes stack layout with 4 temporary +# 256-bit vectors on top. + +$code.=<<___; +#if 0 +#ifdef __PIC__ +SPARC_PIC_THUNK(%g1) +#endif +#endif + +.globl ecp_nistz256_point_double +.align 32 +ecp_nistz256_point_double: +#if 0 + SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) + ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] + and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 + cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) + be ecp_nistz256_point_double_vis3 + nop +#endif + + save %sp,-STACK_FRAME-32*4,%sp + + mov $rp,$rp_real + mov $ap,$ap_real + +.Lpoint_double_shortcut: + ld [$ap+32],@acc[0] + ld [$ap+32+4],@acc[1] + ld [$ap+32+8],@acc[2] + ld [$ap+32+12],@acc[3] + ld [$ap+32+16],@acc[4] + ld [$ap+32+20],@acc[5] + ld [$ap+32+24],@acc[6] + ld [$ap+32+28],@acc[7] + call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(S, in_y); + add %sp,LOCALS+$S,$rp + + add $ap_real,64,$bp + add $ap_real,64,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Zsqr, in_z); + add %sp,LOCALS+$Zsqr,$rp + + add $ap_real,0,$bp + call __ecp_nistz256_add ! p256_add(M, Zsqr, in_x); + add %sp,LOCALS+$M,$rp + + add %sp,LOCALS+$S,$bp + add %sp,LOCALS+$S,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(S, S); + add %sp,LOCALS+$S,$rp + + ld [$ap_real],@acc[0] + add %sp,LOCALS+$Zsqr,$bp + ld [$ap_real+4],@acc[1] + ld [$ap_real+8],@acc[2] + ld [$ap_real+12],@acc[3] + ld [$ap_real+16],@acc[4] + ld [$ap_real+20],@acc[5] + ld [$ap_real+24],@acc[6] + ld [$ap_real+28],@acc[7] + call __ecp_nistz256_sub_from ! p256_sub(Zsqr, in_x, Zsqr); + add %sp,LOCALS+$Zsqr,$rp + + add $ap_real,32,$bp + add $ap_real,64,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(tmp0, in_z, in_y); + add %sp,LOCALS+$tmp0,$rp + + call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(res_z, tmp0); + add $rp_real,64,$rp + + add %sp,LOCALS+$Zsqr,$bp + add %sp,LOCALS+$M,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(M, M, Zsqr); + add %sp,LOCALS+$M,$rp + + call __ecp_nistz256_mul_by_3 ! p256_mul_by_3(M, M); + add %sp,LOCALS+$M,$rp + + add %sp,LOCALS+$S,$bp + add %sp,LOCALS+$S,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(tmp0, S); + add %sp,LOCALS+$tmp0,$rp + + call __ecp_nistz256_div_by_2 ! p256_div_by_2(res_y, tmp0); + add $rp_real,32,$rp + + add $ap_real,0,$bp + add %sp,LOCALS+$S,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, in_x); + add %sp,LOCALS+$S,$rp + + call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(tmp0, S); + add %sp,LOCALS+$tmp0,$rp + + add %sp,LOCALS+$M,$bp + add %sp,LOCALS+$M,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(res_x, M); + add $rp_real,0,$rp + + add %sp,LOCALS+$tmp0,$bp + call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, tmp0); + add $rp_real,0,$rp + + add %sp,LOCALS+$S,$bp + call __ecp_nistz256_sub_morf ! p256_sub(S, S, res_x); + add %sp,LOCALS+$S,$rp + + add %sp,LOCALS+$M,$bp + add %sp,LOCALS+$S,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, M); + add %sp,LOCALS+$S,$rp + + add $rp_real,32,$bp + call __ecp_nistz256_sub_from ! p256_sub(res_y, S, res_y); + add $rp_real,32,$rp + + ret + restore +.type ecp_nistz256_point_double,#function +.size ecp_nistz256_point_double,.-ecp_nistz256_point_double +___ +} + +######################################################################## +# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT *in2); +{ +my ($res_x,$res_y,$res_z, + $H,$Hsqr,$R,$Rsqr,$Hcub, + $U1,$U2,$S1,$S2)=map(32*$_,(0..11)); +my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); + +# above map() describes stack layout with 12 temporary +# 256-bit vectors on top. Then we reserve some space for +# !in1infty, !in2infty, result of check for zero and return pointer. + +my $bp_real=$rp_real; + +$code.=<<___; +.globl ecp_nistz256_point_add +.align 32 +ecp_nistz256_point_add: +#if 0 + SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) + ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] + and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 + cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) + be ecp_nistz256_point_add_vis3 + nop +#endif + + save %sp,-STACK_FRAME-32*12-32,%sp + + stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp + mov $ap,$ap_real + mov $bp,$bp_real + + ld [$bp+64],$t0 ! in2_z + ld [$bp+64+4],$t1 + ld [$bp+64+8],$t2 + ld [$bp+64+12],$t3 + ld [$bp+64+16],$t4 + ld [$bp+64+20],$t5 + ld [$bp+64+24],$t6 + ld [$bp+64+28],$t7 + or $t1,$t0,$t0 + or $t3,$t2,$t2 + or $t5,$t4,$t4 + or $t7,$t6,$t6 + or $t2,$t0,$t0 + or $t6,$t4,$t4 + or $t4,$t0,$t0 ! !in2infty + movrnz $t0,-1,$t0 + st $t0,[%fp+STACK_BIAS-12] + + ld [$ap+64],$t0 ! in1_z + ld [$ap+64+4],$t1 + ld [$ap+64+8],$t2 + ld [$ap+64+12],$t3 + ld [$ap+64+16],$t4 + ld [$ap+64+20],$t5 + ld [$ap+64+24],$t6 + ld [$ap+64+28],$t7 + or $t1,$t0,$t0 + or $t3,$t2,$t2 + or $t5,$t4,$t4 + or $t7,$t6,$t6 + or $t2,$t0,$t0 + or $t6,$t4,$t4 + or $t4,$t0,$t0 ! !in1infty + movrnz $t0,-1,$t0 + st $t0,[%fp+STACK_BIAS-16] + + add $bp_real,64,$bp + add $bp_real,64,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z2sqr, in2_z); + add %sp,LOCALS+$Z2sqr,$rp + + add $ap_real,64,$bp + add $ap_real,64,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z); + add %sp,LOCALS+$Z1sqr,$rp + + add $bp_real,64,$bp + add %sp,LOCALS+$Z2sqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, Z2sqr, in2_z); + add %sp,LOCALS+$S1,$rp + + add $ap_real,64,$bp + add %sp,LOCALS+$Z1sqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z); + add %sp,LOCALS+$S2,$rp + + add $ap_real,32,$bp + add %sp,LOCALS+$S1,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, S1, in1_y); + add %sp,LOCALS+$S1,$rp + + add $bp_real,32,$bp + add %sp,LOCALS+$S2,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y); + add %sp,LOCALS+$S2,$rp + + add %sp,LOCALS+$S1,$bp + call __ecp_nistz256_sub_from ! p256_sub(R, S2, S1); + add %sp,LOCALS+$R,$rp + + or @acc[1],@acc[0],@acc[0] ! see if result is zero + or @acc[3],@acc[2],@acc[2] + or @acc[5],@acc[4],@acc[4] + or @acc[7],@acc[6],@acc[6] + or @acc[2],@acc[0],@acc[0] + or @acc[6],@acc[4],@acc[4] + or @acc[4],@acc[0],@acc[0] + st @acc[0],[%fp+STACK_BIAS-20] + + add $ap_real,0,$bp + add %sp,LOCALS+$Z2sqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(U1, in1_x, Z2sqr); + add %sp,LOCALS+$U1,$rp + + add $bp_real,0,$bp + add %sp,LOCALS+$Z1sqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in2_x, Z1sqr); + add %sp,LOCALS+$U2,$rp + + add %sp,LOCALS+$U1,$bp + call __ecp_nistz256_sub_from ! p256_sub(H, U2, U1); + add %sp,LOCALS+$H,$rp + + or @acc[1],@acc[0],@acc[0] ! see if result is zero + or @acc[3],@acc[2],@acc[2] + or @acc[5],@acc[4],@acc[4] + or @acc[7],@acc[6],@acc[6] + or @acc[2],@acc[0],@acc[0] + or @acc[6],@acc[4],@acc[4] + orcc @acc[4],@acc[0],@acc[0] + + bne,pt %icc,.Ladd_proceed ! is_equal(U1,U2)? + nop + + ld [%fp+STACK_BIAS-12],$t0 + ld [%fp+STACK_BIAS-16],$t1 + ld [%fp+STACK_BIAS-20],$t2 + andcc $t0,$t1,%g0 + be,pt %icc,.Ladd_proceed ! (in1infty || in2infty)? + nop + andcc $t2,$t2,%g0 + be,pt %icc,.Ladd_double ! is_equal(S1,S2)? + nop + + ldx [%fp+STACK_BIAS-8],$rp + st %g0,[$rp] + st %g0,[$rp+4] + st %g0,[$rp+8] + st %g0,[$rp+12] + st %g0,[$rp+16] + st %g0,[$rp+20] + st %g0,[$rp+24] + st %g0,[$rp+28] + st %g0,[$rp+32] + st %g0,[$rp+32+4] + st %g0,[$rp+32+8] + st %g0,[$rp+32+12] + st %g0,[$rp+32+16] + st %g0,[$rp+32+20] + st %g0,[$rp+32+24] + st %g0,[$rp+32+28] + st %g0,[$rp+64] + st %g0,[$rp+64+4] + st %g0,[$rp+64+8] + st %g0,[$rp+64+12] + st %g0,[$rp+64+16] + st %g0,[$rp+64+20] + st %g0,[$rp+64+24] + st %g0,[$rp+64+28] + b .Ladd_done + nop + +.align 16 +.Ladd_double: + ldx [%fp+STACK_BIAS-8],$rp_real + mov $ap_real,$ap + b .Lpoint_double_shortcut + add %sp,32*(12-4)+32,%sp ! difference in frame sizes + +.align 16 +.Ladd_proceed: + add %sp,LOCALS+$R,$bp + add %sp,LOCALS+$R,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R); + add %sp,LOCALS+$Rsqr,$rp + + add $ap_real,64,$bp + add %sp,LOCALS+$H,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z); + add %sp,LOCALS+$res_z,$rp + + add %sp,LOCALS+$H,$bp + add %sp,LOCALS+$H,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H); + add %sp,LOCALS+$Hsqr,$rp + + add $bp_real,64,$bp + add %sp,LOCALS+$res_z,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, res_z, in2_z); + add %sp,LOCALS+$res_z,$rp + + add %sp,LOCALS+$H,$bp + add %sp,LOCALS+$Hsqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H); + add %sp,LOCALS+$Hcub,$rp + + add %sp,LOCALS+$U1,$bp + add %sp,LOCALS+$Hsqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, U1, Hsqr); + add %sp,LOCALS+$U2,$rp + + call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2); + add %sp,LOCALS+$Hsqr,$rp + + add %sp,LOCALS+$Rsqr,$bp + call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr); + add %sp,LOCALS+$res_x,$rp + + add %sp,LOCALS+$Hcub,$bp + call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub); + add %sp,LOCALS+$res_x,$rp + + add %sp,LOCALS+$U2,$bp + call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x); + add %sp,LOCALS+$res_y,$rp + + add %sp,LOCALS+$Hcub,$bp + add %sp,LOCALS+$S1,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S1, Hcub); + add %sp,LOCALS+$S2,$rp + + add %sp,LOCALS+$R,$bp + add %sp,LOCALS+$res_y,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R); + add %sp,LOCALS+$res_y,$rp + + add %sp,LOCALS+$S2,$bp + call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2); + add %sp,LOCALS+$res_y,$rp + + ld [%fp+STACK_BIAS-16],$t1 ! !in1infty + ld [%fp+STACK_BIAS-12],$t2 ! !in2infty + ldx [%fp+STACK_BIAS-8],$rp +___ +for($i=0;$i<96;$i+=8) { # conditional moves +$code.=<<___; + ld [%sp+LOCALS+$i],@acc[0] ! res + ld [%sp+LOCALS+$i+4],@acc[1] + ld [$bp_real+$i],@acc[2] ! in2 + ld [$bp_real+$i+4],@acc[3] + ld [$ap_real+$i],@acc[4] ! in1 + ld [$ap_real+$i+4],@acc[5] + movrz $t1,@acc[2],@acc[0] + movrz $t1,@acc[3],@acc[1] + movrz $t2,@acc[4],@acc[0] + movrz $t2,@acc[5],@acc[1] + st @acc[0],[$rp+$i] + st @acc[1],[$rp+$i+4] +___ +} +$code.=<<___; +.Ladd_done: + ret + restore +.type ecp_nistz256_point_add,#function +.size ecp_nistz256_point_add,.-ecp_nistz256_point_add +___ +} + +######################################################################## +# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT_AFFINE *in2); +{ +my ($res_x,$res_y,$res_z, + $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9)); +my $Z1sqr = $S2; +# above map() describes stack layout with 10 temporary +# 256-bit vectors on top. Then we reserve some space for +# !in1infty, !in2infty, result of check for zero and return pointer. + +my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); +my $bp_real=$rp_real; + +$code.=<<___; +.globl ecp_nistz256_point_add_affine +.align 32 +ecp_nistz256_point_add_affine: +#if 0 + SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) + ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] + and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 + cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) + be ecp_nistz256_point_add_affine_vis3 + nop +#endif + + save %sp,-STACK_FRAME-32*10-32,%sp + + stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp + mov $ap,$ap_real + mov $bp,$bp_real + + ld [$ap+64],$t0 ! in1_z + ld [$ap+64+4],$t1 + ld [$ap+64+8],$t2 + ld [$ap+64+12],$t3 + ld [$ap+64+16],$t4 + ld [$ap+64+20],$t5 + ld [$ap+64+24],$t6 + ld [$ap+64+28],$t7 + or $t1,$t0,$t0 + or $t3,$t2,$t2 + or $t5,$t4,$t4 + or $t7,$t6,$t6 + or $t2,$t0,$t0 + or $t6,$t4,$t4 + or $t4,$t0,$t0 ! !in1infty + movrnz $t0,-1,$t0 + st $t0,[%fp+STACK_BIAS-16] + + ld [$bp],@acc[0] ! in2_x + ld [$bp+4],@acc[1] + ld [$bp+8],@acc[2] + ld [$bp+12],@acc[3] + ld [$bp+16],@acc[4] + ld [$bp+20],@acc[5] + ld [$bp+24],@acc[6] + ld [$bp+28],@acc[7] + ld [$bp+32],$t0 ! in2_y + ld [$bp+32+4],$t1 + ld [$bp+32+8],$t2 + ld [$bp+32+12],$t3 + ld [$bp+32+16],$t4 + ld [$bp+32+20],$t5 + ld [$bp+32+24],$t6 + ld [$bp+32+28],$t7 + or @acc[1],@acc[0],@acc[0] + or @acc[3],@acc[2],@acc[2] + or @acc[5],@acc[4],@acc[4] + or @acc[7],@acc[6],@acc[6] + or @acc[2],@acc[0],@acc[0] + or @acc[6],@acc[4],@acc[4] + or @acc[4],@acc[0],@acc[0] + or $t1,$t0,$t0 + or $t3,$t2,$t2 + or $t5,$t4,$t4 + or $t7,$t6,$t6 + or $t2,$t0,$t0 + or $t6,$t4,$t4 + or $t4,$t0,$t0 + or @acc[0],$t0,$t0 ! !in2infty + movrnz $t0,-1,$t0 + st $t0,[%fp+STACK_BIAS-12] + + add $ap_real,64,$bp + add $ap_real,64,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z); + add %sp,LOCALS+$Z1sqr,$rp + + add $bp_real,0,$bp + add %sp,LOCALS+$Z1sqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, Z1sqr, in2_x); + add %sp,LOCALS+$U2,$rp + + add $ap_real,0,$bp + call __ecp_nistz256_sub_from ! p256_sub(H, U2, in1_x); + add %sp,LOCALS+$H,$rp + + add $ap_real,64,$bp + add %sp,LOCALS+$Z1sqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z); + add %sp,LOCALS+$S2,$rp + + add $ap_real,64,$bp + add %sp,LOCALS+$H,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z); + add %sp,LOCALS+$res_z,$rp + + add $bp_real,32,$bp + add %sp,LOCALS+$S2,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y); + add %sp,LOCALS+$S2,$rp + + add $ap_real,32,$bp + call __ecp_nistz256_sub_from ! p256_sub(R, S2, in1_y); + add %sp,LOCALS+$R,$rp + + add %sp,LOCALS+$H,$bp + add %sp,LOCALS+$H,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H); + add %sp,LOCALS+$Hsqr,$rp + + add %sp,LOCALS+$R,$bp + add %sp,LOCALS+$R,$ap + call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R); + add %sp,LOCALS+$Rsqr,$rp + + add %sp,LOCALS+$H,$bp + add %sp,LOCALS+$Hsqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H); + add %sp,LOCALS+$Hcub,$rp + + add $ap_real,0,$bp + add %sp,LOCALS+$Hsqr,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in1_x, Hsqr); + add %sp,LOCALS+$U2,$rp + + call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2); + add %sp,LOCALS+$Hsqr,$rp + + add %sp,LOCALS+$Rsqr,$bp + call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr); + add %sp,LOCALS+$res_x,$rp + + add %sp,LOCALS+$Hcub,$bp + call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub); + add %sp,LOCALS+$res_x,$rp + + add %sp,LOCALS+$U2,$bp + call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x); + add %sp,LOCALS+$res_y,$rp + + add $ap_real,32,$bp + add %sp,LOCALS+$Hcub,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, in1_y, Hcub); + add %sp,LOCALS+$S2,$rp + + add %sp,LOCALS+$R,$bp + add %sp,LOCALS+$res_y,$ap + call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R); + add %sp,LOCALS+$res_y,$rp + + add %sp,LOCALS+$S2,$bp + call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2); + add %sp,LOCALS+$res_y,$rp + + ld [%fp+STACK_BIAS-16],$t1 ! !in1infty + ld [%fp+STACK_BIAS-12],$t2 ! !in2infty + ldx [%fp+STACK_BIAS-8],$rp +___ +for($i=0;$i<64;$i+=8) { # conditional moves +$code.=<<___; + ld [%sp+LOCALS+$i],@acc[0] ! res + ld [%sp+LOCALS+$i+4],@acc[1] + ld [$bp_real+$i],@acc[2] ! in2 + ld [$bp_real+$i+4],@acc[3] + ld [$ap_real+$i],@acc[4] ! in1 + ld [$ap_real+$i+4],@acc[5] + movrz $t1,@acc[2],@acc[0] + movrz $t1,@acc[3],@acc[1] + movrz $t2,@acc[4],@acc[0] + movrz $t2,@acc[5],@acc[1] + st @acc[0],[$rp+$i] + st @acc[1],[$rp+$i+4] +___ +} +for(;$i<96;$i+=8) { +my $j=($i-64)/4; +$code.=<<___; + ld [%sp+LOCALS+$i],@acc[0] ! res + ld [%sp+LOCALS+$i+4],@acc[1] + ld [$ap_real+$i],@acc[4] ! in1 + ld [$ap_real+$i+4],@acc[5] + movrz $t1,@ONE_mont[$j],@acc[0] + movrz $t1,@ONE_mont[$j+1],@acc[1] + movrz $t2,@acc[4],@acc[0] + movrz $t2,@acc[5],@acc[1] + st @acc[0],[$rp+$i] + st @acc[1],[$rp+$i+4] +___ +} +$code.=<<___; + ret + restore +.type ecp_nistz256_point_add_affine,#function +.size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine +___ +} }}} +{{{ +my ($out,$inp,$index)=map("%i$_",(0..2)); +my $mask="%o0"; + +$code.=<<___; +! void ecp_nistz256_select_w5(P256_POINT *%i0,const void *%i1, +! int %i2); +.globl ecp_nistz256_select_w5 +.align 32 +ecp_nistz256_select_w5: + save %sp,-STACK_FRAME,%sp + + neg $index,$mask + srax $mask,63,$mask + + add $index,$mask,$index + sll $index,2,$index + add $inp,$index,$inp + + ld [$inp+64*0],%l0 + ld [$inp+64*1],%l1 + ld [$inp+64*2],%l2 + ld [$inp+64*3],%l3 + ld [$inp+64*4],%l4 + ld [$inp+64*5],%l5 + ld [$inp+64*6],%l6 + ld [$inp+64*7],%l7 + add $inp,64*8,$inp + and %l0,$mask,%l0 + and %l1,$mask,%l1 + st %l0,[$out] ! X + and %l2,$mask,%l2 + st %l1,[$out+4] + and %l3,$mask,%l3 + st %l2,[$out+8] + and %l4,$mask,%l4 + st %l3,[$out+12] + and %l5,$mask,%l5 + st %l4,[$out+16] + and %l6,$mask,%l6 + st %l5,[$out+20] + and %l7,$mask,%l7 + st %l6,[$out+24] + st %l7,[$out+28] + add $out,32,$out + + ld [$inp+64*0],%l0 + ld [$inp+64*1],%l1 + ld [$inp+64*2],%l2 + ld [$inp+64*3],%l3 + ld [$inp+64*4],%l4 + ld [$inp+64*5],%l5 + ld [$inp+64*6],%l6 + ld [$inp+64*7],%l7 + add $inp,64*8,$inp + and %l0,$mask,%l0 + and %l1,$mask,%l1 + st %l0,[$out] ! Y + and %l2,$mask,%l2 + st %l1,[$out+4] + and %l3,$mask,%l3 + st %l2,[$out+8] + and %l4,$mask,%l4 + st %l3,[$out+12] + and %l5,$mask,%l5 + st %l4,[$out+16] + and %l6,$mask,%l6 + st %l5,[$out+20] + and %l7,$mask,%l7 + st %l6,[$out+24] + st %l7,[$out+28] + add $out,32,$out + + ld [$inp+64*0],%l0 + ld [$inp+64*1],%l1 + ld [$inp+64*2],%l2 + ld [$inp+64*3],%l3 + ld [$inp+64*4],%l4 + ld [$inp+64*5],%l5 + ld [$inp+64*6],%l6 + ld [$inp+64*7],%l7 + and %l0,$mask,%l0 + and %l1,$mask,%l1 + st %l0,[$out] ! Z + and %l2,$mask,%l2 + st %l1,[$out+4] + and %l3,$mask,%l3 + st %l2,[$out+8] + and %l4,$mask,%l4 + st %l3,[$out+12] + and %l5,$mask,%l5 + st %l4,[$out+16] + and %l6,$mask,%l6 + st %l5,[$out+20] + and %l7,$mask,%l7 + st %l6,[$out+24] + st %l7,[$out+28] + + ret + restore +.type ecp_nistz256_select_w5,#function +.size ecp_nistz256_select_w5,.-ecp_nistz256_select_w5 + +! void ecp_nistz256_select_w7(P256_POINT_AFFINE *%i0,const void *%i1, +! int %i2); +.globl ecp_nistz256_select_w7 +.align 32 +ecp_nistz256_select_w7: + save %sp,-STACK_FRAME,%sp + + neg $index,$mask + srax $mask,63,$mask + + add $index,$mask,$index + add $inp,$index,$inp + mov 64/4,$index + +.Loop_select_w7: + ldub [$inp+64*0],%l0 + prefetch [$inp+3840+64*0],1 + subcc $index,1,$index + ldub [$inp+64*1],%l1 + prefetch [$inp+3840+64*1],1 + ldub [$inp+64*2],%l2 + prefetch [$inp+3840+64*2],1 + ldub [$inp+64*3],%l3 + prefetch [$inp+3840+64*3],1 + add $inp,64*4,$inp + sll %l1,8,%l1 + sll %l2,16,%l2 + or %l0,%l1,%l0 + sll %l3,24,%l3 + or %l0,%l2,%l0 + or %l0,%l3,%l0 + and %l0,$mask,%l0 + st %l0,[$out] + bne .Loop_select_w7 + add $out,4,$out + + ret + restore +.type ecp_nistz256_select_w7,#function +.size ecp_nistz256_select_w7,.-ecp_nistz256_select_w7 +___ +}}} +{{{ +######################################################################## +# Following subroutines are VIS3 counterparts of those above that +# implement ones found in ecp_nistz256.c. Key difference is that they +# use 128-bit muliplication and addition with 64-bit carry, and in order +# to do that they perform conversion from uin32_t[8] to uint64_t[4] upon +# entry and vice versa on return. +# +my ($rp,$ap,$bp)=map("%i$_",(0..2)); +my ($t0,$t1,$t2,$t3,$a0,$a1,$a2,$a3)=map("%l$_",(0..7)); +my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5)=map("%o$_",(0..5)); +my ($bi,$poly1,$poly3,$minus1)=(map("%i$_",(3..5)),"%g1"); +my ($rp_real,$ap_real)=("%g2","%g3"); +my ($acc6,$acc7)=($bp,$bi); # used in squaring + +$code.=<<___; +#if 0 +.align 32 +__ecp_nistz256_mul_by_2_vis3: + addcc $acc0,$acc0,$acc0 + addxccc $acc1,$acc1,$acc1 + addxccc $acc2,$acc2,$acc2 + addxccc $acc3,$acc3,$acc3 + b .Lreduce_by_sub_vis3 + addxc %g0,%g0,$acc4 ! did it carry? +.type __ecp_nistz256_mul_by_2_vis3,#function +.size __ecp_nistz256_mul_by_2_vis3,.-__ecp_nistz256_mul_by_2_vis3 + +.align 32 +__ecp_nistz256_add_vis3: + ldx [$bp+0],$t0 + ldx [$bp+8],$t1 + ldx [$bp+16],$t2 + ldx [$bp+24],$t3 + +__ecp_nistz256_add_noload_vis3: + + addcc $t0,$acc0,$acc0 + addxccc $t1,$acc1,$acc1 + addxccc $t2,$acc2,$acc2 + addxccc $t3,$acc3,$acc3 + addxc %g0,%g0,$acc4 ! did it carry? + +.Lreduce_by_sub_vis3: + + addcc $acc0,1,$t0 ! add -modulus, i.e. subtract + addxccc $acc1,$poly1,$t1 + addxccc $acc2,$minus1,$t2 + addxccc $acc3,$poly3,$t3 + addxc $acc4,$minus1,$acc4 + + movrz $acc4,$t0,$acc0 ! ret = borrow ? ret : ret-modulus + movrz $acc4,$t1,$acc1 + stx $acc0,[$rp] + movrz $acc4,$t2,$acc2 + stx $acc1,[$rp+8] + movrz $acc4,$t3,$acc3 + stx $acc2,[$rp+16] + retl + stx $acc3,[$rp+24] +.type __ecp_nistz256_add_vis3,#function +.size __ecp_nistz256_add_vis3,.-__ecp_nistz256_add_vis3 + +! Trouble with subtraction is that there is no subtraction with 64-bit +! borrow, only with 32-bit one. For this reason we "decompose" 64-bit +! $acc0-$acc3 to 32-bit values and pick b[4] in 32-bit pieces. But +! recall that SPARC is big-endian, which is why you'll observe that +! b[4] is accessed as 4-0-12-8-20-16-28-24. And prior reduction we +! "collect" result back to 64-bit $acc0-$acc3. +.align 32 +__ecp_nistz256_sub_from_vis3: + ld [$bp+4],$t0 + ld [$bp+0],$t1 + ld [$bp+12],$t2 + ld [$bp+8],$t3 + + srlx $acc0,32,$acc4 + not $poly1,$poly1 + srlx $acc1,32,$acc5 + subcc $acc0,$t0,$acc0 + ld [$bp+20],$t0 + subccc $acc4,$t1,$acc4 + ld [$bp+16],$t1 + subccc $acc1,$t2,$acc1 + ld [$bp+28],$t2 + and $acc0,$poly1,$acc0 + subccc $acc5,$t3,$acc5 + ld [$bp+24],$t3 + sllx $acc4,32,$acc4 + and $acc1,$poly1,$acc1 + sllx $acc5,32,$acc5 + or $acc0,$acc4,$acc0 + srlx $acc2,32,$acc4 + or $acc1,$acc5,$acc1 + srlx $acc3,32,$acc5 + subccc $acc2,$t0,$acc2 + subccc $acc4,$t1,$acc4 + subccc $acc3,$t2,$acc3 + and $acc2,$poly1,$acc2 + subccc $acc5,$t3,$acc5 + sllx $acc4,32,$acc4 + and $acc3,$poly1,$acc3 + sllx $acc5,32,$acc5 + or $acc2,$acc4,$acc2 + subc %g0,%g0,$acc4 ! did it borrow? + b .Lreduce_by_add_vis3 + or $acc3,$acc5,$acc3 +.type __ecp_nistz256_sub_from_vis3,#function +.size __ecp_nistz256_sub_from_vis3,.-__ecp_nistz256_sub_from_vis3 + +.align 32 +__ecp_nistz256_sub_morf_vis3: + ld [$bp+4],$t0 + ld [$bp+0],$t1 + ld [$bp+12],$t2 + ld [$bp+8],$t3 + + srlx $acc0,32,$acc4 + not $poly1,$poly1 + srlx $acc1,32,$acc5 + subcc $t0,$acc0,$acc0 + ld [$bp+20],$t0 + subccc $t1,$acc4,$acc4 + ld [$bp+16],$t1 + subccc $t2,$acc1,$acc1 + ld [$bp+28],$t2 + and $acc0,$poly1,$acc0 + subccc $t3,$acc5,$acc5 + ld [$bp+24],$t3 + sllx $acc4,32,$acc4 + and $acc1,$poly1,$acc1 + sllx $acc5,32,$acc5 + or $acc0,$acc4,$acc0 + srlx $acc2,32,$acc4 + or $acc1,$acc5,$acc1 + srlx $acc3,32,$acc5 + subccc $t0,$acc2,$acc2 + subccc $t1,$acc4,$acc4 + subccc $t2,$acc3,$acc3 + and $acc2,$poly1,$acc2 + subccc $t3,$acc5,$acc5 + sllx $acc4,32,$acc4 + and $acc3,$poly1,$acc3 + sllx $acc5,32,$acc5 + or $acc2,$acc4,$acc2 + subc %g0,%g0,$acc4 ! did it borrow? + or $acc3,$acc5,$acc3 + +.Lreduce_by_add_vis3: + + addcc $acc0,-1,$t0 ! add modulus + not $poly3,$t3 + addxccc $acc1,$poly1,$t1 + not $poly1,$poly1 ! restore $poly1 + addxccc $acc2,%g0,$t2 + addxc $acc3,$t3,$t3 + + movrnz $acc4,$t0,$acc0 ! if a-b borrowed, ret = ret+mod + movrnz $acc4,$t1,$acc1 + stx $acc0,[$rp] + movrnz $acc4,$t2,$acc2 + stx $acc1,[$rp+8] + movrnz $acc4,$t3,$acc3 + stx $acc2,[$rp+16] + retl + stx $acc3,[$rp+24] +.type __ecp_nistz256_sub_morf_vis3,#function +.size __ecp_nistz256_sub_morf_vis3,.-__ecp_nistz256_sub_morf_vis3 + +.align 32 +__ecp_nistz256_div_by_2_vis3: + ! ret = (a is odd ? a+mod : a) >> 1 + + not $poly1,$t1 + not $poly3,$t3 + and $acc0,1,$acc5 + addcc $acc0,-1,$t0 ! add modulus + addxccc $acc1,$t1,$t1 + addxccc $acc2,%g0,$t2 + addxccc $acc3,$t3,$t3 + addxc %g0,%g0,$acc4 ! carry bit + + movrnz $acc5,$t0,$acc0 + movrnz $acc5,$t1,$acc1 + movrnz $acc5,$t2,$acc2 + movrnz $acc5,$t3,$acc3 + movrz $acc5,%g0,$acc4 + + ! ret >>= 1 + + srlx $acc0,1,$acc0 + sllx $acc1,63,$t0 + srlx $acc1,1,$acc1 + or $acc0,$t0,$acc0 + sllx $acc2,63,$t1 + srlx $acc2,1,$acc2 + or $acc1,$t1,$acc1 + sllx $acc3,63,$t2 + stx $acc0,[$rp] + srlx $acc3,1,$acc3 + or $acc2,$t2,$acc2 + sllx $acc4,63,$t3 ! don't forget carry bit + stx $acc1,[$rp+8] + or $acc3,$t3,$acc3 + stx $acc2,[$rp+16] + retl + stx $acc3,[$rp+24] +.type __ecp_nistz256_div_by_2_vis3,#function +.size __ecp_nistz256_div_by_2_vis3,.-__ecp_nistz256_div_by_2_vis3 + +! compared to __ecp_nistz256_mul_mont it's almost 4x smaller and +! 4x faster [on T4]... +.align 32 +__ecp_nistz256_mul_mont_vis3: + mulx $a0,$bi,$acc0 + not $poly3,$poly3 ! 0xFFFFFFFF00000001 + umulxhi $a0,$bi,$t0 + mulx $a1,$bi,$acc1 + umulxhi $a1,$bi,$t1 + mulx $a2,$bi,$acc2 + umulxhi $a2,$bi,$t2 + mulx $a3,$bi,$acc3 + umulxhi $a3,$bi,$t3 + ldx [$bp+8],$bi ! b[1] + + addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication + sllx $acc0,32,$t0 + addxccc $acc2,$t1,$acc2 + srlx $acc0,32,$t1 + addxccc $acc3,$t2,$acc3 + addxc %g0,$t3,$acc4 + mov 0,$acc5 +___ +for($i=1;$i<4;$i++) { + # Reduction iteration is normally performed by accumulating + # result of multiplication of modulus by "magic" digit [and + # omitting least significant word, which is guaranteed to + # be 0], but thanks to special form of modulus and "magic" + # digit being equal to least significant word, it can be + # performed with additions and subtractions alone. Indeed: + # + # ffff0001.00000000.0000ffff.ffffffff + # * abcdefgh + # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh + # + # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we + # rewrite above as: + # + # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh + # + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000 + # - 0000abcd.efgh0000.00000000.00000000.abcdefgh + # + # or marking redundant operations: + # + # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.-------- + # + abcdefgh.abcdefgh.0000abcd.efgh0000.-------- + # - 0000abcd.efgh0000.--------.--------.-------- + # ^^^^^^^^ but this word is calculated with umulxhi, because + # there is no subtract with 64-bit borrow:-( + +$code.=<<___; + sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part + umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part + addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] + mulx $a0,$bi,$t0 + addxccc $acc2,$t1,$acc1 + mulx $a1,$bi,$t1 + addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 + mulx $a2,$bi,$t2 + addxccc $acc4,$t3,$acc3 + mulx $a3,$bi,$t3 + addxc $acc5,%g0,$acc4 + + addcc $acc0,$t0,$acc0 ! accumulate low parts of multiplication + umulxhi $a0,$bi,$t0 + addxccc $acc1,$t1,$acc1 + umulxhi $a1,$bi,$t1 + addxccc $acc2,$t2,$acc2 + umulxhi $a2,$bi,$t2 + addxccc $acc3,$t3,$acc3 + umulxhi $a3,$bi,$t3 + addxc $acc4,%g0,$acc4 +___ +$code.=<<___ if ($i<3); + ldx [$bp+8*($i+1)],$bi ! bp[$i+1] +___ +$code.=<<___; + addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication + sllx $acc0,32,$t0 + addxccc $acc2,$t1,$acc2 + srlx $acc0,32,$t1 + addxccc $acc3,$t2,$acc3 + addxccc $acc4,$t3,$acc4 + addxc %g0,%g0,$acc5 +___ +} +$code.=<<___; + sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part + umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part + addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] + addxccc $acc2,$t1,$acc1 + addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 + addxccc $acc4,$t3,$acc3 + b .Lmul_final_vis3 ! see below + addxc $acc5,%g0,$acc4 +.type __ecp_nistz256_mul_mont_vis3,#function +.size __ecp_nistz256_mul_mont_vis3,.-__ecp_nistz256_mul_mont_vis3 + +! compared to above __ecp_nistz256_mul_mont_vis3 it's 21% less +! instructions, but only 14% faster [on T4]... +.align 32 +__ecp_nistz256_sqr_mont_vis3: + ! | | | | | |a1*a0| | + ! | | | | |a2*a0| | | + ! | |a3*a2|a3*a0| | | | + ! | | | |a2*a1| | | | + ! | | |a3*a1| | | | | + ! *| | | | | | | | 2| + ! +|a3*a3|a2*a2|a1*a1|a0*a0| + ! |--+--+--+--+--+--+--+--| + ! |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx + ! + ! "can't overflow" below mark carrying into high part of + ! multiplication result, which can't overflow, because it + ! can never be all ones. + + mulx $a1,$a0,$acc1 ! a[1]*a[0] + umulxhi $a1,$a0,$t1 + mulx $a2,$a0,$acc2 ! a[2]*a[0] + umulxhi $a2,$a0,$t2 + mulx $a3,$a0,$acc3 ! a[3]*a[0] + umulxhi $a3,$a0,$acc4 + + addcc $acc2,$t1,$acc2 ! accumulate high parts of multiplication + mulx $a2,$a1,$t0 ! a[2]*a[1] + umulxhi $a2,$a1,$t1 + addxccc $acc3,$t2,$acc3 + mulx $a3,$a1,$t2 ! a[3]*a[1] + umulxhi $a3,$a1,$t3 + addxc $acc4,%g0,$acc4 ! can't overflow + + mulx $a3,$a2,$acc5 ! a[3]*a[2] + not $poly3,$poly3 ! 0xFFFFFFFF00000001 + umulxhi $a3,$a2,$acc6 + + addcc $t2,$t1,$t1 ! accumulate high parts of multiplication + mulx $a0,$a0,$acc0 ! a[0]*a[0] + addxc $t3,%g0,$t2 ! can't overflow + + addcc $acc3,$t0,$acc3 ! accumulate low parts of multiplication + umulxhi $a0,$a0,$a0 + addxccc $acc4,$t1,$acc4 + mulx $a1,$a1,$t1 ! a[1]*a[1] + addxccc $acc5,$t2,$acc5 + umulxhi $a1,$a1,$a1 + addxc $acc6,%g0,$acc6 ! can't overflow + + addcc $acc1,$acc1,$acc1 ! acc[1-6]*=2 + mulx $a2,$a2,$t2 ! a[2]*a[2] + addxccc $acc2,$acc2,$acc2 + umulxhi $a2,$a2,$a2 + addxccc $acc3,$acc3,$acc3 + mulx $a3,$a3,$t3 ! a[3]*a[3] + addxccc $acc4,$acc4,$acc4 + umulxhi $a3,$a3,$a3 + addxccc $acc5,$acc5,$acc5 + addxccc $acc6,$acc6,$acc6 + addxc %g0,%g0,$acc7 + + addcc $acc1,$a0,$acc1 ! +a[i]*a[i] + addxccc $acc2,$t1,$acc2 + addxccc $acc3,$a1,$acc3 + addxccc $acc4,$t2,$acc4 + sllx $acc0,32,$t0 + addxccc $acc5,$a2,$acc5 + srlx $acc0,32,$t1 + addxccc $acc6,$t3,$acc6 + sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part + addxc $acc7,$a3,$acc7 +___ +for($i=0;$i<3;$i++) { # reductions, see commentary + # in multiplication for details +$code.=<<___; + umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part + addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] + sllx $acc0,32,$t0 + addxccc $acc2,$t1,$acc1 + srlx $acc0,32,$t1 + addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 + sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part + addxc %g0,$t3,$acc3 ! cant't overflow +___ +} +$code.=<<___; + umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part + addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] + addxccc $acc2,$t1,$acc1 + addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 + addxc %g0,$t3,$acc3 ! can't overflow + + addcc $acc0,$acc4,$acc0 ! accumulate upper half + addxccc $acc1,$acc5,$acc1 + addxccc $acc2,$acc6,$acc2 + addxccc $acc3,$acc7,$acc3 + addxc %g0,%g0,$acc4 + +.Lmul_final_vis3: + + ! Final step is "if result > mod, subtract mod", but as comparison + ! means subtraction, we do the subtraction and then copy outcome + ! if it didn't borrow. But note that as we [have to] replace + ! subtraction with addition with negative, carry/borrow logic is + ! inverse. + + addcc $acc0,1,$t0 ! add -modulus, i.e. subtract + not $poly3,$poly3 ! restore 0x00000000FFFFFFFE + addxccc $acc1,$poly1,$t1 + addxccc $acc2,$minus1,$t2 + addxccc $acc3,$poly3,$t3 + addxccc $acc4,$minus1,%g0 ! did it carry? + + movcs %xcc,$t0,$acc0 + movcs %xcc,$t1,$acc1 + stx $acc0,[$rp] + movcs %xcc,$t2,$acc2 + stx $acc1,[$rp+8] + movcs %xcc,$t3,$acc3 + stx $acc2,[$rp+16] + retl + stx $acc3,[$rp+24] +.type __ecp_nistz256_sqr_mont_vis3,#function +.size __ecp_nistz256_sqr_mont_vis3,.-__ecp_nistz256_sqr_mont_vis3 +___ + +######################################################################## +# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); +# +{ +my ($res_x,$res_y,$res_z, + $in_x,$in_y,$in_z, + $S,$M,$Zsqr,$tmp0)=map(32*$_,(0..9)); +# above map() describes stack layout with 10 temporary +# 256-bit vectors on top. + +$code.=<<___; +.align 32 +ecp_nistz256_point_double_vis3: + save %sp,-STACK64_FRAME-32*10,%sp + + mov $rp,$rp_real +.Ldouble_shortcut_vis3: + mov -1,$minus1 + mov -2,$poly3 + sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 + srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE + + ! convert input to uint64_t[4] + ld [$ap],$a0 ! in_x + ld [$ap+4],$t0 + ld [$ap+8],$a1 + ld [$ap+12],$t1 + ld [$ap+16],$a2 + ld [$ap+20],$t2 + ld [$ap+24],$a3 + ld [$ap+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + ld [$ap+32],$acc0 ! in_y + or $a0,$t0,$a0 + ld [$ap+32+4],$t0 + sllx $t2,32,$t2 + ld [$ap+32+8],$acc1 + or $a1,$t1,$a1 + ld [$ap+32+12],$t1 + sllx $t3,32,$t3 + ld [$ap+32+16],$acc2 + or $a2,$t2,$a2 + ld [$ap+32+20],$t2 + or $a3,$t3,$a3 + ld [$ap+32+24],$acc3 + sllx $t0,32,$t0 + ld [$ap+32+28],$t3 + sllx $t1,32,$t1 + stx $a0,[%sp+LOCALS64+$in_x] + sllx $t2,32,$t2 + stx $a1,[%sp+LOCALS64+$in_x+8] + sllx $t3,32,$t3 + stx $a2,[%sp+LOCALS64+$in_x+16] + or $acc0,$t0,$acc0 + stx $a3,[%sp+LOCALS64+$in_x+24] + or $acc1,$t1,$acc1 + stx $acc0,[%sp+LOCALS64+$in_y] + or $acc2,$t2,$acc2 + stx $acc1,[%sp+LOCALS64+$in_y+8] + or $acc3,$t3,$acc3 + stx $acc2,[%sp+LOCALS64+$in_y+16] + stx $acc3,[%sp+LOCALS64+$in_y+24] + + ld [$ap+64],$a0 ! in_z + ld [$ap+64+4],$t0 + ld [$ap+64+8],$a1 + ld [$ap+64+12],$t1 + ld [$ap+64+16],$a2 + ld [$ap+64+20],$t2 + ld [$ap+64+24],$a3 + ld [$ap+64+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + or $a0,$t0,$a0 + sllx $t2,32,$t2 + or $a1,$t1,$a1 + sllx $t3,32,$t3 + or $a2,$t2,$a2 + or $a3,$t3,$a3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + stx $a0,[%sp+LOCALS64+$in_z] + sllx $t2,32,$t2 + stx $a1,[%sp+LOCALS64+$in_z+8] + sllx $t3,32,$t3 + stx $a2,[%sp+LOCALS64+$in_z+16] + stx $a3,[%sp+LOCALS64+$in_z+24] + + ! in_y is still in $acc0-$acc3 + call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(S, in_y); + add %sp,LOCALS64+$S,$rp + + ! in_z is still in $a0-$a3 + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Zsqr, in_z); + add %sp,LOCALS64+$Zsqr,$rp + + mov $acc0,$a0 ! put Zsqr aside + mov $acc1,$a1 + mov $acc2,$a2 + mov $acc3,$a3 + + add %sp,LOCALS64+$in_x,$bp + call __ecp_nistz256_add_vis3 ! p256_add(M, Zsqr, in_x); + add %sp,LOCALS64+$M,$rp + + mov $a0,$acc0 ! restore Zsqr + ldx [%sp+LOCALS64+$S],$a0 ! forward load + mov $a1,$acc1 + ldx [%sp+LOCALS64+$S+8],$a1 + mov $a2,$acc2 + ldx [%sp+LOCALS64+$S+16],$a2 + mov $a3,$acc3 + ldx [%sp+LOCALS64+$S+24],$a3 + + add %sp,LOCALS64+$in_x,$bp + call __ecp_nistz256_sub_morf_vis3 ! p256_sub(Zsqr, in_x, Zsqr); + add %sp,LOCALS64+$Zsqr,$rp + + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(S, S); + add %sp,LOCALS64+$S,$rp + + ldx [%sp+LOCALS64+$in_z],$bi + ldx [%sp+LOCALS64+$in_y],$a0 + ldx [%sp+LOCALS64+$in_y+8],$a1 + ldx [%sp+LOCALS64+$in_y+16],$a2 + ldx [%sp+LOCALS64+$in_y+24],$a3 + add %sp,LOCALS64+$in_z,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(tmp0, in_z, in_y); + add %sp,LOCALS64+$tmp0,$rp + + ldx [%sp+LOCALS64+$M],$bi ! forward load + ldx [%sp+LOCALS64+$Zsqr],$a0 + ldx [%sp+LOCALS64+$Zsqr+8],$a1 + ldx [%sp+LOCALS64+$Zsqr+16],$a2 + ldx [%sp+LOCALS64+$Zsqr+24],$a3 + + call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(res_z, tmp0); + add %sp,LOCALS64+$res_z,$rp + + add %sp,LOCALS64+$M,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(M, M, Zsqr); + add %sp,LOCALS64+$M,$rp + + mov $acc0,$a0 ! put aside M + mov $acc1,$a1 + mov $acc2,$a2 + mov $acc3,$a3 + call __ecp_nistz256_mul_by_2_vis3 + add %sp,LOCALS64+$M,$rp + mov $a0,$t0 ! copy M + ldx [%sp+LOCALS64+$S],$a0 ! forward load + mov $a1,$t1 + ldx [%sp+LOCALS64+$S+8],$a1 + mov $a2,$t2 + ldx [%sp+LOCALS64+$S+16],$a2 + mov $a3,$t3 + ldx [%sp+LOCALS64+$S+24],$a3 + call __ecp_nistz256_add_noload_vis3 ! p256_mul_by_3(M, M); + add %sp,LOCALS64+$M,$rp + + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(tmp0, S); + add %sp,LOCALS64+$tmp0,$rp + + ldx [%sp+LOCALS64+$S],$bi ! forward load + ldx [%sp+LOCALS64+$in_x],$a0 + ldx [%sp+LOCALS64+$in_x+8],$a1 + ldx [%sp+LOCALS64+$in_x+16],$a2 + ldx [%sp+LOCALS64+$in_x+24],$a3 + + call __ecp_nistz256_div_by_2_vis3 ! p256_div_by_2(res_y, tmp0); + add %sp,LOCALS64+$res_y,$rp + + add %sp,LOCALS64+$S,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, in_x); + add %sp,LOCALS64+$S,$rp + + ldx [%sp+LOCALS64+$M],$a0 ! forward load + ldx [%sp+LOCALS64+$M+8],$a1 + ldx [%sp+LOCALS64+$M+16],$a2 + ldx [%sp+LOCALS64+$M+24],$a3 + + call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(tmp0, S); + add %sp,LOCALS64+$tmp0,$rp + + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(res_x, M); + add %sp,LOCALS64+$res_x,$rp + + add %sp,LOCALS64+$tmp0,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, tmp0); + add %sp,LOCALS64+$res_x,$rp + + ldx [%sp+LOCALS64+$M],$a0 ! forward load + ldx [%sp+LOCALS64+$M+8],$a1 + ldx [%sp+LOCALS64+$M+16],$a2 + ldx [%sp+LOCALS64+$M+24],$a3 + + add %sp,LOCALS64+$S,$bp + call __ecp_nistz256_sub_morf_vis3 ! p256_sub(S, S, res_x); + add %sp,LOCALS64+$S,$rp + + mov $acc0,$bi + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, M); + add %sp,LOCALS64+$S,$rp + + ldx [%sp+LOCALS64+$res_x],$a0 ! forward load + ldx [%sp+LOCALS64+$res_x+8],$a1 + ldx [%sp+LOCALS64+$res_x+16],$a2 + ldx [%sp+LOCALS64+$res_x+24],$a3 + + add %sp,LOCALS64+$res_y,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, S, res_y); + add %sp,LOCALS64+$res_y,$bp + + ! convert output to uint_32[8] + srlx $a0,32,$t0 + srlx $a1,32,$t1 + st $a0,[$rp_real] ! res_x + srlx $a2,32,$t2 + st $t0,[$rp_real+4] + srlx $a3,32,$t3 + st $a1,[$rp_real+8] + st $t1,[$rp_real+12] + st $a2,[$rp_real+16] + st $t2,[$rp_real+20] + st $a3,[$rp_real+24] + st $t3,[$rp_real+28] + + ldx [%sp+LOCALS64+$res_z],$a0 ! forward load + srlx $acc0,32,$t0 + ldx [%sp+LOCALS64+$res_z+8],$a1 + srlx $acc1,32,$t1 + ldx [%sp+LOCALS64+$res_z+16],$a2 + srlx $acc2,32,$t2 + ldx [%sp+LOCALS64+$res_z+24],$a3 + srlx $acc3,32,$t3 + st $acc0,[$rp_real+32] ! res_y + st $t0, [$rp_real+32+4] + st $acc1,[$rp_real+32+8] + st $t1, [$rp_real+32+12] + st $acc2,[$rp_real+32+16] + st $t2, [$rp_real+32+20] + st $acc3,[$rp_real+32+24] + st $t3, [$rp_real+32+28] + + srlx $a0,32,$t0 + srlx $a1,32,$t1 + st $a0,[$rp_real+64] ! res_z + srlx $a2,32,$t2 + st $t0,[$rp_real+64+4] + srlx $a3,32,$t3 + st $a1,[$rp_real+64+8] + st $t1,[$rp_real+64+12] + st $a2,[$rp_real+64+16] + st $t2,[$rp_real+64+20] + st $a3,[$rp_real+64+24] + st $t3,[$rp_real+64+28] + + ret + restore +.type ecp_nistz256_point_double_vis3,#function +.size ecp_nistz256_point_double_vis3,.-ecp_nistz256_point_double_vis3 +___ +} +######################################################################## +# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT *in2); +{ +my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y,$in2_z, + $H,$Hsqr,$R,$Rsqr,$Hcub, + $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); +my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); + +# above map() describes stack layout with 18 temporary +# 256-bit vectors on top. Then we reserve some space for +# !in1infty, !in2infty and result of check for zero. + +$code.=<<___; +.globl ecp_nistz256_point_add_vis3 +.align 32 +ecp_nistz256_point_add_vis3: + save %sp,-STACK64_FRAME-32*18-32,%sp + + mov $rp,$rp_real + mov -1,$minus1 + mov -2,$poly3 + sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 + srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE + + ! convert input to uint64_t[4] + ld [$bp],$a0 ! in2_x + ld [$bp+4],$t0 + ld [$bp+8],$a1 + ld [$bp+12],$t1 + ld [$bp+16],$a2 + ld [$bp+20],$t2 + ld [$bp+24],$a3 + ld [$bp+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + ld [$bp+32],$acc0 ! in2_y + or $a0,$t0,$a0 + ld [$bp+32+4],$t0 + sllx $t2,32,$t2 + ld [$bp+32+8],$acc1 + or $a1,$t1,$a1 + ld [$bp+32+12],$t1 + sllx $t3,32,$t3 + ld [$bp+32+16],$acc2 + or $a2,$t2,$a2 + ld [$bp+32+20],$t2 + or $a3,$t3,$a3 + ld [$bp+32+24],$acc3 + sllx $t0,32,$t0 + ld [$bp+32+28],$t3 + sllx $t1,32,$t1 + stx $a0,[%sp+LOCALS64+$in2_x] + sllx $t2,32,$t2 + stx $a1,[%sp+LOCALS64+$in2_x+8] + sllx $t3,32,$t3 + stx $a2,[%sp+LOCALS64+$in2_x+16] + or $acc0,$t0,$acc0 + stx $a3,[%sp+LOCALS64+$in2_x+24] + or $acc1,$t1,$acc1 + stx $acc0,[%sp+LOCALS64+$in2_y] + or $acc2,$t2,$acc2 + stx $acc1,[%sp+LOCALS64+$in2_y+8] + or $acc3,$t3,$acc3 + stx $acc2,[%sp+LOCALS64+$in2_y+16] + stx $acc3,[%sp+LOCALS64+$in2_y+24] + + ld [$bp+64],$acc0 ! in2_z + ld [$bp+64+4],$t0 + ld [$bp+64+8],$acc1 + ld [$bp+64+12],$t1 + ld [$bp+64+16],$acc2 + ld [$bp+64+20],$t2 + ld [$bp+64+24],$acc3 + ld [$bp+64+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + ld [$ap],$a0 ! in1_x + or $acc0,$t0,$acc0 + ld [$ap+4],$t0 + sllx $t2,32,$t2 + ld [$ap+8],$a1 + or $acc1,$t1,$acc1 + ld [$ap+12],$t1 + sllx $t3,32,$t3 + ld [$ap+16],$a2 + or $acc2,$t2,$acc2 + ld [$ap+20],$t2 + or $acc3,$t3,$acc3 + ld [$ap+24],$a3 + sllx $t0,32,$t0 + ld [$ap+28],$t3 + sllx $t1,32,$t1 + stx $acc0,[%sp+LOCALS64+$in2_z] + sllx $t2,32,$t2 + stx $acc1,[%sp+LOCALS64+$in2_z+8] + sllx $t3,32,$t3 + stx $acc2,[%sp+LOCALS64+$in2_z+16] + stx $acc3,[%sp+LOCALS64+$in2_z+24] + + or $acc1,$acc0,$acc0 + or $acc3,$acc2,$acc2 + or $acc2,$acc0,$acc0 + movrnz $acc0,-1,$acc0 ! !in2infty + stx $acc0,[%fp+STACK_BIAS-8] + + or $a0,$t0,$a0 + ld [$ap+32],$acc0 ! in1_y + or $a1,$t1,$a1 + ld [$ap+32+4],$t0 + or $a2,$t2,$a2 + ld [$ap+32+8],$acc1 + or $a3,$t3,$a3 + ld [$ap+32+12],$t1 + ld [$ap+32+16],$acc2 + ld [$ap+32+20],$t2 + ld [$ap+32+24],$acc3 + sllx $t0,32,$t0 + ld [$ap+32+28],$t3 + sllx $t1,32,$t1 + stx $a0,[%sp+LOCALS64+$in1_x] + sllx $t2,32,$t2 + stx $a1,[%sp+LOCALS64+$in1_x+8] + sllx $t3,32,$t3 + stx $a2,[%sp+LOCALS64+$in1_x+16] + or $acc0,$t0,$acc0 + stx $a3,[%sp+LOCALS64+$in1_x+24] + or $acc1,$t1,$acc1 + stx $acc0,[%sp+LOCALS64+$in1_y] + or $acc2,$t2,$acc2 + stx $acc1,[%sp+LOCALS64+$in1_y+8] + or $acc3,$t3,$acc3 + stx $acc2,[%sp+LOCALS64+$in1_y+16] + stx $acc3,[%sp+LOCALS64+$in1_y+24] + + ldx [%sp+LOCALS64+$in2_z],$a0 ! forward load + ldx [%sp+LOCALS64+$in2_z+8],$a1 + ldx [%sp+LOCALS64+$in2_z+16],$a2 + ldx [%sp+LOCALS64+$in2_z+24],$a3 + + ld [$ap+64],$acc0 ! in1_z + ld [$ap+64+4],$t0 + ld [$ap+64+8],$acc1 + ld [$ap+64+12],$t1 + ld [$ap+64+16],$acc2 + ld [$ap+64+20],$t2 + ld [$ap+64+24],$acc3 + ld [$ap+64+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + or $acc0,$t0,$acc0 + sllx $t2,32,$t2 + or $acc1,$t1,$acc1 + sllx $t3,32,$t3 + stx $acc0,[%sp+LOCALS64+$in1_z] + or $acc2,$t2,$acc2 + stx $acc1,[%sp+LOCALS64+$in1_z+8] + or $acc3,$t3,$acc3 + stx $acc2,[%sp+LOCALS64+$in1_z+16] + stx $acc3,[%sp+LOCALS64+$in1_z+24] + + or $acc1,$acc0,$acc0 + or $acc3,$acc2,$acc2 + or $acc2,$acc0,$acc0 + movrnz $acc0,-1,$acc0 ! !in1infty + stx $acc0,[%fp+STACK_BIAS-16] + + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z2sqr, in2_z); + add %sp,LOCALS64+$Z2sqr,$rp + + ldx [%sp+LOCALS64+$in1_z],$a0 + ldx [%sp+LOCALS64+$in1_z+8],$a1 + ldx [%sp+LOCALS64+$in1_z+16],$a2 + ldx [%sp+LOCALS64+$in1_z+24],$a3 + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z); + add %sp,LOCALS64+$Z1sqr,$rp + + ldx [%sp+LOCALS64+$Z2sqr],$bi + ldx [%sp+LOCALS64+$in2_z],$a0 + ldx [%sp+LOCALS64+$in2_z+8],$a1 + ldx [%sp+LOCALS64+$in2_z+16],$a2 + ldx [%sp+LOCALS64+$in2_z+24],$a3 + add %sp,LOCALS64+$Z2sqr,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, Z2sqr, in2_z); + add %sp,LOCALS64+$S1,$rp + + ldx [%sp+LOCALS64+$Z1sqr],$bi + ldx [%sp+LOCALS64+$in1_z],$a0 + ldx [%sp+LOCALS64+$in1_z+8],$a1 + ldx [%sp+LOCALS64+$in1_z+16],$a2 + ldx [%sp+LOCALS64+$in1_z+24],$a3 + add %sp,LOCALS64+$Z1sqr,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z); + add %sp,LOCALS64+$S2,$rp + + ldx [%sp+LOCALS64+$S1],$bi + ldx [%sp+LOCALS64+$in1_y],$a0 + ldx [%sp+LOCALS64+$in1_y+8],$a1 + ldx [%sp+LOCALS64+$in1_y+16],$a2 + ldx [%sp+LOCALS64+$in1_y+24],$a3 + add %sp,LOCALS64+$S1,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, S1, in1_y); + add %sp,LOCALS64+$S1,$rp + + ldx [%sp+LOCALS64+$S2],$bi + ldx [%sp+LOCALS64+$in2_y],$a0 + ldx [%sp+LOCALS64+$in2_y+8],$a1 + ldx [%sp+LOCALS64+$in2_y+16],$a2 + ldx [%sp+LOCALS64+$in2_y+24],$a3 + add %sp,LOCALS64+$S2,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y); + add %sp,LOCALS64+$S2,$rp + + ldx [%sp+LOCALS64+$Z2sqr],$bi ! forward load + ldx [%sp+LOCALS64+$in1_x],$a0 + ldx [%sp+LOCALS64+$in1_x+8],$a1 + ldx [%sp+LOCALS64+$in1_x+16],$a2 + ldx [%sp+LOCALS64+$in1_x+24],$a3 + + add %sp,LOCALS64+$S1,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, S1); + add %sp,LOCALS64+$R,$rp + + or $acc1,$acc0,$acc0 ! see if result is zero + or $acc3,$acc2,$acc2 + or $acc2,$acc0,$acc0 + stx $acc0,[%fp+STACK_BIAS-24] + + add %sp,LOCALS64+$Z2sqr,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U1, in1_x, Z2sqr); + add %sp,LOCALS64+$U1,$rp + + ldx [%sp+LOCALS64+$Z1sqr],$bi + ldx [%sp+LOCALS64+$in2_x],$a0 + ldx [%sp+LOCALS64+$in2_x+8],$a1 + ldx [%sp+LOCALS64+$in2_x+16],$a2 + ldx [%sp+LOCALS64+$in2_x+24],$a3 + add %sp,LOCALS64+$Z1sqr,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in2_x, Z1sqr); + add %sp,LOCALS64+$U2,$rp + + ldx [%sp+LOCALS64+$R],$a0 ! forward load + ldx [%sp+LOCALS64+$R+8],$a1 + ldx [%sp+LOCALS64+$R+16],$a2 + ldx [%sp+LOCALS64+$R+24],$a3 + + add %sp,LOCALS64+$U1,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, U1); + add %sp,LOCALS64+$H,$rp + + or $acc1,$acc0,$acc0 ! see if result is zero + or $acc3,$acc2,$acc2 + orcc $acc2,$acc0,$acc0 + + bne,pt %xcc,.Ladd_proceed_vis3 ! is_equal(U1,U2)? + nop + + ldx [%fp+STACK_BIAS-8],$t0 + ldx [%fp+STACK_BIAS-16],$t1 + ldx [%fp+STACK_BIAS-24],$t2 + andcc $t0,$t1,%g0 + be,pt %xcc,.Ladd_proceed_vis3 ! (in1infty || in2infty)? + nop + andcc $t2,$t2,%g0 + be,a,pt %xcc,.Ldouble_shortcut_vis3 ! is_equal(S1,S2)? + add %sp,32*(12-10)+32,%sp ! difference in frame sizes + + st %g0,[$rp_real] + st %g0,[$rp_real+4] + st %g0,[$rp_real+8] + st %g0,[$rp_real+12] + st %g0,[$rp_real+16] + st %g0,[$rp_real+20] + st %g0,[$rp_real+24] + st %g0,[$rp_real+28] + st %g0,[$rp_real+32] + st %g0,[$rp_real+32+4] + st %g0,[$rp_real+32+8] + st %g0,[$rp_real+32+12] + st %g0,[$rp_real+32+16] + st %g0,[$rp_real+32+20] + st %g0,[$rp_real+32+24] + st %g0,[$rp_real+32+28] + st %g0,[$rp_real+64] + st %g0,[$rp_real+64+4] + st %g0,[$rp_real+64+8] + st %g0,[$rp_real+64+12] + st %g0,[$rp_real+64+16] + st %g0,[$rp_real+64+20] + st %g0,[$rp_real+64+24] + st %g0,[$rp_real+64+28] + b .Ladd_done_vis3 + nop + +.align 16 +.Ladd_proceed_vis3: + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R); + add %sp,LOCALS64+$Rsqr,$rp + + ldx [%sp+LOCALS64+$H],$bi + ldx [%sp+LOCALS64+$in1_z],$a0 + ldx [%sp+LOCALS64+$in1_z+8],$a1 + ldx [%sp+LOCALS64+$in1_z+16],$a2 + ldx [%sp+LOCALS64+$in1_z+24],$a3 + add %sp,LOCALS64+$H,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z); + add %sp,LOCALS64+$res_z,$rp + + ldx [%sp+LOCALS64+$H],$a0 + ldx [%sp+LOCALS64+$H+8],$a1 + ldx [%sp+LOCALS64+$H+16],$a2 + ldx [%sp+LOCALS64+$H+24],$a3 + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H); + add %sp,LOCALS64+$Hsqr,$rp + + ldx [%sp+LOCALS64+$res_z],$bi + ldx [%sp+LOCALS64+$in2_z],$a0 + ldx [%sp+LOCALS64+$in2_z+8],$a1 + ldx [%sp+LOCALS64+$in2_z+16],$a2 + ldx [%sp+LOCALS64+$in2_z+24],$a3 + add %sp,LOCALS64+$res_z,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, res_z, in2_z); + add %sp,LOCALS64+$res_z,$rp + + ldx [%sp+LOCALS64+$H],$bi + ldx [%sp+LOCALS64+$Hsqr],$a0 + ldx [%sp+LOCALS64+$Hsqr+8],$a1 + ldx [%sp+LOCALS64+$Hsqr+16],$a2 + ldx [%sp+LOCALS64+$Hsqr+24],$a3 + add %sp,LOCALS64+$H,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H); + add %sp,LOCALS64+$Hcub,$rp + + ldx [%sp+LOCALS64+$U1],$bi + ldx [%sp+LOCALS64+$Hsqr],$a0 + ldx [%sp+LOCALS64+$Hsqr+8],$a1 + ldx [%sp+LOCALS64+$Hsqr+16],$a2 + ldx [%sp+LOCALS64+$Hsqr+24],$a3 + add %sp,LOCALS64+$U1,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, U1, Hsqr); + add %sp,LOCALS64+$U2,$rp + + call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2); + add %sp,LOCALS64+$Hsqr,$rp + + add %sp,LOCALS64+$Rsqr,$bp + call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr); + add %sp,LOCALS64+$res_x,$rp + + add %sp,LOCALS64+$Hcub,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub); + add %sp,LOCALS64+$res_x,$rp + + ldx [%sp+LOCALS64+$S1],$bi ! forward load + ldx [%sp+LOCALS64+$Hcub],$a0 + ldx [%sp+LOCALS64+$Hcub+8],$a1 + ldx [%sp+LOCALS64+$Hcub+16],$a2 + ldx [%sp+LOCALS64+$Hcub+24],$a3 + + add %sp,LOCALS64+$U2,$bp + call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x); + add %sp,LOCALS64+$res_y,$rp + + add %sp,LOCALS64+$S1,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S1, Hcub); + add %sp,LOCALS64+$S2,$rp + + ldx [%sp+LOCALS64+$R],$bi + ldx [%sp+LOCALS64+$res_y],$a0 + ldx [%sp+LOCALS64+$res_y+8],$a1 + ldx [%sp+LOCALS64+$res_y+16],$a2 + ldx [%sp+LOCALS64+$res_y+24],$a3 + add %sp,LOCALS64+$R,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R); + add %sp,LOCALS64+$res_y,$rp + + add %sp,LOCALS64+$S2,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2); + add %sp,LOCALS64+$res_y,$rp + + ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty + ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty +___ +for($i=0;$i<96;$i+=16) { # conditional moves +$code.=<<___; + ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res + ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 + ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2 + ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3 + ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 + ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 + movrz $t1,$acc2,$acc0 + movrz $t1,$acc3,$acc1 + movrz $t2,$acc4,$acc0 + movrz $t2,$acc5,$acc1 + srlx $acc0,32,$acc2 + srlx $acc1,32,$acc3 + st $acc0,[$rp_real+$i] + st $acc2,[$rp_real+$i+4] + st $acc1,[$rp_real+$i+8] + st $acc3,[$rp_real+$i+12] +___ +} +$code.=<<___; +.Ladd_done_vis3: + ret + restore +.type ecp_nistz256_point_add_vis3,#function +.size ecp_nistz256_point_add_vis3,.-ecp_nistz256_point_add_vis3 +___ +} +######################################################################## +# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT_AFFINE *in2); +{ +my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y, + $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); +my $Z1sqr = $S2; +# above map() describes stack layout with 15 temporary +# 256-bit vectors on top. Then we reserve some space for +# !in1infty and !in2infty. + +$code.=<<___; +.align 32 +ecp_nistz256_point_add_affine_vis3: + save %sp,-STACK64_FRAME-32*15-32,%sp + + mov $rp,$rp_real + mov -1,$minus1 + mov -2,$poly3 + sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 + srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE + + ! convert input to uint64_t[4] + ld [$bp],$a0 ! in2_x + ld [$bp+4],$t0 + ld [$bp+8],$a1 + ld [$bp+12],$t1 + ld [$bp+16],$a2 + ld [$bp+20],$t2 + ld [$bp+24],$a3 + ld [$bp+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + ld [$bp+32],$acc0 ! in2_y + or $a0,$t0,$a0 + ld [$bp+32+4],$t0 + sllx $t2,32,$t2 + ld [$bp+32+8],$acc1 + or $a1,$t1,$a1 + ld [$bp+32+12],$t1 + sllx $t3,32,$t3 + ld [$bp+32+16],$acc2 + or $a2,$t2,$a2 + ld [$bp+32+20],$t2 + or $a3,$t3,$a3 + ld [$bp+32+24],$acc3 + sllx $t0,32,$t0 + ld [$bp+32+28],$t3 + sllx $t1,32,$t1 + stx $a0,[%sp+LOCALS64+$in2_x] + sllx $t2,32,$t2 + stx $a1,[%sp+LOCALS64+$in2_x+8] + sllx $t3,32,$t3 + stx $a2,[%sp+LOCALS64+$in2_x+16] + or $acc0,$t0,$acc0 + stx $a3,[%sp+LOCALS64+$in2_x+24] + or $acc1,$t1,$acc1 + stx $acc0,[%sp+LOCALS64+$in2_y] + or $acc2,$t2,$acc2 + stx $acc1,[%sp+LOCALS64+$in2_y+8] + or $acc3,$t3,$acc3 + stx $acc2,[%sp+LOCALS64+$in2_y+16] + stx $acc3,[%sp+LOCALS64+$in2_y+24] + + or $a1,$a0,$a0 + or $a3,$a2,$a2 + or $acc1,$acc0,$acc0 + or $acc3,$acc2,$acc2 + or $a2,$a0,$a0 + or $acc2,$acc0,$acc0 + or $acc0,$a0,$a0 + movrnz $a0,-1,$a0 ! !in2infty + stx $a0,[%fp+STACK_BIAS-8] + + ld [$ap],$a0 ! in1_x + ld [$ap+4],$t0 + ld [$ap+8],$a1 + ld [$ap+12],$t1 + ld [$ap+16],$a2 + ld [$ap+20],$t2 + ld [$ap+24],$a3 + ld [$ap+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + ld [$ap+32],$acc0 ! in1_y + or $a0,$t0,$a0 + ld [$ap+32+4],$t0 + sllx $t2,32,$t2 + ld [$ap+32+8],$acc1 + or $a1,$t1,$a1 + ld [$ap+32+12],$t1 + sllx $t3,32,$t3 + ld [$ap+32+16],$acc2 + or $a2,$t2,$a2 + ld [$ap+32+20],$t2 + or $a3,$t3,$a3 + ld [$ap+32+24],$acc3 + sllx $t0,32,$t0 + ld [$ap+32+28],$t3 + sllx $t1,32,$t1 + stx $a0,[%sp+LOCALS64+$in1_x] + sllx $t2,32,$t2 + stx $a1,[%sp+LOCALS64+$in1_x+8] + sllx $t3,32,$t3 + stx $a2,[%sp+LOCALS64+$in1_x+16] + or $acc0,$t0,$acc0 + stx $a3,[%sp+LOCALS64+$in1_x+24] + or $acc1,$t1,$acc1 + stx $acc0,[%sp+LOCALS64+$in1_y] + or $acc2,$t2,$acc2 + stx $acc1,[%sp+LOCALS64+$in1_y+8] + or $acc3,$t3,$acc3 + stx $acc2,[%sp+LOCALS64+$in1_y+16] + stx $acc3,[%sp+LOCALS64+$in1_y+24] + + ld [$ap+64],$a0 ! in1_z + ld [$ap+64+4],$t0 + ld [$ap+64+8],$a1 + ld [$ap+64+12],$t1 + ld [$ap+64+16],$a2 + ld [$ap+64+20],$t2 + ld [$ap+64+24],$a3 + ld [$ap+64+28],$t3 + sllx $t0,32,$t0 + sllx $t1,32,$t1 + or $a0,$t0,$a0 + sllx $t2,32,$t2 + or $a1,$t1,$a1 + sllx $t3,32,$t3 + stx $a0,[%sp+LOCALS64+$in1_z] + or $a2,$t2,$a2 + stx $a1,[%sp+LOCALS64+$in1_z+8] + or $a3,$t3,$a3 + stx $a2,[%sp+LOCALS64+$in1_z+16] + stx $a3,[%sp+LOCALS64+$in1_z+24] + + or $a1,$a0,$t0 + or $a3,$a2,$t2 + or $t2,$t0,$t0 + movrnz $t0,-1,$t0 ! !in1infty + stx $t0,[%fp+STACK_BIAS-16] + + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z); + add %sp,LOCALS64+$Z1sqr,$rp + + ldx [%sp+LOCALS64+$in2_x],$bi + mov $acc0,$a0 + mov $acc1,$a1 + mov $acc2,$a2 + mov $acc3,$a3 + add %sp,LOCALS64+$in2_x,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, Z1sqr, in2_x); + add %sp,LOCALS64+$U2,$rp + + ldx [%sp+LOCALS64+$Z1sqr],$bi ! forward load + ldx [%sp+LOCALS64+$in1_z],$a0 + ldx [%sp+LOCALS64+$in1_z+8],$a1 + ldx [%sp+LOCALS64+$in1_z+16],$a2 + ldx [%sp+LOCALS64+$in1_z+24],$a3 + + add %sp,LOCALS64+$in1_x,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, in1_x); + add %sp,LOCALS64+$H,$rp + + add %sp,LOCALS64+$Z1sqr,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z); + add %sp,LOCALS64+$S2,$rp + + ldx [%sp+LOCALS64+$H],$bi + ldx [%sp+LOCALS64+$in1_z],$a0 + ldx [%sp+LOCALS64+$in1_z+8],$a1 + ldx [%sp+LOCALS64+$in1_z+16],$a2 + ldx [%sp+LOCALS64+$in1_z+24],$a3 + add %sp,LOCALS64+$H,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z); + add %sp,LOCALS64+$res_z,$rp + + ldx [%sp+LOCALS64+$S2],$bi + ldx [%sp+LOCALS64+$in2_y],$a0 + ldx [%sp+LOCALS64+$in2_y+8],$a1 + ldx [%sp+LOCALS64+$in2_y+16],$a2 + ldx [%sp+LOCALS64+$in2_y+24],$a3 + add %sp,LOCALS64+$S2,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y); + add %sp,LOCALS64+$S2,$rp + + ldx [%sp+LOCALS64+$H],$a0 ! forward load + ldx [%sp+LOCALS64+$H+8],$a1 + ldx [%sp+LOCALS64+$H+16],$a2 + ldx [%sp+LOCALS64+$H+24],$a3 + + add %sp,LOCALS64+$in1_y,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, in1_y); + add %sp,LOCALS64+$R,$rp + + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H); + add %sp,LOCALS64+$Hsqr,$rp + + ldx [%sp+LOCALS64+$R],$a0 + ldx [%sp+LOCALS64+$R+8],$a1 + ldx [%sp+LOCALS64+$R+16],$a2 + ldx [%sp+LOCALS64+$R+24],$a3 + call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R); + add %sp,LOCALS64+$Rsqr,$rp + + ldx [%sp+LOCALS64+$H],$bi + ldx [%sp+LOCALS64+$Hsqr],$a0 + ldx [%sp+LOCALS64+$Hsqr+8],$a1 + ldx [%sp+LOCALS64+$Hsqr+16],$a2 + ldx [%sp+LOCALS64+$Hsqr+24],$a3 + add %sp,LOCALS64+$H,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H); + add %sp,LOCALS64+$Hcub,$rp + + ldx [%sp+LOCALS64+$Hsqr],$bi + ldx [%sp+LOCALS64+$in1_x],$a0 + ldx [%sp+LOCALS64+$in1_x+8],$a1 + ldx [%sp+LOCALS64+$in1_x+16],$a2 + ldx [%sp+LOCALS64+$in1_x+24],$a3 + add %sp,LOCALS64+$Hsqr,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in1_x, Hsqr); + add %sp,LOCALS64+$U2,$rp + + call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2); + add %sp,LOCALS64+$Hsqr,$rp + + add %sp,LOCALS64+$Rsqr,$bp + call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr); + add %sp,LOCALS64+$res_x,$rp + + add %sp,LOCALS64+$Hcub,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub); + add %sp,LOCALS64+$res_x,$rp + + ldx [%sp+LOCALS64+$Hcub],$bi ! forward load + ldx [%sp+LOCALS64+$in1_y],$a0 + ldx [%sp+LOCALS64+$in1_y+8],$a1 + ldx [%sp+LOCALS64+$in1_y+16],$a2 + ldx [%sp+LOCALS64+$in1_y+24],$a3 + + add %sp,LOCALS64+$U2,$bp + call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x); + add %sp,LOCALS64+$res_y,$rp + + add %sp,LOCALS64+$Hcub,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, in1_y, Hcub); + add %sp,LOCALS64+$S2,$rp + + ldx [%sp+LOCALS64+$R],$bi + ldx [%sp+LOCALS64+$res_y],$a0 + ldx [%sp+LOCALS64+$res_y+8],$a1 + ldx [%sp+LOCALS64+$res_y+16],$a2 + ldx [%sp+LOCALS64+$res_y+24],$a3 + add %sp,LOCALS64+$R,$bp + call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R); + add %sp,LOCALS64+$res_y,$rp + + add %sp,LOCALS64+$S2,$bp + call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2); + add %sp,LOCALS64+$res_y,$rp + + ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty + ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty +1: call .+8 + add %o7,.Lone_mont_vis3-1b,$bp +___ +for($i=0;$i<64;$i+=16) { # conditional moves +$code.=<<___; + ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res + ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 + ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2 + ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3 + ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 + ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 + movrz $t1,$acc2,$acc0 + movrz $t1,$acc3,$acc1 + movrz $t2,$acc4,$acc0 + movrz $t2,$acc5,$acc1 + srlx $acc0,32,$acc2 + srlx $acc1,32,$acc3 + st $acc0,[$rp_real+$i] + st $acc2,[$rp_real+$i+4] + st $acc1,[$rp_real+$i+8] + st $acc3,[$rp_real+$i+12] +___ +} +for(;$i<96;$i+=16) { +$code.=<<___; + ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res + ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 + ldx [$bp+$i-64],$acc2 ! "in2" + ldx [$bp+$i-64+8],$acc3 + ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 + ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 + movrz $t1,$acc2,$acc0 + movrz $t1,$acc3,$acc1 + movrz $t2,$acc4,$acc0 + movrz $t2,$acc5,$acc1 + srlx $acc0,32,$acc2 + srlx $acc1,32,$acc3 + st $acc0,[$rp_real+$i] + st $acc2,[$rp_real+$i+4] + st $acc1,[$rp_real+$i+8] + st $acc3,[$rp_real+$i+12] +___ +} +$code.=<<___; + ret + restore +.type ecp_nistz256_point_add_affine_vis3,#function +.size ecp_nistz256_point_add_affine_vis3,.-ecp_nistz256_point_add_affine_vis3 +.align 64 +.Lone_mont_vis3: +.long 0x00000000,0x00000001, 0xffffffff,0x00000000 +.long 0xffffffff,0xffffffff, 0x00000000,0xfffffffe +.align 64 +#endif +___ +} }}} + +# Purpose of these subroutines is to explicitly encode VIS instructions, +# so that one can compile the module without having to specify VIS +# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. +# Idea is to reserve for option to produce "universal" binary and let +# programmer detect if current CPU is VIS capable at run-time. +sub unvis3 { +my ($mnemonic,$rs1,$rs2,$rd)=@_; +my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); +my ($ref,$opf); +my %visopf = ( "addxc" => 0x011, + "addxccc" => 0x013, + "umulxhi" => 0x016 ); + + $ref = "$mnemonic\t$rs1,$rs2,$rd"; + + if ($opf=$visopf{$mnemonic}) { + foreach ($rs1,$rs2,$rd) { + return $ref if (!/%([goli])([0-9])/); + $_=$bias{$1}+$2; + } + + return sprintf ".word\t0x%08x !%s", + 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, + $ref; + } else { + return $ref; + } +} + +foreach (split("\n",$code)) { + s/\`([^\`]*)\`/eval $1/ge; + + s/\b(umulxhi|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ + &unvis3($1,$2,$3,$4) + /ge; + + print $_,"\n"; +} + +close STDOUT; diff --git a/lib/libcrypto/ec/asm/ecp_nistz256-x86.pl b/lib/libcrypto/ec/asm/ecp_nistz256-x86.pl new file mode 100644 index 00000000000..085d637e5db --- /dev/null +++ b/lib/libcrypto/ec/asm/ecp_nistz256-x86.pl @@ -0,0 +1,1740 @@ +#! /usr/bin/env perl +# $OpenBSD: ecp_nistz256-x86.pl,v 1.1 2016/11/04 17:33:20 miod Exp $ +# +# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + + +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# ECP_NISTZ256 module for x86/SSE2. +# +# October 2014. +# +# Original ECP_NISTZ256 submission targeting x86_64 is detailed in +# http://eprint.iacr.org/2013/816. In the process of adaptation +# original .c module was made 32-bit savvy in order to make this +# implementation possible. +# +# with/without -DECP_NISTZ256_ASM +# Pentium +66-163% +# PIII +72-172% +# P4 +65-132% +# Core2 +90-215% +# Sandy Bridge +105-265% (contemporary i[57]-* are all close to this) +# Atom +65-155% +# Opteron +54-110% +# Bulldozer +99-240% +# VIA Nano +93-290% +# +# Ranges denote minimum and maximum improvement coefficients depending +# on benchmark. Lower coefficients are for ECDSA sign, server-side +# operation. Keep in mind that +200% means 3x improvement. + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +push(@INC,"${dir}","${dir}../../perlasm"); +require "x86asm.pl"; + +# Uncomment when all i386 assembly generators are updated to take the output +# file as last argument... +# $output=pop; +# open STDOUT,">$output"; + +&asm_init($ARGV[0],"ecp_nistz256-x86.pl",$ARGV[$#ARGV] eq "386"); + +$sse2=0; +for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } + +&external_label("OPENSSL_ia32cap_P") if ($sse2); + + +######################################################################## +# Keep in mind that constants are stored least to most significant word +&static_label("ONE"); +&set_label("ONE",64); +&data_word(1,0,0,0,0,0,0,0); +&align(64); + +######################################################################## +# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_mul_by_2"); + &mov ("esi",&wparam(1)); + &mov ("edi",&wparam(0)); + &mov ("ebp","esi"); +######################################################################## +# common pattern for internal functions is that %edi is result pointer, +# %esi and %ebp are input ones, %ebp being optional. %edi is preserved. + &call ("_ecp_nistz256_add"); +&function_end("ecp_nistz256_mul_by_2"); + +######################################################################## +# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_div_by_2"); + &mov ("esi",&wparam(1)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_div_by_2"); +&function_end("ecp_nistz256_div_by_2"); + +&function_begin_B("_ecp_nistz256_div_by_2"); + # tmp = a is odd ? a+mod : a + # + # note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning least significant bit of input to one register, + # %ebp, and its negative to another, %edx. + + &mov ("ebp",&DWP(0,"esi")); + &xor ("edx","edx"); + &mov ("ebx",&DWP(4,"esi")); + &mov ("eax","ebp"); + &and ("ebp",1); + &mov ("ecx",&DWP(8,"esi")); + &sub ("edx","ebp"); + + &add ("eax","edx"); + &adc ("ebx","edx"); + &mov (&DWP(0,"edi"),"eax"); + &adc ("ecx","edx"); + &mov (&DWP(4,"edi"),"ebx"); + &mov (&DWP(8,"edi"),"ecx"); + + &mov ("eax",&DWP(12,"esi")); + &mov ("ebx",&DWP(16,"esi")); + &adc ("eax",0); + &mov ("ecx",&DWP(20,"esi")); + &adc ("ebx",0); + &mov (&DWP(12,"edi"),"eax"); + &adc ("ecx",0); + &mov (&DWP(16,"edi"),"ebx"); + &mov (&DWP(20,"edi"),"ecx"); + + &mov ("eax",&DWP(24,"esi")); + &mov ("ebx",&DWP(28,"esi")); + &adc ("eax","ebp"); + &adc ("ebx","edx"); + &mov (&DWP(24,"edi"),"eax"); + &sbb ("esi","esi"); # broadcast carry bit + &mov (&DWP(28,"edi"),"ebx"); + + # ret = tmp >> 1 + + &mov ("eax",&DWP(0,"edi")); + &mov ("ebx",&DWP(4,"edi")); + &mov ("ecx",&DWP(8,"edi")); + &mov ("edx",&DWP(12,"edi")); + + &shr ("eax",1); + &mov ("ebp","ebx"); + &shl ("ebx",31); + &or ("eax","ebx"); + + &shr ("ebp",1); + &mov ("ebx","ecx"); + &shl ("ecx",31); + &mov (&DWP(0,"edi"),"eax"); + &or ("ebp","ecx"); + &mov ("eax",&DWP(16,"edi")); + + &shr ("ebx",1); + &mov ("ecx","edx"); + &shl ("edx",31); + &mov (&DWP(4,"edi"),"ebp"); + &or ("ebx","edx"); + &mov ("ebp",&DWP(20,"edi")); + + &shr ("ecx",1); + &mov ("edx","eax"); + &shl ("eax",31); + &mov (&DWP(8,"edi"),"ebx"); + &or ("ecx","eax"); + &mov ("ebx",&DWP(24,"edi")); + + &shr ("edx",1); + &mov ("eax","ebp"); + &shl ("ebp",31); + &mov (&DWP(12,"edi"),"ecx"); + &or ("edx","ebp"); + &mov ("ecx",&DWP(28,"edi")); + + &shr ("eax",1); + &mov ("ebp","ebx"); + &shl ("ebx",31); + &mov (&DWP(16,"edi"),"edx"); + &or ("eax","ebx"); + + &shr ("ebp",1); + &mov ("ebx","ecx"); + &shl ("ecx",31); + &mov (&DWP(20,"edi"),"eax"); + &or ("ebp","ecx"); + + &shr ("ebx",1); + &shl ("esi",31); + &mov (&DWP(24,"edi"),"ebp"); + &or ("ebx","esi"); # handle top-most carry bit + &mov (&DWP(28,"edi"),"ebx"); + + &ret (); +&function_end_B("_ecp_nistz256_div_by_2"); + +######################################################################## +# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8], +# const BN_ULONG ebp[8]); +&function_begin("ecp_nistz256_add"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_add"); +&function_end("ecp_nistz256_add"); + +&function_begin_B("_ecp_nistz256_add"); + &mov ("eax",&DWP(0,"esi")); + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &add ("eax",&DWP(0,"ebp")); + &mov ("edx",&DWP(12,"esi")); + &adc ("ebx",&DWP(4,"ebp")); + &mov (&DWP(0,"edi"),"eax"); + &adc ("ecx",&DWP(8,"ebp")); + &mov (&DWP(4,"edi"),"ebx"); + &adc ("edx",&DWP(12,"ebp")); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"esi")); + &mov ("ebx",&DWP(20,"esi")); + &mov ("ecx",&DWP(24,"esi")); + &adc ("eax",&DWP(16,"ebp")); + &mov ("edx",&DWP(28,"esi")); + &adc ("ebx",&DWP(20,"ebp")); + &mov (&DWP(16,"edi"),"eax"); + &adc ("ecx",&DWP(24,"ebp")); + &mov (&DWP(20,"edi"),"ebx"); + &mov ("esi",0); + &adc ("edx",&DWP(28,"ebp")); + &mov (&DWP(24,"edi"),"ecx"); + &adc ("esi",0); + &mov (&DWP(28,"edi"),"edx"); + + # if a+b >= modulus, subtract modulus. + # + # But since comparison implies subtraction, we subtract modulus + # to see if it borrows, and then subtract it for real if + # subtraction didn't borrow. + + &mov ("eax",&DWP(0,"edi")); + &mov ("ebx",&DWP(4,"edi")); + &mov ("ecx",&DWP(8,"edi")); + &sub ("eax",-1); + &mov ("edx",&DWP(12,"edi")); + &sbb ("ebx",-1); + &mov ("eax",&DWP(16,"edi")); + &sbb ("ecx",-1); + &mov ("ebx",&DWP(20,"edi")); + &sbb ("edx",0); + &mov ("ecx",&DWP(24,"edi")); + &sbb ("eax",0); + &mov ("edx",&DWP(28,"edi")); + &sbb ("ebx",0); + &sbb ("ecx",1); + &sbb ("edx",-1); + &sbb ("esi",0); + + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # by using borrow. + + ¬ ("esi"); + &mov ("eax",&DWP(0,"edi")); + &mov ("ebp","esi"); + &mov ("ebx",&DWP(4,"edi")); + &shr ("ebp",31); + &mov ("ecx",&DWP(8,"edi")); + &sub ("eax","esi"); + &mov ("edx",&DWP(12,"edi")); + &sbb ("ebx","esi"); + &mov (&DWP(0,"edi"),"eax"); + &sbb ("ecx","esi"); + &mov (&DWP(4,"edi"),"ebx"); + &sbb ("edx",0); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"edi")); + &mov ("ebx",&DWP(20,"edi")); + &mov ("ecx",&DWP(24,"edi")); + &sbb ("eax",0); + &mov ("edx",&DWP(28,"edi")); + &sbb ("ebx",0); + &mov (&DWP(16,"edi"),"eax"); + &sbb ("ecx","ebp"); + &mov (&DWP(20,"edi"),"ebx"); + &sbb ("edx","esi"); + &mov (&DWP(24,"edi"),"ecx"); + &mov (&DWP(28,"edi"),"edx"); + + &ret (); +&function_end_B("_ecp_nistz256_add"); + +######################################################################## +# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8], +# const BN_ULONG ebp[8]); +&function_begin("ecp_nistz256_sub"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_sub"); +&function_end("ecp_nistz256_sub"); + +&function_begin_B("_ecp_nistz256_sub"); + &mov ("eax",&DWP(0,"esi")); + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &sub ("eax",&DWP(0,"ebp")); + &mov ("edx",&DWP(12,"esi")); + &sbb ("ebx",&DWP(4,"ebp")); + &mov (&DWP(0,"edi"),"eax"); + &sbb ("ecx",&DWP(8,"ebp")); + &mov (&DWP(4,"edi"),"ebx"); + &sbb ("edx",&DWP(12,"ebp")); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"esi")); + &mov ("ebx",&DWP(20,"esi")); + &mov ("ecx",&DWP(24,"esi")); + &sbb ("eax",&DWP(16,"ebp")); + &mov ("edx",&DWP(28,"esi")); + &sbb ("ebx",&DWP(20,"ebp")); + &sbb ("ecx",&DWP(24,"ebp")); + &mov (&DWP(16,"edi"),"eax"); + &sbb ("edx",&DWP(28,"ebp")); + &mov (&DWP(20,"edi"),"ebx"); + &sbb ("esi","esi"); # broadcast borrow bit + &mov (&DWP(24,"edi"),"ecx"); + &mov (&DWP(28,"edi"),"edx"); + + # if a-b borrows, add modulus. + # + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning borrow bit to one register, %ebp, and its negative + # to another, %esi. But we started by calculating %esi... + + &mov ("eax",&DWP(0,"edi")); + &mov ("ebp","esi"); + &mov ("ebx",&DWP(4,"edi")); + &shr ("ebp",31); + &mov ("ecx",&DWP(8,"edi")); + &add ("eax","esi"); + &mov ("edx",&DWP(12,"edi")); + &adc ("ebx","esi"); + &mov (&DWP(0,"edi"),"eax"); + &adc ("ecx","esi"); + &mov (&DWP(4,"edi"),"ebx"); + &adc ("edx",0); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"edi")); + &mov ("ebx",&DWP(20,"edi")); + &mov ("ecx",&DWP(24,"edi")); + &adc ("eax",0); + &mov ("edx",&DWP(28,"edi")); + &adc ("ebx",0); + &mov (&DWP(16,"edi"),"eax"); + &adc ("ecx","ebp"); + &mov (&DWP(20,"edi"),"ebx"); + &adc ("edx","esi"); + &mov (&DWP(24,"edi"),"ecx"); + &mov (&DWP(28,"edi"),"edx"); + + &ret (); +&function_end_B("_ecp_nistz256_sub"); + +######################################################################## +# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_neg"); + &mov ("ebp",&wparam(1)); + &mov ("edi",&wparam(0)); + + &xor ("eax","eax"); + &stack_push(8); + &mov (&DWP(0,"esp"),"eax"); + &mov ("esi","esp"); + &mov (&DWP(4,"esp"),"eax"); + &mov (&DWP(8,"esp"),"eax"); + &mov (&DWP(12,"esp"),"eax"); + &mov (&DWP(16,"esp"),"eax"); + &mov (&DWP(20,"esp"),"eax"); + &mov (&DWP(24,"esp"),"eax"); + &mov (&DWP(28,"esp"),"eax"); + + &call ("_ecp_nistz256_sub"); + + &stack_pop(8); +&function_end("ecp_nistz256_neg"); + +&function_begin_B("_picup_eax"); + &mov ("eax",&DWP(0,"esp")); + &ret (); +&function_end_B("_picup_eax"); + +######################################################################## +# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_from_mont"); + &mov ("esi",&wparam(1)); + &call ("_picup_eax"); + &set_label("pic"); + &lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax")); + if ($sse2) { + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_from_mont"); + +######################################################################## +# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8], +# const BN_ULONG ebp[8]); +&function_begin("ecp_nistz256_mul_mont"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_mul_mont"); + +######################################################################## +# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_sqr_mont"); + &mov ("esi",&wparam(1)); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &mov ("ebp","esi"); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_sqr_mont"); + +&function_begin_B("_ecp_nistz256_mul_mont"); + if ($sse2) { + # see if XMM+SSE2 is on + &and ("eax","\$(IA32CAP_MASK0_FXSR | IA32CAP_MASK0_SSE2)"); + &cmp ("eax","\$(IA32CAP_MASK0_FXSR | IA32CAP_MASK0_SSE2)"); + &jne (&label("mul_mont_ialu")); + + ######################################## + # SSE2 code path featuring 32x16-bit + # multiplications is ~2x faster than + # IALU counterpart (except on Atom)... + ######################################## + # stack layout: + # +------------------------------------+< %esp + # | 7 16-byte temporary XMM words, | + # | "sliding" toward lower address | + # . . + # +------------------------------------+ + # | unused XMM word | + # +------------------------------------+< +128,%ebx + # | 8 16-byte XMM words holding copies | + # | of a[i]<<64|a[i] | + # . . + # . . + # +------------------------------------+< +256 + &mov ("edx","esp"); + &sub ("esp",0x100); + + &movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy + &lea ("ebp",&DWP(4,"ebp")); + &pcmpeqd("xmm6","xmm6"); + &psrlq ("xmm6",48); # compose 0xffff<<64|0xffff + + &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y + &and ("esp",-64); + &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y + &lea ("ebx",&DWP(0x80,"esp")); + + &movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy + &pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy + &movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ... + &movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0] + &pmuludq("xmm0","xmm7"); # a[0]*b[0] + + &movd ("xmm2",&DWP(4*2,"esi")); + &pshufd ("xmm1","xmm1",0b11001100); + &movdqa (&QWP(0x10,"ebx"),"xmm1"); + &pmuludq("xmm1","xmm7"); # a[1]*b[0] + + &movq ("xmm4","xmm0"); # clear upper 64 bits + &pslldq("xmm4",6); + &paddq ("xmm4","xmm0"); + &movdqa("xmm5","xmm4"); + &psrldq("xmm4",10); # upper 32 bits of a[0]*b[0] + &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0] + + # Upper half of a[0]*b[i] is carried into next multiplication + # iteration, while lower one "participates" in actual reduction. + # Normally latter is done by accumulating result of multiplication + # of modulus by "magic" digit, but thanks to special form of modulus + # and "magic" digit it can be performed only with additions and + # subtractions (see note in IALU section below). Note that we are + # not bothered with carry bits, they are accumulated in "flatten" + # phase after all multiplications and reductions. + + &movd ("xmm3",&DWP(4*3,"esi")); + &pshufd ("xmm2","xmm2",0b11001100); + &movdqa (&QWP(0x20,"ebx"),"xmm2"); + &pmuludq("xmm2","xmm7"); # a[2]*b[0] + &paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry + &movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0] + + &movd ("xmm0",&DWP(4*4,"esi")); + &pshufd ("xmm3","xmm3",0b11001100); + &movdqa (&QWP(0x30,"ebx"),"xmm3"); + &pmuludq("xmm3","xmm7"); # a[3]*b[0] + &movdqa (&QWP(0x10,"esp"),"xmm2"); + + &movd ("xmm1",&DWP(4*5,"esi")); + &pshufd ("xmm0","xmm0",0b11001100); + &movdqa (&QWP(0x40,"ebx"),"xmm0"); + &pmuludq("xmm0","xmm7"); # a[4]*b[0] + &paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step + &movdqa (&QWP(0x20,"esp"),"xmm3"); + + &movd ("xmm2",&DWP(4*6,"esi")); + &pshufd ("xmm1","xmm1",0b11001100); + &movdqa (&QWP(0x50,"ebx"),"xmm1"); + &pmuludq("xmm1","xmm7"); # a[5]*b[0] + &movdqa (&QWP(0x30,"esp"),"xmm0"); + &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step + + &movd ("xmm3",&DWP(4*7,"esi")); + &pshufd ("xmm2","xmm2",0b11001100); + &movdqa (&QWP(0x60,"ebx"),"xmm2"); + &pmuludq("xmm2","xmm7"); # a[6]*b[0] + &movdqa (&QWP(0x40,"esp"),"xmm1"); + &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step + + &movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy + &pshufd ("xmm3","xmm3",0b11001100); + &movdqa (&QWP(0x70,"ebx"),"xmm3"); + &pmuludq("xmm3","xmm7"); # a[7]*b[0] + + &pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y + &movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] + &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y + + &mov ("ecx",6); + &lea ("ebp",&DWP(4,"ebp")); + &jmp (&label("madd_sse2")); + +&set_label("madd_sse2",16); + &paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled] + &paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled] + &movdqa ("xmm1",&QWP(0x10,"ebx")); + &pmuludq("xmm0","xmm7"); # a[0]*b[i] + &movdqa(&QWP(0x50,"esp"),"xmm2"); + + &movdqa ("xmm2",&QWP(0x20,"ebx")); + &pmuludq("xmm1","xmm7"); # a[1]*b[i] + &movdqa(&QWP(0x60,"esp"),"xmm3"); + &paddq ("xmm0",&QWP(0x00,"esp")); + + &movdqa ("xmm3",&QWP(0x30,"ebx")); + &pmuludq("xmm2","xmm7"); # a[2]*b[i] + &movq ("xmm4","xmm0"); # clear upper 64 bits + &pslldq("xmm4",6); + &paddq ("xmm1",&QWP(0x10,"esp")); + &paddq ("xmm4","xmm0"); + &movdqa("xmm5","xmm4"); + &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] + + &movdqa ("xmm0",&QWP(0x40,"ebx")); + &pmuludq("xmm3","xmm7"); # a[3]*b[i] + &paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry + &paddq ("xmm2",&QWP(0x20,"esp")); + &movdqa (&QWP(0x00,"esp"),"xmm1"); + + &movdqa ("xmm1",&QWP(0x50,"ebx")); + &pmuludq("xmm0","xmm7"); # a[4]*b[i] + &paddq ("xmm3",&QWP(0x30,"esp")); + &movdqa (&QWP(0x10,"esp"),"xmm2"); + &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] + + &movdqa ("xmm2",&QWP(0x60,"ebx")); + &pmuludq("xmm1","xmm7"); # a[5]*b[i] + &paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step + &paddq ("xmm0",&QWP(0x40,"esp")); + &movdqa (&QWP(0x20,"esp"),"xmm3"); + &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step + + &movdqa ("xmm3","xmm7"); + &pmuludq("xmm2","xmm7"); # a[6]*b[i] + &movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy + &lea ("ebp",&DWP(4,"ebp")); + &paddq ("xmm1",&QWP(0x50,"esp")); + &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step + &movdqa (&QWP(0x30,"esp"),"xmm0"); + &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y + + &pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i] + &pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y + &movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] + &movdqa (&QWP(0x40,"esp"),"xmm1"); + &paddq ("xmm2",&QWP(0x60,"esp")); + + &dec ("ecx"); + &jnz (&label("madd_sse2")); + + &paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled] + &paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled] + &movdqa ("xmm1",&QWP(0x10,"ebx")); + &pmuludq("xmm0","xmm7"); # a[0]*b[7] + &movdqa(&QWP(0x50,"esp"),"xmm2"); + + &movdqa ("xmm2",&QWP(0x20,"ebx")); + &pmuludq("xmm1","xmm7"); # a[1]*b[7] + &movdqa(&QWP(0x60,"esp"),"xmm3"); + &paddq ("xmm0",&QWP(0x00,"esp")); + + &movdqa ("xmm3",&QWP(0x30,"ebx")); + &pmuludq("xmm2","xmm7"); # a[2]*b[7] + &movq ("xmm4","xmm0"); # clear upper 64 bits + &pslldq("xmm4",6); + &paddq ("xmm1",&QWP(0x10,"esp")); + &paddq ("xmm4","xmm0"); + &movdqa("xmm5","xmm4"); + &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] + + &movdqa ("xmm0",&QWP(0x40,"ebx")); + &pmuludq("xmm3","xmm7"); # a[3]*b[7] + &paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry + &paddq ("xmm2",&QWP(0x20,"esp")); + &movdqa (&QWP(0x00,"esp"),"xmm1"); + + &movdqa ("xmm1",&QWP(0x50,"ebx")); + &pmuludq("xmm0","xmm7"); # a[4]*b[7] + &paddq ("xmm3",&QWP(0x30,"esp")); + &movdqa (&QWP(0x10,"esp"),"xmm2"); + &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] + + &movdqa ("xmm2",&QWP(0x60,"ebx")); + &pmuludq("xmm1","xmm7"); # a[5]*b[7] + &paddq ("xmm3","xmm5"); # reduction step + &paddq ("xmm0",&QWP(0x40,"esp")); + &movdqa (&QWP(0x20,"esp"),"xmm3"); + &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step + + &movdqa ("xmm3",&QWP(0x70,"ebx")); + &pmuludq("xmm2","xmm7"); # a[6]*b[7] + &paddq ("xmm1",&QWP(0x50,"esp")); + &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step + &movdqa (&QWP(0x30,"esp"),"xmm0"); + + &pmuludq("xmm3","xmm7"); # a[7]*b[7] + &pcmpeqd("xmm7","xmm7"); + &movdqa ("xmm0",&QWP(0x00,"esp")); + &pslldq ("xmm7",8); + &movdqa (&QWP(0x40,"esp"),"xmm1"); + &paddq ("xmm2",&QWP(0x60,"esp")); + + &paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step + &paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step + &movdqa(&QWP(0x50,"esp"),"xmm2"); + &movdqa(&QWP(0x60,"esp"),"xmm3"); + + &movdqa ("xmm1",&QWP(0x10,"esp")); + &movdqa ("xmm2",&QWP(0x20,"esp")); + &movdqa ("xmm3",&QWP(0x30,"esp")); + + &movq ("xmm4","xmm0"); # "flatten" + &pand ("xmm0","xmm7"); + &xor ("ebp","ebp"); + &pslldq ("xmm4",6); + &movq ("xmm5","xmm1"); + &paddq ("xmm0","xmm4"); + &pand ("xmm1","xmm7"); + &psrldq ("xmm0",6); + &movd ("eax","xmm0"); + &psrldq ("xmm0",4); + + &paddq ("xmm5","xmm0"); + &movdqa ("xmm0",&QWP(0x40,"esp")); + &sub ("eax",-1); # start subtracting modulus, + # this is used to determine + # if result is larger/smaller + # than modulus (see below) + &pslldq ("xmm5",6); + &movq ("xmm4","xmm2"); + &paddq ("xmm1","xmm5"); + &pand ("xmm2","xmm7"); + &psrldq ("xmm1",6); + &mov (&DWP(4*0,"edi"),"eax"); + &movd ("eax","xmm1"); + &psrldq ("xmm1",4); + + &paddq ("xmm4","xmm1"); + &movdqa ("xmm1",&QWP(0x50,"esp")); + &sbb ("eax",-1); + &pslldq ("xmm4",6); + &movq ("xmm5","xmm3"); + &paddq ("xmm2","xmm4"); + &pand ("xmm3","xmm7"); + &psrldq ("xmm2",6); + &mov (&DWP(4*1,"edi"),"eax"); + &movd ("eax","xmm2"); + &psrldq ("xmm2",4); + + &paddq ("xmm5","xmm2"); + &movdqa ("xmm2",&QWP(0x60,"esp")); + &sbb ("eax",-1); + &pslldq ("xmm5",6); + &movq ("xmm4","xmm0"); + &paddq ("xmm3","xmm5"); + &pand ("xmm0","xmm7"); + &psrldq ("xmm3",6); + &mov (&DWP(4*2,"edi"),"eax"); + &movd ("eax","xmm3"); + &psrldq ("xmm3",4); + + &paddq ("xmm4","xmm3"); + &sbb ("eax",0); + &pslldq ("xmm4",6); + &movq ("xmm5","xmm1"); + &paddq ("xmm0","xmm4"); + &pand ("xmm1","xmm7"); + &psrldq ("xmm0",6); + &mov (&DWP(4*3,"edi"),"eax"); + &movd ("eax","xmm0"); + &psrldq ("xmm0",4); + + &paddq ("xmm5","xmm0"); + &sbb ("eax",0); + &pslldq ("xmm5",6); + &movq ("xmm4","xmm2"); + &paddq ("xmm1","xmm5"); + &pand ("xmm2","xmm7"); + &psrldq ("xmm1",6); + &movd ("ebx","xmm1"); + &psrldq ("xmm1",4); + &mov ("esp","edx"); + + &paddq ("xmm4","xmm1"); + &pslldq ("xmm4",6); + &paddq ("xmm2","xmm4"); + &psrldq ("xmm2",6); + &movd ("ecx","xmm2"); + &psrldq ("xmm2",4); + &sbb ("ebx",0); + &movd ("edx","xmm2"); + &pextrw ("esi","xmm2",2); # top-most overflow bit + &sbb ("ecx",1); + &sbb ("edx",-1); + &sbb ("esi",0); # borrow from subtraction + + # Final step is "if result > mod, subtract mod", and at this point + # we have result - mod written to output buffer, as well as borrow + # bit from this subtraction, and if borrow bit is set, we add + # modulus back. + # + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning borrow bit to one register, %ebp, and its negative + # to another, %esi. But we started by calculating %esi... + + &sub ("ebp","esi"); + &add (&DWP(4*0,"edi"),"esi"); # add modulus or zero + &adc (&DWP(4*1,"edi"),"esi"); + &adc (&DWP(4*2,"edi"),"esi"); + &adc (&DWP(4*3,"edi"),0); + &adc ("eax",0); + &adc ("ebx",0); + &mov (&DWP(4*4,"edi"),"eax"); + &adc ("ecx","ebp"); + &mov (&DWP(4*5,"edi"),"ebx"); + &adc ("edx","esi"); + &mov (&DWP(4*6,"edi"),"ecx"); + &mov (&DWP(4*7,"edi"),"edx"); + + &ret (); + +&set_label("mul_mont_ialu",16); } + + ######################################## + # IALU code path suitable for all CPUs. + ######################################## + # stack layout: + # +------------------------------------+< %esp + # | 8 32-bit temporary words, accessed | + # | as circular buffer | + # . . + # . . + # +------------------------------------+< +32 + # | offloaded destination pointer | + # +------------------------------------+ + # | unused | + # +------------------------------------+< +40 + &sub ("esp",10*4); + + &mov ("eax",&DWP(0*4,"esi")); # a[0] + &mov ("ebx",&DWP(0*4,"ebp")); # b[0] + &mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr + + &mul ("ebx"); # a[0]*b[0] + &mov (&DWP(0*4,"esp"),"eax"); # t[0] + &mov ("eax",&DWP(1*4,"esi")); + &mov ("ecx","edx") + + &mul ("ebx"); # a[1]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(2*4,"esi")); + &adc ("edx",0); + &mov (&DWP(1*4,"esp"),"ecx"); # t[1] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[2]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(3*4,"esi")); + &adc ("edx",0); + &mov (&DWP(2*4,"esp"),"ecx"); # t[2] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[3]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(4*4,"esi")); + &adc ("edx",0); + &mov (&DWP(3*4,"esp"),"ecx"); # t[3] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[4]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(5*4,"esi")); + &adc ("edx",0); + &mov (&DWP(4*4,"esp"),"ecx"); # t[4] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[5]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(6*4,"esi")); + &adc ("edx",0); + &mov (&DWP(5*4,"esp"),"ecx"); # t[5] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[6]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(7*4,"esi")); + &adc ("edx",0); + &mov (&DWP(6*4,"esp"),"ecx"); # t[6] + &mov ("ecx","edx"); + + &xor ("edi","edi"); # initial top-most carry + &mul ("ebx"); # a[7]*b[0] + &add ("ecx","eax"); # t[7] + &mov ("eax",&DWP(0*4,"esp")); # t[0] + &adc ("edx",0); # t[8] + +for ($i=0;$i<7;$i++) { + my $j=$i+1; + + # Reduction iteration is normally performed by accumulating + # result of multiplication of modulus by "magic" digit [and + # omitting least significant word, which is guaranteed to + # be 0], but thanks to special form of modulus and "magic" + # digit being equal to least significant word, it can be + # performed with additions and subtractions alone. Indeed: + # + # ffff.0001.0000.0000.0000.ffff.ffff.ffff + # * abcd + # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we + # rewrite above as: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 + # - abcd.0000.0000.0000.0000.0000.0000.abcd + # + # or marking redundant operations: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- + # + abcd.0000.abcd.0000.0000.abcd.----.----.---- + # - abcd.----.----.----.----.----.----.---- + + &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] + &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 + &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 + &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] + &adc ("ecx",0); # t[7]+=0 + &adc ("edx","eax"); # t[8]+=t[0] + &adc ("edi",0); # top-most carry + &mov ("ebx",&DWP($j*4,"ebp")); # b[i] + &sub ("ecx","eax"); # t[7]-=t[0] + &mov ("eax",&DWP(0*4,"esi")); # a[0] + &sbb ("edx",0); # t[8]-=0 + &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); + &sbb ("edi",0); # top-most carry, + # keep in mind that + # netto result is + # *addition* of value + # with (abcd<<32)-abcd + # on top, so that + # underflow is + # impossible, because + # (abcd<<32)-abcd + # doesn't underflow + &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); + + &mul ("ebx"); # a[0]*b[i] + &add ("eax",&DWP((($j+0)%8)*4,"esp")); + &adc ("edx",0); + &mov (&DWP((($j+0)%8)*4,"esp"),"eax"); + &mov ("eax",&DWP(1*4,"esi")); + &mov ("ecx","edx") + + &mul ("ebx"); # a[1]*b[i] + &add ("ecx",&DWP((($j+1)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(2*4,"esi")); + &mov (&DWP((($j+1)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[2]*b[i] + &add ("ecx",&DWP((($j+2)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(3*4,"esi")); + &mov (&DWP((($j+2)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[3]*b[i] + &add ("ecx",&DWP((($j+3)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(4*4,"esi")); + &mov (&DWP((($j+3)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[4]*b[i] + &add ("ecx",&DWP((($j+4)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(5*4,"esi")); + &mov (&DWP((($j+4)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[5]*b[i] + &add ("ecx",&DWP((($j+5)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(6*4,"esi")); + &mov (&DWP((($j+5)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[6]*b[i] + &add ("ecx",&DWP((($j+6)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(7*4,"esi")); + &mov (&DWP((($j+6)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[7]*b[i] + &add ("ecx",&DWP((($j+7)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); # t[7] + &mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0] + &adc ("edx","edi"); # t[8] + &mov ("edi",0); + &adc ("edi",0); # top-most carry +} + &mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr + &xor ("esi","esi"); + my $j=$i+1; + + # last multiplication-less reduction + &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] + &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 + &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 + &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] + &adc ("ecx",0); # t[7]+=0 + &adc ("edx","eax"); # t[8]+=t[0] + &adc ("edi",0); # top-most carry + &mov ("ebx",&DWP((($j+1)%8)*4,"esp")); + &sub ("ecx","eax"); # t[7]-=t[0] + &mov ("eax",&DWP((($j+0)%8)*4,"esp")); + &sbb ("edx",0); # t[8]-=0 + &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); + &sbb ("edi",0); # top-most carry + &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); + + # Final step is "if result > mod, subtract mod", but we do it + # "other way around", namely write result - mod to output buffer + # and if subtraction borrowed, add modulus back. + + &mov ("ecx",&DWP((($j+2)%8)*4,"esp")); + &sub ("eax",-1); + &mov ("edx",&DWP((($j+3)%8)*4,"esp")); + &sbb ("ebx",-1); + &mov (&DWP(0*4,"ebp"),"eax"); + &sbb ("ecx",-1); + &mov (&DWP(1*4,"ebp"),"ebx"); + &sbb ("edx",0); + &mov (&DWP(2*4,"ebp"),"ecx"); + &mov (&DWP(3*4,"ebp"),"edx"); + + &mov ("eax",&DWP((($j+4)%8)*4,"esp")); + &mov ("ebx",&DWP((($j+5)%8)*4,"esp")); + &mov ("ecx",&DWP((($j+6)%8)*4,"esp")); + &sbb ("eax",0); + &mov ("edx",&DWP((($j+7)%8)*4,"esp")); + &sbb ("ebx",0); + &sbb ("ecx",1); + &sbb ("edx",-1); + &sbb ("edi",0); + + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning borrow bit to one register, %ebp, and its negative + # to another, %esi. But we started by calculating %esi... + + &sub ("esi","edi"); + &add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero + &adc (&DWP(1*4,"ebp"),"edi"); + &adc (&DWP(2*4,"ebp"),"edi"); + &adc (&DWP(3*4,"ebp"),0); + &adc ("eax",0); + &adc ("ebx",0); + &mov (&DWP(4*4,"ebp"),"eax"); + &adc ("ecx","esi"); + &mov (&DWP(5*4,"ebp"),"ebx"); + &adc ("edx","edi"); + &mov (&DWP(6*4,"ebp"),"ecx"); + &mov ("edi","ebp"); # fulfill contract + &mov (&DWP(7*4,"ebp"),"edx"); + + &add ("esp",10*4); + &ret (); +&function_end_B("_ecp_nistz256_mul_mont"); + +######################################################################## +# void ecp_nistz256_select_w5(P256_POINT *edi,const void *esi, +# int ebp); +&function_begin("ecp_nistz256_select_w5"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + + &lea ("esi",&DWP(0,"esi","ebp",4)); + &neg ("ebp"); + &sar ("ebp",31); + &mov ("edi",&wparam(0)); + &lea ("esi",&DWP(0,"esi","ebp",4)); + + for($i=0;$i<24;$i+=4) { + &mov ("eax",&DWP(64*($i+0),"esi")); + &mov ("ebx",&DWP(64*($i+1),"esi")); + &mov ("ecx",&DWP(64*($i+2),"esi")); + &mov ("edx",&DWP(64*($i+3),"esi")); + &and ("eax","ebp"); + &and ("ebx","ebp"); + &and ("ecx","ebp"); + &and ("edx","ebp"); + &mov (&DWP(4*($i+0),"edi"),"eax"); + &mov (&DWP(4*($i+1),"edi"),"ebx"); + &mov (&DWP(4*($i+2),"edi"),"ecx"); + &mov (&DWP(4*($i+3),"edi"),"edx"); + } +&function_end("ecp_nistz256_select_w5"); + +######################################################################## +# void ecp_nistz256_select_w7(P256_POINT_AFFINE *edi,const void *esi, +# int ebp); +&function_begin("ecp_nistz256_select_w7"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + + &add ("esi","ebp"); + &neg ("ebp"), + &sar ("ebp",31); + &mov ("edi",&wparam(0)); + &lea ("esi",&DWP(0,"esi","ebp")); + + for($i=0;$i<64;$i+=4) { + &movz ("eax",&BP(64*($i+0),"esi")); + &movz ("ebx",&BP(64*($i+1),"esi")); + &movz ("ecx",&BP(64*($i+2),"esi")); + &and ("eax","ebp"); + &movz ("edx",&BP(64*($i+3),"esi")); + &and ("ebx","ebp"); + &mov (&BP($i+0,"edi"),"al"); + &and ("ecx","ebp"); + &mov (&BP($i+1,"edi"),"bl"); + &and ("edx","ebp"); + &mov (&BP($i+2,"edi"),"cl"); + &mov (&BP($i+3,"edi"),"dl"); + } +&function_end("ecp_nistz256_select_w7"); + +######################################################################## +# following subroutines are "literal" implementation of those found in +# ecp_nistz256.c +# +######################################################################## +# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); +# +&static_label("point_double_shortcut"); +&function_begin("ecp_nistz256_point_double"); +{ my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); + + &mov ("esi",&wparam(1)); + + # above map() describes stack layout with 5 temporary + # 256-bit vectors on top, then we take extra word for + # OPENSSL_ia32cap_P copy. + &stack_push(8*5+1); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("ebp",&DWP(0,"edx")); } + +&set_label("point_double_shortcut"); + &mov ("eax",&DWP(0,"esi")); # copy in_x + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &mov ("edx",&DWP(12,"esi")); + &mov (&DWP($in_x+0,"esp"),"eax"); + &mov (&DWP($in_x+4,"esp"),"ebx"); + &mov (&DWP($in_x+8,"esp"),"ecx"); + &mov (&DWP($in_x+12,"esp"),"edx"); + &mov ("eax",&DWP(16,"esi")); + &mov ("ebx",&DWP(20,"esi")); + &mov ("ecx",&DWP(24,"esi")); + &mov ("edx",&DWP(28,"esi")); + &mov (&DWP($in_x+16,"esp"),"eax"); + &mov (&DWP($in_x+20,"esp"),"ebx"); + &mov (&DWP($in_x+24,"esp"),"ecx"); + &mov (&DWP($in_x+28,"esp"),"edx"); + &mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy + + &lea ("ebp",&DWP(32,"esi")); + &lea ("esi",&DWP(32,"esi")); + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &mov ("esi",64); + &add ("esi",&wparam(1)); + &lea ("edi",&DWP($Zsqr,"esp")); + &mov ("ebp","esi"); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($S,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &mov ("ebp",&wparam(1)); + &lea ("esi",&DWP(32,"ebp")); + &lea ("ebp",&DWP(64,"ebp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y); + + &lea ("esi",&DWP($in_x,"esp")); + &lea ("ebp",&DWP($Zsqr,"esp")); + &lea ("edi",&DWP($M,"esp")); + &call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr); + + &mov ("edi",64); + &lea ("esi",&DWP($tmp0,"esp")); + &lea ("ebp",&DWP($tmp0,"esp")); + &add ("edi",&wparam(0)); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0); + + &lea ("esi",&DWP($in_x,"esp")); + &lea ("ebp",&DWP($Zsqr,"esp")); + &lea ("edi",&DWP($Zsqr,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($S,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($M,"esp")); + &lea ("ebp",&DWP($Zsqr,"esp")); + &lea ("edi",&DWP($M,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr); + + &mov ("edi",32); + &lea ("esi",&DWP($tmp0,"esp")); + &add ("edi",&wparam(0)); + &call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0); + + &lea ("esi",&DWP($M,"esp")); + &lea ("ebp",&DWP($M,"esp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in_x,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x); + + &lea ("esi",&DWP($tmp0,"esp")); + &lea ("ebp",&DWP($M,"esp")); + &lea ("edi",&DWP($M,"esp")); + &call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M); + + &lea ("esi",&DWP($S,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($M,"esp")); + &lea ("ebp",&DWP($M,"esp")); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M); + + &mov ("esi","edi"); # %edi is still res_x here + &lea ("ebp",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0); + + &lea ("esi",&DWP($S,"esp")); + &mov ("ebp","edi"); # %edi is still res_x + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &mov ("esi","edi"); # %edi is still &S + &lea ("ebp",&DWP($M,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M); + + &mov ("ebp",32); + &lea ("esi",&DWP($S,"esp")); + &add ("ebp",&wparam(0)); + &mov ("edi","ebp"); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y); + + &stack_pop(8*5+1); +} &function_end("ecp_nistz256_point_double"); + +######################################################################## +# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT *in2); +&function_begin("ecp_nistz256_point_add"); +{ my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y,$in2_z, + $H,$Hsqr,$R,$Rsqr,$Hcub, + $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); + my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); + + &mov ("esi",&wparam(2)); + + # above map() describes stack layout with 18 temporary + # 256-bit vectors on top, then we take extra words for + # !in1infty, !in2infty, result of check for zero and + # OPENSSL_ia32cap_P copy. [one unused word for padding] + &stack_push(8*18+5); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("ebp",&DWP(0,"edx")); } + + &lea ("edi",&DWP($in2_x,"esp")); + for($i=0;$i<96;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in2 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0); + &mov ("ebp","eax") if ($i==64); + &or ("ebp","eax") if ($i>64); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx") if ($i>=64); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx") if ($i>=64); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx") if ($i>=64); + } + &xor ("eax","eax"); + &mov ("esi",&wparam(1)); + &sub ("eax","ebp"); + &or ("ebp","eax"); + &sar ("ebp",31); + &mov (&DWP(32*18+4,"esp"),"ebp"); # !in2infty + + &lea ("edi",&DWP($in1_x,"esp")); + for($i=0;$i<96;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in1 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov ("ebp","eax") if ($i==64); + &or ("ebp","eax") if ($i>64); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx") if ($i>=64); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx") if ($i>=64); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx") if ($i>=64); + } + &xor ("eax","eax"); + &sub ("eax","ebp"); + &or ("ebp","eax"); + &sar ("ebp",31); + &mov (&DWP(32*18+0,"esp"),"ebp"); # !in1infty + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_z,"esp")); + &lea ("ebp",&DWP($in2_z,"esp")); + &lea ("edi",&DWP($Z2sqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_z,"esp")); + &lea ("ebp",&DWP($in1_z,"esp")); + &lea ("edi",&DWP($Z1sqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Z2sqr,"esp")); + &lea ("ebp",&DWP($in2_z,"esp")); + &lea ("edi",&DWP($S1,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Z1sqr,"esp")); + &lea ("ebp",&DWP($in1_z,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_y,"esp")); + &lea ("ebp",&DWP($S1,"esp")); + &lea ("edi",&DWP($S1,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); + + &lea ("esi",&DWP($S2,"esp")); + &lea ("ebp",&DWP($S1,"esp")); + &lea ("edi",&DWP($R,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1); + + &or ("ebx","eax"); # see if result is zero + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &or ("ebx","ecx"); + &or ("ebx","edx"); + &or ("ebx",&DWP(0,"edi")); + &or ("ebx",&DWP(4,"edi")); + &lea ("esi",&DWP($in1_x,"esp")); + &or ("ebx",&DWP(8,"edi")); + &lea ("ebp",&DWP($Z2sqr,"esp")); + &or ("ebx",&DWP(12,"edi")); + &lea ("edi",&DWP($U1,"esp")); + &mov (&DWP(32*18+8,"esp"),"ebx"); + + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_x,"esp")); + &lea ("ebp",&DWP($Z1sqr,"esp")); + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($U1,"esp")); + &lea ("edi",&DWP($H,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1); + + &or ("eax","ebx"); # see if result is zero + &or ("eax","ecx"); + &or ("eax","edx"); + &or ("eax",&DWP(0,"edi")); + &or ("eax",&DWP(4,"edi")); + &or ("eax",&DWP(8,"edi")); + &or ("eax",&DWP(12,"edi")); + + &data_byte(0x3e); # predict taken + &jnz (&label("add_proceed")); # is_equal(U1,U2)? + + &mov ("eax",&DWP(32*18+0,"esp")); + &and ("eax",&DWP(32*18+4,"esp")); + &mov ("ebx",&DWP(32*18+8,"esp")); + &jz (&label("add_proceed")); # (in1infty || in2infty)? + &test ("ebx","ebx"); + &jz (&label("add_double")); # is_equal(S1,S2)? + + &mov ("edi",&wparam(0)); + &xor ("eax","eax"); + &mov ("ecx",96/4); + &data_byte(0xfc,0xf3,0xab); # cld; stosd + &jmp (&label("add_done")); + +&set_label("add_double",16); + &mov ("esi",&wparam(1)); + &mov ("ebp",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &add ("esp",4*((8*18+5)-(8*5+1))); # difference in frame sizes + &jmp (&label("point_double_shortcut")); + +&set_label("add_proceed",16); + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($R,"esp")); + &lea ("edi",&DWP($Rsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($in1_z,"esp")); + &lea ("edi",&DWP($res_z,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($H,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_z,"esp")); + &lea ("ebp",&DWP($res_z,"esp")); + &lea ("edi",&DWP($res_z,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Hsqr,"esp")); + &lea ("ebp",&DWP($U1,"esp")); + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($Hcub,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($U2,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); + + &lea ("esi",&DWP($Rsqr,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); + + &lea ("esi",&DWP($res_x,"esp")); + &lea ("ebp",&DWP($Hcub,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($res_x,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Hcub,"esp")); + &lea ("ebp",&DWP($S1,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($res_y,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y); + + &lea ("esi",&DWP($res_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); + + &mov ("ebp",&DWP(32*18+0,"esp")); # !in1infty + &mov ("esi",&DWP(32*18+4,"esp")); # !in2infty + &mov ("edi",&wparam(0)); + &mov ("edx","ebp"); + ¬ ("ebp"); + &and ("edx","esi"); + &and ("ebp","esi"); + ¬ ("esi"); + + ######################################## + # conditional moves + for($i=64;$i<96;$i+=4) { + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp"); + &and ("ebx",&DWP($in2_x+$i,"esp")); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax","ebx"); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + for($i=0;$i<64;$i+=4) { + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp"); + &and ("ebx",&DWP($in2_x+$i,"esp")); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax","ebx"); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + &set_label("add_done"); + &stack_pop(8*18+5); +} &function_end("ecp_nistz256_point_add"); + +######################################################################## +# void ecp_nistz256_point_add_affine(P256_POINT *out, +# const P256_POINT *in1, +# const P256_POINT_AFFINE *in2); +&function_begin("ecp_nistz256_point_add_affine"); +{ + my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y, + $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); + my $Z1sqr = $S2; + my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); + + &mov ("esi",&wparam(1)); + + # above map() describes stack layout with 15 temporary + # 256-bit vectors on top, then we take extra words for + # !in1infty, !in2infty, and OPENSSL_ia32cap_P copy. + &stack_push(8*15+3); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("ebp",&DWP(0,"edx")); } + + &lea ("edi",&DWP($in1_x,"esp")); + for($i=0;$i<96;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in1 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0); + &mov ("ebp","eax") if ($i==64); + &or ("ebp","eax") if ($i>64); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx") if ($i>=64); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx") if ($i>=64); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx") if ($i>=64); + } + &xor ("eax","eax"); + &mov ("esi",&wparam(2)); + &sub ("eax","ebp"); + &or ("ebp","eax"); + &sar ("ebp",31); + &mov (&DWP(32*15+0,"esp"),"ebp"); # !in1infty + + &lea ("edi",&DWP($in2_x,"esp")); + for($i=0;$i<64;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in2 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov ("ebp","eax") if ($i==0); + &or ("ebp","eax") if ($i!=0); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx"); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx"); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx"); + } + &xor ("ebx","ebx"); + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &sub ("ebx","ebp"); + &lea ("esi",&DWP($in1_z,"esp")); + &or ("ebx","ebp"); + &lea ("ebp",&DWP($in1_z,"esp")); + &sar ("ebx",31); + &lea ("edi",&DWP($Z1sqr,"esp")); + &mov (&DWP(32*15+4,"esp"),"ebx"); # !in2infty + + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_x,"esp")); + &mov ("ebp","edi"); # %esi is stull &Z1sqr + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_z,"esp")); + &lea ("ebp",&DWP($Z1sqr,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($in1_x,"esp")); + &lea ("edi",&DWP($H,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_z,"esp")); + &lea ("ebp",&DWP($H,"esp")); + &lea ("edi",&DWP($res_z,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); + + &lea ("esi",&DWP($S2,"esp")); + &lea ("ebp",&DWP($in1_y,"esp")); + &lea ("edi",&DWP($R,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($H,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($R,"esp")); + &lea ("edi",&DWP($Rsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_x,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($Hcub,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($U2,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); + + &lea ("esi",&DWP($Rsqr,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); + + &lea ("esi",&DWP($res_x,"esp")); + &lea ("ebp",&DWP($Hcub,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($res_x,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Hcub,"esp")); + &lea ("ebp",&DWP($in1_y,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($res_y,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R); + + &lea ("esi",&DWP($res_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); + + &mov ("ebp",&DWP(32*15+0,"esp")); # !in1infty + &mov ("esi",&DWP(32*15+4,"esp")); # !in2infty + &mov ("edi",&wparam(0)); + &mov ("edx","ebp"); + ¬ ("ebp"); + &and ("edx","esi"); + &and ("ebp","esi"); + ¬ ("esi"); + + ######################################## + # conditional moves + for($i=64;$i<96;$i+=4) { + my $one=@ONE_mont[($i-64)/4]; + + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp") if ($one && $one!=-1); + &and ("ebx",$one) if ($one && $one!=-1); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax",$one==-1?"ebp":"ebx") if ($one); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + for($i=0;$i<64;$i+=4) { + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp"); + &and ("ebx",&DWP($in2_x+$i,"esp")); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax","ebx"); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + &stack_pop(8*15+3); +} &function_end("ecp_nistz256_point_add_affine"); + +&asm_finish(); + +close STDOUT; diff --git a/lib/libcrypto/ec/asm/ecp_nistz256-x86_64.pl b/lib/libcrypto/ec/asm/ecp_nistz256-x86_64.pl new file mode 100644 index 00000000000..b772aae7425 --- /dev/null +++ b/lib/libcrypto/ec/asm/ecp_nistz256-x86_64.pl @@ -0,0 +1,1971 @@ +#!/usr/bin/env perl +# $OpenBSD: ecp_nistz256-x86_64.pl,v 1.1 2016/11/04 17:33:20 miod Exp $ +# +# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + +# Copyright (c) 2014, Intel Corporation. +# +# Permission to use, copy, modify, and/or distribute this software for any +# purpose with or without fee is hereby granted, provided that the above +# copyright notice and this permission notice appear in all copies. +# +# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES +# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF +# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION +# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN +# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + +# Developers and authors: +# Shay Gueron (1, 2), and Vlad Krasnov (1) +# (1) Intel Corporation, Israel Development Center +# (2) University of Haifa + +# Reference: +# S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with +# 256 Bit Primes" + +# Further optimization by <appro@openssl.org>: +# +# this/original with/without -DECP_NISTZ256_ASM(*) +# Opteron +12-49% +110-150% +# Bulldozer +14-45% +175-210% +# P4 +18-46% n/a :-( +# Westmere +12-34% +80-87% +# Sandy Bridge +9-35% +110-120% +# Ivy Bridge +9-35% +110-125% +# Haswell +8-37% +140-160% +# Broadwell +18-58% +145-210% +# Atom +15-50% +130-180% +# VIA Nano +43-160% +300-480% +# +# (*) "without -DECP_NISTZ256_ASM" refers to build with +# "enable-ec_nistp_64_gcc_128"; +# +# Ranges denote minimum and maximum improvement coefficients depending +# on benchmark. Lower coefficients are for ECDSA sign, relatively fastest +# server-side operation. Keep in mind that +100% means 2x improvement. + +$flavour = shift; +$output = shift; +if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } + +$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or +( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or +die "can't locate x86_64-xlate.pl"; + +open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; +*STDOUT=*OUT; + +$code.=<<___; +.text + +# The polynomial +.align 64 +.Lpoly: +.quad 0xffffffffffffffff, 0x00000000ffffffff, 0x0000000000000000, 0xffffffff00000001 + +.LOne: +.long 1,1,1,1,1,1,1,1 +.LTwo: +.long 2,2,2,2,2,2,2,2 +.LThree: +.long 3,3,3,3,3,3,3,3 +.LONE_mont: +.quad 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe +___ + +{ +################################################################################ +# void ecp_nistz256_mul_by_2(uint64_t res[4], uint64_t a[4]); + +my ($a0,$a1,$a2,$a3)=map("%r$_",(8..11)); +my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rdx","%rcx","%r12","%r13"); +my ($r_ptr,$a_ptr,$b_ptr)=("%rdi","%rsi","%rdx"); + +$code.=<<___; + +.globl ecp_nistz256_mul_by_2 +.type ecp_nistz256_mul_by_2,\@function,2 +.align 64 +ecp_nistz256_mul_by_2: + push %r12 + push %r13 + + mov 8*0($a_ptr), $a0 + mov 8*1($a_ptr), $a1 + add $a0, $a0 # a0:a3+a0:a3 + mov 8*2($a_ptr), $a2 + adc $a1, $a1 + mov 8*3($a_ptr), $a3 + lea .Lpoly(%rip), $a_ptr + mov $a0, $t0 + adc $a2, $a2 + adc $a3, $a3 + mov $a1, $t1 + sbb $t4, $t4 + + sub 8*0($a_ptr), $a0 + mov $a2, $t2 + sbb 8*1($a_ptr), $a1 + sbb 8*2($a_ptr), $a2 + mov $a3, $t3 + sbb 8*3($a_ptr), $a3 + test $t4, $t4 + + cmovz $t0, $a0 + cmovz $t1, $a1 + mov $a0, 8*0($r_ptr) + cmovz $t2, $a2 + mov $a1, 8*1($r_ptr) + cmovz $t3, $a3 + mov $a2, 8*2($r_ptr) + mov $a3, 8*3($r_ptr) + + pop %r13 + pop %r12 + ret +.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 + +################################################################################ +# void ecp_nistz256_neg(uint64_t res[4], uint64_t a[4]); +.globl ecp_nistz256_neg +.type ecp_nistz256_neg,\@function,2 +.align 32 +ecp_nistz256_neg: + push %r12 + push %r13 + + xor $a0, $a0 + xor $a1, $a1 + xor $a2, $a2 + xor $a3, $a3 + xor $t4, $t4 + + sub 8*0($a_ptr), $a0 + sbb 8*1($a_ptr), $a1 + sbb 8*2($a_ptr), $a2 + mov $a0, $t0 + sbb 8*3($a_ptr), $a3 + lea .Lpoly(%rip), $a_ptr + mov $a1, $t1 + sbb \$0, $t4 + + add 8*0($a_ptr), $a0 + mov $a2, $t2 + adc 8*1($a_ptr), $a1 + adc 8*2($a_ptr), $a2 + mov $a3, $t3 + adc 8*3($a_ptr), $a3 + test $t4, $t4 + + cmovz $t0, $a0 + cmovz $t1, $a1 + mov $a0, 8*0($r_ptr) + cmovz $t2, $a2 + mov $a1, 8*1($r_ptr) + cmovz $t3, $a3 + mov $a2, 8*2($r_ptr) + mov $a3, 8*3($r_ptr) + + pop %r13 + pop %r12 + ret +.size ecp_nistz256_neg,.-ecp_nistz256_neg +___ +} +{ +my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx"); +my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15)); +my ($t0,$t1,$t2,$t3,$t4)=("%rcx","%rbp","%rbx","%rdx","%rax"); +my ($poly1,$poly3)=($acc6,$acc7); + +$code.=<<___; +################################################################################ +# void ecp_nistz256_mul_mont( +# uint64_t res[4], +# uint64_t a[4], +# uint64_t b[4]); + +.globl ecp_nistz256_mul_mont +.type ecp_nistz256_mul_mont,\@function,3 +.align 32 +ecp_nistz256_mul_mont: +.Lmul_mont: + push %rbp + push %rbx + push %r12 + push %r13 + push %r14 + push %r15 + + mov $b_org, $b_ptr + mov 8*0($b_org), %rax + mov 8*0($a_ptr), $acc1 + mov 8*1($a_ptr), $acc2 + mov 8*2($a_ptr), $acc3 + mov 8*3($a_ptr), $acc4 + + call __ecp_nistz256_mul_montq + + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbx + pop %rbp + ret +.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont + +.type __ecp_nistz256_mul_montq,\@abi-omnipotent +.align 32 +__ecp_nistz256_mul_montq: + ######################################################################## + # Multiply a by b[0] + mov %rax, $t1 + mulq $acc1 + mov .Lpoly+8*1(%rip),$poly1 + mov %rax, $acc0 + mov $t1, %rax + mov %rdx, $acc1 + + mulq $acc2 + mov .Lpoly+8*3(%rip),$poly3 + add %rax, $acc1 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $acc2 + + mulq $acc3 + add %rax, $acc2 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $acc3 + + mulq $acc4 + add %rax, $acc3 + mov $acc0, %rax + adc \$0, %rdx + xor $acc5, $acc5 + mov %rdx, $acc4 + + ######################################################################## + # First reduction step + # Basically now we want to multiply acc[0] by p256, + # and add the result to the acc. + # Due to the special form of p256 we do some optimizations + # + # acc[0] x p256[0..1] = acc[0] x 2^96 - acc[0] + # then we add acc[0] and get acc[0] x 2^96 + + mov $acc0, $t1 + shl \$32, $acc0 + mulq $poly3 + shr \$32, $t1 + add $acc0, $acc1 # +=acc[0]<<96 + adc $t1, $acc2 + adc %rax, $acc3 + mov 8*1($b_ptr), %rax + adc %rdx, $acc4 + adc \$0, $acc5 + xor $acc0, $acc0 + + ######################################################################## + # Multiply by b[1] + mov %rax, $t1 + mulq 8*0($a_ptr) + add %rax, $acc1 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*1($a_ptr) + add $t0, $acc2 + adc \$0, %rdx + add %rax, $acc2 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*2($a_ptr) + add $t0, $acc3 + adc \$0, %rdx + add %rax, $acc3 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*3($a_ptr) + add $t0, $acc4 + adc \$0, %rdx + add %rax, $acc4 + mov $acc1, %rax + adc %rdx, $acc5 + adc \$0, $acc0 + + ######################################################################## + # Second reduction step + mov $acc1, $t1 + shl \$32, $acc1 + mulq $poly3 + shr \$32, $t1 + add $acc1, $acc2 + adc $t1, $acc3 + adc %rax, $acc4 + mov 8*2($b_ptr), %rax + adc %rdx, $acc5 + adc \$0, $acc0 + xor $acc1, $acc1 + + ######################################################################## + # Multiply by b[2] + mov %rax, $t1 + mulq 8*0($a_ptr) + add %rax, $acc2 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*1($a_ptr) + add $t0, $acc3 + adc \$0, %rdx + add %rax, $acc3 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*2($a_ptr) + add $t0, $acc4 + adc \$0, %rdx + add %rax, $acc4 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*3($a_ptr) + add $t0, $acc5 + adc \$0, %rdx + add %rax, $acc5 + mov $acc2, %rax + adc %rdx, $acc0 + adc \$0, $acc1 + + ######################################################################## + # Third reduction step + mov $acc2, $t1 + shl \$32, $acc2 + mulq $poly3 + shr \$32, $t1 + add $acc2, $acc3 + adc $t1, $acc4 + adc %rax, $acc5 + mov 8*3($b_ptr), %rax + adc %rdx, $acc0 + adc \$0, $acc1 + xor $acc2, $acc2 + + ######################################################################## + # Multiply by b[3] + mov %rax, $t1 + mulq 8*0($a_ptr) + add %rax, $acc3 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*1($a_ptr) + add $t0, $acc4 + adc \$0, %rdx + add %rax, $acc4 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*2($a_ptr) + add $t0, $acc5 + adc \$0, %rdx + add %rax, $acc5 + mov $t1, %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq 8*3($a_ptr) + add $t0, $acc0 + adc \$0, %rdx + add %rax, $acc0 + mov $acc3, %rax + adc %rdx, $acc1 + adc \$0, $acc2 + + ######################################################################## + # Final reduction step + mov $acc3, $t1 + shl \$32, $acc3 + mulq $poly3 + shr \$32, $t1 + add $acc3, $acc4 + adc $t1, $acc5 + mov $acc4, $t0 + adc %rax, $acc0 + adc %rdx, $acc1 + mov $acc5, $t1 + adc \$0, $acc2 + + ######################################################################## + # Branch-less conditional subtraction of P + sub \$-1, $acc4 # .Lpoly[0] + mov $acc0, $t2 + sbb $poly1, $acc5 # .Lpoly[1] + sbb \$0, $acc0 # .Lpoly[2] + mov $acc1, $t3 + sbb $poly3, $acc1 # .Lpoly[3] + sbb \$0, $acc2 + + cmovc $t0, $acc4 + cmovc $t1, $acc5 + mov $acc4, 8*0($r_ptr) + cmovc $t2, $acc0 + mov $acc5, 8*1($r_ptr) + cmovc $t3, $acc1 + mov $acc0, 8*2($r_ptr) + mov $acc1, 8*3($r_ptr) + + ret +.size __ecp_nistz256_mul_montq,.-__ecp_nistz256_mul_montq + +################################################################################ +# void ecp_nistz256_sqr_mont( +# uint64_t res[4], +# uint64_t a[4]); + +# we optimize the square according to S.Gueron and V.Krasnov, +# "Speeding up Big-Number Squaring" +.globl ecp_nistz256_sqr_mont +.type ecp_nistz256_sqr_mont,\@function,2 +.align 32 +ecp_nistz256_sqr_mont: + push %rbp + push %rbx + push %r12 + push %r13 + push %r14 + push %r15 + + mov 8*0($a_ptr), %rax + mov 8*1($a_ptr), $acc6 + mov 8*2($a_ptr), $acc7 + mov 8*3($a_ptr), $acc0 + + call __ecp_nistz256_sqr_montq + + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbx + pop %rbp + ret +.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont + +.type __ecp_nistz256_sqr_montq,\@abi-omnipotent +.align 32 +__ecp_nistz256_sqr_montq: + mov %rax, $acc5 + mulq $acc6 # a[1]*a[0] + mov %rax, $acc1 + mov $acc7, %rax + mov %rdx, $acc2 + + mulq $acc5 # a[0]*a[2] + add %rax, $acc2 + mov $acc0, %rax + adc \$0, %rdx + mov %rdx, $acc3 + + mulq $acc5 # a[0]*a[3] + add %rax, $acc3 + mov $acc7, %rax + adc \$0, %rdx + mov %rdx, $acc4 + + ################################# + mulq $acc6 # a[1]*a[2] + add %rax, $acc3 + mov $acc0, %rax + adc \$0, %rdx + mov %rdx, $t1 + + mulq $acc6 # a[1]*a[3] + add %rax, $acc4 + mov $acc0, %rax + adc \$0, %rdx + add $t1, $acc4 + mov %rdx, $acc5 + adc \$0, $acc5 + + ################################# + mulq $acc7 # a[2]*a[3] + xor $acc7, $acc7 + add %rax, $acc5 + mov 8*0($a_ptr), %rax + mov %rdx, $acc6 + adc \$0, $acc6 + + add $acc1, $acc1 # acc1:6<<1 + adc $acc2, $acc2 + adc $acc3, $acc3 + adc $acc4, $acc4 + adc $acc5, $acc5 + adc $acc6, $acc6 + adc \$0, $acc7 + + mulq %rax + mov %rax, $acc0 + mov 8*1($a_ptr), %rax + mov %rdx, $t0 + + mulq %rax + add $t0, $acc1 + adc %rax, $acc2 + mov 8*2($a_ptr), %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq %rax + add $t0, $acc3 + adc %rax, $acc4 + mov 8*3($a_ptr), %rax + adc \$0, %rdx + mov %rdx, $t0 + + mulq %rax + add $t0, $acc5 + adc %rax, $acc6 + mov $acc0, %rax + adc %rdx, $acc7 + + mov .Lpoly+8*1(%rip), $a_ptr + mov .Lpoly+8*3(%rip), $t1 + + ########################################## + # Now the reduction + # First iteration + mov $acc0, $t0 + shl \$32, $acc0 + mulq $t1 + shr \$32, $t0 + add $acc0, $acc1 # +=acc[0]<<96 + adc $t0, $acc2 + adc %rax, $acc3 + mov $acc1, %rax + adc \$0, %rdx + + ########################################## + # Second iteration + mov $acc1, $t0 + shl \$32, $acc1 + mov %rdx, $acc0 + mulq $t1 + shr \$32, $t0 + add $acc1, $acc2 + adc $t0, $acc3 + adc %rax, $acc0 + mov $acc2, %rax + adc \$0, %rdx + + ########################################## + # Third iteration + mov $acc2, $t0 + shl \$32, $acc2 + mov %rdx, $acc1 + mulq $t1 + shr \$32, $t0 + add $acc2, $acc3 + adc $t0, $acc0 + adc %rax, $acc1 + mov $acc3, %rax + adc \$0, %rdx + + ########################################### + # Last iteration + mov $acc3, $t0 + shl \$32, $acc3 + mov %rdx, $acc2 + mulq $t1 + shr \$32, $t0 + add $acc3, $acc0 + adc $t0, $acc1 + adc %rax, $acc2 + adc \$0, %rdx + xor $acc3, $acc3 + + ############################################ + # Add the rest of the acc + add $acc0, $acc4 + adc $acc1, $acc5 + mov $acc4, $acc0 + adc $acc2, $acc6 + adc %rdx, $acc7 + mov $acc5, $acc1 + adc \$0, $acc3 + + sub \$-1, $acc4 # .Lpoly[0] + mov $acc6, $acc2 + sbb $a_ptr, $acc5 # .Lpoly[1] + sbb \$0, $acc6 # .Lpoly[2] + mov $acc7, $t0 + sbb $t1, $acc7 # .Lpoly[3] + sbb \$0, $acc3 + + cmovc $acc0, $acc4 + cmovc $acc1, $acc5 + mov $acc4, 8*0($r_ptr) + cmovc $acc2, $acc6 + mov $acc5, 8*1($r_ptr) + cmovc $t0, $acc7 + mov $acc6, 8*2($r_ptr) + mov $acc7, 8*3($r_ptr) + + ret +.size __ecp_nistz256_sqr_montq,.-__ecp_nistz256_sqr_montq +___ + +} +{ +my ($r_ptr,$in_ptr)=("%rdi","%rsi"); +my ($acc0,$acc1,$acc2,$acc3)=map("%r$_",(8..11)); +my ($t0,$t1,$t2)=("%rcx","%r12","%r13"); + +$code.=<<___; +################################################################################ +# void ecp_nistz256_from_mont( +# uint64_t res[4], +# uint64_t in[4]); +# This one performs Montgomery multiplication by 1, so we only need the reduction + +.globl ecp_nistz256_from_mont +.type ecp_nistz256_from_mont,\@function,2 +.align 32 +ecp_nistz256_from_mont: + push %r12 + push %r13 + + mov 8*0($in_ptr), %rax + mov .Lpoly+8*3(%rip), $t2 + mov 8*1($in_ptr), $acc1 + mov 8*2($in_ptr), $acc2 + mov 8*3($in_ptr), $acc3 + mov %rax, $acc0 + mov .Lpoly+8*1(%rip), $t1 + + ######################################### + # First iteration + mov %rax, $t0 + shl \$32, $acc0 + mulq $t2 + shr \$32, $t0 + add $acc0, $acc1 + adc $t0, $acc2 + adc %rax, $acc3 + mov $acc1, %rax + adc \$0, %rdx + + ######################################### + # Second iteration + mov $acc1, $t0 + shl \$32, $acc1 + mov %rdx, $acc0 + mulq $t2 + shr \$32, $t0 + add $acc1, $acc2 + adc $t0, $acc3 + adc %rax, $acc0 + mov $acc2, %rax + adc \$0, %rdx + + ########################################## + # Third iteration + mov $acc2, $t0 + shl \$32, $acc2 + mov %rdx, $acc1 + mulq $t2 + shr \$32, $t0 + add $acc2, $acc3 + adc $t0, $acc0 + adc %rax, $acc1 + mov $acc3, %rax + adc \$0, %rdx + + ########################################### + # Last iteration + mov $acc3, $t0 + shl \$32, $acc3 + mov %rdx, $acc2 + mulq $t2 + shr \$32, $t0 + add $acc3, $acc0 + adc $t0, $acc1 + mov $acc0, $t0 + adc %rax, $acc2 + mov $acc1, $in_ptr + adc \$0, %rdx + + ########################################### + # Branch-less conditional subtraction + sub \$-1, $acc0 + mov $acc2, %rax + sbb $t1, $acc1 + sbb \$0, $acc2 + mov %rdx, $acc3 + sbb $t2, %rdx + sbb $t2, $t2 + + cmovnz $t0, $acc0 + cmovnz $in_ptr, $acc1 + mov $acc0, 8*0($r_ptr) + cmovnz %rax, $acc2 + mov $acc1, 8*1($r_ptr) + cmovz %rdx, $acc3 + mov $acc2, 8*2($r_ptr) + mov $acc3, 8*3($r_ptr) + + pop %r13 + pop %r12 + ret +.size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont +___ +} +{ +my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); +my ($ONE,$INDEX,$Ra,$Rb,$Rc,$Rd,$Re,$Rf)=map("%xmm$_",(0..7)); +my ($M0,$T0a,$T0b,$T0c,$T0d,$T0e,$T0f,$TMP0)=map("%xmm$_",(8..15)); +my ($M1,$T2a,$T2b,$TMP2,$M2,$T2a,$T2b,$TMP2)=map("%xmm$_",(8..15)); + +$code.=<<___; +################################################################################ +# void ecp_nistz256_select_w5(uint64_t *val, uint64_t *in_t, int index); +.globl ecp_nistz256_select_w5 +.type ecp_nistz256_select_w5,\@abi-omnipotent +.align 32 +ecp_nistz256_select_w5: +___ +$code.=<<___ if ($win64); + lea -0x88(%rsp), %rax +.LSEH_begin_ecp_nistz256_select_w5: + .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp + .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax) + .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax) + .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax) + .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax) + .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax) + .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax) + .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax) + .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax) + .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax) + .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax) +___ +$code.=<<___; + movdqa .LOne(%rip), $ONE + movd $index, $INDEX + + pxor $Ra, $Ra + pxor $Rb, $Rb + pxor $Rc, $Rc + pxor $Rd, $Rd + pxor $Re, $Re + pxor $Rf, $Rf + + movdqa $ONE, $M0 + pshufd \$0, $INDEX, $INDEX + + mov \$16, %rax +.Lselect_loop_sse_w5: + + movdqa $M0, $TMP0 + paddd $ONE, $M0 + pcmpeqd $INDEX, $TMP0 + + movdqa 16*0($in_t), $T0a + movdqa 16*1($in_t), $T0b + movdqa 16*2($in_t), $T0c + movdqa 16*3($in_t), $T0d + movdqa 16*4($in_t), $T0e + movdqa 16*5($in_t), $T0f + lea 16*6($in_t), $in_t + + pand $TMP0, $T0a + pand $TMP0, $T0b + por $T0a, $Ra + pand $TMP0, $T0c + por $T0b, $Rb + pand $TMP0, $T0d + por $T0c, $Rc + pand $TMP0, $T0e + por $T0d, $Rd + pand $TMP0, $T0f + por $T0e, $Re + por $T0f, $Rf + + dec %rax + jnz .Lselect_loop_sse_w5 + + movdqu $Ra, 16*0($val) + movdqu $Rb, 16*1($val) + movdqu $Rc, 16*2($val) + movdqu $Rd, 16*3($val) + movdqu $Re, 16*4($val) + movdqu $Rf, 16*5($val) +___ +$code.=<<___ if ($win64); + movaps (%rsp), %xmm6 + movaps 0x10(%rsp), %xmm7 + movaps 0x20(%rsp), %xmm8 + movaps 0x30(%rsp), %xmm9 + movaps 0x40(%rsp), %xmm10 + movaps 0x50(%rsp), %xmm11 + movaps 0x60(%rsp), %xmm12 + movaps 0x70(%rsp), %xmm13 + movaps 0x80(%rsp), %xmm14 + movaps 0x90(%rsp), %xmm15 + lea 0xa8(%rsp), %rsp +.LSEH_end_ecp_nistz256_select_w5: +___ +$code.=<<___; + ret +.size ecp_nistz256_select_w5,.-ecp_nistz256_select_w5 + +################################################################################ +# void ecp_nistz256_select_w7(uint64_t *val, uint64_t *in_t, int index); +.globl ecp_nistz256_select_w7 +.type ecp_nistz256_select_w7,\@abi-omnipotent +.align 32 +ecp_nistz256_select_w7: +___ +$code.=<<___ if ($win64); + lea -0x88(%rsp), %rax +.LSEH_begin_ecp_nistz256_select_w7: + .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp + .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax) + .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax) + .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax) + .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax) + .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax) + .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax) + .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax) + .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax) + .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax) + .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax) +___ +$code.=<<___; + movdqa .LOne(%rip), $M0 + movd $index, $INDEX + + pxor $Ra, $Ra + pxor $Rb, $Rb + pxor $Rc, $Rc + pxor $Rd, $Rd + + movdqa $M0, $ONE + pshufd \$0, $INDEX, $INDEX + mov \$64, %rax + +.Lselect_loop_sse_w7: + movdqa $M0, $TMP0 + paddd $ONE, $M0 + movdqa 16*0($in_t), $T0a + movdqa 16*1($in_t), $T0b + pcmpeqd $INDEX, $TMP0 + movdqa 16*2($in_t), $T0c + movdqa 16*3($in_t), $T0d + lea 16*4($in_t), $in_t + + pand $TMP0, $T0a + pand $TMP0, $T0b + por $T0a, $Ra + pand $TMP0, $T0c + por $T0b, $Rb + pand $TMP0, $T0d + por $T0c, $Rc + prefetcht0 255($in_t) + por $T0d, $Rd + + dec %rax + jnz .Lselect_loop_sse_w7 + + movdqu $Ra, 16*0($val) + movdqu $Rb, 16*1($val) + movdqu $Rc, 16*2($val) + movdqu $Rd, 16*3($val) +___ +$code.=<<___ if ($win64); + movaps (%rsp), %xmm6 + movaps 0x10(%rsp), %xmm7 + movaps 0x20(%rsp), %xmm8 + movaps 0x30(%rsp), %xmm9 + movaps 0x40(%rsp), %xmm10 + movaps 0x50(%rsp), %xmm11 + movaps 0x60(%rsp), %xmm12 + movaps 0x70(%rsp), %xmm13 + movaps 0x80(%rsp), %xmm14 + movaps 0x90(%rsp), %xmm15 + lea 0xa8(%rsp), %rsp +.LSEH_end_ecp_nistz256_select_w7: +___ +$code.=<<___; + ret +.size ecp_nistz256_select_w7,.-ecp_nistz256_select_w7 +___ +} +{{{ +######################################################################## +# This block implements higher level point_double, point_add and +# point_add_affine. The key to performance in this case is to allow +# out-of-order execution logic to overlap computations from next step +# with tail processing from current step. By using tailored calling +# sequence we minimize inter-step overhead to give processor better +# shot at overlapping operations... +# +# You will notice that input data is copied to stack. Trouble is that +# there are no registers to spare for holding original pointers and +# reloading them, pointers, would create undesired dependencies on +# effective addresses calculation paths. In other words it's too done +# to favour out-of-order execution logic. +# <appro@openssl.org> + +my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx"); +my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15)); +my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rbp","%rcx",$acc4,$acc4); +my ($poly1,$poly3)=($acc6,$acc7); + +sub load_for_mul () { +my ($a,$b,$src0) = @_; +my $bias = $src0 eq "%rax" ? 0 : -128; + +" mov $b, $src0 + lea $b, $b_ptr + mov 8*0+$a, $acc1 + mov 8*1+$a, $acc2 + lea $bias+$a, $a_ptr + mov 8*2+$a, $acc3 + mov 8*3+$a, $acc4" +} + +sub load_for_sqr () { +my ($a,$src0) = @_; +my $bias = $src0 eq "%rax" ? 0 : -128; + +" mov 8*0+$a, $src0 + mov 8*1+$a, $acc6 + lea $bias+$a, $a_ptr + mov 8*2+$a, $acc7 + mov 8*3+$a, $acc0" +} + + { +######################################################################## +# operate in 4-5-0-1 "name space" that matches multiplication output +# +my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); + +$code.=<<___; +.type __ecp_nistz256_add_toq,\@abi-omnipotent +.align 32 +__ecp_nistz256_add_toq: + add 8*0($b_ptr), $a0 + adc 8*1($b_ptr), $a1 + mov $a0, $t0 + adc 8*2($b_ptr), $a2 + adc 8*3($b_ptr), $a3 + mov $a1, $t1 + sbb $t4, $t4 + + sub \$-1, $a0 + mov $a2, $t2 + sbb $poly1, $a1 + sbb \$0, $a2 + mov $a3, $t3 + sbb $poly3, $a3 + test $t4, $t4 + + cmovz $t0, $a0 + cmovz $t1, $a1 + mov $a0, 8*0($r_ptr) + cmovz $t2, $a2 + mov $a1, 8*1($r_ptr) + cmovz $t3, $a3 + mov $a2, 8*2($r_ptr) + mov $a3, 8*3($r_ptr) + + ret +.size __ecp_nistz256_add_toq,.-__ecp_nistz256_add_toq + +.type __ecp_nistz256_sub_fromq,\@abi-omnipotent +.align 32 +__ecp_nistz256_sub_fromq: + sub 8*0($b_ptr), $a0 + sbb 8*1($b_ptr), $a1 + mov $a0, $t0 + sbb 8*2($b_ptr), $a2 + sbb 8*3($b_ptr), $a3 + mov $a1, $t1 + sbb $t4, $t4 + + add \$-1, $a0 + mov $a2, $t2 + adc $poly1, $a1 + adc \$0, $a2 + mov $a3, $t3 + adc $poly3, $a3 + test $t4, $t4 + + cmovz $t0, $a0 + cmovz $t1, $a1 + mov $a0, 8*0($r_ptr) + cmovz $t2, $a2 + mov $a1, 8*1($r_ptr) + cmovz $t3, $a3 + mov $a2, 8*2($r_ptr) + mov $a3, 8*3($r_ptr) + + ret +.size __ecp_nistz256_sub_fromq,.-__ecp_nistz256_sub_fromq + +.type __ecp_nistz256_subq,\@abi-omnipotent +.align 32 +__ecp_nistz256_subq: + sub $a0, $t0 + sbb $a1, $t1 + mov $t0, $a0 + sbb $a2, $t2 + sbb $a3, $t3 + mov $t1, $a1 + sbb $t4, $t4 + + add \$-1, $t0 + mov $t2, $a2 + adc $poly1, $t1 + adc \$0, $t2 + mov $t3, $a3 + adc $poly3, $t3 + test $t4, $t4 + + cmovnz $t0, $a0 + cmovnz $t1, $a1 + cmovnz $t2, $a2 + cmovnz $t3, $a3 + + ret +.size __ecp_nistz256_subq,.-__ecp_nistz256_subq + +.type __ecp_nistz256_mul_by_2q,\@abi-omnipotent +.align 32 +__ecp_nistz256_mul_by_2q: + add $a0, $a0 # a0:a3+a0:a3 + adc $a1, $a1 + mov $a0, $t0 + adc $a2, $a2 + adc $a3, $a3 + mov $a1, $t1 + sbb $t4, $t4 + + sub \$-1, $a0 + mov $a2, $t2 + sbb $poly1, $a1 + sbb \$0, $a2 + mov $a3, $t3 + sbb $poly3, $a3 + test $t4, $t4 + + cmovz $t0, $a0 + cmovz $t1, $a1 + mov $a0, 8*0($r_ptr) + cmovz $t2, $a2 + mov $a1, 8*1($r_ptr) + cmovz $t3, $a3 + mov $a2, 8*2($r_ptr) + mov $a3, 8*3($r_ptr) + + ret +.size __ecp_nistz256_mul_by_2q,.-__ecp_nistz256_mul_by_2q +___ + } +sub gen_double () { + my $x = shift; + my ($src0,$sfx,$bias); + my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); + + if ($x ne "x") { + $src0 = "%rax"; + $sfx = ""; + $bias = 0; + +$code.=<<___; +.globl ecp_nistz256_point_double +.type ecp_nistz256_point_double,\@function,2 +.align 32 +ecp_nistz256_point_double: +___ + } else { + $src0 = "%rdx"; + $sfx = "x"; + $bias = 128; + +$code.=<<___; +.type ecp_nistz256_point_doublex,\@function,2 +.align 32 +ecp_nistz256_point_doublex: +.Lpoint_doublex: +___ + } +$code.=<<___; + push %rbp + push %rbx + push %r12 + push %r13 + push %r14 + push %r15 + sub \$32*5+8, %rsp + +.Lpoint_double_shortcut$x: + movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr.x + mov $a_ptr, $b_ptr # backup copy + movdqu 0x10($a_ptr), %xmm1 + mov 0x20+8*0($a_ptr), $acc4 # load in_y in "5-4-0-1" order + mov 0x20+8*1($a_ptr), $acc5 + mov 0x20+8*2($a_ptr), $acc0 + mov 0x20+8*3($a_ptr), $acc1 + mov .Lpoly+8*1(%rip), $poly1 + mov .Lpoly+8*3(%rip), $poly3 + movdqa %xmm0, $in_x(%rsp) + movdqa %xmm1, $in_x+0x10(%rsp) + lea 0x20($r_ptr), $acc2 + lea 0x40($r_ptr), $acc3 + movq $r_ptr, %xmm0 + movq $acc2, %xmm1 + movq $acc3, %xmm2 + + lea $S(%rsp), $r_ptr + call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(S, in_y); + + mov 0x40+8*0($a_ptr), $src0 + mov 0x40+8*1($a_ptr), $acc6 + mov 0x40+8*2($a_ptr), $acc7 + mov 0x40+8*3($a_ptr), $acc0 + lea 0x40-$bias($a_ptr), $a_ptr + lea $Zsqr(%rsp), $r_ptr + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Zsqr, in_z); + + `&load_for_sqr("$S(%rsp)", "$src0")` + lea $S(%rsp), $r_ptr + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(S, S); + + mov 0x20($b_ptr), $src0 # $b_ptr is still valid + mov 0x40+8*0($b_ptr), $acc1 + mov 0x40+8*1($b_ptr), $acc2 + mov 0x40+8*2($b_ptr), $acc3 + mov 0x40+8*3($b_ptr), $acc4 + lea 0x40-$bias($b_ptr), $a_ptr + lea 0x20($b_ptr), $b_ptr + movq %xmm2, $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, in_z, in_y); + call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(res_z, res_z); + + mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order + mov $in_x+8*1(%rsp), $acc5 + lea $Zsqr(%rsp), $b_ptr + mov $in_x+8*2(%rsp), $acc0 + mov $in_x+8*3(%rsp), $acc1 + lea $M(%rsp), $r_ptr + call __ecp_nistz256_add_to$x # p256_add(M, in_x, Zsqr); + + mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order + mov $in_x+8*1(%rsp), $acc5 + lea $Zsqr(%rsp), $b_ptr + mov $in_x+8*2(%rsp), $acc0 + mov $in_x+8*3(%rsp), $acc1 + lea $Zsqr(%rsp), $r_ptr + call __ecp_nistz256_sub_from$x # p256_sub(Zsqr, in_x, Zsqr); + + `&load_for_sqr("$S(%rsp)", "$src0")` + movq %xmm1, $r_ptr + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_y, S); +___ +{ +######## ecp_nistz256_div_by_2(res_y, res_y); ########################## +# operate in 4-5-6-7 "name space" that matches squaring output +# +my ($poly1,$poly3)=($a_ptr,$t1); +my ($a0,$a1,$a2,$a3,$t3,$t4,$t1)=($acc4,$acc5,$acc6,$acc7,$acc0,$acc1,$acc2); + +$code.=<<___; + xor $t4, $t4 + mov $a0, $t0 + add \$-1, $a0 + mov $a1, $t1 + adc $poly1, $a1 + mov $a2, $t2 + adc \$0, $a2 + mov $a3, $t3 + adc $poly3, $a3 + adc \$0, $t4 + xor $a_ptr, $a_ptr # borrow $a_ptr + test \$1, $t0 + + cmovz $t0, $a0 + cmovz $t1, $a1 + cmovz $t2, $a2 + cmovz $t3, $a3 + cmovz $a_ptr, $t4 + + mov $a1, $t0 # a0:a3>>1 + shr \$1, $a0 + shl \$63, $t0 + mov $a2, $t1 + shr \$1, $a1 + or $t0, $a0 + shl \$63, $t1 + mov $a3, $t2 + shr \$1, $a2 + or $t1, $a1 + shl \$63, $t2 + mov $a0, 8*0($r_ptr) + shr \$1, $a3 + mov $a1, 8*1($r_ptr) + shl \$63, $t4 + or $t2, $a2 + or $t4, $a3 + mov $a2, 8*2($r_ptr) + mov $a3, 8*3($r_ptr) +___ +} +$code.=<<___; + `&load_for_mul("$M(%rsp)", "$Zsqr(%rsp)", "$src0")` + lea $M(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(M, M, Zsqr); + + lea $tmp0(%rsp), $r_ptr + call __ecp_nistz256_mul_by_2$x + + lea $M(%rsp), $b_ptr + lea $M(%rsp), $r_ptr + call __ecp_nistz256_add_to$x # p256_mul_by_3(M, M); + + `&load_for_mul("$S(%rsp)", "$in_x(%rsp)", "$src0")` + lea $S(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, in_x); + + lea $tmp0(%rsp), $r_ptr + call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(tmp0, S); + + `&load_for_sqr("$M(%rsp)", "$src0")` + movq %xmm0, $r_ptr + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_x, M); + + lea $tmp0(%rsp), $b_ptr + mov $acc6, $acc0 # harmonize sqr output and sub input + mov $acc7, $acc1 + mov $a_ptr, $poly1 + mov $t1, $poly3 + call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, tmp0); + + mov $S+8*0(%rsp), $t0 + mov $S+8*1(%rsp), $t1 + mov $S+8*2(%rsp), $t2 + mov $S+8*3(%rsp), $acc2 # "4-5-0-1" order + lea $S(%rsp), $r_ptr + call __ecp_nistz256_sub$x # p256_sub(S, S, res_x); + + mov $M(%rsp), $src0 + lea $M(%rsp), $b_ptr + mov $acc4, $acc6 # harmonize sub output and mul input + xor %ecx, %ecx + mov $acc4, $S+8*0(%rsp) # have to save:-( + mov $acc5, $acc2 + mov $acc5, $S+8*1(%rsp) + cmovz $acc0, $acc3 + mov $acc0, $S+8*2(%rsp) + lea $S-$bias(%rsp), $a_ptr + cmovz $acc1, $acc4 + mov $acc1, $S+8*3(%rsp) + mov $acc6, $acc1 + lea $S(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, M); + + movq %xmm1, $b_ptr + movq %xmm1, $r_ptr + call __ecp_nistz256_sub_from$x # p256_sub(res_y, S, res_y); + + add \$32*5+8, %rsp + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbx + pop %rbp + ret +.size ecp_nistz256_point_double$sfx,.-ecp_nistz256_point_double$sfx +___ +} +&gen_double("q"); + +sub gen_add () { + my $x = shift; + my ($src0,$sfx,$bias); + my ($H,$Hsqr,$R,$Rsqr,$Hcub, + $U1,$U2,$S1,$S2, + $res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y,$in2_z)=map(32*$_,(0..17)); + my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); + + if ($x ne "x") { + $src0 = "%rax"; + $sfx = ""; + $bias = 0; + +$code.=<<___; +.globl ecp_nistz256_point_add +.type ecp_nistz256_point_add,\@function,3 +.align 32 +ecp_nistz256_point_add: +___ + } else { + $src0 = "%rdx"; + $sfx = "x"; + $bias = 128; + } +$code.=<<___; + push %rbp + push %rbx + push %r12 + push %r13 + push %r14 + push %r15 + sub \$32*18+8, %rsp + + movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr + movdqu 0x10($a_ptr), %xmm1 + movdqu 0x20($a_ptr), %xmm2 + movdqu 0x30($a_ptr), %xmm3 + movdqu 0x40($a_ptr), %xmm4 + movdqu 0x50($a_ptr), %xmm5 + mov $a_ptr, $b_ptr # reassign + mov $b_org, $a_ptr # reassign + movdqa %xmm0, $in1_x(%rsp) + movdqa %xmm1, $in1_x+0x10(%rsp) + por %xmm0, %xmm1 + movdqa %xmm2, $in1_y(%rsp) + movdqa %xmm3, $in1_y+0x10(%rsp) + por %xmm2, %xmm3 + movdqa %xmm4, $in1_z(%rsp) + movdqa %xmm5, $in1_z+0x10(%rsp) + por %xmm1, %xmm3 + + movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$b_ptr + pshufd \$0xb1, %xmm3, %xmm5 + movdqu 0x10($a_ptr), %xmm1 + movdqu 0x20($a_ptr), %xmm2 + por %xmm3, %xmm5 + movdqu 0x30($a_ptr), %xmm3 + mov 0x40+8*0($a_ptr), $src0 # load original in2_z + mov 0x40+8*1($a_ptr), $acc6 + mov 0x40+8*2($a_ptr), $acc7 + mov 0x40+8*3($a_ptr), $acc0 + movdqa %xmm0, $in2_x(%rsp) + pshufd \$0x1e, %xmm5, %xmm4 + movdqa %xmm1, $in2_x+0x10(%rsp) + por %xmm0, %xmm1 + movq $r_ptr, %xmm0 # save $r_ptr + movdqa %xmm2, $in2_y(%rsp) + movdqa %xmm3, $in2_y+0x10(%rsp) + por %xmm2, %xmm3 + por %xmm4, %xmm5 + pxor %xmm4, %xmm4 + por %xmm1, %xmm3 + + lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid + mov $src0, $in2_z+8*0(%rsp) # make in2_z copy + mov $acc6, $in2_z+8*1(%rsp) + mov $acc7, $in2_z+8*2(%rsp) + mov $acc0, $in2_z+8*3(%rsp) + lea $Z2sqr(%rsp), $r_ptr # Z2^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z2sqr, in2_z); + + pcmpeqd %xmm4, %xmm5 + pshufd \$0xb1, %xmm3, %xmm4 + por %xmm3, %xmm4 + pshufd \$0, %xmm5, %xmm5 # in1infty + pshufd \$0x1e, %xmm4, %xmm3 + por %xmm3, %xmm4 + pxor %xmm3, %xmm3 + pcmpeqd %xmm3, %xmm4 + pshufd \$0, %xmm4, %xmm4 # in2infty + mov 0x40+8*0($b_ptr), $src0 # load original in1_z + mov 0x40+8*1($b_ptr), $acc6 + mov 0x40+8*2($b_ptr), $acc7 + mov 0x40+8*3($b_ptr), $acc0 + movq $b_ptr, %xmm1 + + lea 0x40-$bias($b_ptr), $a_ptr + lea $Z1sqr(%rsp), $r_ptr # Z1^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z); + + `&load_for_mul("$Z2sqr(%rsp)", "$in2_z(%rsp)", "$src0")` + lea $S1(%rsp), $r_ptr # S1 = Z2^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, Z2sqr, in2_z); + + `&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")` + lea $S2(%rsp), $r_ptr # S2 = Z1^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z); + + `&load_for_mul("$S1(%rsp)", "$in1_y(%rsp)", "$src0")` + lea $S1(%rsp), $r_ptr # S1 = Y1*Z2^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, S1, in1_y); + + `&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")` + lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y); + + lea $S1(%rsp), $b_ptr + lea $R(%rsp), $r_ptr # R = S2 - S1 + call __ecp_nistz256_sub_from$x # p256_sub(R, S2, S1); + + or $acc5, $acc4 # see if result is zero + movdqa %xmm4, %xmm2 + or $acc0, $acc4 + or $acc1, $acc4 + por %xmm5, %xmm2 # in1infty || in2infty + movq $acc4, %xmm3 + + `&load_for_mul("$Z2sqr(%rsp)", "$in1_x(%rsp)", "$src0")` + lea $U1(%rsp), $r_ptr # U1 = X1*Z2^2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(U1, in1_x, Z2sqr); + + `&load_for_mul("$Z1sqr(%rsp)", "$in2_x(%rsp)", "$src0")` + lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in2_x, Z1sqr); + + lea $U1(%rsp), $b_ptr + lea $H(%rsp), $r_ptr # H = U2 - U1 + call __ecp_nistz256_sub_from$x # p256_sub(H, U2, U1); + + or $acc5, $acc4 # see if result is zero + or $acc0, $acc4 + or $acc1, $acc4 + + .byte 0x3e # predict taken + jnz .Ladd_proceed$x # is_equal(U1,U2)? + movq %xmm2, $acc0 + movq %xmm3, $acc1 + test $acc0, $acc0 + jnz .Ladd_proceed$x # (in1infty || in2infty)? + test $acc1, $acc1 + jz .Ladd_double$x # is_equal(S1,S2)? + + movq %xmm0, $r_ptr # restore $r_ptr + pxor %xmm0, %xmm0 + movdqu %xmm0, 0x00($r_ptr) + movdqu %xmm0, 0x10($r_ptr) + movdqu %xmm0, 0x20($r_ptr) + movdqu %xmm0, 0x30($r_ptr) + movdqu %xmm0, 0x40($r_ptr) + movdqu %xmm0, 0x50($r_ptr) + jmp .Ladd_done$x + +.align 32 +.Ladd_double$x: + movq %xmm1, $a_ptr # restore $a_ptr + movq %xmm0, $r_ptr # restore $r_ptr + add \$`32*(18-5)`, %rsp # difference in frame sizes + jmp .Lpoint_double_shortcut$x + +.align 32 +.Ladd_proceed$x: + `&load_for_sqr("$R(%rsp)", "$src0")` + lea $Rsqr(%rsp), $r_ptr # R^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R); + + `&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")` + lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z); + + `&load_for_sqr("$H(%rsp)", "$src0")` + lea $Hsqr(%rsp), $r_ptr # H^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H); + + `&load_for_mul("$res_z(%rsp)", "$in2_z(%rsp)", "$src0")` + lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, res_z, in2_z); + + `&load_for_mul("$Hsqr(%rsp)", "$H(%rsp)", "$src0")` + lea $Hcub(%rsp), $r_ptr # H^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H); + + `&load_for_mul("$Hsqr(%rsp)", "$U1(%rsp)", "$src0")` + lea $U2(%rsp), $r_ptr # U1*H^2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, U1, Hsqr); +___ +{ +####################################################################### +# operate in 4-5-0-1 "name space" that matches multiplication output +# +my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); +my ($poly1, $poly3)=($acc6,$acc7); + +$code.=<<___; + #lea $U2(%rsp), $a_ptr + #lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2 + #call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2); + + add $acc0, $acc0 # a0:a3+a0:a3 + lea $Rsqr(%rsp), $a_ptr + adc $acc1, $acc1 + mov $acc0, $t0 + adc $acc2, $acc2 + adc $acc3, $acc3 + mov $acc1, $t1 + sbb $t4, $t4 + + sub \$-1, $acc0 + mov $acc2, $t2 + sbb $poly1, $acc1 + sbb \$0, $acc2 + mov $acc3, $t3 + sbb $poly3, $acc3 + test $t4, $t4 + + cmovz $t0, $acc0 + mov 8*0($a_ptr), $t0 + cmovz $t1, $acc1 + mov 8*1($a_ptr), $t1 + cmovz $t2, $acc2 + mov 8*2($a_ptr), $t2 + cmovz $t3, $acc3 + mov 8*3($a_ptr), $t3 + + call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr); + + lea $Hcub(%rsp), $b_ptr + lea $res_x(%rsp), $r_ptr + call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub); + + mov $U2+8*0(%rsp), $t0 + mov $U2+8*1(%rsp), $t1 + mov $U2+8*2(%rsp), $t2 + mov $U2+8*3(%rsp), $t3 + lea $res_y(%rsp), $r_ptr + + call __ecp_nistz256_sub$x # p256_sub(res_y, U2, res_x); + + mov $acc0, 8*0($r_ptr) # save the result, as + mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't + mov $acc2, 8*2($r_ptr) + mov $acc3, 8*3($r_ptr) +___ +} +$code.=<<___; + `&load_for_mul("$S1(%rsp)", "$Hcub(%rsp)", "$src0")` + lea $S2(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S1, Hcub); + + `&load_for_mul("$R(%rsp)", "$res_y(%rsp)", "$src0")` + lea $res_y(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_y, R, res_y); + + lea $S2(%rsp), $b_ptr + lea $res_y(%rsp), $r_ptr + call __ecp_nistz256_sub_from$x # p256_sub(res_y, res_y, S2); + + movq %xmm0, $r_ptr # restore $r_ptr + + movdqa %xmm5, %xmm0 # copy_conditional(res_z, in2_z, in1infty); + movdqa %xmm5, %xmm1 + pandn $res_z(%rsp), %xmm0 + movdqa %xmm5, %xmm2 + pandn $res_z+0x10(%rsp), %xmm1 + movdqa %xmm5, %xmm3 + pand $in2_z(%rsp), %xmm2 + pand $in2_z+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + + movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty); + movdqa %xmm4, %xmm1 + pandn %xmm2, %xmm0 + movdqa %xmm4, %xmm2 + pandn %xmm3, %xmm1 + movdqa %xmm4, %xmm3 + pand $in1_z(%rsp), %xmm2 + pand $in1_z+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + movdqu %xmm2, 0x40($r_ptr) + movdqu %xmm3, 0x50($r_ptr) + + movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty); + movdqa %xmm5, %xmm1 + pandn $res_x(%rsp), %xmm0 + movdqa %xmm5, %xmm2 + pandn $res_x+0x10(%rsp), %xmm1 + movdqa %xmm5, %xmm3 + pand $in2_x(%rsp), %xmm2 + pand $in2_x+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + + movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty); + movdqa %xmm4, %xmm1 + pandn %xmm2, %xmm0 + movdqa %xmm4, %xmm2 + pandn %xmm3, %xmm1 + movdqa %xmm4, %xmm3 + pand $in1_x(%rsp), %xmm2 + pand $in1_x+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + movdqu %xmm2, 0x00($r_ptr) + movdqu %xmm3, 0x10($r_ptr) + + movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty); + movdqa %xmm5, %xmm1 + pandn $res_y(%rsp), %xmm0 + movdqa %xmm5, %xmm2 + pandn $res_y+0x10(%rsp), %xmm1 + movdqa %xmm5, %xmm3 + pand $in2_y(%rsp), %xmm2 + pand $in2_y+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + + movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty); + movdqa %xmm4, %xmm1 + pandn %xmm2, %xmm0 + movdqa %xmm4, %xmm2 + pandn %xmm3, %xmm1 + movdqa %xmm4, %xmm3 + pand $in1_y(%rsp), %xmm2 + pand $in1_y+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + movdqu %xmm2, 0x20($r_ptr) + movdqu %xmm3, 0x30($r_ptr) + +.Ladd_done$x: + add \$32*18+8, %rsp + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbx + pop %rbp + ret +.size ecp_nistz256_point_add$sfx,.-ecp_nistz256_point_add$sfx +___ +} +&gen_add("q"); + +sub gen_add_affine () { + my $x = shift; + my ($src0,$sfx,$bias); + my ($U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr, + $res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y)=map(32*$_,(0..14)); + my $Z1sqr = $S2; + + if ($x ne "x") { + $src0 = "%rax"; + $sfx = ""; + $bias = 0; + +$code.=<<___; +.globl ecp_nistz256_point_add_affine +.type ecp_nistz256_point_add_affine,\@function,3 +.align 32 +ecp_nistz256_point_add_affine: +___ + } else { + $src0 = "%rdx"; + $sfx = "x"; + $bias = 128; + } +$code.=<<___; + push %rbp + push %rbx + push %r12 + push %r13 + push %r14 + push %r15 + sub \$32*15+8, %rsp + + movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr + mov $b_org, $b_ptr # reassign + movdqu 0x10($a_ptr), %xmm1 + movdqu 0x20($a_ptr), %xmm2 + movdqu 0x30($a_ptr), %xmm3 + movdqu 0x40($a_ptr), %xmm4 + movdqu 0x50($a_ptr), %xmm5 + mov 0x40+8*0($a_ptr), $src0 # load original in1_z + mov 0x40+8*1($a_ptr), $acc6 + mov 0x40+8*2($a_ptr), $acc7 + mov 0x40+8*3($a_ptr), $acc0 + movdqa %xmm0, $in1_x(%rsp) + movdqa %xmm1, $in1_x+0x10(%rsp) + por %xmm0, %xmm1 + movdqa %xmm2, $in1_y(%rsp) + movdqa %xmm3, $in1_y+0x10(%rsp) + por %xmm2, %xmm3 + movdqa %xmm4, $in1_z(%rsp) + movdqa %xmm5, $in1_z+0x10(%rsp) + por %xmm1, %xmm3 + + movdqu 0x00($b_ptr), %xmm0 # copy *(P256_POINT_AFFINE *)$b_ptr + pshufd \$0xb1, %xmm3, %xmm5 + movdqu 0x10($b_ptr), %xmm1 + movdqu 0x20($b_ptr), %xmm2 + por %xmm3, %xmm5 + movdqu 0x30($b_ptr), %xmm3 + movdqa %xmm0, $in2_x(%rsp) + pshufd \$0x1e, %xmm5, %xmm4 + movdqa %xmm1, $in2_x+0x10(%rsp) + por %xmm0, %xmm1 + movq $r_ptr, %xmm0 # save $r_ptr + movdqa %xmm2, $in2_y(%rsp) + movdqa %xmm3, $in2_y+0x10(%rsp) + por %xmm2, %xmm3 + por %xmm4, %xmm5 + pxor %xmm4, %xmm4 + por %xmm1, %xmm3 + + lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid + lea $Z1sqr(%rsp), $r_ptr # Z1^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z); + + pcmpeqd %xmm4, %xmm5 + pshufd \$0xb1, %xmm3, %xmm4 + mov 0x00($b_ptr), $src0 # $b_ptr is still valid + #lea 0x00($b_ptr), $b_ptr + mov $acc4, $acc1 # harmonize sqr output and mul input + por %xmm3, %xmm4 + pshufd \$0, %xmm5, %xmm5 # in1infty + pshufd \$0x1e, %xmm4, %xmm3 + mov $acc5, $acc2 + por %xmm3, %xmm4 + pxor %xmm3, %xmm3 + mov $acc6, $acc3 + pcmpeqd %xmm3, %xmm4 + pshufd \$0, %xmm4, %xmm4 # in2infty + + lea $Z1sqr-$bias(%rsp), $a_ptr + mov $acc7, $acc4 + lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, Z1sqr, in2_x); + + lea $in1_x(%rsp), $b_ptr + lea $H(%rsp), $r_ptr # H = U2 - U1 + call __ecp_nistz256_sub_from$x # p256_sub(H, U2, in1_x); + + `&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")` + lea $S2(%rsp), $r_ptr # S2 = Z1^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z); + + `&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")` + lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z); + + `&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")` + lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y); + + lea $in1_y(%rsp), $b_ptr + lea $R(%rsp), $r_ptr # R = S2 - S1 + call __ecp_nistz256_sub_from$x # p256_sub(R, S2, in1_y); + + `&load_for_sqr("$H(%rsp)", "$src0")` + lea $Hsqr(%rsp), $r_ptr # H^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H); + + `&load_for_sqr("$R(%rsp)", "$src0")` + lea $Rsqr(%rsp), $r_ptr # R^2 + call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R); + + `&load_for_mul("$H(%rsp)", "$Hsqr(%rsp)", "$src0")` + lea $Hcub(%rsp), $r_ptr # H^3 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H); + + `&load_for_mul("$Hsqr(%rsp)", "$in1_x(%rsp)", "$src0")` + lea $U2(%rsp), $r_ptr # U1*H^2 + call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in1_x, Hsqr); +___ +{ +####################################################################### +# operate in 4-5-0-1 "name space" that matches multiplication output +# +my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); +my ($poly1, $poly3)=($acc6,$acc7); + +$code.=<<___; + #lea $U2(%rsp), $a_ptr + #lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2 + #call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2); + + add $acc0, $acc0 # a0:a3+a0:a3 + lea $Rsqr(%rsp), $a_ptr + adc $acc1, $acc1 + mov $acc0, $t0 + adc $acc2, $acc2 + adc $acc3, $acc3 + mov $acc1, $t1 + sbb $t4, $t4 + + sub \$-1, $acc0 + mov $acc2, $t2 + sbb $poly1, $acc1 + sbb \$0, $acc2 + mov $acc3, $t3 + sbb $poly3, $acc3 + test $t4, $t4 + + cmovz $t0, $acc0 + mov 8*0($a_ptr), $t0 + cmovz $t1, $acc1 + mov 8*1($a_ptr), $t1 + cmovz $t2, $acc2 + mov 8*2($a_ptr), $t2 + cmovz $t3, $acc3 + mov 8*3($a_ptr), $t3 + + call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr); + + lea $Hcub(%rsp), $b_ptr + lea $res_x(%rsp), $r_ptr + call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub); + + mov $U2+8*0(%rsp), $t0 + mov $U2+8*1(%rsp), $t1 + mov $U2+8*2(%rsp), $t2 + mov $U2+8*3(%rsp), $t3 + lea $H(%rsp), $r_ptr + + call __ecp_nistz256_sub$x # p256_sub(H, U2, res_x); + + mov $acc0, 8*0($r_ptr) # save the result, as + mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't + mov $acc2, 8*2($r_ptr) + mov $acc3, 8*3($r_ptr) +___ +} +$code.=<<___; + `&load_for_mul("$Hcub(%rsp)", "$in1_y(%rsp)", "$src0")` + lea $S2(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Hcub, in1_y); + + `&load_for_mul("$H(%rsp)", "$R(%rsp)", "$src0")` + lea $H(%rsp), $r_ptr + call __ecp_nistz256_mul_mont$x # p256_mul_mont(H, H, R); + + lea $S2(%rsp), $b_ptr + lea $res_y(%rsp), $r_ptr + call __ecp_nistz256_sub_from$x # p256_sub(res_y, H, S2); + + movq %xmm0, $r_ptr # restore $r_ptr + + movdqa %xmm5, %xmm0 # copy_conditional(res_z, ONE, in1infty); + movdqa %xmm5, %xmm1 + pandn $res_z(%rsp), %xmm0 + movdqa %xmm5, %xmm2 + pandn $res_z+0x10(%rsp), %xmm1 + movdqa %xmm5, %xmm3 + pand .LONE_mont(%rip), %xmm2 + pand .LONE_mont+0x10(%rip), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + + movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty); + movdqa %xmm4, %xmm1 + pandn %xmm2, %xmm0 + movdqa %xmm4, %xmm2 + pandn %xmm3, %xmm1 + movdqa %xmm4, %xmm3 + pand $in1_z(%rsp), %xmm2 + pand $in1_z+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + movdqu %xmm2, 0x40($r_ptr) + movdqu %xmm3, 0x50($r_ptr) + + movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty); + movdqa %xmm5, %xmm1 + pandn $res_x(%rsp), %xmm0 + movdqa %xmm5, %xmm2 + pandn $res_x+0x10(%rsp), %xmm1 + movdqa %xmm5, %xmm3 + pand $in2_x(%rsp), %xmm2 + pand $in2_x+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + + movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty); + movdqa %xmm4, %xmm1 + pandn %xmm2, %xmm0 + movdqa %xmm4, %xmm2 + pandn %xmm3, %xmm1 + movdqa %xmm4, %xmm3 + pand $in1_x(%rsp), %xmm2 + pand $in1_x+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + movdqu %xmm2, 0x00($r_ptr) + movdqu %xmm3, 0x10($r_ptr) + + movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty); + movdqa %xmm5, %xmm1 + pandn $res_y(%rsp), %xmm0 + movdqa %xmm5, %xmm2 + pandn $res_y+0x10(%rsp), %xmm1 + movdqa %xmm5, %xmm3 + pand $in2_y(%rsp), %xmm2 + pand $in2_y+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + + movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty); + movdqa %xmm4, %xmm1 + pandn %xmm2, %xmm0 + movdqa %xmm4, %xmm2 + pandn %xmm3, %xmm1 + movdqa %xmm4, %xmm3 + pand $in1_y(%rsp), %xmm2 + pand $in1_y+0x10(%rsp), %xmm3 + por %xmm0, %xmm2 + por %xmm1, %xmm3 + movdqu %xmm2, 0x20($r_ptr) + movdqu %xmm3, 0x30($r_ptr) + + add \$32*15+8, %rsp + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbx + pop %rbp + ret +.size ecp_nistz256_point_add_affine$sfx,.-ecp_nistz256_point_add_affine$sfx +___ +} +&gen_add_affine("q"); + +}}} + +$code =~ s/\`([^\`]*)\`/eval $1/gem; +print $code; +close STDOUT; |