summaryrefslogtreecommitdiffstats
path: root/lib/libcxx/utils/google-benchmark/src/complexity.cc
diff options
context:
space:
mode:
authorrobert <robert@openbsd.org>2018-09-11 18:18:58 +0000
committerrobert <robert@openbsd.org>2018-09-11 18:18:58 +0000
commit820e1f31efc1d6ed04795ba2e79f3044e1907492 (patch)
tree815cebb3734784074b661935c33f00bd5eb4d862 /lib/libcxx/utils/google-benchmark/src/complexity.cc
parentNuke unused LIST() ieee80211com_head. (diff)
downloadwireguard-openbsd-820e1f31efc1d6ed04795ba2e79f3044e1907492.tar.xz
wireguard-openbsd-820e1f31efc1d6ed04795ba2e79f3044e1907492.zip
import of libc++ 6.0.0
Diffstat (limited to 'lib/libcxx/utils/google-benchmark/src/complexity.cc')
-rw-r--r--lib/libcxx/utils/google-benchmark/src/complexity.cc324
1 files changed, 324 insertions, 0 deletions
diff --git a/lib/libcxx/utils/google-benchmark/src/complexity.cc b/lib/libcxx/utils/google-benchmark/src/complexity.cc
new file mode 100644
index 00000000000..02adbef6292
--- /dev/null
+++ b/lib/libcxx/utils/google-benchmark/src/complexity.cc
@@ -0,0 +1,324 @@
+// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Source project : https://github.com/ismaelJimenez/cpp.leastsq
+// Adapted to be used with google benchmark
+
+#include "benchmark/benchmark_api.h"
+
+#include <algorithm>
+#include <cmath>
+#include "check.h"
+#include "complexity.h"
+#include "stat.h"
+
+namespace benchmark {
+
+// Internal function to calculate the different scalability forms
+BigOFunc* FittingCurve(BigO complexity) {
+ switch (complexity) {
+ case oN:
+ return [](int n) -> double { return n; };
+ case oNSquared:
+ return [](int n) -> double { return std::pow(n, 2); };
+ case oNCubed:
+ return [](int n) -> double { return std::pow(n, 3); };
+ case oLogN:
+ return [](int n) { return std::log2(n); };
+ case oNLogN:
+ return [](int n) { return n * std::log2(n); };
+ case o1:
+ default:
+ return [](int) { return 1.0; };
+ }
+}
+
+// Function to return an string for the calculated complexity
+std::string GetBigOString(BigO complexity) {
+ switch (complexity) {
+ case oN:
+ return "N";
+ case oNSquared:
+ return "N^2";
+ case oNCubed:
+ return "N^3";
+ case oLogN:
+ return "lgN";
+ case oNLogN:
+ return "NlgN";
+ case o1:
+ return "(1)";
+ default:
+ return "f(N)";
+ }
+}
+
+// Find the coefficient for the high-order term in the running time, by
+// minimizing the sum of squares of relative error, for the fitting curve
+// given by the lambda expresion.
+// - n : Vector containing the size of the benchmark tests.
+// - time : Vector containing the times for the benchmark tests.
+// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };).
+
+// For a deeper explanation on the algorithm logic, look the README file at
+// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
+
+LeastSq MinimalLeastSq(const std::vector<int>& n,
+ const std::vector<double>& time,
+ BigOFunc* fitting_curve) {
+ double sigma_gn = 0.0;
+ double sigma_gn_squared = 0.0;
+ double sigma_time = 0.0;
+ double sigma_time_gn = 0.0;
+
+ // Calculate least square fitting parameter
+ for (size_t i = 0; i < n.size(); ++i) {
+ double gn_i = fitting_curve(n[i]);
+ sigma_gn += gn_i;
+ sigma_gn_squared += gn_i * gn_i;
+ sigma_time += time[i];
+ sigma_time_gn += time[i] * gn_i;
+ }
+
+ LeastSq result;
+ result.complexity = oLambda;
+
+ // Calculate complexity.
+ result.coef = sigma_time_gn / sigma_gn_squared;
+
+ // Calculate RMS
+ double rms = 0.0;
+ for (size_t i = 0; i < n.size(); ++i) {
+ double fit = result.coef * fitting_curve(n[i]);
+ rms += pow((time[i] - fit), 2);
+ }
+
+ // Normalized RMS by the mean of the observed values
+ double mean = sigma_time / n.size();
+ result.rms = sqrt(rms / n.size()) / mean;
+
+ return result;
+}
+
+// Find the coefficient for the high-order term in the running time, by
+// minimizing the sum of squares of relative error.
+// - n : Vector containing the size of the benchmark tests.
+// - time : Vector containing the times for the benchmark tests.
+// - complexity : If different than oAuto, the fitting curve will stick to
+// this one. If it is oAuto, it will be calculated the best
+// fitting curve.
+LeastSq MinimalLeastSq(const std::vector<int>& n,
+ const std::vector<double>& time, const BigO complexity) {
+ CHECK_EQ(n.size(), time.size());
+ CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
+ // benchmark runs are given
+ CHECK_NE(complexity, oNone);
+
+ LeastSq best_fit;
+
+ if (complexity == oAuto) {
+ std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};
+
+ // Take o1 as default best fitting curve
+ best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
+ best_fit.complexity = o1;
+
+ // Compute all possible fitting curves and stick to the best one
+ for (const auto& fit : fit_curves) {
+ LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
+ if (current_fit.rms < best_fit.rms) {
+ best_fit = current_fit;
+ best_fit.complexity = fit;
+ }
+ }
+ } else {
+ best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
+ best_fit.complexity = complexity;
+ }
+
+ return best_fit;
+}
+
+std::vector<BenchmarkReporter::Run> ComputeStats(
+ const std::vector<BenchmarkReporter::Run>& reports) {
+ typedef BenchmarkReporter::Run Run;
+ std::vector<Run> results;
+
+ auto error_count =
+ std::count_if(reports.begin(), reports.end(),
+ [](Run const& run) { return run.error_occurred; });
+
+ if (reports.size() - error_count < 2) {
+ // We don't report aggregated data if there was a single run.
+ return results;
+ }
+ // Accumulators.
+ Stat1_d real_accumulated_time_stat;
+ Stat1_d cpu_accumulated_time_stat;
+ Stat1_d bytes_per_second_stat;
+ Stat1_d items_per_second_stat;
+ // All repetitions should be run with the same number of iterations so we
+ // can take this information from the first benchmark.
+ int64_t const run_iterations = reports.front().iterations;
+ // create stats for user counters
+ struct CounterStat {
+ Counter c;
+ Stat1_d s;
+ };
+ std::map< std::string, CounterStat > counter_stats;
+ for(Run const& r : reports) {
+ for(auto const& cnt : r.counters) {
+ auto it = counter_stats.find(cnt.first);
+ if(it == counter_stats.end()) {
+ counter_stats.insert({cnt.first, {cnt.second, Stat1_d{}}});
+ } else {
+ CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
+ }
+ }
+ }
+
+ // Populate the accumulators.
+ for (Run const& run : reports) {
+ CHECK_EQ(reports[0].benchmark_name, run.benchmark_name);
+ CHECK_EQ(run_iterations, run.iterations);
+ if (run.error_occurred) continue;
+ real_accumulated_time_stat +=
+ Stat1_d(run.real_accumulated_time / run.iterations, run.iterations);
+ cpu_accumulated_time_stat +=
+ Stat1_d(run.cpu_accumulated_time / run.iterations, run.iterations);
+ items_per_second_stat += Stat1_d(run.items_per_second, run.iterations);
+ bytes_per_second_stat += Stat1_d(run.bytes_per_second, run.iterations);
+ // user counters
+ for(auto const& cnt : run.counters) {
+ auto it = counter_stats.find(cnt.first);
+ CHECK_NE(it, counter_stats.end());
+ it->second.s += Stat1_d(cnt.second, run.iterations);
+ }
+ }
+
+ // Get the data from the accumulator to BenchmarkReporter::Run's.
+ Run mean_data;
+ mean_data.benchmark_name = reports[0].benchmark_name + "_mean";
+ mean_data.iterations = run_iterations;
+ mean_data.real_accumulated_time =
+ real_accumulated_time_stat.Mean() * run_iterations;
+ mean_data.cpu_accumulated_time =
+ cpu_accumulated_time_stat.Mean() * run_iterations;
+ mean_data.bytes_per_second = bytes_per_second_stat.Mean();
+ mean_data.items_per_second = items_per_second_stat.Mean();
+ mean_data.time_unit = reports[0].time_unit;
+ // user counters
+ for(auto const& kv : counter_stats) {
+ auto c = Counter(kv.second.s.Mean(), counter_stats[kv.first].c.flags);
+ mean_data.counters[kv.first] = c;
+ }
+
+ // Only add label to mean/stddev if it is same for all runs
+ mean_data.report_label = reports[0].report_label;
+ for (std::size_t i = 1; i < reports.size(); i++) {
+ if (reports[i].report_label != reports[0].report_label) {
+ mean_data.report_label = "";
+ break;
+ }
+ }
+
+ Run stddev_data;
+ stddev_data.benchmark_name = reports[0].benchmark_name + "_stddev";
+ stddev_data.report_label = mean_data.report_label;
+ stddev_data.iterations = 0;
+ stddev_data.real_accumulated_time = real_accumulated_time_stat.StdDev();
+ stddev_data.cpu_accumulated_time = cpu_accumulated_time_stat.StdDev();
+ stddev_data.bytes_per_second = bytes_per_second_stat.StdDev();
+ stddev_data.items_per_second = items_per_second_stat.StdDev();
+ stddev_data.time_unit = reports[0].time_unit;
+ // user counters
+ for(auto const& kv : counter_stats) {
+ auto c = Counter(kv.second.s.StdDev(), counter_stats[kv.first].c.flags);
+ stddev_data.counters[kv.first] = c;
+ }
+
+ results.push_back(mean_data);
+ results.push_back(stddev_data);
+ return results;
+}
+
+std::vector<BenchmarkReporter::Run> ComputeBigO(
+ const std::vector<BenchmarkReporter::Run>& reports) {
+ typedef BenchmarkReporter::Run Run;
+ std::vector<Run> results;
+
+ if (reports.size() < 2) return results;
+
+ // Accumulators.
+ std::vector<int> n;
+ std::vector<double> real_time;
+ std::vector<double> cpu_time;
+
+ // Populate the accumulators.
+ for (const Run& run : reports) {
+ CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?";
+ n.push_back(run.complexity_n);
+ real_time.push_back(run.real_accumulated_time / run.iterations);
+ cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
+ }
+
+ LeastSq result_cpu;
+ LeastSq result_real;
+
+ if (reports[0].complexity == oLambda) {
+ result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
+ result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
+ } else {
+ result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
+ result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
+ }
+ std::string benchmark_name =
+ reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/'));
+
+ // Get the data from the accumulator to BenchmarkReporter::Run's.
+ Run big_o;
+ big_o.benchmark_name = benchmark_name + "_BigO";
+ big_o.iterations = 0;
+ big_o.real_accumulated_time = result_real.coef;
+ big_o.cpu_accumulated_time = result_cpu.coef;
+ big_o.report_big_o = true;
+ big_o.complexity = result_cpu.complexity;
+
+ // All the time results are reported after being multiplied by the
+ // time unit multiplier. But since RMS is a relative quantity it
+ // should not be multiplied at all. So, here, we _divide_ it by the
+ // multiplier so that when it is multiplied later the result is the
+ // correct one.
+ double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);
+
+ // Only add label to mean/stddev if it is same for all runs
+ Run rms;
+ big_o.report_label = reports[0].report_label;
+ rms.benchmark_name = benchmark_name + "_RMS";
+ rms.report_label = big_o.report_label;
+ rms.iterations = 0;
+ rms.real_accumulated_time = result_real.rms / multiplier;
+ rms.cpu_accumulated_time = result_cpu.rms / multiplier;
+ rms.report_rms = true;
+ rms.complexity = result_cpu.complexity;
+ // don't forget to keep the time unit, or we won't be able to
+ // recover the correct value.
+ rms.time_unit = reports[0].time_unit;
+
+ results.push_back(big_o);
+ results.push_back(rms);
+ return results;
+}
+
+} // end namespace benchmark