diff options
author | 2016-09-23 09:21:58 +0000 | |
---|---|---|
committer | 2016-09-23 09:21:58 +0000 | |
commit | 25e4f8ab5acd0ef40feec6767a572bebbbe294b3 (patch) | |
tree | 20197c0e46bb6d260f4a310b6d5dd73b8d826f01 /lib/libsqlite3/src/wal.c | |
parent | remove usr.bin/sqlite3, it has moved back to ports (diff) | |
download | wireguard-openbsd-25e4f8ab5acd0ef40feec6767a572bebbbe294b3.tar.xz wireguard-openbsd-25e4f8ab5acd0ef40feec6767a572bebbbe294b3.zip |
remove lib/libsqlite3, it has moved back to ports
Diffstat (limited to 'lib/libsqlite3/src/wal.c')
-rw-r--r-- | lib/libsqlite3/src/wal.c | 3181 |
1 files changed, 0 insertions, 3181 deletions
diff --git a/lib/libsqlite3/src/wal.c b/lib/libsqlite3/src/wal.c deleted file mode 100644 index d87d2c17ce9..00000000000 --- a/lib/libsqlite3/src/wal.c +++ /dev/null @@ -1,3181 +0,0 @@ -/* -** 2010 February 1 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** -** This file contains the implementation of a write-ahead log (WAL) used in -** "journal_mode=WAL" mode. -** -** WRITE-AHEAD LOG (WAL) FILE FORMAT -** -** A WAL file consists of a header followed by zero or more "frames". -** Each frame records the revised content of a single page from the -** database file. All changes to the database are recorded by writing -** frames into the WAL. Transactions commit when a frame is written that -** contains a commit marker. A single WAL can and usually does record -** multiple transactions. Periodically, the content of the WAL is -** transferred back into the database file in an operation called a -** "checkpoint". -** -** A single WAL file can be used multiple times. In other words, the -** WAL can fill up with frames and then be checkpointed and then new -** frames can overwrite the old ones. A WAL always grows from beginning -** toward the end. Checksums and counters attached to each frame are -** used to determine which frames within the WAL are valid and which -** are leftovers from prior checkpoints. -** -** The WAL header is 32 bytes in size and consists of the following eight -** big-endian 32-bit unsigned integer values: -** -** 0: Magic number. 0x377f0682 or 0x377f0683 -** 4: File format version. Currently 3007000 -** 8: Database page size. Example: 1024 -** 12: Checkpoint sequence number -** 16: Salt-1, random integer incremented with each checkpoint -** 20: Salt-2, a different random integer changing with each ckpt -** 24: Checksum-1 (first part of checksum for first 24 bytes of header). -** 28: Checksum-2 (second part of checksum for first 24 bytes of header). -** -** Immediately following the wal-header are zero or more frames. Each -** frame consists of a 24-byte frame-header followed by a <page-size> bytes -** of page data. The frame-header is six big-endian 32-bit unsigned -** integer values, as follows: -** -** 0: Page number. -** 4: For commit records, the size of the database image in pages -** after the commit. For all other records, zero. -** 8: Salt-1 (copied from the header) -** 12: Salt-2 (copied from the header) -** 16: Checksum-1. -** 20: Checksum-2. -** -** A frame is considered valid if and only if the following conditions are -** true: -** -** (1) The salt-1 and salt-2 values in the frame-header match -** salt values in the wal-header -** -** (2) The checksum values in the final 8 bytes of the frame-header -** exactly match the checksum computed consecutively on the -** WAL header and the first 8 bytes and the content of all frames -** up to and including the current frame. -** -** The checksum is computed using 32-bit big-endian integers if the -** magic number in the first 4 bytes of the WAL is 0x377f0683 and it -** is computed using little-endian if the magic number is 0x377f0682. -** The checksum values are always stored in the frame header in a -** big-endian format regardless of which byte order is used to compute -** the checksum. The checksum is computed by interpreting the input as -** an even number of unsigned 32-bit integers: x[0] through x[N]. The -** algorithm used for the checksum is as follows: -** -** for i from 0 to n-1 step 2: -** s0 += x[i] + s1; -** s1 += x[i+1] + s0; -** endfor -** -** Note that s0 and s1 are both weighted checksums using fibonacci weights -** in reverse order (the largest fibonacci weight occurs on the first element -** of the sequence being summed.) The s1 value spans all 32-bit -** terms of the sequence whereas s0 omits the final term. -** -** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the -** WAL is transferred into the database, then the database is VFS.xSync-ed. -** The VFS.xSync operations serve as write barriers - all writes launched -** before the xSync must complete before any write that launches after the -** xSync begins. -** -** After each checkpoint, the salt-1 value is incremented and the salt-2 -** value is randomized. This prevents old and new frames in the WAL from -** being considered valid at the same time and being checkpointing together -** following a crash. -** -** READER ALGORITHM -** -** To read a page from the database (call it page number P), a reader -** first checks the WAL to see if it contains page P. If so, then the -** last valid instance of page P that is a followed by a commit frame -** or is a commit frame itself becomes the value read. If the WAL -** contains no copies of page P that are valid and which are a commit -** frame or are followed by a commit frame, then page P is read from -** the database file. -** -** To start a read transaction, the reader records the index of the last -** valid frame in the WAL. The reader uses this recorded "mxFrame" value -** for all subsequent read operations. New transactions can be appended -** to the WAL, but as long as the reader uses its original mxFrame value -** and ignores the newly appended content, it will see a consistent snapshot -** of the database from a single point in time. This technique allows -** multiple concurrent readers to view different versions of the database -** content simultaneously. -** -** The reader algorithm in the previous paragraphs works correctly, but -** because frames for page P can appear anywhere within the WAL, the -** reader has to scan the entire WAL looking for page P frames. If the -** WAL is large (multiple megabytes is typical) that scan can be slow, -** and read performance suffers. To overcome this problem, a separate -** data structure called the wal-index is maintained to expedite the -** search for frames of a particular page. -** -** WAL-INDEX FORMAT -** -** Conceptually, the wal-index is shared memory, though VFS implementations -** might choose to implement the wal-index using a mmapped file. Because -** the wal-index is shared memory, SQLite does not support journal_mode=WAL -** on a network filesystem. All users of the database must be able to -** share memory. -** -** The wal-index is transient. After a crash, the wal-index can (and should -** be) reconstructed from the original WAL file. In fact, the VFS is required -** to either truncate or zero the header of the wal-index when the last -** connection to it closes. Because the wal-index is transient, it can -** use an architecture-specific format; it does not have to be cross-platform. -** Hence, unlike the database and WAL file formats which store all values -** as big endian, the wal-index can store multi-byte values in the native -** byte order of the host computer. -** -** The purpose of the wal-index is to answer this question quickly: Given -** a page number P and a maximum frame index M, return the index of the -** last frame in the wal before frame M for page P in the WAL, or return -** NULL if there are no frames for page P in the WAL prior to M. -** -** The wal-index consists of a header region, followed by an one or -** more index blocks. -** -** The wal-index header contains the total number of frames within the WAL -** in the mxFrame field. -** -** Each index block except for the first contains information on -** HASHTABLE_NPAGE frames. The first index block contains information on -** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and -** HASHTABLE_NPAGE are selected so that together the wal-index header and -** first index block are the same size as all other index blocks in the -** wal-index. -** -** Each index block contains two sections, a page-mapping that contains the -** database page number associated with each wal frame, and a hash-table -** that allows readers to query an index block for a specific page number. -** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE -** for the first index block) 32-bit page numbers. The first entry in the -** first index-block contains the database page number corresponding to the -** first frame in the WAL file. The first entry in the second index block -** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in -** the log, and so on. -** -** The last index block in a wal-index usually contains less than the full -** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, -** depending on the contents of the WAL file. This does not change the -** allocated size of the page-mapping array - the page-mapping array merely -** contains unused entries. -** -** Even without using the hash table, the last frame for page P -** can be found by scanning the page-mapping sections of each index block -** starting with the last index block and moving toward the first, and -** within each index block, starting at the end and moving toward the -** beginning. The first entry that equals P corresponds to the frame -** holding the content for that page. -** -** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. -** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the -** hash table for each page number in the mapping section, so the hash -** table is never more than half full. The expected number of collisions -** prior to finding a match is 1. Each entry of the hash table is an -** 1-based index of an entry in the mapping section of the same -** index block. Let K be the 1-based index of the largest entry in -** the mapping section. (For index blocks other than the last, K will -** always be exactly HASHTABLE_NPAGE (4096) and for the last index block -** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table -** contain a value of 0. -** -** To look for page P in the hash table, first compute a hash iKey on -** P as follows: -** -** iKey = (P * 383) % HASHTABLE_NSLOT -** -** Then start scanning entries of the hash table, starting with iKey -** (wrapping around to the beginning when the end of the hash table is -** reached) until an unused hash slot is found. Let the first unused slot -** be at index iUnused. (iUnused might be less than iKey if there was -** wrap-around.) Because the hash table is never more than half full, -** the search is guaranteed to eventually hit an unused entry. Let -** iMax be the value between iKey and iUnused, closest to iUnused, -** where aHash[iMax]==P. If there is no iMax entry (if there exists -** no hash slot such that aHash[i]==p) then page P is not in the -** current index block. Otherwise the iMax-th mapping entry of the -** current index block corresponds to the last entry that references -** page P. -** -** A hash search begins with the last index block and moves toward the -** first index block, looking for entries corresponding to page P. On -** average, only two or three slots in each index block need to be -** examined in order to either find the last entry for page P, or to -** establish that no such entry exists in the block. Each index block -** holds over 4000 entries. So two or three index blocks are sufficient -** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 -** comparisons (on average) suffice to either locate a frame in the -** WAL or to establish that the frame does not exist in the WAL. This -** is much faster than scanning the entire 10MB WAL. -** -** Note that entries are added in order of increasing K. Hence, one -** reader might be using some value K0 and a second reader that started -** at a later time (after additional transactions were added to the WAL -** and to the wal-index) might be using a different value K1, where K1>K0. -** Both readers can use the same hash table and mapping section to get -** the correct result. There may be entries in the hash table with -** K>K0 but to the first reader, those entries will appear to be unused -** slots in the hash table and so the first reader will get an answer as -** if no values greater than K0 had ever been inserted into the hash table -** in the first place - which is what reader one wants. Meanwhile, the -** second reader using K1 will see additional values that were inserted -** later, which is exactly what reader two wants. -** -** When a rollback occurs, the value of K is decreased. Hash table entries -** that correspond to frames greater than the new K value are removed -** from the hash table at this point. -*/ -#ifndef SQLITE_OMIT_WAL - -#include "wal.h" - -/* -** Trace output macros -*/ -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -int sqlite3WalTrace = 0; -# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X -#else -# define WALTRACE(X) -#endif - -/* -** The maximum (and only) versions of the wal and wal-index formats -** that may be interpreted by this version of SQLite. -** -** If a client begins recovering a WAL file and finds that (a) the checksum -** values in the wal-header are correct and (b) the version field is not -** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. -** -** Similarly, if a client successfully reads a wal-index header (i.e. the -** checksum test is successful) and finds that the version field is not -** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite -** returns SQLITE_CANTOPEN. -*/ -#define WAL_MAX_VERSION 3007000 -#define WALINDEX_MAX_VERSION 3007000 - -/* -** Indices of various locking bytes. WAL_NREADER is the number -** of available reader locks and should be at least 3. -*/ -#define WAL_WRITE_LOCK 0 -#define WAL_ALL_BUT_WRITE 1 -#define WAL_CKPT_LOCK 1 -#define WAL_RECOVER_LOCK 2 -#define WAL_READ_LOCK(I) (3+(I)) -#define WAL_NREADER (SQLITE_SHM_NLOCK-3) - - -/* Object declarations */ -typedef struct WalIndexHdr WalIndexHdr; -typedef struct WalIterator WalIterator; -typedef struct WalCkptInfo WalCkptInfo; - - -/* -** The following object holds a copy of the wal-index header content. -** -** The actual header in the wal-index consists of two copies of this -** object. -** -** The szPage value can be any power of 2 between 512 and 32768, inclusive. -** Or it can be 1 to represent a 65536-byte page. The latter case was -** added in 3.7.1 when support for 64K pages was added. -*/ -struct WalIndexHdr { - u32 iVersion; /* Wal-index version */ - u32 unused; /* Unused (padding) field */ - u32 iChange; /* Counter incremented each transaction */ - u8 isInit; /* 1 when initialized */ - u8 bigEndCksum; /* True if checksums in WAL are big-endian */ - u16 szPage; /* Database page size in bytes. 1==64K */ - u32 mxFrame; /* Index of last valid frame in the WAL */ - u32 nPage; /* Size of database in pages */ - u32 aFrameCksum[2]; /* Checksum of last frame in log */ - u32 aSalt[2]; /* Two salt values copied from WAL header */ - u32 aCksum[2]; /* Checksum over all prior fields */ -}; - -/* -** A copy of the following object occurs in the wal-index immediately -** following the second copy of the WalIndexHdr. This object stores -** information used by checkpoint. -** -** nBackfill is the number of frames in the WAL that have been written -** back into the database. (We call the act of moving content from WAL to -** database "backfilling".) The nBackfill number is never greater than -** WalIndexHdr.mxFrame. nBackfill can only be increased by threads -** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). -** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from -** mxFrame back to zero when the WAL is reset. -** -** There is one entry in aReadMark[] for each reader lock. If a reader -** holds read-lock K, then the value in aReadMark[K] is no greater than -** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) -** for any aReadMark[] means that entry is unused. aReadMark[0] is -** a special case; its value is never used and it exists as a place-holder -** to avoid having to offset aReadMark[] indexs by one. Readers holding -** WAL_READ_LOCK(0) always ignore the entire WAL and read all content -** directly from the database. -** -** The value of aReadMark[K] may only be changed by a thread that -** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of -** aReadMark[K] cannot changed while there is a reader is using that mark -** since the reader will be holding a shared lock on WAL_READ_LOCK(K). -** -** The checkpointer may only transfer frames from WAL to database where -** the frame numbers are less than or equal to every aReadMark[] that is -** in use (that is, every aReadMark[j] for which there is a corresponding -** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the -** largest value and will increase an unused aReadMark[] to mxFrame if there -** is not already an aReadMark[] equal to mxFrame. The exception to the -** previous sentence is when nBackfill equals mxFrame (meaning that everything -** in the WAL has been backfilled into the database) then new readers -** will choose aReadMark[0] which has value 0 and hence such reader will -** get all their all content directly from the database file and ignore -** the WAL. -** -** Writers normally append new frames to the end of the WAL. However, -** if nBackfill equals mxFrame (meaning that all WAL content has been -** written back into the database) and if no readers are using the WAL -** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then -** the writer will first "reset" the WAL back to the beginning and start -** writing new content beginning at frame 1. -** -** We assume that 32-bit loads are atomic and so no locks are needed in -** order to read from any aReadMark[] entries. -*/ -struct WalCkptInfo { - u32 nBackfill; /* Number of WAL frames backfilled into DB */ - u32 aReadMark[WAL_NREADER]; /* Reader marks */ -}; -#define READMARK_NOT_USED 0xffffffff - - -/* A block of WALINDEX_LOCK_RESERVED bytes beginning at -** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems -** only support mandatory file-locks, we do not read or write data -** from the region of the file on which locks are applied. -*/ -#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) -#define WALINDEX_LOCK_RESERVED 16 -#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) - -/* Size of header before each frame in wal */ -#define WAL_FRAME_HDRSIZE 24 - -/* Size of write ahead log header, including checksum. */ -/* #define WAL_HDRSIZE 24 */ -#define WAL_HDRSIZE 32 - -/* WAL magic value. Either this value, or the same value with the least -** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit -** big-endian format in the first 4 bytes of a WAL file. -** -** If the LSB is set, then the checksums for each frame within the WAL -** file are calculated by treating all data as an array of 32-bit -** big-endian words. Otherwise, they are calculated by interpreting -** all data as 32-bit little-endian words. -*/ -#define WAL_MAGIC 0x377f0682 - -/* -** Return the offset of frame iFrame in the write-ahead log file, -** assuming a database page size of szPage bytes. The offset returned -** is to the start of the write-ahead log frame-header. -*/ -#define walFrameOffset(iFrame, szPage) ( \ - WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ -) - -/* -** An open write-ahead log file is represented by an instance of the -** following object. -*/ -struct Wal { - sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ - sqlite3_file *pDbFd; /* File handle for the database file */ - sqlite3_file *pWalFd; /* File handle for WAL file */ - u32 iCallback; /* Value to pass to log callback (or 0) */ - i64 mxWalSize; /* Truncate WAL to this size upon reset */ - int nWiData; /* Size of array apWiData */ - int szFirstBlock; /* Size of first block written to WAL file */ - volatile u32 **apWiData; /* Pointer to wal-index content in memory */ - u32 szPage; /* Database page size */ - i16 readLock; /* Which read lock is being held. -1 for none */ - u8 syncFlags; /* Flags to use to sync header writes */ - u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ - u8 writeLock; /* True if in a write transaction */ - u8 ckptLock; /* True if holding a checkpoint lock */ - u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ - u8 truncateOnCommit; /* True to truncate WAL file on commit */ - u8 syncHeader; /* Fsync the WAL header if true */ - u8 padToSectorBoundary; /* Pad transactions out to the next sector */ - WalIndexHdr hdr; /* Wal-index header for current transaction */ - u32 minFrame; /* Ignore wal frames before this one */ - const char *zWalName; /* Name of WAL file */ - u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ -#ifdef SQLITE_DEBUG - u8 lockError; /* True if a locking error has occurred */ -#endif -}; - -/* -** Candidate values for Wal.exclusiveMode. -*/ -#define WAL_NORMAL_MODE 0 -#define WAL_EXCLUSIVE_MODE 1 -#define WAL_HEAPMEMORY_MODE 2 - -/* -** Possible values for WAL.readOnly -*/ -#define WAL_RDWR 0 /* Normal read/write connection */ -#define WAL_RDONLY 1 /* The WAL file is readonly */ -#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ - -/* -** Each page of the wal-index mapping contains a hash-table made up of -** an array of HASHTABLE_NSLOT elements of the following type. -*/ -typedef u16 ht_slot; - -/* -** This structure is used to implement an iterator that loops through -** all frames in the WAL in database page order. Where two or more frames -** correspond to the same database page, the iterator visits only the -** frame most recently written to the WAL (in other words, the frame with -** the largest index). -** -** The internals of this structure are only accessed by: -** -** walIteratorInit() - Create a new iterator, -** walIteratorNext() - Step an iterator, -** walIteratorFree() - Free an iterator. -** -** This functionality is used by the checkpoint code (see walCheckpoint()). -*/ -struct WalIterator { - int iPrior; /* Last result returned from the iterator */ - int nSegment; /* Number of entries in aSegment[] */ - struct WalSegment { - int iNext; /* Next slot in aIndex[] not yet returned */ - ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ - u32 *aPgno; /* Array of page numbers. */ - int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ - int iZero; /* Frame number associated with aPgno[0] */ - } aSegment[1]; /* One for every 32KB page in the wal-index */ -}; - -/* -** Define the parameters of the hash tables in the wal-index file. There -** is a hash-table following every HASHTABLE_NPAGE page numbers in the -** wal-index. -** -** Changing any of these constants will alter the wal-index format and -** create incompatibilities. -*/ -#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ -#define HASHTABLE_HASH_1 383 /* Should be prime */ -#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ - -/* -** The block of page numbers associated with the first hash-table in a -** wal-index is smaller than usual. This is so that there is a complete -** hash-table on each aligned 32KB page of the wal-index. -*/ -#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) - -/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ -#define WALINDEX_PGSZ ( \ - sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ -) - -/* -** Obtain a pointer to the iPage'th page of the wal-index. The wal-index -** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are -** numbered from zero. -** -** If this call is successful, *ppPage is set to point to the wal-index -** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, -** then an SQLite error code is returned and *ppPage is set to 0. -*/ -static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ - int rc = SQLITE_OK; - - /* Enlarge the pWal->apWiData[] array if required */ - if( pWal->nWiData<=iPage ){ - int nByte = sizeof(u32*)*(iPage+1); - volatile u32 **apNew; - apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); - if( !apNew ){ - *ppPage = 0; - return SQLITE_NOMEM; - } - memset((void*)&apNew[pWal->nWiData], 0, - sizeof(u32*)*(iPage+1-pWal->nWiData)); - pWal->apWiData = apNew; - pWal->nWiData = iPage+1; - } - - /* Request a pointer to the required page from the VFS */ - if( pWal->apWiData[iPage]==0 ){ - if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ - pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); - if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; - }else{ - rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, - pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] - ); - if( rc==SQLITE_READONLY ){ - pWal->readOnly |= WAL_SHM_RDONLY; - rc = SQLITE_OK; - } - } - } - - *ppPage = pWal->apWiData[iPage]; - assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); - return rc; -} - -/* -** Return a pointer to the WalCkptInfo structure in the wal-index. -*/ -static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ - assert( pWal->nWiData>0 && pWal->apWiData[0] ); - return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); -} - -/* -** Return a pointer to the WalIndexHdr structure in the wal-index. -*/ -static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ - assert( pWal->nWiData>0 && pWal->apWiData[0] ); - return (volatile WalIndexHdr*)pWal->apWiData[0]; -} - -/* -** The argument to this macro must be of type u32. On a little-endian -** architecture, it returns the u32 value that results from interpreting -** the 4 bytes as a big-endian value. On a big-endian architecture, it -** returns the value that would be produced by interpreting the 4 bytes -** of the input value as a little-endian integer. -*/ -#define BYTESWAP32(x) ( \ - (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ - + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ -) - -/* -** Generate or extend an 8 byte checksum based on the data in -** array aByte[] and the initial values of aIn[0] and aIn[1] (or -** initial values of 0 and 0 if aIn==NULL). -** -** The checksum is written back into aOut[] before returning. -** -** nByte must be a positive multiple of 8. -*/ -static void walChecksumBytes( - int nativeCksum, /* True for native byte-order, false for non-native */ - u8 *a, /* Content to be checksummed */ - int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ - const u32 *aIn, /* Initial checksum value input */ - u32 *aOut /* OUT: Final checksum value output */ -){ - u32 s1, s2; - u32 *aData = (u32 *)a; - u32 *aEnd = (u32 *)&a[nByte]; - - if( aIn ){ - s1 = aIn[0]; - s2 = aIn[1]; - }else{ - s1 = s2 = 0; - } - - assert( nByte>=8 ); - assert( (nByte&0x00000007)==0 ); - - if( nativeCksum ){ - do { - s1 += *aData++ + s2; - s2 += *aData++ + s1; - }while( aData<aEnd ); - }else{ - do { - s1 += BYTESWAP32(aData[0]) + s2; - s2 += BYTESWAP32(aData[1]) + s1; - aData += 2; - }while( aData<aEnd ); - } - - aOut[0] = s1; - aOut[1] = s2; -} - -static void walShmBarrier(Wal *pWal){ - if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ - sqlite3OsShmBarrier(pWal->pDbFd); - } -} - -/* -** Write the header information in pWal->hdr into the wal-index. -** -** The checksum on pWal->hdr is updated before it is written. -*/ -static void walIndexWriteHdr(Wal *pWal){ - volatile WalIndexHdr *aHdr = walIndexHdr(pWal); - const int nCksum = offsetof(WalIndexHdr, aCksum); - - assert( pWal->writeLock ); - pWal->hdr.isInit = 1; - pWal->hdr.iVersion = WALINDEX_MAX_VERSION; - walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); - memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); - walShmBarrier(pWal); - memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); -} - -/* -** This function encodes a single frame header and writes it to a buffer -** supplied by the caller. A frame-header is made up of a series of -** 4-byte big-endian integers, as follows: -** -** 0: Page number. -** 4: For commit records, the size of the database image in pages -** after the commit. For all other records, zero. -** 8: Salt-1 (copied from the wal-header) -** 12: Salt-2 (copied from the wal-header) -** 16: Checksum-1. -** 20: Checksum-2. -*/ -static void walEncodeFrame( - Wal *pWal, /* The write-ahead log */ - u32 iPage, /* Database page number for frame */ - u32 nTruncate, /* New db size (or 0 for non-commit frames) */ - u8 *aData, /* Pointer to page data */ - u8 *aFrame /* OUT: Write encoded frame here */ -){ - int nativeCksum; /* True for native byte-order checksums */ - u32 *aCksum = pWal->hdr.aFrameCksum; - assert( WAL_FRAME_HDRSIZE==24 ); - sqlite3Put4byte(&aFrame[0], iPage); - sqlite3Put4byte(&aFrame[4], nTruncate); - memcpy(&aFrame[8], pWal->hdr.aSalt, 8); - - nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); - walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); - walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); - - sqlite3Put4byte(&aFrame[16], aCksum[0]); - sqlite3Put4byte(&aFrame[20], aCksum[1]); -} - -/* -** Check to see if the frame with header in aFrame[] and content -** in aData[] is valid. If it is a valid frame, fill *piPage and -** *pnTruncate and return true. Return if the frame is not valid. -*/ -static int walDecodeFrame( - Wal *pWal, /* The write-ahead log */ - u32 *piPage, /* OUT: Database page number for frame */ - u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ - u8 *aData, /* Pointer to page data (for checksum) */ - u8 *aFrame /* Frame data */ -){ - int nativeCksum; /* True for native byte-order checksums */ - u32 *aCksum = pWal->hdr.aFrameCksum; - u32 pgno; /* Page number of the frame */ - assert( WAL_FRAME_HDRSIZE==24 ); - - /* A frame is only valid if the salt values in the frame-header - ** match the salt values in the wal-header. - */ - if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ - return 0; - } - - /* A frame is only valid if the page number is creater than zero. - */ - pgno = sqlite3Get4byte(&aFrame[0]); - if( pgno==0 ){ - return 0; - } - - /* A frame is only valid if a checksum of the WAL header, - ** all prior frams, the first 16 bytes of this frame-header, - ** and the frame-data matches the checksum in the last 8 - ** bytes of this frame-header. - */ - nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); - walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); - walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); - if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) - || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) - ){ - /* Checksum failed. */ - return 0; - } - - /* If we reach this point, the frame is valid. Return the page number - ** and the new database size. - */ - *piPage = pgno; - *pnTruncate = sqlite3Get4byte(&aFrame[4]); - return 1; -} - - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) -/* -** Names of locks. This routine is used to provide debugging output and is not -** a part of an ordinary build. -*/ -static const char *walLockName(int lockIdx){ - if( lockIdx==WAL_WRITE_LOCK ){ - return "WRITE-LOCK"; - }else if( lockIdx==WAL_CKPT_LOCK ){ - return "CKPT-LOCK"; - }else if( lockIdx==WAL_RECOVER_LOCK ){ - return "RECOVER-LOCK"; - }else{ - static char zName[15]; - sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", - lockIdx-WAL_READ_LOCK(0)); - return zName; - } -} -#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ - - -/* -** Set or release locks on the WAL. Locks are either shared or exclusive. -** A lock cannot be moved directly between shared and exclusive - it must go -** through the unlocked state first. -** -** In locking_mode=EXCLUSIVE, all of these routines become no-ops. -*/ -static int walLockShared(Wal *pWal, int lockIdx){ - int rc; - if( pWal->exclusiveMode ) return SQLITE_OK; - rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, - SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); - WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, - walLockName(lockIdx), rc ? "failed" : "ok")); - VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) - return rc; -} -static void walUnlockShared(Wal *pWal, int lockIdx){ - if( pWal->exclusiveMode ) return; - (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, - SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); - WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); -} -static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){ - int rc; - if( pWal->exclusiveMode ) return SQLITE_OK; - if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0); - rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, - SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); - WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, - walLockName(lockIdx), n, rc ? "failed" : "ok")); - VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) - return rc; -} -static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ - if( pWal->exclusiveMode ) return; - (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, - SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); - WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, - walLockName(lockIdx), n)); -} - -/* -** Compute a hash on a page number. The resulting hash value must land -** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances -** the hash to the next value in the event of a collision. -*/ -static int walHash(u32 iPage){ - assert( iPage>0 ); - assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); - return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); -} -static int walNextHash(int iPriorHash){ - return (iPriorHash+1)&(HASHTABLE_NSLOT-1); -} - -/* -** Return pointers to the hash table and page number array stored on -** page iHash of the wal-index. The wal-index is broken into 32KB pages -** numbered starting from 0. -** -** Set output variable *paHash to point to the start of the hash table -** in the wal-index file. Set *piZero to one less than the frame -** number of the first frame indexed by this hash table. If a -** slot in the hash table is set to N, it refers to frame number -** (*piZero+N) in the log. -** -** Finally, set *paPgno so that *paPgno[1] is the page number of the -** first frame indexed by the hash table, frame (*piZero+1). -*/ -static int walHashGet( - Wal *pWal, /* WAL handle */ - int iHash, /* Find the iHash'th table */ - volatile ht_slot **paHash, /* OUT: Pointer to hash index */ - volatile u32 **paPgno, /* OUT: Pointer to page number array */ - u32 *piZero /* OUT: Frame associated with *paPgno[0] */ -){ - int rc; /* Return code */ - volatile u32 *aPgno; - - rc = walIndexPage(pWal, iHash, &aPgno); - assert( rc==SQLITE_OK || iHash>0 ); - - if( rc==SQLITE_OK ){ - u32 iZero; - volatile ht_slot *aHash; - - aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; - if( iHash==0 ){ - aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; - iZero = 0; - }else{ - iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; - } - - *paPgno = &aPgno[-1]; - *paHash = aHash; - *piZero = iZero; - } - return rc; -} - -/* -** Return the number of the wal-index page that contains the hash-table -** and page-number array that contain entries corresponding to WAL frame -** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages -** are numbered starting from 0. -*/ -static int walFramePage(u32 iFrame){ - int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; - assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) - && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) - && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) - && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) - && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) - ); - return iHash; -} - -/* -** Return the page number associated with frame iFrame in this WAL. -*/ -static u32 walFramePgno(Wal *pWal, u32 iFrame){ - int iHash = walFramePage(iFrame); - if( iHash==0 ){ - return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; - } - return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; -} - -/* -** Remove entries from the hash table that point to WAL slots greater -** than pWal->hdr.mxFrame. -** -** This function is called whenever pWal->hdr.mxFrame is decreased due -** to a rollback or savepoint. -** -** At most only the hash table containing pWal->hdr.mxFrame needs to be -** updated. Any later hash tables will be automatically cleared when -** pWal->hdr.mxFrame advances to the point where those hash tables are -** actually needed. -*/ -static void walCleanupHash(Wal *pWal){ - volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ - volatile u32 *aPgno = 0; /* Page number array for hash table */ - u32 iZero = 0; /* frame == (aHash[x]+iZero) */ - int iLimit = 0; /* Zero values greater than this */ - int nByte; /* Number of bytes to zero in aPgno[] */ - int i; /* Used to iterate through aHash[] */ - - assert( pWal->writeLock ); - testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); - testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); - testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); - - if( pWal->hdr.mxFrame==0 ) return; - - /* Obtain pointers to the hash-table and page-number array containing - ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed - ** that the page said hash-table and array reside on is already mapped. - */ - assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); - assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); - walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); - - /* Zero all hash-table entries that correspond to frame numbers greater - ** than pWal->hdr.mxFrame. - */ - iLimit = pWal->hdr.mxFrame - iZero; - assert( iLimit>0 ); - for(i=0; i<HASHTABLE_NSLOT; i++){ - if( aHash[i]>iLimit ){ - aHash[i] = 0; - } - } - - /* Zero the entries in the aPgno array that correspond to frames with - ** frame numbers greater than pWal->hdr.mxFrame. - */ - nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); - memset((void *)&aPgno[iLimit+1], 0, nByte); - -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - /* Verify that the every entry in the mapping region is still reachable - ** via the hash table even after the cleanup. - */ - if( iLimit ){ - int j; /* Loop counter */ - int iKey; /* Hash key */ - for(j=1; j<=iLimit; j++){ - for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ - if( aHash[iKey]==j ) break; - } - assert( aHash[iKey]==j ); - } - } -#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ -} - - -/* -** Set an entry in the wal-index that will map database page number -** pPage into WAL frame iFrame. -*/ -static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ - int rc; /* Return code */ - u32 iZero = 0; /* One less than frame number of aPgno[1] */ - volatile u32 *aPgno = 0; /* Page number array */ - volatile ht_slot *aHash = 0; /* Hash table */ - - rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); - - /* Assuming the wal-index file was successfully mapped, populate the - ** page number array and hash table entry. - */ - if( rc==SQLITE_OK ){ - int iKey; /* Hash table key */ - int idx; /* Value to write to hash-table slot */ - int nCollide; /* Number of hash collisions */ - - idx = iFrame - iZero; - assert( idx <= HASHTABLE_NSLOT/2 + 1 ); - - /* If this is the first entry to be added to this hash-table, zero the - ** entire hash table and aPgno[] array before proceeding. - */ - if( idx==1 ){ - int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); - memset((void*)&aPgno[1], 0, nByte); - } - - /* If the entry in aPgno[] is already set, then the previous writer - ** must have exited unexpectedly in the middle of a transaction (after - ** writing one or more dirty pages to the WAL to free up memory). - ** Remove the remnants of that writers uncommitted transaction from - ** the hash-table before writing any new entries. - */ - if( aPgno[idx] ){ - walCleanupHash(pWal); - assert( !aPgno[idx] ); - } - - /* Write the aPgno[] array entry and the hash-table slot. */ - nCollide = idx; - for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ - if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; - } - aPgno[idx] = iPage; - aHash[iKey] = (ht_slot)idx; - -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - /* Verify that the number of entries in the hash table exactly equals - ** the number of entries in the mapping region. - */ - { - int i; /* Loop counter */ - int nEntry = 0; /* Number of entries in the hash table */ - for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } - assert( nEntry==idx ); - } - - /* Verify that the every entry in the mapping region is reachable - ** via the hash table. This turns out to be a really, really expensive - ** thing to check, so only do this occasionally - not on every - ** iteration. - */ - if( (idx&0x3ff)==0 ){ - int i; /* Loop counter */ - for(i=1; i<=idx; i++){ - for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ - if( aHash[iKey]==i ) break; - } - assert( aHash[iKey]==i ); - } - } -#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ - } - - - return rc; -} - - -/* -** Recover the wal-index by reading the write-ahead log file. -** -** This routine first tries to establish an exclusive lock on the -** wal-index to prevent other threads/processes from doing anything -** with the WAL or wal-index while recovery is running. The -** WAL_RECOVER_LOCK is also held so that other threads will know -** that this thread is running recovery. If unable to establish -** the necessary locks, this routine returns SQLITE_BUSY. -*/ -static int walIndexRecover(Wal *pWal){ - int rc; /* Return Code */ - i64 nSize; /* Size of log file */ - u32 aFrameCksum[2] = {0, 0}; - int iLock; /* Lock offset to lock for checkpoint */ - int nLock; /* Number of locks to hold */ - - /* Obtain an exclusive lock on all byte in the locking range not already - ** locked by the caller. The caller is guaranteed to have locked the - ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. - ** If successful, the same bytes that are locked here are unlocked before - ** this function returns. - */ - assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); - assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); - assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); - assert( pWal->writeLock ); - iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; - nLock = SQLITE_SHM_NLOCK - iLock; - rc = walLockExclusive(pWal, iLock, nLock, 0); - if( rc ){ - return rc; - } - WALTRACE(("WAL%p: recovery begin...\n", pWal)); - - memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); - - rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); - if( rc!=SQLITE_OK ){ - goto recovery_error; - } - - if( nSize>WAL_HDRSIZE ){ - u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ - u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ - int szFrame; /* Number of bytes in buffer aFrame[] */ - u8 *aData; /* Pointer to data part of aFrame buffer */ - int iFrame; /* Index of last frame read */ - i64 iOffset; /* Next offset to read from log file */ - int szPage; /* Page size according to the log */ - u32 magic; /* Magic value read from WAL header */ - u32 version; /* Magic value read from WAL header */ - int isValid; /* True if this frame is valid */ - - /* Read in the WAL header. */ - rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); - if( rc!=SQLITE_OK ){ - goto recovery_error; - } - - /* If the database page size is not a power of two, or is greater than - ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid - ** data. Similarly, if the 'magic' value is invalid, ignore the whole - ** WAL file. - */ - magic = sqlite3Get4byte(&aBuf[0]); - szPage = sqlite3Get4byte(&aBuf[8]); - if( (magic&0xFFFFFFFE)!=WAL_MAGIC - || szPage&(szPage-1) - || szPage>SQLITE_MAX_PAGE_SIZE - || szPage<512 - ){ - goto finished; - } - pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); - pWal->szPage = szPage; - pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); - memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); - - /* Verify that the WAL header checksum is correct */ - walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, - aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum - ); - if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) - || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) - ){ - goto finished; - } - - /* Verify that the version number on the WAL format is one that - ** are able to understand */ - version = sqlite3Get4byte(&aBuf[4]); - if( version!=WAL_MAX_VERSION ){ - rc = SQLITE_CANTOPEN_BKPT; - goto finished; - } - - /* Malloc a buffer to read frames into. */ - szFrame = szPage + WAL_FRAME_HDRSIZE; - aFrame = (u8 *)sqlite3_malloc64(szFrame); - if( !aFrame ){ - rc = SQLITE_NOMEM; - goto recovery_error; - } - aData = &aFrame[WAL_FRAME_HDRSIZE]; - - /* Read all frames from the log file. */ - iFrame = 0; - for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ - u32 pgno; /* Database page number for frame */ - u32 nTruncate; /* dbsize field from frame header */ - - /* Read and decode the next log frame. */ - iFrame++; - rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); - if( rc!=SQLITE_OK ) break; - isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); - if( !isValid ) break; - rc = walIndexAppend(pWal, iFrame, pgno); - if( rc!=SQLITE_OK ) break; - - /* If nTruncate is non-zero, this is a commit record. */ - if( nTruncate ){ - pWal->hdr.mxFrame = iFrame; - pWal->hdr.nPage = nTruncate; - pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); - testcase( szPage<=32768 ); - testcase( szPage>=65536 ); - aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; - aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; - } - } - - sqlite3_free(aFrame); - } - -finished: - if( rc==SQLITE_OK ){ - volatile WalCkptInfo *pInfo; - int i; - pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; - pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; - walIndexWriteHdr(pWal); - - /* Reset the checkpoint-header. This is safe because this thread is - ** currently holding locks that exclude all other readers, writers and - ** checkpointers. - */ - pInfo = walCkptInfo(pWal); - pInfo->nBackfill = 0; - pInfo->aReadMark[0] = 0; - for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; - if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; - - /* If more than one frame was recovered from the log file, report an - ** event via sqlite3_log(). This is to help with identifying performance - ** problems caused by applications routinely shutting down without - ** checkpointing the log file. - */ - if( pWal->hdr.nPage ){ - sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, - "recovered %d frames from WAL file %s", - pWal->hdr.mxFrame, pWal->zWalName - ); - } - } - -recovery_error: - WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); - walUnlockExclusive(pWal, iLock, nLock); - return rc; -} - -/* -** Close an open wal-index. -*/ -static void walIndexClose(Wal *pWal, int isDelete){ - if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ - int i; - for(i=0; i<pWal->nWiData; i++){ - sqlite3_free((void *)pWal->apWiData[i]); - pWal->apWiData[i] = 0; - } - }else{ - sqlite3OsShmUnmap(pWal->pDbFd, isDelete); - } -} - -/* -** Open a connection to the WAL file zWalName. The database file must -** already be opened on connection pDbFd. The buffer that zWalName points -** to must remain valid for the lifetime of the returned Wal* handle. -** -** A SHARED lock should be held on the database file when this function -** is called. The purpose of this SHARED lock is to prevent any other -** client from unlinking the WAL or wal-index file. If another process -** were to do this just after this client opened one of these files, the -** system would be badly broken. -** -** If the log file is successfully opened, SQLITE_OK is returned and -** *ppWal is set to point to a new WAL handle. If an error occurs, -** an SQLite error code is returned and *ppWal is left unmodified. -*/ -int sqlite3WalOpen( - sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ - sqlite3_file *pDbFd, /* The open database file */ - const char *zWalName, /* Name of the WAL file */ - int bNoShm, /* True to run in heap-memory mode */ - i64 mxWalSize, /* Truncate WAL to this size on reset */ - Wal **ppWal /* OUT: Allocated Wal handle */ -){ - int rc; /* Return Code */ - Wal *pRet; /* Object to allocate and return */ - int flags; /* Flags passed to OsOpen() */ - - assert( zWalName && zWalName[0] ); - assert( pDbFd ); - - /* In the amalgamation, the os_unix.c and os_win.c source files come before - ** this source file. Verify that the #defines of the locking byte offsets - ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. - */ -#ifdef WIN_SHM_BASE - assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); -#endif -#ifdef UNIX_SHM_BASE - assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); -#endif - - - /* Allocate an instance of struct Wal to return. */ - *ppWal = 0; - pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); - if( !pRet ){ - return SQLITE_NOMEM; - } - - pRet->pVfs = pVfs; - pRet->pWalFd = (sqlite3_file *)&pRet[1]; - pRet->pDbFd = pDbFd; - pRet->readLock = -1; - pRet->mxWalSize = mxWalSize; - pRet->zWalName = zWalName; - pRet->syncHeader = 1; - pRet->padToSectorBoundary = 1; - pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); - - /* Open file handle on the write-ahead log file. */ - flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); - rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); - if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ - pRet->readOnly = WAL_RDONLY; - } - - if( rc!=SQLITE_OK ){ - walIndexClose(pRet, 0); - sqlite3OsClose(pRet->pWalFd); - sqlite3_free(pRet); - }else{ - int iDC = sqlite3OsDeviceCharacteristics(pDbFd); - if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } - if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ - pRet->padToSectorBoundary = 0; - } - *ppWal = pRet; - WALTRACE(("WAL%d: opened\n", pRet)); - } - return rc; -} - -/* -** Change the size to which the WAL file is trucated on each reset. -*/ -void sqlite3WalLimit(Wal *pWal, i64 iLimit){ - if( pWal ) pWal->mxWalSize = iLimit; -} - -/* -** Find the smallest page number out of all pages held in the WAL that -** has not been returned by any prior invocation of this method on the -** same WalIterator object. Write into *piFrame the frame index where -** that page was last written into the WAL. Write into *piPage the page -** number. -** -** Return 0 on success. If there are no pages in the WAL with a page -** number larger than *piPage, then return 1. -*/ -static int walIteratorNext( - WalIterator *p, /* Iterator */ - u32 *piPage, /* OUT: The page number of the next page */ - u32 *piFrame /* OUT: Wal frame index of next page */ -){ - u32 iMin; /* Result pgno must be greater than iMin */ - u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ - int i; /* For looping through segments */ - - iMin = p->iPrior; - assert( iMin<0xffffffff ); - for(i=p->nSegment-1; i>=0; i--){ - struct WalSegment *pSegment = &p->aSegment[i]; - while( pSegment->iNext<pSegment->nEntry ){ - u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; - if( iPg>iMin ){ - if( iPg<iRet ){ - iRet = iPg; - *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; - } - break; - } - pSegment->iNext++; - } - } - - *piPage = p->iPrior = iRet; - return (iRet==0xFFFFFFFF); -} - -/* -** This function merges two sorted lists into a single sorted list. -** -** aLeft[] and aRight[] are arrays of indices. The sort key is -** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following -** is guaranteed for all J<K: -** -** aContent[aLeft[J]] < aContent[aLeft[K]] -** aContent[aRight[J]] < aContent[aRight[K]] -** -** This routine overwrites aRight[] with a new (probably longer) sequence -** of indices such that the aRight[] contains every index that appears in -** either aLeft[] or the old aRight[] and such that the second condition -** above is still met. -** -** The aContent[aLeft[X]] values will be unique for all X. And the -** aContent[aRight[X]] values will be unique too. But there might be -** one or more combinations of X and Y such that -** -** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] -** -** When that happens, omit the aLeft[X] and use the aRight[Y] index. -*/ -static void walMerge( - const u32 *aContent, /* Pages in wal - keys for the sort */ - ht_slot *aLeft, /* IN: Left hand input list */ - int nLeft, /* IN: Elements in array *paLeft */ - ht_slot **paRight, /* IN/OUT: Right hand input list */ - int *pnRight, /* IN/OUT: Elements in *paRight */ - ht_slot *aTmp /* Temporary buffer */ -){ - int iLeft = 0; /* Current index in aLeft */ - int iRight = 0; /* Current index in aRight */ - int iOut = 0; /* Current index in output buffer */ - int nRight = *pnRight; - ht_slot *aRight = *paRight; - - assert( nLeft>0 && nRight>0 ); - while( iRight<nRight || iLeft<nLeft ){ - ht_slot logpage; - Pgno dbpage; - - if( (iLeft<nLeft) - && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) - ){ - logpage = aLeft[iLeft++]; - }else{ - logpage = aRight[iRight++]; - } - dbpage = aContent[logpage]; - - aTmp[iOut++] = logpage; - if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; - - assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); - assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); - } - - *paRight = aLeft; - *pnRight = iOut; - memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); -} - -/* -** Sort the elements in list aList using aContent[] as the sort key. -** Remove elements with duplicate keys, preferring to keep the -** larger aList[] values. -** -** The aList[] entries are indices into aContent[]. The values in -** aList[] are to be sorted so that for all J<K: -** -** aContent[aList[J]] < aContent[aList[K]] -** -** For any X and Y such that -** -** aContent[aList[X]] == aContent[aList[Y]] -** -** Keep the larger of the two values aList[X] and aList[Y] and discard -** the smaller. -*/ -static void walMergesort( - const u32 *aContent, /* Pages in wal */ - ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ - ht_slot *aList, /* IN/OUT: List to sort */ - int *pnList /* IN/OUT: Number of elements in aList[] */ -){ - struct Sublist { - int nList; /* Number of elements in aList */ - ht_slot *aList; /* Pointer to sub-list content */ - }; - - const int nList = *pnList; /* Size of input list */ - int nMerge = 0; /* Number of elements in list aMerge */ - ht_slot *aMerge = 0; /* List to be merged */ - int iList; /* Index into input list */ - u32 iSub = 0; /* Index into aSub array */ - struct Sublist aSub[13]; /* Array of sub-lists */ - - memset(aSub, 0, sizeof(aSub)); - assert( nList<=HASHTABLE_NPAGE && nList>0 ); - assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); - - for(iList=0; iList<nList; iList++){ - nMerge = 1; - aMerge = &aList[iList]; - for(iSub=0; iList & (1<<iSub); iSub++){ - struct Sublist *p; - assert( iSub<ArraySize(aSub) ); - p = &aSub[iSub]; - assert( p->aList && p->nList<=(1<<iSub) ); - assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); - walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); - } - aSub[iSub].aList = aMerge; - aSub[iSub].nList = nMerge; - } - - for(iSub++; iSub<ArraySize(aSub); iSub++){ - if( nList & (1<<iSub) ){ - struct Sublist *p; - assert( iSub<ArraySize(aSub) ); - p = &aSub[iSub]; - assert( p->nList<=(1<<iSub) ); - assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); - walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); - } - } - assert( aMerge==aList ); - *pnList = nMerge; - -#ifdef SQLITE_DEBUG - { - int i; - for(i=1; i<*pnList; i++){ - assert( aContent[aList[i]] > aContent[aList[i-1]] ); - } - } -#endif -} - -/* -** Free an iterator allocated by walIteratorInit(). -*/ -static void walIteratorFree(WalIterator *p){ - sqlite3_free(p); -} - -/* -** Construct a WalInterator object that can be used to loop over all -** pages in the WAL in ascending order. The caller must hold the checkpoint -** lock. -** -** On success, make *pp point to the newly allocated WalInterator object -** return SQLITE_OK. Otherwise, return an error code. If this routine -** returns an error, the value of *pp is undefined. -** -** The calling routine should invoke walIteratorFree() to destroy the -** WalIterator object when it has finished with it. -*/ -static int walIteratorInit(Wal *pWal, WalIterator **pp){ - WalIterator *p; /* Return value */ - int nSegment; /* Number of segments to merge */ - u32 iLast; /* Last frame in log */ - int nByte; /* Number of bytes to allocate */ - int i; /* Iterator variable */ - ht_slot *aTmp; /* Temp space used by merge-sort */ - int rc = SQLITE_OK; /* Return Code */ - - /* This routine only runs while holding the checkpoint lock. And - ** it only runs if there is actually content in the log (mxFrame>0). - */ - assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); - iLast = pWal->hdr.mxFrame; - - /* Allocate space for the WalIterator object. */ - nSegment = walFramePage(iLast) + 1; - nByte = sizeof(WalIterator) - + (nSegment-1)*sizeof(struct WalSegment) - + iLast*sizeof(ht_slot); - p = (WalIterator *)sqlite3_malloc64(nByte); - if( !p ){ - return SQLITE_NOMEM; - } - memset(p, 0, nByte); - p->nSegment = nSegment; - - /* Allocate temporary space used by the merge-sort routine. This block - ** of memory will be freed before this function returns. - */ - aTmp = (ht_slot *)sqlite3_malloc64( - sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) - ); - if( !aTmp ){ - rc = SQLITE_NOMEM; - } - - for(i=0; rc==SQLITE_OK && i<nSegment; i++){ - volatile ht_slot *aHash; - u32 iZero; - volatile u32 *aPgno; - - rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); - if( rc==SQLITE_OK ){ - int j; /* Counter variable */ - int nEntry; /* Number of entries in this segment */ - ht_slot *aIndex; /* Sorted index for this segment */ - - aPgno++; - if( (i+1)==nSegment ){ - nEntry = (int)(iLast - iZero); - }else{ - nEntry = (int)((u32*)aHash - (u32*)aPgno); - } - aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; - iZero++; - - for(j=0; j<nEntry; j++){ - aIndex[j] = (ht_slot)j; - } - walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); - p->aSegment[i].iZero = iZero; - p->aSegment[i].nEntry = nEntry; - p->aSegment[i].aIndex = aIndex; - p->aSegment[i].aPgno = (u32 *)aPgno; - } - } - sqlite3_free(aTmp); - - if( rc!=SQLITE_OK ){ - walIteratorFree(p); - } - *pp = p; - return rc; -} - -/* -** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and -** n. If the attempt fails and parameter xBusy is not NULL, then it is a -** busy-handler function. Invoke it and retry the lock until either the -** lock is successfully obtained or the busy-handler returns 0. -*/ -static int walBusyLock( - Wal *pWal, /* WAL connection */ - int (*xBusy)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int lockIdx, /* Offset of first byte to lock */ - int n /* Number of bytes to lock */ -){ - int rc; - do { - rc = walLockExclusive(pWal, lockIdx, n, 0); - }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); - return rc; -} - -/* -** The cache of the wal-index header must be valid to call this function. -** Return the page-size in bytes used by the database. -*/ -static int walPagesize(Wal *pWal){ - return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); -} - -/* -** The following is guaranteed when this function is called: -** -** a) the WRITER lock is held, -** b) the entire log file has been checkpointed, and -** c) any existing readers are reading exclusively from the database -** file - there are no readers that may attempt to read a frame from -** the log file. -** -** This function updates the shared-memory structures so that the next -** client to write to the database (which may be this one) does so by -** writing frames into the start of the log file. -** -** The value of parameter salt1 is used as the aSalt[1] value in the -** new wal-index header. It should be passed a pseudo-random value (i.e. -** one obtained from sqlite3_randomness()). -*/ -static void walRestartHdr(Wal *pWal, u32 salt1){ - volatile WalCkptInfo *pInfo = walCkptInfo(pWal); - int i; /* Loop counter */ - u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ - pWal->nCkpt++; - pWal->hdr.mxFrame = 0; - sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); - memcpy(&pWal->hdr.aSalt[1], &salt1, 4); - walIndexWriteHdr(pWal); - pInfo->nBackfill = 0; - pInfo->aReadMark[1] = 0; - for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; - assert( pInfo->aReadMark[0]==0 ); -} - -/* -** Copy as much content as we can from the WAL back into the database file -** in response to an sqlite3_wal_checkpoint() request or the equivalent. -** -** The amount of information copies from WAL to database might be limited -** by active readers. This routine will never overwrite a database page -** that a concurrent reader might be using. -** -** All I/O barrier operations (a.k.a fsyncs) occur in this routine when -** SQLite is in WAL-mode in synchronous=NORMAL. That means that if -** checkpoints are always run by a background thread or background -** process, foreground threads will never block on a lengthy fsync call. -** -** Fsync is called on the WAL before writing content out of the WAL and -** into the database. This ensures that if the new content is persistent -** in the WAL and can be recovered following a power-loss or hard reset. -** -** Fsync is also called on the database file if (and only if) the entire -** WAL content is copied into the database file. This second fsync makes -** it safe to delete the WAL since the new content will persist in the -** database file. -** -** This routine uses and updates the nBackfill field of the wal-index header. -** This is the only routine that will increase the value of nBackfill. -** (A WAL reset or recovery will revert nBackfill to zero, but not increase -** its value.) -** -** The caller must be holding sufficient locks to ensure that no other -** checkpoint is running (in any other thread or process) at the same -** time. -*/ -static int walCheckpoint( - Wal *pWal, /* Wal connection */ - int eMode, /* One of PASSIVE, FULL or RESTART */ - int (*xBusy)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int sync_flags, /* Flags for OsSync() (or 0) */ - u8 *zBuf /* Temporary buffer to use */ -){ - int rc = SQLITE_OK; /* Return code */ - int szPage; /* Database page-size */ - WalIterator *pIter = 0; /* Wal iterator context */ - u32 iDbpage = 0; /* Next database page to write */ - u32 iFrame = 0; /* Wal frame containing data for iDbpage */ - u32 mxSafeFrame; /* Max frame that can be backfilled */ - u32 mxPage; /* Max database page to write */ - int i; /* Loop counter */ - volatile WalCkptInfo *pInfo; /* The checkpoint status information */ - - szPage = walPagesize(pWal); - testcase( szPage<=32768 ); - testcase( szPage>=65536 ); - pInfo = walCkptInfo(pWal); - if( pInfo->nBackfill<pWal->hdr.mxFrame ){ - - /* Allocate the iterator */ - rc = walIteratorInit(pWal, &pIter); - if( rc!=SQLITE_OK ){ - return rc; - } - assert( pIter ); - - /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked - ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ - assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); - - /* Compute in mxSafeFrame the index of the last frame of the WAL that is - ** safe to write into the database. Frames beyond mxSafeFrame might - ** overwrite database pages that are in use by active readers and thus - ** cannot be backfilled from the WAL. - */ - mxSafeFrame = pWal->hdr.mxFrame; - mxPage = pWal->hdr.nPage; - for(i=1; i<WAL_NREADER; i++){ - /* Thread-sanitizer reports that the following is an unsafe read, - ** as some other thread may be in the process of updating the value - ** of the aReadMark[] slot. The assumption here is that if that is - ** happening, the other client may only be increasing the value, - ** not decreasing it. So assuming either that either the "old" or - ** "new" version of the value is read, and not some arbitrary value - ** that would never be written by a real client, things are still - ** safe. */ - u32 y = pInfo->aReadMark[i]; - if( mxSafeFrame>y ){ - assert( y<=pWal->hdr.mxFrame ); - rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); - if( rc==SQLITE_OK ){ - pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); - walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); - }else if( rc==SQLITE_BUSY ){ - mxSafeFrame = y; - xBusy = 0; - }else{ - goto walcheckpoint_out; - } - } - } - - if( pInfo->nBackfill<mxSafeFrame - && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK - ){ - i64 nSize; /* Current size of database file */ - u32 nBackfill = pInfo->nBackfill; - - /* Sync the WAL to disk */ - if( sync_flags ){ - rc = sqlite3OsSync(pWal->pWalFd, sync_flags); - } - - /* If the database may grow as a result of this checkpoint, hint - ** about the eventual size of the db file to the VFS layer. - */ - if( rc==SQLITE_OK ){ - i64 nReq = ((i64)mxPage * szPage); - rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); - if( rc==SQLITE_OK && nSize<nReq ){ - sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); - } - } - - - /* Iterate through the contents of the WAL, copying data to the db file */ - while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ - i64 iOffset; - assert( walFramePgno(pWal, iFrame)==iDbpage ); - if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ - continue; - } - iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; - /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ - rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); - if( rc!=SQLITE_OK ) break; - iOffset = (iDbpage-1)*(i64)szPage; - testcase( IS_BIG_INT(iOffset) ); - rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); - if( rc!=SQLITE_OK ) break; - } - - /* If work was actually accomplished... */ - if( rc==SQLITE_OK ){ - if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ - i64 szDb = pWal->hdr.nPage*(i64)szPage; - testcase( IS_BIG_INT(szDb) ); - rc = sqlite3OsTruncate(pWal->pDbFd, szDb); - if( rc==SQLITE_OK && sync_flags ){ - rc = sqlite3OsSync(pWal->pDbFd, sync_flags); - } - } - if( rc==SQLITE_OK ){ - pInfo->nBackfill = mxSafeFrame; - } - } - - /* Release the reader lock held while backfilling */ - walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); - } - - if( rc==SQLITE_BUSY ){ - /* Reset the return code so as not to report a checkpoint failure - ** just because there are active readers. */ - rc = SQLITE_OK; - } - } - - /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the - ** entire wal file has been copied into the database file, then block - ** until all readers have finished using the wal file. This ensures that - ** the next process to write to the database restarts the wal file. - */ - if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ - assert( pWal->writeLock ); - if( pInfo->nBackfill<pWal->hdr.mxFrame ){ - rc = SQLITE_BUSY; - }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ - u32 salt1; - sqlite3_randomness(4, &salt1); - assert( pInfo->nBackfill==pWal->hdr.mxFrame ); - rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); - if( rc==SQLITE_OK ){ - if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ - /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as - ** SQLITE_CHECKPOINT_RESTART with the addition that it also - ** truncates the log file to zero bytes just prior to a - ** successful return. - ** - ** In theory, it might be safe to do this without updating the - ** wal-index header in shared memory, as all subsequent reader or - ** writer clients should see that the entire log file has been - ** checkpointed and behave accordingly. This seems unsafe though, - ** as it would leave the system in a state where the contents of - ** the wal-index header do not match the contents of the - ** file-system. To avoid this, update the wal-index header to - ** indicate that the log file contains zero valid frames. */ - walRestartHdr(pWal, salt1); - rc = sqlite3OsTruncate(pWal->pWalFd, 0); - } - walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); - } - } - } - - walcheckpoint_out: - walIteratorFree(pIter); - return rc; -} - -/* -** If the WAL file is currently larger than nMax bytes in size, truncate -** it to exactly nMax bytes. If an error occurs while doing so, ignore it. -*/ -static void walLimitSize(Wal *pWal, i64 nMax){ - i64 sz; - int rx; - sqlite3BeginBenignMalloc(); - rx = sqlite3OsFileSize(pWal->pWalFd, &sz); - if( rx==SQLITE_OK && (sz > nMax ) ){ - rx = sqlite3OsTruncate(pWal->pWalFd, nMax); - } - sqlite3EndBenignMalloc(); - if( rx ){ - sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); - } -} - -/* -** Close a connection to a log file. -*/ -int sqlite3WalClose( - Wal *pWal, /* Wal to close */ - int sync_flags, /* Flags to pass to OsSync() (or 0) */ - int nBuf, - u8 *zBuf /* Buffer of at least nBuf bytes */ -){ - int rc = SQLITE_OK; - if( pWal ){ - int isDelete = 0; /* True to unlink wal and wal-index files */ - - /* If an EXCLUSIVE lock can be obtained on the database file (using the - ** ordinary, rollback-mode locking methods, this guarantees that the - ** connection associated with this log file is the only connection to - ** the database. In this case checkpoint the database and unlink both - ** the wal and wal-index files. - ** - ** The EXCLUSIVE lock is not released before returning. - */ - rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); - if( rc==SQLITE_OK ){ - if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ - pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; - } - rc = sqlite3WalCheckpoint( - pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 - ); - if( rc==SQLITE_OK ){ - int bPersist = -1; - sqlite3OsFileControlHint( - pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist - ); - if( bPersist!=1 ){ - /* Try to delete the WAL file if the checkpoint completed and - ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal - ** mode (!bPersist) */ - isDelete = 1; - }else if( pWal->mxWalSize>=0 ){ - /* Try to truncate the WAL file to zero bytes if the checkpoint - ** completed and fsynced (rc==SQLITE_OK) and we are in persistent - ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a - ** non-negative value (pWal->mxWalSize>=0). Note that we truncate - ** to zero bytes as truncating to the journal_size_limit might - ** leave a corrupt WAL file on disk. */ - walLimitSize(pWal, 0); - } - } - } - - walIndexClose(pWal, isDelete); - sqlite3OsClose(pWal->pWalFd); - if( isDelete ){ - sqlite3BeginBenignMalloc(); - sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); - sqlite3EndBenignMalloc(); - } - WALTRACE(("WAL%p: closed\n", pWal)); - sqlite3_free((void *)pWal->apWiData); - sqlite3_free(pWal); - } - return rc; -} - -/* -** Try to read the wal-index header. Return 0 on success and 1 if -** there is a problem. -** -** The wal-index is in shared memory. Another thread or process might -** be writing the header at the same time this procedure is trying to -** read it, which might result in inconsistency. A dirty read is detected -** by verifying that both copies of the header are the same and also by -** a checksum on the header. -** -** If and only if the read is consistent and the header is different from -** pWal->hdr, then pWal->hdr is updated to the content of the new header -** and *pChanged is set to 1. -** -** If the checksum cannot be verified return non-zero. If the header -** is read successfully and the checksum verified, return zero. -*/ -static int walIndexTryHdr(Wal *pWal, int *pChanged){ - u32 aCksum[2]; /* Checksum on the header content */ - WalIndexHdr h1, h2; /* Two copies of the header content */ - WalIndexHdr volatile *aHdr; /* Header in shared memory */ - - /* The first page of the wal-index must be mapped at this point. */ - assert( pWal->nWiData>0 && pWal->apWiData[0] ); - - /* Read the header. This might happen concurrently with a write to the - ** same area of shared memory on a different CPU in a SMP, - ** meaning it is possible that an inconsistent snapshot is read - ** from the file. If this happens, return non-zero. - ** - ** There are two copies of the header at the beginning of the wal-index. - ** When reading, read [0] first then [1]. Writes are in the reverse order. - ** Memory barriers are used to prevent the compiler or the hardware from - ** reordering the reads and writes. - */ - aHdr = walIndexHdr(pWal); - memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); - walShmBarrier(pWal); - memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); - - if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ - return 1; /* Dirty read */ - } - if( h1.isInit==0 ){ - return 1; /* Malformed header - probably all zeros */ - } - walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); - if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ - return 1; /* Checksum does not match */ - } - - if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ - *pChanged = 1; - memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); - pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); - testcase( pWal->szPage<=32768 ); - testcase( pWal->szPage>=65536 ); - } - - /* The header was successfully read. Return zero. */ - return 0; -} - -/* -** Read the wal-index header from the wal-index and into pWal->hdr. -** If the wal-header appears to be corrupt, try to reconstruct the -** wal-index from the WAL before returning. -** -** Set *pChanged to 1 if the wal-index header value in pWal->hdr is -** changed by this operation. If pWal->hdr is unchanged, set *pChanged -** to 0. -** -** If the wal-index header is successfully read, return SQLITE_OK. -** Otherwise an SQLite error code. -*/ -static int walIndexReadHdr(Wal *pWal, int *pChanged){ - int rc; /* Return code */ - int badHdr; /* True if a header read failed */ - volatile u32 *page0; /* Chunk of wal-index containing header */ - - /* Ensure that page 0 of the wal-index (the page that contains the - ** wal-index header) is mapped. Return early if an error occurs here. - */ - assert( pChanged ); - rc = walIndexPage(pWal, 0, &page0); - if( rc!=SQLITE_OK ){ - return rc; - }; - assert( page0 || pWal->writeLock==0 ); - - /* If the first page of the wal-index has been mapped, try to read the - ** wal-index header immediately, without holding any lock. This usually - ** works, but may fail if the wal-index header is corrupt or currently - ** being modified by another thread or process. - */ - badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); - - /* If the first attempt failed, it might have been due to a race - ** with a writer. So get a WRITE lock and try again. - */ - assert( badHdr==0 || pWal->writeLock==0 ); - if( badHdr ){ - if( pWal->readOnly & WAL_SHM_RDONLY ){ - if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ - walUnlockShared(pWal, WAL_WRITE_LOCK); - rc = SQLITE_READONLY_RECOVERY; - } - }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){ - pWal->writeLock = 1; - if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ - badHdr = walIndexTryHdr(pWal, pChanged); - if( badHdr ){ - /* If the wal-index header is still malformed even while holding - ** a WRITE lock, it can only mean that the header is corrupted and - ** needs to be reconstructed. So run recovery to do exactly that. - */ - rc = walIndexRecover(pWal); - *pChanged = 1; - } - } - pWal->writeLock = 0; - walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); - } - } - - /* If the header is read successfully, check the version number to make - ** sure the wal-index was not constructed with some future format that - ** this version of SQLite cannot understand. - */ - if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ - rc = SQLITE_CANTOPEN_BKPT; - } - - return rc; -} - -/* -** This is the value that walTryBeginRead returns when it needs to -** be retried. -*/ -#define WAL_RETRY (-1) - -/* -** Attempt to start a read transaction. This might fail due to a race or -** other transient condition. When that happens, it returns WAL_RETRY to -** indicate to the caller that it is safe to retry immediately. -** -** On success return SQLITE_OK. On a permanent failure (such an -** I/O error or an SQLITE_BUSY because another process is running -** recovery) return a positive error code. -** -** The useWal parameter is true to force the use of the WAL and disable -** the case where the WAL is bypassed because it has been completely -** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() -** to make a copy of the wal-index header into pWal->hdr. If the -** wal-index header has changed, *pChanged is set to 1 (as an indication -** to the caller that the local paget cache is obsolete and needs to be -** flushed.) When useWal==1, the wal-index header is assumed to already -** be loaded and the pChanged parameter is unused. -** -** The caller must set the cnt parameter to the number of prior calls to -** this routine during the current read attempt that returned WAL_RETRY. -** This routine will start taking more aggressive measures to clear the -** race conditions after multiple WAL_RETRY returns, and after an excessive -** number of errors will ultimately return SQLITE_PROTOCOL. The -** SQLITE_PROTOCOL return indicates that some other process has gone rogue -** and is not honoring the locking protocol. There is a vanishingly small -** chance that SQLITE_PROTOCOL could be returned because of a run of really -** bad luck when there is lots of contention for the wal-index, but that -** possibility is so small that it can be safely neglected, we believe. -** -** On success, this routine obtains a read lock on -** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is -** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) -** that means the Wal does not hold any read lock. The reader must not -** access any database page that is modified by a WAL frame up to and -** including frame number aReadMark[pWal->readLock]. The reader will -** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 -** Or if pWal->readLock==0, then the reader will ignore the WAL -** completely and get all content directly from the database file. -** If the useWal parameter is 1 then the WAL will never be ignored and -** this routine will always set pWal->readLock>0 on success. -** When the read transaction is completed, the caller must release the -** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. -** -** This routine uses the nBackfill and aReadMark[] fields of the header -** to select a particular WAL_READ_LOCK() that strives to let the -** checkpoint process do as much work as possible. This routine might -** update values of the aReadMark[] array in the header, but if it does -** so it takes care to hold an exclusive lock on the corresponding -** WAL_READ_LOCK() while changing values. -*/ -static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ - volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ - u32 mxReadMark; /* Largest aReadMark[] value */ - int mxI; /* Index of largest aReadMark[] value */ - int i; /* Loop counter */ - int rc = SQLITE_OK; /* Return code */ - - assert( pWal->readLock<0 ); /* Not currently locked */ - - /* Take steps to avoid spinning forever if there is a protocol error. - ** - ** Circumstances that cause a RETRY should only last for the briefest - ** instances of time. No I/O or other system calls are done while the - ** locks are held, so the locks should not be held for very long. But - ** if we are unlucky, another process that is holding a lock might get - ** paged out or take a page-fault that is time-consuming to resolve, - ** during the few nanoseconds that it is holding the lock. In that case, - ** it might take longer than normal for the lock to free. - ** - ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few - ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this - ** is more of a scheduler yield than an actual delay. But on the 10th - ** an subsequent retries, the delays start becoming longer and longer, - ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. - ** The total delay time before giving up is less than 10 seconds. - */ - if( cnt>5 ){ - int nDelay = 1; /* Pause time in microseconds */ - if( cnt>100 ){ - VVA_ONLY( pWal->lockError = 1; ) - return SQLITE_PROTOCOL; - } - if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; - sqlite3OsSleep(pWal->pVfs, nDelay); - } - - if( !useWal ){ - rc = walIndexReadHdr(pWal, pChanged); - if( rc==SQLITE_BUSY ){ - /* If there is not a recovery running in another thread or process - ** then convert BUSY errors to WAL_RETRY. If recovery is known to - ** be running, convert BUSY to BUSY_RECOVERY. There is a race here - ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY - ** would be technically correct. But the race is benign since with - ** WAL_RETRY this routine will be called again and will probably be - ** right on the second iteration. - */ - if( pWal->apWiData[0]==0 ){ - /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. - ** We assume this is a transient condition, so return WAL_RETRY. The - ** xShmMap() implementation used by the default unix and win32 VFS - ** modules may return SQLITE_BUSY due to a race condition in the - ** code that determines whether or not the shared-memory region - ** must be zeroed before the requested page is returned. - */ - rc = WAL_RETRY; - }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ - walUnlockShared(pWal, WAL_RECOVER_LOCK); - rc = WAL_RETRY; - }else if( rc==SQLITE_BUSY ){ - rc = SQLITE_BUSY_RECOVERY; - } - } - if( rc!=SQLITE_OK ){ - return rc; - } - } - - pInfo = walCkptInfo(pWal); - if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ - /* The WAL has been completely backfilled (or it is empty). - ** and can be safely ignored. - */ - rc = walLockShared(pWal, WAL_READ_LOCK(0)); - walShmBarrier(pWal); - if( rc==SQLITE_OK ){ - if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ - /* It is not safe to allow the reader to continue here if frames - ** may have been appended to the log before READ_LOCK(0) was obtained. - ** When holding READ_LOCK(0), the reader ignores the entire log file, - ** which implies that the database file contains a trustworthy - ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from - ** happening, this is usually correct. - ** - ** However, if frames have been appended to the log (or if the log - ** is wrapped and written for that matter) before the READ_LOCK(0) - ** is obtained, that is not necessarily true. A checkpointer may - ** have started to backfill the appended frames but crashed before - ** it finished. Leaving a corrupt image in the database file. - */ - walUnlockShared(pWal, WAL_READ_LOCK(0)); - return WAL_RETRY; - } - pWal->readLock = 0; - return SQLITE_OK; - }else if( rc!=SQLITE_BUSY ){ - return rc; - } - } - - /* If we get this far, it means that the reader will want to use - ** the WAL to get at content from recent commits. The job now is - ** to select one of the aReadMark[] entries that is closest to - ** but not exceeding pWal->hdr.mxFrame and lock that entry. - */ - mxReadMark = 0; - mxI = 0; - for(i=1; i<WAL_NREADER; i++){ - u32 thisMark = pInfo->aReadMark[i]; - if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ - assert( thisMark!=READMARK_NOT_USED ); - mxReadMark = thisMark; - mxI = i; - } - } - /* There was once an "if" here. The extra "{" is to preserve indentation. */ - { - if( (pWal->readOnly & WAL_SHM_RDONLY)==0 - && (mxReadMark<pWal->hdr.mxFrame || mxI==0) - ){ - for(i=1; i<WAL_NREADER; i++){ - rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0); - if( rc==SQLITE_OK ){ - mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; - mxI = i; - walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); - break; - }else if( rc!=SQLITE_BUSY ){ - return rc; - } - } - } - if( mxI==0 ){ - assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); - return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; - } - - rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); - if( rc ){ - return rc==SQLITE_BUSY ? WAL_RETRY : rc; - } - /* Now that the read-lock has been obtained, check that neither the - ** value in the aReadMark[] array or the contents of the wal-index - ** header have changed. - ** - ** It is necessary to check that the wal-index header did not change - ** between the time it was read and when the shared-lock was obtained - ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility - ** that the log file may have been wrapped by a writer, or that frames - ** that occur later in the log than pWal->hdr.mxFrame may have been - ** copied into the database by a checkpointer. If either of these things - ** happened, then reading the database with the current value of - ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry - ** instead. - ** - ** Before checking that the live wal-index header has not changed - ** since it was read, set Wal.minFrame to the first frame in the wal - ** file that has not yet been checkpointed. This client will not need - ** to read any frames earlier than minFrame from the wal file - they - ** can be safely read directly from the database file. - ** - ** Because a ShmBarrier() call is made between taking the copy of - ** nBackfill and checking that the wal-header in shared-memory still - ** matches the one cached in pWal->hdr, it is guaranteed that the - ** checkpointer that set nBackfill was not working with a wal-index - ** header newer than that cached in pWal->hdr. If it were, that could - ** cause a problem. The checkpointer could omit to checkpoint - ** a version of page X that lies before pWal->minFrame (call that version - ** A) on the basis that there is a newer version (version B) of the same - ** page later in the wal file. But if version B happens to like past - ** frame pWal->hdr.mxFrame - then the client would incorrectly assume - ** that it can read version A from the database file. However, since - ** we can guarantee that the checkpointer that set nBackfill could not - ** see any pages past pWal->hdr.mxFrame, this problem does not come up. - */ - pWal->minFrame = pInfo->nBackfill+1; - walShmBarrier(pWal); - if( pInfo->aReadMark[mxI]!=mxReadMark - || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) - ){ - walUnlockShared(pWal, WAL_READ_LOCK(mxI)); - return WAL_RETRY; - }else{ - assert( mxReadMark<=pWal->hdr.mxFrame ); - pWal->readLock = (i16)mxI; - } - } - return rc; -} - -/* -** Begin a read transaction on the database. -** -** This routine used to be called sqlite3OpenSnapshot() and with good reason: -** it takes a snapshot of the state of the WAL and wal-index for the current -** instant in time. The current thread will continue to use this snapshot. -** Other threads might append new content to the WAL and wal-index but -** that extra content is ignored by the current thread. -** -** If the database contents have changes since the previous read -** transaction, then *pChanged is set to 1 before returning. The -** Pager layer will use this to know that is cache is stale and -** needs to be flushed. -*/ -int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ - int rc; /* Return code */ - int cnt = 0; /* Number of TryBeginRead attempts */ - - do{ - rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); - }while( rc==WAL_RETRY ); - testcase( (rc&0xff)==SQLITE_BUSY ); - testcase( (rc&0xff)==SQLITE_IOERR ); - testcase( rc==SQLITE_PROTOCOL ); - testcase( rc==SQLITE_OK ); - return rc; -} - -/* -** Finish with a read transaction. All this does is release the -** read-lock. -*/ -void sqlite3WalEndReadTransaction(Wal *pWal){ - sqlite3WalEndWriteTransaction(pWal); - if( pWal->readLock>=0 ){ - walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); - pWal->readLock = -1; - } -} - -/* -** Search the wal file for page pgno. If found, set *piRead to the frame that -** contains the page. Otherwise, if pgno is not in the wal file, set *piRead -** to zero. -** -** Return SQLITE_OK if successful, or an error code if an error occurs. If an -** error does occur, the final value of *piRead is undefined. -*/ -int sqlite3WalFindFrame( - Wal *pWal, /* WAL handle */ - Pgno pgno, /* Database page number to read data for */ - u32 *piRead /* OUT: Frame number (or zero) */ -){ - u32 iRead = 0; /* If !=0, WAL frame to return data from */ - u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ - int iHash; /* Used to loop through N hash tables */ - int iMinHash; - - /* This routine is only be called from within a read transaction. */ - assert( pWal->readLock>=0 || pWal->lockError ); - - /* If the "last page" field of the wal-index header snapshot is 0, then - ** no data will be read from the wal under any circumstances. Return early - ** in this case as an optimization. Likewise, if pWal->readLock==0, - ** then the WAL is ignored by the reader so return early, as if the - ** WAL were empty. - */ - if( iLast==0 || pWal->readLock==0 ){ - *piRead = 0; - return SQLITE_OK; - } - - /* Search the hash table or tables for an entry matching page number - ** pgno. Each iteration of the following for() loop searches one - ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). - ** - ** This code might run concurrently to the code in walIndexAppend() - ** that adds entries to the wal-index (and possibly to this hash - ** table). This means the value just read from the hash - ** slot (aHash[iKey]) may have been added before or after the - ** current read transaction was opened. Values added after the - ** read transaction was opened may have been written incorrectly - - ** i.e. these slots may contain garbage data. However, we assume - ** that any slots written before the current read transaction was - ** opened remain unmodified. - ** - ** For the reasons above, the if(...) condition featured in the inner - ** loop of the following block is more stringent that would be required - ** if we had exclusive access to the hash-table: - ** - ** (aPgno[iFrame]==pgno): - ** This condition filters out normal hash-table collisions. - ** - ** (iFrame<=iLast): - ** This condition filters out entries that were added to the hash - ** table after the current read-transaction had started. - */ - iMinHash = walFramePage(pWal->minFrame); - for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ - volatile ht_slot *aHash; /* Pointer to hash table */ - volatile u32 *aPgno; /* Pointer to array of page numbers */ - u32 iZero; /* Frame number corresponding to aPgno[0] */ - int iKey; /* Hash slot index */ - int nCollide; /* Number of hash collisions remaining */ - int rc; /* Error code */ - - rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); - if( rc!=SQLITE_OK ){ - return rc; - } - nCollide = HASHTABLE_NSLOT; - for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ - u32 iFrame = aHash[iKey] + iZero; - if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ - assert( iFrame>iRead || CORRUPT_DB ); - iRead = iFrame; - } - if( (nCollide--)==0 ){ - return SQLITE_CORRUPT_BKPT; - } - } - } - -#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT - /* If expensive assert() statements are available, do a linear search - ** of the wal-index file content. Make sure the results agree with the - ** result obtained using the hash indexes above. */ - { - u32 iRead2 = 0; - u32 iTest; - assert( pWal->minFrame>0 ); - for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ - if( walFramePgno(pWal, iTest)==pgno ){ - iRead2 = iTest; - break; - } - } - assert( iRead==iRead2 ); - } -#endif - - *piRead = iRead; - return SQLITE_OK; -} - -/* -** Read the contents of frame iRead from the wal file into buffer pOut -** (which is nOut bytes in size). Return SQLITE_OK if successful, or an -** error code otherwise. -*/ -int sqlite3WalReadFrame( - Wal *pWal, /* WAL handle */ - u32 iRead, /* Frame to read */ - int nOut, /* Size of buffer pOut in bytes */ - u8 *pOut /* Buffer to write page data to */ -){ - int sz; - i64 iOffset; - sz = pWal->hdr.szPage; - sz = (sz&0xfe00) + ((sz&0x0001)<<16); - testcase( sz<=32768 ); - testcase( sz>=65536 ); - iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; - /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ - return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); -} - -/* -** Return the size of the database in pages (or zero, if unknown). -*/ -Pgno sqlite3WalDbsize(Wal *pWal){ - if( pWal && ALWAYS(pWal->readLock>=0) ){ - return pWal->hdr.nPage; - } - return 0; -} - - -/* -** This function starts a write transaction on the WAL. -** -** A read transaction must have already been started by a prior call -** to sqlite3WalBeginReadTransaction(). -** -** If another thread or process has written into the database since -** the read transaction was started, then it is not possible for this -** thread to write as doing so would cause a fork. So this routine -** returns SQLITE_BUSY in that case and no write transaction is started. -** -** There can only be a single writer active at a time. -*/ -int sqlite3WalBeginWriteTransaction(Wal *pWal){ - int rc; - - /* Cannot start a write transaction without first holding a read - ** transaction. */ - assert( pWal->readLock>=0 ); - - if( pWal->readOnly ){ - return SQLITE_READONLY; - } - - /* Only one writer allowed at a time. Get the write lock. Return - ** SQLITE_BUSY if unable. - */ - rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0); - if( rc ){ - return rc; - } - pWal->writeLock = 1; - - /* If another connection has written to the database file since the - ** time the read transaction on this connection was started, then - ** the write is disallowed. - */ - if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ - walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); - pWal->writeLock = 0; - rc = SQLITE_BUSY_SNAPSHOT; - } - - return rc; -} - -/* -** End a write transaction. The commit has already been done. This -** routine merely releases the lock. -*/ -int sqlite3WalEndWriteTransaction(Wal *pWal){ - if( pWal->writeLock ){ - walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); - pWal->writeLock = 0; - pWal->truncateOnCommit = 0; - } - return SQLITE_OK; -} - -/* -** If any data has been written (but not committed) to the log file, this -** function moves the write-pointer back to the start of the transaction. -** -** Additionally, the callback function is invoked for each frame written -** to the WAL since the start of the transaction. If the callback returns -** other than SQLITE_OK, it is not invoked again and the error code is -** returned to the caller. -** -** Otherwise, if the callback function does not return an error, this -** function returns SQLITE_OK. -*/ -int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ - int rc = SQLITE_OK; - if( ALWAYS(pWal->writeLock) ){ - Pgno iMax = pWal->hdr.mxFrame; - Pgno iFrame; - - /* Restore the clients cache of the wal-index header to the state it - ** was in before the client began writing to the database. - */ - memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); - - for(iFrame=pWal->hdr.mxFrame+1; - ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; - iFrame++ - ){ - /* This call cannot fail. Unless the page for which the page number - ** is passed as the second argument is (a) in the cache and - ** (b) has an outstanding reference, then xUndo is either a no-op - ** (if (a) is false) or simply expels the page from the cache (if (b) - ** is false). - ** - ** If the upper layer is doing a rollback, it is guaranteed that there - ** are no outstanding references to any page other than page 1. And - ** page 1 is never written to the log until the transaction is - ** committed. As a result, the call to xUndo may not fail. - */ - assert( walFramePgno(pWal, iFrame)!=1 ); - rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); - } - if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); - } - return rc; -} - -/* -** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 -** values. This function populates the array with values required to -** "rollback" the write position of the WAL handle back to the current -** point in the event of a savepoint rollback (via WalSavepointUndo()). -*/ -void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ - assert( pWal->writeLock ); - aWalData[0] = pWal->hdr.mxFrame; - aWalData[1] = pWal->hdr.aFrameCksum[0]; - aWalData[2] = pWal->hdr.aFrameCksum[1]; - aWalData[3] = pWal->nCkpt; -} - -/* -** Move the write position of the WAL back to the point identified by -** the values in the aWalData[] array. aWalData must point to an array -** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated -** by a call to WalSavepoint(). -*/ -int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ - int rc = SQLITE_OK; - - assert( pWal->writeLock ); - assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); - - if( aWalData[3]!=pWal->nCkpt ){ - /* This savepoint was opened immediately after the write-transaction - ** was started. Right after that, the writer decided to wrap around - ** to the start of the log. Update the savepoint values to match. - */ - aWalData[0] = 0; - aWalData[3] = pWal->nCkpt; - } - - if( aWalData[0]<pWal->hdr.mxFrame ){ - pWal->hdr.mxFrame = aWalData[0]; - pWal->hdr.aFrameCksum[0] = aWalData[1]; - pWal->hdr.aFrameCksum[1] = aWalData[2]; - walCleanupHash(pWal); - } - - return rc; -} - -/* -** This function is called just before writing a set of frames to the log -** file (see sqlite3WalFrames()). It checks to see if, instead of appending -** to the current log file, it is possible to overwrite the start of the -** existing log file with the new frames (i.e. "reset" the log). If so, -** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left -** unchanged. -** -** SQLITE_OK is returned if no error is encountered (regardless of whether -** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned -** if an error occurs. -*/ -static int walRestartLog(Wal *pWal){ - int rc = SQLITE_OK; - int cnt; - - if( pWal->readLock==0 ){ - volatile WalCkptInfo *pInfo = walCkptInfo(pWal); - assert( pInfo->nBackfill==pWal->hdr.mxFrame ); - if( pInfo->nBackfill>0 ){ - u32 salt1; - sqlite3_randomness(4, &salt1); - rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0); - if( rc==SQLITE_OK ){ - /* If all readers are using WAL_READ_LOCK(0) (in other words if no - ** readers are currently using the WAL), then the transactions - ** frames will overwrite the start of the existing log. Update the - ** wal-index header to reflect this. - ** - ** In theory it would be Ok to update the cache of the header only - ** at this point. But updating the actual wal-index header is also - ** safe and means there is no special case for sqlite3WalUndo() - ** to handle if this transaction is rolled back. */ - walRestartHdr(pWal, salt1); - walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); - }else if( rc!=SQLITE_BUSY ){ - return rc; - } - } - walUnlockShared(pWal, WAL_READ_LOCK(0)); - pWal->readLock = -1; - cnt = 0; - do{ - int notUsed; - rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); - }while( rc==WAL_RETRY ); - assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ - testcase( (rc&0xff)==SQLITE_IOERR ); - testcase( rc==SQLITE_PROTOCOL ); - testcase( rc==SQLITE_OK ); - } - return rc; -} - -/* -** Information about the current state of the WAL file and where -** the next fsync should occur - passed from sqlite3WalFrames() into -** walWriteToLog(). -*/ -typedef struct WalWriter { - Wal *pWal; /* The complete WAL information */ - sqlite3_file *pFd; /* The WAL file to which we write */ - sqlite3_int64 iSyncPoint; /* Fsync at this offset */ - int syncFlags; /* Flags for the fsync */ - int szPage; /* Size of one page */ -} WalWriter; - -/* -** Write iAmt bytes of content into the WAL file beginning at iOffset. -** Do a sync when crossing the p->iSyncPoint boundary. -** -** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, -** first write the part before iSyncPoint, then sync, then write the -** rest. -*/ -static int walWriteToLog( - WalWriter *p, /* WAL to write to */ - void *pContent, /* Content to be written */ - int iAmt, /* Number of bytes to write */ - sqlite3_int64 iOffset /* Start writing at this offset */ -){ - int rc; - if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ - int iFirstAmt = (int)(p->iSyncPoint - iOffset); - rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); - if( rc ) return rc; - iOffset += iFirstAmt; - iAmt -= iFirstAmt; - pContent = (void*)(iFirstAmt + (char*)pContent); - assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); - rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); - if( iAmt==0 || rc ) return rc; - } - rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); - return rc; -} - -/* -** Write out a single frame of the WAL -*/ -static int walWriteOneFrame( - WalWriter *p, /* Where to write the frame */ - PgHdr *pPage, /* The page of the frame to be written */ - int nTruncate, /* The commit flag. Usually 0. >0 for commit */ - sqlite3_int64 iOffset /* Byte offset at which to write */ -){ - int rc; /* Result code from subfunctions */ - void *pData; /* Data actually written */ - u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ -#if defined(SQLITE_HAS_CODEC) - if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; -#else - pData = pPage->pData; -#endif - walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); - rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); - if( rc ) return rc; - /* Write the page data */ - rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); - return rc; -} - -/* -** Write a set of frames to the log. The caller must hold the write-lock -** on the log file (obtained using sqlite3WalBeginWriteTransaction()). -*/ -int sqlite3WalFrames( - Wal *pWal, /* Wal handle to write to */ - int szPage, /* Database page-size in bytes */ - PgHdr *pList, /* List of dirty pages to write */ - Pgno nTruncate, /* Database size after this commit */ - int isCommit, /* True if this is a commit */ - int sync_flags /* Flags to pass to OsSync() (or 0) */ -){ - int rc; /* Used to catch return codes */ - u32 iFrame; /* Next frame address */ - PgHdr *p; /* Iterator to run through pList with. */ - PgHdr *pLast = 0; /* Last frame in list */ - int nExtra = 0; /* Number of extra copies of last page */ - int szFrame; /* The size of a single frame */ - i64 iOffset; /* Next byte to write in WAL file */ - WalWriter w; /* The writer */ - - assert( pList ); - assert( pWal->writeLock ); - - /* If this frame set completes a transaction, then nTruncate>0. If - ** nTruncate==0 then this frame set does not complete the transaction. */ - assert( (isCommit!=0)==(nTruncate!=0) ); - -#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) - { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} - WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", - pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); - } -#endif - - /* See if it is possible to write these frames into the start of the - ** log file, instead of appending to it at pWal->hdr.mxFrame. - */ - if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ - return rc; - } - - /* If this is the first frame written into the log, write the WAL - ** header to the start of the WAL file. See comments at the top of - ** this source file for a description of the WAL header format. - */ - iFrame = pWal->hdr.mxFrame; - if( iFrame==0 ){ - u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ - u32 aCksum[2]; /* Checksum for wal-header */ - - sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); - sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); - sqlite3Put4byte(&aWalHdr[8], szPage); - sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); - if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); - memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); - walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); - sqlite3Put4byte(&aWalHdr[24], aCksum[0]); - sqlite3Put4byte(&aWalHdr[28], aCksum[1]); - - pWal->szPage = szPage; - pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; - pWal->hdr.aFrameCksum[0] = aCksum[0]; - pWal->hdr.aFrameCksum[1] = aCksum[1]; - pWal->truncateOnCommit = 1; - - rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); - WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); - if( rc!=SQLITE_OK ){ - return rc; - } - - /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless - ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise - ** an out-of-order write following a WAL restart could result in - ** database corruption. See the ticket: - ** - ** http://localhost:591/sqlite/info/ff5be73dee - */ - if( pWal->syncHeader && sync_flags ){ - rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); - if( rc ) return rc; - } - } - assert( (int)pWal->szPage==szPage ); - - /* Setup information needed to write frames into the WAL */ - w.pWal = pWal; - w.pFd = pWal->pWalFd; - w.iSyncPoint = 0; - w.syncFlags = sync_flags; - w.szPage = szPage; - iOffset = walFrameOffset(iFrame+1, szPage); - szFrame = szPage + WAL_FRAME_HDRSIZE; - - /* Write all frames into the log file exactly once */ - for(p=pList; p; p=p->pDirty){ - int nDbSize; /* 0 normally. Positive == commit flag */ - iFrame++; - assert( iOffset==walFrameOffset(iFrame, szPage) ); - nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; - rc = walWriteOneFrame(&w, p, nDbSize, iOffset); - if( rc ) return rc; - pLast = p; - iOffset += szFrame; - } - - /* If this is the end of a transaction, then we might need to pad - ** the transaction and/or sync the WAL file. - ** - ** Padding and syncing only occur if this set of frames complete a - ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL - ** or synchronous==OFF, then no padding or syncing are needed. - ** - ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not - ** needed and only the sync is done. If padding is needed, then the - ** final frame is repeated (with its commit mark) until the next sector - ** boundary is crossed. Only the part of the WAL prior to the last - ** sector boundary is synced; the part of the last frame that extends - ** past the sector boundary is written after the sync. - */ - if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ - if( pWal->padToSectorBoundary ){ - int sectorSize = sqlite3SectorSize(pWal->pWalFd); - w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; - while( iOffset<w.iSyncPoint ){ - rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); - if( rc ) return rc; - iOffset += szFrame; - nExtra++; - } - }else{ - rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); - } - } - - /* If this frame set completes the first transaction in the WAL and - ** if PRAGMA journal_size_limit is set, then truncate the WAL to the - ** journal size limit, if possible. - */ - if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ - i64 sz = pWal->mxWalSize; - if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ - sz = walFrameOffset(iFrame+nExtra+1, szPage); - } - walLimitSize(pWal, sz); - pWal->truncateOnCommit = 0; - } - - /* Append data to the wal-index. It is not necessary to lock the - ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index - ** guarantees that there are no other writers, and no data that may - ** be in use by existing readers is being overwritten. - */ - iFrame = pWal->hdr.mxFrame; - for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ - iFrame++; - rc = walIndexAppend(pWal, iFrame, p->pgno); - } - while( rc==SQLITE_OK && nExtra>0 ){ - iFrame++; - nExtra--; - rc = walIndexAppend(pWal, iFrame, pLast->pgno); - } - - if( rc==SQLITE_OK ){ - /* Update the private copy of the header. */ - pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); - testcase( szPage<=32768 ); - testcase( szPage>=65536 ); - pWal->hdr.mxFrame = iFrame; - if( isCommit ){ - pWal->hdr.iChange++; - pWal->hdr.nPage = nTruncate; - } - /* If this is a commit, update the wal-index header too. */ - if( isCommit ){ - walIndexWriteHdr(pWal); - pWal->iCallback = iFrame; - } - } - - WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); - return rc; -} - -/* -** This routine is called to implement sqlite3_wal_checkpoint() and -** related interfaces. -** -** Obtain a CHECKPOINT lock and then backfill as much information as -** we can from WAL into the database. -** -** If parameter xBusy is not NULL, it is a pointer to a busy-handler -** callback. In this case this function runs a blocking checkpoint. -*/ -int sqlite3WalCheckpoint( - Wal *pWal, /* Wal connection */ - int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ - int (*xBusy)(void*), /* Function to call when busy */ - void *pBusyArg, /* Context argument for xBusyHandler */ - int sync_flags, /* Flags to sync db file with (or 0) */ - int nBuf, /* Size of temporary buffer */ - u8 *zBuf, /* Temporary buffer to use */ - int *pnLog, /* OUT: Number of frames in WAL */ - int *pnCkpt /* OUT: Number of backfilled frames in WAL */ -){ - int rc; /* Return code */ - int isChanged = 0; /* True if a new wal-index header is loaded */ - int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ - int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ - - assert( pWal->ckptLock==0 ); - assert( pWal->writeLock==0 ); - - /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked - ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ - assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); - - if( pWal->readOnly ) return SQLITE_READONLY; - WALTRACE(("WAL%p: checkpoint begins\n", pWal)); - - /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive - ** "checkpoint" lock on the database file. */ - rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0); - if( rc ){ - /* EVIDENCE-OF: R-10421-19736 If any other process is running a - ** checkpoint operation at the same time, the lock cannot be obtained and - ** SQLITE_BUSY is returned. - ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, - ** it will not be invoked in this case. - */ - testcase( rc==SQLITE_BUSY ); - testcase( xBusy!=0 ); - return rc; - } - pWal->ckptLock = 1; - - /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and - ** TRUNCATE modes also obtain the exclusive "writer" lock on the database - ** file. - ** - ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained - ** immediately, and a busy-handler is configured, it is invoked and the - ** writer lock retried until either the busy-handler returns 0 or the - ** lock is successfully obtained. - */ - if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ - rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); - if( rc==SQLITE_OK ){ - pWal->writeLock = 1; - }else if( rc==SQLITE_BUSY ){ - eMode2 = SQLITE_CHECKPOINT_PASSIVE; - xBusy2 = 0; - rc = SQLITE_OK; - } - } - - /* Read the wal-index header. */ - if( rc==SQLITE_OK ){ - rc = walIndexReadHdr(pWal, &isChanged); - if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ - sqlite3OsUnfetch(pWal->pDbFd, 0, 0); - } - } - - /* Copy data from the log to the database file. */ - if( rc==SQLITE_OK ){ - if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ - rc = SQLITE_CORRUPT_BKPT; - }else{ - rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); - } - - /* If no error occurred, set the output variables. */ - if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ - if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; - if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); - } - } - - if( isChanged ){ - /* If a new wal-index header was loaded before the checkpoint was - ** performed, then the pager-cache associated with pWal is now - ** out of date. So zero the cached wal-index header to ensure that - ** next time the pager opens a snapshot on this database it knows that - ** the cache needs to be reset. - */ - memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); - } - - /* Release the locks. */ - sqlite3WalEndWriteTransaction(pWal); - walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); - pWal->ckptLock = 0; - WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); - return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); -} - -/* Return the value to pass to a sqlite3_wal_hook callback, the -** number of frames in the WAL at the point of the last commit since -** sqlite3WalCallback() was called. If no commits have occurred since -** the last call, then return 0. -*/ -int sqlite3WalCallback(Wal *pWal){ - u32 ret = 0; - if( pWal ){ - ret = pWal->iCallback; - pWal->iCallback = 0; - } - return (int)ret; -} - -/* -** This function is called to change the WAL subsystem into or out -** of locking_mode=EXCLUSIVE. -** -** If op is zero, then attempt to change from locking_mode=EXCLUSIVE -** into locking_mode=NORMAL. This means that we must acquire a lock -** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL -** or if the acquisition of the lock fails, then return 0. If the -** transition out of exclusive-mode is successful, return 1. This -** operation must occur while the pager is still holding the exclusive -** lock on the main database file. -** -** If op is one, then change from locking_mode=NORMAL into -** locking_mode=EXCLUSIVE. This means that the pWal->readLock must -** be released. Return 1 if the transition is made and 0 if the -** WAL is already in exclusive-locking mode - meaning that this -** routine is a no-op. The pager must already hold the exclusive lock -** on the main database file before invoking this operation. -** -** If op is negative, then do a dry-run of the op==1 case but do -** not actually change anything. The pager uses this to see if it -** should acquire the database exclusive lock prior to invoking -** the op==1 case. -*/ -int sqlite3WalExclusiveMode(Wal *pWal, int op){ - int rc; - assert( pWal->writeLock==0 ); - assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); - - /* pWal->readLock is usually set, but might be -1 if there was a - ** prior error while attempting to acquire are read-lock. This cannot - ** happen if the connection is actually in exclusive mode (as no xShmLock - ** locks are taken in this case). Nor should the pager attempt to - ** upgrade to exclusive-mode following such an error. - */ - assert( pWal->readLock>=0 || pWal->lockError ); - assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); - - if( op==0 ){ - if( pWal->exclusiveMode ){ - pWal->exclusiveMode = 0; - if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ - pWal->exclusiveMode = 1; - } - rc = pWal->exclusiveMode==0; - }else{ - /* Already in locking_mode=NORMAL */ - rc = 0; - } - }else if( op>0 ){ - assert( pWal->exclusiveMode==0 ); - assert( pWal->readLock>=0 ); - walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); - pWal->exclusiveMode = 1; - rc = 1; - }else{ - rc = pWal->exclusiveMode==0; - } - return rc; -} - -/* -** Return true if the argument is non-NULL and the WAL module is using -** heap-memory for the wal-index. Otherwise, if the argument is NULL or the -** WAL module is using shared-memory, return false. -*/ -int sqlite3WalHeapMemory(Wal *pWal){ - return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); -} - -#ifdef SQLITE_ENABLE_ZIPVFS -/* -** If the argument is not NULL, it points to a Wal object that holds a -** read-lock. This function returns the database page-size if it is known, -** or zero if it is not (or if pWal is NULL). -*/ -int sqlite3WalFramesize(Wal *pWal){ - assert( pWal==0 || pWal->readLock>=0 ); - return (pWal ? pWal->szPage : 0); -} -#endif - -#endif /* #ifndef SQLITE_OMIT_WAL */ |