summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/CodeGen/CGExprConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/clang/lib/CodeGen/CGExprConstant.cpp')
-rw-r--r--gnu/llvm/clang/lib/CodeGen/CGExprConstant.cpp2328
1 files changed, 2328 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/CodeGen/CGExprConstant.cpp b/gnu/llvm/clang/lib/CodeGen/CGExprConstant.cpp
new file mode 100644
index 00000000000..46ed90a2026
--- /dev/null
+++ b/gnu/llvm/clang/lib/CodeGen/CGExprConstant.cpp
@@ -0,0 +1,2328 @@
+//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Constant Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "ConstantEmitter.h"
+#include "TargetInfo.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// ConstantAggregateBuilder
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ConstExprEmitter;
+
+struct ConstantAggregateBuilderUtils {
+ CodeGenModule &CGM;
+
+ ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
+
+ CharUnits getAlignment(const llvm::Constant *C) const {
+ return CharUnits::fromQuantity(
+ CGM.getDataLayout().getABITypeAlignment(C->getType()));
+ }
+
+ CharUnits getSize(llvm::Type *Ty) const {
+ return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
+ }
+
+ CharUnits getSize(const llvm::Constant *C) const {
+ return getSize(C->getType());
+ }
+
+ llvm::Constant *getPadding(CharUnits PadSize) const {
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (PadSize > CharUnits::One())
+ Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
+ return llvm::UndefValue::get(Ty);
+ }
+
+ llvm::Constant *getZeroes(CharUnits ZeroSize) const {
+ llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
+ return llvm::ConstantAggregateZero::get(Ty);
+ }
+};
+
+/// Incremental builder for an llvm::Constant* holding a struct or array
+/// constant.
+class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
+ /// The elements of the constant. These two arrays must have the same size;
+ /// Offsets[i] describes the offset of Elems[i] within the constant. The
+ /// elements are kept in increasing offset order, and we ensure that there
+ /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
+ ///
+ /// This may contain explicit padding elements (in order to create a
+ /// natural layout), but need not. Gaps between elements are implicitly
+ /// considered to be filled with undef.
+ llvm::SmallVector<llvm::Constant*, 32> Elems;
+ llvm::SmallVector<CharUnits, 32> Offsets;
+
+ /// The size of the constant (the maximum end offset of any added element).
+ /// May be larger than the end of Elems.back() if we split the last element
+ /// and removed some trailing undefs.
+ CharUnits Size = CharUnits::Zero();
+
+ /// This is true only if laying out Elems in order as the elements of a
+ /// non-packed LLVM struct will give the correct layout.
+ bool NaturalLayout = true;
+
+ bool split(size_t Index, CharUnits Hint);
+ Optional<size_t> splitAt(CharUnits Pos);
+
+ static llvm::Constant *buildFrom(CodeGenModule &CGM,
+ ArrayRef<llvm::Constant *> Elems,
+ ArrayRef<CharUnits> Offsets,
+ CharUnits StartOffset, CharUnits Size,
+ bool NaturalLayout, llvm::Type *DesiredTy,
+ bool AllowOversized);
+
+public:
+ ConstantAggregateBuilder(CodeGenModule &CGM)
+ : ConstantAggregateBuilderUtils(CGM) {}
+
+ /// Update or overwrite the value starting at \p Offset with \c C.
+ ///
+ /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
+ /// a constant that has already been added. This flag is only used to
+ /// detect bugs.
+ bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
+
+ /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
+ bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
+
+ /// Attempt to condense the value starting at \p Offset to a constant of type
+ /// \p DesiredTy.
+ void condense(CharUnits Offset, llvm::Type *DesiredTy);
+
+ /// Produce a constant representing the entire accumulated value, ideally of
+ /// the specified type. If \p AllowOversized, the constant might be larger
+ /// than implied by \p DesiredTy (eg, if there is a flexible array member).
+ /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
+ /// even if we can't represent it as that type.
+ llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
+ return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
+ NaturalLayout, DesiredTy, AllowOversized);
+ }
+};
+
+template<typename Container, typename Range = std::initializer_list<
+ typename Container::value_type>>
+static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
+ assert(BeginOff <= EndOff && "invalid replacement range");
+ llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
+}
+
+bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
+ bool AllowOverwrite) {
+ // Common case: appending to a layout.
+ if (Offset >= Size) {
+ CharUnits Align = getAlignment(C);
+ CharUnits AlignedSize = Size.alignTo(Align);
+ if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
+ NaturalLayout = false;
+ else if (AlignedSize < Offset) {
+ Elems.push_back(getPadding(Offset - Size));
+ Offsets.push_back(Size);
+ }
+ Elems.push_back(C);
+ Offsets.push_back(Offset);
+ Size = Offset + getSize(C);
+ return true;
+ }
+
+ // Uncommon case: constant overlaps what we've already created.
+ llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
+ if (!FirstElemToReplace)
+ return false;
+
+ CharUnits CSize = getSize(C);
+ llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
+ if (!LastElemToReplace)
+ return false;
+
+ assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
+ "unexpectedly overwriting field");
+
+ replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
+ replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
+ Size = std::max(Size, Offset + CSize);
+ NaturalLayout = false;
+ return true;
+}
+
+bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
+ bool AllowOverwrite) {
+ const ASTContext &Context = CGM.getContext();
+ const uint64_t CharWidth = CGM.getContext().getCharWidth();
+
+ // Offset of where we want the first bit to go within the bits of the
+ // current char.
+ unsigned OffsetWithinChar = OffsetInBits % CharWidth;
+
+ // We split bit-fields up into individual bytes. Walk over the bytes and
+ // update them.
+ for (CharUnits OffsetInChars =
+ Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
+ /**/; ++OffsetInChars) {
+ // Number of bits we want to fill in this char.
+ unsigned WantedBits =
+ std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
+
+ // Get a char containing the bits we want in the right places. The other
+ // bits have unspecified values.
+ llvm::APInt BitsThisChar = Bits;
+ if (BitsThisChar.getBitWidth() < CharWidth)
+ BitsThisChar = BitsThisChar.zext(CharWidth);
+ if (CGM.getDataLayout().isBigEndian()) {
+ // Figure out how much to shift by. We may need to left-shift if we have
+ // less than one byte of Bits left.
+ int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
+ if (Shift > 0)
+ BitsThisChar.lshrInPlace(Shift);
+ else if (Shift < 0)
+ BitsThisChar = BitsThisChar.shl(-Shift);
+ } else {
+ BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
+ }
+ if (BitsThisChar.getBitWidth() > CharWidth)
+ BitsThisChar = BitsThisChar.trunc(CharWidth);
+
+ if (WantedBits == CharWidth) {
+ // Got a full byte: just add it directly.
+ add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
+ OffsetInChars, AllowOverwrite);
+ } else {
+ // Partial byte: update the existing integer if there is one. If we
+ // can't split out a 1-CharUnit range to update, then we can't add
+ // these bits and fail the entire constant emission.
+ llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
+ if (!FirstElemToUpdate)
+ return false;
+ llvm::Optional<size_t> LastElemToUpdate =
+ splitAt(OffsetInChars + CharUnits::One());
+ if (!LastElemToUpdate)
+ return false;
+ assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
+ "should have at most one element covering one byte");
+
+ // Figure out which bits we want and discard the rest.
+ llvm::APInt UpdateMask(CharWidth, 0);
+ if (CGM.getDataLayout().isBigEndian())
+ UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
+ CharWidth - OffsetWithinChar);
+ else
+ UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
+ BitsThisChar &= UpdateMask;
+
+ if (*FirstElemToUpdate == *LastElemToUpdate ||
+ Elems[*FirstElemToUpdate]->isNullValue() ||
+ isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
+ // All existing bits are either zero or undef.
+ add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
+ OffsetInChars, /*AllowOverwrite*/ true);
+ } else {
+ llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
+ // In order to perform a partial update, we need the existing bitwise
+ // value, which we can only extract for a constant int.
+ auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
+ if (!CI)
+ return false;
+ // Because this is a 1-CharUnit range, the constant occupying it must
+ // be exactly one CharUnit wide.
+ assert(CI->getBitWidth() == CharWidth && "splitAt failed");
+ assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
+ "unexpectedly overwriting bitfield");
+ BitsThisChar |= (CI->getValue() & ~UpdateMask);
+ ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
+ }
+ }
+
+ // Stop if we've added all the bits.
+ if (WantedBits == Bits.getBitWidth())
+ break;
+
+ // Remove the consumed bits from Bits.
+ if (!CGM.getDataLayout().isBigEndian())
+ Bits.lshrInPlace(WantedBits);
+ Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
+
+ // The remanining bits go at the start of the following bytes.
+ OffsetWithinChar = 0;
+ }
+
+ return true;
+}
+
+/// Returns a position within Elems and Offsets such that all elements
+/// before the returned index end before Pos and all elements at or after
+/// the returned index begin at or after Pos. Splits elements as necessary
+/// to ensure this. Returns None if we find something we can't split.
+Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
+ if (Pos >= Size)
+ return Offsets.size();
+
+ while (true) {
+ auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
+ if (FirstAfterPos == Offsets.begin())
+ return 0;
+
+ // If we already have an element starting at Pos, we're done.
+ size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
+ if (Offsets[LastAtOrBeforePosIndex] == Pos)
+ return LastAtOrBeforePosIndex;
+
+ // We found an element starting before Pos. Check for overlap.
+ if (Offsets[LastAtOrBeforePosIndex] +
+ getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
+ return LastAtOrBeforePosIndex + 1;
+
+ // Try to decompose it into smaller constants.
+ if (!split(LastAtOrBeforePosIndex, Pos))
+ return None;
+ }
+}
+
+/// Split the constant at index Index, if possible. Return true if we did.
+/// Hint indicates the location at which we'd like to split, but may be
+/// ignored.
+bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
+ NaturalLayout = false;
+ llvm::Constant *C = Elems[Index];
+ CharUnits Offset = Offsets[Index];
+
+ if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
+ replace(Elems, Index, Index + 1,
+ llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
+ [&](unsigned Op) { return CA->getOperand(Op); }));
+ if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
+ // Array or vector.
+ CharUnits ElemSize = getSize(Seq->getElementType());
+ replace(
+ Offsets, Index, Index + 1,
+ llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
+ [&](unsigned Op) { return Offset + Op * ElemSize; }));
+ } else {
+ // Must be a struct.
+ auto *ST = cast<llvm::StructType>(CA->getType());
+ const llvm::StructLayout *Layout =
+ CGM.getDataLayout().getStructLayout(ST);
+ replace(Offsets, Index, Index + 1,
+ llvm::map_range(
+ llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
+ return Offset + CharUnits::fromQuantity(
+ Layout->getElementOffset(Op));
+ }));
+ }
+ return true;
+ }
+
+ if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
+ // FIXME: If possible, split into two ConstantDataSequentials at Hint.
+ CharUnits ElemSize = getSize(CDS->getElementType());
+ replace(Elems, Index, Index + 1,
+ llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
+ [&](unsigned Elem) {
+ return CDS->getElementAsConstant(Elem);
+ }));
+ replace(Offsets, Index, Index + 1,
+ llvm::map_range(
+ llvm::seq(0u, CDS->getNumElements()),
+ [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
+ return true;
+ }
+
+ if (isa<llvm::ConstantAggregateZero>(C)) {
+ CharUnits ElemSize = getSize(C);
+ assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
+ replace(Elems, Index, Index + 1,
+ {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
+ replace(Offsets, Index, Index + 1, {Offset, Hint});
+ return true;
+ }
+
+ if (isa<llvm::UndefValue>(C)) {
+ replace(Elems, Index, Index + 1, {});
+ replace(Offsets, Index, Index + 1, {});
+ return true;
+ }
+
+ // FIXME: We could split a ConstantInt if the need ever arose.
+ // We don't need to do this to handle bit-fields because we always eagerly
+ // split them into 1-byte chunks.
+
+ return false;
+}
+
+static llvm::Constant *
+EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
+ llvm::Type *CommonElementType, unsigned ArrayBound,
+ SmallVectorImpl<llvm::Constant *> &Elements,
+ llvm::Constant *Filler);
+
+llvm::Constant *ConstantAggregateBuilder::buildFrom(
+ CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
+ ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
+ bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
+ ConstantAggregateBuilderUtils Utils(CGM);
+
+ if (Elems.empty())
+ return llvm::UndefValue::get(DesiredTy);
+
+ auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
+
+ // If we want an array type, see if all the elements are the same type and
+ // appropriately spaced.
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
+ assert(!AllowOversized && "oversized array emission not supported");
+
+ bool CanEmitArray = true;
+ llvm::Type *CommonType = Elems[0]->getType();
+ llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
+ CharUnits ElemSize = Utils.getSize(ATy->getElementType());
+ SmallVector<llvm::Constant*, 32> ArrayElements;
+ for (size_t I = 0; I != Elems.size(); ++I) {
+ // Skip zeroes; we'll use a zero value as our array filler.
+ if (Elems[I]->isNullValue())
+ continue;
+
+ // All remaining elements must be the same type.
+ if (Elems[I]->getType() != CommonType ||
+ Offset(I) % ElemSize != 0) {
+ CanEmitArray = false;
+ break;
+ }
+ ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
+ ArrayElements.back() = Elems[I];
+ }
+
+ if (CanEmitArray) {
+ return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
+ ArrayElements, Filler);
+ }
+
+ // Can't emit as an array, carry on to emit as a struct.
+ }
+
+ CharUnits DesiredSize = Utils.getSize(DesiredTy);
+ CharUnits Align = CharUnits::One();
+ for (llvm::Constant *C : Elems)
+ Align = std::max(Align, Utils.getAlignment(C));
+ CharUnits AlignedSize = Size.alignTo(Align);
+
+ bool Packed = false;
+ ArrayRef<llvm::Constant*> UnpackedElems = Elems;
+ llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
+ if ((DesiredSize < AlignedSize && !AllowOversized) ||
+ DesiredSize.alignTo(Align) != DesiredSize) {
+ // The natural layout would be the wrong size; force use of a packed layout.
+ NaturalLayout = false;
+ Packed = true;
+ } else if (DesiredSize > AlignedSize) {
+ // The constant would be too small. Add padding to fix it.
+ UnpackedElemStorage.assign(Elems.begin(), Elems.end());
+ UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
+ UnpackedElems = UnpackedElemStorage;
+ }
+
+ // If we don't have a natural layout, insert padding as necessary.
+ // As we go, double-check to see if we can actually just emit Elems
+ // as a non-packed struct and do so opportunistically if possible.
+ llvm::SmallVector<llvm::Constant*, 32> PackedElems;
+ if (!NaturalLayout) {
+ CharUnits SizeSoFar = CharUnits::Zero();
+ for (size_t I = 0; I != Elems.size(); ++I) {
+ CharUnits Align = Utils.getAlignment(Elems[I]);
+ CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
+ CharUnits DesiredOffset = Offset(I);
+ assert(DesiredOffset >= SizeSoFar && "elements out of order");
+
+ if (DesiredOffset != NaturalOffset)
+ Packed = true;
+ if (DesiredOffset != SizeSoFar)
+ PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
+ PackedElems.push_back(Elems[I]);
+ SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
+ }
+ // If we're using the packed layout, pad it out to the desired size if
+ // necessary.
+ if (Packed) {
+ assert((SizeSoFar <= DesiredSize || AllowOversized) &&
+ "requested size is too small for contents");
+ if (SizeSoFar < DesiredSize)
+ PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
+ }
+ }
+
+ llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
+ CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
+
+ // Pick the type to use. If the type is layout identical to the desired
+ // type then use it, otherwise use whatever the builder produced for us.
+ if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
+ if (DesiredSTy->isLayoutIdentical(STy))
+ STy = DesiredSTy;
+ }
+
+ return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
+}
+
+void ConstantAggregateBuilder::condense(CharUnits Offset,
+ llvm::Type *DesiredTy) {
+ CharUnits Size = getSize(DesiredTy);
+
+ llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
+ if (!FirstElemToReplace)
+ return;
+ size_t First = *FirstElemToReplace;
+
+ llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
+ if (!LastElemToReplace)
+ return;
+ size_t Last = *LastElemToReplace;
+
+ size_t Length = Last - First;
+ if (Length == 0)
+ return;
+
+ if (Length == 1 && Offsets[First] == Offset &&
+ getSize(Elems[First]) == Size) {
+ // Re-wrap single element structs if necessary. Otherwise, leave any single
+ // element constant of the right size alone even if it has the wrong type.
+ auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
+ if (STy && STy->getNumElements() == 1 &&
+ STy->getElementType(0) == Elems[First]->getType())
+ Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
+ return;
+ }
+
+ llvm::Constant *Replacement = buildFrom(
+ CGM, makeArrayRef(Elems).slice(First, Length),
+ makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
+ /*known to have natural layout=*/false, DesiredTy, false);
+ replace(Elems, First, Last, {Replacement});
+ replace(Offsets, First, Last, {Offset});
+}
+
+//===----------------------------------------------------------------------===//
+// ConstStructBuilder
+//===----------------------------------------------------------------------===//
+
+class ConstStructBuilder {
+ CodeGenModule &CGM;
+ ConstantEmitter &Emitter;
+ ConstantAggregateBuilder &Builder;
+ CharUnits StartOffset;
+
+public:
+ static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
+ InitListExpr *ILE, QualType StructTy);
+ static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
+ const APValue &Value, QualType ValTy);
+ static bool UpdateStruct(ConstantEmitter &Emitter,
+ ConstantAggregateBuilder &Const, CharUnits Offset,
+ InitListExpr *Updater);
+
+private:
+ ConstStructBuilder(ConstantEmitter &Emitter,
+ ConstantAggregateBuilder &Builder, CharUnits StartOffset)
+ : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
+ StartOffset(StartOffset) {}
+
+ bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::Constant *InitExpr, bool AllowOverwrite = false);
+
+ bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
+ bool AllowOverwrite = false);
+
+ bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
+
+ bool Build(InitListExpr *ILE, bool AllowOverwrite);
+ bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
+ const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
+ llvm::Constant *Finalize(QualType Ty);
+};
+
+bool ConstStructBuilder::AppendField(
+ const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
+ bool AllowOverwrite) {
+ const ASTContext &Context = CGM.getContext();
+
+ CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
+
+ return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
+}
+
+bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
+ llvm::Constant *InitCst,
+ bool AllowOverwrite) {
+ return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
+}
+
+bool ConstStructBuilder::AppendBitField(
+ const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
+ bool AllowOverwrite) {
+ uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
+ llvm::APInt FieldValue = CI->getValue();
+
+ // Promote the size of FieldValue if necessary
+ // FIXME: This should never occur, but currently it can because initializer
+ // constants are cast to bool, and because clang is not enforcing bitfield
+ // width limits.
+ if (FieldSize > FieldValue.getBitWidth())
+ FieldValue = FieldValue.zext(FieldSize);
+
+ // Truncate the size of FieldValue to the bit field size.
+ if (FieldSize < FieldValue.getBitWidth())
+ FieldValue = FieldValue.trunc(FieldSize);
+
+ return Builder.addBits(FieldValue,
+ CGM.getContext().toBits(StartOffset) + FieldOffset,
+ AllowOverwrite);
+}
+
+static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
+ ConstantAggregateBuilder &Const,
+ CharUnits Offset, QualType Type,
+ InitListExpr *Updater) {
+ if (Type->isRecordType())
+ return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
+
+ auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
+ if (!CAT)
+ return false;
+ QualType ElemType = CAT->getElementType();
+ CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
+ llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
+
+ llvm::Constant *FillC = nullptr;
+ if (Expr *Filler = Updater->getArrayFiller()) {
+ if (!isa<NoInitExpr>(Filler)) {
+ FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
+ if (!FillC)
+ return false;
+ }
+ }
+
+ unsigned NumElementsToUpdate =
+ FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
+ for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
+ Expr *Init = nullptr;
+ if (I < Updater->getNumInits())
+ Init = Updater->getInit(I);
+
+ if (!Init && FillC) {
+ if (!Const.add(FillC, Offset, true))
+ return false;
+ } else if (!Init || isa<NoInitExpr>(Init)) {
+ continue;
+ } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
+ if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
+ ChildILE))
+ return false;
+ // Attempt to reduce the array element to a single constant if necessary.
+ Const.condense(Offset, ElemTy);
+ } else {
+ llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
+ if (!Const.add(Val, Offset, true))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
+ RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ unsigned FieldNo = -1;
+ unsigned ElementNo = 0;
+
+ // Bail out if we have base classes. We could support these, but they only
+ // arise in C++1z where we will have already constant folded most interesting
+ // cases. FIXME: There are still a few more cases we can handle this way.
+ if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ if (CXXRD->getNumBases())
+ return false;
+
+ for (FieldDecl *Field : RD->fields()) {
+ ++FieldNo;
+
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() &&
+ !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
+ continue;
+
+ // Don't emit anonymous bitfields or zero-sized fields.
+ if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
+ continue;
+
+ // Get the initializer. A struct can include fields without initializers,
+ // we just use explicit null values for them.
+ Expr *Init = nullptr;
+ if (ElementNo < ILE->getNumInits())
+ Init = ILE->getInit(ElementNo++);
+ if (Init && isa<NoInitExpr>(Init))
+ continue;
+
+ // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
+ // represents additional overwriting of our current constant value, and not
+ // a new constant to emit independently.
+ if (AllowOverwrite &&
+ (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
+ if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
+ CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
+ Layout.getFieldOffset(FieldNo));
+ if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
+ Field->getType(), SubILE))
+ return false;
+ // If we split apart the field's value, try to collapse it down to a
+ // single value now.
+ Builder.condense(StartOffset + Offset,
+ CGM.getTypes().ConvertTypeForMem(Field->getType()));
+ continue;
+ }
+ }
+
+ llvm::Constant *EltInit =
+ Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
+ : Emitter.emitNullForMemory(Field->getType());
+ if (!EltInit)
+ return false;
+
+ if (!Field->isBitField()) {
+ // Handle non-bitfield members.
+ if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
+ AllowOverwrite))
+ return false;
+ // After emitting a non-empty field with [[no_unique_address]], we may
+ // need to overwrite its tail padding.
+ if (Field->hasAttr<NoUniqueAddressAttr>())
+ AllowOverwrite = true;
+ } else {
+ // Otherwise we have a bitfield.
+ if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
+ if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
+ AllowOverwrite))
+ return false;
+ } else {
+ // We are trying to initialize a bitfield with a non-trivial constant,
+ // this must require run-time code.
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+namespace {
+struct BaseInfo {
+ BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
+ : Decl(Decl), Offset(Offset), Index(Index) {
+ }
+
+ const CXXRecordDecl *Decl;
+ CharUnits Offset;
+ unsigned Index;
+
+ bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
+};
+}
+
+bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
+ bool IsPrimaryBase,
+ const CXXRecordDecl *VTableClass,
+ CharUnits Offset) {
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
+ // Add a vtable pointer, if we need one and it hasn't already been added.
+ if (CD->isDynamicClass() && !IsPrimaryBase) {
+ llvm::Constant *VTableAddressPoint =
+ CGM.getCXXABI().getVTableAddressPointForConstExpr(
+ BaseSubobject(CD, Offset), VTableClass);
+ if (!AppendBytes(Offset, VTableAddressPoint))
+ return false;
+ }
+
+ // Accumulate and sort bases, in order to visit them in address order, which
+ // may not be the same as declaration order.
+ SmallVector<BaseInfo, 8> Bases;
+ Bases.reserve(CD->getNumBases());
+ unsigned BaseNo = 0;
+ for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
+ BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
+ assert(!Base->isVirtual() && "should not have virtual bases here");
+ const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
+ CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
+ Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
+ }
+ llvm::stable_sort(Bases);
+
+ for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
+ BaseInfo &Base = Bases[I];
+
+ bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
+ Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
+ VTableClass, Offset + Base.Offset);
+ }
+ }
+
+ unsigned FieldNo = 0;
+ uint64_t OffsetBits = CGM.getContext().toBits(Offset);
+
+ bool AllowOverwrite = false;
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
+ continue;
+
+ // Don't emit anonymous bitfields or zero-sized fields.
+ if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
+ continue;
+
+ // Emit the value of the initializer.
+ const APValue &FieldValue =
+ RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
+ llvm::Constant *EltInit =
+ Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
+ if (!EltInit)
+ return false;
+
+ if (!Field->isBitField()) {
+ // Handle non-bitfield members.
+ if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
+ EltInit, AllowOverwrite))
+ return false;
+ // After emitting a non-empty field with [[no_unique_address]], we may
+ // need to overwrite its tail padding.
+ if (Field->hasAttr<NoUniqueAddressAttr>())
+ AllowOverwrite = true;
+ } else {
+ // Otherwise we have a bitfield.
+ if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
+ cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
+ RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
+ llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
+ return Builder.build(ValTy, RD->hasFlexibleArrayMember());
+}
+
+llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
+ InitListExpr *ILE,
+ QualType ValTy) {
+ ConstantAggregateBuilder Const(Emitter.CGM);
+ ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
+
+ if (!Builder.Build(ILE, /*AllowOverwrite*/false))
+ return nullptr;
+
+ return Builder.Finalize(ValTy);
+}
+
+llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
+ const APValue &Val,
+ QualType ValTy) {
+ ConstantAggregateBuilder Const(Emitter.CGM);
+ ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
+
+ const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
+ const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
+ if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
+ return nullptr;
+
+ return Builder.Finalize(ValTy);
+}
+
+bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
+ ConstantAggregateBuilder &Const,
+ CharUnits Offset, InitListExpr *Updater) {
+ return ConstStructBuilder(Emitter, Const, Offset)
+ .Build(Updater, /*AllowOverwrite*/ true);
+}
+
+//===----------------------------------------------------------------------===//
+// ConstExprEmitter
+//===----------------------------------------------------------------------===//
+
+static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
+ CodeGenFunction *CGF,
+ const CompoundLiteralExpr *E) {
+ CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
+ if (llvm::GlobalVariable *Addr =
+ CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
+ return ConstantAddress(Addr, Align);
+
+ LangAS addressSpace = E->getType().getAddressSpace();
+
+ ConstantEmitter emitter(CGM, CGF);
+ llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
+ addressSpace, E->getType());
+ if (!C) {
+ assert(!E->isFileScope() &&
+ "file-scope compound literal did not have constant initializer!");
+ return ConstantAddress::invalid();
+ }
+
+ auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
+ CGM.isTypeConstant(E->getType(), true),
+ llvm::GlobalValue::InternalLinkage,
+ C, ".compoundliteral", nullptr,
+ llvm::GlobalVariable::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(addressSpace));
+ emitter.finalize(GV);
+ GV->setAlignment(Align.getAsAlign());
+ CGM.setAddrOfConstantCompoundLiteral(E, GV);
+ return ConstantAddress(GV, Align);
+}
+
+static llvm::Constant *
+EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
+ llvm::Type *CommonElementType, unsigned ArrayBound,
+ SmallVectorImpl<llvm::Constant *> &Elements,
+ llvm::Constant *Filler) {
+ // Figure out how long the initial prefix of non-zero elements is.
+ unsigned NonzeroLength = ArrayBound;
+ if (Elements.size() < NonzeroLength && Filler->isNullValue())
+ NonzeroLength = Elements.size();
+ if (NonzeroLength == Elements.size()) {
+ while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
+ --NonzeroLength;
+ }
+
+ if (NonzeroLength == 0)
+ return llvm::ConstantAggregateZero::get(DesiredType);
+
+ // Add a zeroinitializer array filler if we have lots of trailing zeroes.
+ unsigned TrailingZeroes = ArrayBound - NonzeroLength;
+ if (TrailingZeroes >= 8) {
+ assert(Elements.size() >= NonzeroLength &&
+ "missing initializer for non-zero element");
+
+ // If all the elements had the same type up to the trailing zeroes, emit a
+ // struct of two arrays (the nonzero data and the zeroinitializer).
+ if (CommonElementType && NonzeroLength >= 8) {
+ llvm::Constant *Initial = llvm::ConstantArray::get(
+ llvm::ArrayType::get(CommonElementType, NonzeroLength),
+ makeArrayRef(Elements).take_front(NonzeroLength));
+ Elements.resize(2);
+ Elements[0] = Initial;
+ } else {
+ Elements.resize(NonzeroLength + 1);
+ }
+
+ auto *FillerType =
+ CommonElementType ? CommonElementType : DesiredType->getElementType();
+ FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
+ Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
+ CommonElementType = nullptr;
+ } else if (Elements.size() != ArrayBound) {
+ // Otherwise pad to the right size with the filler if necessary.
+ Elements.resize(ArrayBound, Filler);
+ if (Filler->getType() != CommonElementType)
+ CommonElementType = nullptr;
+ }
+
+ // If all elements have the same type, just emit an array constant.
+ if (CommonElementType)
+ return llvm::ConstantArray::get(
+ llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
+
+ // We have mixed types. Use a packed struct.
+ llvm::SmallVector<llvm::Type *, 16> Types;
+ Types.reserve(Elements.size());
+ for (llvm::Constant *Elt : Elements)
+ Types.push_back(Elt->getType());
+ llvm::StructType *SType =
+ llvm::StructType::get(CGM.getLLVMContext(), Types, true);
+ return llvm::ConstantStruct::get(SType, Elements);
+}
+
+// This class only needs to handle arrays, structs and unions. Outside C++11
+// mode, we don't currently constant fold those types. All other types are
+// handled by constant folding.
+//
+// Constant folding is currently missing support for a few features supported
+// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
+class ConstExprEmitter :
+ public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
+ CodeGenModule &CGM;
+ ConstantEmitter &Emitter;
+ llvm::LLVMContext &VMContext;
+public:
+ ConstExprEmitter(ConstantEmitter &emitter)
+ : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ llvm::Constant *VisitStmt(Stmt *S, QualType T) {
+ return nullptr;
+ }
+
+ llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
+ return Visit(CE->getSubExpr(), T);
+ }
+
+ llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
+ return Visit(PE->getSubExpr(), T);
+ }
+
+ llvm::Constant *
+ VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
+ QualType T) {
+ return Visit(PE->getReplacement(), T);
+ }
+
+ llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
+ QualType T) {
+ return Visit(GE->getResultExpr(), T);
+ }
+
+ llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
+ return Visit(CE->getChosenSubExpr(), T);
+ }
+
+ llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
+ return Visit(E->getInitializer(), T);
+ }
+
+ llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
+ if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
+ CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
+ Expr *subExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ case CK_ToUnion: {
+ // GCC cast to union extension
+ assert(E->getType()->isUnionType() &&
+ "Destination type is not union type!");
+
+ auto field = E->getTargetUnionField();
+
+ auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
+ if (!C) return nullptr;
+
+ auto destTy = ConvertType(destType);
+ if (C->getType() == destTy) return C;
+
+ // Build a struct with the union sub-element as the first member,
+ // and padded to the appropriate size.
+ SmallVector<llvm::Constant*, 2> Elts;
+ SmallVector<llvm::Type*, 2> Types;
+ Elts.push_back(C);
+ Types.push_back(C->getType());
+ unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
+ unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
+
+ assert(CurSize <= TotalSize && "Union size mismatch!");
+ if (unsigned NumPadBytes = TotalSize - CurSize) {
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (NumPadBytes > 1)
+ Ty = llvm::ArrayType::get(Ty, NumPadBytes);
+
+ Elts.push_back(llvm::UndefValue::get(Ty));
+ Types.push_back(Ty);
+ }
+
+ llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
+ return llvm::ConstantStruct::get(STy, Elts);
+ }
+
+ case CK_AddressSpaceConversion: {
+ auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
+ if (!C) return nullptr;
+ LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
+ LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
+ llvm::Type *destTy = ConvertType(E->getType());
+ return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
+ destAS, destTy);
+ }
+
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_ConstructorConversion:
+ return Visit(subExpr, destType);
+
+ case CK_IntToOCLSampler:
+ llvm_unreachable("global sampler variables are not generated");
+
+ case CK_Dependent: llvm_unreachable("saw dependent cast!");
+
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ case CK_ReinterpretMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer: {
+ auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
+ if (!C) return nullptr;
+ return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
+ }
+
+ // These will never be supported.
+ case CK_ObjCObjectLValueCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return nullptr;
+
+ // These don't need to be handled here because Evaluate knows how to
+ // evaluate them in the cases where they can be folded.
+ case CK_BitCast:
+ case CK_ToVoid:
+ case CK_Dynamic:
+ case CK_LValueBitCast:
+ case CK_LValueToRValueBitCast:
+ case CK_NullToMemberPointer:
+ case CK_UserDefinedConversion:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_MemberPointerToBoolean:
+ case CK_VectorSplat:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_NullToPointer:
+ case CK_IntegralCast:
+ case CK_BooleanToSignedIntegral:
+ case CK_IntegralToPointer:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FixedPointCast:
+ case CK_FixedPointToBoolean:
+ case CK_FixedPointToIntegral:
+ case CK_IntegralToFixedPoint:
+ case CK_ZeroToOCLOpaqueType:
+ return nullptr;
+ }
+ llvm_unreachable("Invalid CastKind");
+ }
+
+ llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
+ // No need for a DefaultInitExprScope: we don't handle 'this' in a
+ // constant expression.
+ return Visit(DIE->getExpr(), T);
+ }
+
+ llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
+ if (!E->cleanupsHaveSideEffects())
+ return Visit(E->getSubExpr(), T);
+ return nullptr;
+ }
+
+ llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
+ QualType T) {
+ return Visit(E->getSubExpr(), T);
+ }
+
+ llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
+ auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
+ assert(CAT && "can't emit array init for non-constant-bound array");
+ unsigned NumInitElements = ILE->getNumInits();
+ unsigned NumElements = CAT->getSize().getZExtValue();
+
+ // Initialising an array requires us to automatically
+ // initialise any elements that have not been initialised explicitly
+ unsigned NumInitableElts = std::min(NumInitElements, NumElements);
+
+ QualType EltType = CAT->getElementType();
+
+ // Initialize remaining array elements.
+ llvm::Constant *fillC = nullptr;
+ if (Expr *filler = ILE->getArrayFiller()) {
+ fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
+ if (!fillC)
+ return nullptr;
+ }
+
+ // Copy initializer elements.
+ SmallVector<llvm::Constant*, 16> Elts;
+ if (fillC && fillC->isNullValue())
+ Elts.reserve(NumInitableElts + 1);
+ else
+ Elts.reserve(NumElements);
+
+ llvm::Type *CommonElementType = nullptr;
+ for (unsigned i = 0; i < NumInitableElts; ++i) {
+ Expr *Init = ILE->getInit(i);
+ llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
+ if (!C)
+ return nullptr;
+ if (i == 0)
+ CommonElementType = C->getType();
+ else if (C->getType() != CommonElementType)
+ CommonElementType = nullptr;
+ Elts.push_back(C);
+ }
+
+ llvm::ArrayType *Desired =
+ cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
+ return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
+ fillC);
+ }
+
+ llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
+ return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
+ }
+
+ llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
+ QualType T) {
+ return CGM.EmitNullConstant(T);
+ }
+
+ llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
+ if (ILE->isTransparent())
+ return Visit(ILE->getInit(0), T);
+
+ if (ILE->getType()->isArrayType())
+ return EmitArrayInitialization(ILE, T);
+
+ if (ILE->getType()->isRecordType())
+ return EmitRecordInitialization(ILE, T);
+
+ return nullptr;
+ }
+
+ llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
+ QualType destType) {
+ auto C = Visit(E->getBase(), destType);
+ if (!C)
+ return nullptr;
+
+ ConstantAggregateBuilder Const(CGM);
+ Const.add(C, CharUnits::Zero(), false);
+
+ if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
+ E->getUpdater()))
+ return nullptr;
+
+ llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
+ bool HasFlexibleArray = false;
+ if (auto *RT = destType->getAs<RecordType>())
+ HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
+ return Const.build(ValTy, HasFlexibleArray);
+ }
+
+ llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
+ if (!E->getConstructor()->isTrivial())
+ return nullptr;
+
+ // FIXME: We should not have to call getBaseElementType here.
+ const auto *RT =
+ CGM.getContext().getBaseElementType(Ty)->castAs<RecordType>();
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ // If the class doesn't have a trivial destructor, we can't emit it as a
+ // constant expr.
+ if (!RD->hasTrivialDestructor())
+ return nullptr;
+
+ // Only copy and default constructors can be trivial.
+
+
+ if (E->getNumArgs()) {
+ assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
+ assert(E->getConstructor()->isCopyOrMoveConstructor() &&
+ "trivial ctor has argument but isn't a copy/move ctor");
+
+ Expr *Arg = E->getArg(0);
+ assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
+ "argument to copy ctor is of wrong type");
+
+ return Visit(Arg, Ty);
+ }
+
+ return CGM.EmitNullConstant(Ty);
+ }
+
+ llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
+ // This is a string literal initializing an array in an initializer.
+ return CGM.GetConstantArrayFromStringLiteral(E);
+ }
+
+ llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
+ // This must be an @encode initializing an array in a static initializer.
+ // Don't emit it as the address of the string, emit the string data itself
+ // as an inline array.
+ std::string Str;
+ CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
+ const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
+
+ // Resize the string to the right size, adding zeros at the end, or
+ // truncating as needed.
+ Str.resize(CAT->getSize().getZExtValue(), '\0');
+ return llvm::ConstantDataArray::getString(VMContext, Str, false);
+ }
+
+ llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
+ return Visit(E->getSubExpr(), T);
+ }
+
+ // Utility methods
+ llvm::Type *ConvertType(QualType T) {
+ return CGM.getTypes().ConvertType(T);
+ }
+};
+
+} // end anonymous namespace.
+
+llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
+ AbstractState saved) {
+ Abstract = saved.OldValue;
+
+ assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
+ "created a placeholder while doing an abstract emission?");
+
+ // No validation necessary for now.
+ // No cleanup to do for now.
+ return C;
+}
+
+llvm::Constant *
+ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
+ auto state = pushAbstract();
+ auto C = tryEmitPrivateForVarInit(D);
+ return validateAndPopAbstract(C, state);
+}
+
+llvm::Constant *
+ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
+ auto state = pushAbstract();
+ auto C = tryEmitPrivate(E, destType);
+ return validateAndPopAbstract(C, state);
+}
+
+llvm::Constant *
+ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
+ auto state = pushAbstract();
+ auto C = tryEmitPrivate(value, destType);
+ return validateAndPopAbstract(C, state);
+}
+
+llvm::Constant *
+ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
+ auto state = pushAbstract();
+ auto C = tryEmitPrivate(E, destType);
+ C = validateAndPopAbstract(C, state);
+ if (!C) {
+ CGM.Error(E->getExprLoc(),
+ "internal error: could not emit constant value \"abstractly\"");
+ C = CGM.EmitNullConstant(destType);
+ }
+ return C;
+}
+
+llvm::Constant *
+ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
+ QualType destType) {
+ auto state = pushAbstract();
+ auto C = tryEmitPrivate(value, destType);
+ C = validateAndPopAbstract(C, state);
+ if (!C) {
+ CGM.Error(loc,
+ "internal error: could not emit constant value \"abstractly\"");
+ C = CGM.EmitNullConstant(destType);
+ }
+ return C;
+}
+
+llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
+ initializeNonAbstract(D.getType().getAddressSpace());
+ return markIfFailed(tryEmitPrivateForVarInit(D));
+}
+
+llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
+ LangAS destAddrSpace,
+ QualType destType) {
+ initializeNonAbstract(destAddrSpace);
+ return markIfFailed(tryEmitPrivateForMemory(E, destType));
+}
+
+llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
+ LangAS destAddrSpace,
+ QualType destType) {
+ initializeNonAbstract(destAddrSpace);
+ auto C = tryEmitPrivateForMemory(value, destType);
+ assert(C && "couldn't emit constant value non-abstractly?");
+ return C;
+}
+
+llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
+ assert(!Abstract && "cannot get current address for abstract constant");
+
+
+
+ // Make an obviously ill-formed global that should blow up compilation
+ // if it survives.
+ auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
+ llvm::GlobalValue::PrivateLinkage,
+ /*init*/ nullptr,
+ /*name*/ "",
+ /*before*/ nullptr,
+ llvm::GlobalVariable::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(DestAddressSpace));
+
+ PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
+
+ return global;
+}
+
+void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
+ llvm::GlobalValue *placeholder) {
+ assert(!PlaceholderAddresses.empty());
+ assert(PlaceholderAddresses.back().first == nullptr);
+ assert(PlaceholderAddresses.back().second == placeholder);
+ PlaceholderAddresses.back().first = signal;
+}
+
+namespace {
+ struct ReplacePlaceholders {
+ CodeGenModule &CGM;
+
+ /// The base address of the global.
+ llvm::Constant *Base;
+ llvm::Type *BaseValueTy = nullptr;
+
+ /// The placeholder addresses that were registered during emission.
+ llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
+
+ /// The locations of the placeholder signals.
+ llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
+
+ /// The current index stack. We use a simple unsigned stack because
+ /// we assume that placeholders will be relatively sparse in the
+ /// initializer, but we cache the index values we find just in case.
+ llvm::SmallVector<unsigned, 8> Indices;
+ llvm::SmallVector<llvm::Constant*, 8> IndexValues;
+
+ ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
+ ArrayRef<std::pair<llvm::Constant*,
+ llvm::GlobalVariable*>> addresses)
+ : CGM(CGM), Base(base),
+ PlaceholderAddresses(addresses.begin(), addresses.end()) {
+ }
+
+ void replaceInInitializer(llvm::Constant *init) {
+ // Remember the type of the top-most initializer.
+ BaseValueTy = init->getType();
+
+ // Initialize the stack.
+ Indices.push_back(0);
+ IndexValues.push_back(nullptr);
+
+ // Recurse into the initializer.
+ findLocations(init);
+
+ // Check invariants.
+ assert(IndexValues.size() == Indices.size() && "mismatch");
+ assert(Indices.size() == 1 && "didn't pop all indices");
+
+ // Do the replacement; this basically invalidates 'init'.
+ assert(Locations.size() == PlaceholderAddresses.size() &&
+ "missed a placeholder?");
+
+ // We're iterating over a hashtable, so this would be a source of
+ // non-determinism in compiler output *except* that we're just
+ // messing around with llvm::Constant structures, which never itself
+ // does anything that should be visible in compiler output.
+ for (auto &entry : Locations) {
+ assert(entry.first->getParent() == nullptr && "not a placeholder!");
+ entry.first->replaceAllUsesWith(entry.second);
+ entry.first->eraseFromParent();
+ }
+ }
+
+ private:
+ void findLocations(llvm::Constant *init) {
+ // Recurse into aggregates.
+ if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
+ for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
+ Indices.push_back(i);
+ IndexValues.push_back(nullptr);
+
+ findLocations(agg->getOperand(i));
+
+ IndexValues.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ // Otherwise, check for registered constants.
+ while (true) {
+ auto it = PlaceholderAddresses.find(init);
+ if (it != PlaceholderAddresses.end()) {
+ setLocation(it->second);
+ break;
+ }
+
+ // Look through bitcasts or other expressions.
+ if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
+ init = expr->getOperand(0);
+ } else {
+ break;
+ }
+ }
+ }
+
+ void setLocation(llvm::GlobalVariable *placeholder) {
+ assert(Locations.find(placeholder) == Locations.end() &&
+ "already found location for placeholder!");
+
+ // Lazily fill in IndexValues with the values from Indices.
+ // We do this in reverse because we should always have a strict
+ // prefix of indices from the start.
+ assert(Indices.size() == IndexValues.size());
+ for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
+ if (IndexValues[i]) {
+#ifndef NDEBUG
+ for (size_t j = 0; j != i + 1; ++j) {
+ assert(IndexValues[j] &&
+ isa<llvm::ConstantInt>(IndexValues[j]) &&
+ cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
+ == Indices[j]);
+ }
+#endif
+ break;
+ }
+
+ IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
+ }
+
+ // Form a GEP and then bitcast to the placeholder type so that the
+ // replacement will succeed.
+ llvm::Constant *location =
+ llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
+ Base, IndexValues);
+ location = llvm::ConstantExpr::getBitCast(location,
+ placeholder->getType());
+
+ Locations.insert({placeholder, location});
+ }
+ };
+}
+
+void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
+ assert(InitializedNonAbstract &&
+ "finalizing emitter that was used for abstract emission?");
+ assert(!Finalized && "finalizing emitter multiple times");
+ assert(global->getInitializer());
+
+ // Note that we might also be Failed.
+ Finalized = true;
+
+ if (!PlaceholderAddresses.empty()) {
+ ReplacePlaceholders(CGM, global, PlaceholderAddresses)
+ .replaceInInitializer(global->getInitializer());
+ PlaceholderAddresses.clear(); // satisfy
+ }
+}
+
+ConstantEmitter::~ConstantEmitter() {
+ assert((!InitializedNonAbstract || Finalized || Failed) &&
+ "not finalized after being initialized for non-abstract emission");
+ assert(PlaceholderAddresses.empty() && "unhandled placeholders");
+}
+
+static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
+ if (auto AT = type->getAs<AtomicType>()) {
+ return CGM.getContext().getQualifiedType(AT->getValueType(),
+ type.getQualifiers());
+ }
+ return type;
+}
+
+llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
+ // Make a quick check if variable can be default NULL initialized
+ // and avoid going through rest of code which may do, for c++11,
+ // initialization of memory to all NULLs.
+ if (!D.hasLocalStorage()) {
+ QualType Ty = CGM.getContext().getBaseElementType(D.getType());
+ if (Ty->isRecordType())
+ if (const CXXConstructExpr *E =
+ dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
+ const CXXConstructorDecl *CD = E->getConstructor();
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return CGM.EmitNullConstant(D.getType());
+ }
+ InConstantContext = true;
+ }
+
+ QualType destType = D.getType();
+
+ // Try to emit the initializer. Note that this can allow some things that
+ // are not allowed by tryEmitPrivateForMemory alone.
+ if (auto value = D.evaluateValue()) {
+ return tryEmitPrivateForMemory(*value, destType);
+ }
+
+ // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
+ // reference is a constant expression, and the reference binds to a temporary,
+ // then constant initialization is performed. ConstExprEmitter will
+ // incorrectly emit a prvalue constant in this case, and the calling code
+ // interprets that as the (pointer) value of the reference, rather than the
+ // desired value of the referee.
+ if (destType->isReferenceType())
+ return nullptr;
+
+ const Expr *E = D.getInit();
+ assert(E && "No initializer to emit");
+
+ auto nonMemoryDestType = getNonMemoryType(CGM, destType);
+ auto C =
+ ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
+ return (C ? emitForMemory(C, destType) : nullptr);
+}
+
+llvm::Constant *
+ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
+ auto nonMemoryDestType = getNonMemoryType(CGM, destType);
+ auto C = tryEmitAbstract(E, nonMemoryDestType);
+ return (C ? emitForMemory(C, destType) : nullptr);
+}
+
+llvm::Constant *
+ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
+ QualType destType) {
+ auto nonMemoryDestType = getNonMemoryType(CGM, destType);
+ auto C = tryEmitAbstract(value, nonMemoryDestType);
+ return (C ? emitForMemory(C, destType) : nullptr);
+}
+
+llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
+ QualType destType) {
+ auto nonMemoryDestType = getNonMemoryType(CGM, destType);
+ llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
+ return (C ? emitForMemory(C, destType) : nullptr);
+}
+
+llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
+ QualType destType) {
+ auto nonMemoryDestType = getNonMemoryType(CGM, destType);
+ auto C = tryEmitPrivate(value, nonMemoryDestType);
+ return (C ? emitForMemory(C, destType) : nullptr);
+}
+
+llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
+ llvm::Constant *C,
+ QualType destType) {
+ // For an _Atomic-qualified constant, we may need to add tail padding.
+ if (auto AT = destType->getAs<AtomicType>()) {
+ QualType destValueType = AT->getValueType();
+ C = emitForMemory(CGM, C, destValueType);
+
+ uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
+ uint64_t outerSize = CGM.getContext().getTypeSize(destType);
+ if (innerSize == outerSize)
+ return C;
+
+ assert(innerSize < outerSize && "emitted over-large constant for atomic");
+ llvm::Constant *elts[] = {
+ C,
+ llvm::ConstantAggregateZero::get(
+ llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
+ };
+ return llvm::ConstantStruct::getAnon(elts);
+ }
+
+ // Zero-extend bool.
+ if (C->getType()->isIntegerTy(1)) {
+ llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
+ return llvm::ConstantExpr::getZExt(C, boolTy);
+ }
+
+ return C;
+}
+
+llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
+ QualType destType) {
+ Expr::EvalResult Result;
+
+ bool Success = false;
+
+ if (destType->isReferenceType())
+ Success = E->EvaluateAsLValue(Result, CGM.getContext());
+ else
+ Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
+
+ llvm::Constant *C;
+ if (Success && !Result.HasSideEffects)
+ C = tryEmitPrivate(Result.Val, destType);
+ else
+ C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
+
+ return C;
+}
+
+llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
+ return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
+}
+
+namespace {
+/// A struct which can be used to peephole certain kinds of finalization
+/// that normally happen during l-value emission.
+struct ConstantLValue {
+ llvm::Constant *Value;
+ bool HasOffsetApplied;
+
+ /*implicit*/ ConstantLValue(llvm::Constant *value,
+ bool hasOffsetApplied = false)
+ : Value(value), HasOffsetApplied(hasOffsetApplied) {}
+
+ /*implicit*/ ConstantLValue(ConstantAddress address)
+ : ConstantLValue(address.getPointer()) {}
+};
+
+/// A helper class for emitting constant l-values.
+class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
+ ConstantLValue> {
+ CodeGenModule &CGM;
+ ConstantEmitter &Emitter;
+ const APValue &Value;
+ QualType DestType;
+
+ // Befriend StmtVisitorBase so that we don't have to expose Visit*.
+ friend StmtVisitorBase;
+
+public:
+ ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
+ QualType destType)
+ : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
+
+ llvm::Constant *tryEmit();
+
+private:
+ llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
+ ConstantLValue tryEmitBase(const APValue::LValueBase &base);
+
+ ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
+ ConstantLValue VisitConstantExpr(const ConstantExpr *E);
+ ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
+ ConstantLValue VisitStringLiteral(const StringLiteral *E);
+ ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
+ ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
+ ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
+ ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
+ ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
+ ConstantLValue VisitCallExpr(const CallExpr *E);
+ ConstantLValue VisitBlockExpr(const BlockExpr *E);
+ ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
+ ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
+ ConstantLValue VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *E);
+
+ bool hasNonZeroOffset() const {
+ return !Value.getLValueOffset().isZero();
+ }
+
+ /// Return the value offset.
+ llvm::Constant *getOffset() {
+ return llvm::ConstantInt::get(CGM.Int64Ty,
+ Value.getLValueOffset().getQuantity());
+ }
+
+ /// Apply the value offset to the given constant.
+ llvm::Constant *applyOffset(llvm::Constant *C) {
+ if (!hasNonZeroOffset())
+ return C;
+
+ llvm::Type *origPtrTy = C->getType();
+ unsigned AS = origPtrTy->getPointerAddressSpace();
+ llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
+ C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
+ C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
+ C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
+ return C;
+ }
+};
+
+}
+
+llvm::Constant *ConstantLValueEmitter::tryEmit() {
+ const APValue::LValueBase &base = Value.getLValueBase();
+
+ // The destination type should be a pointer or reference
+ // type, but it might also be a cast thereof.
+ //
+ // FIXME: the chain of casts required should be reflected in the APValue.
+ // We need this in order to correctly handle things like a ptrtoint of a
+ // non-zero null pointer and addrspace casts that aren't trivially
+ // represented in LLVM IR.
+ auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
+ assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
+
+ // If there's no base at all, this is a null or absolute pointer,
+ // possibly cast back to an integer type.
+ if (!base) {
+ return tryEmitAbsolute(destTy);
+ }
+
+ // Otherwise, try to emit the base.
+ ConstantLValue result = tryEmitBase(base);
+
+ // If that failed, we're done.
+ llvm::Constant *value = result.Value;
+ if (!value) return nullptr;
+
+ // Apply the offset if necessary and not already done.
+ if (!result.HasOffsetApplied) {
+ value = applyOffset(value);
+ }
+
+ // Convert to the appropriate type; this could be an lvalue for
+ // an integer. FIXME: performAddrSpaceCast
+ if (isa<llvm::PointerType>(destTy))
+ return llvm::ConstantExpr::getPointerCast(value, destTy);
+
+ return llvm::ConstantExpr::getPtrToInt(value, destTy);
+}
+
+/// Try to emit an absolute l-value, such as a null pointer or an integer
+/// bitcast to pointer type.
+llvm::Constant *
+ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
+ // If we're producing a pointer, this is easy.
+ auto destPtrTy = cast<llvm::PointerType>(destTy);
+ if (Value.isNullPointer()) {
+ // FIXME: integer offsets from non-zero null pointers.
+ return CGM.getNullPointer(destPtrTy, DestType);
+ }
+
+ // Convert the integer to a pointer-sized integer before converting it
+ // to a pointer.
+ // FIXME: signedness depends on the original integer type.
+ auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
+ llvm::Constant *C;
+ C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
+ /*isSigned*/ false);
+ C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
+ return C;
+}
+
+ConstantLValue
+ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
+ // Handle values.
+ if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
+ if (D->hasAttr<WeakRefAttr>())
+ return CGM.GetWeakRefReference(D).getPointer();
+
+ if (auto FD = dyn_cast<FunctionDecl>(D))
+ return CGM.GetAddrOfFunction(FD);
+
+ if (auto VD = dyn_cast<VarDecl>(D)) {
+ // We can never refer to a variable with local storage.
+ if (!VD->hasLocalStorage()) {
+ if (VD->isFileVarDecl() || VD->hasExternalStorage())
+ return CGM.GetAddrOfGlobalVar(VD);
+
+ if (VD->isLocalVarDecl()) {
+ return CGM.getOrCreateStaticVarDecl(
+ *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
+ }
+ }
+ }
+
+ return nullptr;
+ }
+
+ // Handle typeid(T).
+ if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
+ llvm::Type *StdTypeInfoPtrTy =
+ CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
+ llvm::Constant *TypeInfo =
+ CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
+ if (TypeInfo->getType() != StdTypeInfoPtrTy)
+ TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
+ return TypeInfo;
+ }
+
+ // Otherwise, it must be an expression.
+ return Visit(base.get<const Expr*>());
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
+ return Visit(E->getSubExpr());
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
+ return CGM.GetAddrOfConstantStringFromLiteral(E);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
+ return CGM.GetAddrOfConstantStringFromObjCEncode(E);
+}
+
+static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
+ QualType T,
+ CodeGenModule &CGM) {
+ auto C = CGM.getObjCRuntime().GenerateConstantString(S);
+ return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
+ assert(E->isExpressibleAsConstantInitializer() &&
+ "this boxed expression can't be emitted as a compile-time constant");
+ auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
+ return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
+ return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
+ assert(Emitter.CGF && "Invalid address of label expression outside function");
+ llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
+ Ptr = llvm::ConstantExpr::getBitCast(Ptr,
+ CGM.getTypes().ConvertType(E->getType()));
+ return Ptr;
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
+ unsigned builtin = E->getBuiltinCallee();
+ if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
+ builtin != Builtin::BI__builtin___NSStringMakeConstantString)
+ return nullptr;
+
+ auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
+ if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
+ return CGM.getObjCRuntime().GenerateConstantString(literal);
+ } else {
+ // FIXME: need to deal with UCN conversion issues.
+ return CGM.GetAddrOfConstantCFString(literal);
+ }
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
+ StringRef functionName;
+ if (auto CGF = Emitter.CGF)
+ functionName = CGF->CurFn->getName();
+ else
+ functionName = "global";
+
+ return CGM.GetAddrOfGlobalBlock(E, functionName);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ QualType T;
+ if (E->isTypeOperand())
+ T = E->getTypeOperand(CGM.getContext());
+ else
+ T = E->getExprOperand()->getType();
+ return CGM.GetAddrOfRTTIDescriptor(T);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return CGM.GetAddrOfUuidDescriptor(E);
+}
+
+ConstantLValue
+ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *E) {
+ assert(E->getStorageDuration() == SD_Static);
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Inner =
+ E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+ return CGM.GetAddrOfGlobalTemporary(E, Inner);
+}
+
+llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
+ QualType DestType) {
+ switch (Value.getKind()) {
+ case APValue::None:
+ case APValue::Indeterminate:
+ // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
+ return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
+ case APValue::LValue:
+ return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
+ case APValue::Int:
+ return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
+ case APValue::FixedPoint:
+ return llvm::ConstantInt::get(CGM.getLLVMContext(),
+ Value.getFixedPoint().getValue());
+ case APValue::ComplexInt: {
+ llvm::Constant *Complex[2];
+
+ Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
+ Value.getComplexIntReal());
+ Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
+ Value.getComplexIntImag());
+
+ // FIXME: the target may want to specify that this is packed.
+ llvm::StructType *STy =
+ llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
+ return llvm::ConstantStruct::get(STy, Complex);
+ }
+ case APValue::Float: {
+ const llvm::APFloat &Init = Value.getFloat();
+ if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
+ !CGM.getContext().getLangOpts().NativeHalfType &&
+ CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
+ return llvm::ConstantInt::get(CGM.getLLVMContext(),
+ Init.bitcastToAPInt());
+ else
+ return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
+ }
+ case APValue::ComplexFloat: {
+ llvm::Constant *Complex[2];
+
+ Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
+ Value.getComplexFloatReal());
+ Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
+ Value.getComplexFloatImag());
+
+ // FIXME: the target may want to specify that this is packed.
+ llvm::StructType *STy =
+ llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
+ return llvm::ConstantStruct::get(STy, Complex);
+ }
+ case APValue::Vector: {
+ unsigned NumElts = Value.getVectorLength();
+ SmallVector<llvm::Constant *, 4> Inits(NumElts);
+
+ for (unsigned I = 0; I != NumElts; ++I) {
+ const APValue &Elt = Value.getVectorElt(I);
+ if (Elt.isInt())
+ Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
+ else if (Elt.isFloat())
+ Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
+ else
+ llvm_unreachable("unsupported vector element type");
+ }
+ return llvm::ConstantVector::get(Inits);
+ }
+ case APValue::AddrLabelDiff: {
+ const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
+ const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
+ llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
+ llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
+ if (!LHS || !RHS) return nullptr;
+
+ // Compute difference
+ llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
+ LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
+ RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
+ llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
+
+ // LLVM is a bit sensitive about the exact format of the
+ // address-of-label difference; make sure to truncate after
+ // the subtraction.
+ return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
+ }
+ case APValue::Struct:
+ case APValue::Union:
+ return ConstStructBuilder::BuildStruct(*this, Value, DestType);
+ case APValue::Array: {
+ const ConstantArrayType *CAT =
+ CGM.getContext().getAsConstantArrayType(DestType);
+ unsigned NumElements = Value.getArraySize();
+ unsigned NumInitElts = Value.getArrayInitializedElts();
+
+ // Emit array filler, if there is one.
+ llvm::Constant *Filler = nullptr;
+ if (Value.hasArrayFiller()) {
+ Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
+ CAT->getElementType());
+ if (!Filler)
+ return nullptr;
+ }
+
+ // Emit initializer elements.
+ SmallVector<llvm::Constant*, 16> Elts;
+ if (Filler && Filler->isNullValue())
+ Elts.reserve(NumInitElts + 1);
+ else
+ Elts.reserve(NumElements);
+
+ llvm::Type *CommonElementType = nullptr;
+ for (unsigned I = 0; I < NumInitElts; ++I) {
+ llvm::Constant *C = tryEmitPrivateForMemory(
+ Value.getArrayInitializedElt(I), CAT->getElementType());
+ if (!C) return nullptr;
+
+ if (I == 0)
+ CommonElementType = C->getType();
+ else if (C->getType() != CommonElementType)
+ CommonElementType = nullptr;
+ Elts.push_back(C);
+ }
+
+ // This means that the array type is probably "IncompleteType" or some
+ // type that is not ConstantArray.
+ if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
+ const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
+ CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
+ llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
+ NumElements);
+ return llvm::ConstantAggregateZero::get(AType);
+ }
+
+ llvm::ArrayType *Desired =
+ cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
+ return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
+ Filler);
+ }
+ case APValue::MemberPointer:
+ return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
+ }
+ llvm_unreachable("Unknown APValue kind");
+}
+
+llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
+ const CompoundLiteralExpr *E) {
+ return EmittedCompoundLiterals.lookup(E);
+}
+
+void CodeGenModule::setAddrOfConstantCompoundLiteral(
+ const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
+ bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
+ (void)Ok;
+ assert(Ok && "CLE has already been emitted!");
+}
+
+ConstantAddress
+CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
+ assert(E->isFileScope() && "not a file-scope compound literal expr");
+ return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
+}
+
+llvm::Constant *
+CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
+ // Member pointer constants always have a very particular form.
+ const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
+ const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
+
+ // A member function pointer.
+ if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
+ return getCXXABI().EmitMemberFunctionPointer(method);
+
+ // Otherwise, a member data pointer.
+ uint64_t fieldOffset = getContext().getFieldOffset(decl);
+ CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
+ return getCXXABI().EmitMemberDataPointer(type, chars);
+}
+
+static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
+ llvm::Type *baseType,
+ const CXXRecordDecl *base);
+
+static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
+ const RecordDecl *record,
+ bool asCompleteObject) {
+ const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
+ llvm::StructType *structure =
+ (asCompleteObject ? layout.getLLVMType()
+ : layout.getBaseSubobjectLLVMType());
+
+ unsigned numElements = structure->getNumElements();
+ std::vector<llvm::Constant *> elements(numElements);
+
+ auto CXXR = dyn_cast<CXXRecordDecl>(record);
+ // Fill in all the bases.
+ if (CXXR) {
+ for (const auto &I : CXXR->bases()) {
+ if (I.isVirtual()) {
+ // Ignore virtual bases; if we're laying out for a complete
+ // object, we'll lay these out later.
+ continue;
+ }
+
+ const CXXRecordDecl *base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (base->isEmpty() ||
+ CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
+ .isZero())
+ continue;
+
+ unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
+ llvm::Type *baseType = structure->getElementType(fieldIndex);
+ elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
+ }
+ }
+
+ // Fill in all the fields.
+ for (const auto *Field : record->fields()) {
+ // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
+ // will fill in later.)
+ if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
+ unsigned fieldIndex = layout.getLLVMFieldNo(Field);
+ elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
+ }
+
+ // For unions, stop after the first named field.
+ if (record->isUnion()) {
+ if (Field->getIdentifier())
+ break;
+ if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
+ if (FieldRD->findFirstNamedDataMember())
+ break;
+ }
+ }
+
+ // Fill in the virtual bases, if we're working with the complete object.
+ if (CXXR && asCompleteObject) {
+ for (const auto &I : CXXR->vbases()) {
+ const CXXRecordDecl *base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (base->isEmpty())
+ continue;
+
+ unsigned fieldIndex = layout.getVirtualBaseIndex(base);
+
+ // We might have already laid this field out.
+ if (elements[fieldIndex]) continue;
+
+ llvm::Type *baseType = structure->getElementType(fieldIndex);
+ elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
+ }
+ }
+
+ // Now go through all other fields and zero them out.
+ for (unsigned i = 0; i != numElements; ++i) {
+ if (!elements[i])
+ elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
+ }
+
+ return llvm::ConstantStruct::get(structure, elements);
+}
+
+/// Emit the null constant for a base subobject.
+static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
+ llvm::Type *baseType,
+ const CXXRecordDecl *base) {
+ const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
+
+ // Just zero out bases that don't have any pointer to data members.
+ if (baseLayout.isZeroInitializableAsBase())
+ return llvm::Constant::getNullValue(baseType);
+
+ // Otherwise, we can just use its null constant.
+ return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
+}
+
+llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
+ QualType T) {
+ return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
+}
+
+llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
+ if (T->getAs<PointerType>())
+ return getNullPointer(
+ cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
+
+ if (getTypes().isZeroInitializable(T))
+ return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
+
+ if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
+ llvm::ArrayType *ATy =
+ cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
+
+ QualType ElementTy = CAT->getElementType();
+
+ llvm::Constant *Element =
+ ConstantEmitter::emitNullForMemory(*this, ElementTy);
+ unsigned NumElements = CAT->getSize().getZExtValue();
+ SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
+ return llvm::ConstantArray::get(ATy, Array);
+ }
+
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
+
+ assert(T->isMemberDataPointerType() &&
+ "Should only see pointers to data members here!");
+
+ return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
+}
+
+llvm::Constant *
+CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
+ return ::EmitNullConstant(*this, Record, false);
+}