summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/MemorySSAUpdater.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Analysis/MemorySSAUpdater.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/MemorySSAUpdater.cpp1162
1 files changed, 0 insertions, 1162 deletions
diff --git a/gnu/llvm/lib/Analysis/MemorySSAUpdater.cpp b/gnu/llvm/lib/Analysis/MemorySSAUpdater.cpp
deleted file mode 100644
index 6c817d20368..00000000000
--- a/gnu/llvm/lib/Analysis/MemorySSAUpdater.cpp
+++ /dev/null
@@ -1,1162 +0,0 @@
-//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------===//
-//
-// This file implements the MemorySSAUpdater class.
-//
-//===----------------------------------------------------------------===//
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Analysis/IteratedDominanceFrontier.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FormattedStream.h"
-#include <algorithm>
-
-#define DEBUG_TYPE "memoryssa"
-using namespace llvm;
-
-// This is the marker algorithm from "Simple and Efficient Construction of
-// Static Single Assignment Form"
-// The simple, non-marker algorithm places phi nodes at any join
-// Here, we place markers, and only place phi nodes if they end up necessary.
-// They are only necessary if they break a cycle (IE we recursively visit
-// ourselves again), or we discover, while getting the value of the operands,
-// that there are two or more definitions needing to be merged.
-// This still will leave non-minimal form in the case of irreducible control
-// flow, where phi nodes may be in cycles with themselves, but unnecessary.
-MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
- BasicBlock *BB,
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
- // First, do a cache lookup. Without this cache, certain CFG structures
- // (like a series of if statements) take exponential time to visit.
- auto Cached = CachedPreviousDef.find(BB);
- if (Cached != CachedPreviousDef.end()) {
- return Cached->second;
- }
-
- if (BasicBlock *Pred = BB->getSinglePredecessor()) {
- // Single predecessor case, just recurse, we can only have one definition.
- MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
- CachedPreviousDef.insert({BB, Result});
- return Result;
- }
-
- if (VisitedBlocks.count(BB)) {
- // We hit our node again, meaning we had a cycle, we must insert a phi
- // node to break it so we have an operand. The only case this will
- // insert useless phis is if we have irreducible control flow.
- MemoryAccess *Result = MSSA->createMemoryPhi(BB);
- CachedPreviousDef.insert({BB, Result});
- return Result;
- }
-
- if (VisitedBlocks.insert(BB).second) {
- // Mark us visited so we can detect a cycle
- SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
-
- // Recurse to get the values in our predecessors for placement of a
- // potential phi node. This will insert phi nodes if we cycle in order to
- // break the cycle and have an operand.
- for (auto *Pred : predecessors(BB))
- PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
-
- // Now try to simplify the ops to avoid placing a phi.
- // This may return null if we never created a phi yet, that's okay
- MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
-
- // See if we can avoid the phi by simplifying it.
- auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
- // If we couldn't simplify, we may have to create a phi
- if (Result == Phi) {
- if (!Phi)
- Phi = MSSA->createMemoryPhi(BB);
-
- // See if the existing phi operands match what we need.
- // Unlike normal SSA, we only allow one phi node per block, so we can't just
- // create a new one.
- if (Phi->getNumOperands() != 0) {
- // FIXME: Figure out whether this is dead code and if so remove it.
- if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
- // These will have been filled in by the recursive read we did above.
- llvm::copy(PhiOps, Phi->op_begin());
- std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
- }
- } else {
- unsigned i = 0;
- for (auto *Pred : predecessors(BB))
- Phi->addIncoming(&*PhiOps[i++], Pred);
- InsertedPHIs.push_back(Phi);
- }
- Result = Phi;
- }
-
- // Set ourselves up for the next variable by resetting visited state.
- VisitedBlocks.erase(BB);
- CachedPreviousDef.insert({BB, Result});
- return Result;
- }
- llvm_unreachable("Should have hit one of the three cases above");
-}
-
-// This starts at the memory access, and goes backwards in the block to find the
-// previous definition. If a definition is not found the block of the access,
-// it continues globally, creating phi nodes to ensure we have a single
-// definition.
-MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
- if (auto *LocalResult = getPreviousDefInBlock(MA))
- return LocalResult;
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
- return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
-}
-
-// This starts at the memory access, and goes backwards in the block to the find
-// the previous definition. If the definition is not found in the block of the
-// access, it returns nullptr.
-MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
- auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
-
- // It's possible there are no defs, or we got handed the first def to start.
- if (Defs) {
- // If this is a def, we can just use the def iterators.
- if (!isa<MemoryUse>(MA)) {
- auto Iter = MA->getReverseDefsIterator();
- ++Iter;
- if (Iter != Defs->rend())
- return &*Iter;
- } else {
- // Otherwise, have to walk the all access iterator.
- auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
- for (auto &U : make_range(++MA->getReverseIterator(), End))
- if (!isa<MemoryUse>(U))
- return cast<MemoryAccess>(&U);
- // Note that if MA comes before Defs->begin(), we won't hit a def.
- return nullptr;
- }
- }
- return nullptr;
-}
-
-// This starts at the end of block
-MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
- BasicBlock *BB,
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
- auto *Defs = MSSA->getWritableBlockDefs(BB);
-
- if (Defs)
- return &*Defs->rbegin();
-
- return getPreviousDefRecursive(BB, CachedPreviousDef);
-}
-// Recurse over a set of phi uses to eliminate the trivial ones
-MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
- if (!Phi)
- return nullptr;
- TrackingVH<MemoryAccess> Res(Phi);
- SmallVector<TrackingVH<Value>, 8> Uses;
- std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
- for (auto &U : Uses) {
- if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
- auto OperRange = UsePhi->operands();
- tryRemoveTrivialPhi(UsePhi, OperRange);
- }
- }
- return Res;
-}
-
-// Eliminate trivial phis
-// Phis are trivial if they are defined either by themselves, or all the same
-// argument.
-// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
-// We recursively try to remove them.
-template <class RangeType>
-MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
- RangeType &Operands) {
- // Bail out on non-opt Phis.
- if (NonOptPhis.count(Phi))
- return Phi;
-
- // Detect equal or self arguments
- MemoryAccess *Same = nullptr;
- for (auto &Op : Operands) {
- // If the same or self, good so far
- if (Op == Phi || Op == Same)
- continue;
- // not the same, return the phi since it's not eliminatable by us
- if (Same)
- return Phi;
- Same = cast<MemoryAccess>(&*Op);
- }
- // Never found a non-self reference, the phi is undef
- if (Same == nullptr)
- return MSSA->getLiveOnEntryDef();
- if (Phi) {
- Phi->replaceAllUsesWith(Same);
- removeMemoryAccess(Phi);
- }
-
- // We should only end up recursing in case we replaced something, in which
- // case, we may have made other Phis trivial.
- return recursePhi(Same);
-}
-
-void MemorySSAUpdater::insertUse(MemoryUse *MU) {
- InsertedPHIs.clear();
- MU->setDefiningAccess(getPreviousDef(MU));
- // Unlike for defs, there is no extra work to do. Because uses do not create
- // new may-defs, there are only two cases:
- //
- // 1. There was a def already below us, and therefore, we should not have
- // created a phi node because it was already needed for the def.
- //
- // 2. There is no def below us, and therefore, there is no extra renaming work
- // to do.
-}
-
-// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
-static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
- MemoryAccess *NewDef) {
- // Replace any operand with us an incoming block with the new defining
- // access.
- int i = MP->getBasicBlockIndex(BB);
- assert(i != -1 && "Should have found the basic block in the phi");
- // We can't just compare i against getNumOperands since one is signed and the
- // other not. So use it to index into the block iterator.
- for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
- ++BBIter) {
- if (*BBIter != BB)
- break;
- MP->setIncomingValue(i, NewDef);
- ++i;
- }
-}
-
-// A brief description of the algorithm:
-// First, we compute what should define the new def, using the SSA
-// construction algorithm.
-// Then, we update the defs below us (and any new phi nodes) in the graph to
-// point to the correct new defs, to ensure we only have one variable, and no
-// disconnected stores.
-void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
- InsertedPHIs.clear();
-
- // See if we had a local def, and if not, go hunting.
- MemoryAccess *DefBefore = getPreviousDef(MD);
- bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
-
- // There is a def before us, which means we can replace any store/phi uses
- // of that thing with us, since we are in the way of whatever was there
- // before.
- // We now define that def's memorydefs and memoryphis
- if (DefBeforeSameBlock) {
- for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
- UI != UE;) {
- Use &U = *UI++;
- // Leave the MemoryUses alone.
- // Also make sure we skip ourselves to avoid self references.
- if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
- continue;
- U.set(MD);
- }
- }
-
- // and that def is now our defining access.
- MD->setDefiningAccess(DefBefore);
-
- SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
- if (!DefBeforeSameBlock) {
- // If there was a local def before us, we must have the same effect it
- // did. Because every may-def is the same, any phis/etc we would create, it
- // would also have created. If there was no local def before us, we
- // performed a global update, and have to search all successors and make
- // sure we update the first def in each of them (following all paths until
- // we hit the first def along each path). This may also insert phi nodes.
- // TODO: There are other cases we can skip this work, such as when we have a
- // single successor, and only used a straight line of single pred blocks
- // backwards to find the def. To make that work, we'd have to track whether
- // getDefRecursive only ever used the single predecessor case. These types
- // of paths also only exist in between CFG simplifications.
- FixupList.push_back(MD);
- }
-
- while (!FixupList.empty()) {
- unsigned StartingPHISize = InsertedPHIs.size();
- fixupDefs(FixupList);
- FixupList.clear();
- // Put any new phis on the fixup list, and process them
- FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
- }
- // Now that all fixups are done, rename all uses if we are asked.
- if (RenameUses) {
- SmallPtrSet<BasicBlock *, 16> Visited;
- BasicBlock *StartBlock = MD->getBlock();
- // We are guaranteed there is a def in the block, because we just got it
- // handed to us in this function.
- MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
- // Convert to incoming value if it's a memorydef. A phi *is* already an
- // incoming value.
- if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
- FirstDef = MD->getDefiningAccess();
-
- MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
- // We just inserted a phi into this block, so the incoming value will become
- // the phi anyway, so it does not matter what we pass.
- for (auto &MP : InsertedPHIs) {
- MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
- if (Phi)
- MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
- }
- }
-}
-
-void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
- SmallPtrSet<const BasicBlock *, 8> Seen;
- SmallVector<const BasicBlock *, 16> Worklist;
- for (auto &Var : Vars) {
- MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
- if (!NewDef)
- continue;
- // First, see if there is a local def after the operand.
- auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
- auto DefIter = NewDef->getDefsIterator();
-
- // The temporary Phi is being fixed, unmark it for not to optimize.
- if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
- NonOptPhis.erase(Phi);
-
- // If there is a local def after us, we only have to rename that.
- if (++DefIter != Defs->end()) {
- cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
- continue;
- }
-
- // Otherwise, we need to search down through the CFG.
- // For each of our successors, handle it directly if their is a phi, or
- // place on the fixup worklist.
- for (const auto *S : successors(NewDef->getBlock())) {
- if (auto *MP = MSSA->getMemoryAccess(S))
- setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
- else
- Worklist.push_back(S);
- }
-
- while (!Worklist.empty()) {
- const BasicBlock *FixupBlock = Worklist.back();
- Worklist.pop_back();
-
- // Get the first def in the block that isn't a phi node.
- if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
- auto *FirstDef = &*Defs->begin();
- // The loop above and below should have taken care of phi nodes
- assert(!isa<MemoryPhi>(FirstDef) &&
- "Should have already handled phi nodes!");
- // We are now this def's defining access, make sure we actually dominate
- // it
- assert(MSSA->dominates(NewDef, FirstDef) &&
- "Should have dominated the new access");
-
- // This may insert new phi nodes, because we are not guaranteed the
- // block we are processing has a single pred, and depending where the
- // store was inserted, it may require phi nodes below it.
- cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
- return;
- }
- // We didn't find a def, so we must continue.
- for (const auto *S : successors(FixupBlock)) {
- // If there is a phi node, handle it.
- // Otherwise, put the block on the worklist
- if (auto *MP = MSSA->getMemoryAccess(S))
- setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
- else {
- // If we cycle, we should have ended up at a phi node that we already
- // processed. FIXME: Double check this
- if (!Seen.insert(S).second)
- continue;
- Worklist.push_back(S);
- }
- }
- }
- }
-}
-
-void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
- MPhi->unorderedDeleteIncomingBlock(From);
- if (MPhi->getNumIncomingValues() == 1)
- removeMemoryAccess(MPhi);
- }
-}
-
-void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(BasicBlock *From,
- BasicBlock *To) {
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
- bool Found = false;
- MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
- if (From != B)
- return false;
- if (Found)
- return true;
- Found = true;
- return false;
- });
- if (MPhi->getNumIncomingValues() == 1)
- removeMemoryAccess(MPhi);
- }
-}
-
-void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
- const ValueToValueMapTy &VMap,
- PhiToDefMap &MPhiMap) {
- auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
- MemoryAccess *InsnDefining = MA;
- if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
- if (!MSSA->isLiveOnEntryDef(DefMUD)) {
- Instruction *DefMUDI = DefMUD->getMemoryInst();
- assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
- if (Instruction *NewDefMUDI =
- cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
- InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
- }
- } else {
- MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
- if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
- InsnDefining = NewDefPhi;
- }
- assert(InsnDefining && "Defining instruction cannot be nullptr.");
- return InsnDefining;
- };
-
- const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
- if (!Acc)
- return;
- for (const MemoryAccess &MA : *Acc) {
- if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
- Instruction *Insn = MUD->getMemoryInst();
- // Entry does not exist if the clone of the block did not clone all
- // instructions. This occurs in LoopRotate when cloning instructions
- // from the old header to the old preheader. The cloned instruction may
- // also be a simplified Value, not an Instruction (see LoopRotate).
- if (Instruction *NewInsn =
- dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
- MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
- NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD);
- MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
- }
- }
- }
-}
-
-void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
- ArrayRef<BasicBlock *> ExitBlocks,
- const ValueToValueMapTy &VMap,
- bool IgnoreIncomingWithNoClones) {
- PhiToDefMap MPhiMap;
-
- auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
- assert(Phi && NewPhi && "Invalid Phi nodes.");
- BasicBlock *NewPhiBB = NewPhi->getBlock();
- SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
- pred_end(NewPhiBB));
- for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
- MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
- BasicBlock *IncBB = Phi->getIncomingBlock(It);
-
- if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
- IncBB = NewIncBB;
- else if (IgnoreIncomingWithNoClones)
- continue;
-
- // Now we have IncBB, and will need to add incoming from it to NewPhi.
-
- // If IncBB is not a predecessor of NewPhiBB, then do not add it.
- // NewPhiBB was cloned without that edge.
- if (!NewPhiBBPreds.count(IncBB))
- continue;
-
- // Determine incoming value and add it as incoming from IncBB.
- if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
- if (!MSSA->isLiveOnEntryDef(IncMUD)) {
- Instruction *IncI = IncMUD->getMemoryInst();
- assert(IncI && "Found MemoryUseOrDef with no Instruction.");
- if (Instruction *NewIncI =
- cast_or_null<Instruction>(VMap.lookup(IncI))) {
- IncMUD = MSSA->getMemoryAccess(NewIncI);
- assert(IncMUD &&
- "MemoryUseOrDef cannot be null, all preds processed.");
- }
- }
- NewPhi->addIncoming(IncMUD, IncBB);
- } else {
- MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
- if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
- NewPhi->addIncoming(NewDefPhi, IncBB);
- else
- NewPhi->addIncoming(IncPhi, IncBB);
- }
- }
- };
-
- auto ProcessBlock = [&](BasicBlock *BB) {
- BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
- if (!NewBlock)
- return;
-
- assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
- "Cloned block should have no accesses");
-
- // Add MemoryPhi.
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
- MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
- MPhiMap[MPhi] = NewPhi;
- }
- // Update Uses and Defs.
- cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
- };
-
- for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
- ProcessBlock(BB);
-
- for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
- if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
- FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
-}
-
-void MemorySSAUpdater::updateForClonedBlockIntoPred(
- BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
- // All defs/phis from outside BB that are used in BB, are valid uses in P1.
- // Since those defs/phis must have dominated BB, and also dominate P1.
- // Defs from BB being used in BB will be replaced with the cloned defs from
- // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
- // incoming def into the Phi from P1.
- PhiToDefMap MPhiMap;
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
- MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
- cloneUsesAndDefs(BB, P1, VM, MPhiMap);
-}
-
-template <typename Iter>
-void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
- ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
- DominatorTree &DT) {
- SmallVector<CFGUpdate, 4> Updates;
- // Update/insert phis in all successors of exit blocks.
- for (auto *Exit : ExitBlocks)
- for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
- if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
- BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
- Updates.push_back({DT.Insert, NewExit, ExitSucc});
- }
- applyInsertUpdates(Updates, DT);
-}
-
-void MemorySSAUpdater::updateExitBlocksForClonedLoop(
- ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
- DominatorTree &DT) {
- const ValueToValueMapTy *const Arr[] = {&VMap};
- privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
- std::end(Arr), DT);
-}
-
-void MemorySSAUpdater::updateExitBlocksForClonedLoop(
- ArrayRef<BasicBlock *> ExitBlocks,
- ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
- auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
- return I.get();
- };
- using MappedIteratorType =
- mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
- decltype(GetPtr)>;
- auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
- auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
- privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
-}
-
-void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
- DominatorTree &DT) {
- SmallVector<CFGUpdate, 4> RevDeleteUpdates;
- SmallVector<CFGUpdate, 4> InsertUpdates;
- for (auto &Update : Updates) {
- if (Update.getKind() == DT.Insert)
- InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
- else
- RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
- }
-
- if (!RevDeleteUpdates.empty()) {
- // Update for inserted edges: use newDT and snapshot CFG as if deletes had
- // not occured.
- // FIXME: This creates a new DT, so it's more expensive to do mix
- // delete/inserts vs just inserts. We can do an incremental update on the DT
- // to revert deletes, than re-delete the edges. Teaching DT to do this, is
- // part of a pending cleanup.
- DominatorTree NewDT(DT, RevDeleteUpdates);
- GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
- applyInsertUpdates(InsertUpdates, NewDT, &GD);
- } else {
- GraphDiff<BasicBlock *> GD;
- applyInsertUpdates(InsertUpdates, DT, &GD);
- }
-
- // Update for deleted edges
- for (auto &Update : RevDeleteUpdates)
- removeEdge(Update.getFrom(), Update.getTo());
-}
-
-void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
- DominatorTree &DT) {
- GraphDiff<BasicBlock *> GD;
- applyInsertUpdates(Updates, DT, &GD);
-}
-
-void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
- DominatorTree &DT,
- const GraphDiff<BasicBlock *> *GD) {
- // Get recursive last Def, assuming well formed MSSA and updated DT.
- auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
- while (true) {
- MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
- // Return last Def or Phi in BB, if it exists.
- if (Defs)
- return &*(--Defs->end());
-
- // Check number of predecessors, we only care if there's more than one.
- unsigned Count = 0;
- BasicBlock *Pred = nullptr;
- for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
- Pred = Pair.second;
- Count++;
- if (Count == 2)
- break;
- }
-
- // If BB has multiple predecessors, get last definition from IDom.
- if (Count != 1) {
- // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
- // DT is invalidated. Return LoE as its last def. This will be added to
- // MemoryPhi node, and later deleted when the block is deleted.
- if (!DT.getNode(BB))
- return MSSA->getLiveOnEntryDef();
- if (auto *IDom = DT.getNode(BB)->getIDom())
- if (IDom->getBlock() != BB) {
- BB = IDom->getBlock();
- continue;
- }
- return MSSA->getLiveOnEntryDef();
- } else {
- // Single predecessor, BB cannot be dead. GetLastDef of Pred.
- assert(Count == 1 && Pred && "Single predecessor expected.");
- BB = Pred;
- }
- };
- llvm_unreachable("Unable to get last definition.");
- };
-
- // Get nearest IDom given a set of blocks.
- // TODO: this can be optimized by starting the search at the node with the
- // lowest level (highest in the tree).
- auto FindNearestCommonDominator =
- [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
- BasicBlock *PrevIDom = *BBSet.begin();
- for (auto *BB : BBSet)
- PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
- return PrevIDom;
- };
-
- // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
- // include CurrIDom.
- auto GetNoLongerDomBlocks =
- [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
- SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
- if (PrevIDom == CurrIDom)
- return;
- BlocksPrevDom.push_back(PrevIDom);
- BasicBlock *NextIDom = PrevIDom;
- while (BasicBlock *UpIDom =
- DT.getNode(NextIDom)->getIDom()->getBlock()) {
- if (UpIDom == CurrIDom)
- break;
- BlocksPrevDom.push_back(UpIDom);
- NextIDom = UpIDom;
- }
- };
-
- // Map a BB to its predecessors: added + previously existing. To get a
- // deterministic order, store predecessors as SetVectors. The order in each
- // will be defined by teh order in Updates (fixed) and the order given by
- // children<> (also fixed). Since we further iterate over these ordered sets,
- // we lose the information of multiple edges possibly existing between two
- // blocks, so we'll keep and EdgeCount map for that.
- // An alternate implementation could keep unordered set for the predecessors,
- // traverse either Updates or children<> each time to get the deterministic
- // order, and drop the usage of EdgeCount. This alternate approach would still
- // require querying the maps for each predecessor, and children<> call has
- // additional computation inside for creating the snapshot-graph predecessors.
- // As such, we favor using a little additional storage and less compute time.
- // This decision can be revisited if we find the alternative more favorable.
-
- struct PredInfo {
- SmallSetVector<BasicBlock *, 2> Added;
- SmallSetVector<BasicBlock *, 2> Prev;
- };
- SmallDenseMap<BasicBlock *, PredInfo> PredMap;
-
- for (auto &Edge : Updates) {
- BasicBlock *BB = Edge.getTo();
- auto &AddedBlockSet = PredMap[BB].Added;
- AddedBlockSet.insert(Edge.getFrom());
- }
-
- // Store all existing predecessor for each BB, at least one must exist.
- SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
- SmallPtrSet<BasicBlock *, 2> NewBlocks;
- for (auto &BBPredPair : PredMap) {
- auto *BB = BBPredPair.first;
- const auto &AddedBlockSet = BBPredPair.second.Added;
- auto &PrevBlockSet = BBPredPair.second.Prev;
- for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
- BasicBlock *Pi = Pair.second;
- if (!AddedBlockSet.count(Pi))
- PrevBlockSet.insert(Pi);
- EdgeCountMap[{Pi, BB}]++;
- }
-
- if (PrevBlockSet.empty()) {
- assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
- LLVM_DEBUG(
- dbgs()
- << "Adding a predecessor to a block with no predecessors. "
- "This must be an edge added to a new, likely cloned, block. "
- "Its memory accesses must be already correct, assuming completed "
- "via the updateExitBlocksForClonedLoop API. "
- "Assert a single such edge is added so no phi addition or "
- "additional processing is required.\n");
- assert(AddedBlockSet.size() == 1 &&
- "Can only handle adding one predecessor to a new block.");
- // Need to remove new blocks from PredMap. Remove below to not invalidate
- // iterator here.
- NewBlocks.insert(BB);
- }
- }
- // Nothing to process for new/cloned blocks.
- for (auto *BB : NewBlocks)
- PredMap.erase(BB);
-
- SmallVector<BasicBlock *, 8> BlocksToProcess;
- SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
-
- // First create MemoryPhis in all blocks that don't have one. Create in the
- // order found in Updates, not in PredMap, to get deterministic numbering.
- for (auto &Edge : Updates) {
- BasicBlock *BB = Edge.getTo();
- if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
- MSSA->createMemoryPhi(BB);
- }
-
- // Now we'll fill in the MemoryPhis with the right incoming values.
- for (auto &BBPredPair : PredMap) {
- auto *BB = BBPredPair.first;
- const auto &PrevBlockSet = BBPredPair.second.Prev;
- const auto &AddedBlockSet = BBPredPair.second.Added;
- assert(!PrevBlockSet.empty() &&
- "At least one previous predecessor must exist.");
-
- // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
- // keeping this map before the loop. We can reuse already populated entries
- // if an edge is added from the same predecessor to two different blocks,
- // and this does happen in rotate. Note that the map needs to be updated
- // when deleting non-necessary phis below, if the phi is in the map by
- // replacing the value with DefP1.
- SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
- for (auto *AddedPred : AddedBlockSet) {
- auto *DefPn = GetLastDef(AddedPred);
- assert(DefPn != nullptr && "Unable to find last definition.");
- LastDefAddedPred[AddedPred] = DefPn;
- }
-
- MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
- // If Phi is not empty, add an incoming edge from each added pred. Must
- // still compute blocks with defs to replace for this block below.
- if (NewPhi->getNumOperands()) {
- for (auto *Pred : AddedBlockSet) {
- auto *LastDefForPred = LastDefAddedPred[Pred];
- for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
- NewPhi->addIncoming(LastDefForPred, Pred);
- }
- } else {
- // Pick any existing predecessor and get its definition. All other
- // existing predecessors should have the same one, since no phi existed.
- auto *P1 = *PrevBlockSet.begin();
- MemoryAccess *DefP1 = GetLastDef(P1);
-
- // Check DefP1 against all Defs in LastDefPredPair. If all the same,
- // nothing to add.
- bool InsertPhi = false;
- for (auto LastDefPredPair : LastDefAddedPred)
- if (DefP1 != LastDefPredPair.second) {
- InsertPhi = true;
- break;
- }
- if (!InsertPhi) {
- // Since NewPhi may be used in other newly added Phis, replace all uses
- // of NewPhi with the definition coming from all predecessors (DefP1),
- // before deleting it.
- NewPhi->replaceAllUsesWith(DefP1);
- removeMemoryAccess(NewPhi);
- continue;
- }
-
- // Update Phi with new values for new predecessors and old value for all
- // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
- // sets, the order of entries in NewPhi is deterministic.
- for (auto *Pred : AddedBlockSet) {
- auto *LastDefForPred = LastDefAddedPred[Pred];
- for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
- NewPhi->addIncoming(LastDefForPred, Pred);
- }
- for (auto *Pred : PrevBlockSet)
- for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
- NewPhi->addIncoming(DefP1, Pred);
-
- // Insert BB in the set of blocks that now have definition. We'll use this
- // to compute IDF and add Phis there next.
- BlocksToProcess.push_back(BB);
- }
-
- // Get all blocks that used to dominate BB and no longer do after adding
- // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
- assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
- BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
- assert(PrevIDom && "Previous IDom should exists");
- BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
- assert(NewIDom && "BB should have a new valid idom");
- assert(DT.dominates(NewIDom, PrevIDom) &&
- "New idom should dominate old idom");
- GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
- }
-
- // Compute IDF and add Phis in all IDF blocks that do not have one.
- SmallVector<BasicBlock *, 32> IDFBlocks;
- if (!BlocksToProcess.empty()) {
- ForwardIDFCalculator IDFs(DT);
- SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
- BlocksToProcess.end());
- IDFs.setDefiningBlocks(DefiningBlocks);
- IDFs.calculate(IDFBlocks);
- for (auto *BBIDF : IDFBlocks) {
- if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) {
- // Update existing Phi.
- // FIXME: some updates may be redundant, try to optimize and skip some.
- for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
- IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
- } else {
- IDFPhi = MSSA->createMemoryPhi(BBIDF);
- for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
- BasicBlock *Pi = Pair.second;
- IDFPhi->addIncoming(GetLastDef(Pi), Pi);
- }
- }
- }
- }
-
- // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
- // longer dominate, replace those with the closest dominating def.
- // This will also update optimized accesses, as they're also uses.
- for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
- if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
- for (auto &DefToReplaceUses : *DefsList) {
- BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
- Value::use_iterator UI = DefToReplaceUses.use_begin(),
- E = DefToReplaceUses.use_end();
- for (; UI != E;) {
- Use &U = *UI;
- ++UI;
- MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
- if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
- BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
- if (!DT.dominates(DominatingBlock, DominatedBlock))
- U.set(GetLastDef(DominatedBlock));
- } else {
- BasicBlock *DominatedBlock = Usr->getBlock();
- if (!DT.dominates(DominatingBlock, DominatedBlock)) {
- if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
- U.set(DomBlPhi);
- else {
- auto *IDom = DT.getNode(DominatedBlock)->getIDom();
- assert(IDom && "Block must have a valid IDom.");
- U.set(GetLastDef(IDom->getBlock()));
- }
- cast<MemoryUseOrDef>(Usr)->resetOptimized();
- }
- }
- }
- }
- }
- }
-}
-
-// Move What before Where in the MemorySSA IR.
-template <class WhereType>
-void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
- WhereType Where) {
- // Mark MemoryPhi users of What not to be optimized.
- for (auto *U : What->users())
- if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
- NonOptPhis.insert(PhiUser);
-
- // Replace all our users with our defining access.
- What->replaceAllUsesWith(What->getDefiningAccess());
-
- // Let MemorySSA take care of moving it around in the lists.
- MSSA->moveTo(What, BB, Where);
-
- // Now reinsert it into the IR and do whatever fixups needed.
- if (auto *MD = dyn_cast<MemoryDef>(What))
- insertDef(MD);
- else
- insertUse(cast<MemoryUse>(What));
-
- // Clear dangling pointers. We added all MemoryPhi users, but not all
- // of them are removed by fixupDefs().
- NonOptPhis.clear();
-}
-
-// Move What before Where in the MemorySSA IR.
-void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
- moveTo(What, Where->getBlock(), Where->getIterator());
-}
-
-// Move What after Where in the MemorySSA IR.
-void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
- moveTo(What, Where->getBlock(), ++Where->getIterator());
-}
-
-void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
- MemorySSA::InsertionPlace Where) {
- return moveTo(What, BB, Where);
-}
-
-// All accesses in To used to be in From. Move to end and update access lists.
-void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
- Instruction *Start) {
-
- MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
- if (!Accs)
- return;
-
- MemoryAccess *FirstInNew = nullptr;
- for (Instruction &I : make_range(Start->getIterator(), To->end()))
- if ((FirstInNew = MSSA->getMemoryAccess(&I)))
- break;
- if (!FirstInNew)
- return;
-
- auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
- do {
- auto NextIt = ++MUD->getIterator();
- MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
- ? nullptr
- : cast<MemoryUseOrDef>(&*NextIt);
- MSSA->moveTo(MUD, To, MemorySSA::End);
- // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
- // retrieve it again.
- Accs = MSSA->getWritableBlockAccesses(From);
- MUD = NextMUD;
- } while (MUD);
-}
-
-void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
- BasicBlock *To,
- Instruction *Start) {
- assert(MSSA->getBlockAccesses(To) == nullptr &&
- "To block is expected to be free of MemoryAccesses.");
- moveAllAccesses(From, To, Start);
- for (BasicBlock *Succ : successors(To))
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
- MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
-}
-
-void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
- Instruction *Start) {
- assert(From->getSinglePredecessor() == To &&
- "From block is expected to have a single predecessor (To).");
- moveAllAccesses(From, To, Start);
- for (BasicBlock *Succ : successors(From))
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
- MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
-}
-
-/// If all arguments of a MemoryPHI are defined by the same incoming
-/// argument, return that argument.
-static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
- MemoryAccess *MA = nullptr;
-
- for (auto &Arg : MP->operands()) {
- if (!MA)
- MA = cast<MemoryAccess>(Arg);
- else if (MA != Arg)
- return nullptr;
- }
- return MA;
-}
-
-void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
- BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
- bool IdenticalEdgesWereMerged) {
- assert(!MSSA->getWritableBlockAccesses(New) &&
- "Access list should be null for a new block.");
- MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
- if (!Phi)
- return;
- if (Old->hasNPredecessors(1)) {
- assert(pred_size(New) == Preds.size() &&
- "Should have moved all predecessors.");
- MSSA->moveTo(Phi, New, MemorySSA::Beginning);
- } else {
- assert(!Preds.empty() && "Must be moving at least one predecessor to the "
- "new immediate predecessor.");
- MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
- SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
- // Currently only support the case of removing a single incoming edge when
- // identical edges were not merged.
- if (!IdenticalEdgesWereMerged)
- assert(PredsSet.size() == Preds.size() &&
- "If identical edges were not merged, we cannot have duplicate "
- "blocks in the predecessors");
- Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
- if (PredsSet.count(B)) {
- NewPhi->addIncoming(MA, B);
- if (!IdenticalEdgesWereMerged)
- PredsSet.erase(B);
- return true;
- }
- return false;
- });
- Phi->addIncoming(NewPhi, New);
- if (onlySingleValue(NewPhi))
- removeMemoryAccess(NewPhi);
- }
-}
-
-void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
- assert(!MSSA->isLiveOnEntryDef(MA) &&
- "Trying to remove the live on entry def");
- // We can only delete phi nodes if they have no uses, or we can replace all
- // uses with a single definition.
- MemoryAccess *NewDefTarget = nullptr;
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
- // Note that it is sufficient to know that all edges of the phi node have
- // the same argument. If they do, by the definition of dominance frontiers
- // (which we used to place this phi), that argument must dominate this phi,
- // and thus, must dominate the phi's uses, and so we will not hit the assert
- // below.
- NewDefTarget = onlySingleValue(MP);
- assert((NewDefTarget || MP->use_empty()) &&
- "We can't delete this memory phi");
- } else {
- NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
- }
-
- // Re-point the uses at our defining access
- if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
- // Reset optimized on users of this store, and reset the uses.
- // A few notes:
- // 1. This is a slightly modified version of RAUW to avoid walking the
- // uses twice here.
- // 2. If we wanted to be complete, we would have to reset the optimized
- // flags on users of phi nodes if doing the below makes a phi node have all
- // the same arguments. Instead, we prefer users to removeMemoryAccess those
- // phi nodes, because doing it here would be N^3.
- if (MA->hasValueHandle())
- ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
- // Note: We assume MemorySSA is not used in metadata since it's not really
- // part of the IR.
-
- while (!MA->use_empty()) {
- Use &U = *MA->use_begin();
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
- MUD->resetOptimized();
- U.set(NewDefTarget);
- }
- }
-
- // The call below to erase will destroy MA, so we can't change the order we
- // are doing things here
- MSSA->removeFromLookups(MA);
- MSSA->removeFromLists(MA);
-}
-
-void MemorySSAUpdater::removeBlocks(
- const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) {
- // First delete all uses of BB in MemoryPhis.
- for (BasicBlock *BB : DeadBlocks) {
- Instruction *TI = BB->getTerminator();
- assert(TI && "Basic block expected to have a terminator instruction");
- for (BasicBlock *Succ : successors(TI))
- if (!DeadBlocks.count(Succ))
- if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
- MP->unorderedDeleteIncomingBlock(BB);
- if (MP->getNumIncomingValues() == 1)
- removeMemoryAccess(MP);
- }
- // Drop all references of all accesses in BB
- if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
- for (MemoryAccess &MA : *Acc)
- MA.dropAllReferences();
- }
-
- // Next, delete all memory accesses in each block
- for (BasicBlock *BB : DeadBlocks) {
- MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
- if (!Acc)
- continue;
- for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
- MemoryAccess *MA = &*AB;
- ++AB;
- MSSA->removeFromLookups(MA);
- MSSA->removeFromLists(MA);
- }
- }
-}
-
-MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
- Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
- MemorySSA::InsertionPlace Point) {
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
- return NewAccess;
-}
-
-MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
- Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
- assert(I->getParent() == InsertPt->getBlock() &&
- "New and old access must be in the same block");
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
- InsertPt->getIterator());
- return NewAccess;
-}
-
-MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
- Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
- assert(I->getParent() == InsertPt->getBlock() &&
- "New and old access must be in the same block");
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
- ++InsertPt->getIterator());
- return NewAccess;
-}