diff options
Diffstat (limited to 'gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp')
| -rw-r--r-- | gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp | 1007 |
1 files changed, 0 insertions, 1007 deletions
diff --git a/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp b/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp deleted file mode 100644 index dcc8b7cc23c..00000000000 --- a/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp +++ /dev/null @@ -1,1007 +0,0 @@ -//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -/// \file -/// This file implements the RegBankSelect class. -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/GlobalISel/RegBankSelect.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" -#include "llvm/CodeGen/GlobalISel/RegisterBank.h" -#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" -#include "llvm/CodeGen/GlobalISel/Utils.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" -#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetOpcodes.h" -#include "llvm/CodeGen/TargetPassConfig.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/Function.h" -#include "llvm/Pass.h" -#include "llvm/Support/BlockFrequency.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <limits> -#include <memory> -#include <utility> - -#define DEBUG_TYPE "regbankselect" - -using namespace llvm; - -static cl::opt<RegBankSelect::Mode> RegBankSelectMode( - cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, - cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", - "Run the Fast mode (default mapping)"), - clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", - "Use the Greedy mode (best local mapping)"))); - -char RegBankSelect::ID = 0; - -INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, - "Assign register bank of generic virtual registers", - false, false); -INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) -INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) -INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) -INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, - "Assign register bank of generic virtual registers", false, - false) - -RegBankSelect::RegBankSelect(Mode RunningMode) - : MachineFunctionPass(ID), OptMode(RunningMode) { - initializeRegBankSelectPass(*PassRegistry::getPassRegistry()); - if (RegBankSelectMode.getNumOccurrences() != 0) { - OptMode = RegBankSelectMode; - if (RegBankSelectMode != RunningMode) - LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); - } -} - -void RegBankSelect::init(MachineFunction &MF) { - RBI = MF.getSubtarget().getRegBankInfo(); - assert(RBI && "Cannot work without RegisterBankInfo"); - MRI = &MF.getRegInfo(); - TRI = MF.getSubtarget().getRegisterInfo(); - TPC = &getAnalysis<TargetPassConfig>(); - if (OptMode != Mode::Fast) { - MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); - MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); - } else { - MBFI = nullptr; - MBPI = nullptr; - } - MIRBuilder.setMF(MF); - MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); -} - -void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { - if (OptMode != Mode::Fast) { - // We could preserve the information from these two analysis but - // the APIs do not allow to do so yet. - AU.addRequired<MachineBlockFrequencyInfo>(); - AU.addRequired<MachineBranchProbabilityInfo>(); - } - AU.addRequired<TargetPassConfig>(); - getSelectionDAGFallbackAnalysisUsage(AU); - MachineFunctionPass::getAnalysisUsage(AU); -} - -bool RegBankSelect::assignmentMatch( - unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping, - bool &OnlyAssign) const { - // By default we assume we will have to repair something. - OnlyAssign = false; - // Each part of a break down needs to end up in a different register. - // In other word, Reg assignment does not match. - if (ValMapping.NumBreakDowns != 1) - return false; - - const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); - const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; - // Reg is free of assignment, a simple assignment will make the - // register bank to match. - OnlyAssign = CurRegBank == nullptr; - LLVM_DEBUG(dbgs() << "Does assignment already match: "; - if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; - dbgs() << " against "; - assert(DesiredRegBrank && "The mapping must be valid"); - dbgs() << *DesiredRegBrank << '\n';); - return CurRegBank == DesiredRegBrank; -} - -bool RegBankSelect::repairReg( - MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, - RegBankSelect::RepairingPlacement &RepairPt, - const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) { - if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled()) - return false; - assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented"); - // An empty range of new register means no repairing. - assert(!empty(NewVRegs) && "We should not have to repair"); - - // Assume we are repairing a use and thus, the original reg will be - // the source of the repairing. - unsigned Src = MO.getReg(); - unsigned Dst = *NewVRegs.begin(); - - // If we repair a definition, swap the source and destination for - // the repairing. - if (MO.isDef()) - std::swap(Src, Dst); - - assert((RepairPt.getNumInsertPoints() == 1 || - TargetRegisterInfo::isPhysicalRegister(Dst)) && - "We are about to create several defs for Dst"); - - // Build the instruction used to repair, then clone it at the right - // places. Avoiding buildCopy bypasses the check that Src and Dst have the - // same types because the type is a placeholder when this function is called. - MachineInstr *MI = - MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src); - LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) - << '\n'); - // TODO: - // Check if MI is legal. if not, we need to legalize all the - // instructions we are going to insert. - std::unique_ptr<MachineInstr *[]> NewInstrs( - new MachineInstr *[RepairPt.getNumInsertPoints()]); - bool IsFirst = true; - unsigned Idx = 0; - for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { - MachineInstr *CurMI; - if (IsFirst) - CurMI = MI; - else - CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); - InsertPt->insert(*CurMI); - NewInstrs[Idx++] = CurMI; - IsFirst = false; - } - // TODO: - // Legalize NewInstrs if need be. - return true; -} - -uint64_t RegBankSelect::getRepairCost( - const MachineOperand &MO, - const RegisterBankInfo::ValueMapping &ValMapping) const { - assert(MO.isReg() && "We should only repair register operand"); - assert(ValMapping.NumBreakDowns && "Nothing to map??"); - - bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; - const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); - // If MO does not have a register bank, we should have just been - // able to set one unless we have to break the value down. - assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair"); - // Def: Val <- NewDefs - // Same number of values: copy - // Different number: Val = build_sequence Defs1, Defs2, ... - // Use: NewSources <- Val. - // Same number of values: copy. - // Different number: Src1, Src2, ... = - // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... - // We should remember that this value is available somewhere else to - // coalesce the value. - - if (IsSameNumOfValues) { - const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank; - // If we repair a definition, swap the source and destination for - // the repairing. - if (MO.isDef()) - std::swap(CurRegBank, DesiredRegBrank); - // TODO: It may be possible to actually avoid the copy. - // If we repair something where the source is defined by a copy - // and the source of that copy is on the right bank, we can reuse - // it for free. - // E.g., - // RegToRepair<BankA> = copy AlternativeSrc<BankB> - // = op RegToRepair<BankA> - // We can simply propagate AlternativeSrc instead of copying RegToRepair - // into a new virtual register. - // We would also need to propagate this information in the - // repairing placement. - unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank, - RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); - // TODO: use a dedicated constant for ImpossibleCost. - if (Cost != std::numeric_limits<unsigned>::max()) - return Cost; - // Return the legalization cost of that repairing. - } - return std::numeric_limits<unsigned>::max(); -} - -const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( - MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, - SmallVectorImpl<RepairingPlacement> &RepairPts) { - assert(!PossibleMappings.empty() && - "Do not know how to map this instruction"); - - const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; - MappingCost Cost = MappingCost::ImpossibleCost(); - SmallVector<RepairingPlacement, 4> LocalRepairPts; - for (const RegisterBankInfo::InstructionMapping *CurMapping : - PossibleMappings) { - MappingCost CurCost = - computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); - if (CurCost < Cost) { - LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); - Cost = CurCost; - BestMapping = CurMapping; - RepairPts.clear(); - for (RepairingPlacement &RepairPt : LocalRepairPts) - RepairPts.emplace_back(std::move(RepairPt)); - } - } - if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { - // If none of the mapping worked that means they are all impossible. - // Thus, pick the first one and set an impossible repairing point. - // It will trigger the failed isel mode. - BestMapping = *PossibleMappings.begin(); - RepairPts.emplace_back( - RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); - } else - assert(BestMapping && "No suitable mapping for instruction"); - return *BestMapping; -} - -void RegBankSelect::tryAvoidingSplit( - RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, - const RegisterBankInfo::ValueMapping &ValMapping) const { - const MachineInstr &MI = *MO.getParent(); - assert(RepairPt.hasSplit() && "We should not have to adjust for split"); - // Splitting should only occur for PHIs or between terminators, - // because we only do local repairing. - assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); - - assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && - "Repairing placement does not match operand"); - - // If we need splitting for phis, that means it is because we - // could not find an insertion point before the terminators of - // the predecessor block for this argument. In other words, - // the input value is defined by one of the terminators. - assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); - - // We split to repair the use of a phi or a terminator. - if (!MO.isDef()) { - if (MI.isTerminator()) { - assert(&MI != &(*MI.getParent()->getFirstTerminator()) && - "Need to split for the first terminator?!"); - } else { - // For the PHI case, the split may not be actually required. - // In the copy case, a phi is already a copy on the incoming edge, - // therefore there is no need to split. - if (ValMapping.NumBreakDowns == 1) - // This is a already a copy, there is nothing to do. - RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); - } - return; - } - - // At this point, we need to repair a defintion of a terminator. - - // Technically we need to fix the def of MI on all outgoing - // edges of MI to keep the repairing local. In other words, we - // will create several definitions of the same register. This - // does not work for SSA unless that definition is a physical - // register. - // However, there are other cases where we can get away with - // that while still keeping the repairing local. - assert(MI.isTerminator() && MO.isDef() && - "This code is for the def of a terminator"); - - // Since we use RPO traversal, if we need to repair a definition - // this means this definition could be: - // 1. Used by PHIs (i.e., this VReg has been visited as part of the - // uses of a phi.), or - // 2. Part of a target specific instruction (i.e., the target applied - // some register class constraints when creating the instruction.) - // If the constraints come for #2, the target said that another mapping - // is supported so we may just drop them. Indeed, if we do not change - // the number of registers holding that value, the uses will get fixed - // when we get to them. - // Uses in PHIs may have already been proceeded though. - // If the constraints come for #1, then, those are weak constraints and - // no actual uses may rely on them. However, the problem remains mainly - // the same as for #2. If the value stays in one register, we could - // just switch the register bank of the definition, but we would need to - // account for a repairing cost for each phi we silently change. - // - // In any case, if the value needs to be broken down into several - // registers, the repairing is not local anymore as we need to patch - // every uses to rebuild the value in just one register. - // - // To summarize: - // - If the value is in a physical register, we can do the split and - // fix locally. - // Otherwise if the value is in a virtual register: - // - If the value remains in one register, we do not have to split - // just switching the register bank would do, but we need to account - // in the repairing cost all the phi we changed. - // - If the value spans several registers, then we cannot do a local - // repairing. - - // Check if this is a physical or virtual register. - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(Reg)) { - // We are going to split every outgoing edges. - // Check that this is possible. - // FIXME: The machine representation is currently broken - // since it also several terminators in one basic block. - // Because of that we would technically need a way to get - // the targets of just one terminator to know which edges - // we have to split. - // Assert that we do not hit the ill-formed representation. - - // If there are other terminators before that one, some of - // the outgoing edges may not be dominated by this definition. - assert(&MI == &(*MI.getParent()->getFirstTerminator()) && - "Do not know which outgoing edges are relevant"); - const MachineInstr *Next = MI.getNextNode(); - assert((!Next || Next->isUnconditionalBranch()) && - "Do not know where each terminator ends up"); - if (Next) - // If the next terminator uses Reg, this means we have - // to split right after MI and thus we need a way to ask - // which outgoing edges are affected. - assert(!Next->readsRegister(Reg) && "Need to split between terminators"); - // We will split all the edges and repair there. - } else { - // This is a virtual register defined by a terminator. - if (ValMapping.NumBreakDowns == 1) { - // There is nothing to repair, but we may actually lie on - // the repairing cost because of the PHIs already proceeded - // as already stated. - // Though the code will be correct. - assert(false && "Repairing cost may not be accurate"); - } else { - // We need to do non-local repairing. Basically, patch all - // the uses (i.e., phis) that we already proceeded. - // For now, just say this mapping is not possible. - RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); - } - } -} - -RegBankSelect::MappingCost RegBankSelect::computeMapping( - MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, - SmallVectorImpl<RepairingPlacement> &RepairPts, - const RegBankSelect::MappingCost *BestCost) { - assert((MBFI || !BestCost) && "Costs comparison require MBFI"); - - if (!InstrMapping.isValid()) - return MappingCost::ImpossibleCost(); - - // If mapped with InstrMapping, MI will have the recorded cost. - MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); - bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); - assert(!Saturated && "Possible mapping saturated the cost"); - LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); - LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); - RepairPts.clear(); - if (BestCost && Cost > *BestCost) { - LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); - return Cost; - } - - // Moreover, to realize this mapping, the register bank of each operand must - // match this mapping. In other words, we may need to locally reassign the - // register banks. Account for that repairing cost as well. - // In this context, local means in the surrounding of MI. - for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); - OpIdx != EndOpIdx; ++OpIdx) { - const MachineOperand &MO = MI.getOperand(OpIdx); - if (!MO.isReg()) - continue; - unsigned Reg = MO.getReg(); - if (!Reg) - continue; - LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); - const RegisterBankInfo::ValueMapping &ValMapping = - InstrMapping.getOperandMapping(OpIdx); - // If Reg is already properly mapped, this is free. - bool Assign; - if (assignmentMatch(Reg, ValMapping, Assign)) { - LLVM_DEBUG(dbgs() << "=> is free (match).\n"); - continue; - } - if (Assign) { - LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); - RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, - RepairingPlacement::Reassign)); - continue; - } - - // Find the insertion point for the repairing code. - RepairPts.emplace_back( - RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); - RepairingPlacement &RepairPt = RepairPts.back(); - - // If we need to split a basic block to materialize this insertion point, - // we may give a higher cost to this mapping. - // Nevertheless, we may get away with the split, so try that first. - if (RepairPt.hasSplit()) - tryAvoidingSplit(RepairPt, MO, ValMapping); - - // Check that the materialization of the repairing is possible. - if (!RepairPt.canMaterialize()) { - LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); - return MappingCost::ImpossibleCost(); - } - - // Account for the split cost and repair cost. - // Unless the cost is already saturated or we do not care about the cost. - if (!BestCost || Saturated) - continue; - - // To get accurate information we need MBFI and MBPI. - // Thus, if we end up here this information should be here. - assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); - - // FIXME: We will have to rework the repairing cost model. - // The repairing cost depends on the register bank that MO has. - // However, when we break down the value into different values, - // MO may not have a register bank while still needing repairing. - // For the fast mode, we don't compute the cost so that is fine, - // but still for the repairing code, we will have to make a choice. - // For the greedy mode, we should choose greedily what is the best - // choice based on the next use of MO. - - // Sums up the repairing cost of MO at each insertion point. - uint64_t RepairCost = getRepairCost(MO, ValMapping); - - // This is an impossible to repair cost. - if (RepairCost == std::numeric_limits<unsigned>::max()) - return MappingCost::ImpossibleCost(); - - // Bias used for splitting: 5%. - const uint64_t PercentageForBias = 5; - uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; - // We should not need more than a couple of instructions to repair - // an assignment. In other words, the computation should not - // overflow because the repairing cost is free of basic block - // frequency. - assert(((RepairCost < RepairCost * PercentageForBias) && - (RepairCost * PercentageForBias < - RepairCost * PercentageForBias + 99)) && - "Repairing involves more than a billion of instructions?!"); - for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { - assert(InsertPt->canMaterialize() && "We should not have made it here"); - // We will applied some basic block frequency and those uses uint64_t. - if (!InsertPt->isSplit()) - Saturated = Cost.addLocalCost(RepairCost); - else { - uint64_t CostForInsertPt = RepairCost; - // Again we shouldn't overflow here givent that - // CostForInsertPt is frequency free at this point. - assert(CostForInsertPt + Bias > CostForInsertPt && - "Repairing + split bias overflows"); - CostForInsertPt += Bias; - uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; - // Check if we just overflowed. - if ((Saturated = PtCost < CostForInsertPt)) - Cost.saturate(); - else - Saturated = Cost.addNonLocalCost(PtCost); - } - - // Stop looking into what it takes to repair, this is already - // too expensive. - if (BestCost && Cost > *BestCost) { - LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); - return Cost; - } - - // No need to accumulate more cost information. - // We need to still gather the repairing information though. - if (Saturated) - break; - } - } - LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); - return Cost; -} - -bool RegBankSelect::applyMapping( - MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, - SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { - // OpdMapper will hold all the information needed for the rewriting. - RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); - - // First, place the repairing code. - for (RepairingPlacement &RepairPt : RepairPts) { - if (!RepairPt.canMaterialize() || - RepairPt.getKind() == RepairingPlacement::Impossible) - return false; - assert(RepairPt.getKind() != RepairingPlacement::None && - "This should not make its way in the list"); - unsigned OpIdx = RepairPt.getOpIdx(); - MachineOperand &MO = MI.getOperand(OpIdx); - const RegisterBankInfo::ValueMapping &ValMapping = - InstrMapping.getOperandMapping(OpIdx); - unsigned Reg = MO.getReg(); - - switch (RepairPt.getKind()) { - case RepairingPlacement::Reassign: - assert(ValMapping.NumBreakDowns == 1 && - "Reassignment should only be for simple mapping"); - MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); - break; - case RepairingPlacement::Insert: - OpdMapper.createVRegs(OpIdx); - if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) - return false; - break; - default: - llvm_unreachable("Other kind should not happen"); - } - } - - // Second, rewrite the instruction. - LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); - RBI->applyMapping(OpdMapper); - - return true; -} - -bool RegBankSelect::assignInstr(MachineInstr &MI) { - LLVM_DEBUG(dbgs() << "Assign: " << MI); - // Remember the repairing placement for all the operands. - SmallVector<RepairingPlacement, 4> RepairPts; - - const RegisterBankInfo::InstructionMapping *BestMapping; - if (OptMode == RegBankSelect::Mode::Fast) { - BestMapping = &RBI->getInstrMapping(MI); - MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); - (void)DefaultCost; - if (DefaultCost == MappingCost::ImpossibleCost()) - return false; - } else { - RegisterBankInfo::InstructionMappings PossibleMappings = - RBI->getInstrPossibleMappings(MI); - if (PossibleMappings.empty()) - return false; - BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); - } - // Make sure the mapping is valid for MI. - assert(BestMapping->verify(MI) && "Invalid instruction mapping"); - - LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); - - // After this call, MI may not be valid anymore. - // Do not use it. - return applyMapping(MI, *BestMapping, RepairPts); -} - -bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { - // If the ISel pipeline failed, do not bother running that pass. - if (MF.getProperties().hasProperty( - MachineFunctionProperties::Property::FailedISel)) - return false; - - LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); - const Function &F = MF.getFunction(); - Mode SaveOptMode = OptMode; - if (F.hasFnAttribute(Attribute::OptimizeNone)) - OptMode = Mode::Fast; - init(MF); - -#ifndef NDEBUG - // Check that our input is fully legal: we require the function to have the - // Legalized property, so it should be. - // FIXME: This should be in the MachineVerifier. - if (!DisableGISelLegalityCheck) - if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { - reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", - "instruction is not legal", *MI); - return false; - } -#endif - - // Walk the function and assign register banks to all operands. - // Use a RPOT to make sure all registers are assigned before we choose - // the best mapping of the current instruction. - ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); - for (MachineBasicBlock *MBB : RPOT) { - // Set a sensible insertion point so that subsequent calls to - // MIRBuilder. - MIRBuilder.setMBB(*MBB); - for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end(); - MII != End;) { - // MI might be invalidated by the assignment, so move the - // iterator before hand. - MachineInstr &MI = *MII++; - - // Ignore target-specific instructions: they should use proper regclasses. - if (isTargetSpecificOpcode(MI.getOpcode())) - continue; - - if (!assignInstr(MI)) { - reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", - "unable to map instruction", MI); - return false; - } - } - } - OptMode = SaveOptMode; - return false; -} - -//------------------------------------------------------------------------------ -// Helper Classes Implementation -//------------------------------------------------------------------------------ -RegBankSelect::RepairingPlacement::RepairingPlacement( - MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, - RepairingPlacement::RepairingKind Kind) - // Default is, we are going to insert code to repair OpIdx. - : Kind(Kind), OpIdx(OpIdx), - CanMaterialize(Kind != RepairingKind::Impossible), P(P) { - const MachineOperand &MO = MI.getOperand(OpIdx); - assert(MO.isReg() && "Trying to repair a non-reg operand"); - - if (Kind != RepairingKind::Insert) - return; - - // Repairings for definitions happen after MI, uses happen before. - bool Before = !MO.isDef(); - - // Check if we are done with MI. - if (!MI.isPHI() && !MI.isTerminator()) { - addInsertPoint(MI, Before); - // We are done with the initialization. - return; - } - - // Now, look for the special cases. - if (MI.isPHI()) { - // - PHI must be the first instructions: - // * Before, we have to split the related incoming edge. - // * After, move the insertion point past the last phi. - if (!Before) { - MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); - if (It != MI.getParent()->end()) - addInsertPoint(*It, /*Before*/ true); - else - addInsertPoint(*(--It), /*Before*/ false); - return; - } - // We repair a use of a phi, we may need to split the related edge. - MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); - // Check if we can move the insertion point prior to the - // terminators of the predecessor. - unsigned Reg = MO.getReg(); - MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); - for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) - if (It->modifiesRegister(Reg, &TRI)) { - // We cannot hoist the repairing code in the predecessor. - // Split the edge. - addInsertPoint(Pred, *MI.getParent()); - return; - } - // At this point, we can insert in Pred. - - // - If It is invalid, Pred is empty and we can insert in Pred - // wherever we want. - // - If It is valid, It is the first non-terminator, insert after It. - if (It == Pred.end()) - addInsertPoint(Pred, /*Beginning*/ false); - else - addInsertPoint(*It, /*Before*/ false); - } else { - // - Terminators must be the last instructions: - // * Before, move the insert point before the first terminator. - // * After, we have to split the outcoming edges. - if (Before) { - // Check whether Reg is defined by any terminator. - MachineBasicBlock::reverse_iterator It = MI; - auto REnd = MI.getParent()->rend(); - - for (; It != REnd && It->isTerminator(); ++It) { - assert(!It->modifiesRegister(MO.getReg(), &TRI) && - "copy insertion in middle of terminators not handled"); - } - - if (It == REnd) { - addInsertPoint(*MI.getParent()->begin(), true); - return; - } - - // We are sure to be right before the first terminator. - addInsertPoint(*It, /*Before*/ false); - return; - } - // Make sure Reg is not redefined by other terminators, otherwise - // we do not know how to split. - for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); - ++It != End;) - // The machine verifier should reject this kind of code. - assert(It->modifiesRegister(MO.getReg(), &TRI) && - "Do not know where to split"); - // Split each outcoming edges. - MachineBasicBlock &Src = *MI.getParent(); - for (auto &Succ : Src.successors()) - addInsertPoint(Src, Succ); - } -} - -void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, - bool Before) { - addInsertPoint(*new InstrInsertPoint(MI, Before)); -} - -void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, - bool Beginning) { - addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); -} - -void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, - MachineBasicBlock &Dst) { - addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); -} - -void RegBankSelect::RepairingPlacement::addInsertPoint( - RegBankSelect::InsertPoint &Point) { - CanMaterialize &= Point.canMaterialize(); - HasSplit |= Point.isSplit(); - InsertPoints.emplace_back(&Point); -} - -RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, - bool Before) - : InsertPoint(), Instr(Instr), Before(Before) { - // Since we do not support splitting, we do not need to update - // liveness and such, so do not do anything with P. - assert((!Before || !Instr.isPHI()) && - "Splitting before phis requires more points"); - assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && - "Splitting between phis does not make sense"); -} - -void RegBankSelect::InstrInsertPoint::materialize() { - if (isSplit()) { - // Slice and return the beginning of the new block. - // If we need to split between the terminators, we theoritically - // need to know where the first and second set of terminators end - // to update the successors properly. - // Now, in pratice, we should have a maximum of 2 branch - // instructions; one conditional and one unconditional. Therefore - // we know how to update the successor by looking at the target of - // the unconditional branch. - // If we end up splitting at some point, then, we should update - // the liveness information and such. I.e., we would need to - // access P here. - // The machine verifier should actually make sure such cases - // cannot happen. - llvm_unreachable("Not yet implemented"); - } - // Otherwise the insertion point is just the current or next - // instruction depending on Before. I.e., there is nothing to do - // here. -} - -bool RegBankSelect::InstrInsertPoint::isSplit() const { - // If the insertion point is after a terminator, we need to split. - if (!Before) - return Instr.isTerminator(); - // If we insert before an instruction that is after a terminator, - // we are still after a terminator. - return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); -} - -uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { - // Even if we need to split, because we insert between terminators, - // this split has actually the same frequency as the instruction. - const MachineBlockFrequencyInfo *MBFI = - P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); - if (!MBFI) - return 1; - return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); -} - -uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { - const MachineBlockFrequencyInfo *MBFI = - P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); - if (!MBFI) - return 1; - return MBFI->getBlockFreq(&MBB).getFrequency(); -} - -void RegBankSelect::EdgeInsertPoint::materialize() { - // If we end up repairing twice at the same place before materializing the - // insertion point, we may think we have to split an edge twice. - // We should have a factory for the insert point such that identical points - // are the same instance. - assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && - "This point has already been split"); - MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); - assert(NewBB && "Invalid call to materialize"); - // We reuse the destination block to hold the information of the new block. - DstOrSplit = NewBB; -} - -uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { - const MachineBlockFrequencyInfo *MBFI = - P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); - if (!MBFI) - return 1; - if (WasMaterialized) - return MBFI->getBlockFreq(DstOrSplit).getFrequency(); - - const MachineBranchProbabilityInfo *MBPI = - P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); - if (!MBPI) - return 1; - // The basic block will be on the edge. - return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) - .getFrequency(); -} - -bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { - // If this is not a critical edge, we should not have used this insert - // point. Indeed, either the successor or the predecessor should - // have do. - assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && - "Edge is not critical"); - return Src.canSplitCriticalEdge(DstOrSplit); -} - -RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) - : LocalFreq(LocalFreq.getFrequency()) {} - -bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { - // Check if this overflows. - if (LocalCost + Cost < LocalCost) { - saturate(); - return true; - } - LocalCost += Cost; - return isSaturated(); -} - -bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { - // Check if this overflows. - if (NonLocalCost + Cost < NonLocalCost) { - saturate(); - return true; - } - NonLocalCost += Cost; - return isSaturated(); -} - -bool RegBankSelect::MappingCost::isSaturated() const { - return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && - LocalFreq == UINT64_MAX; -} - -void RegBankSelect::MappingCost::saturate() { - *this = ImpossibleCost(); - --LocalCost; -} - -RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { - return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); -} - -bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { - // Sort out the easy cases. - if (*this == Cost) - return false; - // If one is impossible to realize the other is cheaper unless it is - // impossible as well. - if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) - return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); - // If one is saturated the other is cheaper, unless it is saturated - // as well. - if (isSaturated() || Cost.isSaturated()) - return isSaturated() < Cost.isSaturated(); - // At this point we know both costs hold sensible values. - - // If both values have a different base frequency, there is no much - // we can do but to scale everything. - // However, if they have the same base frequency we can avoid making - // complicated computation. - uint64_t ThisLocalAdjust; - uint64_t OtherLocalAdjust; - if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { - - // At this point, we know the local costs are comparable. - // Do the case that do not involve potential overflow first. - if (NonLocalCost == Cost.NonLocalCost) - // Since the non-local costs do not discriminate on the result, - // just compare the local costs. - return LocalCost < Cost.LocalCost; - - // The base costs are comparable so we may only keep the relative - // value to increase our chances of avoiding overflows. - ThisLocalAdjust = 0; - OtherLocalAdjust = 0; - if (LocalCost < Cost.LocalCost) - OtherLocalAdjust = Cost.LocalCost - LocalCost; - else - ThisLocalAdjust = LocalCost - Cost.LocalCost; - } else { - ThisLocalAdjust = LocalCost; - OtherLocalAdjust = Cost.LocalCost; - } - - // The non-local costs are comparable, just keep the relative value. - uint64_t ThisNonLocalAdjust = 0; - uint64_t OtherNonLocalAdjust = 0; - if (NonLocalCost < Cost.NonLocalCost) - OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; - else - ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; - // Scale everything to make them comparable. - uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; - // Check for overflow on that operation. - bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || - ThisScaledCost < LocalFreq); - uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; - // Check for overflow on the last operation. - bool OtherOverflows = - OtherLocalAdjust && - (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); - // Add the non-local costs. - ThisOverflows |= ThisNonLocalAdjust && - ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; - ThisScaledCost += ThisNonLocalAdjust; - OtherOverflows |= OtherNonLocalAdjust && - OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; - OtherScaledCost += OtherNonLocalAdjust; - // If both overflows, we cannot compare without additional - // precision, e.g., APInt. Just give up on that case. - if (ThisOverflows && OtherOverflows) - return false; - // If one overflows but not the other, we can still compare. - if (ThisOverflows || OtherOverflows) - return ThisOverflows < OtherOverflows; - // Otherwise, just compare the values. - return ThisScaledCost < OtherScaledCost; -} - -bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { - return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && - LocalFreq == Cost.LocalFreq; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { - print(dbgs()); - dbgs() << '\n'; -} -#endif - -void RegBankSelect::MappingCost::print(raw_ostream &OS) const { - if (*this == ImpossibleCost()) { - OS << "impossible"; - return; - } - if (isSaturated()) { - OS << "saturated"; - return; - } - OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; -} |
