summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp1007
1 files changed, 0 insertions, 1007 deletions
diff --git a/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp b/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
deleted file mode 100644
index dcc8b7cc23c..00000000000
--- a/gnu/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
+++ /dev/null
@@ -1,1007 +0,0 @@
-//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-/// \file
-/// This file implements the RegBankSelect class.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
-#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
-#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
-#include "llvm/CodeGen/GlobalISel/Utils.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
-#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/TargetOpcodes.h"
-#include "llvm/CodeGen/TargetPassConfig.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/BlockFrequency.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <limits>
-#include <memory>
-#include <utility>
-
-#define DEBUG_TYPE "regbankselect"
-
-using namespace llvm;
-
-static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
- cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
- cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
- "Run the Fast mode (default mapping)"),
- clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
- "Use the Greedy mode (best local mapping)")));
-
-char RegBankSelect::ID = 0;
-
-INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
- "Assign register bank of generic virtual registers",
- false, false);
-INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
-INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
-INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
-INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
- "Assign register bank of generic virtual registers", false,
- false)
-
-RegBankSelect::RegBankSelect(Mode RunningMode)
- : MachineFunctionPass(ID), OptMode(RunningMode) {
- initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
- if (RegBankSelectMode.getNumOccurrences() != 0) {
- OptMode = RegBankSelectMode;
- if (RegBankSelectMode != RunningMode)
- LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
- }
-}
-
-void RegBankSelect::init(MachineFunction &MF) {
- RBI = MF.getSubtarget().getRegBankInfo();
- assert(RBI && "Cannot work without RegisterBankInfo");
- MRI = &MF.getRegInfo();
- TRI = MF.getSubtarget().getRegisterInfo();
- TPC = &getAnalysis<TargetPassConfig>();
- if (OptMode != Mode::Fast) {
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- } else {
- MBFI = nullptr;
- MBPI = nullptr;
- }
- MIRBuilder.setMF(MF);
- MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
-}
-
-void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
- if (OptMode != Mode::Fast) {
- // We could preserve the information from these two analysis but
- // the APIs do not allow to do so yet.
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<MachineBranchProbabilityInfo>();
- }
- AU.addRequired<TargetPassConfig>();
- getSelectionDAGFallbackAnalysisUsage(AU);
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-bool RegBankSelect::assignmentMatch(
- unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
- bool &OnlyAssign) const {
- // By default we assume we will have to repair something.
- OnlyAssign = false;
- // Each part of a break down needs to end up in a different register.
- // In other word, Reg assignment does not match.
- if (ValMapping.NumBreakDowns != 1)
- return false;
-
- const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
- const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
- // Reg is free of assignment, a simple assignment will make the
- // register bank to match.
- OnlyAssign = CurRegBank == nullptr;
- LLVM_DEBUG(dbgs() << "Does assignment already match: ";
- if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
- dbgs() << " against ";
- assert(DesiredRegBrank && "The mapping must be valid");
- dbgs() << *DesiredRegBrank << '\n';);
- return CurRegBank == DesiredRegBrank;
-}
-
-bool RegBankSelect::repairReg(
- MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
- RegBankSelect::RepairingPlacement &RepairPt,
- const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
- if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
- return false;
- assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
- // An empty range of new register means no repairing.
- assert(!empty(NewVRegs) && "We should not have to repair");
-
- // Assume we are repairing a use and thus, the original reg will be
- // the source of the repairing.
- unsigned Src = MO.getReg();
- unsigned Dst = *NewVRegs.begin();
-
- // If we repair a definition, swap the source and destination for
- // the repairing.
- if (MO.isDef())
- std::swap(Src, Dst);
-
- assert((RepairPt.getNumInsertPoints() == 1 ||
- TargetRegisterInfo::isPhysicalRegister(Dst)) &&
- "We are about to create several defs for Dst");
-
- // Build the instruction used to repair, then clone it at the right
- // places. Avoiding buildCopy bypasses the check that Src and Dst have the
- // same types because the type is a placeholder when this function is called.
- MachineInstr *MI =
- MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
- LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
- << '\n');
- // TODO:
- // Check if MI is legal. if not, we need to legalize all the
- // instructions we are going to insert.
- std::unique_ptr<MachineInstr *[]> NewInstrs(
- new MachineInstr *[RepairPt.getNumInsertPoints()]);
- bool IsFirst = true;
- unsigned Idx = 0;
- for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
- MachineInstr *CurMI;
- if (IsFirst)
- CurMI = MI;
- else
- CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
- InsertPt->insert(*CurMI);
- NewInstrs[Idx++] = CurMI;
- IsFirst = false;
- }
- // TODO:
- // Legalize NewInstrs if need be.
- return true;
-}
-
-uint64_t RegBankSelect::getRepairCost(
- const MachineOperand &MO,
- const RegisterBankInfo::ValueMapping &ValMapping) const {
- assert(MO.isReg() && "We should only repair register operand");
- assert(ValMapping.NumBreakDowns && "Nothing to map??");
-
- bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
- const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
- // If MO does not have a register bank, we should have just been
- // able to set one unless we have to break the value down.
- assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
- // Def: Val <- NewDefs
- // Same number of values: copy
- // Different number: Val = build_sequence Defs1, Defs2, ...
- // Use: NewSources <- Val.
- // Same number of values: copy.
- // Different number: Src1, Src2, ... =
- // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
- // We should remember that this value is available somewhere else to
- // coalesce the value.
-
- if (IsSameNumOfValues) {
- const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
- // If we repair a definition, swap the source and destination for
- // the repairing.
- if (MO.isDef())
- std::swap(CurRegBank, DesiredRegBrank);
- // TODO: It may be possible to actually avoid the copy.
- // If we repair something where the source is defined by a copy
- // and the source of that copy is on the right bank, we can reuse
- // it for free.
- // E.g.,
- // RegToRepair<BankA> = copy AlternativeSrc<BankB>
- // = op RegToRepair<BankA>
- // We can simply propagate AlternativeSrc instead of copying RegToRepair
- // into a new virtual register.
- // We would also need to propagate this information in the
- // repairing placement.
- unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
- RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
- // TODO: use a dedicated constant for ImpossibleCost.
- if (Cost != std::numeric_limits<unsigned>::max())
- return Cost;
- // Return the legalization cost of that repairing.
- }
- return std::numeric_limits<unsigned>::max();
-}
-
-const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
- MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
- SmallVectorImpl<RepairingPlacement> &RepairPts) {
- assert(!PossibleMappings.empty() &&
- "Do not know how to map this instruction");
-
- const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
- MappingCost Cost = MappingCost::ImpossibleCost();
- SmallVector<RepairingPlacement, 4> LocalRepairPts;
- for (const RegisterBankInfo::InstructionMapping *CurMapping :
- PossibleMappings) {
- MappingCost CurCost =
- computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
- if (CurCost < Cost) {
- LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
- Cost = CurCost;
- BestMapping = CurMapping;
- RepairPts.clear();
- for (RepairingPlacement &RepairPt : LocalRepairPts)
- RepairPts.emplace_back(std::move(RepairPt));
- }
- }
- if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
- // If none of the mapping worked that means they are all impossible.
- // Thus, pick the first one and set an impossible repairing point.
- // It will trigger the failed isel mode.
- BestMapping = *PossibleMappings.begin();
- RepairPts.emplace_back(
- RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
- } else
- assert(BestMapping && "No suitable mapping for instruction");
- return *BestMapping;
-}
-
-void RegBankSelect::tryAvoidingSplit(
- RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
- const RegisterBankInfo::ValueMapping &ValMapping) const {
- const MachineInstr &MI = *MO.getParent();
- assert(RepairPt.hasSplit() && "We should not have to adjust for split");
- // Splitting should only occur for PHIs or between terminators,
- // because we only do local repairing.
- assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
-
- assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
- "Repairing placement does not match operand");
-
- // If we need splitting for phis, that means it is because we
- // could not find an insertion point before the terminators of
- // the predecessor block for this argument. In other words,
- // the input value is defined by one of the terminators.
- assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
-
- // We split to repair the use of a phi or a terminator.
- if (!MO.isDef()) {
- if (MI.isTerminator()) {
- assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
- "Need to split for the first terminator?!");
- } else {
- // For the PHI case, the split may not be actually required.
- // In the copy case, a phi is already a copy on the incoming edge,
- // therefore there is no need to split.
- if (ValMapping.NumBreakDowns == 1)
- // This is a already a copy, there is nothing to do.
- RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
- }
- return;
- }
-
- // At this point, we need to repair a defintion of a terminator.
-
- // Technically we need to fix the def of MI on all outgoing
- // edges of MI to keep the repairing local. In other words, we
- // will create several definitions of the same register. This
- // does not work for SSA unless that definition is a physical
- // register.
- // However, there are other cases where we can get away with
- // that while still keeping the repairing local.
- assert(MI.isTerminator() && MO.isDef() &&
- "This code is for the def of a terminator");
-
- // Since we use RPO traversal, if we need to repair a definition
- // this means this definition could be:
- // 1. Used by PHIs (i.e., this VReg has been visited as part of the
- // uses of a phi.), or
- // 2. Part of a target specific instruction (i.e., the target applied
- // some register class constraints when creating the instruction.)
- // If the constraints come for #2, the target said that another mapping
- // is supported so we may just drop them. Indeed, if we do not change
- // the number of registers holding that value, the uses will get fixed
- // when we get to them.
- // Uses in PHIs may have already been proceeded though.
- // If the constraints come for #1, then, those are weak constraints and
- // no actual uses may rely on them. However, the problem remains mainly
- // the same as for #2. If the value stays in one register, we could
- // just switch the register bank of the definition, but we would need to
- // account for a repairing cost for each phi we silently change.
- //
- // In any case, if the value needs to be broken down into several
- // registers, the repairing is not local anymore as we need to patch
- // every uses to rebuild the value in just one register.
- //
- // To summarize:
- // - If the value is in a physical register, we can do the split and
- // fix locally.
- // Otherwise if the value is in a virtual register:
- // - If the value remains in one register, we do not have to split
- // just switching the register bank would do, but we need to account
- // in the repairing cost all the phi we changed.
- // - If the value spans several registers, then we cannot do a local
- // repairing.
-
- // Check if this is a physical or virtual register.
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- // We are going to split every outgoing edges.
- // Check that this is possible.
- // FIXME: The machine representation is currently broken
- // since it also several terminators in one basic block.
- // Because of that we would technically need a way to get
- // the targets of just one terminator to know which edges
- // we have to split.
- // Assert that we do not hit the ill-formed representation.
-
- // If there are other terminators before that one, some of
- // the outgoing edges may not be dominated by this definition.
- assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
- "Do not know which outgoing edges are relevant");
- const MachineInstr *Next = MI.getNextNode();
- assert((!Next || Next->isUnconditionalBranch()) &&
- "Do not know where each terminator ends up");
- if (Next)
- // If the next terminator uses Reg, this means we have
- // to split right after MI and thus we need a way to ask
- // which outgoing edges are affected.
- assert(!Next->readsRegister(Reg) && "Need to split between terminators");
- // We will split all the edges and repair there.
- } else {
- // This is a virtual register defined by a terminator.
- if (ValMapping.NumBreakDowns == 1) {
- // There is nothing to repair, but we may actually lie on
- // the repairing cost because of the PHIs already proceeded
- // as already stated.
- // Though the code will be correct.
- assert(false && "Repairing cost may not be accurate");
- } else {
- // We need to do non-local repairing. Basically, patch all
- // the uses (i.e., phis) that we already proceeded.
- // For now, just say this mapping is not possible.
- RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
- }
- }
-}
-
-RegBankSelect::MappingCost RegBankSelect::computeMapping(
- MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
- SmallVectorImpl<RepairingPlacement> &RepairPts,
- const RegBankSelect::MappingCost *BestCost) {
- assert((MBFI || !BestCost) && "Costs comparison require MBFI");
-
- if (!InstrMapping.isValid())
- return MappingCost::ImpossibleCost();
-
- // If mapped with InstrMapping, MI will have the recorded cost.
- MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
- bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
- assert(!Saturated && "Possible mapping saturated the cost");
- LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
- LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
- RepairPts.clear();
- if (BestCost && Cost > *BestCost) {
- LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
- return Cost;
- }
-
- // Moreover, to realize this mapping, the register bank of each operand must
- // match this mapping. In other words, we may need to locally reassign the
- // register banks. Account for that repairing cost as well.
- // In this context, local means in the surrounding of MI.
- for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
- OpIdx != EndOpIdx; ++OpIdx) {
- const MachineOperand &MO = MI.getOperand(OpIdx);
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
- continue;
- LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
- const RegisterBankInfo::ValueMapping &ValMapping =
- InstrMapping.getOperandMapping(OpIdx);
- // If Reg is already properly mapped, this is free.
- bool Assign;
- if (assignmentMatch(Reg, ValMapping, Assign)) {
- LLVM_DEBUG(dbgs() << "=> is free (match).\n");
- continue;
- }
- if (Assign) {
- LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
- RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
- RepairingPlacement::Reassign));
- continue;
- }
-
- // Find the insertion point for the repairing code.
- RepairPts.emplace_back(
- RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
- RepairingPlacement &RepairPt = RepairPts.back();
-
- // If we need to split a basic block to materialize this insertion point,
- // we may give a higher cost to this mapping.
- // Nevertheless, we may get away with the split, so try that first.
- if (RepairPt.hasSplit())
- tryAvoidingSplit(RepairPt, MO, ValMapping);
-
- // Check that the materialization of the repairing is possible.
- if (!RepairPt.canMaterialize()) {
- LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
- return MappingCost::ImpossibleCost();
- }
-
- // Account for the split cost and repair cost.
- // Unless the cost is already saturated or we do not care about the cost.
- if (!BestCost || Saturated)
- continue;
-
- // To get accurate information we need MBFI and MBPI.
- // Thus, if we end up here this information should be here.
- assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
-
- // FIXME: We will have to rework the repairing cost model.
- // The repairing cost depends on the register bank that MO has.
- // However, when we break down the value into different values,
- // MO may not have a register bank while still needing repairing.
- // For the fast mode, we don't compute the cost so that is fine,
- // but still for the repairing code, we will have to make a choice.
- // For the greedy mode, we should choose greedily what is the best
- // choice based on the next use of MO.
-
- // Sums up the repairing cost of MO at each insertion point.
- uint64_t RepairCost = getRepairCost(MO, ValMapping);
-
- // This is an impossible to repair cost.
- if (RepairCost == std::numeric_limits<unsigned>::max())
- return MappingCost::ImpossibleCost();
-
- // Bias used for splitting: 5%.
- const uint64_t PercentageForBias = 5;
- uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
- // We should not need more than a couple of instructions to repair
- // an assignment. In other words, the computation should not
- // overflow because the repairing cost is free of basic block
- // frequency.
- assert(((RepairCost < RepairCost * PercentageForBias) &&
- (RepairCost * PercentageForBias <
- RepairCost * PercentageForBias + 99)) &&
- "Repairing involves more than a billion of instructions?!");
- for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
- assert(InsertPt->canMaterialize() && "We should not have made it here");
- // We will applied some basic block frequency and those uses uint64_t.
- if (!InsertPt->isSplit())
- Saturated = Cost.addLocalCost(RepairCost);
- else {
- uint64_t CostForInsertPt = RepairCost;
- // Again we shouldn't overflow here givent that
- // CostForInsertPt is frequency free at this point.
- assert(CostForInsertPt + Bias > CostForInsertPt &&
- "Repairing + split bias overflows");
- CostForInsertPt += Bias;
- uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
- // Check if we just overflowed.
- if ((Saturated = PtCost < CostForInsertPt))
- Cost.saturate();
- else
- Saturated = Cost.addNonLocalCost(PtCost);
- }
-
- // Stop looking into what it takes to repair, this is already
- // too expensive.
- if (BestCost && Cost > *BestCost) {
- LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
- return Cost;
- }
-
- // No need to accumulate more cost information.
- // We need to still gather the repairing information though.
- if (Saturated)
- break;
- }
- }
- LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
- return Cost;
-}
-
-bool RegBankSelect::applyMapping(
- MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
- SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
- // OpdMapper will hold all the information needed for the rewriting.
- RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
-
- // First, place the repairing code.
- for (RepairingPlacement &RepairPt : RepairPts) {
- if (!RepairPt.canMaterialize() ||
- RepairPt.getKind() == RepairingPlacement::Impossible)
- return false;
- assert(RepairPt.getKind() != RepairingPlacement::None &&
- "This should not make its way in the list");
- unsigned OpIdx = RepairPt.getOpIdx();
- MachineOperand &MO = MI.getOperand(OpIdx);
- const RegisterBankInfo::ValueMapping &ValMapping =
- InstrMapping.getOperandMapping(OpIdx);
- unsigned Reg = MO.getReg();
-
- switch (RepairPt.getKind()) {
- case RepairingPlacement::Reassign:
- assert(ValMapping.NumBreakDowns == 1 &&
- "Reassignment should only be for simple mapping");
- MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
- break;
- case RepairingPlacement::Insert:
- OpdMapper.createVRegs(OpIdx);
- if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
- return false;
- break;
- default:
- llvm_unreachable("Other kind should not happen");
- }
- }
-
- // Second, rewrite the instruction.
- LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
- RBI->applyMapping(OpdMapper);
-
- return true;
-}
-
-bool RegBankSelect::assignInstr(MachineInstr &MI) {
- LLVM_DEBUG(dbgs() << "Assign: " << MI);
- // Remember the repairing placement for all the operands.
- SmallVector<RepairingPlacement, 4> RepairPts;
-
- const RegisterBankInfo::InstructionMapping *BestMapping;
- if (OptMode == RegBankSelect::Mode::Fast) {
- BestMapping = &RBI->getInstrMapping(MI);
- MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
- (void)DefaultCost;
- if (DefaultCost == MappingCost::ImpossibleCost())
- return false;
- } else {
- RegisterBankInfo::InstructionMappings PossibleMappings =
- RBI->getInstrPossibleMappings(MI);
- if (PossibleMappings.empty())
- return false;
- BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
- }
- // Make sure the mapping is valid for MI.
- assert(BestMapping->verify(MI) && "Invalid instruction mapping");
-
- LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
-
- // After this call, MI may not be valid anymore.
- // Do not use it.
- return applyMapping(MI, *BestMapping, RepairPts);
-}
-
-bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
- // If the ISel pipeline failed, do not bother running that pass.
- if (MF.getProperties().hasProperty(
- MachineFunctionProperties::Property::FailedISel))
- return false;
-
- LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
- const Function &F = MF.getFunction();
- Mode SaveOptMode = OptMode;
- if (F.hasFnAttribute(Attribute::OptimizeNone))
- OptMode = Mode::Fast;
- init(MF);
-
-#ifndef NDEBUG
- // Check that our input is fully legal: we require the function to have the
- // Legalized property, so it should be.
- // FIXME: This should be in the MachineVerifier.
- if (!DisableGISelLegalityCheck)
- if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
- reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
- "instruction is not legal", *MI);
- return false;
- }
-#endif
-
- // Walk the function and assign register banks to all operands.
- // Use a RPOT to make sure all registers are assigned before we choose
- // the best mapping of the current instruction.
- ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
- for (MachineBasicBlock *MBB : RPOT) {
- // Set a sensible insertion point so that subsequent calls to
- // MIRBuilder.
- MIRBuilder.setMBB(*MBB);
- for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
- MII != End;) {
- // MI might be invalidated by the assignment, so move the
- // iterator before hand.
- MachineInstr &MI = *MII++;
-
- // Ignore target-specific instructions: they should use proper regclasses.
- if (isTargetSpecificOpcode(MI.getOpcode()))
- continue;
-
- if (!assignInstr(MI)) {
- reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
- "unable to map instruction", MI);
- return false;
- }
- }
- }
- OptMode = SaveOptMode;
- return false;
-}
-
-//------------------------------------------------------------------------------
-// Helper Classes Implementation
-//------------------------------------------------------------------------------
-RegBankSelect::RepairingPlacement::RepairingPlacement(
- MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
- RepairingPlacement::RepairingKind Kind)
- // Default is, we are going to insert code to repair OpIdx.
- : Kind(Kind), OpIdx(OpIdx),
- CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
- const MachineOperand &MO = MI.getOperand(OpIdx);
- assert(MO.isReg() && "Trying to repair a non-reg operand");
-
- if (Kind != RepairingKind::Insert)
- return;
-
- // Repairings for definitions happen after MI, uses happen before.
- bool Before = !MO.isDef();
-
- // Check if we are done with MI.
- if (!MI.isPHI() && !MI.isTerminator()) {
- addInsertPoint(MI, Before);
- // We are done with the initialization.
- return;
- }
-
- // Now, look for the special cases.
- if (MI.isPHI()) {
- // - PHI must be the first instructions:
- // * Before, we have to split the related incoming edge.
- // * After, move the insertion point past the last phi.
- if (!Before) {
- MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
- if (It != MI.getParent()->end())
- addInsertPoint(*It, /*Before*/ true);
- else
- addInsertPoint(*(--It), /*Before*/ false);
- return;
- }
- // We repair a use of a phi, we may need to split the related edge.
- MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
- // Check if we can move the insertion point prior to the
- // terminators of the predecessor.
- unsigned Reg = MO.getReg();
- MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
- for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
- if (It->modifiesRegister(Reg, &TRI)) {
- // We cannot hoist the repairing code in the predecessor.
- // Split the edge.
- addInsertPoint(Pred, *MI.getParent());
- return;
- }
- // At this point, we can insert in Pred.
-
- // - If It is invalid, Pred is empty and we can insert in Pred
- // wherever we want.
- // - If It is valid, It is the first non-terminator, insert after It.
- if (It == Pred.end())
- addInsertPoint(Pred, /*Beginning*/ false);
- else
- addInsertPoint(*It, /*Before*/ false);
- } else {
- // - Terminators must be the last instructions:
- // * Before, move the insert point before the first terminator.
- // * After, we have to split the outcoming edges.
- if (Before) {
- // Check whether Reg is defined by any terminator.
- MachineBasicBlock::reverse_iterator It = MI;
- auto REnd = MI.getParent()->rend();
-
- for (; It != REnd && It->isTerminator(); ++It) {
- assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
- "copy insertion in middle of terminators not handled");
- }
-
- if (It == REnd) {
- addInsertPoint(*MI.getParent()->begin(), true);
- return;
- }
-
- // We are sure to be right before the first terminator.
- addInsertPoint(*It, /*Before*/ false);
- return;
- }
- // Make sure Reg is not redefined by other terminators, otherwise
- // we do not know how to split.
- for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
- ++It != End;)
- // The machine verifier should reject this kind of code.
- assert(It->modifiesRegister(MO.getReg(), &TRI) &&
- "Do not know where to split");
- // Split each outcoming edges.
- MachineBasicBlock &Src = *MI.getParent();
- for (auto &Succ : Src.successors())
- addInsertPoint(Src, Succ);
- }
-}
-
-void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
- bool Before) {
- addInsertPoint(*new InstrInsertPoint(MI, Before));
-}
-
-void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
- bool Beginning) {
- addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
-}
-
-void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
- MachineBasicBlock &Dst) {
- addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
-}
-
-void RegBankSelect::RepairingPlacement::addInsertPoint(
- RegBankSelect::InsertPoint &Point) {
- CanMaterialize &= Point.canMaterialize();
- HasSplit |= Point.isSplit();
- InsertPoints.emplace_back(&Point);
-}
-
-RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
- bool Before)
- : InsertPoint(), Instr(Instr), Before(Before) {
- // Since we do not support splitting, we do not need to update
- // liveness and such, so do not do anything with P.
- assert((!Before || !Instr.isPHI()) &&
- "Splitting before phis requires more points");
- assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
- "Splitting between phis does not make sense");
-}
-
-void RegBankSelect::InstrInsertPoint::materialize() {
- if (isSplit()) {
- // Slice and return the beginning of the new block.
- // If we need to split between the terminators, we theoritically
- // need to know where the first and second set of terminators end
- // to update the successors properly.
- // Now, in pratice, we should have a maximum of 2 branch
- // instructions; one conditional and one unconditional. Therefore
- // we know how to update the successor by looking at the target of
- // the unconditional branch.
- // If we end up splitting at some point, then, we should update
- // the liveness information and such. I.e., we would need to
- // access P here.
- // The machine verifier should actually make sure such cases
- // cannot happen.
- llvm_unreachable("Not yet implemented");
- }
- // Otherwise the insertion point is just the current or next
- // instruction depending on Before. I.e., there is nothing to do
- // here.
-}
-
-bool RegBankSelect::InstrInsertPoint::isSplit() const {
- // If the insertion point is after a terminator, we need to split.
- if (!Before)
- return Instr.isTerminator();
- // If we insert before an instruction that is after a terminator,
- // we are still after a terminator.
- return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
-}
-
-uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
- // Even if we need to split, because we insert between terminators,
- // this split has actually the same frequency as the instruction.
- const MachineBlockFrequencyInfo *MBFI =
- P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
- if (!MBFI)
- return 1;
- return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
-}
-
-uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
- const MachineBlockFrequencyInfo *MBFI =
- P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
- if (!MBFI)
- return 1;
- return MBFI->getBlockFreq(&MBB).getFrequency();
-}
-
-void RegBankSelect::EdgeInsertPoint::materialize() {
- // If we end up repairing twice at the same place before materializing the
- // insertion point, we may think we have to split an edge twice.
- // We should have a factory for the insert point such that identical points
- // are the same instance.
- assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
- "This point has already been split");
- MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
- assert(NewBB && "Invalid call to materialize");
- // We reuse the destination block to hold the information of the new block.
- DstOrSplit = NewBB;
-}
-
-uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
- const MachineBlockFrequencyInfo *MBFI =
- P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
- if (!MBFI)
- return 1;
- if (WasMaterialized)
- return MBFI->getBlockFreq(DstOrSplit).getFrequency();
-
- const MachineBranchProbabilityInfo *MBPI =
- P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
- if (!MBPI)
- return 1;
- // The basic block will be on the edge.
- return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
- .getFrequency();
-}
-
-bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
- // If this is not a critical edge, we should not have used this insert
- // point. Indeed, either the successor or the predecessor should
- // have do.
- assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
- "Edge is not critical");
- return Src.canSplitCriticalEdge(DstOrSplit);
-}
-
-RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
- : LocalFreq(LocalFreq.getFrequency()) {}
-
-bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
- // Check if this overflows.
- if (LocalCost + Cost < LocalCost) {
- saturate();
- return true;
- }
- LocalCost += Cost;
- return isSaturated();
-}
-
-bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
- // Check if this overflows.
- if (NonLocalCost + Cost < NonLocalCost) {
- saturate();
- return true;
- }
- NonLocalCost += Cost;
- return isSaturated();
-}
-
-bool RegBankSelect::MappingCost::isSaturated() const {
- return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
- LocalFreq == UINT64_MAX;
-}
-
-void RegBankSelect::MappingCost::saturate() {
- *this = ImpossibleCost();
- --LocalCost;
-}
-
-RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
- return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
-}
-
-bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
- // Sort out the easy cases.
- if (*this == Cost)
- return false;
- // If one is impossible to realize the other is cheaper unless it is
- // impossible as well.
- if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
- return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
- // If one is saturated the other is cheaper, unless it is saturated
- // as well.
- if (isSaturated() || Cost.isSaturated())
- return isSaturated() < Cost.isSaturated();
- // At this point we know both costs hold sensible values.
-
- // If both values have a different base frequency, there is no much
- // we can do but to scale everything.
- // However, if they have the same base frequency we can avoid making
- // complicated computation.
- uint64_t ThisLocalAdjust;
- uint64_t OtherLocalAdjust;
- if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
-
- // At this point, we know the local costs are comparable.
- // Do the case that do not involve potential overflow first.
- if (NonLocalCost == Cost.NonLocalCost)
- // Since the non-local costs do not discriminate on the result,
- // just compare the local costs.
- return LocalCost < Cost.LocalCost;
-
- // The base costs are comparable so we may only keep the relative
- // value to increase our chances of avoiding overflows.
- ThisLocalAdjust = 0;
- OtherLocalAdjust = 0;
- if (LocalCost < Cost.LocalCost)
- OtherLocalAdjust = Cost.LocalCost - LocalCost;
- else
- ThisLocalAdjust = LocalCost - Cost.LocalCost;
- } else {
- ThisLocalAdjust = LocalCost;
- OtherLocalAdjust = Cost.LocalCost;
- }
-
- // The non-local costs are comparable, just keep the relative value.
- uint64_t ThisNonLocalAdjust = 0;
- uint64_t OtherNonLocalAdjust = 0;
- if (NonLocalCost < Cost.NonLocalCost)
- OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
- else
- ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
- // Scale everything to make them comparable.
- uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
- // Check for overflow on that operation.
- bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
- ThisScaledCost < LocalFreq);
- uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
- // Check for overflow on the last operation.
- bool OtherOverflows =
- OtherLocalAdjust &&
- (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
- // Add the non-local costs.
- ThisOverflows |= ThisNonLocalAdjust &&
- ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
- ThisScaledCost += ThisNonLocalAdjust;
- OtherOverflows |= OtherNonLocalAdjust &&
- OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
- OtherScaledCost += OtherNonLocalAdjust;
- // If both overflows, we cannot compare without additional
- // precision, e.g., APInt. Just give up on that case.
- if (ThisOverflows && OtherOverflows)
- return false;
- // If one overflows but not the other, we can still compare.
- if (ThisOverflows || OtherOverflows)
- return ThisOverflows < OtherOverflows;
- // Otherwise, just compare the values.
- return ThisScaledCost < OtherScaledCost;
-}
-
-bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
- return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
- LocalFreq == Cost.LocalFreq;
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
- print(dbgs());
- dbgs() << '\n';
-}
-#endif
-
-void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
- if (*this == ImpossibleCost()) {
- OS << "impossible";
- return;
- }
- if (isSaturated()) {
- OS << "saturated";
- return;
- }
- OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
-}