summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp1461
1 files changed, 0 insertions, 1461 deletions
diff --git a/gnu/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/gnu/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
deleted file mode 100644
index 99406ed1496..00000000000
--- a/gnu/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ /dev/null
@@ -1,1461 +0,0 @@
-//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file This implements the ScheduleDAGInstrs class, which implements
-/// re-scheduling of MachineInstrs.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/ScheduleDAGInstrs.h"
-#include "llvm/ADT/IntEqClasses.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/SparseSet.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/LiveIntervals.h"
-#include "llvm/CodeGen/LivePhysRegs.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBundle.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/CodeGen/RegisterPressure.h"
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/ScheduleDFS.h"
-#include "llvm/CodeGen/SlotIndexes.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/MC/LaneBitmask.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Format.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <iterator>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "machine-scheduler"
-
-static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
- cl::ZeroOrMore, cl::init(false),
- cl::desc("Enable use of AA during MI DAG construction"));
-
-static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
- cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
-
-// Note: the two options below might be used in tuning compile time vs
-// output quality. Setting HugeRegion so large that it will never be
-// reached means best-effort, but may be slow.
-
-// When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
-// together hold this many SUs, a reduction of maps will be done.
-static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
- cl::init(1000), cl::desc("The limit to use while constructing the DAG "
- "prior to scheduling, at which point a trade-off "
- "is made to avoid excessive compile time."));
-
-static cl::opt<unsigned> ReductionSize(
- "dag-maps-reduction-size", cl::Hidden,
- cl::desc("A huge scheduling region will have maps reduced by this many "
- "nodes at a time. Defaults to HugeRegion / 2."));
-
-static unsigned getReductionSize() {
- // Always reduce a huge region with half of the elements, except
- // when user sets this number explicitly.
- if (ReductionSize.getNumOccurrences() == 0)
- return HugeRegion / 2;
- return ReductionSize;
-}
-
-static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- dbgs() << "{ ";
- for (const SUnit *su : L) {
- dbgs() << "SU(" << su->NodeNum << ")";
- if (su != L.back())
- dbgs() << ", ";
- }
- dbgs() << "}\n";
-#endif
-}
-
-ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
- const MachineLoopInfo *mli,
- bool RemoveKillFlags)
- : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
- RemoveKillFlags(RemoveKillFlags),
- UnknownValue(UndefValue::get(
- Type::getVoidTy(mf.getFunction().getContext()))) {
- DbgValues.clear();
-
- const TargetSubtargetInfo &ST = mf.getSubtarget();
- SchedModel.init(&ST);
-}
-
-/// If this machine instr has memory reference information and it can be
-/// tracked to a normal reference to a known object, return the Value
-/// for that object. This function returns false the memory location is
-/// unknown or may alias anything.
-static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
- const MachineFrameInfo &MFI,
- UnderlyingObjectsVector &Objects,
- const DataLayout &DL) {
- auto allMMOsOkay = [&]() {
- for (const MachineMemOperand *MMO : MI->memoperands()) {
- if (MMO->isVolatile())
- return false;
-
- if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
- // Function that contain tail calls don't have unique PseudoSourceValue
- // objects. Two PseudoSourceValues might refer to the same or
- // overlapping locations. The client code calling this function assumes
- // this is not the case. So return a conservative answer of no known
- // object.
- if (MFI.hasTailCall())
- return false;
-
- // For now, ignore PseudoSourceValues which may alias LLVM IR values
- // because the code that uses this function has no way to cope with
- // such aliases.
- if (PSV->isAliased(&MFI))
- return false;
-
- bool MayAlias = PSV->mayAlias(&MFI);
- Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
- } else if (const Value *V = MMO->getValue()) {
- SmallVector<Value *, 4> Objs;
- if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
- return false;
-
- for (Value *V : Objs) {
- assert(isIdentifiedObject(V));
- Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
- }
- } else
- return false;
- }
- return true;
- };
-
- if (!allMMOsOkay()) {
- Objects.clear();
- return false;
- }
-
- return true;
-}
-
-void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
- BB = bb;
-}
-
-void ScheduleDAGInstrs::finishBlock() {
- // Subclasses should no longer refer to the old block.
- BB = nullptr;
-}
-
-void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
- MachineBasicBlock::iterator begin,
- MachineBasicBlock::iterator end,
- unsigned regioninstrs) {
- assert(bb == BB && "startBlock should set BB");
- RegionBegin = begin;
- RegionEnd = end;
- NumRegionInstrs = regioninstrs;
-}
-
-void ScheduleDAGInstrs::exitRegion() {
- // Nothing to do.
-}
-
-void ScheduleDAGInstrs::addSchedBarrierDeps() {
- MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
- ExitSU.setInstr(ExitMI);
- // Add dependencies on the defs and uses of the instruction.
- if (ExitMI) {
- for (const MachineOperand &MO : ExitMI->operands()) {
- if (!MO.isReg() || MO.isDef()) continue;
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
- } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
- addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
- }
- }
- }
- if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
- // For others, e.g. fallthrough, conditional branch, assume the exit
- // uses all the registers that are livein to the successor blocks.
- for (const MachineBasicBlock *Succ : BB->successors()) {
- for (const auto &LI : Succ->liveins()) {
- if (!Uses.contains(LI.PhysReg))
- Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
- }
- }
- }
-}
-
-/// MO is an operand of SU's instruction that defines a physical register. Adds
-/// data dependencies from SU to any uses of the physical register.
-void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
- const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
- assert(MO.isDef() && "expect physreg def");
-
- // Ask the target if address-backscheduling is desirable, and if so how much.
- const TargetSubtargetInfo &ST = MF.getSubtarget();
-
- // Only use any non-zero latency for real defs/uses, in contrast to
- // "fake" operands added by regalloc.
- const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
- bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
- !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
- for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
- Alias.isValid(); ++Alias) {
- if (!Uses.contains(*Alias))
- continue;
- for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
- SUnit *UseSU = I->SU;
- if (UseSU == SU)
- continue;
-
- // Adjust the dependence latency using operand def/use information,
- // then allow the target to perform its own adjustments.
- int UseOp = I->OpIdx;
- MachineInstr *RegUse = nullptr;
- SDep Dep;
- if (UseOp < 0)
- Dep = SDep(SU, SDep::Artificial);
- else {
- // Set the hasPhysRegDefs only for physreg defs that have a use within
- // the scheduling region.
- SU->hasPhysRegDefs = true;
- Dep = SDep(SU, SDep::Data, *Alias);
- RegUse = UseSU->getInstr();
- }
- const MCInstrDesc *UseMIDesc =
- (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
- bool ImplicitPseudoUse =
- (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
- !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
- if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
- Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
- RegUse, UseOp));
- ST.adjustSchedDependency(SU, UseSU, Dep);
- } else
- Dep.setLatency(0);
-
- UseSU->addPred(Dep);
- }
- }
-}
-
-/// Adds register dependencies (data, anti, and output) from this SUnit
-/// to following instructions in the same scheduling region that depend the
-/// physical register referenced at OperIdx.
-void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
- MachineInstr *MI = SU->getInstr();
- MachineOperand &MO = MI->getOperand(OperIdx);
- unsigned Reg = MO.getReg();
- // We do not need to track any dependencies for constant registers.
- if (MRI.isConstantPhysReg(Reg))
- return;
-
- // Optionally add output and anti dependencies. For anti
- // dependencies we use a latency of 0 because for a multi-issue
- // target we want to allow the defining instruction to issue
- // in the same cycle as the using instruction.
- // TODO: Using a latency of 1 here for output dependencies assumes
- // there's no cost for reusing registers.
- SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
- for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
- if (!Defs.contains(*Alias))
- continue;
- for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
- SUnit *DefSU = I->SU;
- if (DefSU == &ExitSU)
- continue;
- if (DefSU != SU &&
- (Kind != SDep::Output || !MO.isDead() ||
- !DefSU->getInstr()->registerDefIsDead(*Alias))) {
- if (Kind == SDep::Anti)
- DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
- else {
- SDep Dep(SU, Kind, /*Reg=*/*Alias);
- Dep.setLatency(
- SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
- DefSU->addPred(Dep);
- }
- }
- }
- }
-
- if (!MO.isDef()) {
- SU->hasPhysRegUses = true;
- // Either insert a new Reg2SUnits entry with an empty SUnits list, or
- // retrieve the existing SUnits list for this register's uses.
- // Push this SUnit on the use list.
- Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
- if (RemoveKillFlags)
- MO.setIsKill(false);
- } else {
- addPhysRegDataDeps(SU, OperIdx);
-
- // Clear previous uses and defs of this register and its subergisters.
- for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
- if (Uses.contains(*SubReg))
- Uses.eraseAll(*SubReg);
- if (!MO.isDead())
- Defs.eraseAll(*SubReg);
- }
- if (MO.isDead() && SU->isCall) {
- // Calls will not be reordered because of chain dependencies (see
- // below). Since call operands are dead, calls may continue to be added
- // to the DefList making dependence checking quadratic in the size of
- // the block. Instead, we leave only one call at the back of the
- // DefList.
- Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
- Reg2SUnitsMap::iterator B = P.first;
- Reg2SUnitsMap::iterator I = P.second;
- for (bool isBegin = I == B; !isBegin; /* empty */) {
- isBegin = (--I) == B;
- if (!I->SU->isCall)
- break;
- I = Defs.erase(I);
- }
- }
-
- // Defs are pushed in the order they are visited and never reordered.
- Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
- }
-}
-
-LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
-{
- unsigned Reg = MO.getReg();
- // No point in tracking lanemasks if we don't have interesting subregisters.
- const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
- if (!RC.HasDisjunctSubRegs)
- return LaneBitmask::getAll();
-
- unsigned SubReg = MO.getSubReg();
- if (SubReg == 0)
- return RC.getLaneMask();
- return TRI->getSubRegIndexLaneMask(SubReg);
-}
-
-/// Adds register output and data dependencies from this SUnit to instructions
-/// that occur later in the same scheduling region if they read from or write to
-/// the virtual register defined at OperIdx.
-///
-/// TODO: Hoist loop induction variable increments. This has to be
-/// reevaluated. Generally, IV scheduling should be done before coalescing.
-void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
- MachineInstr *MI = SU->getInstr();
- MachineOperand &MO = MI->getOperand(OperIdx);
- unsigned Reg = MO.getReg();
-
- LaneBitmask DefLaneMask;
- LaneBitmask KillLaneMask;
- if (TrackLaneMasks) {
- bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
- DefLaneMask = getLaneMaskForMO(MO);
- // If we have a <read-undef> flag, none of the lane values comes from an
- // earlier instruction.
- KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
-
- // Clear undef flag, we'll re-add it later once we know which subregister
- // Def is first.
- MO.setIsUndef(false);
- } else {
- DefLaneMask = LaneBitmask::getAll();
- KillLaneMask = LaneBitmask::getAll();
- }
-
- if (MO.isDead()) {
- assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
- "Dead defs should have no uses");
- } else {
- // Add data dependence to all uses we found so far.
- const TargetSubtargetInfo &ST = MF.getSubtarget();
- for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
- E = CurrentVRegUses.end(); I != E; /*empty*/) {
- LaneBitmask LaneMask = I->LaneMask;
- // Ignore uses of other lanes.
- if ((LaneMask & KillLaneMask).none()) {
- ++I;
- continue;
- }
-
- if ((LaneMask & DefLaneMask).any()) {
- SUnit *UseSU = I->SU;
- MachineInstr *Use = UseSU->getInstr();
- SDep Dep(SU, SDep::Data, Reg);
- Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
- I->OperandIndex));
- ST.adjustSchedDependency(SU, UseSU, Dep);
- UseSU->addPred(Dep);
- }
-
- LaneMask &= ~KillLaneMask;
- // If we found a Def for all lanes of this use, remove it from the list.
- if (LaneMask.any()) {
- I->LaneMask = LaneMask;
- ++I;
- } else
- I = CurrentVRegUses.erase(I);
- }
- }
-
- // Shortcut: Singly defined vregs do not have output/anti dependencies.
- if (MRI.hasOneDef(Reg))
- return;
-
- // Add output dependence to the next nearest defs of this vreg.
- //
- // Unless this definition is dead, the output dependence should be
- // transitively redundant with antidependencies from this definition's
- // uses. We're conservative for now until we have a way to guarantee the uses
- // are not eliminated sometime during scheduling. The output dependence edge
- // is also useful if output latency exceeds def-use latency.
- LaneBitmask LaneMask = DefLaneMask;
- for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
- CurrentVRegDefs.end())) {
- // Ignore defs for other lanes.
- if ((V2SU.LaneMask & LaneMask).none())
- continue;
- // Add an output dependence.
- SUnit *DefSU = V2SU.SU;
- // Ignore additional defs of the same lanes in one instruction. This can
- // happen because lanemasks are shared for targets with too many
- // subregisters. We also use some representration tricks/hacks where we
- // add super-register defs/uses, to imply that although we only access parts
- // of the reg we care about the full one.
- if (DefSU == SU)
- continue;
- SDep Dep(SU, SDep::Output, Reg);
- Dep.setLatency(
- SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
- DefSU->addPred(Dep);
-
- // Update current definition. This can get tricky if the def was about a
- // bigger lanemask before. We then have to shrink it and create a new
- // VReg2SUnit for the non-overlapping part.
- LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
- LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
- V2SU.SU = SU;
- V2SU.LaneMask = OverlapMask;
- if (NonOverlapMask.any())
- CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
- }
- // If there was no CurrentVRegDefs entry for some lanes yet, create one.
- if (LaneMask.any())
- CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
-}
-
-/// Adds a register data dependency if the instruction that defines the
-/// virtual register used at OperIdx is mapped to an SUnit. Add a register
-/// antidependency from this SUnit to instructions that occur later in the same
-/// scheduling region if they write the virtual register.
-///
-/// TODO: Handle ExitSU "uses" properly.
-void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
- const MachineInstr *MI = SU->getInstr();
- const MachineOperand &MO = MI->getOperand(OperIdx);
- unsigned Reg = MO.getReg();
-
- // Remember the use. Data dependencies will be added when we find the def.
- LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
- : LaneBitmask::getAll();
- CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
-
- // Add antidependences to the following defs of the vreg.
- for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
- CurrentVRegDefs.end())) {
- // Ignore defs for unrelated lanes.
- LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
- if ((PrevDefLaneMask & LaneMask).none())
- continue;
- if (V2SU.SU == SU)
- continue;
-
- V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
- }
-}
-
-/// Returns true if MI is an instruction we are unable to reason about
-/// (like a call or something with unmodeled side effects).
-static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
- return MI->isCall() || MI->hasUnmodeledSideEffects() ||
- (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
-}
-
-void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
- unsigned Latency) {
- if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
- SDep Dep(SUa, SDep::MayAliasMem);
- Dep.setLatency(Latency);
- SUb->addPred(Dep);
- }
-}
-
-/// Creates an SUnit for each real instruction, numbered in top-down
-/// topological order. The instruction order A < B, implies that no edge exists
-/// from B to A.
-///
-/// Map each real instruction to its SUnit.
-///
-/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
-/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
-/// instead of pointers.
-///
-/// MachineScheduler relies on initSUnits numbering the nodes by their order in
-/// the original instruction list.
-void ScheduleDAGInstrs::initSUnits() {
- // We'll be allocating one SUnit for each real instruction in the region,
- // which is contained within a basic block.
- SUnits.reserve(NumRegionInstrs);
-
- for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
- if (MI.isDebugInstr())
- continue;
-
- SUnit *SU = newSUnit(&MI);
- MISUnitMap[&MI] = SU;
-
- SU->isCall = MI.isCall();
- SU->isCommutable = MI.isCommutable();
-
- // Assign the Latency field of SU using target-provided information.
- SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
-
- // If this SUnit uses a reserved or unbuffered resource, mark it as such.
- //
- // Reserved resources block an instruction from issuing and stall the
- // entire pipeline. These are identified by BufferSize=0.
- //
- // Unbuffered resources prevent execution of subsequent instructions that
- // require the same resources. This is used for in-order execution pipelines
- // within an out-of-order core. These are identified by BufferSize=1.
- if (SchedModel.hasInstrSchedModel()) {
- const MCSchedClassDesc *SC = getSchedClass(SU);
- for (const MCWriteProcResEntry &PRE :
- make_range(SchedModel.getWriteProcResBegin(SC),
- SchedModel.getWriteProcResEnd(SC))) {
- switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
- case 0:
- SU->hasReservedResource = true;
- break;
- case 1:
- SU->isUnbuffered = true;
- break;
- default:
- break;
- }
- }
- }
- }
-}
-
-class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
- /// Current total number of SUs in map.
- unsigned NumNodes = 0;
-
- /// 1 for loads, 0 for stores. (see comment in SUList)
- unsigned TrueMemOrderLatency;
-
-public:
- Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
-
- /// To keep NumNodes up to date, insert() is used instead of
- /// this operator w/ push_back().
- ValueType &operator[](const SUList &Key) {
- llvm_unreachable("Don't use. Use insert() instead."); };
-
- /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
- /// reduce().
- void inline insert(SUnit *SU, ValueType V) {
- MapVector::operator[](V).push_back(SU);
- NumNodes++;
- }
-
- /// Clears the list of SUs mapped to V.
- void inline clearList(ValueType V) {
- iterator Itr = find(V);
- if (Itr != end()) {
- assert(NumNodes >= Itr->second.size());
- NumNodes -= Itr->second.size();
-
- Itr->second.clear();
- }
- }
-
- /// Clears map from all contents.
- void clear() {
- MapVector<ValueType, SUList>::clear();
- NumNodes = 0;
- }
-
- unsigned inline size() const { return NumNodes; }
-
- /// Counts the number of SUs in this map after a reduction.
- void reComputeSize() {
- NumNodes = 0;
- for (auto &I : *this)
- NumNodes += I.second.size();
- }
-
- unsigned inline getTrueMemOrderLatency() const {
- return TrueMemOrderLatency;
- }
-
- void dump();
-};
-
-void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
- Value2SUsMap &Val2SUsMap) {
- for (auto &I : Val2SUsMap)
- addChainDependencies(SU, I.second,
- Val2SUsMap.getTrueMemOrderLatency());
-}
-
-void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
- Value2SUsMap &Val2SUsMap,
- ValueType V) {
- Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
- if (Itr != Val2SUsMap.end())
- addChainDependencies(SU, Itr->second,
- Val2SUsMap.getTrueMemOrderLatency());
-}
-
-void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
- assert(BarrierChain != nullptr);
-
- for (auto &I : map) {
- SUList &sus = I.second;
- for (auto *SU : sus)
- SU->addPredBarrier(BarrierChain);
- }
- map.clear();
-}
-
-void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
- assert(BarrierChain != nullptr);
-
- // Go through all lists of SUs.
- for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
- Value2SUsMap::iterator CurrItr = I++;
- SUList &sus = CurrItr->second;
- SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
- for (; SUItr != SUEE; ++SUItr) {
- // Stop on BarrierChain or any instruction above it.
- if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
- break;
-
- (*SUItr)->addPredBarrier(BarrierChain);
- }
-
- // Remove also the BarrierChain from list if present.
- if (SUItr != SUEE && *SUItr == BarrierChain)
- SUItr++;
-
- // Remove all SUs that are now successors of BarrierChain.
- if (SUItr != sus.begin())
- sus.erase(sus.begin(), SUItr);
- }
-
- // Remove all entries with empty su lists.
- map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
- return (mapEntry.second.empty()); });
-
- // Recompute the size of the map (NumNodes).
- map.reComputeSize();
-}
-
-void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
- RegPressureTracker *RPTracker,
- PressureDiffs *PDiffs,
- LiveIntervals *LIS,
- bool TrackLaneMasks) {
- const TargetSubtargetInfo &ST = MF.getSubtarget();
- bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
- : ST.useAA();
- AAForDep = UseAA ? AA : nullptr;
-
- BarrierChain = nullptr;
-
- this->TrackLaneMasks = TrackLaneMasks;
- MISUnitMap.clear();
- ScheduleDAG::clearDAG();
-
- // Create an SUnit for each real instruction.
- initSUnits();
-
- if (PDiffs)
- PDiffs->init(SUnits.size());
-
- // We build scheduling units by walking a block's instruction list
- // from bottom to top.
-
- // Each MIs' memory operand(s) is analyzed to a list of underlying
- // objects. The SU is then inserted in the SUList(s) mapped from the
- // Value(s). Each Value thus gets mapped to lists of SUs depending
- // on it, stores and loads kept separately. Two SUs are trivially
- // non-aliasing if they both depend on only identified Values and do
- // not share any common Value.
- Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
-
- // Certain memory accesses are known to not alias any SU in Stores
- // or Loads, and have therefore their own 'NonAlias'
- // domain. E.g. spill / reload instructions never alias LLVM I/R
- // Values. It would be nice to assume that this type of memory
- // accesses always have a proper memory operand modelling, and are
- // therefore never unanalyzable, but this is conservatively not
- // done.
- Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
-
- // Remove any stale debug info; sometimes BuildSchedGraph is called again
- // without emitting the info from the previous call.
- DbgValues.clear();
- FirstDbgValue = nullptr;
-
- assert(Defs.empty() && Uses.empty() &&
- "Only BuildGraph should update Defs/Uses");
- Defs.setUniverse(TRI->getNumRegs());
- Uses.setUniverse(TRI->getNumRegs());
-
- assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
- assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
- unsigned NumVirtRegs = MRI.getNumVirtRegs();
- CurrentVRegDefs.setUniverse(NumVirtRegs);
- CurrentVRegUses.setUniverse(NumVirtRegs);
-
- // Model data dependencies between instructions being scheduled and the
- // ExitSU.
- addSchedBarrierDeps();
-
- // Walk the list of instructions, from bottom moving up.
- MachineInstr *DbgMI = nullptr;
- for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
- MII != MIE; --MII) {
- MachineInstr &MI = *std::prev(MII);
- if (DbgMI) {
- DbgValues.push_back(std::make_pair(DbgMI, &MI));
- DbgMI = nullptr;
- }
-
- if (MI.isDebugValue()) {
- DbgMI = &MI;
- continue;
- }
- if (MI.isDebugLabel())
- continue;
-
- SUnit *SU = MISUnitMap[&MI];
- assert(SU && "No SUnit mapped to this MI");
-
- if (RPTracker) {
- RegisterOperands RegOpers;
- RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
- if (TrackLaneMasks) {
- SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
- RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
- }
- if (PDiffs != nullptr)
- PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
-
- if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
- RPTracker->recedeSkipDebugValues();
- assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
- RPTracker->recede(RegOpers);
- }
-
- assert(
- (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
- "Cannot schedule terminators or labels!");
-
- // Add register-based dependencies (data, anti, and output).
- // For some instructions (calls, returns, inline-asm, etc.) there can
- // be explicit uses and implicit defs, in which case the use will appear
- // on the operand list before the def. Do two passes over the operand
- // list to make sure that defs are processed before any uses.
- bool HasVRegDef = false;
- for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
- const MachineOperand &MO = MI.getOperand(j);
- if (!MO.isReg() || !MO.isDef())
- continue;
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- addPhysRegDeps(SU, j);
- } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- HasVRegDef = true;
- addVRegDefDeps(SU, j);
- }
- }
- // Now process all uses.
- for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
- const MachineOperand &MO = MI.getOperand(j);
- // Only look at use operands.
- // We do not need to check for MO.readsReg() here because subsequent
- // subregister defs will get output dependence edges and need no
- // additional use dependencies.
- if (!MO.isReg() || !MO.isUse())
- continue;
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- addPhysRegDeps(SU, j);
- } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
- addVRegUseDeps(SU, j);
- }
- }
-
- // If we haven't seen any uses in this scheduling region, create a
- // dependence edge to ExitSU to model the live-out latency. This is required
- // for vreg defs with no in-region use, and prefetches with no vreg def.
- //
- // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
- // check currently relies on being called before adding chain deps.
- if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
- SDep Dep(SU, SDep::Artificial);
- Dep.setLatency(SU->Latency - 1);
- ExitSU.addPred(Dep);
- }
-
- // Add memory dependencies (Note: isStoreToStackSlot and
- // isLoadFromStackSLot are not usable after stack slots are lowered to
- // actual addresses).
-
- // This is a barrier event that acts as a pivotal node in the DAG.
- if (isGlobalMemoryObject(AA, &MI)) {
-
- // Become the barrier chain.
- if (BarrierChain)
- BarrierChain->addPredBarrier(SU);
- BarrierChain = SU;
-
- LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
- << BarrierChain->NodeNum << ").\n";);
-
- // Add dependencies against everything below it and clear maps.
- addBarrierChain(Stores);
- addBarrierChain(Loads);
- addBarrierChain(NonAliasStores);
- addBarrierChain(NonAliasLoads);
-
- continue;
- }
-
- // If it's not a store or a variant load, we're done.
- if (!MI.mayStore() &&
- !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
- continue;
-
- // Always add dependecy edge to BarrierChain if present.
- if (BarrierChain)
- BarrierChain->addPredBarrier(SU);
-
- // Find the underlying objects for MI. The Objs vector is either
- // empty, or filled with the Values of memory locations which this
- // SU depends on.
- UnderlyingObjectsVector Objs;
- bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
- MF.getDataLayout());
-
- if (MI.mayStore()) {
- if (!ObjsFound) {
- // An unknown store depends on all stores and loads.
- addChainDependencies(SU, Stores);
- addChainDependencies(SU, NonAliasStores);
- addChainDependencies(SU, Loads);
- addChainDependencies(SU, NonAliasLoads);
-
- // Map this store to 'UnknownValue'.
- Stores.insert(SU, UnknownValue);
- } else {
- // Add precise dependencies against all previously seen memory
- // accesses mapped to the same Value(s).
- for (const UnderlyingObject &UnderlObj : Objs) {
- ValueType V = UnderlObj.getValue();
- bool ThisMayAlias = UnderlObj.mayAlias();
-
- // Add dependencies to previous stores and loads mapped to V.
- addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
- addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
- }
- // Update the store map after all chains have been added to avoid adding
- // self-loop edge if multiple underlying objects are present.
- for (const UnderlyingObject &UnderlObj : Objs) {
- ValueType V = UnderlObj.getValue();
- bool ThisMayAlias = UnderlObj.mayAlias();
-
- // Map this store to V.
- (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
- }
- // The store may have dependencies to unanalyzable loads and
- // stores.
- addChainDependencies(SU, Loads, UnknownValue);
- addChainDependencies(SU, Stores, UnknownValue);
- }
- } else { // SU is a load.
- if (!ObjsFound) {
- // An unknown load depends on all stores.
- addChainDependencies(SU, Stores);
- addChainDependencies(SU, NonAliasStores);
-
- Loads.insert(SU, UnknownValue);
- } else {
- for (const UnderlyingObject &UnderlObj : Objs) {
- ValueType V = UnderlObj.getValue();
- bool ThisMayAlias = UnderlObj.mayAlias();
-
- // Add precise dependencies against all previously seen stores
- // mapping to the same Value(s).
- addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
-
- // Map this load to V.
- (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
- }
- // The load may have dependencies to unanalyzable stores.
- addChainDependencies(SU, Stores, UnknownValue);
- }
- }
-
- // Reduce maps if they grow huge.
- if (Stores.size() + Loads.size() >= HugeRegion) {
- LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
- reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
- }
- if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
- LLVM_DEBUG(
- dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
- reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
- }
- }
-
- if (DbgMI)
- FirstDbgValue = DbgMI;
-
- Defs.clear();
- Uses.clear();
- CurrentVRegDefs.clear();
- CurrentVRegUses.clear();
-}
-
-raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
- PSV->printCustom(OS);
- return OS;
-}
-
-void ScheduleDAGInstrs::Value2SUsMap::dump() {
- for (auto &Itr : *this) {
- if (Itr.first.is<const Value*>()) {
- const Value *V = Itr.first.get<const Value*>();
- if (isa<UndefValue>(V))
- dbgs() << "Unknown";
- else
- V->printAsOperand(dbgs());
- }
- else if (Itr.first.is<const PseudoSourceValue*>())
- dbgs() << Itr.first.get<const PseudoSourceValue*>();
- else
- llvm_unreachable("Unknown Value type.");
-
- dbgs() << " : ";
- dumpSUList(Itr.second);
- }
-}
-
-void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
- Value2SUsMap &loads, unsigned N) {
- LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
- dbgs() << "Loading SUnits:\n"; loads.dump());
-
- // Insert all SU's NodeNums into a vector and sort it.
- std::vector<unsigned> NodeNums;
- NodeNums.reserve(stores.size() + loads.size());
- for (auto &I : stores)
- for (auto *SU : I.second)
- NodeNums.push_back(SU->NodeNum);
- for (auto &I : loads)
- for (auto *SU : I.second)
- NodeNums.push_back(SU->NodeNum);
- llvm::sort(NodeNums);
-
- // The N last elements in NodeNums will be removed, and the SU with
- // the lowest NodeNum of them will become the new BarrierChain to
- // let the not yet seen SUs have a dependency to the removed SUs.
- assert(N <= NodeNums.size());
- SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
- if (BarrierChain) {
- // The aliasing and non-aliasing maps reduce independently of each
- // other, but share a common BarrierChain. Check if the
- // newBarrierChain is above the former one. If it is not, it may
- // introduce a loop to use newBarrierChain, so keep the old one.
- if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
- BarrierChain->addPredBarrier(newBarrierChain);
- BarrierChain = newBarrierChain;
- LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
- << BarrierChain->NodeNum << ").\n";);
- }
- else
- LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
- << BarrierChain->NodeNum << ").\n";);
- }
- else
- BarrierChain = newBarrierChain;
-
- insertBarrierChain(stores);
- insertBarrierChain(loads);
-
- LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
- dbgs() << "Loading SUnits:\n"; loads.dump());
-}
-
-static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
- MachineInstr &MI, bool addToLiveRegs) {
- for (MachineOperand &MO : MI.operands()) {
- if (!MO.isReg() || !MO.readsReg())
- continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
- continue;
-
- // Things that are available after the instruction are killed by it.
- bool IsKill = LiveRegs.available(MRI, Reg);
- MO.setIsKill(IsKill);
- if (addToLiveRegs)
- LiveRegs.addReg(Reg);
- }
-}
-
-void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
- LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
-
- LiveRegs.init(*TRI);
- LiveRegs.addLiveOuts(MBB);
-
- // Examine block from end to start...
- for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
- if (MI.isDebugInstr())
- continue;
-
- // Update liveness. Registers that are defed but not used in this
- // instruction are now dead. Mark register and all subregs as they
- // are completely defined.
- for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
- const MachineOperand &MO = *O;
- if (MO.isReg()) {
- if (!MO.isDef())
- continue;
- unsigned Reg = MO.getReg();
- if (!Reg)
- continue;
- LiveRegs.removeReg(Reg);
- } else if (MO.isRegMask()) {
- LiveRegs.removeRegsInMask(MO);
- }
- }
-
- // If there is a bundle header fix it up first.
- if (!MI.isBundled()) {
- toggleKills(MRI, LiveRegs, MI, true);
- } else {
- MachineBasicBlock::instr_iterator First = MI.getIterator();
- if (MI.isBundle()) {
- toggleKills(MRI, LiveRegs, MI, false);
- ++First;
- }
- // Some targets make the (questionable) assumtion that the instructions
- // inside the bundle are ordered and consequently only the last use of
- // a register inside the bundle can kill it.
- MachineBasicBlock::instr_iterator I = std::next(First);
- while (I->isBundledWithSucc())
- ++I;
- do {
- if (!I->isDebugInstr())
- toggleKills(MRI, LiveRegs, *I, true);
- --I;
- } while(I != First);
- }
- }
-}
-
-void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- dumpNodeName(SU);
- dbgs() << ": ";
- SU.getInstr()->dump();
-#endif
-}
-
-void ScheduleDAGInstrs::dump() const {
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- if (EntrySU.getInstr() != nullptr)
- dumpNodeAll(EntrySU);
- for (const SUnit &SU : SUnits)
- dumpNodeAll(SU);
- if (ExitSU.getInstr() != nullptr)
- dumpNodeAll(ExitSU);
-#endif
-}
-
-std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
- std::string s;
- raw_string_ostream oss(s);
- if (SU == &EntrySU)
- oss << "<entry>";
- else if (SU == &ExitSU)
- oss << "<exit>";
- else
- SU->getInstr()->print(oss, /*SkipOpers=*/true);
- return oss.str();
-}
-
-/// Return the basic block label. It is not necessarilly unique because a block
-/// contains multiple scheduling regions. But it is fine for visualization.
-std::string ScheduleDAGInstrs::getDAGName() const {
- return "dag." + BB->getFullName();
-}
-
-//===----------------------------------------------------------------------===//
-// SchedDFSResult Implementation
-//===----------------------------------------------------------------------===//
-
-namespace llvm {
-
-/// Internal state used to compute SchedDFSResult.
-class SchedDFSImpl {
- SchedDFSResult &R;
-
- /// Join DAG nodes into equivalence classes by their subtree.
- IntEqClasses SubtreeClasses;
- /// List PredSU, SuccSU pairs that represent data edges between subtrees.
- std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
-
- struct RootData {
- unsigned NodeID;
- unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
- unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
- /// children.
-
- RootData(unsigned id): NodeID(id),
- ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
-
- unsigned getSparseSetIndex() const { return NodeID; }
- };
-
- SparseSet<RootData> RootSet;
-
-public:
- SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
- RootSet.setUniverse(R.DFSNodeData.size());
- }
-
- /// Returns true if this node been visited by the DFS traversal.
- ///
- /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
- /// ID. Later, SubtreeID is updated but remains valid.
- bool isVisited(const SUnit *SU) const {
- return R.DFSNodeData[SU->NodeNum].SubtreeID
- != SchedDFSResult::InvalidSubtreeID;
- }
-
- /// Initializes this node's instruction count. We don't need to flag the node
- /// visited until visitPostorder because the DAG cannot have cycles.
- void visitPreorder(const SUnit *SU) {
- R.DFSNodeData[SU->NodeNum].InstrCount =
- SU->getInstr()->isTransient() ? 0 : 1;
- }
-
- /// Called once for each node after all predecessors are visited. Revisit this
- /// node's predecessors and potentially join them now that we know the ILP of
- /// the other predecessors.
- void visitPostorderNode(const SUnit *SU) {
- // Mark this node as the root of a subtree. It may be joined with its
- // successors later.
- R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
- RootData RData(SU->NodeNum);
- RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
-
- // If any predecessors are still in their own subtree, they either cannot be
- // joined or are large enough to remain separate. If this parent node's
- // total instruction count is not greater than a child subtree by at least
- // the subtree limit, then try to join it now since splitting subtrees is
- // only useful if multiple high-pressure paths are possible.
- unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
- for (const SDep &PredDep : SU->Preds) {
- if (PredDep.getKind() != SDep::Data)
- continue;
- unsigned PredNum = PredDep.getSUnit()->NodeNum;
- if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
- joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
-
- // Either link or merge the TreeData entry from the child to the parent.
- if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
- // If the predecessor's parent is invalid, this is a tree edge and the
- // current node is the parent.
- if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
- RootSet[PredNum].ParentNodeID = SU->NodeNum;
- }
- else if (RootSet.count(PredNum)) {
- // The predecessor is not a root, but is still in the root set. This
- // must be the new parent that it was just joined to. Note that
- // RootSet[PredNum].ParentNodeID may either be invalid or may still be
- // set to the original parent.
- RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
- RootSet.erase(PredNum);
- }
- }
- RootSet[SU->NodeNum] = RData;
- }
-
- /// Called once for each tree edge after calling visitPostOrderNode on
- /// the predecessor. Increment the parent node's instruction count and
- /// preemptively join this subtree to its parent's if it is small enough.
- void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
- R.DFSNodeData[Succ->NodeNum].InstrCount
- += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
- joinPredSubtree(PredDep, Succ);
- }
-
- /// Adds a connection for cross edges.
- void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
- ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
- }
-
- /// Sets each node's subtree ID to the representative ID and record
- /// connections between trees.
- void finalize() {
- SubtreeClasses.compress();
- R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
- assert(SubtreeClasses.getNumClasses() == RootSet.size()
- && "number of roots should match trees");
- for (const RootData &Root : RootSet) {
- unsigned TreeID = SubtreeClasses[Root.NodeID];
- if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
- R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
- R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
- // Note that SubInstrCount may be greater than InstrCount if we joined
- // subtrees across a cross edge. InstrCount will be attributed to the
- // original parent, while SubInstrCount will be attributed to the joined
- // parent.
- }
- R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
- R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
- LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
- for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
- R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
- LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
- << R.DFSNodeData[Idx].SubtreeID << '\n');
- }
- for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
- unsigned PredTree = SubtreeClasses[P.first->NodeNum];
- unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
- if (PredTree == SuccTree)
- continue;
- unsigned Depth = P.first->getDepth();
- addConnection(PredTree, SuccTree, Depth);
- addConnection(SuccTree, PredTree, Depth);
- }
- }
-
-protected:
- /// Joins the predecessor subtree with the successor that is its DFS parent.
- /// Applies some heuristics before joining.
- bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
- bool CheckLimit = true) {
- assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
-
- // Check if the predecessor is already joined.
- const SUnit *PredSU = PredDep.getSUnit();
- unsigned PredNum = PredSU->NodeNum;
- if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
- return false;
-
- // Four is the magic number of successors before a node is considered a
- // pinch point.
- unsigned NumDataSucs = 0;
- for (const SDep &SuccDep : PredSU->Succs) {
- if (SuccDep.getKind() == SDep::Data) {
- if (++NumDataSucs >= 4)
- return false;
- }
- }
- if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
- return false;
- R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
- SubtreeClasses.join(Succ->NodeNum, PredNum);
- return true;
- }
-
- /// Called by finalize() to record a connection between trees.
- void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
- if (!Depth)
- return;
-
- do {
- SmallVectorImpl<SchedDFSResult::Connection> &Connections =
- R.SubtreeConnections[FromTree];
- for (SchedDFSResult::Connection &C : Connections) {
- if (C.TreeID == ToTree) {
- C.Level = std::max(C.Level, Depth);
- return;
- }
- }
- Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
- FromTree = R.DFSTreeData[FromTree].ParentTreeID;
- } while (FromTree != SchedDFSResult::InvalidSubtreeID);
- }
-};
-
-} // end namespace llvm
-
-namespace {
-
-/// Manage the stack used by a reverse depth-first search over the DAG.
-class SchedDAGReverseDFS {
- std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
-
-public:
- bool isComplete() const { return DFSStack.empty(); }
-
- void follow(const SUnit *SU) {
- DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
- }
- void advance() { ++DFSStack.back().second; }
-
- const SDep *backtrack() {
- DFSStack.pop_back();
- return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
- }
-
- const SUnit *getCurr() const { return DFSStack.back().first; }
-
- SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
-
- SUnit::const_pred_iterator getPredEnd() const {
- return getCurr()->Preds.end();
- }
-};
-
-} // end anonymous namespace
-
-static bool hasDataSucc(const SUnit *SU) {
- for (const SDep &SuccDep : SU->Succs) {
- if (SuccDep.getKind() == SDep::Data &&
- !SuccDep.getSUnit()->isBoundaryNode())
- return true;
- }
- return false;
-}
-
-/// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
-/// search from this root.
-void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
- if (!IsBottomUp)
- llvm_unreachable("Top-down ILP metric is unimplemented");
-
- SchedDFSImpl Impl(*this);
- for (const SUnit &SU : SUnits) {
- if (Impl.isVisited(&SU) || hasDataSucc(&SU))
- continue;
-
- SchedDAGReverseDFS DFS;
- Impl.visitPreorder(&SU);
- DFS.follow(&SU);
- while (true) {
- // Traverse the leftmost path as far as possible.
- while (DFS.getPred() != DFS.getPredEnd()) {
- const SDep &PredDep = *DFS.getPred();
- DFS.advance();
- // Ignore non-data edges.
- if (PredDep.getKind() != SDep::Data
- || PredDep.getSUnit()->isBoundaryNode()) {
- continue;
- }
- // An already visited edge is a cross edge, assuming an acyclic DAG.
- if (Impl.isVisited(PredDep.getSUnit())) {
- Impl.visitCrossEdge(PredDep, DFS.getCurr());
- continue;
- }
- Impl.visitPreorder(PredDep.getSUnit());
- DFS.follow(PredDep.getSUnit());
- }
- // Visit the top of the stack in postorder and backtrack.
- const SUnit *Child = DFS.getCurr();
- const SDep *PredDep = DFS.backtrack();
- Impl.visitPostorderNode(Child);
- if (PredDep)
- Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
- if (DFS.isComplete())
- break;
- }
- }
- Impl.finalize();
-}
-
-/// The root of the given SubtreeID was just scheduled. For all subtrees
-/// connected to this tree, record the depth of the connection so that the
-/// nearest connected subtrees can be prioritized.
-void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
- for (const Connection &C : SubtreeConnections[SubtreeID]) {
- SubtreeConnectLevels[C.TreeID] =
- std::max(SubtreeConnectLevels[C.TreeID], C.Level);
- LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
- << SubtreeConnectLevels[C.TreeID] << '\n');
- }
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
- OS << InstrCount << " / " << Length << " = ";
- if (!Length)
- OS << "BADILP";
- else
- OS << format("%g", ((double)InstrCount / Length));
-}
-
-LLVM_DUMP_METHOD void ILPValue::dump() const {
- dbgs() << *this << '\n';
-}
-
-namespace llvm {
-
-LLVM_DUMP_METHOD
-raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
- Val.print(OS);
- return OS;
-}
-
-} // end namespace llvm
-
-#endif