diff options
Diffstat (limited to 'gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp')
| -rw-r--r-- | gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp | 19403 |
1 files changed, 0 insertions, 19403 deletions
diff --git a/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp deleted file mode 100644 index 8203476ed4e..00000000000 --- a/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp +++ /dev/null @@ -1,19403 +0,0 @@ -//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run -// both before and after the DAG is legalized. -// -// This pass is not a substitute for the LLVM IR instcombine pass. This pass is -// primarily intended to handle simplification opportunities that are implicit -// in the LLVM IR and exposed by the various codegen lowering phases. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/IntervalMap.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallBitVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/CodeGen/DAGCombine.h" -#include "llvm/CodeGen/ISDOpcodes.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/RuntimeLibcalls.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/CodeGen/SelectionDAGTargetInfo.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CodeGen.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MachineValueType.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <functional> -#include <iterator> -#include <string> -#include <tuple> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "dagcombine" - -STATISTIC(NodesCombined , "Number of dag nodes combined"); -STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); -STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); -STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); -STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); -STATISTIC(SlicedLoads, "Number of load sliced"); -STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); - -static cl::opt<bool> -CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, - cl::desc("Enable DAG combiner's use of IR alias analysis")); - -static cl::opt<bool> -UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), - cl::desc("Enable DAG combiner's use of TBAA")); - -#ifndef NDEBUG -static cl::opt<std::string> -CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, - cl::desc("Only use DAG-combiner alias analysis in this" - " function")); -#endif - -/// Hidden option to stress test load slicing, i.e., when this option -/// is enabled, load slicing bypasses most of its profitability guards. -static cl::opt<bool> -StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, - cl::desc("Bypass the profitability model of load slicing"), - cl::init(false)); - -static cl::opt<bool> - MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), - cl::desc("DAG combiner may split indexing from loads")); - -namespace { - - class DAGCombiner { - SelectionDAG &DAG; - const TargetLowering &TLI; - CombineLevel Level; - CodeGenOpt::Level OptLevel; - bool LegalOperations = false; - bool LegalTypes = false; - bool ForCodeSize; - - /// Worklist of all of the nodes that need to be simplified. - /// - /// This must behave as a stack -- new nodes to process are pushed onto the - /// back and when processing we pop off of the back. - /// - /// The worklist will not contain duplicates but may contain null entries - /// due to nodes being deleted from the underlying DAG. - SmallVector<SDNode *, 64> Worklist; - - /// Mapping from an SDNode to its position on the worklist. - /// - /// This is used to find and remove nodes from the worklist (by nulling - /// them) when they are deleted from the underlying DAG. It relies on - /// stable indices of nodes within the worklist. - DenseMap<SDNode *, unsigned> WorklistMap; - - /// Set of nodes which have been combined (at least once). - /// - /// This is used to allow us to reliably add any operands of a DAG node - /// which have not yet been combined to the worklist. - SmallPtrSet<SDNode *, 32> CombinedNodes; - - // AA - Used for DAG load/store alias analysis. - AliasAnalysis *AA; - - /// When an instruction is simplified, add all users of the instruction to - /// the work lists because they might get more simplified now. - void AddUsersToWorklist(SDNode *N) { - for (SDNode *Node : N->uses()) - AddToWorklist(Node); - } - - /// Call the node-specific routine that folds each particular type of node. - SDValue visit(SDNode *N); - - public: - DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) - : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), - OptLevel(OL), AA(AA) { - ForCodeSize = DAG.getMachineFunction().getFunction().optForSize(); - - MaximumLegalStoreInBits = 0; - for (MVT VT : MVT::all_valuetypes()) - if (EVT(VT).isSimple() && VT != MVT::Other && - TLI.isTypeLegal(EVT(VT)) && - VT.getSizeInBits() >= MaximumLegalStoreInBits) - MaximumLegalStoreInBits = VT.getSizeInBits(); - } - - /// Add to the worklist making sure its instance is at the back (next to be - /// processed.) - void AddToWorklist(SDNode *N) { - assert(N->getOpcode() != ISD::DELETED_NODE && - "Deleted Node added to Worklist"); - - // Skip handle nodes as they can't usefully be combined and confuse the - // zero-use deletion strategy. - if (N->getOpcode() == ISD::HANDLENODE) - return; - - if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) - Worklist.push_back(N); - } - - /// Remove all instances of N from the worklist. - void removeFromWorklist(SDNode *N) { - CombinedNodes.erase(N); - - auto It = WorklistMap.find(N); - if (It == WorklistMap.end()) - return; // Not in the worklist. - - // Null out the entry rather than erasing it to avoid a linear operation. - Worklist[It->second] = nullptr; - WorklistMap.erase(It); - } - - void deleteAndRecombine(SDNode *N); - bool recursivelyDeleteUnusedNodes(SDNode *N); - - /// Replaces all uses of the results of one DAG node with new values. - SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, - bool AddTo = true); - - /// Replaces all uses of the results of one DAG node with new values. - SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { - return CombineTo(N, &Res, 1, AddTo); - } - - /// Replaces all uses of the results of one DAG node with new values. - SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, - bool AddTo = true) { - SDValue To[] = { Res0, Res1 }; - return CombineTo(N, To, 2, AddTo); - } - - void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); - - private: - unsigned MaximumLegalStoreInBits; - - /// Check the specified integer node value to see if it can be simplified or - /// if things it uses can be simplified by bit propagation. - /// If so, return true. - bool SimplifyDemandedBits(SDValue Op) { - unsigned BitWidth = Op.getScalarValueSizeInBits(); - APInt Demanded = APInt::getAllOnesValue(BitWidth); - return SimplifyDemandedBits(Op, Demanded); - } - - /// Check the specified vector node value to see if it can be simplified or - /// if things it uses can be simplified as it only uses some of the - /// elements. If so, return true. - bool SimplifyDemandedVectorElts(SDValue Op) { - unsigned NumElts = Op.getValueType().getVectorNumElements(); - APInt Demanded = APInt::getAllOnesValue(NumElts); - return SimplifyDemandedVectorElts(Op, Demanded); - } - - bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); - bool SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded, - bool AssumeSingleUse = false); - - bool CombineToPreIndexedLoadStore(SDNode *N); - bool CombineToPostIndexedLoadStore(SDNode *N); - SDValue SplitIndexingFromLoad(LoadSDNode *LD); - bool SliceUpLoad(SDNode *N); - - // Scalars have size 0 to distinguish from singleton vectors. - SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); - bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); - bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); - - /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed - /// load. - /// - /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. - /// \param InVecVT type of the input vector to EVE with bitcasts resolved. - /// \param EltNo index of the vector element to load. - /// \param OriginalLoad load that EVE came from to be replaced. - /// \returns EVE on success SDValue() on failure. - SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, - SDValue EltNo, - LoadSDNode *OriginalLoad); - void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); - SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); - SDValue SExtPromoteOperand(SDValue Op, EVT PVT); - SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); - SDValue PromoteIntBinOp(SDValue Op); - SDValue PromoteIntShiftOp(SDValue Op); - SDValue PromoteExtend(SDValue Op); - bool PromoteLoad(SDValue Op); - - /// Call the node-specific routine that knows how to fold each - /// particular type of node. If that doesn't do anything, try the - /// target-specific DAG combines. - SDValue combine(SDNode *N); - - // Visitation implementation - Implement dag node combining for different - // node types. The semantics are as follows: - // Return Value: - // SDValue.getNode() == 0 - No change was made - // SDValue.getNode() == N - N was replaced, is dead and has been handled. - // otherwise - N should be replaced by the returned Operand. - // - SDValue visitTokenFactor(SDNode *N); - SDValue visitMERGE_VALUES(SDNode *N); - SDValue visitADD(SDNode *N); - SDValue visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference); - SDValue visitSUB(SDNode *N); - SDValue visitADDSAT(SDNode *N); - SDValue visitSUBSAT(SDNode *N); - SDValue visitADDC(SDNode *N); - SDValue visitUADDO(SDNode *N); - SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitSUBC(SDNode *N); - SDValue visitUSUBO(SDNode *N); - SDValue visitADDE(SDNode *N); - SDValue visitADDCARRY(SDNode *N); - SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); - SDValue visitSUBE(SDNode *N); - SDValue visitSUBCARRY(SDNode *N); - SDValue visitMUL(SDNode *N); - SDValue useDivRem(SDNode *N); - SDValue visitSDIV(SDNode *N); - SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitUDIV(SDNode *N); - SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitREM(SDNode *N); - SDValue visitMULHU(SDNode *N); - SDValue visitMULHS(SDNode *N); - SDValue visitSMUL_LOHI(SDNode *N); - SDValue visitUMUL_LOHI(SDNode *N); - SDValue visitSMULO(SDNode *N); - SDValue visitUMULO(SDNode *N); - SDValue visitIMINMAX(SDNode *N); - SDValue visitAND(SDNode *N); - SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitOR(SDNode *N); - SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitXOR(SDNode *N); - SDValue SimplifyVBinOp(SDNode *N); - SDValue visitSHL(SDNode *N); - SDValue visitSRA(SDNode *N); - SDValue visitSRL(SDNode *N); - SDValue visitFunnelShift(SDNode *N); - SDValue visitRotate(SDNode *N); - SDValue visitABS(SDNode *N); - SDValue visitBSWAP(SDNode *N); - SDValue visitBITREVERSE(SDNode *N); - SDValue visitCTLZ(SDNode *N); - SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); - SDValue visitCTTZ(SDNode *N); - SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); - SDValue visitCTPOP(SDNode *N); - SDValue visitSELECT(SDNode *N); - SDValue visitVSELECT(SDNode *N); - SDValue visitSELECT_CC(SDNode *N); - SDValue visitSETCC(SDNode *N); - SDValue visitSETCCCARRY(SDNode *N); - SDValue visitSIGN_EXTEND(SDNode *N); - SDValue visitZERO_EXTEND(SDNode *N); - SDValue visitANY_EXTEND(SDNode *N); - SDValue visitAssertExt(SDNode *N); - SDValue visitSIGN_EXTEND_INREG(SDNode *N); - SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); - SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); - SDValue visitTRUNCATE(SDNode *N); - SDValue visitBITCAST(SDNode *N); - SDValue visitBUILD_PAIR(SDNode *N); - SDValue visitFADD(SDNode *N); - SDValue visitFSUB(SDNode *N); - SDValue visitFMUL(SDNode *N); - SDValue visitFMA(SDNode *N); - SDValue visitFDIV(SDNode *N); - SDValue visitFREM(SDNode *N); - SDValue visitFSQRT(SDNode *N); - SDValue visitFCOPYSIGN(SDNode *N); - SDValue visitFPOW(SDNode *N); - SDValue visitSINT_TO_FP(SDNode *N); - SDValue visitUINT_TO_FP(SDNode *N); - SDValue visitFP_TO_SINT(SDNode *N); - SDValue visitFP_TO_UINT(SDNode *N); - SDValue visitFP_ROUND(SDNode *N); - SDValue visitFP_ROUND_INREG(SDNode *N); - SDValue visitFP_EXTEND(SDNode *N); - SDValue visitFNEG(SDNode *N); - SDValue visitFABS(SDNode *N); - SDValue visitFCEIL(SDNode *N); - SDValue visitFTRUNC(SDNode *N); - SDValue visitFFLOOR(SDNode *N); - SDValue visitFMINNUM(SDNode *N); - SDValue visitFMAXNUM(SDNode *N); - SDValue visitFMINIMUM(SDNode *N); - SDValue visitFMAXIMUM(SDNode *N); - SDValue visitBRCOND(SDNode *N); - SDValue visitBR_CC(SDNode *N); - SDValue visitLOAD(SDNode *N); - - SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); - SDValue replaceStoreOfFPConstant(StoreSDNode *ST); - - SDValue visitSTORE(SDNode *N); - SDValue visitINSERT_VECTOR_ELT(SDNode *N); - SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); - SDValue visitBUILD_VECTOR(SDNode *N); - SDValue visitCONCAT_VECTORS(SDNode *N); - SDValue visitEXTRACT_SUBVECTOR(SDNode *N); - SDValue visitVECTOR_SHUFFLE(SDNode *N); - SDValue visitSCALAR_TO_VECTOR(SDNode *N); - SDValue visitINSERT_SUBVECTOR(SDNode *N); - SDValue visitMLOAD(SDNode *N); - SDValue visitMSTORE(SDNode *N); - SDValue visitMGATHER(SDNode *N); - SDValue visitMSCATTER(SDNode *N); - SDValue visitFP_TO_FP16(SDNode *N); - SDValue visitFP16_TO_FP(SDNode *N); - - SDValue visitFADDForFMACombine(SDNode *N); - SDValue visitFSUBForFMACombine(SDNode *N); - SDValue visitFMULForFMADistributiveCombine(SDNode *N); - - SDValue XformToShuffleWithZero(SDNode *N); - SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, - SDValue N1, SDNodeFlags Flags); - - SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); - - SDValue foldSelectOfConstants(SDNode *N); - SDValue foldVSelectOfConstants(SDNode *N); - SDValue foldBinOpIntoSelect(SDNode *BO); - bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); - SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); - SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); - SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2, SDValue N3, ISD::CondCode CC, - bool NotExtCompare = false); - SDValue convertSelectOfFPConstantsToLoadOffset( - const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, - ISD::CondCode CC); - SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2, SDValue N3, ISD::CondCode CC); - SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, - const SDLoc &DL); - SDValue unfoldMaskedMerge(SDNode *N); - SDValue unfoldExtremeBitClearingToShifts(SDNode *N); - SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, - const SDLoc &DL, bool foldBooleans); - SDValue rebuildSetCC(SDValue N); - - bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, - SDValue &CC) const; - bool isOneUseSetCC(SDValue N) const; - - SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, - unsigned HiOp); - SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); - SDValue CombineExtLoad(SDNode *N); - SDValue CombineZExtLogicopShiftLoad(SDNode *N); - SDValue combineRepeatedFPDivisors(SDNode *N); - SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); - SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); - SDValue BuildSDIV(SDNode *N); - SDValue BuildSDIVPow2(SDNode *N); - SDValue BuildUDIV(SDNode *N); - SDValue BuildLogBase2(SDValue V, const SDLoc &DL); - SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags); - SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); - SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); - SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); - SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal); - SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal); - SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, - bool DemandHighBits = true); - SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); - SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, - SDValue InnerPos, SDValue InnerNeg, - unsigned PosOpcode, unsigned NegOpcode, - const SDLoc &DL); - SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); - SDValue MatchLoadCombine(SDNode *N); - SDValue ReduceLoadWidth(SDNode *N); - SDValue ReduceLoadOpStoreWidth(SDNode *N); - SDValue splitMergedValStore(StoreSDNode *ST); - SDValue TransformFPLoadStorePair(SDNode *N); - SDValue convertBuildVecZextToZext(SDNode *N); - SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); - SDValue reduceBuildVecToShuffle(SDNode *N); - SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, - ArrayRef<int> VectorMask, SDValue VecIn1, - SDValue VecIn2, unsigned LeftIdx); - SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); - - /// Walk up chain skipping non-aliasing memory nodes, - /// looking for aliasing nodes and adding them to the Aliases vector. - void GatherAllAliases(SDNode *N, SDValue OriginalChain, - SmallVectorImpl<SDValue> &Aliases); - - /// Return true if there is any possibility that the two addresses overlap. - bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; - - /// Walk up chain skipping non-aliasing memory nodes, looking for a better - /// chain (aliasing node.) - SDValue FindBetterChain(SDNode *N, SDValue Chain); - - /// Try to replace a store and any possibly adjacent stores on - /// consecutive chains with better chains. Return true only if St is - /// replaced. - /// - /// Notice that other chains may still be replaced even if the function - /// returns false. - bool findBetterNeighborChains(StoreSDNode *St); - - // Helper for findBetterNeighborChains. Walk up store chain add additional - // chained stores that do not overlap and can be parallelized. - bool parallelizeChainedStores(StoreSDNode *St); - - /// Holds a pointer to an LSBaseSDNode as well as information on where it - /// is located in a sequence of memory operations connected by a chain. - struct MemOpLink { - // Ptr to the mem node. - LSBaseSDNode *MemNode; - - // Offset from the base ptr. - int64_t OffsetFromBase; - - MemOpLink(LSBaseSDNode *N, int64_t Offset) - : MemNode(N), OffsetFromBase(Offset) {} - }; - - /// This is a helper function for visitMUL to check the profitability - /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). - /// MulNode is the original multiply, AddNode is (add x, c1), - /// and ConstNode is c2. - bool isMulAddWithConstProfitable(SDNode *MulNode, - SDValue &AddNode, - SDValue &ConstNode); - - /// This is a helper function for visitAND and visitZERO_EXTEND. Returns - /// true if the (and (load x) c) pattern matches an extload. ExtVT returns - /// the type of the loaded value to be extended. - bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, - EVT LoadResultTy, EVT &ExtVT); - - /// Helper function to calculate whether the given Load/Store can have its - /// width reduced to ExtVT. - bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, - EVT &MemVT, unsigned ShAmt = 0); - - /// Used by BackwardsPropagateMask to find suitable loads. - bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, - SmallPtrSetImpl<SDNode*> &NodesWithConsts, - ConstantSDNode *Mask, SDNode *&NodeToMask); - /// Attempt to propagate a given AND node back to load leaves so that they - /// can be combined into narrow loads. - bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG); - - /// Helper function for MergeConsecutiveStores which merges the - /// component store chains. - SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumStores); - - /// This is a helper function for MergeConsecutiveStores. When the - /// source elements of the consecutive stores are all constants or - /// all extracted vector elements, try to merge them into one - /// larger store introducing bitcasts if necessary. \return True - /// if a merged store was created. - bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, - EVT MemVT, unsigned NumStores, - bool IsConstantSrc, bool UseVector, - bool UseTrunc); - - /// This is a helper function for MergeConsecutiveStores. Stores - /// that potentially may be merged with St are placed in - /// StoreNodes. RootNode is a chain predecessor to all store - /// candidates. - void getStoreMergeCandidates(StoreSDNode *St, - SmallVectorImpl<MemOpLink> &StoreNodes, - SDNode *&Root); - - /// Helper function for MergeConsecutiveStores. Checks if - /// candidate stores have indirect dependency through their - /// operands. RootNode is the predecessor to all stores calculated - /// by getStoreMergeCandidates and is used to prune the dependency check. - /// \return True if safe to merge. - bool checkMergeStoreCandidatesForDependencies( - SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, - SDNode *RootNode); - - /// Merge consecutive store operations into a wide store. - /// This optimization uses wide integers or vectors when possible. - /// \return number of stores that were merged into a merged store (the - /// affected nodes are stored as a prefix in \p StoreNodes). - bool MergeConsecutiveStores(StoreSDNode *St); - - /// Try to transform a truncation where C is a constant: - /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) - /// - /// \p N needs to be a truncation and its first operand an AND. Other - /// requirements are checked by the function (e.g. that trunc is - /// single-use) and if missed an empty SDValue is returned. - SDValue distributeTruncateThroughAnd(SDNode *N); - - /// Helper function to determine whether the target supports operation - /// given by \p Opcode for type \p VT, that is, whether the operation - /// is legal or custom before legalizing operations, and whether is - /// legal (but not custom) after legalization. - bool hasOperation(unsigned Opcode, EVT VT) { - if (LegalOperations) - return TLI.isOperationLegal(Opcode, VT); - return TLI.isOperationLegalOrCustom(Opcode, VT); - } - - public: - /// Runs the dag combiner on all nodes in the work list - void Run(CombineLevel AtLevel); - - SelectionDAG &getDAG() const { return DAG; } - - /// Returns a type large enough to hold any valid shift amount - before type - /// legalization these can be huge. - EVT getShiftAmountTy(EVT LHSTy) { - assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); - return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); - } - - /// This method returns true if we are running before type legalization or - /// if the specified VT is legal. - bool isTypeLegal(const EVT &VT) { - if (!LegalTypes) return true; - return TLI.isTypeLegal(VT); - } - - /// Convenience wrapper around TargetLowering::getSetCCResultType - EVT getSetCCResultType(EVT VT) const { - return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); - } - - void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, - SDValue OrigLoad, SDValue ExtLoad, - ISD::NodeType ExtType); - }; - -/// This class is a DAGUpdateListener that removes any deleted -/// nodes from the worklist. -class WorklistRemover : public SelectionDAG::DAGUpdateListener { - DAGCombiner &DC; - -public: - explicit WorklistRemover(DAGCombiner &dc) - : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} - - void NodeDeleted(SDNode *N, SDNode *E) override { - DC.removeFromWorklist(N); - } -}; - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// -// TargetLowering::DAGCombinerInfo implementation -//===----------------------------------------------------------------------===// - -void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { - ((DAGCombiner*)DC)->AddToWorklist(N); -} - -SDValue TargetLowering::DAGCombinerInfo:: -CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { - return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); -} - -SDValue TargetLowering::DAGCombinerInfo:: -CombineTo(SDNode *N, SDValue Res, bool AddTo) { - return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); -} - -SDValue TargetLowering::DAGCombinerInfo:: -CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { - return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); -} - -void TargetLowering::DAGCombinerInfo:: -CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { - return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); -} - -//===----------------------------------------------------------------------===// -// Helper Functions -//===----------------------------------------------------------------------===// - -void DAGCombiner::deleteAndRecombine(SDNode *N) { - removeFromWorklist(N); - - // If the operands of this node are only used by the node, they will now be - // dead. Make sure to re-visit them and recursively delete dead nodes. - for (const SDValue &Op : N->ops()) - // For an operand generating multiple values, one of the values may - // become dead allowing further simplification (e.g. split index - // arithmetic from an indexed load). - if (Op->hasOneUse() || Op->getNumValues() > 1) - AddToWorklist(Op.getNode()); - - DAG.DeleteNode(N); -} - -/// Return 1 if we can compute the negated form of the specified expression for -/// the same cost as the expression itself, or 2 if we can compute the negated -/// form more cheaply than the expression itself. -static char isNegatibleForFree(SDValue Op, bool LegalOperations, - const TargetLowering &TLI, - const TargetOptions *Options, - unsigned Depth = 0) { - // fneg is removable even if it has multiple uses. - if (Op.getOpcode() == ISD::FNEG) return 2; - - // Don't allow anything with multiple uses unless we know it is free. - EVT VT = Op.getValueType(); - const SDNodeFlags Flags = Op->getFlags(); - if (!Op.hasOneUse()) - if (!(Op.getOpcode() == ISD::FP_EXTEND && - TLI.isFPExtFree(VT, Op.getOperand(0).getValueType()))) - return 0; - - // Don't recurse exponentially. - if (Depth > 6) return 0; - - switch (Op.getOpcode()) { - default: return false; - case ISD::ConstantFP: { - if (!LegalOperations) - return 1; - - // Don't invert constant FP values after legalization unless the target says - // the negated constant is legal. - return TLI.isOperationLegal(ISD::ConstantFP, VT) || - TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT); - } - case ISD::FADD: - if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros()) - return 0; - - // After operation legalization, it might not be legal to create new FSUBs. - if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) - return 0; - - // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) - if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, - Options, Depth + 1)) - return V; - // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) - return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, - Depth + 1); - case ISD::FSUB: - // We can't turn -(A-B) into B-A when we honor signed zeros. - if (!Options->NoSignedZerosFPMath && - !Flags.hasNoSignedZeros()) - return 0; - - // fold (fneg (fsub A, B)) -> (fsub B, A) - return 1; - - case ISD::FMUL: - case ISD::FDIV: - // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) - if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, - Options, Depth + 1)) - return V; - - return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, - Depth + 1); - - case ISD::FP_EXTEND: - case ISD::FP_ROUND: - case ISD::FSIN: - return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, - Depth + 1); - } -} - -/// If isNegatibleForFree returns true, return the newly negated expression. -static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, - bool LegalOperations, unsigned Depth = 0) { - const TargetOptions &Options = DAG.getTarget().Options; - // fneg is removable even if it has multiple uses. - if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); - - assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); - - const SDNodeFlags Flags = Op.getNode()->getFlags(); - - switch (Op.getOpcode()) { - default: llvm_unreachable("Unknown code"); - case ISD::ConstantFP: { - APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); - V.changeSign(); - return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); - } - case ISD::FADD: - assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros()); - - // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) - if (isNegatibleForFree(Op.getOperand(0), LegalOperations, - DAG.getTargetLoweringInfo(), &Options, Depth+1)) - return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), - GetNegatedExpression(Op.getOperand(0), DAG, - LegalOperations, Depth+1), - Op.getOperand(1), Flags); - // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) - return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), - GetNegatedExpression(Op.getOperand(1), DAG, - LegalOperations, Depth+1), - Op.getOperand(0), Flags); - case ISD::FSUB: - // fold (fneg (fsub 0, B)) -> B - if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) - if (N0CFP->isZero()) - return Op.getOperand(1); - - // fold (fneg (fsub A, B)) -> (fsub B, A) - return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), - Op.getOperand(1), Op.getOperand(0), Flags); - - case ISD::FMUL: - case ISD::FDIV: - // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) - if (isNegatibleForFree(Op.getOperand(0), LegalOperations, - DAG.getTargetLoweringInfo(), &Options, Depth+1)) - return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), - GetNegatedExpression(Op.getOperand(0), DAG, - LegalOperations, Depth+1), - Op.getOperand(1), Flags); - - // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) - return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), - Op.getOperand(0), - GetNegatedExpression(Op.getOperand(1), DAG, - LegalOperations, Depth+1), Flags); - - case ISD::FP_EXTEND: - case ISD::FSIN: - return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), - GetNegatedExpression(Op.getOperand(0), DAG, - LegalOperations, Depth+1)); - case ISD::FP_ROUND: - return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), - GetNegatedExpression(Op.getOperand(0), DAG, - LegalOperations, Depth+1), - Op.getOperand(1)); - } -} - -// APInts must be the same size for most operations, this helper -// function zero extends the shorter of the pair so that they match. -// We provide an Offset so that we can create bitwidths that won't overflow. -static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { - unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); - LHS = LHS.zextOrSelf(Bits); - RHS = RHS.zextOrSelf(Bits); -} - -// Return true if this node is a setcc, or is a select_cc -// that selects between the target values used for true and false, making it -// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to -// the appropriate nodes based on the type of node we are checking. This -// simplifies life a bit for the callers. -bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, - SDValue &CC) const { - if (N.getOpcode() == ISD::SETCC) { - LHS = N.getOperand(0); - RHS = N.getOperand(1); - CC = N.getOperand(2); - return true; - } - - if (N.getOpcode() != ISD::SELECT_CC || - !TLI.isConstTrueVal(N.getOperand(2).getNode()) || - !TLI.isConstFalseVal(N.getOperand(3).getNode())) - return false; - - if (TLI.getBooleanContents(N.getValueType()) == - TargetLowering::UndefinedBooleanContent) - return false; - - LHS = N.getOperand(0); - RHS = N.getOperand(1); - CC = N.getOperand(4); - return true; -} - -/// Return true if this is a SetCC-equivalent operation with only one use. -/// If this is true, it allows the users to invert the operation for free when -/// it is profitable to do so. -bool DAGCombiner::isOneUseSetCC(SDValue N) const { - SDValue N0, N1, N2; - if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) - return true; - return false; -} - -// Returns the SDNode if it is a constant float BuildVector -// or constant float. -static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { - if (isa<ConstantFPSDNode>(N)) - return N.getNode(); - if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) - return N.getNode(); - return nullptr; -} - -// Determines if it is a constant integer or a build vector of constant -// integers (and undefs). -// Do not permit build vector implicit truncation. -static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { - if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) - return !(Const->isOpaque() && NoOpaques); - if (N.getOpcode() != ISD::BUILD_VECTOR) - return false; - unsigned BitWidth = N.getScalarValueSizeInBits(); - for (const SDValue &Op : N->op_values()) { - if (Op.isUndef()) - continue; - ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); - if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || - (Const->isOpaque() && NoOpaques)) - return false; - } - return true; -} - -// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with -// undef's. -static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { - if (V.getOpcode() != ISD::BUILD_VECTOR) - return false; - return isConstantOrConstantVector(V, NoOpaques) || - ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); -} - -SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, - SDValue N1, SDNodeFlags Flags) { - // Don't reassociate reductions. - if (Flags.hasVectorReduction()) - return SDValue(); - - EVT VT = N0.getValueType(); - if (N0.getOpcode() == Opc && !N0->getFlags().hasVectorReduction()) { - if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { - if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { - // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) - if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) - return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); - return SDValue(); - } - if (N0.hasOneUse()) { - // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one - // use - SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); - if (!OpNode.getNode()) - return SDValue(); - AddToWorklist(OpNode.getNode()); - return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); - } - } - } - - if (N1.getOpcode() == Opc && !N1->getFlags().hasVectorReduction()) { - if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { - if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) - if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) - return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); - return SDValue(); - } - if (N1.hasOneUse()) { - // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one - // use - SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); - if (!OpNode.getNode()) - return SDValue(); - AddToWorklist(OpNode.getNode()); - return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); - } - } - } - - return SDValue(); -} - -SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, - bool AddTo) { - assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; - To[0].getNode()->dump(&DAG); - dbgs() << " and " << NumTo - 1 << " other values\n"); - for (unsigned i = 0, e = NumTo; i != e; ++i) - assert((!To[i].getNode() || - N->getValueType(i) == To[i].getValueType()) && - "Cannot combine value to value of different type!"); - - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesWith(N, To); - if (AddTo) { - // Push the new nodes and any users onto the worklist - for (unsigned i = 0, e = NumTo; i != e; ++i) { - if (To[i].getNode()) { - AddToWorklist(To[i].getNode()); - AddUsersToWorklist(To[i].getNode()); - } - } - } - - // Finally, if the node is now dead, remove it from the graph. The node - // may not be dead if the replacement process recursively simplified to - // something else needing this node. - if (N->use_empty()) - deleteAndRecombine(N); - return SDValue(N, 0); -} - -void DAGCombiner:: -CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { - // Replace all uses. If any nodes become isomorphic to other nodes and - // are deleted, make sure to remove them from our worklist. - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); - - // Push the new node and any (possibly new) users onto the worklist. - AddToWorklist(TLO.New.getNode()); - AddUsersToWorklist(TLO.New.getNode()); - - // Finally, if the node is now dead, remove it from the graph. The node - // may not be dead if the replacement process recursively simplified to - // something else needing this node. - if (TLO.Old.getNode()->use_empty()) - deleteAndRecombine(TLO.Old.getNode()); -} - -/// Check the specified integer node value to see if it can be simplified or if -/// things it uses can be simplified by bit propagation. If so, return true. -bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { - TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); - KnownBits Known; - if (!TLI.SimplifyDemandedBits(Op, Demanded, Known, TLO)) - return false; - - // Revisit the node. - AddToWorklist(Op.getNode()); - - // Replace the old value with the new one. - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); - dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); - dbgs() << '\n'); - - CommitTargetLoweringOpt(TLO); - return true; -} - -/// Check the specified vector node value to see if it can be simplified or -/// if things it uses can be simplified as it only uses some of the elements. -/// If so, return true. -bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded, - bool AssumeSingleUse) { - TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); - APInt KnownUndef, KnownZero; - if (!TLI.SimplifyDemandedVectorElts(Op, Demanded, KnownUndef, KnownZero, TLO, - 0, AssumeSingleUse)) - return false; - - // Revisit the node. - AddToWorklist(Op.getNode()); - - // Replace the old value with the new one. - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); - dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); - dbgs() << '\n'); - - CommitTargetLoweringOpt(TLO); - return true; -} - -void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { - SDLoc DL(Load); - EVT VT = Load->getValueType(0); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); - - LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; - Trunc.getNode()->dump(&DAG); dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); - deleteAndRecombine(Load); - AddToWorklist(Trunc.getNode()); -} - -SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { - Replace = false; - SDLoc DL(Op); - if (ISD::isUNINDEXEDLoad(Op.getNode())) { - LoadSDNode *LD = cast<LoadSDNode>(Op); - EVT MemVT = LD->getMemoryVT(); - ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD - : LD->getExtensionType(); - Replace = true; - return DAG.getExtLoad(ExtType, DL, PVT, - LD->getChain(), LD->getBasePtr(), - MemVT, LD->getMemOperand()); - } - - unsigned Opc = Op.getOpcode(); - switch (Opc) { - default: break; - case ISD::AssertSext: - if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) - return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); - break; - case ISD::AssertZext: - if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) - return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); - break; - case ISD::Constant: { - unsigned ExtOpc = - Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; - return DAG.getNode(ExtOpc, DL, PVT, Op); - } - } - - if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) - return SDValue(); - return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); -} - -SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { - if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) - return SDValue(); - EVT OldVT = Op.getValueType(); - SDLoc DL(Op); - bool Replace = false; - SDValue NewOp = PromoteOperand(Op, PVT, Replace); - if (!NewOp.getNode()) - return SDValue(); - AddToWorklist(NewOp.getNode()); - - if (Replace) - ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); - return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, - DAG.getValueType(OldVT)); -} - -SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { - EVT OldVT = Op.getValueType(); - SDLoc DL(Op); - bool Replace = false; - SDValue NewOp = PromoteOperand(Op, PVT, Replace); - if (!NewOp.getNode()) - return SDValue(); - AddToWorklist(NewOp.getNode()); - - if (Replace) - ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); - return DAG.getZeroExtendInReg(NewOp, DL, OldVT); -} - -/// Promote the specified integer binary operation if the target indicates it is -/// beneficial. e.g. On x86, it's usually better to promote i16 operations to -/// i32 since i16 instructions are longer. -SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { - if (!LegalOperations) - return SDValue(); - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return SDValue(); - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - - LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); - - bool Replace0 = false; - SDValue N0 = Op.getOperand(0); - SDValue NN0 = PromoteOperand(N0, PVT, Replace0); - - bool Replace1 = false; - SDValue N1 = Op.getOperand(1); - SDValue NN1 = PromoteOperand(N1, PVT, Replace1); - SDLoc DL(Op); - - SDValue RV = - DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); - - // We are always replacing N0/N1's use in N and only need - // additional replacements if there are additional uses. - Replace0 &= !N0->hasOneUse(); - Replace1 &= (N0 != N1) && !N1->hasOneUse(); - - // Combine Op here so it is preserved past replacements. - CombineTo(Op.getNode(), RV); - - // If operands have a use ordering, make sure we deal with - // predecessor first. - if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { - std::swap(N0, N1); - std::swap(NN0, NN1); - } - - if (Replace0) { - AddToWorklist(NN0.getNode()); - ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); - } - if (Replace1) { - AddToWorklist(NN1.getNode()); - ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); - } - return Op; - } - return SDValue(); -} - -/// Promote the specified integer shift operation if the target indicates it is -/// beneficial. e.g. On x86, it's usually better to promote i16 operations to -/// i32 since i16 instructions are longer. -SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { - if (!LegalOperations) - return SDValue(); - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return SDValue(); - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - - LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); - - bool Replace = false; - SDValue N0 = Op.getOperand(0); - SDValue N1 = Op.getOperand(1); - if (Opc == ISD::SRA) - N0 = SExtPromoteOperand(N0, PVT); - else if (Opc == ISD::SRL) - N0 = ZExtPromoteOperand(N0, PVT); - else - N0 = PromoteOperand(N0, PVT, Replace); - - if (!N0.getNode()) - return SDValue(); - - SDLoc DL(Op); - SDValue RV = - DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); - - AddToWorklist(N0.getNode()); - if (Replace) - ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); - - // Deal with Op being deleted. - if (Op && Op.getOpcode() != ISD::DELETED_NODE) - return RV; - } - return SDValue(); -} - -SDValue DAGCombiner::PromoteExtend(SDValue Op) { - if (!LegalOperations) - return SDValue(); - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return SDValue(); - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - // fold (aext (aext x)) -> (aext x) - // fold (aext (zext x)) -> (zext x) - // fold (aext (sext x)) -> (sext x) - LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); - return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); - } - return SDValue(); -} - -bool DAGCombiner::PromoteLoad(SDValue Op) { - if (!LegalOperations) - return false; - - if (!ISD::isUNINDEXEDLoad(Op.getNode())) - return false; - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return false; - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return false; - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - - SDLoc DL(Op); - SDNode *N = Op.getNode(); - LoadSDNode *LD = cast<LoadSDNode>(N); - EVT MemVT = LD->getMemoryVT(); - ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD - : LD->getExtensionType(); - SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, - LD->getChain(), LD->getBasePtr(), - MemVT, LD->getMemOperand()); - SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); - - LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; - Result.getNode()->dump(&DAG); dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); - deleteAndRecombine(N); - AddToWorklist(Result.getNode()); - return true; - } - return false; -} - -/// Recursively delete a node which has no uses and any operands for -/// which it is the only use. -/// -/// Note that this both deletes the nodes and removes them from the worklist. -/// It also adds any nodes who have had a user deleted to the worklist as they -/// may now have only one use and subject to other combines. -bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { - if (!N->use_empty()) - return false; - - SmallSetVector<SDNode *, 16> Nodes; - Nodes.insert(N); - do { - N = Nodes.pop_back_val(); - if (!N) - continue; - - if (N->use_empty()) { - for (const SDValue &ChildN : N->op_values()) - Nodes.insert(ChildN.getNode()); - - removeFromWorklist(N); - DAG.DeleteNode(N); - } else { - AddToWorklist(N); - } - } while (!Nodes.empty()); - return true; -} - -//===----------------------------------------------------------------------===// -// Main DAG Combiner implementation -//===----------------------------------------------------------------------===// - -void DAGCombiner::Run(CombineLevel AtLevel) { - // set the instance variables, so that the various visit routines may use it. - Level = AtLevel; - LegalOperations = Level >= AfterLegalizeVectorOps; - LegalTypes = Level >= AfterLegalizeTypes; - - // Add all the dag nodes to the worklist. - for (SDNode &Node : DAG.allnodes()) - AddToWorklist(&Node); - - // Create a dummy node (which is not added to allnodes), that adds a reference - // to the root node, preventing it from being deleted, and tracking any - // changes of the root. - HandleSDNode Dummy(DAG.getRoot()); - - // While the worklist isn't empty, find a node and try to combine it. - while (!WorklistMap.empty()) { - SDNode *N; - // The Worklist holds the SDNodes in order, but it may contain null entries. - do { - N = Worklist.pop_back_val(); - } while (!N); - - bool GoodWorklistEntry = WorklistMap.erase(N); - (void)GoodWorklistEntry; - assert(GoodWorklistEntry && - "Found a worklist entry without a corresponding map entry!"); - - // If N has no uses, it is dead. Make sure to revisit all N's operands once - // N is deleted from the DAG, since they too may now be dead or may have a - // reduced number of uses, allowing other xforms. - if (recursivelyDeleteUnusedNodes(N)) - continue; - - WorklistRemover DeadNodes(*this); - - // If this combine is running after legalizing the DAG, re-legalize any - // nodes pulled off the worklist. - if (Level == AfterLegalizeDAG) { - SmallSetVector<SDNode *, 16> UpdatedNodes; - bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); - - for (SDNode *LN : UpdatedNodes) { - AddToWorklist(LN); - AddUsersToWorklist(LN); - } - if (!NIsValid) - continue; - } - - LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); - - // Add any operands of the new node which have not yet been combined to the - // worklist as well. Because the worklist uniques things already, this - // won't repeatedly process the same operand. - CombinedNodes.insert(N); - for (const SDValue &ChildN : N->op_values()) - if (!CombinedNodes.count(ChildN.getNode())) - AddToWorklist(ChildN.getNode()); - - SDValue RV = combine(N); - - if (!RV.getNode()) - continue; - - ++NodesCombined; - - // If we get back the same node we passed in, rather than a new node or - // zero, we know that the node must have defined multiple values and - // CombineTo was used. Since CombineTo takes care of the worklist - // mechanics for us, we have no work to do in this case. - if (RV.getNode() == N) - continue; - - assert(N->getOpcode() != ISD::DELETED_NODE && - RV.getOpcode() != ISD::DELETED_NODE && - "Node was deleted but visit returned new node!"); - - LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); - - if (N->getNumValues() == RV.getNode()->getNumValues()) - DAG.ReplaceAllUsesWith(N, RV.getNode()); - else { - assert(N->getValueType(0) == RV.getValueType() && - N->getNumValues() == 1 && "Type mismatch"); - DAG.ReplaceAllUsesWith(N, &RV); - } - - // Push the new node and any users onto the worklist - AddToWorklist(RV.getNode()); - AddUsersToWorklist(RV.getNode()); - - // Finally, if the node is now dead, remove it from the graph. The node - // may not be dead if the replacement process recursively simplified to - // something else needing this node. This will also take care of adding any - // operands which have lost a user to the worklist. - recursivelyDeleteUnusedNodes(N); - } - - // If the root changed (e.g. it was a dead load, update the root). - DAG.setRoot(Dummy.getValue()); - DAG.RemoveDeadNodes(); -} - -SDValue DAGCombiner::visit(SDNode *N) { - switch (N->getOpcode()) { - default: break; - case ISD::TokenFactor: return visitTokenFactor(N); - case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); - case ISD::ADD: return visitADD(N); - case ISD::SUB: return visitSUB(N); - case ISD::SADDSAT: - case ISD::UADDSAT: return visitADDSAT(N); - case ISD::SSUBSAT: - case ISD::USUBSAT: return visitSUBSAT(N); - case ISD::ADDC: return visitADDC(N); - case ISD::UADDO: return visitUADDO(N); - case ISD::SUBC: return visitSUBC(N); - case ISD::USUBO: return visitUSUBO(N); - case ISD::ADDE: return visitADDE(N); - case ISD::ADDCARRY: return visitADDCARRY(N); - case ISD::SUBE: return visitSUBE(N); - case ISD::SUBCARRY: return visitSUBCARRY(N); - case ISD::MUL: return visitMUL(N); - case ISD::SDIV: return visitSDIV(N); - case ISD::UDIV: return visitUDIV(N); - case ISD::SREM: - case ISD::UREM: return visitREM(N); - case ISD::MULHU: return visitMULHU(N); - case ISD::MULHS: return visitMULHS(N); - case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); - case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); - case ISD::SMULO: return visitSMULO(N); - case ISD::UMULO: return visitUMULO(N); - case ISD::SMIN: - case ISD::SMAX: - case ISD::UMIN: - case ISD::UMAX: return visitIMINMAX(N); - case ISD::AND: return visitAND(N); - case ISD::OR: return visitOR(N); - case ISD::XOR: return visitXOR(N); - case ISD::SHL: return visitSHL(N); - case ISD::SRA: return visitSRA(N); - case ISD::SRL: return visitSRL(N); - case ISD::ROTR: - case ISD::ROTL: return visitRotate(N); - case ISD::FSHL: - case ISD::FSHR: return visitFunnelShift(N); - case ISD::ABS: return visitABS(N); - case ISD::BSWAP: return visitBSWAP(N); - case ISD::BITREVERSE: return visitBITREVERSE(N); - case ISD::CTLZ: return visitCTLZ(N); - case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); - case ISD::CTTZ: return visitCTTZ(N); - case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); - case ISD::CTPOP: return visitCTPOP(N); - case ISD::SELECT: return visitSELECT(N); - case ISD::VSELECT: return visitVSELECT(N); - case ISD::SELECT_CC: return visitSELECT_CC(N); - case ISD::SETCC: return visitSETCC(N); - case ISD::SETCCCARRY: return visitSETCCCARRY(N); - case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); - case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); - case ISD::ANY_EXTEND: return visitANY_EXTEND(N); - case ISD::AssertSext: - case ISD::AssertZext: return visitAssertExt(N); - case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); - case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); - case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); - case ISD::TRUNCATE: return visitTRUNCATE(N); - case ISD::BITCAST: return visitBITCAST(N); - case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); - case ISD::FADD: return visitFADD(N); - case ISD::FSUB: return visitFSUB(N); - case ISD::FMUL: return visitFMUL(N); - case ISD::FMA: return visitFMA(N); - case ISD::FDIV: return visitFDIV(N); - case ISD::FREM: return visitFREM(N); - case ISD::FSQRT: return visitFSQRT(N); - case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); - case ISD::FPOW: return visitFPOW(N); - case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); - case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); - case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); - case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); - case ISD::FP_ROUND: return visitFP_ROUND(N); - case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); - case ISD::FP_EXTEND: return visitFP_EXTEND(N); - case ISD::FNEG: return visitFNEG(N); - case ISD::FABS: return visitFABS(N); - case ISD::FFLOOR: return visitFFLOOR(N); - case ISD::FMINNUM: return visitFMINNUM(N); - case ISD::FMAXNUM: return visitFMAXNUM(N); - case ISD::FMINIMUM: return visitFMINIMUM(N); - case ISD::FMAXIMUM: return visitFMAXIMUM(N); - case ISD::FCEIL: return visitFCEIL(N); - case ISD::FTRUNC: return visitFTRUNC(N); - case ISD::BRCOND: return visitBRCOND(N); - case ISD::BR_CC: return visitBR_CC(N); - case ISD::LOAD: return visitLOAD(N); - case ISD::STORE: return visitSTORE(N); - case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); - case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); - case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); - case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); - case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); - case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); - case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); - case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); - case ISD::MGATHER: return visitMGATHER(N); - case ISD::MLOAD: return visitMLOAD(N); - case ISD::MSCATTER: return visitMSCATTER(N); - case ISD::MSTORE: return visitMSTORE(N); - case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); - case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); - } - return SDValue(); -} - -SDValue DAGCombiner::combine(SDNode *N) { - SDValue RV = visit(N); - - // If nothing happened, try a target-specific DAG combine. - if (!RV.getNode()) { - assert(N->getOpcode() != ISD::DELETED_NODE && - "Node was deleted but visit returned NULL!"); - - if (N->getOpcode() >= ISD::BUILTIN_OP_END || - TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { - - // Expose the DAG combiner to the target combiner impls. - TargetLowering::DAGCombinerInfo - DagCombineInfo(DAG, Level, false, this); - - RV = TLI.PerformDAGCombine(N, DagCombineInfo); - } - } - - // If nothing happened still, try promoting the operation. - if (!RV.getNode()) { - switch (N->getOpcode()) { - default: break; - case ISD::ADD: - case ISD::SUB: - case ISD::MUL: - case ISD::AND: - case ISD::OR: - case ISD::XOR: - RV = PromoteIntBinOp(SDValue(N, 0)); - break; - case ISD::SHL: - case ISD::SRA: - case ISD::SRL: - RV = PromoteIntShiftOp(SDValue(N, 0)); - break; - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: - case ISD::ANY_EXTEND: - RV = PromoteExtend(SDValue(N, 0)); - break; - case ISD::LOAD: - if (PromoteLoad(SDValue(N, 0))) - RV = SDValue(N, 0); - break; - } - } - - // If N is a commutative binary node, try eliminate it if the commuted - // version is already present in the DAG. - if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && - N->getNumValues() == 1) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - // Constant operands are canonicalized to RHS. - if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { - SDValue Ops[] = {N1, N0}; - SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, - N->getFlags()); - if (CSENode) - return SDValue(CSENode, 0); - } - } - - return RV; -} - -/// Given a node, return its input chain if it has one, otherwise return a null -/// sd operand. -static SDValue getInputChainForNode(SDNode *N) { - if (unsigned NumOps = N->getNumOperands()) { - if (N->getOperand(0).getValueType() == MVT::Other) - return N->getOperand(0); - if (N->getOperand(NumOps-1).getValueType() == MVT::Other) - return N->getOperand(NumOps-1); - for (unsigned i = 1; i < NumOps-1; ++i) - if (N->getOperand(i).getValueType() == MVT::Other) - return N->getOperand(i); - } - return SDValue(); -} - -SDValue DAGCombiner::visitTokenFactor(SDNode *N) { - // If N has two operands, where one has an input chain equal to the other, - // the 'other' chain is redundant. - if (N->getNumOperands() == 2) { - if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) - return N->getOperand(0); - if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) - return N->getOperand(1); - } - - // Don't simplify token factors if optnone. - if (OptLevel == CodeGenOpt::None) - return SDValue(); - - SmallVector<SDNode *, 8> TFs; // List of token factors to visit. - SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. - SmallPtrSet<SDNode*, 16> SeenOps; - bool Changed = false; // If we should replace this token factor. - - // Start out with this token factor. - TFs.push_back(N); - - // Iterate through token factors. The TFs grows when new token factors are - // encountered. - for (unsigned i = 0; i < TFs.size(); ++i) { - SDNode *TF = TFs[i]; - - // Check each of the operands. - for (const SDValue &Op : TF->op_values()) { - switch (Op.getOpcode()) { - case ISD::EntryToken: - // Entry tokens don't need to be added to the list. They are - // redundant. - Changed = true; - break; - - case ISD::TokenFactor: - if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { - // Queue up for processing. - TFs.push_back(Op.getNode()); - // Clean up in case the token factor is removed. - AddToWorklist(Op.getNode()); - Changed = true; - break; - } - LLVM_FALLTHROUGH; - - default: - // Only add if it isn't already in the list. - if (SeenOps.insert(Op.getNode()).second) - Ops.push_back(Op); - else - Changed = true; - break; - } - } - } - - // Remove Nodes that are chained to another node in the list. Do so - // by walking up chains breath-first stopping when we've seen - // another operand. In general we must climb to the EntryNode, but we can exit - // early if we find all remaining work is associated with just one operand as - // no further pruning is possible. - - // List of nodes to search through and original Ops from which they originate. - SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; - SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. - SmallPtrSet<SDNode *, 16> SeenChains; - bool DidPruneOps = false; - - unsigned NumLeftToConsider = 0; - for (const SDValue &Op : Ops) { - Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); - OpWorkCount.push_back(1); - } - - auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { - // If this is an Op, we can remove the op from the list. Remark any - // search associated with it as from the current OpNumber. - if (SeenOps.count(Op) != 0) { - Changed = true; - DidPruneOps = true; - unsigned OrigOpNumber = 0; - while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) - OrigOpNumber++; - assert((OrigOpNumber != Ops.size()) && - "expected to find TokenFactor Operand"); - // Re-mark worklist from OrigOpNumber to OpNumber - for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { - if (Worklist[i].second == OrigOpNumber) { - Worklist[i].second = OpNumber; - } - } - OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; - OpWorkCount[OrigOpNumber] = 0; - NumLeftToConsider--; - } - // Add if it's a new chain - if (SeenChains.insert(Op).second) { - OpWorkCount[OpNumber]++; - Worklist.push_back(std::make_pair(Op, OpNumber)); - } - }; - - for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { - // We need at least be consider at least 2 Ops to prune. - if (NumLeftToConsider <= 1) - break; - auto CurNode = Worklist[i].first; - auto CurOpNumber = Worklist[i].second; - assert((OpWorkCount[CurOpNumber] > 0) && - "Node should not appear in worklist"); - switch (CurNode->getOpcode()) { - case ISD::EntryToken: - // Hitting EntryToken is the only way for the search to terminate without - // hitting - // another operand's search. Prevent us from marking this operand - // considered. - NumLeftToConsider++; - break; - case ISD::TokenFactor: - for (const SDValue &Op : CurNode->op_values()) - AddToWorklist(i, Op.getNode(), CurOpNumber); - break; - case ISD::CopyFromReg: - case ISD::CopyToReg: - AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); - break; - default: - if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) - AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); - break; - } - OpWorkCount[CurOpNumber]--; - if (OpWorkCount[CurOpNumber] == 0) - NumLeftToConsider--; - } - - // If we've changed things around then replace token factor. - if (Changed) { - SDValue Result; - if (Ops.empty()) { - // The entry token is the only possible outcome. - Result = DAG.getEntryNode(); - } else { - if (DidPruneOps) { - SmallVector<SDValue, 8> PrunedOps; - // - for (const SDValue &Op : Ops) { - if (SeenChains.count(Op.getNode()) == 0) - PrunedOps.push_back(Op); - } - Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, PrunedOps); - } else { - Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); - } - } - return Result; - } - return SDValue(); -} - -/// MERGE_VALUES can always be eliminated. -SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { - WorklistRemover DeadNodes(*this); - // Replacing results may cause a different MERGE_VALUES to suddenly - // be CSE'd with N, and carry its uses with it. Iterate until no - // uses remain, to ensure that the node can be safely deleted. - // First add the users of this node to the work list so that they - // can be tried again once they have new operands. - AddUsersToWorklist(N); - do { - // Do as a single replacement to avoid rewalking use lists. - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) - Ops.push_back(N->getOperand(i)); - DAG.ReplaceAllUsesWith(N, Ops.data()); - } while (!N->use_empty()); - deleteAndRecombine(N); - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a -/// ConstantSDNode pointer else nullptr. -static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { - ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); - return Const != nullptr && !Const->isOpaque() ? Const : nullptr; -} - -SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { - assert(ISD::isBinaryOp(BO) && "Unexpected binary operator"); - - // Don't do this unless the old select is going away. We want to eliminate the - // binary operator, not replace a binop with a select. - // TODO: Handle ISD::SELECT_CC. - unsigned SelOpNo = 0; - SDValue Sel = BO->getOperand(0); - if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { - SelOpNo = 1; - Sel = BO->getOperand(1); - } - - if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) - return SDValue(); - - SDValue CT = Sel.getOperand(1); - if (!isConstantOrConstantVector(CT, true) && - !isConstantFPBuildVectorOrConstantFP(CT)) - return SDValue(); - - SDValue CF = Sel.getOperand(2); - if (!isConstantOrConstantVector(CF, true) && - !isConstantFPBuildVectorOrConstantFP(CF)) - return SDValue(); - - // Bail out if any constants are opaque because we can't constant fold those. - // The exception is "and" and "or" with either 0 or -1 in which case we can - // propagate non constant operands into select. I.e.: - // and (select Cond, 0, -1), X --> select Cond, 0, X - // or X, (select Cond, -1, 0) --> select Cond, -1, X - auto BinOpcode = BO->getOpcode(); - bool CanFoldNonConst = - (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && - (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && - (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); - - SDValue CBO = BO->getOperand(SelOpNo ^ 1); - if (!CanFoldNonConst && - !isConstantOrConstantVector(CBO, true) && - !isConstantFPBuildVectorOrConstantFP(CBO)) - return SDValue(); - - EVT VT = Sel.getValueType(); - - // In case of shift value and shift amount may have different VT. For instance - // on x86 shift amount is i8 regardles of LHS type. Bail out if we have - // swapped operands and value types do not match. NB: x86 is fine if operands - // are not swapped with shift amount VT being not bigger than shifted value. - // TODO: that is possible to check for a shift operation, correct VTs and - // still perform optimization on x86 if needed. - if (SelOpNo && VT != CBO.getValueType()) - return SDValue(); - - // We have a select-of-constants followed by a binary operator with a - // constant. Eliminate the binop by pulling the constant math into the select. - // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO - SDLoc DL(Sel); - SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) - : DAG.getNode(BinOpcode, DL, VT, CT, CBO); - if (!CanFoldNonConst && !NewCT.isUndef() && - !isConstantOrConstantVector(NewCT, true) && - !isConstantFPBuildVectorOrConstantFP(NewCT)) - return SDValue(); - - SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) - : DAG.getNode(BinOpcode, DL, VT, CF, CBO); - if (!CanFoldNonConst && !NewCF.isUndef() && - !isConstantOrConstantVector(NewCF, true) && - !isConstantFPBuildVectorOrConstantFP(NewCF)) - return SDValue(); - - return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); -} - -static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { - assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && - "Expecting add or sub"); - - // Match a constant operand and a zext operand for the math instruction: - // add Z, C - // sub C, Z - bool IsAdd = N->getOpcode() == ISD::ADD; - SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); - SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); - auto *CN = dyn_cast<ConstantSDNode>(C); - if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) - return SDValue(); - - // Match the zext operand as a setcc of a boolean. - if (Z.getOperand(0).getOpcode() != ISD::SETCC || - Z.getOperand(0).getValueType() != MVT::i1) - return SDValue(); - - // Match the compare as: setcc (X & 1), 0, eq. - SDValue SetCC = Z.getOperand(0); - ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); - if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || - SetCC.getOperand(0).getOpcode() != ISD::AND || - !isOneConstant(SetCC.getOperand(0).getOperand(1))) - return SDValue(); - - // We are adding/subtracting a constant and an inverted low bit. Turn that - // into a subtract/add of the low bit with incremented/decremented constant: - // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) - // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) - EVT VT = C.getValueType(); - SDLoc DL(N); - SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); - SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : - DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); - return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); -} - -/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into -/// a shift and add with a different constant. -static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { - assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && - "Expecting add or sub"); - - // We need a constant operand for the add/sub, and the other operand is a - // logical shift right: add (srl), C or sub C, (srl). - bool IsAdd = N->getOpcode() == ISD::ADD; - SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); - SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); - ConstantSDNode *C = isConstOrConstSplat(ConstantOp); - if (!C || ShiftOp.getOpcode() != ISD::SRL) - return SDValue(); - - // The shift must be of a 'not' value. - SDValue Not = ShiftOp.getOperand(0); - if (!Not.hasOneUse() || !isBitwiseNot(Not)) - return SDValue(); - - // The shift must be moving the sign bit to the least-significant-bit. - EVT VT = ShiftOp.getValueType(); - SDValue ShAmt = ShiftOp.getOperand(1); - ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); - if (!ShAmtC || ShAmtC->getZExtValue() != VT.getScalarSizeInBits() - 1) - return SDValue(); - - // Eliminate the 'not' by adjusting the shift and add/sub constant: - // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) - // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) - SDLoc DL(N); - auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; - SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); - APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1; - return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT)); -} - -SDValue DAGCombiner::visitADD(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (add x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - } - - // fold (add x, undef) -> undef - if (N0.isUndef()) - return N0; - - if (N1.isUndef()) - return N1; - - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - // canonicalize constant to RHS - if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::ADD, DL, VT, N1, N0); - // fold (add c1, c2) -> c1+c2 - return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(), - N1.getNode()); - } - - // fold (add x, 0) -> x - if (isNullConstant(N1)) - return N0; - - if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { - // fold ((c1-A)+c2) -> (c1+c2)-A - if (N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { - // FIXME: Adding 2 constants should be handled by FoldConstantArithmetic. - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)), - N0.getOperand(1)); - } - - // add (sext i1 X), 1 -> zext (not i1 X) - // We don't transform this pattern: - // add (zext i1 X), -1 -> sext (not i1 X) - // because most (?) targets generate better code for the zext form. - if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && - isOneOrOneSplat(N1)) { - SDValue X = N0.getOperand(0); - if ((!LegalOperations || - (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && - TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && - X.getScalarValueSizeInBits() == 1) { - SDValue Not = DAG.getNOT(DL, X, X.getValueType()); - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); - } - } - - // Undo the add -> or combine to merge constant offsets from a frame index. - if (N0.getOpcode() == ISD::OR && - isa<FrameIndexSDNode>(N0.getOperand(0)) && - isa<ConstantSDNode>(N0.getOperand(1)) && - DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { - SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1)); - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); - } - } - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // reassociate add - if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) - return RADD; - - // fold ((0-A) + B) -> B-A - if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) - return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); - - // fold (A + (0-B)) -> A-B - if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) - return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); - - // fold (A+(B-A)) -> B - if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) - return N1.getOperand(0); - - // fold ((B-A)+A) -> B - if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) - return N0.getOperand(0); - - // fold (A+(B-(A+C))) to (B-C) - if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && - N0 == N1.getOperand(1).getOperand(0)) - return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), - N1.getOperand(1).getOperand(1)); - - // fold (A+(B-(C+A))) to (B-C) - if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && - N0 == N1.getOperand(1).getOperand(1)) - return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), - N1.getOperand(1).getOperand(0)); - - // fold (A+((B-A)+or-C)) to (B+or-C) - if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && - N1.getOperand(0).getOpcode() == ISD::SUB && - N0 == N1.getOperand(0).getOperand(1)) - return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), - N1.getOperand(1)); - - // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant - if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - SDValue N10 = N1.getOperand(0); - SDValue N11 = N1.getOperand(1); - - if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), - DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); - } - - if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) - return V; - - if (SDValue V = foldAddSubOfSignBit(N, DAG)) - return V; - - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (a+b) -> (a|b) iff a and b share no bits. - if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && - DAG.haveNoCommonBitsSet(N0, N1)) - return DAG.getNode(ISD::OR, DL, VT, N0, N1); - - // fold (add (xor a, -1), 1) -> (sub 0, a) - if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) - return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), - N0.getOperand(0)); - - if (SDValue Combined = visitADDLike(N0, N1, N)) - return Combined; - - if (SDValue Combined = visitADDLike(N1, N0, N)) - return Combined; - - return SDValue(); -} - -SDValue DAGCombiner::visitADDSAT(SDNode *N) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - // TODO SimplifyVBinOp - - // fold (add_sat x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - } - - // fold (add_sat x, undef) -> -1 - if (N0.isUndef() || N1.isUndef()) - return DAG.getAllOnesConstant(DL, VT); - - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - // canonicalize constant to RHS - if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(Opcode, DL, VT, N1, N0); - // fold (add_sat c1, c2) -> c3 - return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(), - N1.getNode()); - } - - // fold (add_sat x, 0) -> x - if (isNullConstant(N1)) - return N0; - - // If it cannot overflow, transform into an add. - if (Opcode == ISD::UADDSAT) - if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) - return DAG.getNode(ISD::ADD, DL, VT, N0, N1); - - return SDValue(); -} - -static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { - bool Masked = false; - - // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. - while (true) { - if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { - V = V.getOperand(0); - continue; - } - - if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { - Masked = true; - V = V.getOperand(0); - continue; - } - - break; - } - - // If this is not a carry, return. - if (V.getResNo() != 1) - return SDValue(); - - if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && - V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) - return SDValue(); - - // If the result is masked, then no matter what kind of bool it is we can - // return. If it isn't, then we need to make sure the bool type is either 0 or - // 1 and not other values. - if (Masked || - TLI.getBooleanContents(V.getValueType()) == - TargetLoweringBase::ZeroOrOneBooleanContent) - return V; - - return SDValue(); -} - -SDValue DAGCombiner::visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference) { - EVT VT = N0.getValueType(); - SDLoc DL(LocReference); - - // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) - if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && - isNullOrNullSplat(N1.getOperand(0).getOperand(0))) - return DAG.getNode(ISD::SUB, DL, VT, N0, - DAG.getNode(ISD::SHL, DL, VT, - N1.getOperand(0).getOperand(1), - N1.getOperand(1))); - - if (N1.getOpcode() == ISD::AND) { - SDValue AndOp0 = N1.getOperand(0); - unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); - unsigned DestBits = VT.getScalarSizeInBits(); - - // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) - // and similar xforms where the inner op is either ~0 or 0. - if (NumSignBits == DestBits && isOneOrOneSplat(N1->getOperand(1))) - return DAG.getNode(ISD::SUB, DL, VT, N0, AndOp0); - } - - // add (sext i1), X -> sub X, (zext i1) - if (N0.getOpcode() == ISD::SIGN_EXTEND && - N0.getOperand(0).getValueType() == MVT::i1 && - !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { - SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); - return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); - } - - // add X, (sextinreg Y i1) -> sub X, (and Y 1) - if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { - VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); - if (TN->getVT() == MVT::i1) { - SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), - DAG.getConstant(1, DL, VT)); - return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); - } - } - - // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) - if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && - N1.getResNo() == 0) - return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), - N0, N1.getOperand(0), N1.getOperand(2)); - - // (add X, Carry) -> (addcarry X, 0, Carry) - if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) - if (SDValue Carry = getAsCarry(TLI, N1)) - return DAG.getNode(ISD::ADDCARRY, DL, - DAG.getVTList(VT, Carry.getValueType()), N0, - DAG.getConstant(0, DL, VT), Carry); - - return SDValue(); -} - -SDValue DAGCombiner::visitADDC(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // If the flag result is dead, turn this into an ADD. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // canonicalize constant to RHS. - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); - - // fold (addc x, 0) -> x + no carry out - if (isNullConstant(N1)) - return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, - DL, MVT::Glue)); - - // If it cannot overflow, transform into an add. - if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - return SDValue(); -} - -static SDValue flipBoolean(SDValue V, const SDLoc &DL, EVT VT, - SelectionDAG &DAG, const TargetLowering &TLI) { - SDValue Cst; - switch (TLI.getBooleanContents(VT)) { - case TargetLowering::ZeroOrOneBooleanContent: - case TargetLowering::UndefinedBooleanContent: - Cst = DAG.getConstant(1, DL, VT); - break; - case TargetLowering::ZeroOrNegativeOneBooleanContent: - Cst = DAG.getConstant(-1, DL, VT); - break; - } - - return DAG.getNode(ISD::XOR, DL, VT, V, Cst); -} - -static bool isBooleanFlip(SDValue V, EVT VT, const TargetLowering &TLI) { - if (V.getOpcode() != ISD::XOR) return false; - ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V.getOperand(1)); - if (!Const) return false; - - switch(TLI.getBooleanContents(VT)) { - case TargetLowering::ZeroOrOneBooleanContent: - return Const->isOne(); - case TargetLowering::ZeroOrNegativeOneBooleanContent: - return Const->isAllOnesValue(); - case TargetLowering::UndefinedBooleanContent: - return (Const->getAPIntValue() & 0x01) == 1; - } - llvm_unreachable("Unsupported boolean content"); -} - -SDValue DAGCombiner::visitUADDO(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - if (VT.isVector()) - return SDValue(); - - EVT CarryVT = N->getValueType(1); - SDLoc DL(N); - - // If the flag result is dead, turn this into an ADD. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getUNDEF(CarryVT)); - - // canonicalize constant to RHS. - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N1, N0); - - // fold (uaddo x, 0) -> x + no carry out - if (isNullConstant(N1)) - return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); - - // If it cannot overflow, transform into an add. - if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getConstant(0, DL, CarryVT)); - - // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. - if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { - SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), - DAG.getConstant(0, DL, VT), - N0.getOperand(0)); - return CombineTo(N, Sub, - flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI)); - } - - if (SDValue Combined = visitUADDOLike(N0, N1, N)) - return Combined; - - if (SDValue Combined = visitUADDOLike(N1, N0, N)) - return Combined; - - return SDValue(); -} - -SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { - auto VT = N0.getValueType(); - - // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) - // If Y + 1 cannot overflow. - if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { - SDValue Y = N1.getOperand(0); - SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); - if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, - N1.getOperand(2)); - } - - // (uaddo X, Carry) -> (addcarry X, 0, Carry) - if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) - if (SDValue Carry = getAsCarry(TLI, N1)) - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, - DAG.getConstant(0, SDLoc(N), VT), Carry); - - return SDValue(); -} - -SDValue DAGCombiner::visitADDE(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - - // canonicalize constant to RHS - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), - N1, N0, CarryIn); - - // fold (adde x, y, false) -> (addc x, y) - if (CarryIn.getOpcode() == ISD::CARRY_FALSE) - return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); - - return SDValue(); -} - -SDValue DAGCombiner::visitADDCARRY(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - SDLoc DL(N); - - // canonicalize constant to RHS - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); - - // fold (addcarry x, y, false) -> (uaddo x, y) - if (isNullConstant(CarryIn)) { - if (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) - return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); - } - - EVT CarryVT = CarryIn.getValueType(); - - // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. - if (isNullConstant(N0) && isNullConstant(N1)) { - EVT VT = N0.getValueType(); - SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); - AddToWorklist(CarryExt.getNode()); - return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, - DAG.getConstant(1, DL, VT)), - DAG.getConstant(0, DL, CarryVT)); - } - - // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry. - if (isBitwiseNot(N0) && isNullConstant(N1) && - isBooleanFlip(CarryIn, CarryVT, TLI)) { - SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), - DAG.getConstant(0, DL, N0.getValueType()), - N0.getOperand(0), CarryIn.getOperand(0)); - return CombineTo(N, Sub, - flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI)); - } - - if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) - return Combined; - - if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) - return Combined; - - return SDValue(); -} - -SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, - SDNode *N) { - // Iff the flag result is dead: - // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) - if ((N0.getOpcode() == ISD::ADD || - (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0)) && - isNullConstant(N1) && !N->hasAnyUseOfValue(1)) - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), - N0.getOperand(0), N0.getOperand(1), CarryIn); - - /** - * When one of the addcarry argument is itself a carry, we may be facing - * a diamond carry propagation. In which case we try to transform the DAG - * to ensure linear carry propagation if that is possible. - * - * We are trying to get: - * (addcarry X, 0, (addcarry A, B, Z):Carry) - */ - if (auto Y = getAsCarry(TLI, N1)) { - /** - * (uaddo A, B) - * / \ - * Carry Sum - * | \ - * | (addcarry *, 0, Z) - * | / - * \ Carry - * | / - * (addcarry X, *, *) - */ - if (Y.getOpcode() == ISD::UADDO && - CarryIn.getResNo() == 1 && - CarryIn.getOpcode() == ISD::ADDCARRY && - isNullConstant(CarryIn.getOperand(1)) && - CarryIn.getOperand(0) == Y.getValue(0)) { - auto NewY = DAG.getNode(ISD::ADDCARRY, SDLoc(N), Y->getVTList(), - Y.getOperand(0), Y.getOperand(1), - CarryIn.getOperand(2)); - AddToWorklist(NewY.getNode()); - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, - DAG.getConstant(0, SDLoc(N), N0.getValueType()), - NewY.getValue(1)); - } - } - - return SDValue(); -} - -// Since it may not be valid to emit a fold to zero for vector initializers -// check if we can before folding. -static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, - SelectionDAG &DAG, bool LegalOperations) { - if (!VT.isVector()) - return DAG.getConstant(0, DL, VT); - if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) - return DAG.getConstant(0, DL, VT); - return SDValue(); -} - -SDValue DAGCombiner::visitSUB(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (sub x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - } - - // fold (sub x, x) -> 0 - // FIXME: Refactor this and xor and other similar operations together. - if (N0 == N1) - return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - DAG.isConstantIntBuildVectorOrConstantInt(N1)) { - // fold (sub c1, c2) -> c1-c2 - return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(), - N1.getNode()); - } - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); - - // fold (sub x, c) -> (add x, -c) - if (N1C) { - return DAG.getNode(ISD::ADD, DL, VT, N0, - DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); - } - - if (isNullOrNullSplat(N0)) { - unsigned BitWidth = VT.getScalarSizeInBits(); - // Right-shifting everything out but the sign bit followed by negation is - // the same as flipping arithmetic/logical shift type without the negation: - // -(X >>u 31) -> (X >>s 31) - // -(X >>s 31) -> (X >>u 31) - if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { - ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); - if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) { - auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; - if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) - return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); - } - } - - // 0 - X --> 0 if the sub is NUW. - if (N->getFlags().hasNoUnsignedWrap()) - return N0; - - if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { - // N1 is either 0 or the minimum signed value. If the sub is NSW, then - // N1 must be 0 because negating the minimum signed value is undefined. - if (N->getFlags().hasNoSignedWrap()) - return N0; - - // 0 - X --> X if X is 0 or the minimum signed value. - return N1; - } - } - - // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) - if (isAllOnesOrAllOnesSplat(N0)) - return DAG.getNode(ISD::XOR, DL, VT, N1, N0); - - // fold (A - (0-B)) -> A+B - if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) - return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); - - // fold A-(A-B) -> B - if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) - return N1.getOperand(1); - - // fold (A+B)-A -> B - if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) - return N0.getOperand(1); - - // fold (A+B)-B -> A - if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) - return N0.getOperand(0); - - // fold C2-(A+C1) -> (C2-C1)-A - if (N1.getOpcode() == ISD::ADD) { - SDValue N11 = N1.getOperand(1); - if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && - isConstantOrConstantVector(N11, /* NoOpaques */ true)) { - SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11); - return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); - } - } - - // fold ((A+(B+or-C))-B) -> A+or-C - if (N0.getOpcode() == ISD::ADD && - (N0.getOperand(1).getOpcode() == ISD::SUB || - N0.getOperand(1).getOpcode() == ISD::ADD) && - N0.getOperand(1).getOperand(0) == N1) - return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), - N0.getOperand(1).getOperand(1)); - - // fold ((A+(C+B))-B) -> A+C - if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && - N0.getOperand(1).getOperand(1) == N1) - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), - N0.getOperand(1).getOperand(0)); - - // fold ((A-(B-C))-C) -> A-B - if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && - N0.getOperand(1).getOperand(1) == N1) - return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), - N0.getOperand(1).getOperand(0)); - - // fold (A-(B-C)) -> A+(C-B) - if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) - return DAG.getNode(ISD::ADD, DL, VT, N0, - DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), - N1.getOperand(0))); - - // fold (X - (-Y * Z)) -> (X + (Y * Z)) - if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { - if (N1.getOperand(0).getOpcode() == ISD::SUB && - isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, - N1.getOperand(0).getOperand(1), - N1.getOperand(1)); - return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); - } - if (N1.getOperand(1).getOpcode() == ISD::SUB && - isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, - N1.getOperand(0), - N1.getOperand(1).getOperand(1)); - return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); - } - } - - // If either operand of a sub is undef, the result is undef - if (N0.isUndef()) - return N0; - if (N1.isUndef()) - return N1; - - if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) - return V; - - if (SDValue V = foldAddSubOfSignBit(N, DAG)) - return V; - - // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) - if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { - if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { - SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); - SDValue S0 = N1.getOperand(0); - if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) { - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) - if (C->getAPIntValue() == (OpSizeInBits - 1)) - return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); - } - } - } - - // If the relocation model supports it, consider symbol offsets. - if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) - if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { - // fold (sub Sym, c) -> Sym-c - if (N1C && GA->getOpcode() == ISD::GlobalAddress) - return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, - GA->getOffset() - - (uint64_t)N1C->getSExtValue()); - // fold (sub Sym+c1, Sym+c2) -> c1-c2 - if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) - if (GA->getGlobal() == GB->getGlobal()) - return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), - DL, VT); - } - - // sub X, (sextinreg Y i1) -> add X, (and Y 1) - if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { - VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); - if (TN->getVT() == MVT::i1) { - SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), - DAG.getConstant(1, DL, VT)); - return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); - } - } - - // Prefer an add for more folding potential and possibly better codegen: - // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) - if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { - SDValue ShAmt = N1.getOperand(1); - ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); - if (ShAmtC && ShAmtC->getZExtValue() == N1.getScalarValueSizeInBits() - 1) { - SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); - return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBSAT(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - // TODO SimplifyVBinOp - - // fold (sub_sat x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - } - - // fold (sub_sat x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // fold (sub_sat x, x) -> 0 - if (N0 == N1) - return DAG.getConstant(0, DL, VT); - - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - DAG.isConstantIntBuildVectorOrConstantInt(N1)) { - // fold (sub_sat c1, c2) -> c3 - return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(), - N1.getNode()); - } - - // fold (sub_sat x, 0) -> x - if (isNullConstant(N1)) - return N0; - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBC(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // If the flag result is dead, turn this into an SUB. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // fold (subc x, x) -> 0 + no borrow - if (N0 == N1) - return CombineTo(N, DAG.getConstant(0, DL, VT), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // fold (subc x, 0) -> x + no borrow - if (isNullConstant(N1)) - return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow - if (isAllOnesConstant(N0)) - return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - return SDValue(); -} - -SDValue DAGCombiner::visitUSUBO(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - if (VT.isVector()) - return SDValue(); - - EVT CarryVT = N->getValueType(1); - SDLoc DL(N); - - // If the flag result is dead, turn this into an SUB. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), - DAG.getUNDEF(CarryVT)); - - // fold (usubo x, x) -> 0 + no borrow - if (N0 == N1) - return CombineTo(N, DAG.getConstant(0, DL, VT), - DAG.getConstant(0, DL, CarryVT)); - - // fold (usubo x, 0) -> x + no borrow - if (isNullConstant(N1)) - return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); - - // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow - if (isAllOnesConstant(N0)) - return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), - DAG.getConstant(0, DL, CarryVT)); - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBE(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - - // fold (sube x, y, false) -> (subc x, y) - if (CarryIn.getOpcode() == ISD::CARRY_FALSE) - return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - - // fold (subcarry x, y, false) -> (usubo x, y) - if (isNullConstant(CarryIn)) { - if (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) - return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitMUL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - - // fold (mul x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, SDLoc(N), VT); - - bool N0IsConst = false; - bool N1IsConst = false; - bool N1IsOpaqueConst = false; - bool N0IsOpaqueConst = false; - APInt ConstValue0, ConstValue1; - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); - N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); - assert((!N0IsConst || - ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) && - "Splat APInt should be element width"); - assert((!N1IsConst || - ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && - "Splat APInt should be element width"); - } else { - N0IsConst = isa<ConstantSDNode>(N0); - if (N0IsConst) { - ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); - N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); - } - N1IsConst = isa<ConstantSDNode>(N1); - if (N1IsConst) { - ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); - N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); - } - } - - // fold (mul c1, c2) -> c1*c2 - if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) - return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, - N0.getNode(), N1.getNode()); - - // canonicalize constant to RHS (vector doesn't have to splat) - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); - // fold (mul x, 0) -> 0 - if (N1IsConst && ConstValue1.isNullValue()) - return N1; - // fold (mul x, 1) -> x - if (N1IsConst && ConstValue1.isOneValue()) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (mul x, -1) -> 0-x - if (N1IsConst && ConstValue1.isAllOnesValue()) { - SDLoc DL(N); - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getConstant(0, DL, VT), N0); - } - // fold (mul x, (1 << c)) -> x << c - if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N1) && - (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { - SDLoc DL(N); - SDValue LogBase2 = BuildLogBase2(N1, DL); - EVT ShiftVT = getShiftAmountTy(N0.getValueType()); - SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); - return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); - } - // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c - if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { - unsigned Log2Val = (-ConstValue1).logBase2(); - SDLoc DL(N); - // FIXME: If the input is something that is easily negated (e.g. a - // single-use add), we should put the negate there. - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getConstant(0, DL, VT), - DAG.getNode(ISD::SHL, DL, VT, N0, - DAG.getConstant(Log2Val, DL, - getShiftAmountTy(N0.getValueType())))); - } - - // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub. - // mul x, (2^N + 1) --> add (shl x, N), x - // mul x, (2^N - 1) --> sub (shl x, N), x - // Examples: x * 33 --> (x << 5) + x - // x * 15 --> (x << 4) - x - // x * -33 --> -((x << 5) + x) - // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) - if (N1IsConst && TLI.decomposeMulByConstant(VT, N1)) { - // TODO: We could handle more general decomposition of any constant by - // having the target set a limit on number of ops and making a - // callback to determine that sequence (similar to sqrt expansion). - unsigned MathOp = ISD::DELETED_NODE; - APInt MulC = ConstValue1.abs(); - if ((MulC - 1).isPowerOf2()) - MathOp = ISD::ADD; - else if ((MulC + 1).isPowerOf2()) - MathOp = ISD::SUB; - - if (MathOp != ISD::DELETED_NODE) { - unsigned ShAmt = MathOp == ISD::ADD ? (MulC - 1).logBase2() - : (MulC + 1).logBase2(); - assert(ShAmt > 0 && ShAmt < VT.getScalarSizeInBits() && - "Not expecting multiply-by-constant that could have simplified"); - SDLoc DL(N); - SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, N0, - DAG.getConstant(ShAmt, DL, VT)); - SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0); - if (ConstValue1.isNegative()) - R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); - return R; - } - } - - // (mul (shl X, c1), c2) -> (mul X, c2 << c1) - if (N0.getOpcode() == ISD::SHL && - isConstantOrConstantVector(N1, /* NoOpaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { - SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); - if (isConstantOrConstantVector(C3)) - return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); - } - - // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one - // use. - { - SDValue Sh(nullptr, 0), Y(nullptr, 0); - - // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). - if (N0.getOpcode() == ISD::SHL && - isConstantOrConstantVector(N0.getOperand(1)) && - N0.getNode()->hasOneUse()) { - Sh = N0; Y = N1; - } else if (N1.getOpcode() == ISD::SHL && - isConstantOrConstantVector(N1.getOperand(1)) && - N1.getNode()->hasOneUse()) { - Sh = N1; Y = N0; - } - - if (Sh.getNode()) { - SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); - return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); - } - } - - // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) - if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && - N0.getOpcode() == ISD::ADD && - DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && - isMulAddWithConstProfitable(N, N0, N1)) - return DAG.getNode(ISD::ADD, SDLoc(N), VT, - DAG.getNode(ISD::MUL, SDLoc(N0), VT, - N0.getOperand(0), N1), - DAG.getNode(ISD::MUL, SDLoc(N1), VT, - N0.getOperand(1), N1)); - - // reassociate mul - if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) - return RMUL; - - return SDValue(); -} - -/// Return true if divmod libcall is available. -static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, - const TargetLowering &TLI) { - RTLIB::Libcall LC; - EVT NodeType = Node->getValueType(0); - if (!NodeType.isSimple()) - return false; - switch (NodeType.getSimpleVT().SimpleTy) { - default: return false; // No libcall for vector types. - case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; - case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; - case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; - case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; - case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; - } - - return TLI.getLibcallName(LC) != nullptr; -} - -/// Issue divrem if both quotient and remainder are needed. -SDValue DAGCombiner::useDivRem(SDNode *Node) { - if (Node->use_empty()) - return SDValue(); // This is a dead node, leave it alone. - - unsigned Opcode = Node->getOpcode(); - bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); - unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; - - // DivMod lib calls can still work on non-legal types if using lib-calls. - EVT VT = Node->getValueType(0); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) - return SDValue(); - - // If DIVREM is going to get expanded into a libcall, - // but there is no libcall available, then don't combine. - if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && - !isDivRemLibcallAvailable(Node, isSigned, TLI)) - return SDValue(); - - // If div is legal, it's better to do the normal expansion - unsigned OtherOpcode = 0; - if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { - OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; - if (TLI.isOperationLegalOrCustom(Opcode, VT)) - return SDValue(); - } else { - OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; - if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) - return SDValue(); - } - - SDValue Op0 = Node->getOperand(0); - SDValue Op1 = Node->getOperand(1); - SDValue combined; - for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), - UE = Op0.getNode()->use_end(); UI != UE; ++UI) { - SDNode *User = *UI; - if (User == Node || User->getOpcode() == ISD::DELETED_NODE || - User->use_empty()) - continue; - // Convert the other matching node(s), too; - // otherwise, the DIVREM may get target-legalized into something - // target-specific that we won't be able to recognize. - unsigned UserOpc = User->getOpcode(); - if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && - User->getOperand(0) == Op0 && - User->getOperand(1) == Op1) { - if (!combined) { - if (UserOpc == OtherOpcode) { - SDVTList VTs = DAG.getVTList(VT, VT); - combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); - } else if (UserOpc == DivRemOpc) { - combined = SDValue(User, 0); - } else { - assert(UserOpc == Opcode); - continue; - } - } - if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) - CombineTo(User, combined); - else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) - CombineTo(User, combined.getValue(1)); - } - } - return combined; -} - -static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - unsigned Opc = N->getOpcode(); - bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // X / undef -> undef - // X % undef -> undef - // X / 0 -> undef - // X % 0 -> undef - // NOTE: This includes vectors where any divisor element is zero/undef. - if (DAG.isUndef(Opc, {N0, N1})) - return DAG.getUNDEF(VT); - - // undef / X -> 0 - // undef % X -> 0 - if (N0.isUndef()) - return DAG.getConstant(0, DL, VT); - - // 0 / X -> 0 - // 0 % X -> 0 - ConstantSDNode *N0C = isConstOrConstSplat(N0); - if (N0C && N0C->isNullValue()) - return N0; - - // X / X -> 1 - // X % X -> 0 - if (N0 == N1) - return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); - - // X / 1 -> X - // X % 1 -> 0 - // If this is a boolean op (single-bit element type), we can't have - // division-by-zero or remainder-by-zero, so assume the divisor is 1. - // TODO: Similarly, if we're zero-extending a boolean divisor, then assume - // it's a 1. - if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) - return IsDiv ? N0 : DAG.getConstant(0, DL, VT); - - return SDValue(); -} - -SDValue DAGCombiner::visitSDIV(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - SDLoc DL(N); - - // fold (sdiv c1, c2) -> c1/c2 - ConstantSDNode *N0C = isConstOrConstSplat(N0); - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) - return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); - // fold (sdiv X, -1) -> 0-X - if (N1C && N1C->isAllOnesValue()) - return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); - // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) - if (N1C && N1C->getAPIntValue().isMinSignedValue()) - return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), - DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT)); - - if (SDValue V = simplifyDivRem(N, DAG)) - return V; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // If we know the sign bits of both operands are zero, strength reduce to a - // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 - if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); - - if (SDValue V = visitSDIVLike(N0, N1, N)) { - // If the corresponding remainder node exists, update its users with - // (Dividend - (Quotient * Divisor). - if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), - { N0, N1 })) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); - AddToWorklist(Mul.getNode()); - AddToWorklist(Sub.getNode()); - CombineTo(RemNode, Sub); - } - return V; - } - - // sdiv, srem -> sdivrem - // If the divisor is constant, then return DIVREM only if isIntDivCheap() is - // true. Otherwise, we break the simplification logic in visitREM(). - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue DivRem = useDivRem(N)) - return DivRem; - - return SDValue(); -} - -SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - unsigned BitWidth = VT.getScalarSizeInBits(); - - // Helper for determining whether a value is a power-2 constant scalar or a - // vector of such elements. - auto IsPowerOfTwo = [](ConstantSDNode *C) { - if (C->isNullValue() || C->isOpaque()) - return false; - if (C->getAPIntValue().isPowerOf2()) - return true; - if ((-C->getAPIntValue()).isPowerOf2()) - return true; - return false; - }; - - // fold (sdiv X, pow2) -> simple ops after legalize - // FIXME: We check for the exact bit here because the generic lowering gives - // better results in that case. The target-specific lowering should learn how - // to handle exact sdivs efficiently. - if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { - // Target-specific implementation of sdiv x, pow2. - if (SDValue Res = BuildSDIVPow2(N)) - return Res; - - // Create constants that are functions of the shift amount value. - EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); - SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); - SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); - C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); - SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); - if (!isConstantOrConstantVector(Inexact)) - return SDValue(); - - // Splat the sign bit into the register - SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, - DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); - AddToWorklist(Sign.getNode()); - - // Add (N0 < 0) ? abs2 - 1 : 0; - SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); - AddToWorklist(Srl.getNode()); - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); - AddToWorklist(Add.getNode()); - SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); - AddToWorklist(Sra.getNode()); - - // Special case: (sdiv X, 1) -> X - // Special Case: (sdiv X, -1) -> 0-X - SDValue One = DAG.getConstant(1, DL, VT); - SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); - SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); - SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); - SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); - Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); - - // If dividing by a positive value, we're done. Otherwise, the result must - // be negated. - SDValue Zero = DAG.getConstant(0, DL, VT); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); - - // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. - SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); - SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); - return Res; - } - - // If integer divide is expensive and we satisfy the requirements, emit an - // alternate sequence. Targets may check function attributes for size/speed - // trade-offs. - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (isConstantOrConstantVector(N1) && - !TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue Op = BuildSDIV(N)) - return Op; - - return SDValue(); -} - -SDValue DAGCombiner::visitUDIV(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - SDLoc DL(N); - - // fold (udiv c1, c2) -> c1/c2 - ConstantSDNode *N0C = isConstOrConstSplat(N0); - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (N0C && N1C) - if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, - N0C, N1C)) - return Folded; - // fold (udiv X, -1) -> select(X == -1, 1, 0) - if (N1C && N1C->getAPIntValue().isAllOnesValue()) - return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), - DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT)); - - if (SDValue V = simplifyDivRem(N, DAG)) - return V; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (SDValue V = visitUDIVLike(N0, N1, N)) { - // If the corresponding remainder node exists, update its users with - // (Dividend - (Quotient * Divisor). - if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), - { N0, N1 })) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); - AddToWorklist(Mul.getNode()); - AddToWorklist(Sub.getNode()); - CombineTo(RemNode, Sub); - } - return V; - } - - // sdiv, srem -> sdivrem - // If the divisor is constant, then return DIVREM only if isIntDivCheap() is - // true. Otherwise, we break the simplification logic in visitREM(). - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue DivRem = useDivRem(N)) - return DivRem; - - return SDValue(); -} - -SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // fold (udiv x, (1 << c)) -> x >>u c - if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N1)) { - SDValue LogBase2 = BuildLogBase2(N1, DL); - AddToWorklist(LogBase2.getNode()); - - EVT ShiftVT = getShiftAmountTy(N0.getValueType()); - SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); - AddToWorklist(Trunc.getNode()); - return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); - } - - // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 - if (N1.getOpcode() == ISD::SHL) { - SDValue N10 = N1.getOperand(0); - if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N10)) { - SDValue LogBase2 = BuildLogBase2(N10, DL); - AddToWorklist(LogBase2.getNode()); - - EVT ADDVT = N1.getOperand(1).getValueType(); - SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); - AddToWorklist(Trunc.getNode()); - SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::SRL, DL, VT, N0, Add); - } - } - - // fold (udiv x, c) -> alternate - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (isConstantOrConstantVector(N1) && - !TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue Op = BuildUDIV(N)) - return Op; - - return SDValue(); -} - -// handles ISD::SREM and ISD::UREM -SDValue DAGCombiner::visitREM(SDNode *N) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - - bool isSigned = (Opcode == ISD::SREM); - SDLoc DL(N); - - // fold (rem c1, c2) -> c1%c2 - ConstantSDNode *N0C = isConstOrConstSplat(N0); - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (N0C && N1C) - if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) - return Folded; - // fold (urem X, -1) -> select(X == -1, 0, x) - if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) - return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), - DAG.getConstant(0, DL, VT), N0); - - if (SDValue V = simplifyDivRem(N, DAG)) - return V; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (isSigned) { - // If we know the sign bits of both operands are zero, strength reduce to a - // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 - if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::UREM, DL, VT, N0, N1); - } else { - SDValue NegOne = DAG.getAllOnesConstant(DL, VT); - if (DAG.isKnownToBeAPowerOfTwo(N1)) { - // fold (urem x, pow2) -> (and x, pow2-1) - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::AND, DL, VT, N0, Add); - } - if (N1.getOpcode() == ISD::SHL && - DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { - // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::AND, DL, VT, N0, Add); - } - } - - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - - // If X/C can be simplified by the division-by-constant logic, lower - // X%C to the equivalent of X-X/C*C. - // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the - // speculative DIV must not cause a DIVREM conversion. We guard against this - // by skipping the simplification if isIntDivCheap(). When div is not cheap, - // combine will not return a DIVREM. Regardless, checking cheapness here - // makes sense since the simplification results in fatter code. - if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { - SDValue OptimizedDiv = - isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); - if (OptimizedDiv.getNode()) { - // If the equivalent Div node also exists, update its users. - unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; - if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), - { N0, N1 })) - CombineTo(DivNode, OptimizedDiv); - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); - AddToWorklist(OptimizedDiv.getNode()); - AddToWorklist(Mul.getNode()); - return Sub; - } - } - - // sdiv, srem -> sdivrem - if (SDValue DivRem = useDivRem(N)) - return DivRem.getValue(1); - - return SDValue(); -} - -SDValue DAGCombiner::visitMULHS(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (VT.isVector()) { - // fold (mulhs x, 0) -> 0 - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N1; - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N0; - } - - // fold (mulhs x, 0) -> 0 - if (isNullConstant(N1)) - return N1; - // fold (mulhs x, 1) -> (sra x, size(x)-1) - if (isOneConstant(N1)) - return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, - DAG.getConstant(N0.getValueSizeInBits() - 1, DL, - getShiftAmountTy(N0.getValueType()))); - - // fold (mulhs x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // If the type twice as wide is legal, transform the mulhs to a wider multiply - // plus a shift. - if (VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); - N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); - N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); - N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(N1.getValueType()))); - return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitMULHU(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (VT.isVector()) { - // fold (mulhu x, 0) -> 0 - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N1; - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N0; - } - - // fold (mulhu x, 0) -> 0 - if (isNullConstant(N1)) - return N1; - // fold (mulhu x, 1) -> 0 - if (isOneConstant(N1)) - return DAG.getConstant(0, DL, N0.getValueType()); - // fold (mulhu x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) - if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { - SDLoc DL(N); - unsigned NumEltBits = VT.getScalarSizeInBits(); - SDValue LogBase2 = BuildLogBase2(N1, DL); - SDValue SRLAmt = DAG.getNode( - ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); - EVT ShiftVT = getShiftAmountTy(N0.getValueType()); - SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); - return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); - } - - // If the type twice as wide is legal, transform the mulhu to a wider multiply - // plus a shift. - if (VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); - N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); - N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); - N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(N1.getValueType()))); - return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); - } - } - - return SDValue(); -} - -/// Perform optimizations common to nodes that compute two values. LoOp and HiOp -/// give the opcodes for the two computations that are being performed. Return -/// true if a simplification was made. -SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, - unsigned HiOp) { - // If the high half is not needed, just compute the low half. - bool HiExists = N->hasAnyUseOfValue(1); - if (!HiExists && (!LegalOperations || - TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { - SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); - return CombineTo(N, Res, Res); - } - - // If the low half is not needed, just compute the high half. - bool LoExists = N->hasAnyUseOfValue(0); - if (!LoExists && (!LegalOperations || - TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { - SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); - return CombineTo(N, Res, Res); - } - - // If both halves are used, return as it is. - if (LoExists && HiExists) - return SDValue(); - - // If the two computed results can be simplified separately, separate them. - if (LoExists) { - SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); - AddToWorklist(Lo.getNode()); - SDValue LoOpt = combine(Lo.getNode()); - if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && - (!LegalOperations || - TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) - return CombineTo(N, LoOpt, LoOpt); - } - - if (HiExists) { - SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); - AddToWorklist(Hi.getNode()); - SDValue HiOpt = combine(Hi.getNode()); - if (HiOpt.getNode() && HiOpt != Hi && - (!LegalOperations || - TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) - return CombineTo(N, HiOpt, HiOpt); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { - if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) - return Res; - - EVT VT = N->getValueType(0); - SDLoc DL(N); - - // If the type is twice as wide is legal, transform the mulhu to a wider - // multiply plus a shift. - if (VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); - SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); - Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); - // Compute the high part as N1. - Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(Lo.getValueType()))); - Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); - // Compute the low part as N0. - Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); - return CombineTo(N, Lo, Hi); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { - if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) - return Res; - - EVT VT = N->getValueType(0); - SDLoc DL(N); - - // If the type is twice as wide is legal, transform the mulhu to a wider - // multiply plus a shift. - if (VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); - SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); - Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); - // Compute the high part as N1. - Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(Lo.getValueType()))); - Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); - // Compute the low part as N0. - Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); - return CombineTo(N, Lo, Hi); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSMULO(SDNode *N) { - // (smulo x, 2) -> (saddo x, x) - if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) - if (C2->getAPIntValue() == 2) - return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), - N->getOperand(0), N->getOperand(0)); - - return SDValue(); -} - -SDValue DAGCombiner::visitUMULO(SDNode *N) { - // (umulo x, 2) -> (uaddo x, x) - if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) - if (C2->getAPIntValue() == 2) - return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), - N->getOperand(0), N->getOperand(0)); - - return SDValue(); -} - -SDValue DAGCombiner::visitIMINMAX(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold operation with constant operands. - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); - if (N0C && N1C) - return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); - - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); - - // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. - // Only do this if the current op isn't legal and the flipped is. - unsigned Opcode = N->getOpcode(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.isOperationLegal(Opcode, VT) && - (N0.isUndef() || DAG.SignBitIsZero(N0)) && - (N1.isUndef() || DAG.SignBitIsZero(N1))) { - unsigned AltOpcode; - switch (Opcode) { - case ISD::SMIN: AltOpcode = ISD::UMIN; break; - case ISD::SMAX: AltOpcode = ISD::UMAX; break; - case ISD::UMIN: AltOpcode = ISD::SMIN; break; - case ISD::UMAX: AltOpcode = ISD::SMAX; break; - default: llvm_unreachable("Unknown MINMAX opcode"); - } - if (TLI.isOperationLegal(AltOpcode, VT)) - return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); - } - - return SDValue(); -} - -/// If this is a bitwise logic instruction and both operands have the same -/// opcode, try to sink the other opcode after the logic instruction. -SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { - SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - unsigned LogicOpcode = N->getOpcode(); - unsigned HandOpcode = N0.getOpcode(); - assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || - LogicOpcode == ISD::XOR) && "Expected logic opcode"); - assert(HandOpcode == N1.getOpcode() && "Bad input!"); - - // Bail early if none of these transforms apply. - if (N0.getNumOperands() == 0) - return SDValue(); - - // FIXME: We should check number of uses of the operands to not increase - // the instruction count for all transforms. - - // Handle size-changing casts. - SDValue X = N0.getOperand(0); - SDValue Y = N1.getOperand(0); - EVT XVT = X.getValueType(); - SDLoc DL(N); - if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || - HandOpcode == ISD::SIGN_EXTEND) { - // If both operands have other uses, this transform would create extra - // instructions without eliminating anything. - if (!N0.hasOneUse() && !N1.hasOneUse()) - return SDValue(); - // We need matching integer source types. - if (XVT != Y.getValueType()) - return SDValue(); - // Don't create an illegal op during or after legalization. Don't ever - // create an unsupported vector op. - if ((VT.isVector() || LegalOperations) && - !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) - return SDValue(); - // Avoid infinite looping with PromoteIntBinOp. - // TODO: Should we apply desirable/legal constraints to all opcodes? - if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && - !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) - return SDValue(); - // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - - // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) - if (HandOpcode == ISD::TRUNCATE) { - // If both operands have other uses, this transform would create extra - // instructions without eliminating anything. - if (!N0.hasOneUse() && !N1.hasOneUse()) - return SDValue(); - // We need matching source types. - if (XVT != Y.getValueType()) - return SDValue(); - // Don't create an illegal op during or after legalization. - if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) - return SDValue(); - // Be extra careful sinking truncate. If it's free, there's no benefit in - // widening a binop. Also, don't create a logic op on an illegal type. - if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) - return SDValue(); - if (!TLI.isTypeLegal(XVT)) - return SDValue(); - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - - // For binops SHL/SRL/SRA/AND: - // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z - if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || - HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && - N0.getOperand(1) == N1.getOperand(1)) { - // If either operand has other uses, this transform is not an improvement. - if (!N0.hasOneUse() || !N1.hasOneUse()) - return SDValue(); - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); - } - - // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) - if (HandOpcode == ISD::BSWAP) { - // If either operand has other uses, this transform is not an improvement. - if (!N0.hasOneUse() || !N1.hasOneUse()) - return SDValue(); - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - - // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) - // Only perform this optimization up until type legalization, before - // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by - // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and - // we don't want to undo this promotion. - // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper - // on scalars. - if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && - Level <= AfterLegalizeTypes) { - // Input types must be integer and the same. - if (XVT.isInteger() && XVT == Y.getValueType()) { - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - } - - // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). - // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) - // If both shuffles use the same mask, and both shuffle within a single - // vector, then it is worthwhile to move the swizzle after the operation. - // The type-legalizer generates this pattern when loading illegal - // vector types from memory. In many cases this allows additional shuffle - // optimizations. - // There are other cases where moving the shuffle after the xor/and/or - // is profitable even if shuffles don't perform a swizzle. - // If both shuffles use the same mask, and both shuffles have the same first - // or second operand, then it might still be profitable to move the shuffle - // after the xor/and/or operation. - if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { - auto *SVN0 = cast<ShuffleVectorSDNode>(N0); - auto *SVN1 = cast<ShuffleVectorSDNode>(N1); - assert(X.getValueType() == Y.getValueType() && - "Inputs to shuffles are not the same type"); - - // Check that both shuffles use the same mask. The masks are known to be of - // the same length because the result vector type is the same. - // Check also that shuffles have only one use to avoid introducing extra - // instructions. - if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || - !SVN0->getMask().equals(SVN1->getMask())) - return SDValue(); - - // Don't try to fold this node if it requires introducing a - // build vector of all zeros that might be illegal at this stage. - SDValue ShOp = N0.getOperand(1); - if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) - ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) - if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { - SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, - N0.getOperand(0), N1.getOperand(0)); - return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); - } - - // Don't try to fold this node if it requires introducing a - // build vector of all zeros that might be illegal at this stage. - ShOp = N0.getOperand(0); - if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) - ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) - if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { - SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), - N1.getOperand(1)); - return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); - } - } - - return SDValue(); -} - -/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. -SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, - const SDLoc &DL) { - SDValue LL, LR, RL, RR, N0CC, N1CC; - if (!isSetCCEquivalent(N0, LL, LR, N0CC) || - !isSetCCEquivalent(N1, RL, RR, N1CC)) - return SDValue(); - - assert(N0.getValueType() == N1.getValueType() && - "Unexpected operand types for bitwise logic op"); - assert(LL.getValueType() == LR.getValueType() && - RL.getValueType() == RR.getValueType() && - "Unexpected operand types for setcc"); - - // If we're here post-legalization or the logic op type is not i1, the logic - // op type must match a setcc result type. Also, all folds require new - // operations on the left and right operands, so those types must match. - EVT VT = N0.getValueType(); - EVT OpVT = LL.getValueType(); - if (LegalOperations || VT.getScalarType() != MVT::i1) - if (VT != getSetCCResultType(OpVT)) - return SDValue(); - if (OpVT != RL.getValueType()) - return SDValue(); - - ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); - ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); - bool IsInteger = OpVT.isInteger(); - if (LR == RR && CC0 == CC1 && IsInteger) { - bool IsZero = isNullOrNullSplat(LR); - bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); - - // All bits clear? - bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; - // All sign bits clear? - bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; - // Any bits set? - bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; - // Any sign bits set? - bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; - - // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) - // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) - // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) - // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) - if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { - SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); - AddToWorklist(Or.getNode()); - return DAG.getSetCC(DL, VT, Or, LR, CC1); - } - - // All bits set? - bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; - // All sign bits set? - bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; - // Any bits clear? - bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; - // Any sign bits clear? - bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; - - // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) - // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) - // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) - // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) - if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { - SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); - AddToWorklist(And.getNode()); - return DAG.getSetCC(DL, VT, And, LR, CC1); - } - } - - // TODO: What is the 'or' equivalent of this fold? - // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) - if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && - IsInteger && CC0 == ISD::SETNE && - ((isNullConstant(LR) && isAllOnesConstant(RR)) || - (isAllOnesConstant(LR) && isNullConstant(RR)))) { - SDValue One = DAG.getConstant(1, DL, OpVT); - SDValue Two = DAG.getConstant(2, DL, OpVT); - SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); - AddToWorklist(Add.getNode()); - return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); - } - - // Try more general transforms if the predicates match and the only user of - // the compares is the 'and' or 'or'. - if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && - N0.hasOneUse() && N1.hasOneUse()) { - // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 - // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 - if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { - SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); - SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); - SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); - SDValue Zero = DAG.getConstant(0, DL, OpVT); - return DAG.getSetCC(DL, VT, Or, Zero, CC1); - } - } - - // Canonicalize equivalent operands to LL == RL. - if (LL == RR && LR == RL) { - CC1 = ISD::getSetCCSwappedOperands(CC1); - std::swap(RL, RR); - } - - // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) - // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) - if (LL == RL && LR == RR) { - ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger) - : ISD::getSetCCOrOperation(CC0, CC1, IsInteger); - if (NewCC != ISD::SETCC_INVALID && - (!LegalOperations || - (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && - TLI.isOperationLegal(ISD::SETCC, OpVT)))) - return DAG.getSetCC(DL, VT, LL, LR, NewCC); - } - - return SDValue(); -} - -/// This contains all DAGCombine rules which reduce two values combined by -/// an And operation to a single value. This makes them reusable in the context -/// of visitSELECT(). Rules involving constants are not included as -/// visitSELECT() already handles those cases. -SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { - EVT VT = N1.getValueType(); - SDLoc DL(N); - - // fold (and x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) - return V; - - if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && - VT.getSizeInBits() <= 64) { - if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { - // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal - // immediate for an add, but it is legal if its top c2 bits are set, - // transform the ADD so the immediate doesn't need to be materialized - // in a register. - APInt ADDC = ADDI->getAPIntValue(); - APInt SRLC = SRLI->getAPIntValue(); - if (ADDC.getMinSignedBits() <= 64 && - SRLC.ult(VT.getSizeInBits()) && - !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { - APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), - SRLC.getZExtValue()); - if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { - ADDC |= Mask; - if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { - SDLoc DL0(N0); - SDValue NewAdd = - DAG.getNode(ISD::ADD, DL0, VT, - N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); - CombineTo(N0.getNode(), NewAdd); - // Return N so it doesn't get rechecked! - return SDValue(N, 0); - } - } - } - } - } - } - - // Reduce bit extract of low half of an integer to the narrower type. - // (and (srl i64:x, K), KMask) -> - // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) - if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { - if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { - if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - unsigned Size = VT.getSizeInBits(); - const APInt &AndMask = CAnd->getAPIntValue(); - unsigned ShiftBits = CShift->getZExtValue(); - - // Bail out, this node will probably disappear anyway. - if (ShiftBits == 0) - return SDValue(); - - unsigned MaskBits = AndMask.countTrailingOnes(); - EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); - - if (AndMask.isMask() && - // Required bits must not span the two halves of the integer and - // must fit in the half size type. - (ShiftBits + MaskBits <= Size / 2) && - TLI.isNarrowingProfitable(VT, HalfVT) && - TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && - TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && - TLI.isTruncateFree(VT, HalfVT) && - TLI.isZExtFree(HalfVT, VT)) { - // The isNarrowingProfitable is to avoid regressions on PPC and - // AArch64 which match a few 64-bit bit insert / bit extract patterns - // on downstream users of this. Those patterns could probably be - // extended to handle extensions mixed in. - - SDValue SL(N0); - assert(MaskBits <= Size); - - // Extracting the highest bit of the low half. - EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, - N0.getOperand(0)); - - SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); - SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); - SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); - SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); - return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); - } - } - } - } - - return SDValue(); -} - -bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, - EVT LoadResultTy, EVT &ExtVT) { - if (!AndC->getAPIntValue().isMask()) - return false; - - unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); - - ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); - EVT LoadedVT = LoadN->getMemoryVT(); - - if (ExtVT == LoadedVT && - (!LegalOperations || - TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { - // ZEXTLOAD will match without needing to change the size of the value being - // loaded. - return true; - } - - // Do not change the width of a volatile load. - if (LoadN->isVolatile()) - return false; - - // Do not generate loads of non-round integer types since these can - // be expensive (and would be wrong if the type is not byte sized). - if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) - return false; - - if (LegalOperations && - !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) - return false; - - if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) - return false; - - return true; -} - -bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, - ISD::LoadExtType ExtType, EVT &MemVT, - unsigned ShAmt) { - if (!LDST) - return false; - // Only allow byte offsets. - if (ShAmt % 8) - return false; - - // Do not generate loads of non-round integer types since these can - // be expensive (and would be wrong if the type is not byte sized). - if (!MemVT.isRound()) - return false; - - // Don't change the width of a volatile load. - if (LDST->isVolatile()) - return false; - - // Verify that we are actually reducing a load width here. - if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits()) - return false; - - // Ensure that this isn't going to produce an unsupported unaligned access. - if (ShAmt && - !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, - LDST->getAddressSpace(), ShAmt / 8)) - return false; - - // It's not possible to generate a constant of extended or untyped type. - EVT PtrType = LDST->getBasePtr().getValueType(); - if (PtrType == MVT::Untyped || PtrType.isExtended()) - return false; - - if (isa<LoadSDNode>(LDST)) { - LoadSDNode *Load = cast<LoadSDNode>(LDST); - // Don't transform one with multiple uses, this would require adding a new - // load. - if (!SDValue(Load, 0).hasOneUse()) - return false; - - if (LegalOperations && - !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) - return false; - - // For the transform to be legal, the load must produce only two values - // (the value loaded and the chain). Don't transform a pre-increment - // load, for example, which produces an extra value. Otherwise the - // transformation is not equivalent, and the downstream logic to replace - // uses gets things wrong. - if (Load->getNumValues() > 2) - return false; - - // If the load that we're shrinking is an extload and we're not just - // discarding the extension we can't simply shrink the load. Bail. - // TODO: It would be possible to merge the extensions in some cases. - if (Load->getExtensionType() != ISD::NON_EXTLOAD && - Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) - return false; - - if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) - return false; - } else { - assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); - StoreSDNode *Store = cast<StoreSDNode>(LDST); - // Can't write outside the original store - if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) - return false; - - if (LegalOperations && - !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) - return false; - } - return true; -} - -bool DAGCombiner::SearchForAndLoads(SDNode *N, - SmallVectorImpl<LoadSDNode*> &Loads, - SmallPtrSetImpl<SDNode*> &NodesWithConsts, - ConstantSDNode *Mask, - SDNode *&NodeToMask) { - // Recursively search for the operands, looking for loads which can be - // narrowed. - for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) { - SDValue Op = N->getOperand(i); - - if (Op.getValueType().isVector()) - return false; - - // Some constants may need fixing up later if they are too large. - if (auto *C = dyn_cast<ConstantSDNode>(Op)) { - if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && - (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) - NodesWithConsts.insert(N); - continue; - } - - if (!Op.hasOneUse()) - return false; - - switch(Op.getOpcode()) { - case ISD::LOAD: { - auto *Load = cast<LoadSDNode>(Op); - EVT ExtVT; - if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && - isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { - - // ZEXTLOAD is already small enough. - if (Load->getExtensionType() == ISD::ZEXTLOAD && - ExtVT.bitsGE(Load->getMemoryVT())) - continue; - - // Use LE to convert equal sized loads to zext. - if (ExtVT.bitsLE(Load->getMemoryVT())) - Loads.push_back(Load); - - continue; - } - return false; - } - case ISD::ZERO_EXTEND: - case ISD::AssertZext: { - unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); - EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); - EVT VT = Op.getOpcode() == ISD::AssertZext ? - cast<VTSDNode>(Op.getOperand(1))->getVT() : - Op.getOperand(0).getValueType(); - - // We can accept extending nodes if the mask is wider or an equal - // width to the original type. - if (ExtVT.bitsGE(VT)) - continue; - break; - } - case ISD::OR: - case ISD::XOR: - case ISD::AND: - if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, - NodeToMask)) - return false; - continue; - } - - // Allow one node which will masked along with any loads found. - if (NodeToMask) - return false; - - // Also ensure that the node to be masked only produces one data result. - NodeToMask = Op.getNode(); - if (NodeToMask->getNumValues() > 1) { - bool HasValue = false; - for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { - MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); - if (VT != MVT::Glue && VT != MVT::Other) { - if (HasValue) { - NodeToMask = nullptr; - return false; - } - HasValue = true; - } - } - assert(HasValue && "Node to be masked has no data result?"); - } - } - return true; -} - -bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) { - auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); - if (!Mask) - return false; - - if (!Mask->getAPIntValue().isMask()) - return false; - - // No need to do anything if the and directly uses a load. - if (isa<LoadSDNode>(N->getOperand(0))) - return false; - - SmallVector<LoadSDNode*, 8> Loads; - SmallPtrSet<SDNode*, 2> NodesWithConsts; - SDNode *FixupNode = nullptr; - if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { - if (Loads.size() == 0) - return false; - - LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); - SDValue MaskOp = N->getOperand(1); - - // If it exists, fixup the single node we allow in the tree that needs - // masking. - if (FixupNode) { - LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); - SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), - FixupNode->getValueType(0), - SDValue(FixupNode, 0), MaskOp); - DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); - if (And.getOpcode() == ISD ::AND) - DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); - } - - // Narrow any constants that need it. - for (auto *LogicN : NodesWithConsts) { - SDValue Op0 = LogicN->getOperand(0); - SDValue Op1 = LogicN->getOperand(1); - - if (isa<ConstantSDNode>(Op0)) - std::swap(Op0, Op1); - - SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), - Op1, MaskOp); - - DAG.UpdateNodeOperands(LogicN, Op0, And); - } - - // Create narrow loads. - for (auto *Load : Loads) { - LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); - SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), - SDValue(Load, 0), MaskOp); - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); - if (And.getOpcode() == ISD ::AND) - And = SDValue( - DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); - SDValue NewLoad = ReduceLoadWidth(And.getNode()); - assert(NewLoad && - "Shouldn't be masking the load if it can't be narrowed"); - CombineTo(Load, NewLoad, NewLoad.getValue(1)); - } - DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); - return true; - } - return false; -} - -// Unfold -// x & (-1 'logical shift' y) -// To -// (x 'opposite logical shift' y) 'logical shift' y -// if it is better for performance. -SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { - assert(N->getOpcode() == ISD::AND); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - // Do we actually prefer shifts over mask? - if (!TLI.preferShiftsToClearExtremeBits(N0)) - return SDValue(); - - // Try to match (-1 '[outer] logical shift' y) - unsigned OuterShift; - unsigned InnerShift; // The opposite direction to the OuterShift. - SDValue Y; // Shift amount. - auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { - if (!M.hasOneUse()) - return false; - OuterShift = M->getOpcode(); - if (OuterShift == ISD::SHL) - InnerShift = ISD::SRL; - else if (OuterShift == ISD::SRL) - InnerShift = ISD::SHL; - else - return false; - if (!isAllOnesConstant(M->getOperand(0))) - return false; - Y = M->getOperand(1); - return true; - }; - - SDValue X; - if (matchMask(N1)) - X = N0; - else if (matchMask(N0)) - X = N1; - else - return SDValue(); - - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // tmp = x 'opposite logical shift' y - SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); - // ret = tmp 'logical shift' y - SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); - - return T1; -} - -SDValue DAGCombiner::visitAND(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N1.getValueType(); - - // x & x --> x - if (N0 == N1) - return N0; - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (and x, 0) -> 0, vector edition - if (ISD::isBuildVectorAllZeros(N0.getNode())) - // do not return N0, because undef node may exist in N0 - return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), - SDLoc(N), N0.getValueType()); - if (ISD::isBuildVectorAllZeros(N1.getNode())) - // do not return N1, because undef node may exist in N1 - return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), - SDLoc(N), N1.getValueType()); - - // fold (and x, -1) -> x, vector edition - if (ISD::isBuildVectorAllOnes(N0.getNode())) - return N1; - if (ISD::isBuildVectorAllOnes(N1.getNode())) - return N0; - } - - // fold (and c1, c2) -> c1&c2 - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (N0C && N1C && !N1C->isOpaque()) - return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); - // fold (and x, -1) -> x - if (isAllOnesConstant(N1)) - return N0; - // if (and x, c) is known to be zero, return 0 - unsigned BitWidth = VT.getScalarSizeInBits(); - if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), - APInt::getAllOnesValue(BitWidth))) - return DAG.getConstant(0, SDLoc(N), VT); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // reassociate and - if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) - return RAND; - - // Try to convert a constant mask AND into a shuffle clear mask. - if (VT.isVector()) - if (SDValue Shuffle = XformToShuffleWithZero(N)) - return Shuffle; - - // fold (and (or x, C), D) -> D if (C & D) == D - auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { - return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); - }; - if (N0.getOpcode() == ISD::OR && - ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) - return N1; - // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. - if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { - SDValue N0Op0 = N0.getOperand(0); - APInt Mask = ~N1C->getAPIntValue(); - Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); - if (DAG.MaskedValueIsZero(N0Op0, Mask)) { - SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), - N0.getValueType(), N0Op0); - - // Replace uses of the AND with uses of the Zero extend node. - CombineTo(N, Zext); - - // We actually want to replace all uses of the any_extend with the - // zero_extend, to avoid duplicating things. This will later cause this - // AND to be folded. - CombineTo(N0.getNode(), Zext); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> - // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must - // already be zero by virtue of the width of the base type of the load. - // - // the 'X' node here can either be nothing or an extract_vector_elt to catch - // more cases. - if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && - N0.getOperand(0).getOpcode() == ISD::LOAD && - N0.getOperand(0).getResNo() == 0) || - (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { - LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? - N0 : N0.getOperand(0) ); - - // Get the constant (if applicable) the zero'th operand is being ANDed with. - // This can be a pure constant or a vector splat, in which case we treat the - // vector as a scalar and use the splat value. - APInt Constant = APInt::getNullValue(1); - if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { - Constant = C->getAPIntValue(); - } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { - APInt SplatValue, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, - SplatBitSize, HasAnyUndefs); - if (IsSplat) { - // Undef bits can contribute to a possible optimisation if set, so - // set them. - SplatValue |= SplatUndef; - - // The splat value may be something like "0x00FFFFFF", which means 0 for - // the first vector value and FF for the rest, repeating. We need a mask - // that will apply equally to all members of the vector, so AND all the - // lanes of the constant together. - EVT VT = Vector->getValueType(0); - unsigned BitWidth = VT.getScalarSizeInBits(); - - // If the splat value has been compressed to a bitlength lower - // than the size of the vector lane, we need to re-expand it to - // the lane size. - if (BitWidth > SplatBitSize) - for (SplatValue = SplatValue.zextOrTrunc(BitWidth); - SplatBitSize < BitWidth; - SplatBitSize = SplatBitSize * 2) - SplatValue |= SplatValue.shl(SplatBitSize); - - // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a - // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. - if (SplatBitSize % BitWidth == 0) { - Constant = APInt::getAllOnesValue(BitWidth); - for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) - Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); - } - } - } - - // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is - // actually legal and isn't going to get expanded, else this is a false - // optimisation. - bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, - Load->getValueType(0), - Load->getMemoryVT()); - - // Resize the constant to the same size as the original memory access before - // extension. If it is still the AllOnesValue then this AND is completely - // unneeded. - Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); - - bool B; - switch (Load->getExtensionType()) { - default: B = false; break; - case ISD::EXTLOAD: B = CanZextLoadProfitably; break; - case ISD::ZEXTLOAD: - case ISD::NON_EXTLOAD: B = true; break; - } - - if (B && Constant.isAllOnesValue()) { - // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to - // preserve semantics once we get rid of the AND. - SDValue NewLoad(Load, 0); - - // Fold the AND away. NewLoad may get replaced immediately. - CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); - - if (Load->getExtensionType() == ISD::EXTLOAD) { - NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, - Load->getValueType(0), SDLoc(Load), - Load->getChain(), Load->getBasePtr(), - Load->getOffset(), Load->getMemoryVT(), - Load->getMemOperand()); - // Replace uses of the EXTLOAD with the new ZEXTLOAD. - if (Load->getNumValues() == 3) { - // PRE/POST_INC loads have 3 values. - SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), - NewLoad.getValue(2) }; - CombineTo(Load, To, 3, true); - } else { - CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); - } - } - - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // fold (and (load x), 255) -> (zextload x, i8) - // fold (and (extload x, i16), 255) -> (zextload x, i8) - // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) - if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || - (N0.getOpcode() == ISD::ANY_EXTEND && - N0.getOperand(0).getOpcode() == ISD::LOAD))) { - if (SDValue Res = ReduceLoadWidth(N)) { - LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND - ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); - AddToWorklist(N); - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); - return SDValue(N, 0); - } - } - - if (Level >= AfterLegalizeTypes) { - // Attempt to propagate the AND back up to the leaves which, if they're - // loads, can be combined to narrow loads and the AND node can be removed. - // Perform after legalization so that extend nodes will already be - // combined into the loads. - if (BackwardsPropagateMask(N, DAG)) { - return SDValue(N, 0); - } - } - - if (SDValue Combined = visitANDLike(N0, N1, N)) - return Combined; - - // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) - if (N0.getOpcode() == N1.getOpcode()) - if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) - return V; - - // Masking the negated extension of a boolean is just the zero-extended - // boolean: - // and (sub 0, zext(bool X)), 1 --> zext(bool X) - // and (sub 0, sext(bool X)), 1 --> zext(bool X) - // - // Note: the SimplifyDemandedBits fold below can make an information-losing - // transform, and then we have no way to find this better fold. - if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { - if (isNullOrNullSplat(N0.getOperand(0))) { - SDValue SubRHS = N0.getOperand(1); - if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && - SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) - return SubRHS; - if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && - SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); - } - } - - // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) - // fold (and (sra)) -> (and (srl)) when possible. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (zext_inreg (extload x)) -> (zextload x) - if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - EVT MemVT = LN0->getMemoryVT(); - // If we zero all the possible extended bits, then we can turn this into - // a zextload if we are running before legalize or the operation is legal. - unsigned BitWidth = N1.getScalarValueSizeInBits(); - if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, - BitWidth - MemVT.getScalarSizeInBits())) && - ((!LegalOperations && !LN0->isVolatile()) || - TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { - SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, - LN0->getChain(), LN0->getBasePtr(), - MemVT, LN0->getMemOperand()); - AddToWorklist(N); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use - if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && - N0.hasOneUse()) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - EVT MemVT = LN0->getMemoryVT(); - // If we zero all the possible extended bits, then we can turn this into - // a zextload if we are running before legalize or the operation is legal. - unsigned BitWidth = N1.getScalarValueSizeInBits(); - if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, - BitWidth - MemVT.getScalarSizeInBits())) && - ((!LegalOperations && !LN0->isVolatile()) || - TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { - SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, - LN0->getChain(), LN0->getBasePtr(), - MemVT, LN0->getMemOperand()); - AddToWorklist(N); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) - if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { - if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), - N0.getOperand(1), false)) - return BSwap; - } - - if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) - return Shifts; - - return SDValue(); -} - -/// Match (a >> 8) | (a << 8) as (bswap a) >> 16. -SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, - bool DemandHighBits) { - if (!LegalOperations) - return SDValue(); - - EVT VT = N->getValueType(0); - if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) - return SDValue(); - if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) - return SDValue(); - - // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) - bool LookPassAnd0 = false; - bool LookPassAnd1 = false; - if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) - std::swap(N0, N1); - if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) - std::swap(N0, N1); - if (N0.getOpcode() == ISD::AND) { - if (!N0.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - // Also handle 0xffff since the LHS is guaranteed to have zeros there. - // This is needed for X86. - if (!N01C || (N01C->getZExtValue() != 0xFF00 && - N01C->getZExtValue() != 0xFFFF)) - return SDValue(); - N0 = N0.getOperand(0); - LookPassAnd0 = true; - } - - if (N1.getOpcode() == ISD::AND) { - if (!N1.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); - if (!N11C || N11C->getZExtValue() != 0xFF) - return SDValue(); - N1 = N1.getOperand(0); - LookPassAnd1 = true; - } - - if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) - std::swap(N0, N1); - if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) - return SDValue(); - if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) - return SDValue(); - - ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); - if (!N01C || !N11C) - return SDValue(); - if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) - return SDValue(); - - // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) - SDValue N00 = N0->getOperand(0); - if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { - if (!N00.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); - if (!N001C || N001C->getZExtValue() != 0xFF) - return SDValue(); - N00 = N00.getOperand(0); - LookPassAnd0 = true; - } - - SDValue N10 = N1->getOperand(0); - if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { - if (!N10.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); - // Also allow 0xFFFF since the bits will be shifted out. This is needed - // for X86. - if (!N101C || (N101C->getZExtValue() != 0xFF00 && - N101C->getZExtValue() != 0xFFFF)) - return SDValue(); - N10 = N10.getOperand(0); - LookPassAnd1 = true; - } - - if (N00 != N10) - return SDValue(); - - // Make sure everything beyond the low halfword gets set to zero since the SRL - // 16 will clear the top bits. - unsigned OpSizeInBits = VT.getSizeInBits(); - if (DemandHighBits && OpSizeInBits > 16) { - // If the left-shift isn't masked out then the only way this is a bswap is - // if all bits beyond the low 8 are 0. In that case the entire pattern - // reduces to a left shift anyway: leave it for other parts of the combiner. - if (!LookPassAnd0) - return SDValue(); - - // However, if the right shift isn't masked out then it might be because - // it's not needed. See if we can spot that too. - if (!LookPassAnd1 && - !DAG.MaskedValueIsZero( - N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) - return SDValue(); - } - - SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); - if (OpSizeInBits > 16) { - SDLoc DL(N); - Res = DAG.getNode(ISD::SRL, DL, VT, Res, - DAG.getConstant(OpSizeInBits - 16, DL, - getShiftAmountTy(VT))); - } - return Res; -} - -/// Return true if the specified node is an element that makes up a 32-bit -/// packed halfword byteswap. -/// ((x & 0x000000ff) << 8) | -/// ((x & 0x0000ff00) >> 8) | -/// ((x & 0x00ff0000) << 8) | -/// ((x & 0xff000000) >> 8) -static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { - if (!N.getNode()->hasOneUse()) - return false; - - unsigned Opc = N.getOpcode(); - if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) - return false; - - SDValue N0 = N.getOperand(0); - unsigned Opc0 = N0.getOpcode(); - if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) - return false; - - ConstantSDNode *N1C = nullptr; - // SHL or SRL: look upstream for AND mask operand - if (Opc == ISD::AND) - N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); - else if (Opc0 == ISD::AND) - N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!N1C) - return false; - - unsigned MaskByteOffset; - switch (N1C->getZExtValue()) { - default: - return false; - case 0xFF: MaskByteOffset = 0; break; - case 0xFF00: MaskByteOffset = 1; break; - case 0xFFFF: - // In case demanded bits didn't clear the bits that will be shifted out. - // This is needed for X86. - if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { - MaskByteOffset = 1; - break; - } - return false; - case 0xFF0000: MaskByteOffset = 2; break; - case 0xFF000000: MaskByteOffset = 3; break; - } - - // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). - if (Opc == ISD::AND) { - if (MaskByteOffset == 0 || MaskByteOffset == 2) { - // (x >> 8) & 0xff - // (x >> 8) & 0xff0000 - if (Opc0 != ISD::SRL) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } else { - // (x << 8) & 0xff00 - // (x << 8) & 0xff000000 - if (Opc0 != ISD::SHL) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } - } else if (Opc == ISD::SHL) { - // (x & 0xff) << 8 - // (x & 0xff0000) << 8 - if (MaskByteOffset != 0 && MaskByteOffset != 2) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } else { // Opc == ISD::SRL - // (x & 0xff00) >> 8 - // (x & 0xff000000) >> 8 - if (MaskByteOffset != 1 && MaskByteOffset != 3) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } - - if (Parts[MaskByteOffset]) - return false; - - Parts[MaskByteOffset] = N0.getOperand(0).getNode(); - return true; -} - -/// Match a 32-bit packed halfword bswap. That is -/// ((x & 0x000000ff) << 8) | -/// ((x & 0x0000ff00) >> 8) | -/// ((x & 0x00ff0000) << 8) | -/// ((x & 0xff000000) >> 8) -/// => (rotl (bswap x), 16) -SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { - if (!LegalOperations) - return SDValue(); - - EVT VT = N->getValueType(0); - if (VT != MVT::i32) - return SDValue(); - if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) - return SDValue(); - - // Look for either - // (or (or (and), (and)), (or (and), (and))) - // (or (or (or (and), (and)), (and)), (and)) - if (N0.getOpcode() != ISD::OR) - return SDValue(); - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - SDNode *Parts[4] = {}; - - if (N1.getOpcode() == ISD::OR && - N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { - // (or (or (and), (and)), (or (and), (and))) - if (!isBSwapHWordElement(N00, Parts)) - return SDValue(); - - if (!isBSwapHWordElement(N01, Parts)) - return SDValue(); - SDValue N10 = N1.getOperand(0); - if (!isBSwapHWordElement(N10, Parts)) - return SDValue(); - SDValue N11 = N1.getOperand(1); - if (!isBSwapHWordElement(N11, Parts)) - return SDValue(); - } else { - // (or (or (or (and), (and)), (and)), (and)) - if (!isBSwapHWordElement(N1, Parts)) - return SDValue(); - if (!isBSwapHWordElement(N01, Parts)) - return SDValue(); - if (N00.getOpcode() != ISD::OR) - return SDValue(); - SDValue N000 = N00.getOperand(0); - if (!isBSwapHWordElement(N000, Parts)) - return SDValue(); - SDValue N001 = N00.getOperand(1); - if (!isBSwapHWordElement(N001, Parts)) - return SDValue(); - } - - // Make sure the parts are all coming from the same node. - if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) - return SDValue(); - - SDLoc DL(N); - SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, - SDValue(Parts[0], 0)); - - // Result of the bswap should be rotated by 16. If it's not legal, then - // do (x << 16) | (x >> 16). - SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); - if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) - return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); - if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) - return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); - return DAG.getNode(ISD::OR, DL, VT, - DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), - DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); -} - -/// This contains all DAGCombine rules which reduce two values combined by -/// an Or operation to a single value \see visitANDLike(). -SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { - EVT VT = N1.getValueType(); - SDLoc DL(N); - - // fold (or x, undef) -> -1 - if (!LegalOperations && (N0.isUndef() || N1.isUndef())) - return DAG.getAllOnesConstant(DL, VT); - - if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) - return V; - - // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. - if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && - // Don't increase # computations. - (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { - // We can only do this xform if we know that bits from X that are set in C2 - // but not in C1 are already zero. Likewise for Y. - if (const ConstantSDNode *N0O1C = - getAsNonOpaqueConstant(N0.getOperand(1))) { - if (const ConstantSDNode *N1O1C = - getAsNonOpaqueConstant(N1.getOperand(1))) { - // We can only do this xform if we know that bits from X that are set in - // C2 but not in C1 are already zero. Likewise for Y. - const APInt &LHSMask = N0O1C->getAPIntValue(); - const APInt &RHSMask = N1O1C->getAPIntValue(); - - if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && - DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { - SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, - N0.getOperand(0), N1.getOperand(0)); - return DAG.getNode(ISD::AND, DL, VT, X, - DAG.getConstant(LHSMask | RHSMask, DL, VT)); - } - } - } - } - - // (or (and X, M), (and X, N)) -> (and X, (or M, N)) - if (N0.getOpcode() == ISD::AND && - N1.getOpcode() == ISD::AND && - N0.getOperand(0) == N1.getOperand(0) && - // Don't increase # computations. - (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { - SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, - N0.getOperand(1), N1.getOperand(1)); - return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitOR(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N1.getValueType(); - - // x | x --> x - if (N0 == N1) - return N0; - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (or x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - - // fold (or x, -1) -> -1, vector edition - if (ISD::isBuildVectorAllOnes(N0.getNode())) - // do not return N0, because undef node may exist in N0 - return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); - if (ISD::isBuildVectorAllOnes(N1.getNode())) - // do not return N1, because undef node may exist in N1 - return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); - - // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) - // Do this only if the resulting shuffle is legal. - if (isa<ShuffleVectorSDNode>(N0) && - isa<ShuffleVectorSDNode>(N1) && - // Avoid folding a node with illegal type. - TLI.isTypeLegal(VT)) { - bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); - bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); - bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); - bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); - // Ensure both shuffles have a zero input. - if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { - assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); - assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); - const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); - const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); - bool CanFold = true; - int NumElts = VT.getVectorNumElements(); - SmallVector<int, 4> Mask(NumElts); - - for (int i = 0; i != NumElts; ++i) { - int M0 = SV0->getMaskElt(i); - int M1 = SV1->getMaskElt(i); - - // Determine if either index is pointing to a zero vector. - bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); - bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); - - // If one element is zero and the otherside is undef, keep undef. - // This also handles the case that both are undef. - if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { - Mask[i] = -1; - continue; - } - - // Make sure only one of the elements is zero. - if (M0Zero == M1Zero) { - CanFold = false; - break; - } - - assert((M0 >= 0 || M1 >= 0) && "Undef index!"); - - // We have a zero and non-zero element. If the non-zero came from - // SV0 make the index a LHS index. If it came from SV1, make it - // a RHS index. We need to mod by NumElts because we don't care - // which operand it came from in the original shuffles. - Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; - } - - if (CanFold) { - SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); - SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); - - bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); - if (!LegalMask) { - std::swap(NewLHS, NewRHS); - ShuffleVectorSDNode::commuteMask(Mask); - LegalMask = TLI.isShuffleMaskLegal(Mask, VT); - } - - if (LegalMask) - return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); - } - } - } - } - - // fold (or c1, c2) -> c1|c2 - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && N1C && !N1C->isOpaque()) - return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); - // fold (or x, 0) -> x - if (isNullConstant(N1)) - return N0; - // fold (or x, -1) -> -1 - if (isAllOnesConstant(N1)) - return N1; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (or x, c) -> c iff (x & ~c) == 0 - if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) - return N1; - - if (SDValue Combined = visitORLike(N0, N1, N)) - return Combined; - - // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) - if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) - return BSwap; - if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) - return BSwap; - - // reassociate or - if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) - return ROR; - - // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) - // iff (c1 & c2) != 0 or c1/c2 are undef. - auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { - return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); - }; - if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && - ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { - if (SDValue COR = DAG.FoldConstantArithmetic( - ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) { - SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); - AddToWorklist(IOR.getNode()); - return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); - } - } - - // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) - if (N0.getOpcode() == N1.getOpcode()) - if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) - return V; - - // See if this is some rotate idiom. - if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) - return SDValue(Rot, 0); - - if (SDValue Load = MatchLoadCombine(N)) - return Load; - - // Simplify the operands using demanded-bits information. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { - if (Op.getOpcode() == ISD::AND && - DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { - Mask = Op.getOperand(1); - return Op.getOperand(0); - } - return Op; -} - -/// Match "(X shl/srl V1) & V2" where V2 may not be present. -static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, - SDValue &Mask) { - Op = stripConstantMask(DAG, Op, Mask); - if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { - Shift = Op; - return true; - } - return false; -} - -/// Helper function for visitOR to extract the needed side of a rotate idiom -/// from a shl/srl/mul/udiv. This is meant to handle cases where -/// InstCombine merged some outside op with one of the shifts from -/// the rotate pattern. -/// \returns An empty \c SDValue if the needed shift couldn't be extracted. -/// Otherwise, returns an expansion of \p ExtractFrom based on the following -/// patterns: -/// -/// (or (mul v c0) (shrl (mul v c1) c2)): -/// expands (mul v c0) -> (shl (mul v c1) c3) -/// -/// (or (udiv v c0) (shl (udiv v c1) c2)): -/// expands (udiv v c0) -> (shrl (udiv v c1) c3) -/// -/// (or (shl v c0) (shrl (shl v c1) c2)): -/// expands (shl v c0) -> (shl (shl v c1) c3) -/// -/// (or (shrl v c0) (shl (shrl v c1) c2)): -/// expands (shrl v c0) -> (shrl (shrl v c1) c3) -/// -/// Such that in all cases, c3+c2==bitwidth(op v c1). -static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, - SDValue ExtractFrom, SDValue &Mask, - const SDLoc &DL) { - assert(OppShift && ExtractFrom && "Empty SDValue"); - assert( - (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && - "Existing shift must be valid as a rotate half"); - - ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); - // Preconditions: - // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) - // - // Find opcode of the needed shift to be extracted from (op0 v c0). - unsigned Opcode = ISD::DELETED_NODE; - bool IsMulOrDiv = false; - // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift - // opcode or its arithmetic (mul or udiv) variant. - auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { - IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; - if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) - return false; - Opcode = NeededShift; - return true; - }; - // op0 must be either the needed shift opcode or the mul/udiv equivalent - // that the needed shift can be extracted from. - if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && - (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) - return SDValue(); - - // op0 must be the same opcode on both sides, have the same LHS argument, - // and produce the same value type. - SDValue OppShiftLHS = OppShift.getOperand(0); - EVT ShiftedVT = OppShiftLHS.getValueType(); - if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || - OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || - ShiftedVT != ExtractFrom.getValueType()) - return SDValue(); - - // Amount of the existing shift. - ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); - // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. - ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); - // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. - ConstantSDNode *ExtractFromCst = - isConstOrConstSplat(ExtractFrom.getOperand(1)); - // TODO: We should be able to handle non-uniform constant vectors for these values - // Check that we have constant values. - if (!OppShiftCst || !OppShiftCst->getAPIntValue() || - !OppLHSCst || !OppLHSCst->getAPIntValue() || - !ExtractFromCst || !ExtractFromCst->getAPIntValue()) - return SDValue(); - - // Compute the shift amount we need to extract to complete the rotate. - const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); - if (OppShiftCst->getAPIntValue().ugt(VTWidth)) - return SDValue(); - APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); - // Normalize the bitwidth of the two mul/udiv/shift constant operands. - APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); - APInt OppLHSAmt = OppLHSCst->getAPIntValue(); - zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); - - // Now try extract the needed shift from the ExtractFrom op and see if the - // result matches up with the existing shift's LHS op. - if (IsMulOrDiv) { - // Op to extract from is a mul or udiv by a constant. - // Check: - // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 - // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 - const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), - NeededShiftAmt.getZExtValue()); - APInt ResultAmt; - APInt Rem; - APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); - if (Rem != 0 || ResultAmt != OppLHSAmt) - return SDValue(); - } else { - // Op to extract from is a shift by a constant. - // Check: - // c2 - (bitwidth(op0 v c0) - c1) == c0 - if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( - ExtractFromAmt.getBitWidth())) - return SDValue(); - } - - // Return the expanded shift op that should allow a rotate to be formed. - EVT ShiftVT = OppShift.getOperand(1).getValueType(); - EVT ResVT = ExtractFrom.getValueType(); - SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); - return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); -} - -// Return true if we can prove that, whenever Neg and Pos are both in the -// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that -// for two opposing shifts shift1 and shift2 and a value X with OpBits bits: -// -// (or (shift1 X, Neg), (shift2 X, Pos)) -// -// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate -// in direction shift1 by Neg. The range [0, EltSize) means that we only need -// to consider shift amounts with defined behavior. -static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, - SelectionDAG &DAG) { - // If EltSize is a power of 2 then: - // - // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) - // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). - // - // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check - // for the stronger condition: - // - // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] - // - // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) - // we can just replace Neg with Neg' for the rest of the function. - // - // In other cases we check for the even stronger condition: - // - // Neg == EltSize - Pos [B] - // - // for all Neg and Pos. Note that the (or ...) then invokes undefined - // behavior if Pos == 0 (and consequently Neg == EltSize). - // - // We could actually use [A] whenever EltSize is a power of 2, but the - // only extra cases that it would match are those uninteresting ones - // where Neg and Pos are never in range at the same time. E.g. for - // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) - // as well as (sub 32, Pos), but: - // - // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) - // - // always invokes undefined behavior for 32-bit X. - // - // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. - unsigned MaskLoBits = 0; - if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { - if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { - KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); - unsigned Bits = Log2_64(EltSize); - if (NegC->getAPIntValue().getActiveBits() <= Bits && - ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { - Neg = Neg.getOperand(0); - MaskLoBits = Bits; - } - } - } - - // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. - if (Neg.getOpcode() != ISD::SUB) - return false; - ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); - if (!NegC) - return false; - SDValue NegOp1 = Neg.getOperand(1); - - // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with - // Pos'. The truncation is redundant for the purpose of the equality. - if (MaskLoBits && Pos.getOpcode() == ISD::AND) { - if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { - KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); - if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && - ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= - MaskLoBits)) - Pos = Pos.getOperand(0); - } - } - - // The condition we need is now: - // - // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask - // - // If NegOp1 == Pos then we need: - // - // EltSize & Mask == NegC & Mask - // - // (because "x & Mask" is a truncation and distributes through subtraction). - APInt Width; - if (Pos == NegOp1) - Width = NegC->getAPIntValue(); - - // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. - // Then the condition we want to prove becomes: - // - // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask - // - // which, again because "x & Mask" is a truncation, becomes: - // - // NegC & Mask == (EltSize - PosC) & Mask - // EltSize & Mask == (NegC + PosC) & Mask - else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { - if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) - Width = PosC->getAPIntValue() + NegC->getAPIntValue(); - else - return false; - } else - return false; - - // Now we just need to check that EltSize & Mask == Width & Mask. - if (MaskLoBits) - // EltSize & Mask is 0 since Mask is EltSize - 1. - return Width.getLoBits(MaskLoBits) == 0; - return Width == EltSize; -} - -// A subroutine of MatchRotate used once we have found an OR of two opposite -// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces -// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the -// former being preferred if supported. InnerPos and InnerNeg are Pos and -// Neg with outer conversions stripped away. -SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, - SDValue Neg, SDValue InnerPos, - SDValue InnerNeg, unsigned PosOpcode, - unsigned NegOpcode, const SDLoc &DL) { - // fold (or (shl x, (*ext y)), - // (srl x, (*ext (sub 32, y)))) -> - // (rotl x, y) or (rotr x, (sub 32, y)) - // - // fold (or (shl x, (*ext (sub 32, y))), - // (srl x, (*ext y))) -> - // (rotr x, y) or (rotl x, (sub 32, y)) - EVT VT = Shifted.getValueType(); - if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) { - bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); - return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, - HasPos ? Pos : Neg).getNode(); - } - - return nullptr; -} - -// MatchRotate - Handle an 'or' of two operands. If this is one of the many -// idioms for rotate, and if the target supports rotation instructions, generate -// a rot[lr]. -SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { - // Must be a legal type. Expanded 'n promoted things won't work with rotates. - EVT VT = LHS.getValueType(); - if (!TLI.isTypeLegal(VT)) return nullptr; - - // The target must have at least one rotate flavor. - bool HasROTL = hasOperation(ISD::ROTL, VT); - bool HasROTR = hasOperation(ISD::ROTR, VT); - if (!HasROTL && !HasROTR) return nullptr; - - // Check for truncated rotate. - if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && - LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { - assert(LHS.getValueType() == RHS.getValueType()); - if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { - return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), - SDValue(Rot, 0)).getNode(); - } - } - - // Match "(X shl/srl V1) & V2" where V2 may not be present. - SDValue LHSShift; // The shift. - SDValue LHSMask; // AND value if any. - matchRotateHalf(DAG, LHS, LHSShift, LHSMask); - - SDValue RHSShift; // The shift. - SDValue RHSMask; // AND value if any. - matchRotateHalf(DAG, RHS, RHSShift, RHSMask); - - // If neither side matched a rotate half, bail - if (!LHSShift && !RHSShift) - return nullptr; - - // InstCombine may have combined a constant shl, srl, mul, or udiv with one - // side of the rotate, so try to handle that here. In all cases we need to - // pass the matched shift from the opposite side to compute the opcode and - // needed shift amount to extract. We still want to do this if both sides - // matched a rotate half because one half may be a potential overshift that - // can be broken down (ie if InstCombine merged two shl or srl ops into a - // single one). - - // Have LHS side of the rotate, try to extract the needed shift from the RHS. - if (LHSShift) - if (SDValue NewRHSShift = - extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) - RHSShift = NewRHSShift; - // Have RHS side of the rotate, try to extract the needed shift from the LHS. - if (RHSShift) - if (SDValue NewLHSShift = - extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) - LHSShift = NewLHSShift; - - // If a side is still missing, nothing else we can do. - if (!RHSShift || !LHSShift) - return nullptr; - - // At this point we've matched or extracted a shift op on each side. - - if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) - return nullptr; // Not shifting the same value. - - if (LHSShift.getOpcode() == RHSShift.getOpcode()) - return nullptr; // Shifts must disagree. - - // Canonicalize shl to left side in a shl/srl pair. - if (RHSShift.getOpcode() == ISD::SHL) { - std::swap(LHS, RHS); - std::swap(LHSShift, RHSShift); - std::swap(LHSMask, RHSMask); - } - - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - SDValue LHSShiftArg = LHSShift.getOperand(0); - SDValue LHSShiftAmt = LHSShift.getOperand(1); - SDValue RHSShiftArg = RHSShift.getOperand(0); - SDValue RHSShiftAmt = RHSShift.getOperand(1); - - // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) - // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) - auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; - }; - if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { - SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, - LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); - - // If there is an AND of either shifted operand, apply it to the result. - if (LHSMask.getNode() || RHSMask.getNode()) { - SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); - SDValue Mask = AllOnes; - - if (LHSMask.getNode()) { - SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); - Mask = DAG.getNode(ISD::AND, DL, VT, Mask, - DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); - } - if (RHSMask.getNode()) { - SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); - Mask = DAG.getNode(ISD::AND, DL, VT, Mask, - DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); - } - - Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); - } - - return Rot.getNode(); - } - - // If there is a mask here, and we have a variable shift, we can't be sure - // that we're masking out the right stuff. - if (LHSMask.getNode() || RHSMask.getNode()) - return nullptr; - - // If the shift amount is sign/zext/any-extended just peel it off. - SDValue LExtOp0 = LHSShiftAmt; - SDValue RExtOp0 = RHSShiftAmt; - if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || - LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || - LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || - LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && - (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || - RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || - RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || - RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { - LExtOp0 = LHSShiftAmt.getOperand(0); - RExtOp0 = RHSShiftAmt.getOperand(0); - } - - SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, - LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); - if (TryL) - return TryL; - - SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, - RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); - if (TryR) - return TryR; - - return nullptr; -} - -namespace { - -/// Represents known origin of an individual byte in load combine pattern. The -/// value of the byte is either constant zero or comes from memory. -struct ByteProvider { - // For constant zero providers Load is set to nullptr. For memory providers - // Load represents the node which loads the byte from memory. - // ByteOffset is the offset of the byte in the value produced by the load. - LoadSDNode *Load = nullptr; - unsigned ByteOffset = 0; - - ByteProvider() = default; - - static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { - return ByteProvider(Load, ByteOffset); - } - - static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } - - bool isConstantZero() const { return !Load; } - bool isMemory() const { return Load; } - - bool operator==(const ByteProvider &Other) const { - return Other.Load == Load && Other.ByteOffset == ByteOffset; - } - -private: - ByteProvider(LoadSDNode *Load, unsigned ByteOffset) - : Load(Load), ByteOffset(ByteOffset) {} -}; - -} // end anonymous namespace - -/// Recursively traverses the expression calculating the origin of the requested -/// byte of the given value. Returns None if the provider can't be calculated. -/// -/// For all the values except the root of the expression verifies that the value -/// has exactly one use and if it's not true return None. This way if the origin -/// of the byte is returned it's guaranteed that the values which contribute to -/// the byte are not used outside of this expression. -/// -/// Because the parts of the expression are not allowed to have more than one -/// use this function iterates over trees, not DAGs. So it never visits the same -/// node more than once. -static const Optional<ByteProvider> -calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, - bool Root = false) { - // Typical i64 by i8 pattern requires recursion up to 8 calls depth - if (Depth == 10) - return None; - - if (!Root && !Op.hasOneUse()) - return None; - - assert(Op.getValueType().isScalarInteger() && "can't handle other types"); - unsigned BitWidth = Op.getValueSizeInBits(); - if (BitWidth % 8 != 0) - return None; - unsigned ByteWidth = BitWidth / 8; - assert(Index < ByteWidth && "invalid index requested"); - (void) ByteWidth; - - switch (Op.getOpcode()) { - case ISD::OR: { - auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); - if (!LHS) - return None; - auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); - if (!RHS) - return None; - - if (LHS->isConstantZero()) - return RHS; - if (RHS->isConstantZero()) - return LHS; - return None; - } - case ISD::SHL: { - auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); - if (!ShiftOp) - return None; - - uint64_t BitShift = ShiftOp->getZExtValue(); - if (BitShift % 8 != 0) - return None; - uint64_t ByteShift = BitShift / 8; - - return Index < ByteShift - ? ByteProvider::getConstantZero() - : calculateByteProvider(Op->getOperand(0), Index - ByteShift, - Depth + 1); - } - case ISD::ANY_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: { - SDValue NarrowOp = Op->getOperand(0); - unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); - if (NarrowBitWidth % 8 != 0) - return None; - uint64_t NarrowByteWidth = NarrowBitWidth / 8; - - if (Index >= NarrowByteWidth) - return Op.getOpcode() == ISD::ZERO_EXTEND - ? Optional<ByteProvider>(ByteProvider::getConstantZero()) - : None; - return calculateByteProvider(NarrowOp, Index, Depth + 1); - } - case ISD::BSWAP: - return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, - Depth + 1); - case ISD::LOAD: { - auto L = cast<LoadSDNode>(Op.getNode()); - if (L->isVolatile() || L->isIndexed()) - return None; - - unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); - if (NarrowBitWidth % 8 != 0) - return None; - uint64_t NarrowByteWidth = NarrowBitWidth / 8; - - if (Index >= NarrowByteWidth) - return L->getExtensionType() == ISD::ZEXTLOAD - ? Optional<ByteProvider>(ByteProvider::getConstantZero()) - : None; - return ByteProvider::getMemory(L, Index); - } - } - - return None; -} - -/// Match a pattern where a wide type scalar value is loaded by several narrow -/// loads and combined by shifts and ors. Fold it into a single load or a load -/// and a BSWAP if the targets supports it. -/// -/// Assuming little endian target: -/// i8 *a = ... -/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) -/// => -/// i32 val = *((i32)a) -/// -/// i8 *a = ... -/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] -/// => -/// i32 val = BSWAP(*((i32)a)) -/// -/// TODO: This rule matches complex patterns with OR node roots and doesn't -/// interact well with the worklist mechanism. When a part of the pattern is -/// updated (e.g. one of the loads) its direct users are put into the worklist, -/// but the root node of the pattern which triggers the load combine is not -/// necessarily a direct user of the changed node. For example, once the address -/// of t28 load is reassociated load combine won't be triggered: -/// t25: i32 = add t4, Constant:i32<2> -/// t26: i64 = sign_extend t25 -/// t27: i64 = add t2, t26 -/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 -/// t29: i32 = zero_extend t28 -/// t32: i32 = shl t29, Constant:i8<8> -/// t33: i32 = or t23, t32 -/// As a possible fix visitLoad can check if the load can be a part of a load -/// combine pattern and add corresponding OR roots to the worklist. -SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { - assert(N->getOpcode() == ISD::OR && - "Can only match load combining against OR nodes"); - - // Handles simple types only - EVT VT = N->getValueType(0); - if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) - return SDValue(); - unsigned ByteWidth = VT.getSizeInBits() / 8; - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - // Before legalize we can introduce too wide illegal loads which will be later - // split into legal sized loads. This enables us to combine i64 load by i8 - // patterns to a couple of i32 loads on 32 bit targets. - if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT)) - return SDValue(); - - std::function<unsigned(unsigned, unsigned)> LittleEndianByteAt = []( - unsigned BW, unsigned i) { return i; }; - std::function<unsigned(unsigned, unsigned)> BigEndianByteAt = []( - unsigned BW, unsigned i) { return BW - i - 1; }; - - bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); - auto MemoryByteOffset = [&] (ByteProvider P) { - assert(P.isMemory() && "Must be a memory byte provider"); - unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); - assert(LoadBitWidth % 8 == 0 && - "can only analyze providers for individual bytes not bit"); - unsigned LoadByteWidth = LoadBitWidth / 8; - return IsBigEndianTarget - ? BigEndianByteAt(LoadByteWidth, P.ByteOffset) - : LittleEndianByteAt(LoadByteWidth, P.ByteOffset); - }; - - Optional<BaseIndexOffset> Base; - SDValue Chain; - - SmallPtrSet<LoadSDNode *, 8> Loads; - Optional<ByteProvider> FirstByteProvider; - int64_t FirstOffset = INT64_MAX; - - // Check if all the bytes of the OR we are looking at are loaded from the same - // base address. Collect bytes offsets from Base address in ByteOffsets. - SmallVector<int64_t, 4> ByteOffsets(ByteWidth); - for (unsigned i = 0; i < ByteWidth; i++) { - auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); - if (!P || !P->isMemory()) // All the bytes must be loaded from memory - return SDValue(); - - LoadSDNode *L = P->Load; - assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() && - "Must be enforced by calculateByteProvider"); - assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); - - // All loads must share the same chain - SDValue LChain = L->getChain(); - if (!Chain) - Chain = LChain; - else if (Chain != LChain) - return SDValue(); - - // Loads must share the same base address - BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); - int64_t ByteOffsetFromBase = 0; - if (!Base) - Base = Ptr; - else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) - return SDValue(); - - // Calculate the offset of the current byte from the base address - ByteOffsetFromBase += MemoryByteOffset(*P); - ByteOffsets[i] = ByteOffsetFromBase; - - // Remember the first byte load - if (ByteOffsetFromBase < FirstOffset) { - FirstByteProvider = P; - FirstOffset = ByteOffsetFromBase; - } - - Loads.insert(L); - } - assert(!Loads.empty() && "All the bytes of the value must be loaded from " - "memory, so there must be at least one load which produces the value"); - assert(Base && "Base address of the accessed memory location must be set"); - assert(FirstOffset != INT64_MAX && "First byte offset must be set"); - - // Check if the bytes of the OR we are looking at match with either big or - // little endian value load - bool BigEndian = true, LittleEndian = true; - for (unsigned i = 0; i < ByteWidth; i++) { - int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; - LittleEndian &= CurrentByteOffset == LittleEndianByteAt(ByteWidth, i); - BigEndian &= CurrentByteOffset == BigEndianByteAt(ByteWidth, i); - if (!BigEndian && !LittleEndian) - return SDValue(); - } - assert((BigEndian != LittleEndian) && "should be either or"); - assert(FirstByteProvider && "must be set"); - - // Ensure that the first byte is loaded from zero offset of the first load. - // So the combined value can be loaded from the first load address. - if (MemoryByteOffset(*FirstByteProvider) != 0) - return SDValue(); - LoadSDNode *FirstLoad = FirstByteProvider->Load; - - // The node we are looking at matches with the pattern, check if we can - // replace it with a single load and bswap if needed. - - // If the load needs byte swap check if the target supports it - bool NeedsBswap = IsBigEndianTarget != BigEndian; - - // Before legalize we can introduce illegal bswaps which will be later - // converted to an explicit bswap sequence. This way we end up with a single - // load and byte shuffling instead of several loads and byte shuffling. - if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT)) - return SDValue(); - - // Check that a load of the wide type is both allowed and fast on the target - bool Fast = false; - bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), - VT, FirstLoad->getAddressSpace(), - FirstLoad->getAlignment(), &Fast); - if (!Allowed || !Fast) - return SDValue(); - - SDValue NewLoad = - DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(), - FirstLoad->getPointerInfo(), FirstLoad->getAlignment()); - - // Transfer chain users from old loads to the new load. - for (LoadSDNode *L : Loads) - DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); - - return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad; -} - -// If the target has andn, bsl, or a similar bit-select instruction, -// we want to unfold masked merge, with canonical pattern of: -// | A | |B| -// ((x ^ y) & m) ^ y -// | D | -// Into: -// (x & m) | (y & ~m) -// If y is a constant, and the 'andn' does not work with immediates, -// we unfold into a different pattern: -// ~(~x & m) & (m | y) -// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at -// the very least that breaks andnpd / andnps patterns, and because those -// patterns are simplified in IR and shouldn't be created in the DAG -SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { - assert(N->getOpcode() == ISD::XOR); - - // Don't touch 'not' (i.e. where y = -1). - if (isAllOnesOrAllOnesSplat(N->getOperand(1))) - return SDValue(); - - EVT VT = N->getValueType(0); - - // There are 3 commutable operators in the pattern, - // so we have to deal with 8 possible variants of the basic pattern. - SDValue X, Y, M; - auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { - if (And.getOpcode() != ISD::AND || !And.hasOneUse()) - return false; - SDValue Xor = And.getOperand(XorIdx); - if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) - return false; - SDValue Xor0 = Xor.getOperand(0); - SDValue Xor1 = Xor.getOperand(1); - // Don't touch 'not' (i.e. where y = -1). - if (isAllOnesOrAllOnesSplat(Xor1)) - return false; - if (Other == Xor0) - std::swap(Xor0, Xor1); - if (Other != Xor1) - return false; - X = Xor0; - Y = Xor1; - M = And.getOperand(XorIdx ? 0 : 1); - return true; - }; - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && - !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) - return SDValue(); - - // Don't do anything if the mask is constant. This should not be reachable. - // InstCombine should have already unfolded this pattern, and DAGCombiner - // probably shouldn't produce it, too. - if (isa<ConstantSDNode>(M.getNode())) - return SDValue(); - - // We can transform if the target has AndNot - if (!TLI.hasAndNot(M)) - return SDValue(); - - SDLoc DL(N); - - // If Y is a constant, check that 'andn' works with immediates. - if (!TLI.hasAndNot(Y)) { - assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); - // If not, we need to do a bit more work to make sure andn is still used. - SDValue NotX = DAG.getNOT(DL, X, VT); - SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); - SDValue NotLHS = DAG.getNOT(DL, LHS, VT); - SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); - return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); - } - - SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); - SDValue NotM = DAG.getNOT(DL, M, VT); - SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); - - return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); -} - -SDValue DAGCombiner::visitXOR(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (xor x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - } - - // fold (xor undef, undef) -> 0. This is a common idiom (misuse). - SDLoc DL(N); - if (N0.isUndef() && N1.isUndef()) - return DAG.getConstant(0, DL, VT); - // fold (xor x, undef) -> undef - if (N0.isUndef()) - return N0; - if (N1.isUndef()) - return N1; - // fold (xor c1, c2) -> c1^c2 - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); - if (N0C && N1C) - return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C); - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::XOR, DL, VT, N1, N0); - // fold (xor x, 0) -> x - if (isNullConstant(N1)) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // reassociate xor - if (SDValue RXOR = ReassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) - return RXOR; - - // fold !(x cc y) -> (x !cc y) - unsigned N0Opcode = N0.getOpcode(); - SDValue LHS, RHS, CC; - if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { - ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), - LHS.getValueType().isInteger()); - if (!LegalOperations || - TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { - switch (N0Opcode) { - default: - llvm_unreachable("Unhandled SetCC Equivalent!"); - case ISD::SETCC: - return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); - case ISD::SELECT_CC: - return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), - N0.getOperand(3), NotCC); - } - } - } - - // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) - if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && - isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ - SDValue V = N0.getOperand(0); - SDLoc DL0(N0); - V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, - DAG.getConstant(1, DL0, V.getValueType())); - AddToWorklist(V.getNode()); - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); - } - - // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc - if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && - (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { - SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); - if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { - unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; - LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS - RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS - AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); - return DAG.getNode(NewOpcode, DL, VT, LHS, RHS); - } - } - // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants - if (isAllOnesConstant(N1) && N0.hasOneUse() && - (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { - SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); - if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { - unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; - LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS - RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS - AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); - return DAG.getNode(NewOpcode, DL, VT, LHS, RHS); - } - } - // fold (xor (and x, y), y) -> (and (not x), y) - if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { - SDValue X = N0.getOperand(0); - SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); - AddToWorklist(NotX.getNode()); - return DAG.getNode(ISD::AND, DL, VT, NotX, N1); - } - - if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { - ConstantSDNode *XorC = isConstOrConstSplat(N1); - ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); - unsigned BitWidth = VT.getScalarSizeInBits(); - if (XorC && ShiftC) { - // Don't crash on an oversized shift. We can not guarantee that a bogus - // shift has been simplified to undef. - uint64_t ShiftAmt = ShiftC->getLimitedValue(); - if (ShiftAmt < BitWidth) { - APInt Ones = APInt::getAllOnesValue(BitWidth); - Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); - if (XorC->getAPIntValue() == Ones) { - // If the xor constant is a shifted -1, do a 'not' before the shift: - // xor (X << ShiftC), XorC --> (not X) << ShiftC - // xor (X >> ShiftC), XorC --> (not X) >> ShiftC - SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); - return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); - } - } - } - } - - // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) - if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { - SDValue A = N0Opcode == ISD::ADD ? N0 : N1; - SDValue S = N0Opcode == ISD::SRA ? N0 : N1; - if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { - SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); - SDValue S0 = S.getOperand(0); - if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) { - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) - if (C->getAPIntValue() == (OpSizeInBits - 1)) - return DAG.getNode(ISD::ABS, DL, VT, S0); - } - } - } - - // fold (xor x, x) -> 0 - if (N0 == N1) - return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // fold (xor (shl 1, x), -1) -> (rotl ~1, x) - // Here is a concrete example of this equivalence: - // i16 x == 14 - // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 - // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 - // - // => - // - // i16 ~1 == 0b1111111111111110 - // i16 rol(~1, 14) == 0b1011111111111111 - // - // Some additional tips to help conceptualize this transform: - // - Try to see the operation as placing a single zero in a value of all ones. - // - There exists no value for x which would allow the result to contain zero. - // - Values of x larger than the bitwidth are undefined and do not require a - // consistent result. - // - Pushing the zero left requires shifting one bits in from the right. - // A rotate left of ~1 is a nice way of achieving the desired result. - if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && - isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { - return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), - N0.getOperand(1)); - } - - // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) - if (N0Opcode == N1.getOpcode()) - if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) - return V; - - // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable - if (SDValue MM = unfoldMaskedMerge(N)) - return MM; - - // Simplify the expression using non-local knowledge. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -/// Handle transforms common to the three shifts, when the shift amount is a -/// constant. -SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { - // Do not turn a 'not' into a regular xor. - if (isBitwiseNot(N->getOperand(0))) - return SDValue(); - - SDNode *LHS = N->getOperand(0).getNode(); - if (!LHS->hasOneUse()) return SDValue(); - - // We want to pull some binops through shifts, so that we have (and (shift)) - // instead of (shift (and)), likewise for add, or, xor, etc. This sort of - // thing happens with address calculations, so it's important to canonicalize - // it. - bool HighBitSet = false; // Can we transform this if the high bit is set? - - switch (LHS->getOpcode()) { - default: return SDValue(); - case ISD::OR: - case ISD::XOR: - HighBitSet = false; // We can only transform sra if the high bit is clear. - break; - case ISD::AND: - HighBitSet = true; // We can only transform sra if the high bit is set. - break; - case ISD::ADD: - if (N->getOpcode() != ISD::SHL) - return SDValue(); // only shl(add) not sr[al](add). - HighBitSet = false; // We can only transform sra if the high bit is clear. - break; - } - - // We require the RHS of the binop to be a constant and not opaque as well. - ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); - if (!BinOpCst) return SDValue(); - - // FIXME: disable this unless the input to the binop is a shift by a constant - // or is copy/select.Enable this in other cases when figure out it's exactly profitable. - SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); - bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL || - BinOpLHSVal->getOpcode() == ISD::SRA || - BinOpLHSVal->getOpcode() == ISD::SRL; - bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg || - BinOpLHSVal->getOpcode() == ISD::SELECT; - - if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) && - !isCopyOrSelect) - return SDValue(); - - if (isCopyOrSelect && N->hasOneUse()) - return SDValue(); - - EVT VT = N->getValueType(0); - - // If this is a signed shift right, and the high bit is modified by the - // logical operation, do not perform the transformation. The highBitSet - // boolean indicates the value of the high bit of the constant which would - // cause it to be modified for this operation. - if (N->getOpcode() == ISD::SRA) { - bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); - if (BinOpRHSSignSet != HighBitSet) - return SDValue(); - } - - if (!TLI.isDesirableToCommuteWithShift(N, Level)) - return SDValue(); - - // Fold the constants, shifting the binop RHS by the shift amount. - SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), - N->getValueType(0), - LHS->getOperand(1), N->getOperand(1)); - assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); - - // Create the new shift. - SDValue NewShift = DAG.getNode(N->getOpcode(), - SDLoc(LHS->getOperand(0)), - VT, LHS->getOperand(0), N->getOperand(1)); - - // Create the new binop. - return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); -} - -SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { - assert(N->getOpcode() == ISD::TRUNCATE); - assert(N->getOperand(0).getOpcode() == ISD::AND); - - // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) - if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { - SDValue N01 = N->getOperand(0).getOperand(1); - if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { - SDLoc DL(N); - EVT TruncVT = N->getValueType(0); - SDValue N00 = N->getOperand(0).getOperand(0); - SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); - SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); - AddToWorklist(Trunc00.getNode()); - AddToWorklist(Trunc01.getNode()); - return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitRotate(SDNode *N) { - SDLoc dl(N); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - unsigned Bitsize = VT.getScalarSizeInBits(); - - // fold (rot x, 0) -> x - if (isNullOrNullSplat(N1)) - return N0; - - // fold (rot x, c) -> x iff (c % BitSize) == 0 - if (isPowerOf2_32(Bitsize) && Bitsize > 1) { - APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); - if (DAG.MaskedValueIsZero(N1, ModuloMask)) - return N0; - } - - // fold (rot x, c) -> (rot x, c % BitSize) - if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) { - if (Cst->getAPIntValue().uge(Bitsize)) { - uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize); - return DAG.getNode(N->getOpcode(), dl, VT, N0, - DAG.getConstant(RotAmt, dl, N1.getValueType())); - } - } - - // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); - } - - unsigned NextOp = N0.getOpcode(); - // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) - if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { - SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); - SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); - if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { - EVT ShiftVT = C1->getValueType(0); - bool SameSide = (N->getOpcode() == NextOp); - unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; - if (SDValue CombinedShift = - DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) { - SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); - SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( - ISD::SREM, dl, ShiftVT, CombinedShift.getNode(), - BitsizeC.getNode()); - return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), - CombinedShiftNorm); - } - } - } - return SDValue(); -} - -SDValue DAGCombiner::visitSHL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (SDValue V = DAG.simplifyShift(N0, N1)) - return V; - - EVT VT = N0.getValueType(); - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); - // If setcc produces all-one true value then: - // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) - if (N1CV && N1CV->isConstant()) { - if (N0.getOpcode() == ISD::AND) { - SDValue N00 = N0->getOperand(0); - SDValue N01 = N0->getOperand(1); - BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); - - if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && - TLI.getBooleanContents(N00.getOperand(0).getValueType()) == - TargetLowering::ZeroOrNegativeOneBooleanContent) { - if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, - N01CV, N1CV)) - return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); - } - } - } - } - - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // fold (shl c1, c2) -> c1<<c2 - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - if (N0C && N1C && !N1C->isOpaque()) - return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // if (shl x, c) is known to be zero, return 0 - if (DAG.MaskedValueIsZero(SDValue(N, 0), - APInt::getAllOnesValue(OpSizeInBits))) - return DAG.getConstant(0, SDLoc(N), VT); - // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); - } - - if (N1C && SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) - if (N0.getOpcode() == ISD::SHL) { - auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).uge(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) - return DAG.getConstant(0, SDLoc(N), VT); - - auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).ult(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { - SDLoc DL(N); - EVT ShiftVT = N1.getValueType(); - SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); - return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); - } - } - - // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) - // For this to be valid, the second form must not preserve any of the bits - // that are shifted out by the inner shift in the first form. This means - // the outer shift size must be >= the number of bits added by the ext. - // As a corollary, we don't care what kind of ext it is. - if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || - N0.getOpcode() == ISD::ANY_EXTEND || - N0.getOpcode() == ISD::SIGN_EXTEND) && - N0.getOperand(0).getOpcode() == ISD::SHL) { - SDValue N0Op0 = N0.getOperand(0); - if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { - APInt c1 = N0Op0C1->getAPIntValue(); - APInt c2 = N1C->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - - EVT InnerShiftVT = N0Op0.getValueType(); - uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); - if (c2.uge(OpSizeInBits - InnerShiftSize)) { - SDLoc DL(N0); - APInt Sum = c1 + c2; - if (Sum.uge(OpSizeInBits)) - return DAG.getConstant(0, DL, VT); - - return DAG.getNode( - ISD::SHL, DL, VT, - DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)), - DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType())); - } - } - } - - // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) - // Only fold this if the inner zext has no other uses to avoid increasing - // the total number of instructions. - if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == ISD::SRL) { - SDValue N0Op0 = N0.getOperand(0); - if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { - if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) { - uint64_t c1 = N0Op0C1->getZExtValue(); - uint64_t c2 = N1C->getZExtValue(); - if (c1 == c2) { - SDValue NewOp0 = N0.getOperand(0); - EVT CountVT = NewOp0.getOperand(1).getValueType(); - SDLoc DL(N); - SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), - NewOp0, - DAG.getConstant(c2, DL, CountVT)); - AddToWorklist(NewSHL.getNode()); - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); - } - } - } - } - - // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 - // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 - if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && - N0->getFlags().hasExact()) { - if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { - uint64_t C1 = N0C1->getZExtValue(); - uint64_t C2 = N1C->getZExtValue(); - SDLoc DL(N); - if (C1 <= C2) - return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), - DAG.getConstant(C2 - C1, DL, N1.getValueType())); - return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), - DAG.getConstant(C1 - C2, DL, N1.getValueType())); - } - } - - // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or - // (and (srl x, (sub c1, c2), MASK) - // Only fold this if the inner shift has no other uses -- if it does, folding - // this will increase the total number of instructions. - if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && - TLI.shouldFoldShiftPairToMask(N, Level)) { - if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { - uint64_t c1 = N0C1->getZExtValue(); - if (c1 < OpSizeInBits) { - uint64_t c2 = N1C->getZExtValue(); - APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); - SDValue Shift; - if (c2 > c1) { - Mask <<= c2 - c1; - SDLoc DL(N); - Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), - DAG.getConstant(c2 - c1, DL, N1.getValueType())); - } else { - Mask.lshrInPlace(c1 - c2); - SDLoc DL(N); - Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), - DAG.getConstant(c1 - c2, DL, N1.getValueType())); - } - SDLoc DL(N0); - return DAG.getNode(ISD::AND, DL, VT, Shift, - DAG.getConstant(Mask, DL, VT)); - } - } - } - - // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) - if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && - isConstantOrConstantVector(N1, /* No Opaques */ true)) { - SDLoc DL(N); - SDValue AllBits = DAG.getAllOnesConstant(DL, VT); - SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); - return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); - } - - // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) - // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) - // Variant of version done on multiply, except mul by a power of 2 is turned - // into a shift. - if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && - N0.getNode()->hasOneUse() && - isConstantOrConstantVector(N1, /* No Opaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && - TLI.isDesirableToCommuteWithShift(N, Level)) { - SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); - SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); - AddToWorklist(Shl0.getNode()); - AddToWorklist(Shl1.getNode()); - return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); - } - - // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) - if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && - isConstantOrConstantVector(N1, /* No Opaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { - SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); - if (isConstantOrConstantVector(Shl)) - return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); - } - - if (N1C && !N1C->isOpaque()) - if (SDValue NewSHL = visitShiftByConstant(N, N1C)) - return NewSHL; - - return SDValue(); -} - -SDValue DAGCombiner::visitSRA(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (SDValue V = DAG.simplifyShift(N0, N1)) - return V; - - EVT VT = N0.getValueType(); - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - - // Arithmetic shifting an all-sign-bit value is a no-op. - // fold (sra 0, x) -> 0 - // fold (sra -1, x) -> -1 - if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) - return N0; - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // fold (sra c1, c2) -> (sra c1, c2) - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - if (N0C && N1C && !N1C->isOpaque()) - return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports - // sext_inreg. - if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { - unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); - EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); - if (VT.isVector()) - ExtVT = EVT::getVectorVT(*DAG.getContext(), - ExtVT, VT.getVectorNumElements()); - if ((!LegalOperations || - TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, - N0.getOperand(0), DAG.getValueType(ExtVT)); - } - - // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) - // clamp (add c1, c2) to max shift. - if (N0.getOpcode() == ISD::SRA) { - SDLoc DL(N); - EVT ShiftVT = N1.getValueType(); - EVT ShiftSVT = ShiftVT.getScalarType(); - SmallVector<SDValue, 16> ShiftValues; - - auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - APInt Sum = c1 + c2; - unsigned ShiftSum = - Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); - ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); - return true; - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { - SDValue ShiftValue; - if (VT.isVector()) - ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); - else - ShiftValue = ShiftValues[0]; - return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); - } - } - - // fold (sra (shl X, m), (sub result_size, n)) - // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for - // result_size - n != m. - // If truncate is free for the target sext(shl) is likely to result in better - // code. - if (N0.getOpcode() == ISD::SHL && N1C) { - // Get the two constanst of the shifts, CN0 = m, CN = n. - const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); - if (N01C) { - LLVMContext &Ctx = *DAG.getContext(); - // Determine what the truncate's result bitsize and type would be. - EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); - - if (VT.isVector()) - TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); - - // Determine the residual right-shift amount. - int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); - - // If the shift is not a no-op (in which case this should be just a sign - // extend already), the truncated to type is legal, sign_extend is legal - // on that type, and the truncate to that type is both legal and free, - // perform the transform. - if ((ShiftAmt > 0) && - TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && - TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && - TLI.isTruncateFree(VT, TruncVT)) { - SDLoc DL(N); - SDValue Amt = DAG.getConstant(ShiftAmt, DL, - getShiftAmountTy(N0.getOperand(0).getValueType())); - SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, - N0.getOperand(0), Amt); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, - Shift); - return DAG.getNode(ISD::SIGN_EXTEND, DL, - N->getValueType(0), Trunc); - } - } - } - - // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); - } - - // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) - // if c1 is equal to the number of bits the trunc removes - if (N0.getOpcode() == ISD::TRUNCATE && - (N0.getOperand(0).getOpcode() == ISD::SRL || - N0.getOperand(0).getOpcode() == ISD::SRA) && - N0.getOperand(0).hasOneUse() && - N0.getOperand(0).getOperand(1).hasOneUse() && - N1C) { - SDValue N0Op0 = N0.getOperand(0); - if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { - unsigned LargeShiftVal = LargeShift->getZExtValue(); - EVT LargeVT = N0Op0.getValueType(); - - if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { - SDLoc DL(N); - SDValue Amt = - DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, - getShiftAmountTy(N0Op0.getOperand(0).getValueType())); - SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, - N0Op0.getOperand(0), Amt); - return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); - } - } - } - - // Simplify, based on bits shifted out of the LHS. - if (N1C && SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // If the sign bit is known to be zero, switch this to a SRL. - if (DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); - - if (N1C && !N1C->isOpaque()) - if (SDValue NewSRA = visitShiftByConstant(N, N1C)) - return NewSRA; - - return SDValue(); -} - -SDValue DAGCombiner::visitSRL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (SDValue V = DAG.simplifyShift(N0, N1)) - return V; - - EVT VT = N0.getValueType(); - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // fold (srl c1, c2) -> c1 >>u c2 - ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); - if (N0C && N1C && !N1C->isOpaque()) - return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // if (srl x, c) is known to be zero, return 0 - if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), - APInt::getAllOnesValue(OpSizeInBits))) - return DAG.getConstant(0, SDLoc(N), VT); - - // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) - if (N0.getOpcode() == ISD::SRL) { - auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).uge(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) - return DAG.getConstant(0, SDLoc(N), VT); - - auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).ult(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { - SDLoc DL(N); - EVT ShiftVT = N1.getValueType(); - SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); - return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); - } - } - - // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) - if (N1C && N0.getOpcode() == ISD::TRUNCATE && - N0.getOperand(0).getOpcode() == ISD::SRL) { - if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) { - uint64_t c1 = N001C->getZExtValue(); - uint64_t c2 = N1C->getZExtValue(); - EVT InnerShiftVT = N0.getOperand(0).getValueType(); - EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType(); - uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); - // This is only valid if the OpSizeInBits + c1 = size of inner shift. - if (c1 + OpSizeInBits == InnerShiftSize) { - SDLoc DL(N0); - if (c1 + c2 >= InnerShiftSize) - return DAG.getConstant(0, DL, VT); - return DAG.getNode(ISD::TRUNCATE, DL, VT, - DAG.getNode(ISD::SRL, DL, InnerShiftVT, - N0.getOperand(0).getOperand(0), - DAG.getConstant(c1 + c2, DL, - ShiftCountVT))); - } - } - } - - // fold (srl (shl x, c), c) -> (and x, cst2) - if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && - isConstantOrConstantVector(N1, /* NoOpaques */ true)) { - SDLoc DL(N); - SDValue Mask = - DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); - AddToWorklist(Mask.getNode()); - return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); - } - - // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) - if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { - // Shifting in all undef bits? - EVT SmallVT = N0.getOperand(0).getValueType(); - unsigned BitSize = SmallVT.getScalarSizeInBits(); - if (N1C->getZExtValue() >= BitSize) - return DAG.getUNDEF(VT); - - if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { - uint64_t ShiftAmt = N1C->getZExtValue(); - SDLoc DL0(N0); - SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, - N0.getOperand(0), - DAG.getConstant(ShiftAmt, DL0, - getShiftAmountTy(SmallVT))); - AddToWorklist(SmallShift.getNode()); - APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); - SDLoc DL(N); - return DAG.getNode(ISD::AND, DL, VT, - DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), - DAG.getConstant(Mask, DL, VT)); - } - } - - // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign - // bit, which is unmodified by sra. - if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { - if (N0.getOpcode() == ISD::SRA) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); - } - - // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). - if (N1C && N0.getOpcode() == ISD::CTLZ && - N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { - KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); - - // If any of the input bits are KnownOne, then the input couldn't be all - // zeros, thus the result of the srl will always be zero. - if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); - - // If all of the bits input the to ctlz node are known to be zero, then - // the result of the ctlz is "32" and the result of the shift is one. - APInt UnknownBits = ~Known.Zero; - if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); - - // Otherwise, check to see if there is exactly one bit input to the ctlz. - if (UnknownBits.isPowerOf2()) { - // Okay, we know that only that the single bit specified by UnknownBits - // could be set on input to the CTLZ node. If this bit is set, the SRL - // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair - // to an SRL/XOR pair, which is likely to simplify more. - unsigned ShAmt = UnknownBits.countTrailingZeros(); - SDValue Op = N0.getOperand(0); - - if (ShAmt) { - SDLoc DL(N0); - Op = DAG.getNode(ISD::SRL, DL, VT, Op, - DAG.getConstant(ShAmt, DL, - getShiftAmountTy(Op.getValueType()))); - AddToWorklist(Op.getNode()); - } - - SDLoc DL(N); - return DAG.getNode(ISD::XOR, DL, VT, - Op, DAG.getConstant(1, DL, VT)); - } - } - - // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); - } - - // fold operands of srl based on knowledge that the low bits are not - // demanded. - if (N1C && SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - if (N1C && !N1C->isOpaque()) - if (SDValue NewSRL = visitShiftByConstant(N, N1C)) - return NewSRL; - - // Attempt to convert a srl of a load into a narrower zero-extending load. - if (SDValue NarrowLoad = ReduceLoadWidth(N)) - return NarrowLoad; - - // Here is a common situation. We want to optimize: - // - // %a = ... - // %b = and i32 %a, 2 - // %c = srl i32 %b, 1 - // brcond i32 %c ... - // - // into - // - // %a = ... - // %b = and %a, 2 - // %c = setcc eq %b, 0 - // brcond %c ... - // - // However when after the source operand of SRL is optimized into AND, the SRL - // itself may not be optimized further. Look for it and add the BRCOND into - // the worklist. - if (N->hasOneUse()) { - SDNode *Use = *N->use_begin(); - if (Use->getOpcode() == ISD::BRCOND) - AddToWorklist(Use); - else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { - // Also look pass the truncate. - Use = *Use->use_begin(); - if (Use->getOpcode() == ISD::BRCOND) - AddToWorklist(Use); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFunnelShift(SDNode *N) { - EVT VT = N->getValueType(0); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - bool IsFSHL = N->getOpcode() == ISD::FSHL; - unsigned BitWidth = VT.getScalarSizeInBits(); - - // fold (fshl N0, N1, 0) -> N0 - // fold (fshr N0, N1, 0) -> N1 - if (isPowerOf2_32(BitWidth)) - if (DAG.MaskedValueIsZero( - N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) - return IsFSHL ? N0 : N1; - - // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) - if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { - if (Cst->getAPIntValue().uge(BitWidth)) { - uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, - DAG.getConstant(RotAmt, SDLoc(N), N2.getValueType())); - } - } - - // fold (fshl N0, N0, N2) -> (rotl N0, N2) - // fold (fshr N0, N0, N2) -> (rotr N0, N2) - // TODO: Investigate flipping this rotate if only one is legal, if funnel shift - // is legal as well we might be better off avoiding non-constant (BW - N2). - unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; - if (N0 == N1 && hasOperation(RotOpc, VT)) - return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); - - return SDValue(); -} - -SDValue DAGCombiner::visitABS(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (abs c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); - // fold (abs (abs x)) -> (abs x) - if (N0.getOpcode() == ISD::ABS) - return N0; - // fold (abs x) -> x iff not-negative - if (DAG.SignBitIsZero(N0)) - return N0; - return SDValue(); -} - -SDValue DAGCombiner::visitBSWAP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (bswap c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); - // fold (bswap (bswap x)) -> x - if (N0.getOpcode() == ISD::BSWAP) - return N0->getOperand(0); - return SDValue(); -} - -SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (bitreverse c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); - // fold (bitreverse (bitreverse x)) -> x - if (N0.getOpcode() == ISD::BITREVERSE) - return N0.getOperand(0); - return SDValue(); -} - -SDValue DAGCombiner::visitCTLZ(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ctlz c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); - - // If the value is known never to be zero, switch to the undef version. - if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { - if (DAG.isKnownNeverZero(N0)) - return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ctlz_zero_undef c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); - return SDValue(); -} - -SDValue DAGCombiner::visitCTTZ(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (cttz c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); - - // If the value is known never to be zero, switch to the undef version. - if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { - if (DAG.isKnownNeverZero(N0)) - return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (cttz_zero_undef c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); - return SDValue(); -} - -SDValue DAGCombiner::visitCTPOP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ctpop c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); - return SDValue(); -} - -// FIXME: This should be checking for no signed zeros on individual operands, as -// well as no nans. -static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, SDValue RHS) { - const TargetOptions &Options = DAG.getTarget().Options; - EVT VT = LHS.getValueType(); - - return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && - DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); -} - -/// Generate Min/Max node -static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, - SDValue RHS, SDValue True, SDValue False, - ISD::CondCode CC, const TargetLowering &TLI, - SelectionDAG &DAG) { - if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) - return SDValue(); - - EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); - switch (CC) { - case ISD::SETOLT: - case ISD::SETOLE: - case ISD::SETLT: - case ISD::SETLE: - case ISD::SETULT: - case ISD::SETULE: { - // Since it's known never nan to get here already, either fminnum or - // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is - // expanded in terms of it. - unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; - if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) - return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); - - unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; - if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) - return DAG.getNode(Opcode, DL, VT, LHS, RHS); - return SDValue(); - } - case ISD::SETOGT: - case ISD::SETOGE: - case ISD::SETGT: - case ISD::SETGE: - case ISD::SETUGT: - case ISD::SETUGE: { - unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; - if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) - return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); - - unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; - if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) - return DAG.getNode(Opcode, DL, VT, LHS, RHS); - return SDValue(); - } - default: - return SDValue(); - } -} - -SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { - SDValue Cond = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - EVT CondVT = Cond.getValueType(); - SDLoc DL(N); - - if (!VT.isInteger()) - return SDValue(); - - auto *C1 = dyn_cast<ConstantSDNode>(N1); - auto *C2 = dyn_cast<ConstantSDNode>(N2); - if (!C1 || !C2) - return SDValue(); - - // Only do this before legalization to avoid conflicting with target-specific - // transforms in the other direction (create a select from a zext/sext). There - // is also a target-independent combine here in DAGCombiner in the other - // direction for (select Cond, -1, 0) when the condition is not i1. - if (CondVT == MVT::i1 && !LegalOperations) { - if (C1->isNullValue() && C2->isOne()) { - // select Cond, 0, 1 --> zext (!Cond) - SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); - if (VT != MVT::i1) - NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); - return NotCond; - } - if (C1->isNullValue() && C2->isAllOnesValue()) { - // select Cond, 0, -1 --> sext (!Cond) - SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); - if (VT != MVT::i1) - NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); - return NotCond; - } - if (C1->isOne() && C2->isNullValue()) { - // select Cond, 1, 0 --> zext (Cond) - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); - return Cond; - } - if (C1->isAllOnesValue() && C2->isNullValue()) { - // select Cond, -1, 0 --> sext (Cond) - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); - return Cond; - } - - // For any constants that differ by 1, we can transform the select into an - // extend and add. Use a target hook because some targets may prefer to - // transform in the other direction. - if (TLI.convertSelectOfConstantsToMath(VT)) { - if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) { - // select Cond, C1, C1-1 --> add (zext Cond), C1-1 - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); - return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); - } - if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) { - // select Cond, C1, C1+1 --> add (sext Cond), C1+1 - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); - return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); - } - } - - return SDValue(); - } - - // fold (select Cond, 0, 1) -> (xor Cond, 1) - // We can't do this reliably if integer based booleans have different contents - // to floating point based booleans. This is because we can't tell whether we - // have an integer-based boolean or a floating-point-based boolean unless we - // can find the SETCC that produced it and inspect its operands. This is - // fairly easy if C is the SETCC node, but it can potentially be - // undiscoverable (or not reasonably discoverable). For example, it could be - // in another basic block or it could require searching a complicated - // expression. - if (CondVT.isInteger() && - TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == - TargetLowering::ZeroOrOneBooleanContent && - TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == - TargetLowering::ZeroOrOneBooleanContent && - C1->isNullValue() && C2->isOne()) { - SDValue NotCond = - DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); - if (VT.bitsEq(CondVT)) - return NotCond; - return DAG.getZExtOrTrunc(NotCond, DL, VT); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSELECT(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - EVT VT0 = N0.getValueType(); - SDLoc DL(N); - - if (SDValue V = DAG.simplifySelect(N0, N1, N2)) - return V; - - // fold (select X, X, Y) -> (or X, Y) - // fold (select X, 1, Y) -> (or C, Y) - if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) - return DAG.getNode(ISD::OR, DL, VT, N0, N2); - - if (SDValue V = foldSelectOfConstants(N)) - return V; - - // fold (select C, 0, X) -> (and (not C), X) - if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { - SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); - AddToWorklist(NOTNode.getNode()); - return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); - } - // fold (select C, X, 1) -> (or (not C), X) - if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { - SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); - AddToWorklist(NOTNode.getNode()); - return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); - } - // fold (select X, Y, X) -> (and X, Y) - // fold (select X, Y, 0) -> (and X, Y) - if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) - return DAG.getNode(ISD::AND, DL, VT, N0, N1); - - // If we can fold this based on the true/false value, do so. - if (SimplifySelectOps(N, N1, N2)) - return SDValue(N, 0); // Don't revisit N. - - if (VT0 == MVT::i1) { - // The code in this block deals with the following 2 equivalences: - // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) - // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) - // The target can specify its preferred form with the - // shouldNormalizeToSelectSequence() callback. However we always transform - // to the right anyway if we find the inner select exists in the DAG anyway - // and we always transform to the left side if we know that we can further - // optimize the combination of the conditions. - bool normalizeToSequence = - TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); - // select (and Cond0, Cond1), X, Y - // -> select Cond0, (select Cond1, X, Y), Y - if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { - SDValue Cond0 = N0->getOperand(0); - SDValue Cond1 = N0->getOperand(1); - SDValue InnerSelect = - DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2); - if (normalizeToSequence || !InnerSelect.use_empty()) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, - InnerSelect, N2); - } - // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) - if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { - SDValue Cond0 = N0->getOperand(0); - SDValue Cond1 = N0->getOperand(1); - SDValue InnerSelect = - DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2); - if (normalizeToSequence || !InnerSelect.use_empty()) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, - InnerSelect); - } - - // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y - if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { - SDValue N1_0 = N1->getOperand(0); - SDValue N1_1 = N1->getOperand(1); - SDValue N1_2 = N1->getOperand(2); - if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { - // Create the actual and node if we can generate good code for it. - if (!normalizeToSequence) { - SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, N2); - } - // Otherwise see if we can optimize the "and" to a better pattern. - if (SDValue Combined = visitANDLike(N0, N1_0, N)) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, - N2); - } - } - // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y - if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { - SDValue N2_0 = N2->getOperand(0); - SDValue N2_1 = N2->getOperand(1); - SDValue N2_2 = N2->getOperand(2); - if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { - // Create the actual or node if we can generate good code for it. - if (!normalizeToSequence) { - SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, N2_2); - } - // Otherwise see if we can optimize to a better pattern. - if (SDValue Combined = visitORLike(N0, N2_0, N)) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, - N2_2); - } - } - } - - if (VT0 == MVT::i1) { - // select (not Cond), N1, N2 -> select Cond, N2, N1 - if (isBitwiseNot(N0)) - return DAG.getNode(ISD::SELECT, DL, VT, N0->getOperand(0), N2, N1); - } - - // Fold selects based on a setcc into other things, such as min/max/abs. - if (N0.getOpcode() == ISD::SETCC) { - SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - - // select (fcmp lt x, y), x, y -> fminnum x, y - // select (fcmp gt x, y), x, y -> fmaxnum x, y - // - // This is OK if we don't care what happens if either operand is a NaN. - if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2)) - if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, - CC, TLI, DAG)) - return FMinMax; - - // Use 'unsigned add with overflow' to optimize an unsigned saturating add. - // This is conservatively limited to pre-legal-operations to give targets - // a chance to reverse the transform if they want to do that. Also, it is - // unlikely that the pattern would be formed late, so it's probably not - // worth going through the other checks. - if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && - CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && - N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { - auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); - auto *NotC = dyn_cast<ConstantSDNode>(Cond1); - if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { - // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> - // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 - // - // The IR equivalent of this transform would have this form: - // %a = add %x, C - // %c = icmp ugt %x, ~C - // %r = select %c, -1, %a - // => - // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) - // %u0 = extractvalue %u, 0 - // %u1 = extractvalue %u, 1 - // %r = select %u1, -1, %u0 - SDVTList VTs = DAG.getVTList(VT, VT0); - SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); - return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); - } - } - - if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || - (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) - return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2, - N0.getOperand(2)); - - return SimplifySelect(DL, N0, N1, N2); - } - - return SDValue(); -} - -static -std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { - SDLoc DL(N); - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - - // Split the inputs. - SDValue Lo, Hi, LL, LH, RL, RH; - std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); - std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); - - Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); - Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); - - return std::make_pair(Lo, Hi); -} - -// This function assumes all the vselect's arguments are CONCAT_VECTOR -// nodes and that the condition is a BV of ConstantSDNodes (or undefs). -static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { - SDLoc DL(N); - SDValue Cond = N->getOperand(0); - SDValue LHS = N->getOperand(1); - SDValue RHS = N->getOperand(2); - EVT VT = N->getValueType(0); - int NumElems = VT.getVectorNumElements(); - assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && - RHS.getOpcode() == ISD::CONCAT_VECTORS && - Cond.getOpcode() == ISD::BUILD_VECTOR); - - // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about - // binary ones here. - if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) - return SDValue(); - - // We're sure we have an even number of elements due to the - // concat_vectors we have as arguments to vselect. - // Skip BV elements until we find one that's not an UNDEF - // After we find an UNDEF element, keep looping until we get to half the - // length of the BV and see if all the non-undef nodes are the same. - ConstantSDNode *BottomHalf = nullptr; - for (int i = 0; i < NumElems / 2; ++i) { - if (Cond->getOperand(i)->isUndef()) - continue; - - if (BottomHalf == nullptr) - BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); - else if (Cond->getOperand(i).getNode() != BottomHalf) - return SDValue(); - } - - // Do the same for the second half of the BuildVector - ConstantSDNode *TopHalf = nullptr; - for (int i = NumElems / 2; i < NumElems; ++i) { - if (Cond->getOperand(i)->isUndef()) - continue; - - if (TopHalf == nullptr) - TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); - else if (Cond->getOperand(i).getNode() != TopHalf) - return SDValue(); - } - - assert(TopHalf && BottomHalf && - "One half of the selector was all UNDEFs and the other was all the " - "same value. This should have been addressed before this function."); - return DAG.getNode( - ISD::CONCAT_VECTORS, DL, VT, - BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), - TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); -} - -SDValue DAGCombiner::visitMSCATTER(SDNode *N) { - if (Level >= AfterLegalizeTypes) - return SDValue(); - - MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); - SDValue Mask = MSC->getMask(); - SDValue Data = MSC->getValue(); - SDLoc DL(N); - - // If the MSCATTER data type requires splitting and the mask is provided by a - // SETCC, then split both nodes and its operands before legalization. This - // prevents the type legalizer from unrolling SETCC into scalar comparisons - // and enables future optimizations (e.g. min/max pattern matching on X86). - if (Mask.getOpcode() != ISD::SETCC) - return SDValue(); - - // Check if any splitting is required. - if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != - TargetLowering::TypeSplitVector) - return SDValue(); - SDValue MaskLo, MaskHi; - std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); - - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); - - SDValue Chain = MSC->getChain(); - - EVT MemoryVT = MSC->getMemoryVT(); - unsigned Alignment = MSC->getOriginalAlignment(); - - EVT LoMemVT, HiMemVT; - std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); - - SDValue DataLo, DataHi; - std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); - - SDValue Scale = MSC->getScale(); - SDValue BasePtr = MSC->getBasePtr(); - SDValue IndexLo, IndexHi; - std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); - - MachineMemOperand *MMO = DAG.getMachineFunction(). - getMachineMemOperand(MSC->getPointerInfo(), - MachineMemOperand::MOStore, LoMemVT.getStoreSize(), - Alignment, MSC->getAAInfo(), MSC->getRanges()); - - SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale }; - SDValue Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), - DataLo.getValueType(), DL, OpsLo, MMO); - - // The order of the Scatter operation after split is well defined. The "Hi" - // part comes after the "Lo". So these two operations should be chained one - // after another. - SDValue OpsHi[] = { Lo, DataHi, MaskHi, BasePtr, IndexHi, Scale }; - return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), - DL, OpsHi, MMO); -} - -SDValue DAGCombiner::visitMSTORE(SDNode *N) { - if (Level >= AfterLegalizeTypes) - return SDValue(); - - MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); - SDValue Mask = MST->getMask(); - SDValue Data = MST->getValue(); - EVT VT = Data.getValueType(); - SDLoc DL(N); - - // If the MSTORE data type requires splitting and the mask is provided by a - // SETCC, then split both nodes and its operands before legalization. This - // prevents the type legalizer from unrolling SETCC into scalar comparisons - // and enables future optimizations (e.g. min/max pattern matching on X86). - if (Mask.getOpcode() == ISD::SETCC) { - // Check if any splitting is required. - if (TLI.getTypeAction(*DAG.getContext(), VT) != - TargetLowering::TypeSplitVector) - return SDValue(); - - SDValue MaskLo, MaskHi, Lo, Hi; - std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); - - SDValue Chain = MST->getChain(); - SDValue Ptr = MST->getBasePtr(); - - EVT MemoryVT = MST->getMemoryVT(); - unsigned Alignment = MST->getOriginalAlignment(); - - // if Alignment is equal to the vector size, - // take the half of it for the second part - unsigned SecondHalfAlignment = - (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment; - - EVT LoMemVT, HiMemVT; - std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); - - SDValue DataLo, DataHi; - std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); - - MachineMemOperand *MMO = DAG.getMachineFunction(). - getMachineMemOperand(MST->getPointerInfo(), - MachineMemOperand::MOStore, LoMemVT.getStoreSize(), - Alignment, MST->getAAInfo(), MST->getRanges()); - - Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, - MST->isTruncatingStore(), - MST->isCompressingStore()); - - Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, - MST->isCompressingStore()); - unsigned HiOffset = LoMemVT.getStoreSize(); - - MMO = DAG.getMachineFunction().getMachineMemOperand( - MST->getPointerInfo().getWithOffset(HiOffset), - MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment, - MST->getAAInfo(), MST->getRanges()); - - Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, - MST->isTruncatingStore(), - MST->isCompressingStore()); - - AddToWorklist(Lo.getNode()); - AddToWorklist(Hi.getNode()); - - return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); - } - return SDValue(); -} - -SDValue DAGCombiner::visitMGATHER(SDNode *N) { - if (Level >= AfterLegalizeTypes) - return SDValue(); - - MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); - SDValue Mask = MGT->getMask(); - SDLoc DL(N); - - // If the MGATHER result requires splitting and the mask is provided by a - // SETCC, then split both nodes and its operands before legalization. This - // prevents the type legalizer from unrolling SETCC into scalar comparisons - // and enables future optimizations (e.g. min/max pattern matching on X86). - - if (Mask.getOpcode() != ISD::SETCC) - return SDValue(); - - EVT VT = N->getValueType(0); - - // Check if any splitting is required. - if (TLI.getTypeAction(*DAG.getContext(), VT) != - TargetLowering::TypeSplitVector) - return SDValue(); - - SDValue MaskLo, MaskHi, Lo, Hi; - std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); - - SDValue PassThru = MGT->getPassThru(); - SDValue PassThruLo, PassThruHi; - std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL); - - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); - - SDValue Chain = MGT->getChain(); - EVT MemoryVT = MGT->getMemoryVT(); - unsigned Alignment = MGT->getOriginalAlignment(); - - EVT LoMemVT, HiMemVT; - std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); - - SDValue Scale = MGT->getScale(); - SDValue BasePtr = MGT->getBasePtr(); - SDValue Index = MGT->getIndex(); - SDValue IndexLo, IndexHi; - std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); - - MachineMemOperand *MMO = DAG.getMachineFunction(). - getMachineMemOperand(MGT->getPointerInfo(), - MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), - Alignment, MGT->getAAInfo(), MGT->getRanges()); - - SDValue OpsLo[] = { Chain, PassThruLo, MaskLo, BasePtr, IndexLo, Scale }; - Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, - MMO); - - SDValue OpsHi[] = { Chain, PassThruHi, MaskHi, BasePtr, IndexHi, Scale }; - Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, - MMO); - - AddToWorklist(Lo.getNode()); - AddToWorklist(Hi.getNode()); - - // Build a factor node to remember that this load is independent of the - // other one. - Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), - Hi.getValue(1)); - - // Legalized the chain result - switch anything that used the old chain to - // use the new one. - DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); - - SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); - - SDValue RetOps[] = { GatherRes, Chain }; - return DAG.getMergeValues(RetOps, DL); -} - -SDValue DAGCombiner::visitMLOAD(SDNode *N) { - if (Level >= AfterLegalizeTypes) - return SDValue(); - - MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); - SDValue Mask = MLD->getMask(); - SDLoc DL(N); - - // If the MLOAD result requires splitting and the mask is provided by a - // SETCC, then split both nodes and its operands before legalization. This - // prevents the type legalizer from unrolling SETCC into scalar comparisons - // and enables future optimizations (e.g. min/max pattern matching on X86). - if (Mask.getOpcode() == ISD::SETCC) { - EVT VT = N->getValueType(0); - - // Check if any splitting is required. - if (TLI.getTypeAction(*DAG.getContext(), VT) != - TargetLowering::TypeSplitVector) - return SDValue(); - - SDValue MaskLo, MaskHi, Lo, Hi; - std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); - - SDValue PassThru = MLD->getPassThru(); - SDValue PassThruLo, PassThruHi; - std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL); - - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); - - SDValue Chain = MLD->getChain(); - SDValue Ptr = MLD->getBasePtr(); - EVT MemoryVT = MLD->getMemoryVT(); - unsigned Alignment = MLD->getOriginalAlignment(); - - // if Alignment is equal to the vector size, - // take the half of it for the second part - unsigned SecondHalfAlignment = - (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? - Alignment/2 : Alignment; - - EVT LoMemVT, HiMemVT; - std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); - - MachineMemOperand *MMO = DAG.getMachineFunction(). - getMachineMemOperand(MLD->getPointerInfo(), - MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), - Alignment, MLD->getAAInfo(), MLD->getRanges()); - - Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, PassThruLo, LoMemVT, - MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad()); - - Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG, - MLD->isExpandingLoad()); - unsigned HiOffset = LoMemVT.getStoreSize(); - - MMO = DAG.getMachineFunction().getMachineMemOperand( - MLD->getPointerInfo().getWithOffset(HiOffset), - MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment, - MLD->getAAInfo(), MLD->getRanges()); - - Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, PassThruHi, HiMemVT, - MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad()); - - AddToWorklist(Lo.getNode()); - AddToWorklist(Hi.getNode()); - - // Build a factor node to remember that this load is independent of the - // other one. - Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), - Hi.getValue(1)); - - // Legalized the chain result - switch anything that used the old chain to - // use the new one. - DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); - - SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); - - SDValue RetOps[] = { LoadRes, Chain }; - return DAG.getMergeValues(RetOps, DL); - } - return SDValue(); -} - -/// A vector select of 2 constant vectors can be simplified to math/logic to -/// avoid a variable select instruction and possibly avoid constant loads. -SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { - SDValue Cond = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || - !TLI.convertSelectOfConstantsToMath(VT) || - !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || - !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) - return SDValue(); - - // Check if we can use the condition value to increment/decrement a single - // constant value. This simplifies a select to an add and removes a constant - // load/materialization from the general case. - bool AllAddOne = true; - bool AllSubOne = true; - unsigned Elts = VT.getVectorNumElements(); - for (unsigned i = 0; i != Elts; ++i) { - SDValue N1Elt = N1.getOperand(i); - SDValue N2Elt = N2.getOperand(i); - if (N1Elt.isUndef() || N2Elt.isUndef()) - continue; - - const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); - const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); - if (C1 != C2 + 1) - AllAddOne = false; - if (C1 != C2 - 1) - AllSubOne = false; - } - - // Further simplifications for the extra-special cases where the constants are - // all 0 or all -1 should be implemented as folds of these patterns. - SDLoc DL(N); - if (AllAddOne || AllSubOne) { - // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C - // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C - auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; - SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); - return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); - } - - // The general case for select-of-constants: - // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 - // ...but that only makes sense if a vselect is slower than 2 logic ops, so - // leave that to a machine-specific pass. - return SDValue(); -} - -SDValue DAGCombiner::visitVSELECT(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - SDLoc DL(N); - - if (SDValue V = DAG.simplifySelect(N0, N1, N2)) - return V; - - // Canonicalize integer abs. - // vselect (setg[te] X, 0), X, -X -> - // vselect (setgt X, -1), X, -X -> - // vselect (setl[te] X, 0), -X, X -> - // Y = sra (X, size(X)-1); xor (add (X, Y), Y) - if (N0.getOpcode() == ISD::SETCC) { - SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - bool isAbs = false; - bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); - - if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || - (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && - N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) - isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); - else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && - N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) - isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); - - if (isAbs) { - EVT VT = LHS.getValueType(); - if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) - return DAG.getNode(ISD::ABS, DL, VT, LHS); - - SDValue Shift = DAG.getNode( - ISD::SRA, DL, VT, LHS, - DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT)); - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); - AddToWorklist(Shift.getNode()); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); - } - - // vselect x, y (fcmp lt x, y) -> fminnum x, y - // vselect x, y (fcmp gt x, y) -> fmaxnum x, y - // - // This is OK if we don't care about what happens if either operand is a - // NaN. - // - EVT VT = N->getValueType(0); - if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N0.getOperand(0), N0.getOperand(1))) { - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - if (SDValue FMinMax = combineMinNumMaxNum( - DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG)) - return FMinMax; - } - - // If this select has a condition (setcc) with narrower operands than the - // select, try to widen the compare to match the select width. - // TODO: This should be extended to handle any constant. - // TODO: This could be extended to handle non-loading patterns, but that - // requires thorough testing to avoid regressions. - if (isNullOrNullSplat(RHS)) { - EVT NarrowVT = LHS.getValueType(); - EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); - EVT SetCCVT = getSetCCResultType(LHS.getValueType()); - unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); - unsigned WideWidth = WideVT.getScalarSizeInBits(); - bool IsSigned = isSignedIntSetCC(CC); - auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; - if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && - SetCCWidth != 1 && SetCCWidth < WideWidth && - TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && - TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { - // Both compare operands can be widened for free. The LHS can use an - // extended load, and the RHS is a constant: - // vselect (ext (setcc load(X), C)), N1, N2 --> - // vselect (setcc extload(X), C'), N1, N2 - auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; - SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); - SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); - EVT WideSetCCVT = getSetCCResultType(WideVT); - SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); - return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); - } - } - } - - if (SimplifySelectOps(N, N1, N2)) - return SDValue(N, 0); // Don't revisit N. - - // Fold (vselect (build_vector all_ones), N1, N2) -> N1 - if (ISD::isBuildVectorAllOnes(N0.getNode())) - return N1; - // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N2; - - // The ConvertSelectToConcatVector function is assuming both the above - // checks for (vselect (build_vector all{ones,zeros) ...) have been made - // and addressed. - if (N1.getOpcode() == ISD::CONCAT_VECTORS && - N2.getOpcode() == ISD::CONCAT_VECTORS && - ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { - if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) - return CV; - } - - if (SDValue V = foldVSelectOfConstants(N)) - return V; - - return SDValue(); -} - -SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - SDValue N3 = N->getOperand(3); - SDValue N4 = N->getOperand(4); - ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); - - // fold select_cc lhs, rhs, x, x, cc -> x - if (N2 == N3) - return N2; - - // Determine if the condition we're dealing with is constant - if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, - CC, SDLoc(N), false)) { - AddToWorklist(SCC.getNode()); - - if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { - if (!SCCC->isNullValue()) - return N2; // cond always true -> true val - else - return N3; // cond always false -> false val - } else if (SCC->isUndef()) { - // When the condition is UNDEF, just return the first operand. This is - // coherent the DAG creation, no setcc node is created in this case - return N2; - } else if (SCC.getOpcode() == ISD::SETCC) { - // Fold to a simpler select_cc - return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), - SCC.getOperand(0), SCC.getOperand(1), N2, N3, - SCC.getOperand(2)); - } - } - - // If we can fold this based on the true/false value, do so. - if (SimplifySelectOps(N, N2, N3)) - return SDValue(N, 0); // Don't revisit N. - - // fold select_cc into other things, such as min/max/abs - return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); -} - -SDValue DAGCombiner::visitSETCC(SDNode *N) { - // setcc is very commonly used as an argument to brcond. This pattern - // also lend itself to numerous combines and, as a result, it is desired - // we keep the argument to a brcond as a setcc as much as possible. - bool PreferSetCC = - N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; - - SDValue Combined = SimplifySetCC( - N->getValueType(0), N->getOperand(0), N->getOperand(1), - cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); - - if (!Combined) - return SDValue(); - - // If we prefer to have a setcc, and we don't, we'll try our best to - // recreate one using rebuildSetCC. - if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { - SDValue NewSetCC = rebuildSetCC(Combined); - - // We don't have anything interesting to combine to. - if (NewSetCC.getNode() == N) - return SDValue(); - - if (NewSetCC) - return NewSetCC; - } - - return Combined; -} - -SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - SDValue Carry = N->getOperand(2); - SDValue Cond = N->getOperand(3); - - // If Carry is false, fold to a regular SETCC. - if (isNullConstant(Carry)) - return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); - - return SDValue(); -} - -/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or -/// a build_vector of constants. -/// This function is called by the DAGCombiner when visiting sext/zext/aext -/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). -/// Vector extends are not folded if operations are legal; this is to -/// avoid introducing illegal build_vector dag nodes. -static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, - SelectionDAG &DAG, bool LegalTypes) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || - Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || - Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) - && "Expected EXTEND dag node in input!"); - - // fold (sext c1) -> c1 - // fold (zext c1) -> c1 - // fold (aext c1) -> c1 - if (isa<ConstantSDNode>(N0)) - return DAG.getNode(Opcode, SDLoc(N), VT, N0); - - // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) - // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) - // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) - EVT SVT = VT.getScalarType(); - if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && - ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) - return SDValue(); - - // We can fold this node into a build_vector. - unsigned VTBits = SVT.getSizeInBits(); - unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); - SmallVector<SDValue, 8> Elts; - unsigned NumElts = VT.getVectorNumElements(); - SDLoc DL(N); - - // For zero-extensions, UNDEF elements still guarantee to have the upper - // bits set to zero. - bool IsZext = - Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; - - for (unsigned i = 0; i != NumElts; ++i) { - SDValue Op = N0.getOperand(i); - if (Op.isUndef()) { - Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); - continue; - } - - SDLoc DL(Op); - // Get the constant value and if needed trunc it to the size of the type. - // Nodes like build_vector might have constants wider than the scalar type. - APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); - if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) - Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); - else - Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); - } - - return DAG.getBuildVector(VT, DL, Elts); -} - -// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: -// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" -// transformation. Returns true if extension are possible and the above -// mentioned transformation is profitable. -static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, - unsigned ExtOpc, - SmallVectorImpl<SDNode *> &ExtendNodes, - const TargetLowering &TLI) { - bool HasCopyToRegUses = false; - bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); - for (SDNode::use_iterator UI = N0.getNode()->use_begin(), - UE = N0.getNode()->use_end(); - UI != UE; ++UI) { - SDNode *User = *UI; - if (User == N) - continue; - if (UI.getUse().getResNo() != N0.getResNo()) - continue; - // FIXME: Only extend SETCC N, N and SETCC N, c for now. - if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { - ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); - if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) - // Sign bits will be lost after a zext. - return false; - bool Add = false; - for (unsigned i = 0; i != 2; ++i) { - SDValue UseOp = User->getOperand(i); - if (UseOp == N0) - continue; - if (!isa<ConstantSDNode>(UseOp)) - return false; - Add = true; - } - if (Add) - ExtendNodes.push_back(User); - continue; - } - // If truncates aren't free and there are users we can't - // extend, it isn't worthwhile. - if (!isTruncFree) - return false; - // Remember if this value is live-out. - if (User->getOpcode() == ISD::CopyToReg) - HasCopyToRegUses = true; - } - - if (HasCopyToRegUses) { - bool BothLiveOut = false; - for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); - UI != UE; ++UI) { - SDUse &Use = UI.getUse(); - if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { - BothLiveOut = true; - break; - } - } - if (BothLiveOut) - // Both unextended and extended values are live out. There had better be - // a good reason for the transformation. - return ExtendNodes.size(); - } - return true; -} - -void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, - SDValue OrigLoad, SDValue ExtLoad, - ISD::NodeType ExtType) { - // Extend SetCC uses if necessary. - SDLoc DL(ExtLoad); - for (SDNode *SetCC : SetCCs) { - SmallVector<SDValue, 4> Ops; - - for (unsigned j = 0; j != 2; ++j) { - SDValue SOp = SetCC->getOperand(j); - if (SOp == OrigLoad) - Ops.push_back(ExtLoad); - else - Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); - } - - Ops.push_back(SetCC->getOperand(2)); - CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); - } -} - -// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). -SDValue DAGCombiner::CombineExtLoad(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT DstVT = N->getValueType(0); - EVT SrcVT = N0.getValueType(); - - assert((N->getOpcode() == ISD::SIGN_EXTEND || - N->getOpcode() == ISD::ZERO_EXTEND) && - "Unexpected node type (not an extend)!"); - - // fold (sext (load x)) to multiple smaller sextloads; same for zext. - // For example, on a target with legal v4i32, but illegal v8i32, turn: - // (v8i32 (sext (v8i16 (load x)))) - // into: - // (v8i32 (concat_vectors (v4i32 (sextload x)), - // (v4i32 (sextload (x + 16))))) - // Where uses of the original load, i.e.: - // (v8i16 (load x)) - // are replaced with: - // (v8i16 (truncate - // (v8i32 (concat_vectors (v4i32 (sextload x)), - // (v4i32 (sextload (x + 16))))))) - // - // This combine is only applicable to illegal, but splittable, vectors. - // All legal types, and illegal non-vector types, are handled elsewhere. - // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. - // - if (N0->getOpcode() != ISD::LOAD) - return SDValue(); - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - - if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || - !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || - !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) - return SDValue(); - - SmallVector<SDNode *, 4> SetCCs; - if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) - return SDValue(); - - ISD::LoadExtType ExtType = - N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; - - // Try to split the vector types to get down to legal types. - EVT SplitSrcVT = SrcVT; - EVT SplitDstVT = DstVT; - while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && - SplitSrcVT.getVectorNumElements() > 1) { - SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; - SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; - } - - if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) - return SDValue(); - - SDLoc DL(N); - const unsigned NumSplits = - DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); - const unsigned Stride = SplitSrcVT.getStoreSize(); - SmallVector<SDValue, 4> Loads; - SmallVector<SDValue, 4> Chains; - - SDValue BasePtr = LN0->getBasePtr(); - for (unsigned Idx = 0; Idx < NumSplits; Idx++) { - const unsigned Offset = Idx * Stride; - const unsigned Align = MinAlign(LN0->getAlignment(), Offset); - - SDValue SplitLoad = DAG.getExtLoad( - ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, - LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, - LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); - - BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, - DAG.getConstant(Stride, DL, BasePtr.getValueType())); - - Loads.push_back(SplitLoad.getValue(0)); - Chains.push_back(SplitLoad.getValue(1)); - } - - SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); - SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); - - // Simplify TF. - AddToWorklist(NewChain.getNode()); - - CombineTo(N, NewValue); - - // Replace uses of the original load (before extension) - // with a truncate of the concatenated sextloaded vectors. - SDValue Trunc = - DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); - ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); - CombineTo(N0.getNode(), Trunc, NewChain); - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> -// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) -SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { - assert(N->getOpcode() == ISD::ZERO_EXTEND); - EVT VT = N->getValueType(0); - - // and/or/xor - SDValue N0 = N->getOperand(0); - if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || - N0.getOpcode() == ISD::XOR) || - N0.getOperand(1).getOpcode() != ISD::Constant || - (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) - return SDValue(); - - // shl/shr - SDValue N1 = N0->getOperand(0); - if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || - N1.getOperand(1).getOpcode() != ISD::Constant || - (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) - return SDValue(); - - // load - if (!isa<LoadSDNode>(N1.getOperand(0))) - return SDValue(); - LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); - EVT MemVT = Load->getMemoryVT(); - if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || - Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) - return SDValue(); - - - // If the shift op is SHL, the logic op must be AND, otherwise the result - // will be wrong. - if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) - return SDValue(); - - if (!N0.hasOneUse() || !N1.hasOneUse()) - return SDValue(); - - SmallVector<SDNode*, 4> SetCCs; - if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), - ISD::ZERO_EXTEND, SetCCs, TLI)) - return SDValue(); - - // Actually do the transformation. - SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, - Load->getChain(), Load->getBasePtr(), - Load->getMemoryVT(), Load->getMemOperand()); - - SDLoc DL1(N1); - SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, - N1.getOperand(1)); - - APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - Mask = Mask.zext(VT.getSizeInBits()); - SDLoc DL0(N0); - SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, - DAG.getConstant(Mask, DL0, VT)); - - ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); - CombineTo(N, And); - if (SDValue(Load, 0).hasOneUse()) { - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), - Load->getValueType(0), ExtLoad); - CombineTo(Load, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N,0); // Return N so it doesn't get rechecked! -} - -/// If we're narrowing or widening the result of a vector select and the final -/// size is the same size as a setcc (compare) feeding the select, then try to -/// apply the cast operation to the select's operands because matching vector -/// sizes for a select condition and other operands should be more efficient. -SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { - unsigned CastOpcode = Cast->getOpcode(); - assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || - CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || - CastOpcode == ISD::FP_ROUND) && - "Unexpected opcode for vector select narrowing/widening"); - - // We only do this transform before legal ops because the pattern may be - // obfuscated by target-specific operations after legalization. Do not create - // an illegal select op, however, because that may be difficult to lower. - EVT VT = Cast->getValueType(0); - if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) - return SDValue(); - - SDValue VSel = Cast->getOperand(0); - if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || - VSel.getOperand(0).getOpcode() != ISD::SETCC) - return SDValue(); - - // Does the setcc have the same vector size as the casted select? - SDValue SetCC = VSel.getOperand(0); - EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); - if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) - SDValue A = VSel.getOperand(1); - SDValue B = VSel.getOperand(2); - SDValue CastA, CastB; - SDLoc DL(Cast); - if (CastOpcode == ISD::FP_ROUND) { - // FP_ROUND (fptrunc) has an extra flag operand to pass along. - CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); - CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); - } else { - CastA = DAG.getNode(CastOpcode, DL, VT, A); - CastB = DAG.getNode(CastOpcode, DL, VT, B); - } - return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); -} - -// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) -// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) -static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, - const TargetLowering &TLI, EVT VT, - bool LegalOperations, SDNode *N, - SDValue N0, ISD::LoadExtType ExtLoadType) { - SDNode *N0Node = N0.getNode(); - bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) - : ISD::isZEXTLoad(N0Node); - if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || - !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) - return {}; - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - EVT MemVT = LN0->getMemoryVT(); - if ((LegalOperations || LN0->isVolatile() || VT.isVector()) && - !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) - return {}; - - SDValue ExtLoad = - DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), - LN0->getBasePtr(), MemVT, LN0->getMemOperand()); - Combiner.CombineTo(N, ExtLoad); - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) -// Only generate vector extloads when 1) they're legal, and 2) they are -// deemed desirable by the target. -static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, - const TargetLowering &TLI, EVT VT, - bool LegalOperations, SDNode *N, SDValue N0, - ISD::LoadExtType ExtLoadType, - ISD::NodeType ExtOpc) { - if (!ISD::isNON_EXTLoad(N0.getNode()) || - !ISD::isUNINDEXEDLoad(N0.getNode()) || - ((LegalOperations || VT.isVector() || - cast<LoadSDNode>(N0)->isVolatile()) && - !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) - return {}; - - bool DoXform = true; - SmallVector<SDNode *, 4> SetCCs; - if (!N0.hasOneUse()) - DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); - if (VT.isVector()) - DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); - if (!DoXform) - return {}; - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), - LN0->getBasePtr(), N0.getValueType(), - LN0->getMemOperand()); - Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); - // If the load value is used only by N, replace it via CombineTo N. - bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); - Combiner.CombineTo(N, ExtLoad); - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = - DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); - Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, - bool LegalOperations) { - assert((N->getOpcode() == ISD::SIGN_EXTEND || - N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); - - SDValue SetCC = N->getOperand(0); - if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || - !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) - return SDValue(); - - SDValue X = SetCC.getOperand(0); - SDValue Ones = SetCC.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); - EVT VT = N->getValueType(0); - EVT XVT = X.getValueType(); - // setge X, C is canonicalized to setgt, so we do not need to match that - // pattern. The setlt sibling is folded in SimplifySelectCC() because it does - // not require the 'not' op. - if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { - // Invert and smear/shift the sign bit: - // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) - // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) - SDLoc DL(N); - SDValue NotX = DAG.getNOT(DL, X, VT); - SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); - auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; - return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); - } - return SDValue(); -} - -SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - // fold (sext (sext x)) -> (sext x) - // fold (sext (aext x)) -> (sext x) - if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) - return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); - - if (N0.getOpcode() == ISD::TRUNCATE) { - // fold (sext (truncate (load x))) -> (sext (smaller load x)) - // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) - if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { - SDNode *oye = N0.getOperand(0).getNode(); - if (NarrowLoad.getNode() != N0.getNode()) { - CombineTo(N0.getNode(), NarrowLoad); - // CombineTo deleted the truncate, if needed, but not what's under it. - AddToWorklist(oye); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - // See if the value being truncated is already sign extended. If so, just - // eliminate the trunc/sext pair. - SDValue Op = N0.getOperand(0); - unsigned OpBits = Op.getScalarValueSizeInBits(); - unsigned MidBits = N0.getScalarValueSizeInBits(); - unsigned DestBits = VT.getScalarSizeInBits(); - unsigned NumSignBits = DAG.ComputeNumSignBits(Op); - - if (OpBits == DestBits) { - // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign - // bits, it is already ready. - if (NumSignBits > DestBits-MidBits) - return Op; - } else if (OpBits < DestBits) { - // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign - // bits, just sext from i32. - if (NumSignBits > OpBits-MidBits) - return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); - } else { - // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign - // bits, just truncate to i32. - if (NumSignBits > OpBits-MidBits) - return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); - } - - // fold (sext (truncate x)) -> (sextinreg x). - if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, - N0.getValueType())) { - if (OpBits < DestBits) - Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); - else if (OpBits > DestBits) - Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); - return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, - DAG.getValueType(N0.getValueType())); - } - } - - // Try to simplify (sext (load x)). - if (SDValue foldedExt = - tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, - ISD::SEXTLOAD, ISD::SIGN_EXTEND)) - return foldedExt; - - // fold (sext (load x)) to multiple smaller sextloads. - // Only on illegal but splittable vectors. - if (SDValue ExtLoad = CombineExtLoad(N)) - return ExtLoad; - - // Try to simplify (sext (sextload x)). - if (SDValue foldedExt = tryToFoldExtOfExtload( - DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) - return foldedExt; - - // fold (sext (and/or/xor (load x), cst)) -> - // (and/or/xor (sextload x), (sext cst)) - if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || - N0.getOpcode() == ISD::XOR) && - isa<LoadSDNode>(N0.getOperand(0)) && - N0.getOperand(1).getOpcode() == ISD::Constant && - (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { - LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); - EVT MemVT = LN00->getMemoryVT(); - if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && - LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { - SmallVector<SDNode*, 4> SetCCs; - bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), - ISD::SIGN_EXTEND, SetCCs, TLI); - if (DoXform) { - SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, - LN00->getChain(), LN00->getBasePtr(), - LN00->getMemoryVT(), - LN00->getMemOperand()); - APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - Mask = Mask.sext(VT.getSizeInBits()); - SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, - ExtLoad, DAG.getConstant(Mask, DL, VT)); - ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); - bool NoReplaceTruncAnd = !N0.hasOneUse(); - bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); - CombineTo(N, And); - // If N0 has multiple uses, change other uses as well. - if (NoReplaceTruncAnd) { - SDValue TruncAnd = - DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); - CombineTo(N0.getNode(), TruncAnd); - } - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), - LN00->getValueType(0), ExtLoad); - CombineTo(LN00, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N,0); // Return N so it doesn't get rechecked! - } - } - } - - if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) - return V; - - if (N0.getOpcode() == ISD::SETCC) { - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - EVT N00VT = N0.getOperand(0).getValueType(); - - // sext(setcc) -> sext_in_reg(vsetcc) for vectors. - // Only do this before legalize for now. - if (VT.isVector() && !LegalOperations && - TLI.getBooleanContents(N00VT) == - TargetLowering::ZeroOrNegativeOneBooleanContent) { - // On some architectures (such as SSE/NEON/etc) the SETCC result type is - // of the same size as the compared operands. Only optimize sext(setcc()) - // if this is the case. - EVT SVT = getSetCCResultType(N00VT); - - // If we already have the desired type, don't change it. - if (SVT != N0.getValueType()) { - // We know that the # elements of the results is the same as the - // # elements of the compare (and the # elements of the compare result - // for that matter). Check to see that they are the same size. If so, - // we know that the element size of the sext'd result matches the - // element size of the compare operands. - if (VT.getSizeInBits() == SVT.getSizeInBits()) - return DAG.getSetCC(DL, VT, N00, N01, CC); - - // If the desired elements are smaller or larger than the source - // elements, we can use a matching integer vector type and then - // truncate/sign extend. - EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); - if (SVT == MatchingVecType) { - SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); - return DAG.getSExtOrTrunc(VsetCC, DL, VT); - } - } - } - - // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) - // Here, T can be 1 or -1, depending on the type of the setcc and - // getBooleanContents(). - unsigned SetCCWidth = N0.getScalarValueSizeInBits(); - - // To determine the "true" side of the select, we need to know the high bit - // of the value returned by the setcc if it evaluates to true. - // If the type of the setcc is i1, then the true case of the select is just - // sext(i1 1), that is, -1. - // If the type of the setcc is larger (say, i8) then the value of the high - // bit depends on getBooleanContents(), so ask TLI for a real "true" value - // of the appropriate width. - SDValue ExtTrueVal = (SetCCWidth == 1) - ? DAG.getAllOnesConstant(DL, VT) - : DAG.getBoolConstant(true, DL, VT, N00VT); - SDValue Zero = DAG.getConstant(0, DL, VT); - if (SDValue SCC = - SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) - return SCC; - - if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { - EVT SetCCVT = getSetCCResultType(N00VT); - // Don't do this transform for i1 because there's a select transform - // that would reverse it. - // TODO: We should not do this transform at all without a target hook - // because a sext is likely cheaper than a select? - if (SetCCVT.getScalarSizeInBits() != 1 && - (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { - SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); - return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); - } - } - } - - // fold (sext x) -> (zext x) if the sign bit is known zero. - if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && - DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - return SDValue(); -} - -// isTruncateOf - If N is a truncate of some other value, return true, record -// the value being truncated in Op and which of Op's bits are zero/one in Known. -// This function computes KnownBits to avoid a duplicated call to -// computeKnownBits in the caller. -static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, - KnownBits &Known) { - if (N->getOpcode() == ISD::TRUNCATE) { - Op = N->getOperand(0); - Known = DAG.computeKnownBits(Op); - return true; - } - - if (N.getOpcode() != ISD::SETCC || - N.getValueType().getScalarType() != MVT::i1 || - cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) - return false; - - SDValue Op0 = N->getOperand(0); - SDValue Op1 = N->getOperand(1); - assert(Op0.getValueType() == Op1.getValueType()); - - if (isNullOrNullSplat(Op0)) - Op = Op1; - else if (isNullOrNullSplat(Op1)) - Op = Op0; - else - return false; - - Known = DAG.computeKnownBits(Op); - - return (Known.Zero | 1).isAllOnesValue(); -} - -SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - // fold (zext (zext x)) -> (zext x) - // fold (zext (aext x)) -> (zext x) - if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, - N0.getOperand(0)); - - // fold (zext (truncate x)) -> (zext x) or - // (zext (truncate x)) -> (truncate x) - // This is valid when the truncated bits of x are already zero. - SDValue Op; - KnownBits Known; - if (isTruncateOf(DAG, N0, Op, Known)) { - APInt TruncatedBits = - (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? - APInt(Op.getScalarValueSizeInBits(), 0) : - APInt::getBitsSet(Op.getScalarValueSizeInBits(), - N0.getScalarValueSizeInBits(), - std::min(Op.getScalarValueSizeInBits(), - VT.getScalarSizeInBits())); - if (TruncatedBits.isSubsetOf(Known.Zero)) - return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); - } - - // fold (zext (truncate x)) -> (and x, mask) - if (N0.getOpcode() == ISD::TRUNCATE) { - // fold (zext (truncate (load x))) -> (zext (smaller load x)) - // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) - if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { - SDNode *oye = N0.getOperand(0).getNode(); - if (NarrowLoad.getNode() != N0.getNode()) { - CombineTo(N0.getNode(), NarrowLoad); - // CombineTo deleted the truncate, if needed, but not what's under it. - AddToWorklist(oye); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - EVT SrcVT = N0.getOperand(0).getValueType(); - EVT MinVT = N0.getValueType(); - - // Try to mask before the extension to avoid having to generate a larger mask, - // possibly over several sub-vectors. - if (SrcVT.bitsLT(VT) && VT.isVector()) { - if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && - TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { - SDValue Op = N0.getOperand(0); - Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); - AddToWorklist(Op.getNode()); - SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); - // Transfer the debug info; the new node is equivalent to N0. - DAG.transferDbgValues(N0, ZExtOrTrunc); - return ZExtOrTrunc; - } - } - - if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { - SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); - AddToWorklist(Op.getNode()); - SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); - // We may safely transfer the debug info describing the truncate node over - // to the equivalent and operation. - DAG.transferDbgValues(N0, And); - return And; - } - } - - // Fold (zext (and (trunc x), cst)) -> (and x, cst), - // if either of the casts is not free. - if (N0.getOpcode() == ISD::AND && - N0.getOperand(0).getOpcode() == ISD::TRUNCATE && - N0.getOperand(1).getOpcode() == ISD::Constant && - (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), - N0.getValueType()) || - !TLI.isZExtFree(N0.getValueType(), VT))) { - SDValue X = N0.getOperand(0).getOperand(0); - X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); - APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - Mask = Mask.zext(VT.getSizeInBits()); - SDLoc DL(N); - return DAG.getNode(ISD::AND, DL, VT, - X, DAG.getConstant(Mask, DL, VT)); - } - - // Try to simplify (zext (load x)). - if (SDValue foldedExt = - tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, - ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) - return foldedExt; - - // fold (zext (load x)) to multiple smaller zextloads. - // Only on illegal but splittable vectors. - if (SDValue ExtLoad = CombineExtLoad(N)) - return ExtLoad; - - // fold (zext (and/or/xor (load x), cst)) -> - // (and/or/xor (zextload x), (zext cst)) - // Unless (and (load x) cst) will match as a zextload already and has - // additional users. - if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || - N0.getOpcode() == ISD::XOR) && - isa<LoadSDNode>(N0.getOperand(0)) && - N0.getOperand(1).getOpcode() == ISD::Constant && - (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { - LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); - EVT MemVT = LN00->getMemoryVT(); - if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && - LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { - bool DoXform = true; - SmallVector<SDNode*, 4> SetCCs; - if (!N0.hasOneUse()) { - if (N0.getOpcode() == ISD::AND) { - auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); - EVT LoadResultTy = AndC->getValueType(0); - EVT ExtVT; - if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) - DoXform = false; - } - } - if (DoXform) - DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), - ISD::ZERO_EXTEND, SetCCs, TLI); - if (DoXform) { - SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, - LN00->getChain(), LN00->getBasePtr(), - LN00->getMemoryVT(), - LN00->getMemOperand()); - APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - Mask = Mask.zext(VT.getSizeInBits()); - SDLoc DL(N); - SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, - ExtLoad, DAG.getConstant(Mask, DL, VT)); - ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); - bool NoReplaceTruncAnd = !N0.hasOneUse(); - bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); - CombineTo(N, And); - // If N0 has multiple uses, change other uses as well. - if (NoReplaceTruncAnd) { - SDValue TruncAnd = - DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); - CombineTo(N0.getNode(), TruncAnd); - } - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), - LN00->getValueType(0), ExtLoad); - CombineTo(LN00, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N,0); // Return N so it doesn't get rechecked! - } - } - } - - // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> - // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) - if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) - return ZExtLoad; - - // Try to simplify (zext (zextload x)). - if (SDValue foldedExt = tryToFoldExtOfExtload( - DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) - return foldedExt; - - if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) - return V; - - if (N0.getOpcode() == ISD::SETCC) { - // Only do this before legalize for now. - if (!LegalOperations && VT.isVector() && - N0.getValueType().getVectorElementType() == MVT::i1) { - EVT N00VT = N0.getOperand(0).getValueType(); - if (getSetCCResultType(N00VT) == N0.getValueType()) - return SDValue(); - - // We know that the # elements of the results is the same as the # - // elements of the compare (and the # elements of the compare result for - // that matter). Check to see that they are the same size. If so, we know - // that the element size of the sext'd result matches the element size of - // the compare operands. - SDLoc DL(N); - SDValue VecOnes = DAG.getConstant(1, DL, VT); - if (VT.getSizeInBits() == N00VT.getSizeInBits()) { - // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. - SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), - N0.getOperand(1), N0.getOperand(2)); - return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); - } - - // If the desired elements are smaller or larger than the source - // elements we can use a matching integer vector type and then - // truncate/sign extend. - EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); - SDValue VsetCC = - DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), - N0.getOperand(1), N0.getOperand(2)); - return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), - VecOnes); - } - - // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc - SDLoc DL(N); - if (SDValue SCC = SimplifySelectCC( - DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT), - cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) - return SCC; - } - - // (zext (shl (zext x), cst)) -> (shl (zext x), cst) - if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && - isa<ConstantSDNode>(N0.getOperand(1)) && - N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && - N0.hasOneUse()) { - SDValue ShAmt = N0.getOperand(1); - unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); - if (N0.getOpcode() == ISD::SHL) { - SDValue InnerZExt = N0.getOperand(0); - // If the original shl may be shifting out bits, do not perform this - // transformation. - unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - - InnerZExt.getOperand(0).getValueSizeInBits(); - if (ShAmtVal > KnownZeroBits) - return SDValue(); - } - - SDLoc DL(N); - - // Ensure that the shift amount is wide enough for the shifted value. - if (VT.getSizeInBits() >= 256) - ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); - - return DAG.getNode(N0.getOpcode(), DL, VT, - DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), - ShAmt); - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - // fold (aext (aext x)) -> (aext x) - // fold (aext (zext x)) -> (zext x) - // fold (aext (sext x)) -> (sext x) - if (N0.getOpcode() == ISD::ANY_EXTEND || - N0.getOpcode() == ISD::ZERO_EXTEND || - N0.getOpcode() == ISD::SIGN_EXTEND) - return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); - - // fold (aext (truncate (load x))) -> (aext (smaller load x)) - // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) - if (N0.getOpcode() == ISD::TRUNCATE) { - if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { - SDNode *oye = N0.getOperand(0).getNode(); - if (NarrowLoad.getNode() != N0.getNode()) { - CombineTo(N0.getNode(), NarrowLoad); - // CombineTo deleted the truncate, if needed, but not what's under it. - AddToWorklist(oye); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // fold (aext (truncate x)) - if (N0.getOpcode() == ISD::TRUNCATE) - return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); - - // Fold (aext (and (trunc x), cst)) -> (and x, cst) - // if the trunc is not free. - if (N0.getOpcode() == ISD::AND && - N0.getOperand(0).getOpcode() == ISD::TRUNCATE && - N0.getOperand(1).getOpcode() == ISD::Constant && - !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), - N0.getValueType())) { - SDLoc DL(N); - SDValue X = N0.getOperand(0).getOperand(0); - X = DAG.getAnyExtOrTrunc(X, DL, VT); - APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - Mask = Mask.zext(VT.getSizeInBits()); - return DAG.getNode(ISD::AND, DL, VT, - X, DAG.getConstant(Mask, DL, VT)); - } - - // fold (aext (load x)) -> (aext (truncate (extload x))) - // None of the supported targets knows how to perform load and any_ext - // on vectors in one instruction. We only perform this transformation on - // scalars. - if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && - ISD::isUNINDEXEDLoad(N0.getNode()) && - TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { - bool DoXform = true; - SmallVector<SDNode*, 4> SetCCs; - if (!N0.hasOneUse()) - DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, - TLI); - if (DoXform) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), N0.getValueType(), - LN0->getMemOperand()); - ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); - // If the load value is used only by N, replace it via CombineTo N. - bool NoReplaceTrunc = N0.hasOneUse(); - CombineTo(N, ExtLoad); - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), - N0.getValueType(), ExtLoad); - CombineTo(LN0, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // fold (aext (zextload x)) -> (aext (truncate (zextload x))) - // fold (aext (sextload x)) -> (aext (truncate (sextload x))) - // fold (aext ( extload x)) -> (aext (truncate (extload x))) - if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && - ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - ISD::LoadExtType ExtType = LN0->getExtensionType(); - EVT MemVT = LN0->getMemoryVT(); - if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { - SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), - VT, LN0->getChain(), LN0->getBasePtr(), - MemVT, LN0->getMemOperand()); - CombineTo(N, ExtLoad); - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - if (N0.getOpcode() == ISD::SETCC) { - // For vectors: - // aext(setcc) -> vsetcc - // aext(setcc) -> truncate(vsetcc) - // aext(setcc) -> aext(vsetcc) - // Only do this before legalize for now. - if (VT.isVector() && !LegalOperations) { - EVT N00VT = N0.getOperand(0).getValueType(); - if (getSetCCResultType(N00VT) == N0.getValueType()) - return SDValue(); - - // We know that the # elements of the results is the same as the - // # elements of the compare (and the # elements of the compare result - // for that matter). Check to see that they are the same size. If so, - // we know that the element size of the sext'd result matches the - // element size of the compare operands. - if (VT.getSizeInBits() == N00VT.getSizeInBits()) - return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), - N0.getOperand(1), - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - - // If the desired elements are smaller or larger than the source - // elements we can use a matching integer vector type and then - // truncate/any extend - EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); - SDValue VsetCC = - DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), - N0.getOperand(1), - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); - } - - // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc - SDLoc DL(N); - if (SDValue SCC = SimplifySelectCC( - DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT), - cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) - return SCC; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitAssertExt(SDNode *N) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT AssertVT = cast<VTSDNode>(N1)->getVT(); - - // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) - if (N0.getOpcode() == Opcode && - AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) - return N0; - - if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == Opcode) { - // We have an assert, truncate, assert sandwich. Make one stronger assert - // by asserting on the smallest asserted type to the larger source type. - // This eliminates the later assert: - // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN - // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN - SDValue BigA = N0.getOperand(0); - EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); - assert(BigA_AssertVT.bitsLE(N0.getValueType()) && - "Asserting zero/sign-extended bits to a type larger than the " - "truncated destination does not provide information"); - - SDLoc DL(N); - EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; - SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); - SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), - BigA.getOperand(0), MinAssertVTVal); - return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); - } - - // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller - // than X. Just move the AssertZext in front of the truncate and drop the - // AssertSExt. - if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == ISD::AssertSext && - Opcode == ISD::AssertZext) { - SDValue BigA = N0.getOperand(0); - EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); - assert(BigA_AssertVT.bitsLE(N0.getValueType()) && - "Asserting zero/sign-extended bits to a type larger than the " - "truncated destination does not provide information"); - - if (AssertVT.bitsLT(BigA_AssertVT)) { - SDLoc DL(N); - SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), - BigA.getOperand(0), N1); - return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); - } - } - - return SDValue(); -} - -/// If the result of a wider load is shifted to right of N bits and then -/// truncated to a narrower type and where N is a multiple of number of bits of -/// the narrower type, transform it to a narrower load from address + N / num of -/// bits of new type. Also narrow the load if the result is masked with an AND -/// to effectively produce a smaller type. If the result is to be extended, also -/// fold the extension to form a extending load. -SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { - unsigned Opc = N->getOpcode(); - - ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT ExtVT = VT; - - // This transformation isn't valid for vector loads. - if (VT.isVector()) - return SDValue(); - - unsigned ShAmt = 0; - bool HasShiftedOffset = false; - // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then - // extended to VT. - if (Opc == ISD::SIGN_EXTEND_INREG) { - ExtType = ISD::SEXTLOAD; - ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); - } else if (Opc == ISD::SRL) { - // Another special-case: SRL is basically zero-extending a narrower value, - // or it maybe shifting a higher subword, half or byte into the lowest - // bits. - ExtType = ISD::ZEXTLOAD; - N0 = SDValue(N, 0); - - auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); - auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!N01 || !LN0) - return SDValue(); - - uint64_t ShiftAmt = N01->getZExtValue(); - uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits(); - if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) - ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); - else - ExtVT = EVT::getIntegerVT(*DAG.getContext(), - VT.getSizeInBits() - ShiftAmt); - } else if (Opc == ISD::AND) { - // An AND with a constant mask is the same as a truncate + zero-extend. - auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); - if (!AndC) - return SDValue(); - - const APInt &Mask = AndC->getAPIntValue(); - unsigned ActiveBits = 0; - if (Mask.isMask()) { - ActiveBits = Mask.countTrailingOnes(); - } else if (Mask.isShiftedMask()) { - ShAmt = Mask.countTrailingZeros(); - APInt ShiftedMask = Mask.lshr(ShAmt); - ActiveBits = ShiftedMask.countTrailingOnes(); - HasShiftedOffset = true; - } else - return SDValue(); - - ExtType = ISD::ZEXTLOAD; - ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); - } - - if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { - SDValue SRL = N0; - if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { - ShAmt = ConstShift->getZExtValue(); - unsigned EVTBits = ExtVT.getSizeInBits(); - // Is the shift amount a multiple of size of VT? - if ((ShAmt & (EVTBits-1)) == 0) { - N0 = N0.getOperand(0); - // Is the load width a multiple of size of VT? - if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0) - return SDValue(); - } - - // At this point, we must have a load or else we can't do the transform. - if (!isa<LoadSDNode>(N0)) return SDValue(); - - auto *LN0 = cast<LoadSDNode>(N0); - - // Because a SRL must be assumed to *need* to zero-extend the high bits - // (as opposed to anyext the high bits), we can't combine the zextload - // lowering of SRL and an sextload. - if (LN0->getExtensionType() == ISD::SEXTLOAD) - return SDValue(); - - // If the shift amount is larger than the input type then we're not - // accessing any of the loaded bytes. If the load was a zextload/extload - // then the result of the shift+trunc is zero/undef (handled elsewhere). - if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) - return SDValue(); - - // If the SRL is only used by a masking AND, we may be able to adjust - // the ExtVT to make the AND redundant. - SDNode *Mask = *(SRL->use_begin()); - if (Mask->getOpcode() == ISD::AND && - isa<ConstantSDNode>(Mask->getOperand(1))) { - const APInt &ShiftMask = - cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue(); - if (ShiftMask.isMask()) { - EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), - ShiftMask.countTrailingOnes()); - // If the mask is smaller, recompute the type. - if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) && - TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) - ExtVT = MaskedVT; - } - } - } - } - - // If the load is shifted left (and the result isn't shifted back right), - // we can fold the truncate through the shift. - unsigned ShLeftAmt = 0; - if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && - ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { - if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - ShLeftAmt = N01->getZExtValue(); - N0 = N0.getOperand(0); - } - } - - // If we haven't found a load, we can't narrow it. - if (!isa<LoadSDNode>(N0)) - return SDValue(); - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) - return SDValue(); - - auto AdjustBigEndianShift = [&](unsigned ShAmt) { - unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); - unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); - return LVTStoreBits - EVTStoreBits - ShAmt; - }; - - // For big endian targets, we need to adjust the offset to the pointer to - // load the correct bytes. - if (DAG.getDataLayout().isBigEndian()) - ShAmt = AdjustBigEndianShift(ShAmt); - - EVT PtrType = N0.getOperand(1).getValueType(); - uint64_t PtrOff = ShAmt / 8; - unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); - SDLoc DL(LN0); - // The original load itself didn't wrap, so an offset within it doesn't. - SDNodeFlags Flags; - Flags.setNoUnsignedWrap(true); - SDValue NewPtr = DAG.getNode(ISD::ADD, DL, - PtrType, LN0->getBasePtr(), - DAG.getConstant(PtrOff, DL, PtrType), - Flags); - AddToWorklist(NewPtr.getNode()); - - SDValue Load; - if (ExtType == ISD::NON_EXTLOAD) - Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, - LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, - LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); - else - Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr, - LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, - NewAlign, LN0->getMemOperand()->getFlags(), - LN0->getAAInfo()); - - // Replace the old load's chain with the new load's chain. - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); - - // Shift the result left, if we've swallowed a left shift. - SDValue Result = Load; - if (ShLeftAmt != 0) { - EVT ShImmTy = getShiftAmountTy(Result.getValueType()); - if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) - ShImmTy = VT; - // If the shift amount is as large as the result size (but, presumably, - // no larger than the source) then the useful bits of the result are - // zero; we can't simply return the shortened shift, because the result - // of that operation is undefined. - SDLoc DL(N0); - if (ShLeftAmt >= VT.getSizeInBits()) - Result = DAG.getConstant(0, DL, VT); - else - Result = DAG.getNode(ISD::SHL, DL, VT, - Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); - } - - if (HasShiftedOffset) { - // Recalculate the shift amount after it has been altered to calculate - // the offset. - if (DAG.getDataLayout().isBigEndian()) - ShAmt = AdjustBigEndianShift(ShAmt); - - // We're using a shifted mask, so the load now has an offset. This means - // that data has been loaded into the lower bytes than it would have been - // before, so we need to shl the loaded data into the correct position in the - // register. - SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); - Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); - } - - // Return the new loaded value. - return Result; -} - -SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT EVT = cast<VTSDNode>(N1)->getVT(); - unsigned VTBits = VT.getScalarSizeInBits(); - unsigned EVTBits = EVT.getScalarSizeInBits(); - - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - // fold (sext_in_reg c1) -> c1 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); - - // If the input is already sign extended, just drop the extension. - if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) - return N0; - - // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 - if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && - EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, - N0.getOperand(0), N1); - - // fold (sext_in_reg (sext x)) -> (sext x) - // fold (sext_in_reg (aext x)) -> (sext x) - // if x is small enough or if we know that x has more than 1 sign bit and the - // sign_extend_inreg is extending from one of them. - if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { - SDValue N00 = N0.getOperand(0); - unsigned N00Bits = N00.getScalarValueSizeInBits(); - if ((N00Bits <= EVTBits || - (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) && - (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) - return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); - } - - // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) - if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || - N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || - N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && - N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) { - if (!LegalOperations || - TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) - return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, - N0.getOperand(0)); - } - - // fold (sext_in_reg (zext x)) -> (sext x) - // iff we are extending the source sign bit. - if (N0.getOpcode() == ISD::ZERO_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getScalarValueSizeInBits() == EVTBits && - (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) - return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); - } - - // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. - if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1))) - return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType()); - - // fold operands of sext_in_reg based on knowledge that the top bits are not - // demanded. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (sext_in_reg (load x)) -> (smaller sextload x) - // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) - if (SDValue NarrowLoad = ReduceLoadWidth(N)) - return NarrowLoad; - - // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) - // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. - // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. - if (N0.getOpcode() == ISD::SRL) { - if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) - if (ShAmt->getZExtValue()+EVTBits <= VTBits) { - // We can turn this into an SRA iff the input to the SRL is already sign - // extended enough. - unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); - if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) - return DAG.getNode(ISD::SRA, SDLoc(N), VT, - N0.getOperand(0), N0.getOperand(1)); - } - } - - // fold (sext_inreg (extload x)) -> (sextload x) - // If sextload is not supported by target, we can only do the combine when - // load has one use. Doing otherwise can block folding the extload with other - // extends that the target does support. - if (ISD::isEXTLoad(N0.getNode()) && - ISD::isUNINDEXEDLoad(N0.getNode()) && - EVT == cast<LoadSDNode>(N0)->getMemoryVT() && - ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() && - N0.hasOneUse()) || - TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), EVT, - LN0->getMemOperand()); - CombineTo(N, ExtLoad); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - AddToWorklist(ExtLoad.getNode()); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use - if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && - N0.hasOneUse() && - EVT == cast<LoadSDNode>(N0)->getMemoryVT() && - ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || - TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), EVT, - LN0->getMemOperand()); - CombineTo(N, ExtLoad); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) - if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { - if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), - N0.getOperand(1), false)) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, - BSwap, N1); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - bool isLE = DAG.getDataLayout().isLittleEndian(); - - // noop truncate - if (N0.getValueType() == N->getValueType(0)) - return N0; - - // fold (truncate (truncate x)) -> (truncate x) - if (N0.getOpcode() == ISD::TRUNCATE) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); - - // fold (truncate c1) -> c1 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); - if (C.getNode() != N) - return C; - } - - // fold (truncate (ext x)) -> (ext x) or (truncate x) or x - if (N0.getOpcode() == ISD::ZERO_EXTEND || - N0.getOpcode() == ISD::SIGN_EXTEND || - N0.getOpcode() == ISD::ANY_EXTEND) { - // if the source is smaller than the dest, we still need an extend. - if (N0.getOperand(0).getValueType().bitsLT(VT)) - return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); - // if the source is larger than the dest, than we just need the truncate. - if (N0.getOperand(0).getValueType().bitsGT(VT)) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); - // if the source and dest are the same type, we can drop both the extend - // and the truncate. - return N0.getOperand(0); - } - - // If this is anyext(trunc), don't fold it, allow ourselves to be folded. - if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) - return SDValue(); - - // Fold extract-and-trunc into a narrow extract. For example: - // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) - // i32 y = TRUNCATE(i64 x) - // -- becomes -- - // v16i8 b = BITCAST (v2i64 val) - // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) - // - // Note: We only run this optimization after type legalization (which often - // creates this pattern) and before operation legalization after which - // we need to be more careful about the vector instructions that we generate. - if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { - EVT VecTy = N0.getOperand(0).getValueType(); - EVT ExTy = N0.getValueType(); - EVT TrTy = N->getValueType(0); - - unsigned NumElem = VecTy.getVectorNumElements(); - unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); - - EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); - assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); - - SDValue EltNo = N0->getOperand(1); - if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { - int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); - EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); - int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); - - SDLoc DL(N); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, - DAG.getBitcast(NVT, N0.getOperand(0)), - DAG.getConstant(Index, DL, IndexTy)); - } - } - - // trunc (select c, a, b) -> select c, (trunc a), (trunc b) - if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { - EVT SrcVT = N0.getValueType(); - if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && - TLI.isTruncateFree(SrcVT, VT)) { - SDLoc SL(N0); - SDValue Cond = N0.getOperand(0); - SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); - SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); - return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); - } - } - - // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() - if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && - TLI.isTypeDesirableForOp(ISD::SHL, VT)) { - SDValue Amt = N0.getOperand(1); - KnownBits Known = DAG.computeKnownBits(Amt); - unsigned Size = VT.getScalarSizeInBits(); - if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { - SDLoc SL(N); - EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); - - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); - if (AmtVT != Amt.getValueType()) { - Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); - AddToWorklist(Amt.getNode()); - } - return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); - } - } - - // Fold a series of buildvector, bitcast, and truncate if possible. - // For example fold - // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to - // (2xi32 (buildvector x, y)). - if (Level == AfterLegalizeVectorOps && VT.isVector() && - N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && - N0.getOperand(0).hasOneUse()) { - SDValue BuildVect = N0.getOperand(0); - EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); - EVT TruncVecEltTy = VT.getVectorElementType(); - - // Check that the element types match. - if (BuildVectEltTy == TruncVecEltTy) { - // Now we only need to compute the offset of the truncated elements. - unsigned BuildVecNumElts = BuildVect.getNumOperands(); - unsigned TruncVecNumElts = VT.getVectorNumElements(); - unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; - - assert((BuildVecNumElts % TruncVecNumElts) == 0 && - "Invalid number of elements"); - - SmallVector<SDValue, 8> Opnds; - for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) - Opnds.push_back(BuildVect.getOperand(i)); - - return DAG.getBuildVector(VT, SDLoc(N), Opnds); - } - } - - // See if we can simplify the input to this truncate through knowledge that - // only the low bits are being used. - // For example "trunc (or (shl x, 8), y)" // -> trunc y - // Currently we only perform this optimization on scalars because vectors - // may have different active low bits. - if (!VT.isVector()) { - APInt Mask = - APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); - if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); - } - - // fold (truncate (load x)) -> (smaller load x) - // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) - if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { - if (SDValue Reduced = ReduceLoadWidth(N)) - return Reduced; - - // Handle the case where the load remains an extending load even - // after truncation. - if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - if (!LN0->isVolatile() && - LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { - SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), - VT, LN0->getChain(), LN0->getBasePtr(), - LN0->getMemoryVT(), - LN0->getMemOperand()); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); - return NewLoad; - } - } - } - - // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), - // where ... are all 'undef'. - if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { - SmallVector<EVT, 8> VTs; - SDValue V; - unsigned Idx = 0; - unsigned NumDefs = 0; - - for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { - SDValue X = N0.getOperand(i); - if (!X.isUndef()) { - V = X; - Idx = i; - NumDefs++; - } - // Stop if more than one members are non-undef. - if (NumDefs > 1) - break; - VTs.push_back(EVT::getVectorVT(*DAG.getContext(), - VT.getVectorElementType(), - X.getValueType().getVectorNumElements())); - } - - if (NumDefs == 0) - return DAG.getUNDEF(VT); - - if (NumDefs == 1) { - assert(V.getNode() && "The single defined operand is empty!"); - SmallVector<SDValue, 8> Opnds; - for (unsigned i = 0, e = VTs.size(); i != e; ++i) { - if (i != Idx) { - Opnds.push_back(DAG.getUNDEF(VTs[i])); - continue; - } - SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); - AddToWorklist(NV.getNode()); - Opnds.push_back(NV); - } - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); - } - } - - // Fold truncate of a bitcast of a vector to an extract of the low vector - // element. - // - // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx - if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { - SDValue VecSrc = N0.getOperand(0); - EVT SrcVT = VecSrc.getValueType(); - if (SrcVT.isVector() && SrcVT.getScalarType() == VT && - (!LegalOperations || - TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { - SDLoc SL(N); - - EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); - unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1; - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, - VecSrc, DAG.getConstant(Idx, SL, IdxVT)); - } - } - - // Simplify the operands using demanded-bits information. - if (!VT.isVector() && - SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) - // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) - // When the adde's carry is not used. - // Don't make an illegal adde: LegalizeDAG can't expand nor promote it. - if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && - N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && - ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || - TLI.isOperationLegal(N0.getOpcode(), VT))) { - SDLoc SL(N); - auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); - auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); - auto VTs = DAG.getVTList(VT, N0->getValueType(1)); - return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); - } - - // fold (truncate (extract_subvector(ext x))) -> - // (extract_subvector x) - // TODO: This can be generalized to cover cases where the truncate and extract - // do not fully cancel each other out. - if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == ISD::SIGN_EXTEND || - N00.getOpcode() == ISD::ZERO_EXTEND || - N00.getOpcode() == ISD::ANY_EXTEND) { - if (N00.getOperand(0)->getValueType(0).getVectorElementType() == - VT.getVectorElementType()) - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, - N00.getOperand(0), N0.getOperand(1)); - } - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - // Narrow a suitable binary operation with a non-opaque constant operand by - // moving it ahead of the truncate. This is limited to pre-legalization - // because targets may prefer a wider type during later combines and invert - // this transform. - switch (N0.getOpcode()) { - case ISD::ADD: - case ISD::SUB: - case ISD::MUL: - case ISD::AND: - case ISD::OR: - case ISD::XOR: - if (!LegalOperations && N0.hasOneUse() && - (isConstantOrConstantVector(N0.getOperand(0), true) || - isConstantOrConstantVector(N0.getOperand(1), true))) { - // TODO: We already restricted this to pre-legalization, but for vectors - // we are extra cautious to not create an unsupported operation. - // Target-specific changes are likely needed to avoid regressions here. - if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { - SDLoc DL(N); - SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); - SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); - return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); - } - } - } - - return SDValue(); -} - -static SDNode *getBuildPairElt(SDNode *N, unsigned i) { - SDValue Elt = N->getOperand(i); - if (Elt.getOpcode() != ISD::MERGE_VALUES) - return Elt.getNode(); - return Elt.getOperand(Elt.getResNo()).getNode(); -} - -/// build_pair (load, load) -> load -/// if load locations are consecutive. -SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { - assert(N->getOpcode() == ISD::BUILD_PAIR); - - LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); - LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); - - // A BUILD_PAIR is always having the least significant part in elt 0 and the - // most significant part in elt 1. So when combining into one large load, we - // need to consider the endianness. - if (DAG.getDataLayout().isBigEndian()) - std::swap(LD1, LD2); - - if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || - LD1->getAddressSpace() != LD2->getAddressSpace()) - return SDValue(); - EVT LD1VT = LD1->getValueType(0); - unsigned LD1Bytes = LD1VT.getStoreSize(); - if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && - DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { - unsigned Align = LD1->getAlignment(); - unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( - VT.getTypeForEVT(*DAG.getContext())); - - if (NewAlign <= Align && - (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) - return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), - LD1->getPointerInfo(), Align); - } - - return SDValue(); -} - -static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { - // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi - // and Lo parts; on big-endian machines it doesn't. - return DAG.getDataLayout().isBigEndian() ? 1 : 0; -} - -static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, - const TargetLowering &TLI) { - // If this is not a bitcast to an FP type or if the target doesn't have - // IEEE754-compliant FP logic, we're done. - EVT VT = N->getValueType(0); - if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) - return SDValue(); - - // TODO: Handle cases where the integer constant is a different scalar - // bitwidth to the FP. - SDValue N0 = N->getOperand(0); - EVT SourceVT = N0.getValueType(); - if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) - return SDValue(); - - unsigned FPOpcode; - APInt SignMask; - switch (N0.getOpcode()) { - case ISD::AND: - FPOpcode = ISD::FABS; - SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); - break; - case ISD::XOR: - FPOpcode = ISD::FNEG; - SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); - break; - case ISD::OR: - FPOpcode = ISD::FABS; - SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); - break; - default: - return SDValue(); - } - - // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X - // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X - // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> - // fneg (fabs X) - SDValue LogicOp0 = N0.getOperand(0); - ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); - if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && - LogicOp0.getOpcode() == ISD::BITCAST && - LogicOp0.getOperand(0).getValueType() == VT) { - SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); - NumFPLogicOpsConv++; - if (N0.getOpcode() == ISD::OR) - return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); - return FPOp; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitBITCAST(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - // If the input is a BUILD_VECTOR with all constant elements, fold this now. - // Only do this before legalize types, since we might create an illegal - // scalar type. Even if we knew we wouldn't create an illegal scalar type - // we can only do this before legalize ops, since the target maybe - // depending on the bitcast. - // First check to see if this is all constant. - if (!LegalTypes && - N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && - VT.isVector() && cast<BuildVectorSDNode>(N0)->isConstant()) - return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), - VT.getVectorElementType()); - - // If the input is a constant, let getNode fold it. - if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { - // If we can't allow illegal operations, we need to check that this is just - // a fp -> int or int -> conversion and that the resulting operation will - // be legal. - if (!LegalOperations || - (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && - TLI.isOperationLegal(ISD::ConstantFP, VT)) || - (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && - TLI.isOperationLegal(ISD::Constant, VT))) { - SDValue C = DAG.getBitcast(VT, N0); - if (C.getNode() != N) - return C; - } - } - - // (conv (conv x, t1), t2) -> (conv x, t2) - if (N0.getOpcode() == ISD::BITCAST) - return DAG.getBitcast(VT, N0.getOperand(0)); - - // fold (conv (load x)) -> (load (conv*)x) - // If the resultant load doesn't need a higher alignment than the original! - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - // Do not remove the cast if the types differ in endian layout. - TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == - TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && - // If the load is volatile, we only want to change the load type if the - // resulting load is legal. Otherwise we might increase the number of - // memory accesses. We don't care if the original type was legal or not - // as we assume software couldn't rely on the number of accesses of an - // illegal type. - ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || - TLI.isOperationLegal(ISD::LOAD, VT)) && - TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - unsigned OrigAlign = LN0->getAlignment(); - - bool Fast = false; - if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, - LN0->getAddressSpace(), OrigAlign, &Fast) && - Fast) { - SDValue Load = - DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), - LN0->getPointerInfo(), OrigAlign, - LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); - return Load; - } - } - - if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) - return V; - - // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) - // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) - // - // For ppc_fp128: - // fold (bitcast (fneg x)) -> - // flipbit = signbit - // (xor (bitcast x) (build_pair flipbit, flipbit)) - // - // fold (bitcast (fabs x)) -> - // flipbit = (and (extract_element (bitcast x), 0), signbit) - // (xor (bitcast x) (build_pair flipbit, flipbit)) - // This often reduces constant pool loads. - if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || - (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && - N0.getNode()->hasOneUse() && VT.isInteger() && - !VT.isVector() && !N0.getValueType().isVector()) { - SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); - AddToWorklist(NewConv.getNode()); - - SDLoc DL(N); - if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { - assert(VT.getSizeInBits() == 128); - SDValue SignBit = DAG.getConstant( - APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); - SDValue FlipBit; - if (N0.getOpcode() == ISD::FNEG) { - FlipBit = SignBit; - AddToWorklist(FlipBit.getNode()); - } else { - assert(N0.getOpcode() == ISD::FABS); - SDValue Hi = - DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, - DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), - SDLoc(NewConv))); - AddToWorklist(Hi.getNode()); - FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); - AddToWorklist(FlipBit.getNode()); - } - SDValue FlipBits = - DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); - AddToWorklist(FlipBits.getNode()); - return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); - } - APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); - if (N0.getOpcode() == ISD::FNEG) - return DAG.getNode(ISD::XOR, DL, VT, - NewConv, DAG.getConstant(SignBit, DL, VT)); - assert(N0.getOpcode() == ISD::FABS); - return DAG.getNode(ISD::AND, DL, VT, - NewConv, DAG.getConstant(~SignBit, DL, VT)); - } - - // fold (bitconvert (fcopysign cst, x)) -> - // (or (and (bitconvert x), sign), (and cst, (not sign))) - // Note that we don't handle (copysign x, cst) because this can always be - // folded to an fneg or fabs. - // - // For ppc_fp128: - // fold (bitcast (fcopysign cst, x)) -> - // flipbit = (and (extract_element - // (xor (bitcast cst), (bitcast x)), 0), - // signbit) - // (xor (bitcast cst) (build_pair flipbit, flipbit)) - if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && - isa<ConstantFPSDNode>(N0.getOperand(0)) && - VT.isInteger() && !VT.isVector()) { - unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); - EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); - if (isTypeLegal(IntXVT)) { - SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); - AddToWorklist(X.getNode()); - - // If X has a different width than the result/lhs, sext it or truncate it. - unsigned VTWidth = VT.getSizeInBits(); - if (OrigXWidth < VTWidth) { - X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); - AddToWorklist(X.getNode()); - } else if (OrigXWidth > VTWidth) { - // To get the sign bit in the right place, we have to shift it right - // before truncating. - SDLoc DL(X); - X = DAG.getNode(ISD::SRL, DL, - X.getValueType(), X, - DAG.getConstant(OrigXWidth-VTWidth, DL, - X.getValueType())); - AddToWorklist(X.getNode()); - X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); - AddToWorklist(X.getNode()); - } - - if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { - APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); - SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); - AddToWorklist(Cst.getNode()); - SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); - AddToWorklist(X.getNode()); - SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); - AddToWorklist(XorResult.getNode()); - SDValue XorResult64 = DAG.getNode( - ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, - DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), - SDLoc(XorResult))); - AddToWorklist(XorResult64.getNode()); - SDValue FlipBit = - DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, - DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); - AddToWorklist(FlipBit.getNode()); - SDValue FlipBits = - DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); - AddToWorklist(FlipBits.getNode()); - return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); - } - APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); - X = DAG.getNode(ISD::AND, SDLoc(X), VT, - X, DAG.getConstant(SignBit, SDLoc(X), VT)); - AddToWorklist(X.getNode()); - - SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); - Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, - Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); - AddToWorklist(Cst.getNode()); - - return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); - } - } - - // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. - if (N0.getOpcode() == ISD::BUILD_PAIR) - if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) - return CombineLD; - - // Remove double bitcasts from shuffles - this is often a legacy of - // XformToShuffleWithZero being used to combine bitmaskings (of - // float vectors bitcast to integer vectors) into shuffles. - // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) - if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && - N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && - VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && - !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); - - // If operands are a bitcast, peek through if it casts the original VT. - // If operands are a constant, just bitcast back to original VT. - auto PeekThroughBitcast = [&](SDValue Op) { - if (Op.getOpcode() == ISD::BITCAST && - Op.getOperand(0).getValueType() == VT) - return SDValue(Op.getOperand(0)); - if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || - ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) - return DAG.getBitcast(VT, Op); - return SDValue(); - }; - - // FIXME: If either input vector is bitcast, try to convert the shuffle to - // the result type of this bitcast. This would eliminate at least one - // bitcast. See the transform in InstCombine. - SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); - SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); - if (!(SV0 && SV1)) - return SDValue(); - - int MaskScale = - VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); - SmallVector<int, 8> NewMask; - for (int M : SVN->getMask()) - for (int i = 0; i != MaskScale; ++i) - NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); - - bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); - if (!LegalMask) { - std::swap(SV0, SV1); - ShuffleVectorSDNode::commuteMask(NewMask); - LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); - } - - if (LegalMask) - return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { - EVT VT = N->getValueType(0); - return CombineConsecutiveLoads(N, VT); -} - -/// We know that BV is a build_vector node with Constant, ConstantFP or Undef -/// operands. DstEltVT indicates the destination element value type. -SDValue DAGCombiner:: -ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { - EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); - - // If this is already the right type, we're done. - if (SrcEltVT == DstEltVT) return SDValue(BV, 0); - - unsigned SrcBitSize = SrcEltVT.getSizeInBits(); - unsigned DstBitSize = DstEltVT.getSizeInBits(); - - // If this is a conversion of N elements of one type to N elements of another - // type, convert each element. This handles FP<->INT cases. - if (SrcBitSize == DstBitSize) { - SmallVector<SDValue, 8> Ops; - for (SDValue Op : BV->op_values()) { - // If the vector element type is not legal, the BUILD_VECTOR operands - // are promoted and implicitly truncated. Make that explicit here. - if (Op.getValueType() != SrcEltVT) - Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); - Ops.push_back(DAG.getBitcast(DstEltVT, Op)); - AddToWorklist(Ops.back().getNode()); - } - EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, - BV->getValueType(0).getVectorNumElements()); - return DAG.getBuildVector(VT, SDLoc(BV), Ops); - } - - // Otherwise, we're growing or shrinking the elements. To avoid having to - // handle annoying details of growing/shrinking FP values, we convert them to - // int first. - if (SrcEltVT.isFloatingPoint()) { - // Convert the input float vector to a int vector where the elements are the - // same sizes. - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); - BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); - SrcEltVT = IntVT; - } - - // Now we know the input is an integer vector. If the output is a FP type, - // convert to integer first, then to FP of the right size. - if (DstEltVT.isFloatingPoint()) { - EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); - SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); - - // Next, convert to FP elements of the same size. - return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); - } - - SDLoc DL(BV); - - // Okay, we know the src/dst types are both integers of differing types. - // Handling growing first. - assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); - if (SrcBitSize < DstBitSize) { - unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; - - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0, e = BV->getNumOperands(); i != e; - i += NumInputsPerOutput) { - bool isLE = DAG.getDataLayout().isLittleEndian(); - APInt NewBits = APInt(DstBitSize, 0); - bool EltIsUndef = true; - for (unsigned j = 0; j != NumInputsPerOutput; ++j) { - // Shift the previously computed bits over. - NewBits <<= SrcBitSize; - SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); - if (Op.isUndef()) continue; - EltIsUndef = false; - - NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). - zextOrTrunc(SrcBitSize).zext(DstBitSize); - } - - if (EltIsUndef) - Ops.push_back(DAG.getUNDEF(DstEltVT)); - else - Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); - } - - EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); - return DAG.getBuildVector(VT, DL, Ops); - } - - // Finally, this must be the case where we are shrinking elements: each input - // turns into multiple outputs. - unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; - EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, - NumOutputsPerInput*BV->getNumOperands()); - SmallVector<SDValue, 8> Ops; - - for (const SDValue &Op : BV->op_values()) { - if (Op.isUndef()) { - Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); - continue; - } - - APInt OpVal = cast<ConstantSDNode>(Op)-> - getAPIntValue().zextOrTrunc(SrcBitSize); - - for (unsigned j = 0; j != NumOutputsPerInput; ++j) { - APInt ThisVal = OpVal.trunc(DstBitSize); - Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); - OpVal.lshrInPlace(DstBitSize); - } - - // For big endian targets, swap the order of the pieces of each element. - if (DAG.getDataLayout().isBigEndian()) - std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); - } - - return DAG.getBuildVector(VT, DL, Ops); -} - -static bool isContractable(SDNode *N) { - SDNodeFlags F = N->getFlags(); - return F.hasAllowContract() || F.hasAllowReassociation(); -} - -/// Try to perform FMA combining on a given FADD node. -SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc SL(N); - - const TargetOptions &Options = DAG.getTarget().Options; - - // Floating-point multiply-add with intermediate rounding. - bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); - - // Floating-point multiply-add without intermediate rounding. - bool HasFMA = - TLI.isFMAFasterThanFMulAndFAdd(VT) && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); - - // No valid opcode, do not combine. - if (!HasFMAD && !HasFMA) - return SDValue(); - - SDNodeFlags Flags = N->getFlags(); - bool CanFuse = Options.UnsafeFPMath || isContractable(N); - bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || - CanFuse || HasFMAD); - // If the addition is not contractable, do not combine. - if (!AllowFusionGlobally && !isContractable(N)) - return SDValue(); - - const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); - if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) - return SDValue(); - - // Always prefer FMAD to FMA for precision. - unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; - bool Aggressive = TLI.enableAggressiveFMAFusion(VT); - - // Is the node an FMUL and contractable either due to global flags or - // SDNodeFlags. - auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { - if (N.getOpcode() != ISD::FMUL) - return false; - return AllowFusionGlobally || isContractable(N.getNode()); - }; - // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), - // prefer to fold the multiply with fewer uses. - if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { - if (N0.getNode()->use_size() > N1.getNode()->use_size()) - std::swap(N0, N1); - } - - // fold (fadd (fmul x, y), z) -> (fma x, y, z) - if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(0), N0.getOperand(1), N1, Flags); - } - - // fold (fadd x, (fmul y, z)) -> (fma y, z, x) - // Note: Commutes FADD operands. - if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N1.getOperand(0), N1.getOperand(1), N0, Flags); - } - - // Look through FP_EXTEND nodes to do more combining. - - // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (isContractableFMUL(N00) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N00.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N00.getOperand(1)), N1, Flags); - } - } - - // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) - // Note: Commutes FADD operands. - if (N1.getOpcode() == ISD::FP_EXTEND) { - SDValue N10 = N1.getOperand(0); - if (isContractableFMUL(N10) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N10.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N10.getOperand(1)), N0, Flags); - } - } - - // More folding opportunities when target permits. - if (Aggressive) { - // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) - if (CanFuse && - N0.getOpcode() == PreferredFusedOpcode && - N0.getOperand(2).getOpcode() == ISD::FMUL && - N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(0), N0.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(2).getOperand(0), - N0.getOperand(2).getOperand(1), - N1, Flags), Flags); - } - - // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) - if (CanFuse && - N1->getOpcode() == PreferredFusedOpcode && - N1.getOperand(2).getOpcode() == ISD::FMUL && - N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N1.getOperand(0), N1.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - N1.getOperand(2).getOperand(0), - N1.getOperand(2).getOperand(1), - N0, Flags), Flags); - } - - - // fold (fadd (fma x, y, (fpext (fmul u, v))), z) - // -> (fma x, y, (fma (fpext u), (fpext v), z)) - auto FoldFAddFMAFPExtFMul = [&] ( - SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, - SDNodeFlags Flags) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, U), - DAG.getNode(ISD::FP_EXTEND, SL, VT, V), - Z, Flags), Flags); - }; - if (N0.getOpcode() == PreferredFusedOpcode) { - SDValue N02 = N0.getOperand(2); - if (N02.getOpcode() == ISD::FP_EXTEND) { - SDValue N020 = N02.getOperand(0); - if (isContractableFMUL(N020) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { - return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), - N020.getOperand(0), N020.getOperand(1), - N1, Flags); - } - } - } - - // fold (fadd (fpext (fma x, y, (fmul u, v))), z) - // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - auto FoldFAddFPExtFMAFMul = [&] ( - SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z, - SDNodeFlags Flags) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, X), - DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, U), - DAG.getNode(ISD::FP_EXTEND, SL, VT, V), - Z, Flags), Flags); - }; - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == PreferredFusedOpcode) { - SDValue N002 = N00.getOperand(2); - if (isContractableFMUL(N002) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { - return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), - N002.getOperand(0), N002.getOperand(1), - N1, Flags); - } - } - } - - // fold (fadd x, (fma y, z, (fpext (fmul u, v))) - // -> (fma y, z, (fma (fpext u), (fpext v), x)) - if (N1.getOpcode() == PreferredFusedOpcode) { - SDValue N12 = N1.getOperand(2); - if (N12.getOpcode() == ISD::FP_EXTEND) { - SDValue N120 = N12.getOperand(0); - if (isContractableFMUL(N120) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { - return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), - N120.getOperand(0), N120.getOperand(1), - N0, Flags); - } - } - } - - // fold (fadd x, (fpext (fma y, z, (fmul u, v))) - // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - if (N1.getOpcode() == ISD::FP_EXTEND) { - SDValue N10 = N1.getOperand(0); - if (N10.getOpcode() == PreferredFusedOpcode) { - SDValue N102 = N10.getOperand(2); - if (isContractableFMUL(N102) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { - return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), - N102.getOperand(0), N102.getOperand(1), - N0, Flags); - } - } - } - } - - return SDValue(); -} - -/// Try to perform FMA combining on a given FSUB node. -SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc SL(N); - - const TargetOptions &Options = DAG.getTarget().Options; - // Floating-point multiply-add with intermediate rounding. - bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); - - // Floating-point multiply-add without intermediate rounding. - bool HasFMA = - TLI.isFMAFasterThanFMulAndFAdd(VT) && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); - - // No valid opcode, do not combine. - if (!HasFMAD && !HasFMA) - return SDValue(); - - const SDNodeFlags Flags = N->getFlags(); - bool CanFuse = Options.UnsafeFPMath || isContractable(N); - bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || - CanFuse || HasFMAD); - - // If the subtraction is not contractable, do not combine. - if (!AllowFusionGlobally && !isContractable(N)) - return SDValue(); - - const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); - if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) - return SDValue(); - - // Always prefer FMAD to FMA for precision. - unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; - bool Aggressive = TLI.enableAggressiveFMAFusion(VT); - - // Is the node an FMUL and contractable either due to global flags or - // SDNodeFlags. - auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { - if (N.getOpcode() != ISD::FMUL) - return false; - return AllowFusionGlobally || isContractable(N.getNode()); - }; - - // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) - if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(0), N0.getOperand(1), - DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); - } - - // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) - // Note: Commutes FSUB operands. - if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, - N1.getOperand(0)), - N1.getOperand(1), N0, Flags); - } - - // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) - if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && - (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { - SDValue N00 = N0.getOperand(0).getOperand(0); - SDValue N01 = N0.getOperand(0).getOperand(1); - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, N00), N01, - DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); - } - - // Look through FP_EXTEND nodes to do more combining. - - // fold (fsub (fpext (fmul x, y)), z) - // -> (fma (fpext x), (fpext y), (fneg z)) - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (isContractableFMUL(N00) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N00.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N00.getOperand(1)), - DAG.getNode(ISD::FNEG, SL, VT, N1), Flags); - } - } - - // fold (fsub x, (fpext (fmul y, z))) - // -> (fma (fneg (fpext y)), (fpext z), x) - // Note: Commutes FSUB operands. - if (N1.getOpcode() == ISD::FP_EXTEND) { - SDValue N10 = N1.getOperand(0); - if (isContractableFMUL(N10) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N10.getOperand(0))), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N10.getOperand(1)), - N0, Flags); - } - } - - // fold (fsub (fpext (fneg (fmul, x, y))), z) - // -> (fneg (fma (fpext x), (fpext y), z)) - // Note: This could be removed with appropriate canonicalization of the - // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the - // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent - // from implementing the canonicalization in visitFSUB. - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == ISD::FNEG) { - SDValue N000 = N00.getOperand(0); - if (isContractableFMUL(N000) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { - return DAG.getNode(ISD::FNEG, SL, VT, - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N000.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N000.getOperand(1)), - N1, Flags)); - } - } - } - - // fold (fsub (fneg (fpext (fmul, x, y))), z) - // -> (fneg (fma (fpext x)), (fpext y), z) - // Note: This could be removed with appropriate canonicalization of the - // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the - // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent - // from implementing the canonicalization in visitFSUB. - if (N0.getOpcode() == ISD::FNEG) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == ISD::FP_EXTEND) { - SDValue N000 = N00.getOperand(0); - if (isContractableFMUL(N000) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) { - return DAG.getNode(ISD::FNEG, SL, VT, - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N000.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N000.getOperand(1)), - N1, Flags)); - } - } - } - - // More folding opportunities when target permits. - if (Aggressive) { - // fold (fsub (fma x, y, (fmul u, v)), z) - // -> (fma x, y (fma u, v, (fneg z))) - if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && - isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && - N0.getOperand(2)->hasOneUse()) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(0), N0.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(2).getOperand(0), - N0.getOperand(2).getOperand(1), - DAG.getNode(ISD::FNEG, SL, VT, - N1), Flags), Flags); - } - - // fold (fsub x, (fma y, z, (fmul u, v))) - // -> (fma (fneg y), z, (fma (fneg u), v, x)) - if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && - isContractableFMUL(N1.getOperand(2))) { - SDValue N20 = N1.getOperand(2).getOperand(0); - SDValue N21 = N1.getOperand(2).getOperand(1); - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, - N1.getOperand(0)), - N1.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, N20), - N21, N0, Flags), Flags); - } - - - // fold (fsub (fma x, y, (fpext (fmul u, v))), z) - // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) - if (N0.getOpcode() == PreferredFusedOpcode) { - SDValue N02 = N0.getOperand(2); - if (N02.getOpcode() == ISD::FP_EXTEND) { - SDValue N020 = N02.getOperand(0); - if (isContractableFMUL(N020) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(0), N0.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N020.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N020.getOperand(1)), - DAG.getNode(ISD::FNEG, SL, VT, - N1), Flags), Flags); - } - } - } - - // fold (fsub (fpext (fma x, y, (fmul u, v))), z) - // -> (fma (fpext x), (fpext y), - // (fma (fpext u), (fpext v), (fneg z))) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == PreferredFusedOpcode) { - SDValue N002 = N00.getOperand(2); - if (isContractableFMUL(N002) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N00.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N00.getOperand(1)), - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N002.getOperand(0)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N002.getOperand(1)), - DAG.getNode(ISD::FNEG, SL, VT, - N1), Flags), Flags); - } - } - } - - // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) - // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) - if (N1.getOpcode() == PreferredFusedOpcode && - N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { - SDValue N120 = N1.getOperand(2).getOperand(0); - if (isContractableFMUL(N120) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) { - SDValue N1200 = N120.getOperand(0); - SDValue N1201 = N120.getOperand(1); - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), - N1.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, - VT, N1200)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N1201), - N0, Flags), Flags); - } - } - - // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) - // -> (fma (fneg (fpext y)), (fpext z), - // (fma (fneg (fpext u)), (fpext v), x)) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - if (N1.getOpcode() == ISD::FP_EXTEND && - N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { - SDValue CvtSrc = N1.getOperand(0); - SDValue N100 = CvtSrc.getOperand(0); - SDValue N101 = CvtSrc.getOperand(1); - SDValue N102 = CvtSrc.getOperand(2); - if (isContractableFMUL(N102) && - TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) { - SDValue N1020 = N102.getOperand(0); - SDValue N1021 = N102.getOperand(1); - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N100)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, - VT, N1020)), - DAG.getNode(ISD::FP_EXTEND, SL, VT, - N1021), - N0, Flags), Flags); - } - } - } - - return SDValue(); -} - -/// Try to perform FMA combining on a given FMUL node based on the distributive -/// law x * (y + 1) = x * y + x and variants thereof (commuted versions, -/// subtraction instead of addition). -SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc SL(N); - const SDNodeFlags Flags = N->getFlags(); - - assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); - - const TargetOptions &Options = DAG.getTarget().Options; - - // The transforms below are incorrect when x == 0 and y == inf, because the - // intermediate multiplication produces a nan. - if (!Options.NoInfsFPMath) - return SDValue(); - - // Floating-point multiply-add without intermediate rounding. - bool HasFMA = - (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && - TLI.isFMAFasterThanFMulAndFAdd(VT) && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); - - // Floating-point multiply-add with intermediate rounding. This can result - // in a less precise result due to the changed rounding order. - bool HasFMAD = Options.UnsafeFPMath && - (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); - - // No valid opcode, do not combine. - if (!HasFMAD && !HasFMA) - return SDValue(); - - // Always prefer FMAD to FMA for precision. - unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; - bool Aggressive = TLI.enableAggressiveFMAFusion(VT); - - // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) - // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) - auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { - if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { - if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { - if (C->isExactlyValue(+1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, - Y, Flags); - if (C->isExactlyValue(-1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, - DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); - } - } - return SDValue(); - }; - - if (SDValue FMA = FuseFADD(N0, N1, Flags)) - return FMA; - if (SDValue FMA = FuseFADD(N1, N0, Flags)) - return FMA; - - // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) - // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) - // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) - // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) - auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) { - if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { - if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { - if (C0->isExactlyValue(+1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, - Y, Flags); - if (C0->isExactlyValue(-1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, - DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); - } - if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { - if (C1->isExactlyValue(+1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, - DAG.getNode(ISD::FNEG, SL, VT, Y), Flags); - if (C1->isExactlyValue(-1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, - Y, Flags); - } - } - return SDValue(); - }; - - if (SDValue FMA = FuseFSUB(N0, N1, Flags)) - return FMA; - if (SDValue FMA = FuseFSUB(N1, N0, Flags)) - return FMA; - - return SDValue(); -} - -SDValue DAGCombiner::visitFADD(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); - bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - const SDNodeFlags Flags = N->getFlags(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (fadd c1, c2) -> c1 + c2 - if (N0CFP && N1CFP) - return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); - - // canonicalize constant to RHS - if (N0CFP && !N1CFP) - return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); - - // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) - ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); - if (N1C && N1C->isZero()) - if (N1C->isNegative() || Options.UnsafeFPMath || Flags.hasNoSignedZeros()) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (fadd A, (fneg B)) -> (fsub A, B) - if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && - isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) - return DAG.getNode(ISD::FSUB, DL, VT, N0, - GetNegatedExpression(N1, DAG, LegalOperations), Flags); - - // fold (fadd (fneg A), B) -> (fsub B, A) - if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && - isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) - return DAG.getNode(ISD::FSUB, DL, VT, N1, - GetNegatedExpression(N0, DAG, LegalOperations), Flags); - - auto isFMulNegTwo = [](SDValue FMul) { - if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) - return false; - auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); - return C && C->isExactlyValue(-2.0); - }; - - // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) - if (isFMulNegTwo(N0)) { - SDValue B = N0.getOperand(0); - SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); - return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags); - } - // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) - if (isFMulNegTwo(N1)) { - SDValue B = N1.getOperand(0); - SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags); - return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags); - } - - // No FP constant should be created after legalization as Instruction - // Selection pass has a hard time dealing with FP constants. - bool AllowNewConst = (Level < AfterLegalizeDAG); - - // If 'unsafe math' or nnan is enabled, fold lots of things. - if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) { - // If allowed, fold (fadd (fneg x), x) -> 0.0 - if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) - return DAG.getConstantFP(0.0, DL, VT); - - // If allowed, fold (fadd x, (fneg x)) -> 0.0 - if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) - return DAG.getConstantFP(0.0, DL, VT); - } - - // If 'unsafe math' or reassoc and nsz, fold lots of things. - // TODO: break out portions of the transformations below for which Unsafe is - // considered and which do not require both nsz and reassoc - if ((Options.UnsafeFPMath || - (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && - AllowNewConst) { - // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 - if (N1CFP && N0.getOpcode() == ISD::FADD && - isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { - SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags); - return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags); - } - - // We can fold chains of FADD's of the same value into multiplications. - // This transform is not safe in general because we are reducing the number - // of rounding steps. - if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { - if (N0.getOpcode() == ISD::FMUL) { - bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); - bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); - - // (fadd (fmul x, c), x) -> (fmul x, c+1) - if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), - DAG.getConstantFP(1.0, DL, VT), Flags); - return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); - } - - // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) - if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && - N1.getOperand(0) == N1.getOperand(1) && - N0.getOperand(0) == N1.getOperand(0)) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), - DAG.getConstantFP(2.0, DL, VT), Flags); - return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); - } - } - - if (N1.getOpcode() == ISD::FMUL) { - bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); - bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); - - // (fadd x, (fmul x, c)) -> (fmul x, c+1) - if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), - DAG.getConstantFP(1.0, DL, VT), Flags); - return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); - } - - // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) - if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && - N0.getOperand(0) == N0.getOperand(1) && - N1.getOperand(0) == N0.getOperand(0)) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), - DAG.getConstantFP(2.0, DL, VT), Flags); - return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); - } - } - - if (N0.getOpcode() == ISD::FADD) { - bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); - // (fadd (fadd x, x), x) -> (fmul x, 3.0) - if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && - (N0.getOperand(0) == N1)) { - return DAG.getNode(ISD::FMUL, DL, VT, - N1, DAG.getConstantFP(3.0, DL, VT), Flags); - } - } - - if (N1.getOpcode() == ISD::FADD) { - bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); - // (fadd x, (fadd x, x)) -> (fmul x, 3.0) - if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && - N1.getOperand(0) == N0) { - return DAG.getNode(ISD::FMUL, DL, VT, - N0, DAG.getConstantFP(3.0, DL, VT), Flags); - } - } - - // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) - if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && - N0.getOperand(0) == N0.getOperand(1) && - N1.getOperand(0) == N1.getOperand(1) && - N0.getOperand(0) == N1.getOperand(0)) { - return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), - DAG.getConstantFP(4.0, DL, VT), Flags); - } - } - } // enable-unsafe-fp-math - - // FADD -> FMA combines: - if (SDValue Fused = visitFADDForFMACombine(N)) { - AddToWorklist(Fused.getNode()); - return Fused; - } - return SDValue(); -} - -SDValue DAGCombiner::visitFSUB(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); - ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - const SDNodeFlags Flags = N->getFlags(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (fsub c1, c2) -> c1-c2 - if (N0CFP && N1CFP) - return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // (fsub A, 0) -> A - if (N1CFP && N1CFP->isZero()) { - if (!N1CFP->isNegative() || Options.UnsafeFPMath || - Flags.hasNoSignedZeros()) { - return N0; - } - } - - if (N0 == N1) { - // (fsub x, x) -> 0.0 - if (Options.UnsafeFPMath || Flags.hasNoNaNs()) - return DAG.getConstantFP(0.0f, DL, VT); - } - - // (fsub -0.0, N1) -> -N1 - if (N0CFP && N0CFP->isZero()) { - if (N0CFP->isNegative() || - (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { - if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) - return GetNegatedExpression(N1, DAG, LegalOperations); - if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags); - } - } - - if ((Options.UnsafeFPMath || - (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) - && N1.getOpcode() == ISD::FADD) { - // X - (X + Y) -> -Y - if (N0 == N1->getOperand(0)) - return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags); - // X - (Y + X) -> -Y - if (N0 == N1->getOperand(1)) - return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags); - } - - // fold (fsub A, (fneg B)) -> (fadd A, B) - if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) - return DAG.getNode(ISD::FADD, DL, VT, N0, - GetNegatedExpression(N1, DAG, LegalOperations), Flags); - - // FSUB -> FMA combines: - if (SDValue Fused = visitFSUBForFMACombine(N)) { - AddToWorklist(Fused.getNode()); - return Fused; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFMUL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); - ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - const SDNodeFlags Flags = N->getFlags(); - - // fold vector ops - if (VT.isVector()) { - // This just handles C1 * C2 for vectors. Other vector folds are below. - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - } - - // fold (fmul c1, c2) -> c1*c2 - if (N0CFP && N1CFP) - return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); - - // canonicalize constant to RHS - if (isConstantFPBuildVectorOrConstantFP(N0) && - !isConstantFPBuildVectorOrConstantFP(N1)) - return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); - - // fold (fmul A, 1.0) -> A - if (N1CFP && N1CFP->isExactlyValue(1.0)) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (Options.UnsafeFPMath || - (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) { - // fold (fmul A, 0) -> 0 - if (N1CFP && N1CFP->isZero()) - return N1; - } - - if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { - // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 - if (isConstantFPBuildVectorOrConstantFP(N1) && - N0.getOpcode() == ISD::FMUL) { - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - // Avoid an infinite loop by making sure that N00 is not a constant - // (the inner multiply has not been constant folded yet). - if (isConstantFPBuildVectorOrConstantFP(N01) && - !isConstantFPBuildVectorOrConstantFP(N00)) { - SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); - return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); - } - } - - // Match a special-case: we convert X * 2.0 into fadd. - // fmul (fadd X, X), C -> fmul X, 2.0 * C - if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && - N0.getOperand(0) == N0.getOperand(1)) { - const SDValue Two = DAG.getConstantFP(2.0, DL, VT); - SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); - return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); - } - } - - // fold (fmul X, 2.0) -> (fadd X, X) - if (N1CFP && N1CFP->isExactlyValue(+2.0)) - return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); - - // fold (fmul X, -1.0) -> (fneg X) - if (N1CFP && N1CFP->isExactlyValue(-1.0)) - if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, DL, VT, N0); - - // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) - if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { - if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { - // Both can be negated for free, check to see if at least one is cheaper - // negated. - if (LHSNeg == 2 || RHSNeg == 2) - return DAG.getNode(ISD::FMUL, DL, VT, - GetNegatedExpression(N0, DAG, LegalOperations), - GetNegatedExpression(N1, DAG, LegalOperations), - Flags); - } - } - - // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) - // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) - if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && - (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && - TLI.isOperationLegal(ISD::FABS, VT)) { - SDValue Select = N0, X = N1; - if (Select.getOpcode() != ISD::SELECT) - std::swap(Select, X); - - SDValue Cond = Select.getOperand(0); - auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); - auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); - - if (TrueOpnd && FalseOpnd && - Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && - isa<ConstantFPSDNode>(Cond.getOperand(1)) && - cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { - ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); - switch (CC) { - default: break; - case ISD::SETOLT: - case ISD::SETULT: - case ISD::SETOLE: - case ISD::SETULE: - case ISD::SETLT: - case ISD::SETLE: - std::swap(TrueOpnd, FalseOpnd); - LLVM_FALLTHROUGH; - case ISD::SETOGT: - case ISD::SETUGT: - case ISD::SETOGE: - case ISD::SETUGE: - case ISD::SETGT: - case ISD::SETGE: - if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && - TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, DL, VT, - DAG.getNode(ISD::FABS, DL, VT, X)); - if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) - return DAG.getNode(ISD::FABS, DL, VT, X); - - break; - } - } - } - - // FMUL -> FMA combines: - if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { - AddToWorklist(Fused.getNode()); - return Fused; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFMA(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - - // FMA nodes have flags that propagate to the created nodes. - const SDNodeFlags Flags = N->getFlags(); - bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N); - - // Constant fold FMA. - if (isa<ConstantFPSDNode>(N0) && - isa<ConstantFPSDNode>(N1) && - isa<ConstantFPSDNode>(N2)) { - return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); - } - - if (UnsafeFPMath) { - if (N0CFP && N0CFP->isZero()) - return N2; - if (N1CFP && N1CFP->isZero()) - return N2; - } - // TODO: The FMA node should have flags that propagate to these nodes. - if (N0CFP && N0CFP->isExactlyValue(1.0)) - return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); - if (N1CFP && N1CFP->isExactlyValue(1.0)) - return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); - - // Canonicalize (fma c, x, y) -> (fma x, c, y) - if (isConstantFPBuildVectorOrConstantFP(N0) && - !isConstantFPBuildVectorOrConstantFP(N1)) - return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); - - if (UnsafeFPMath) { - // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) - if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && - isConstantFPBuildVectorOrConstantFP(N1) && - isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { - return DAG.getNode(ISD::FMUL, DL, VT, N0, - DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1), - Flags), Flags); - } - - // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) - if (N0.getOpcode() == ISD::FMUL && - isConstantFPBuildVectorOrConstantFP(N1) && - isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { - return DAG.getNode(ISD::FMA, DL, VT, - N0.getOperand(0), - DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1), - Flags), - N2); - } - } - - // (fma x, 1, y) -> (fadd x, y) - // (fma x, -1, y) -> (fadd (fneg x), y) - if (N1CFP) { - if (N1CFP->isExactlyValue(1.0)) - // TODO: The FMA node should have flags that propagate to this node. - return DAG.getNode(ISD::FADD, DL, VT, N0, N2); - - if (N1CFP->isExactlyValue(-1.0) && - (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { - SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); - AddToWorklist(RHSNeg.getNode()); - // TODO: The FMA node should have flags that propagate to this node. - return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); - } - - // fma (fneg x), K, y -> fma x -K, y - if (N0.getOpcode() == ISD::FNEG && - (TLI.isOperationLegal(ISD::ConstantFP, VT) || - (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT)))) { - return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), - DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2); - } - } - - if (UnsafeFPMath) { - // (fma x, c, x) -> (fmul x, (c+1)) - if (N1CFP && N0 == N2) { - return DAG.getNode(ISD::FMUL, DL, VT, N0, - DAG.getNode(ISD::FADD, DL, VT, N1, - DAG.getConstantFP(1.0, DL, VT), Flags), - Flags); - } - - // (fma x, c, (fneg x)) -> (fmul x, (c-1)) - if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { - return DAG.getNode(ISD::FMUL, DL, VT, N0, - DAG.getNode(ISD::FADD, DL, VT, N1, - DAG.getConstantFP(-1.0, DL, VT), Flags), - Flags); - } - } - - return SDValue(); -} - -// Combine multiple FDIVs with the same divisor into multiple FMULs by the -// reciprocal. -// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) -// Notice that this is not always beneficial. One reason is different targets -// may have different costs for FDIV and FMUL, so sometimes the cost of two -// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason -// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". -SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { - bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; - const SDNodeFlags Flags = N->getFlags(); - if (!UnsafeMath && !Flags.hasAllowReciprocal()) - return SDValue(); - - // Skip if current node is a reciprocal. - SDValue N0 = N->getOperand(0); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - if (N0CFP && N0CFP->isExactlyValue(1.0)) - return SDValue(); - - // Exit early if the target does not want this transform or if there can't - // possibly be enough uses of the divisor to make the transform worthwhile. - SDValue N1 = N->getOperand(1); - unsigned MinUses = TLI.combineRepeatedFPDivisors(); - if (!MinUses || N1->use_size() < MinUses) - return SDValue(); - - // Find all FDIV users of the same divisor. - // Use a set because duplicates may be present in the user list. - SetVector<SDNode *> Users; - for (auto *U : N1->uses()) { - if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { - // This division is eligible for optimization only if global unsafe math - // is enabled or if this division allows reciprocal formation. - if (UnsafeMath || U->getFlags().hasAllowReciprocal()) - Users.insert(U); - } - } - - // Now that we have the actual number of divisor uses, make sure it meets - // the minimum threshold specified by the target. - if (Users.size() < MinUses) - return SDValue(); - - EVT VT = N->getValueType(0); - SDLoc DL(N); - SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); - SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); - - // Dividend / Divisor -> Dividend * Reciprocal - for (auto *U : Users) { - SDValue Dividend = U->getOperand(0); - if (Dividend != FPOne) { - SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, - Reciprocal, Flags); - CombineTo(U, NewNode); - } else if (U != Reciprocal.getNode()) { - // In the absence of fast-math-flags, this user node is always the - // same node as Reciprocal, but with FMF they may be different nodes. - CombineTo(U, Reciprocal); - } - } - return SDValue(N, 0); // N was replaced. -} - -SDValue DAGCombiner::visitFDIV(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - SDNodeFlags Flags = N->getFlags(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (fdiv c1, c2) -> c1/c2 - if (N0CFP && N1CFP) - return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { - // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. - if (N1CFP) { - // Compute the reciprocal 1.0 / c2. - const APFloat &N1APF = N1CFP->getValueAPF(); - APFloat Recip(N1APF.getSemantics(), 1); // 1.0 - APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); - // Only do the transform if the reciprocal is a legal fp immediate that - // isn't too nasty (eg NaN, denormal, ...). - if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty - (!LegalOperations || - // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM - // backend)... we should handle this gracefully after Legalize. - // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || - TLI.isOperationLegal(ISD::ConstantFP, VT) || - TLI.isFPImmLegal(Recip, VT))) - return DAG.getNode(ISD::FMUL, DL, VT, N0, - DAG.getConstantFP(Recip, DL, VT), Flags); - } - - // If this FDIV is part of a reciprocal square root, it may be folded - // into a target-specific square root estimate instruction. - if (N1.getOpcode() == ISD::FSQRT) { - if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { - return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); - } - } else if (N1.getOpcode() == ISD::FP_EXTEND && - N1.getOperand(0).getOpcode() == ISD::FSQRT) { - if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), - Flags)) { - RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); - AddToWorklist(RV.getNode()); - return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); - } - } else if (N1.getOpcode() == ISD::FP_ROUND && - N1.getOperand(0).getOpcode() == ISD::FSQRT) { - if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), - Flags)) { - RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); - AddToWorklist(RV.getNode()); - return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); - } - } else if (N1.getOpcode() == ISD::FMUL) { - // Look through an FMUL. Even though this won't remove the FDIV directly, - // it's still worthwhile to get rid of the FSQRT if possible. - SDValue SqrtOp; - SDValue OtherOp; - if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { - SqrtOp = N1.getOperand(0); - OtherOp = N1.getOperand(1); - } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { - SqrtOp = N1.getOperand(1); - OtherOp = N1.getOperand(0); - } - if (SqrtOp.getNode()) { - // We found a FSQRT, so try to make this fold: - // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) - if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { - RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); - AddToWorklist(RV.getNode()); - return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); - } - } - } - - // Fold into a reciprocal estimate and multiply instead of a real divide. - if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { - AddToWorklist(RV.getNode()); - return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); - } - } - - // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) - if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { - if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { - // Both can be negated for free, check to see if at least one is cheaper - // negated. - if (LHSNeg == 2 || RHSNeg == 2) - return DAG.getNode(ISD::FDIV, SDLoc(N), VT, - GetNegatedExpression(N0, DAG, LegalOperations), - GetNegatedExpression(N1, DAG, LegalOperations), - Flags); - } - } - - if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) - return CombineRepeatedDivisors; - - return SDValue(); -} - -SDValue DAGCombiner::visitFREM(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); - EVT VT = N->getValueType(0); - - // fold (frem c1, c2) -> fmod(c1,c2) - if (N0CFP && N1CFP) - return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags()); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitFSQRT(SDNode *N) { - SDNodeFlags Flags = N->getFlags(); - if (!DAG.getTarget().Options.UnsafeFPMath && - !Flags.hasApproximateFuncs()) - return SDValue(); - - SDValue N0 = N->getOperand(0); - if (TLI.isFsqrtCheap(N0, DAG)) - return SDValue(); - - // FSQRT nodes have flags that propagate to the created nodes. - return buildSqrtEstimate(N0, Flags); -} - -/// copysign(x, fp_extend(y)) -> copysign(x, y) -/// copysign(x, fp_round(y)) -> copysign(x, y) -static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { - SDValue N1 = N->getOperand(1); - if ((N1.getOpcode() == ISD::FP_EXTEND || - N1.getOpcode() == ISD::FP_ROUND)) { - // Do not optimize out type conversion of f128 type yet. - // For some targets like x86_64, configuration is changed to keep one f128 - // value in one SSE register, but instruction selection cannot handle - // FCOPYSIGN on SSE registers yet. - EVT N1VT = N1->getValueType(0); - EVT N1Op0VT = N1->getOperand(0).getValueType(); - return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); - } - return false; -} - -SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); - bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); - EVT VT = N->getValueType(0); - - if (N0CFP && N1CFP) // Constant fold - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); - - if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { - const APFloat &V = N1C->getValueAPF(); - // copysign(x, c1) -> fabs(x) iff ispos(c1) - // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) - if (!V.isNegative()) { - if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); - } else { - if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, SDLoc(N), VT, - DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); - } - } - - // copysign(fabs(x), y) -> copysign(x, y) - // copysign(fneg(x), y) -> copysign(x, y) - // copysign(copysign(x,z), y) -> copysign(x, y) - if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || - N0.getOpcode() == ISD::FCOPYSIGN) - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); - - // copysign(x, abs(y)) -> abs(x) - if (N1.getOpcode() == ISD::FABS) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); - - // copysign(x, copysign(y,z)) -> copysign(x, z) - if (N1.getOpcode() == ISD::FCOPYSIGN) - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); - - // copysign(x, fp_extend(y)) -> copysign(x, y) - // copysign(x, fp_round(y)) -> copysign(x, y) - if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); - - return SDValue(); -} - -SDValue DAGCombiner::visitFPOW(SDNode *N) { - ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); - if (!ExponentC) - return SDValue(); - - // Try to convert x ** (1/3) into cube root. - // TODO: Handle the various flavors of long double. - // TODO: Since we're approximating, we don't need an exact 1/3 exponent. - // Some range near 1/3 should be fine. - EVT VT = N->getValueType(0); - if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || - (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { - // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. - // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. - // pow(-val, 1/3) = nan; cbrt(-val) = -num. - // For regular numbers, rounding may cause the results to differ. - // Therefore, we require { nsz ninf nnan afn } for this transform. - // TODO: We could select out the special cases if we don't have nsz/ninf. - SDNodeFlags Flags = N->getFlags(); - if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || - !Flags.hasApproximateFuncs()) - return SDValue(); - - // Do not create a cbrt() libcall if the target does not have it, and do not - // turn a pow that has lowering support into a cbrt() libcall. - if (!DAG.getLibInfo().has(LibFunc_cbrt) || - (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && - DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) - return SDValue(); - - return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags); - } - - // Try to convert x ** (1/4) into square roots. - // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. - // TODO: This could be extended (using a target hook) to handle smaller - // power-of-2 fractional exponents. - if (ExponentC->getValueAPF().isExactlyValue(0.25)) { - // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. - // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. - // For regular numbers, rounding may cause the results to differ. - // Therefore, we require { nsz ninf afn } for this transform. - // TODO: We could select out the special cases if we don't have nsz/ninf. - SDNodeFlags Flags = N->getFlags(); - if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || - !Flags.hasApproximateFuncs()) - return SDValue(); - - // Don't double the number of libcalls. We are trying to inline fast code. - if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) - return SDValue(); - - // Assume that libcalls are the smallest code. - // TODO: This restriction should probably be lifted for vectors. - if (DAG.getMachineFunction().getFunction().optForSize()) - return SDValue(); - - // pow(X, 0.25) --> sqrt(sqrt(X)) - SDLoc DL(N); - SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags); - return DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags); - } - - return SDValue(); -} - -static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, - const TargetLowering &TLI) { - // This optimization is guarded by a function attribute because it may produce - // unexpected results. Ie, programs may be relying on the platform-specific - // undefined behavior when the float-to-int conversion overflows. - const Function &F = DAG.getMachineFunction().getFunction(); - Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); - if (StrictOverflow.getValueAsString().equals("false")) - return SDValue(); - - // We only do this if the target has legal ftrunc. Otherwise, we'd likely be - // replacing casts with a libcall. We also must be allowed to ignore -0.0 - // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer - // conversions would return +0.0. - // FIXME: We should be able to use node-level FMF here. - // TODO: If strict math, should we use FABS (+ range check for signed cast)? - EVT VT = N->getValueType(0); - if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || - !DAG.getTarget().Options.NoSignedZerosFPMath) - return SDValue(); - - // fptosi/fptoui round towards zero, so converting from FP to integer and - // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X - SDValue N0 = N->getOperand(0); - if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && - N0.getOperand(0).getValueType() == VT) - return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); - - if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && - N0.getOperand(0).getValueType() == VT) - return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); - - return SDValue(); -} - -SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT OpVT = N0.getValueType(); - - // fold (sint_to_fp c1) -> c1fp - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - // ...but only if the target supports immediate floating-point values - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) - return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); - - // If the input is a legal type, and SINT_TO_FP is not legal on this target, - // but UINT_TO_FP is legal on this target, try to convert. - if (!hasOperation(ISD::SINT_TO_FP, OpVT) && - hasOperation(ISD::UINT_TO_FP, OpVT)) { - // If the sign bit is known to be zero, we can change this to UINT_TO_FP. - if (DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); - } - - // The next optimizations are desirable only if SELECT_CC can be lowered. - if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { - // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) - if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && - !VT.isVector() && - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { - SDLoc DL(N); - SDValue Ops[] = - { N0.getOperand(0), N0.getOperand(1), - DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), - N0.getOperand(2) }; - return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); - } - - // fold (sint_to_fp (zext (setcc x, y, cc))) -> - // (select_cc x, y, 1.0, 0.0,, cc) - if (N0.getOpcode() == ISD::ZERO_EXTEND && - N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { - SDLoc DL(N); - SDValue Ops[] = - { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), - DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), - N0.getOperand(0).getOperand(2) }; - return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); - } - } - - if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) - return FTrunc; - - return SDValue(); -} - -SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT OpVT = N0.getValueType(); - - // fold (uint_to_fp c1) -> c1fp - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - // ...but only if the target supports immediate floating-point values - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) - return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); - - // If the input is a legal type, and UINT_TO_FP is not legal on this target, - // but SINT_TO_FP is legal on this target, try to convert. - if (!hasOperation(ISD::UINT_TO_FP, OpVT) && - hasOperation(ISD::SINT_TO_FP, OpVT)) { - // If the sign bit is known to be zero, we can change this to SINT_TO_FP. - if (DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); - } - - // The next optimizations are desirable only if SELECT_CC can be lowered. - if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { - // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) - if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { - SDLoc DL(N); - SDValue Ops[] = - { N0.getOperand(0), N0.getOperand(1), - DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), - N0.getOperand(2) }; - return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); - } - } - - if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) - return FTrunc; - - return SDValue(); -} - -// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x -static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) - return SDValue(); - - SDValue Src = N0.getOperand(0); - EVT SrcVT = Src.getValueType(); - bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; - bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; - - // We can safely assume the conversion won't overflow the output range, - // because (for example) (uint8_t)18293.f is undefined behavior. - - // Since we can assume the conversion won't overflow, our decision as to - // whether the input will fit in the float should depend on the minimum - // of the input range and output range. - - // This means this is also safe for a signed input and unsigned output, since - // a negative input would lead to undefined behavior. - unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; - unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; - unsigned ActualSize = std::min(InputSize, OutputSize); - const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); - - // We can only fold away the float conversion if the input range can be - // represented exactly in the float range. - if (APFloat::semanticsPrecision(sem) >= ActualSize) { - if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { - unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND - : ISD::ZERO_EXTEND; - return DAG.getNode(ExtOp, SDLoc(N), VT, Src); - } - if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); - return DAG.getBitcast(VT, Src); - } - return SDValue(); -} - -SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fp_to_sint c1fp) -> c1 - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); - - return FoldIntToFPToInt(N, DAG); -} - -SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fp_to_uint c1fp) -> c1 - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); - - return FoldIntToFPToInt(N, DAG); -} - -SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - EVT VT = N->getValueType(0); - - // fold (fp_round c1fp) -> c1fp - if (N0CFP) - return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); - - // fold (fp_round (fp_extend x)) -> x - if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) - return N0.getOperand(0); - - // fold (fp_round (fp_round x)) -> (fp_round x) - if (N0.getOpcode() == ISD::FP_ROUND) { - const bool NIsTrunc = N->getConstantOperandVal(1) == 1; - const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; - - // Skip this folding if it results in an fp_round from f80 to f16. - // - // f80 to f16 always generates an expensive (and as yet, unimplemented) - // libcall to __truncxfhf2 instead of selecting native f16 conversion - // instructions from f32 or f64. Moreover, the first (value-preserving) - // fp_round from f80 to either f32 or f64 may become a NOP in platforms like - // x86. - if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) - return SDValue(); - - // If the first fp_round isn't a value preserving truncation, it might - // introduce a tie in the second fp_round, that wouldn't occur in the - // single-step fp_round we want to fold to. - // In other words, double rounding isn't the same as rounding. - // Also, this is a value preserving truncation iff both fp_round's are. - if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { - SDLoc DL(N); - return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), - DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); - } - } - - // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) - if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { - SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, - N0.getOperand(0), N1); - AddToWorklist(Tmp.getNode()); - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, - Tmp, N0.getOperand(1)); - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - - // fold (fp_round_inreg c1fp) -> c1fp - if (N0CFP && isTypeLegal(EVT)) { - SDLoc DL(N); - SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); - return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. - if (N->hasOneUse() && - N->use_begin()->getOpcode() == ISD::FP_ROUND) - return SDValue(); - - // fold (fp_extend c1fp) -> c1fp - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); - - // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) - if (N0.getOpcode() == ISD::FP16_TO_FP && - TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) - return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); - - // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the - // value of X. - if (N0.getOpcode() == ISD::FP_ROUND - && N0.getConstantOperandVal(1) == 1) { - SDValue In = N0.getOperand(0); - if (In.getValueType() == VT) return In; - if (VT.bitsLT(In.getValueType())) - return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, - In, N0.getOperand(1)); - return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); - } - - // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), N0.getValueType(), - LN0->getMemOperand()); - CombineTo(N, ExtLoad); - CombineTo(N0.getNode(), - DAG.getNode(ISD::FP_ROUND, SDLoc(N0), - N0.getValueType(), ExtLoad, - DAG.getIntPtrConstant(1, SDLoc(N0))), - ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitFCEIL(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fceil c1) -> fceil(c1) - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFTRUNC(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ftrunc c1) -> ftrunc(c1) - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); - - // fold ftrunc (known rounded int x) -> x - // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is - // likely to be generated to extract integer from a rounded floating value. - switch (N0.getOpcode()) { - default: break; - case ISD::FRINT: - case ISD::FTRUNC: - case ISD::FNEARBYINT: - case ISD::FFLOOR: - case ISD::FCEIL: - return N0; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFFLOOR(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ffloor c1) -> ffloor(c1) - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); - - return SDValue(); -} - -// FIXME: FNEG and FABS have a lot in common; refactor. -SDValue DAGCombiner::visitFNEG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // Constant fold FNEG. - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); - - if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), - &DAG.getTarget().Options)) - return GetNegatedExpression(N0, DAG, LegalOperations); - - // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading - // constant pool values. - if (!TLI.isFNegFree(VT) && - N0.getOpcode() == ISD::BITCAST && - N0.getNode()->hasOneUse()) { - SDValue Int = N0.getOperand(0); - EVT IntVT = Int.getValueType(); - if (IntVT.isInteger() && !IntVT.isVector()) { - APInt SignMask; - if (N0.getValueType().isVector()) { - // For a vector, get a mask such as 0x80... per scalar element - // and splat it. - SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits()); - SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); - } else { - // For a scalar, just generate 0x80... - SignMask = APInt::getSignMask(IntVT.getSizeInBits()); - } - SDLoc DL0(N0); - Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, - DAG.getConstant(SignMask, DL0, IntVT)); - AddToWorklist(Int.getNode()); - return DAG.getBitcast(VT, Int); - } - } - - // (fneg (fmul c, x)) -> (fmul -c, x) - if (N0.getOpcode() == ISD::FMUL && - (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { - ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); - if (CFP1) { - APFloat CVal = CFP1->getValueAPF(); - CVal.changeSign(); - if (Level >= AfterLegalizeDAG && - (TLI.isFPImmLegal(CVal, VT) || - TLI.isOperationLegal(ISD::ConstantFP, VT))) - return DAG.getNode( - ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), - DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)), - N0->getFlags()); - } - } - - return SDValue(); -} - -static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, - APFloat (*Op)(const APFloat &, const APFloat &)) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); - const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); - - if (N0CFP && N1CFP) { - const APFloat &C0 = N0CFP->getValueAPF(); - const APFloat &C1 = N1CFP->getValueAPF(); - return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); - } - - // Canonicalize to constant on RHS. - if (isConstantFPBuildVectorOrConstantFP(N0) && - !isConstantFPBuildVectorOrConstantFP(N1)) - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFMINNUM(SDNode *N) { - return visitFMinMax(DAG, N, minnum); -} - -SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { - return visitFMinMax(DAG, N, maxnum); -} - -SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { - return visitFMinMax(DAG, N, minimum); -} - -SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { - return visitFMinMax(DAG, N, maximum); -} - -SDValue DAGCombiner::visitFABS(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fabs c1) -> fabs(c1) - if (isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); - - // fold (fabs (fabs x)) -> (fabs x) - if (N0.getOpcode() == ISD::FABS) - return N->getOperand(0); - - // fold (fabs (fneg x)) -> (fabs x) - // fold (fabs (fcopysign x, y)) -> (fabs x) - if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); - - // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads. - if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) { - SDValue Int = N0.getOperand(0); - EVT IntVT = Int.getValueType(); - if (IntVT.isInteger() && !IntVT.isVector()) { - APInt SignMask; - if (N0.getValueType().isVector()) { - // For a vector, get a mask such as 0x7f... per scalar element - // and splat it. - SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits()); - SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); - } else { - // For a scalar, just generate 0x7f... - SignMask = ~APInt::getSignMask(IntVT.getSizeInBits()); - } - SDLoc DL(N0); - Int = DAG.getNode(ISD::AND, DL, IntVT, Int, - DAG.getConstant(SignMask, DL, IntVT)); - AddToWorklist(Int.getNode()); - return DAG.getBitcast(N->getValueType(0), Int); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitBRCOND(SDNode *N) { - SDValue Chain = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - - // If N is a constant we could fold this into a fallthrough or unconditional - // branch. However that doesn't happen very often in normal code, because - // Instcombine/SimplifyCFG should have handled the available opportunities. - // If we did this folding here, it would be necessary to update the - // MachineBasicBlock CFG, which is awkward. - - // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal - // on the target. - if (N1.getOpcode() == ISD::SETCC && - TLI.isOperationLegalOrCustom(ISD::BR_CC, - N1.getOperand(0).getValueType())) { - return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, - Chain, N1.getOperand(2), - N1.getOperand(0), N1.getOperand(1), N2); - } - - if (N1.hasOneUse()) { - if (SDValue NewN1 = rebuildSetCC(N1)) - return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2); - } - - return SDValue(); -} - -SDValue DAGCombiner::rebuildSetCC(SDValue N) { - if (N.getOpcode() == ISD::SRL || - (N.getOpcode() == ISD::TRUNCATE && - (N.getOperand(0).hasOneUse() && - N.getOperand(0).getOpcode() == ISD::SRL))) { - // Look pass the truncate. - if (N.getOpcode() == ISD::TRUNCATE) - N = N.getOperand(0); - - // Match this pattern so that we can generate simpler code: - // - // %a = ... - // %b = and i32 %a, 2 - // %c = srl i32 %b, 1 - // brcond i32 %c ... - // - // into - // - // %a = ... - // %b = and i32 %a, 2 - // %c = setcc eq %b, 0 - // brcond %c ... - // - // This applies only when the AND constant value has one bit set and the - // SRL constant is equal to the log2 of the AND constant. The back-end is - // smart enough to convert the result into a TEST/JMP sequence. - SDValue Op0 = N.getOperand(0); - SDValue Op1 = N.getOperand(1); - - if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { - SDValue AndOp1 = Op0.getOperand(1); - - if (AndOp1.getOpcode() == ISD::Constant) { - const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); - - if (AndConst.isPowerOf2() && - cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { - SDLoc DL(N); - return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), - Op0, DAG.getConstant(0, DL, Op0.getValueType()), - ISD::SETNE); - } - } - } - } - - // Transform br(xor(x, y)) -> br(x != y) - // Transform br(xor(xor(x,y), 1)) -> br (x == y) - if (N.getOpcode() == ISD::XOR) { - // Because we may call this on a speculatively constructed - // SimplifiedSetCC Node, we need to simplify this node first. - // Ideally this should be folded into SimplifySetCC and not - // here. For now, grab a handle to N so we don't lose it from - // replacements interal to the visit. - HandleSDNode XORHandle(N); - while (N.getOpcode() == ISD::XOR) { - SDValue Tmp = visitXOR(N.getNode()); - // No simplification done. - if (!Tmp.getNode()) - break; - // Returning N is form in-visit replacement that may invalidated - // N. Grab value from Handle. - if (Tmp.getNode() == N.getNode()) - N = XORHandle.getValue(); - else // Node simplified. Try simplifying again. - N = Tmp; - } - - if (N.getOpcode() != ISD::XOR) - return N; - - SDNode *TheXor = N.getNode(); - - SDValue Op0 = TheXor->getOperand(0); - SDValue Op1 = TheXor->getOperand(1); - - if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { - bool Equal = false; - if (isOneConstant(Op0) && Op0.hasOneUse() && - Op0.getOpcode() == ISD::XOR) { - TheXor = Op0.getNode(); - Equal = true; - } - - EVT SetCCVT = N.getValueType(); - if (LegalTypes) - SetCCVT = getSetCCResultType(SetCCVT); - // Replace the uses of XOR with SETCC - return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1, - Equal ? ISD::SETEQ : ISD::SETNE); - } - } - - return SDValue(); -} - -// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. -// -SDValue DAGCombiner::visitBR_CC(SDNode *N) { - CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); - SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); - - // If N is a constant we could fold this into a fallthrough or unconditional - // branch. However that doesn't happen very often in normal code, because - // Instcombine/SimplifyCFG should have handled the available opportunities. - // If we did this folding here, it would be necessary to update the - // MachineBasicBlock CFG, which is awkward. - - // Use SimplifySetCC to simplify SETCC's. - SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), - CondLHS, CondRHS, CC->get(), SDLoc(N), - false); - if (Simp.getNode()) AddToWorklist(Simp.getNode()); - - // fold to a simpler setcc - if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) - return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, - N->getOperand(0), Simp.getOperand(2), - Simp.getOperand(0), Simp.getOperand(1), - N->getOperand(4)); - - return SDValue(); -} - -/// Return true if 'Use' is a load or a store that uses N as its base pointer -/// and that N may be folded in the load / store addressing mode. -static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, - SelectionDAG &DAG, - const TargetLowering &TLI) { - EVT VT; - unsigned AS; - - if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { - if (LD->isIndexed() || LD->getBasePtr().getNode() != N) - return false; - VT = LD->getMemoryVT(); - AS = LD->getAddressSpace(); - } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { - if (ST->isIndexed() || ST->getBasePtr().getNode() != N) - return false; - VT = ST->getMemoryVT(); - AS = ST->getAddressSpace(); - } else - return false; - - TargetLowering::AddrMode AM; - if (N->getOpcode() == ISD::ADD) { - ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); - if (Offset) - // [reg +/- imm] - AM.BaseOffs = Offset->getSExtValue(); - else - // [reg +/- reg] - AM.Scale = 1; - } else if (N->getOpcode() == ISD::SUB) { - ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); - if (Offset) - // [reg +/- imm] - AM.BaseOffs = -Offset->getSExtValue(); - else - // [reg +/- reg] - AM.Scale = 1; - } else - return false; - - return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, - VT.getTypeForEVT(*DAG.getContext()), AS); -} - -/// Try turning a load/store into a pre-indexed load/store when the base -/// pointer is an add or subtract and it has other uses besides the load/store. -/// After the transformation, the new indexed load/store has effectively folded -/// the add/subtract in and all of its other uses are redirected to the -/// new load/store. -bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { - if (Level < AfterLegalizeDAG) - return false; - - bool isLoad = true; - SDValue Ptr; - EVT VT; - if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { - if (LD->isIndexed()) - return false; - VT = LD->getMemoryVT(); - if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && - !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) - return false; - Ptr = LD->getBasePtr(); - } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { - if (ST->isIndexed()) - return false; - VT = ST->getMemoryVT(); - if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && - !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) - return false; - Ptr = ST->getBasePtr(); - isLoad = false; - } else { - return false; - } - - // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail - // out. There is no reason to make this a preinc/predec. - if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || - Ptr.getNode()->hasOneUse()) - return false; - - // Ask the target to do addressing mode selection. - SDValue BasePtr; - SDValue Offset; - ISD::MemIndexedMode AM = ISD::UNINDEXED; - if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) - return false; - - // Backends without true r+i pre-indexed forms may need to pass a - // constant base with a variable offset so that constant coercion - // will work with the patterns in canonical form. - bool Swapped = false; - if (isa<ConstantSDNode>(BasePtr)) { - std::swap(BasePtr, Offset); - Swapped = true; - } - - // Don't create a indexed load / store with zero offset. - if (isNullConstant(Offset)) - return false; - - // Try turning it into a pre-indexed load / store except when: - // 1) The new base ptr is a frame index. - // 2) If N is a store and the new base ptr is either the same as or is a - // predecessor of the value being stored. - // 3) Another use of old base ptr is a predecessor of N. If ptr is folded - // that would create a cycle. - // 4) All uses are load / store ops that use it as old base ptr. - - // Check #1. Preinc'ing a frame index would require copying the stack pointer - // (plus the implicit offset) to a register to preinc anyway. - if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) - return false; - - // Check #2. - if (!isLoad) { - SDValue Val = cast<StoreSDNode>(N)->getValue(); - if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) - return false; - } - - // Caches for hasPredecessorHelper. - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 16> Worklist; - Worklist.push_back(N); - - // If the offset is a constant, there may be other adds of constants that - // can be folded with this one. We should do this to avoid having to keep - // a copy of the original base pointer. - SmallVector<SDNode *, 16> OtherUses; - if (isa<ConstantSDNode>(Offset)) - for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), - UE = BasePtr.getNode()->use_end(); - UI != UE; ++UI) { - SDUse &Use = UI.getUse(); - // Skip the use that is Ptr and uses of other results from BasePtr's - // node (important for nodes that return multiple results). - if (Use.getUser() == Ptr.getNode() || Use != BasePtr) - continue; - - if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) - continue; - - if (Use.getUser()->getOpcode() != ISD::ADD && - Use.getUser()->getOpcode() != ISD::SUB) { - OtherUses.clear(); - break; - } - - SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); - if (!isa<ConstantSDNode>(Op1)) { - OtherUses.clear(); - break; - } - - // FIXME: In some cases, we can be smarter about this. - if (Op1.getValueType() != Offset.getValueType()) { - OtherUses.clear(); - break; - } - - OtherUses.push_back(Use.getUser()); - } - - if (Swapped) - std::swap(BasePtr, Offset); - - // Now check for #3 and #4. - bool RealUse = false; - - for (SDNode *Use : Ptr.getNode()->uses()) { - if (Use == N) - continue; - if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) - return false; - - // If Ptr may be folded in addressing mode of other use, then it's - // not profitable to do this transformation. - if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) - RealUse = true; - } - - if (!RealUse) - return false; - - SDValue Result; - if (isLoad) - Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), - BasePtr, Offset, AM); - else - Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), - BasePtr, Offset, AM); - ++PreIndexedNodes; - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; - Result.getNode()->dump(&DAG); dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - if (isLoad) { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); - } else { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); - } - - // Finally, since the node is now dead, remove it from the graph. - deleteAndRecombine(N); - - if (Swapped) - std::swap(BasePtr, Offset); - - // Replace other uses of BasePtr that can be updated to use Ptr - for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { - unsigned OffsetIdx = 1; - if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) - OffsetIdx = 0; - assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == - BasePtr.getNode() && "Expected BasePtr operand"); - - // We need to replace ptr0 in the following expression: - // x0 * offset0 + y0 * ptr0 = t0 - // knowing that - // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) - // - // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the - // indexed load/store and the expression that needs to be re-written. - // - // Therefore, we have: - // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 - - ConstantSDNode *CN = - cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); - int X0, X1, Y0, Y1; - const APInt &Offset0 = CN->getAPIntValue(); - APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); - - X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; - Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; - X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; - Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; - - unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; - - APInt CNV = Offset0; - if (X0 < 0) CNV = -CNV; - if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; - else CNV = CNV - Offset1; - - SDLoc DL(OtherUses[i]); - - // We can now generate the new expression. - SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); - SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); - - SDValue NewUse = DAG.getNode(Opcode, - DL, - OtherUses[i]->getValueType(0), NewOp1, NewOp2); - DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); - deleteAndRecombine(OtherUses[i]); - } - - // Replace the uses of Ptr with uses of the updated base value. - DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); - deleteAndRecombine(Ptr.getNode()); - AddToWorklist(Result.getNode()); - - return true; -} - -/// Try to combine a load/store with a add/sub of the base pointer node into a -/// post-indexed load/store. The transformation folded the add/subtract into the -/// new indexed load/store effectively and all of its uses are redirected to the -/// new load/store. -bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { - if (Level < AfterLegalizeDAG) - return false; - - bool isLoad = true; - SDValue Ptr; - EVT VT; - if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { - if (LD->isIndexed()) - return false; - VT = LD->getMemoryVT(); - if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && - !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) - return false; - Ptr = LD->getBasePtr(); - } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { - if (ST->isIndexed()) - return false; - VT = ST->getMemoryVT(); - if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && - !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) - return false; - Ptr = ST->getBasePtr(); - isLoad = false; - } else { - return false; - } - - if (Ptr.getNode()->hasOneUse()) - return false; - - for (SDNode *Op : Ptr.getNode()->uses()) { - if (Op == N || - (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) - continue; - - SDValue BasePtr; - SDValue Offset; - ISD::MemIndexedMode AM = ISD::UNINDEXED; - if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { - // Don't create a indexed load / store with zero offset. - if (isNullConstant(Offset)) - continue; - - // Try turning it into a post-indexed load / store except when - // 1) All uses are load / store ops that use it as base ptr (and - // it may be folded as addressing mmode). - // 2) Op must be independent of N, i.e. Op is neither a predecessor - // nor a successor of N. Otherwise, if Op is folded that would - // create a cycle. - - if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) - continue; - - // Check for #1. - bool TryNext = false; - for (SDNode *Use : BasePtr.getNode()->uses()) { - if (Use == Ptr.getNode()) - continue; - - // If all the uses are load / store addresses, then don't do the - // transformation. - if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ - bool RealUse = false; - for (SDNode *UseUse : Use->uses()) { - if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) - RealUse = true; - } - - if (!RealUse) { - TryNext = true; - break; - } - } - } - - if (TryNext) - continue; - - // Check for #2. - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 8> Worklist; - // Ptr is predecessor to both N and Op. - Visited.insert(Ptr.getNode()); - Worklist.push_back(N); - Worklist.push_back(Op); - if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && - !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) { - SDValue Result = isLoad - ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), - BasePtr, Offset, AM) - : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), - BasePtr, Offset, AM); - ++PostIndexedNodes; - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); - dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); - dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - if (isLoad) { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); - } else { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); - } - - // Finally, since the node is now dead, remove it from the graph. - deleteAndRecombine(N); - - // Replace the uses of Use with uses of the updated base value. - DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), - Result.getValue(isLoad ? 1 : 0)); - deleteAndRecombine(Op); - return true; - } - } - } - - return false; -} - -/// Return the base-pointer arithmetic from an indexed \p LD. -SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { - ISD::MemIndexedMode AM = LD->getAddressingMode(); - assert(AM != ISD::UNINDEXED); - SDValue BP = LD->getOperand(1); - SDValue Inc = LD->getOperand(2); - - // Some backends use TargetConstants for load offsets, but don't expect - // TargetConstants in general ADD nodes. We can convert these constants into - // regular Constants (if the constant is not opaque). - assert((Inc.getOpcode() != ISD::TargetConstant || - !cast<ConstantSDNode>(Inc)->isOpaque()) && - "Cannot split out indexing using opaque target constants"); - if (Inc.getOpcode() == ISD::TargetConstant) { - ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); - Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), - ConstInc->getValueType(0)); - } - - unsigned Opc = - (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); - return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); -} - -static inline int numVectorEltsOrZero(EVT T) { - return T.isVector() ? T.getVectorNumElements() : 0; -} - -bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { - Val = ST->getValue(); - EVT STType = Val.getValueType(); - EVT STMemType = ST->getMemoryVT(); - if (STType == STMemType) - return true; - if (isTypeLegal(STMemType)) - return false; // fail. - if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && - TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { - Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); - return true; - } - if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && - STType.isInteger() && STMemType.isInteger()) { - Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); - return true; - } - if (STType.getSizeInBits() == STMemType.getSizeInBits()) { - Val = DAG.getBitcast(STMemType, Val); - return true; - } - return false; // fail. -} - -bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { - EVT LDMemType = LD->getMemoryVT(); - EVT LDType = LD->getValueType(0); - assert(Val.getValueType() == LDMemType && - "Attempting to extend value of non-matching type"); - if (LDType == LDMemType) - return true; - if (LDMemType.isInteger() && LDType.isInteger()) { - switch (LD->getExtensionType()) { - case ISD::NON_EXTLOAD: - Val = DAG.getBitcast(LDType, Val); - return true; - case ISD::EXTLOAD: - Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); - return true; - case ISD::SEXTLOAD: - Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); - return true; - case ISD::ZEXTLOAD: - Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); - return true; - } - } - return false; -} - -SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { - if (OptLevel == CodeGenOpt::None || LD->isVolatile()) - return SDValue(); - SDValue Chain = LD->getOperand(0); - StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); - if (!ST || ST->isVolatile()) - return SDValue(); - - EVT LDType = LD->getValueType(0); - EVT LDMemType = LD->getMemoryVT(); - EVT STMemType = ST->getMemoryVT(); - EVT STType = ST->getValue().getValueType(); - - BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); - BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); - int64_t Offset; - if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) - return SDValue(); - - // Normalize for Endianness. After this Offset=0 will denote that the least - // significant bit in the loaded value maps to the least significant bit in - // the stored value). With Offset=n (for n > 0) the loaded value starts at the - // n:th least significant byte of the stored value. - if (DAG.getDataLayout().isBigEndian()) - Offset = (STMemType.getStoreSizeInBits() - - LDMemType.getStoreSizeInBits()) / 8 - Offset; - - // Check that the stored value cover all bits that are loaded. - bool STCoversLD = - (Offset >= 0) && - (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits()); - - auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { - if (LD->isIndexed()) { - bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC || - LD->getAddressingMode() == ISD::POST_DEC); - unsigned Opc = IsSub ? ISD::SUB : ISD::ADD; - SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(), - LD->getOperand(1), LD->getOperand(2)); - SDValue Ops[] = {Val, Idx, Chain}; - return CombineTo(LD, Ops, 3); - } - return CombineTo(LD, Val, Chain); - }; - - if (!STCoversLD) - return SDValue(); - - // Memory as copy space (potentially masked). - if (Offset == 0 && LDType == STType && STMemType == LDMemType) { - // Simple case: Direct non-truncating forwarding - if (LDType.getSizeInBits() == LDMemType.getSizeInBits()) - return ReplaceLd(LD, ST->getValue(), Chain); - // Can we model the truncate and extension with an and mask? - if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && - !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { - // Mask to size of LDMemType - auto Mask = - DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(), - STMemType.getSizeInBits()), - SDLoc(ST), STType); - auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); - return ReplaceLd(LD, Val, Chain); - } - } - - // TODO: Deal with nonzero offset. - if (LD->getBasePtr().isUndef() || Offset != 0) - return SDValue(); - // Model necessary truncations / extenstions. - SDValue Val; - // Truncate Value To Stored Memory Size. - do { - if (!getTruncatedStoreValue(ST, Val)) - continue; - if (!isTypeLegal(LDMemType)) - continue; - if (STMemType != LDMemType) { - // TODO: Support vectors? This requires extract_subvector/bitcast. - if (!STMemType.isVector() && !LDMemType.isVector() && - STMemType.isInteger() && LDMemType.isInteger()) - Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); - else - continue; - } - if (!extendLoadedValueToExtension(LD, Val)) - continue; - return ReplaceLd(LD, Val, Chain); - } while (false); - - // On failure, cleanup dead nodes we may have created. - if (Val->use_empty()) - deleteAndRecombine(Val.getNode()); - return SDValue(); -} - -SDValue DAGCombiner::visitLOAD(SDNode *N) { - LoadSDNode *LD = cast<LoadSDNode>(N); - SDValue Chain = LD->getChain(); - SDValue Ptr = LD->getBasePtr(); - - // If load is not volatile and there are no uses of the loaded value (and - // the updated indexed value in case of indexed loads), change uses of the - // chain value into uses of the chain input (i.e. delete the dead load). - if (!LD->isVolatile()) { - if (N->getValueType(1) == MVT::Other) { - // Unindexed loads. - if (!N->hasAnyUseOfValue(0)) { - // It's not safe to use the two value CombineTo variant here. e.g. - // v1, chain2 = load chain1, loc - // v2, chain3 = load chain2, loc - // v3 = add v2, c - // Now we replace use of chain2 with chain1. This makes the second load - // isomorphic to the one we are deleting, and thus makes this load live. - LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); - dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); - dbgs() << "\n"); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); - AddUsersToWorklist(Chain.getNode()); - if (N->use_empty()) - deleteAndRecombine(N); - - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } else { - // Indexed loads. - assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); - - // If this load has an opaque TargetConstant offset, then we cannot split - // the indexing into an add/sub directly (that TargetConstant may not be - // valid for a different type of node, and we cannot convert an opaque - // target constant into a regular constant). - bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && - cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); - - if (!N->hasAnyUseOfValue(0) && - ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { - SDValue Undef = DAG.getUNDEF(N->getValueType(0)); - SDValue Index; - if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { - Index = SplitIndexingFromLoad(LD); - // Try to fold the base pointer arithmetic into subsequent loads and - // stores. - AddUsersToWorklist(N); - } else - Index = DAG.getUNDEF(N->getValueType(1)); - LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); - dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); - dbgs() << " and 2 other values\n"); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); - deleteAndRecombine(N); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - } - - // If this load is directly stored, replace the load value with the stored - // value. - if (auto V = ForwardStoreValueToDirectLoad(LD)) - return V; - - // Try to infer better alignment information than the load already has. - if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { - if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { - if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) { - SDValue NewLoad = DAG.getExtLoad( - LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, - LD->getPointerInfo(), LD->getMemoryVT(), Align, - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - // NewLoad will always be N as we are only refining the alignment - assert(NewLoad.getNode() == N); - (void)NewLoad; - } - } - } - - if (LD->isUnindexed()) { - // Walk up chain skipping non-aliasing memory nodes. - SDValue BetterChain = FindBetterChain(N, Chain); - - // If there is a better chain. - if (Chain != BetterChain) { - SDValue ReplLoad; - - // Replace the chain to void dependency. - if (LD->getExtensionType() == ISD::NON_EXTLOAD) { - ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), - BetterChain, Ptr, LD->getMemOperand()); - } else { - ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), - LD->getValueType(0), - BetterChain, Ptr, LD->getMemoryVT(), - LD->getMemOperand()); - } - - // Create token factor to keep old chain connected. - SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), - MVT::Other, Chain, ReplLoad.getValue(1)); - - // Replace uses with load result and token factor - return CombineTo(N, ReplLoad.getValue(0), Token); - } - } - - // Try transforming N to an indexed load. - if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) - return SDValue(N, 0); - - // Try to slice up N to more direct loads if the slices are mapped to - // different register banks or pairing can take place. - if (SliceUpLoad(N)) - return SDValue(N, 0); - - return SDValue(); -} - -namespace { - -/// Helper structure used to slice a load in smaller loads. -/// Basically a slice is obtained from the following sequence: -/// Origin = load Ty1, Base -/// Shift = srl Ty1 Origin, CstTy Amount -/// Inst = trunc Shift to Ty2 -/// -/// Then, it will be rewritten into: -/// Slice = load SliceTy, Base + SliceOffset -/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 -/// -/// SliceTy is deduced from the number of bits that are actually used to -/// build Inst. -struct LoadedSlice { - /// Helper structure used to compute the cost of a slice. - struct Cost { - /// Are we optimizing for code size. - bool ForCodeSize; - - /// Various cost. - unsigned Loads = 0; - unsigned Truncates = 0; - unsigned CrossRegisterBanksCopies = 0; - unsigned ZExts = 0; - unsigned Shift = 0; - - Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {} - - /// Get the cost of one isolated slice. - Cost(const LoadedSlice &LS, bool ForCodeSize = false) - : ForCodeSize(ForCodeSize), Loads(1) { - EVT TruncType = LS.Inst->getValueType(0); - EVT LoadedType = LS.getLoadedType(); - if (TruncType != LoadedType && - !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) - ZExts = 1; - } - - /// Account for slicing gain in the current cost. - /// Slicing provide a few gains like removing a shift or a - /// truncate. This method allows to grow the cost of the original - /// load with the gain from this slice. - void addSliceGain(const LoadedSlice &LS) { - // Each slice saves a truncate. - const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); - if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), - LS.Inst->getValueType(0))) - ++Truncates; - // If there is a shift amount, this slice gets rid of it. - if (LS.Shift) - ++Shift; - // If this slice can merge a cross register bank copy, account for it. - if (LS.canMergeExpensiveCrossRegisterBankCopy()) - ++CrossRegisterBanksCopies; - } - - Cost &operator+=(const Cost &RHS) { - Loads += RHS.Loads; - Truncates += RHS.Truncates; - CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; - ZExts += RHS.ZExts; - Shift += RHS.Shift; - return *this; - } - - bool operator==(const Cost &RHS) const { - return Loads == RHS.Loads && Truncates == RHS.Truncates && - CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && - ZExts == RHS.ZExts && Shift == RHS.Shift; - } - - bool operator!=(const Cost &RHS) const { return !(*this == RHS); } - - bool operator<(const Cost &RHS) const { - // Assume cross register banks copies are as expensive as loads. - // FIXME: Do we want some more target hooks? - unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; - unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; - // Unless we are optimizing for code size, consider the - // expensive operation first. - if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) - return ExpensiveOpsLHS < ExpensiveOpsRHS; - return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < - (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); - } - - bool operator>(const Cost &RHS) const { return RHS < *this; } - - bool operator<=(const Cost &RHS) const { return !(RHS < *this); } - - bool operator>=(const Cost &RHS) const { return !(*this < RHS); } - }; - - // The last instruction that represent the slice. This should be a - // truncate instruction. - SDNode *Inst; - - // The original load instruction. - LoadSDNode *Origin; - - // The right shift amount in bits from the original load. - unsigned Shift; - - // The DAG from which Origin came from. - // This is used to get some contextual information about legal types, etc. - SelectionDAG *DAG; - - LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, - unsigned Shift = 0, SelectionDAG *DAG = nullptr) - : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} - - /// Get the bits used in a chunk of bits \p BitWidth large. - /// \return Result is \p BitWidth and has used bits set to 1 and - /// not used bits set to 0. - APInt getUsedBits() const { - // Reproduce the trunc(lshr) sequence: - // - Start from the truncated value. - // - Zero extend to the desired bit width. - // - Shift left. - assert(Origin && "No original load to compare against."); - unsigned BitWidth = Origin->getValueSizeInBits(0); - assert(Inst && "This slice is not bound to an instruction"); - assert(Inst->getValueSizeInBits(0) <= BitWidth && - "Extracted slice is bigger than the whole type!"); - APInt UsedBits(Inst->getValueSizeInBits(0), 0); - UsedBits.setAllBits(); - UsedBits = UsedBits.zext(BitWidth); - UsedBits <<= Shift; - return UsedBits; - } - - /// Get the size of the slice to be loaded in bytes. - unsigned getLoadedSize() const { - unsigned SliceSize = getUsedBits().countPopulation(); - assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); - return SliceSize / 8; - } - - /// Get the type that will be loaded for this slice. - /// Note: This may not be the final type for the slice. - EVT getLoadedType() const { - assert(DAG && "Missing context"); - LLVMContext &Ctxt = *DAG->getContext(); - return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); - } - - /// Get the alignment of the load used for this slice. - unsigned getAlignment() const { - unsigned Alignment = Origin->getAlignment(); - unsigned Offset = getOffsetFromBase(); - if (Offset != 0) - Alignment = MinAlign(Alignment, Alignment + Offset); - return Alignment; - } - - /// Check if this slice can be rewritten with legal operations. - bool isLegal() const { - // An invalid slice is not legal. - if (!Origin || !Inst || !DAG) - return false; - - // Offsets are for indexed load only, we do not handle that. - if (!Origin->getOffset().isUndef()) - return false; - - const TargetLowering &TLI = DAG->getTargetLoweringInfo(); - - // Check that the type is legal. - EVT SliceType = getLoadedType(); - if (!TLI.isTypeLegal(SliceType)) - return false; - - // Check that the load is legal for this type. - if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) - return false; - - // Check that the offset can be computed. - // 1. Check its type. - EVT PtrType = Origin->getBasePtr().getValueType(); - if (PtrType == MVT::Untyped || PtrType.isExtended()) - return false; - - // 2. Check that it fits in the immediate. - if (!TLI.isLegalAddImmediate(getOffsetFromBase())) - return false; - - // 3. Check that the computation is legal. - if (!TLI.isOperationLegal(ISD::ADD, PtrType)) - return false; - - // Check that the zext is legal if it needs one. - EVT TruncateType = Inst->getValueType(0); - if (TruncateType != SliceType && - !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) - return false; - - return true; - } - - /// Get the offset in bytes of this slice in the original chunk of - /// bits. - /// \pre DAG != nullptr. - uint64_t getOffsetFromBase() const { - assert(DAG && "Missing context."); - bool IsBigEndian = DAG->getDataLayout().isBigEndian(); - assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); - uint64_t Offset = Shift / 8; - unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; - assert(!(Origin->getValueSizeInBits(0) & 0x7) && - "The size of the original loaded type is not a multiple of a" - " byte."); - // If Offset is bigger than TySizeInBytes, it means we are loading all - // zeros. This should have been optimized before in the process. - assert(TySizeInBytes > Offset && - "Invalid shift amount for given loaded size"); - if (IsBigEndian) - Offset = TySizeInBytes - Offset - getLoadedSize(); - return Offset; - } - - /// Generate the sequence of instructions to load the slice - /// represented by this object and redirect the uses of this slice to - /// this new sequence of instructions. - /// \pre this->Inst && this->Origin are valid Instructions and this - /// object passed the legal check: LoadedSlice::isLegal returned true. - /// \return The last instruction of the sequence used to load the slice. - SDValue loadSlice() const { - assert(Inst && Origin && "Unable to replace a non-existing slice."); - const SDValue &OldBaseAddr = Origin->getBasePtr(); - SDValue BaseAddr = OldBaseAddr; - // Get the offset in that chunk of bytes w.r.t. the endianness. - int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); - assert(Offset >= 0 && "Offset too big to fit in int64_t!"); - if (Offset) { - // BaseAddr = BaseAddr + Offset. - EVT ArithType = BaseAddr.getValueType(); - SDLoc DL(Origin); - BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, - DAG->getConstant(Offset, DL, ArithType)); - } - - // Create the type of the loaded slice according to its size. - EVT SliceType = getLoadedType(); - - // Create the load for the slice. - SDValue LastInst = - DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, - Origin->getPointerInfo().getWithOffset(Offset), - getAlignment(), Origin->getMemOperand()->getFlags()); - // If the final type is not the same as the loaded type, this means that - // we have to pad with zero. Create a zero extend for that. - EVT FinalType = Inst->getValueType(0); - if (SliceType != FinalType) - LastInst = - DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); - return LastInst; - } - - /// Check if this slice can be merged with an expensive cross register - /// bank copy. E.g., - /// i = load i32 - /// f = bitcast i32 i to float - bool canMergeExpensiveCrossRegisterBankCopy() const { - if (!Inst || !Inst->hasOneUse()) - return false; - SDNode *Use = *Inst->use_begin(); - if (Use->getOpcode() != ISD::BITCAST) - return false; - assert(DAG && "Missing context"); - const TargetLowering &TLI = DAG->getTargetLoweringInfo(); - EVT ResVT = Use->getValueType(0); - const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); - const TargetRegisterClass *ArgRC = - TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); - if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) - return false; - - // At this point, we know that we perform a cross-register-bank copy. - // Check if it is expensive. - const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); - // Assume bitcasts are cheap, unless both register classes do not - // explicitly share a common sub class. - if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) - return false; - - // Check if it will be merged with the load. - // 1. Check the alignment constraint. - unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( - ResVT.getTypeForEVT(*DAG->getContext())); - - if (RequiredAlignment > getAlignment()) - return false; - - // 2. Check that the load is a legal operation for that type. - if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) - return false; - - // 3. Check that we do not have a zext in the way. - if (Inst->getValueType(0) != getLoadedType()) - return false; - - return true; - } -}; - -} // end anonymous namespace - -/// Check that all bits set in \p UsedBits form a dense region, i.e., -/// \p UsedBits looks like 0..0 1..1 0..0. -static bool areUsedBitsDense(const APInt &UsedBits) { - // If all the bits are one, this is dense! - if (UsedBits.isAllOnesValue()) - return true; - - // Get rid of the unused bits on the right. - APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); - // Get rid of the unused bits on the left. - if (NarrowedUsedBits.countLeadingZeros()) - NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); - // Check that the chunk of bits is completely used. - return NarrowedUsedBits.isAllOnesValue(); -} - -/// Check whether or not \p First and \p Second are next to each other -/// in memory. This means that there is no hole between the bits loaded -/// by \p First and the bits loaded by \p Second. -static bool areSlicesNextToEachOther(const LoadedSlice &First, - const LoadedSlice &Second) { - assert(First.Origin == Second.Origin && First.Origin && - "Unable to match different memory origins."); - APInt UsedBits = First.getUsedBits(); - assert((UsedBits & Second.getUsedBits()) == 0 && - "Slices are not supposed to overlap."); - UsedBits |= Second.getUsedBits(); - return areUsedBitsDense(UsedBits); -} - -/// Adjust the \p GlobalLSCost according to the target -/// paring capabilities and the layout of the slices. -/// \pre \p GlobalLSCost should account for at least as many loads as -/// there is in the slices in \p LoadedSlices. -static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, - LoadedSlice::Cost &GlobalLSCost) { - unsigned NumberOfSlices = LoadedSlices.size(); - // If there is less than 2 elements, no pairing is possible. - if (NumberOfSlices < 2) - return; - - // Sort the slices so that elements that are likely to be next to each - // other in memory are next to each other in the list. - llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { - assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); - return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); - }); - const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); - // First (resp. Second) is the first (resp. Second) potentially candidate - // to be placed in a paired load. - const LoadedSlice *First = nullptr; - const LoadedSlice *Second = nullptr; - for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, - // Set the beginning of the pair. - First = Second) { - Second = &LoadedSlices[CurrSlice]; - - // If First is NULL, it means we start a new pair. - // Get to the next slice. - if (!First) - continue; - - EVT LoadedType = First->getLoadedType(); - - // If the types of the slices are different, we cannot pair them. - if (LoadedType != Second->getLoadedType()) - continue; - - // Check if the target supplies paired loads for this type. - unsigned RequiredAlignment = 0; - if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { - // move to the next pair, this type is hopeless. - Second = nullptr; - continue; - } - // Check if we meet the alignment requirement. - if (RequiredAlignment > First->getAlignment()) - continue; - - // Check that both loads are next to each other in memory. - if (!areSlicesNextToEachOther(*First, *Second)) - continue; - - assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); - --GlobalLSCost.Loads; - // Move to the next pair. - Second = nullptr; - } -} - -/// Check the profitability of all involved LoadedSlice. -/// Currently, it is considered profitable if there is exactly two -/// involved slices (1) which are (2) next to each other in memory, and -/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). -/// -/// Note: The order of the elements in \p LoadedSlices may be modified, but not -/// the elements themselves. -/// -/// FIXME: When the cost model will be mature enough, we can relax -/// constraints (1) and (2). -static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, - const APInt &UsedBits, bool ForCodeSize) { - unsigned NumberOfSlices = LoadedSlices.size(); - if (StressLoadSlicing) - return NumberOfSlices > 1; - - // Check (1). - if (NumberOfSlices != 2) - return false; - - // Check (2). - if (!areUsedBitsDense(UsedBits)) - return false; - - // Check (3). - LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); - // The original code has one big load. - OrigCost.Loads = 1; - for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { - const LoadedSlice &LS = LoadedSlices[CurrSlice]; - // Accumulate the cost of all the slices. - LoadedSlice::Cost SliceCost(LS, ForCodeSize); - GlobalSlicingCost += SliceCost; - - // Account as cost in the original configuration the gain obtained - // with the current slices. - OrigCost.addSliceGain(LS); - } - - // If the target supports paired load, adjust the cost accordingly. - adjustCostForPairing(LoadedSlices, GlobalSlicingCost); - return OrigCost > GlobalSlicingCost; -} - -/// If the given load, \p LI, is used only by trunc or trunc(lshr) -/// operations, split it in the various pieces being extracted. -/// -/// This sort of thing is introduced by SROA. -/// This slicing takes care not to insert overlapping loads. -/// \pre LI is a simple load (i.e., not an atomic or volatile load). -bool DAGCombiner::SliceUpLoad(SDNode *N) { - if (Level < AfterLegalizeDAG) - return false; - - LoadSDNode *LD = cast<LoadSDNode>(N); - if (LD->isVolatile() || !ISD::isNormalLoad(LD) || - !LD->getValueType(0).isInteger()) - return false; - - // Keep track of already used bits to detect overlapping values. - // In that case, we will just abort the transformation. - APInt UsedBits(LD->getValueSizeInBits(0), 0); - - SmallVector<LoadedSlice, 4> LoadedSlices; - - // Check if this load is used as several smaller chunks of bits. - // Basically, look for uses in trunc or trunc(lshr) and record a new chain - // of computation for each trunc. - for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); - UI != UIEnd; ++UI) { - // Skip the uses of the chain. - if (UI.getUse().getResNo() != 0) - continue; - - SDNode *User = *UI; - unsigned Shift = 0; - - // Check if this is a trunc(lshr). - if (User->getOpcode() == ISD::SRL && User->hasOneUse() && - isa<ConstantSDNode>(User->getOperand(1))) { - Shift = User->getConstantOperandVal(1); - User = *User->use_begin(); - } - - // At this point, User is a Truncate, iff we encountered, trunc or - // trunc(lshr). - if (User->getOpcode() != ISD::TRUNCATE) - return false; - - // The width of the type must be a power of 2 and greater than 8-bits. - // Otherwise the load cannot be represented in LLVM IR. - // Moreover, if we shifted with a non-8-bits multiple, the slice - // will be across several bytes. We do not support that. - unsigned Width = User->getValueSizeInBits(0); - if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) - return false; - - // Build the slice for this chain of computations. - LoadedSlice LS(User, LD, Shift, &DAG); - APInt CurrentUsedBits = LS.getUsedBits(); - - // Check if this slice overlaps with another. - if ((CurrentUsedBits & UsedBits) != 0) - return false; - // Update the bits used globally. - UsedBits |= CurrentUsedBits; - - // Check if the new slice would be legal. - if (!LS.isLegal()) - return false; - - // Record the slice. - LoadedSlices.push_back(LS); - } - - // Abort slicing if it does not seem to be profitable. - if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) - return false; - - ++SlicedLoads; - - // Rewrite each chain to use an independent load. - // By construction, each chain can be represented by a unique load. - - // Prepare the argument for the new token factor for all the slices. - SmallVector<SDValue, 8> ArgChains; - for (SmallVectorImpl<LoadedSlice>::const_iterator - LSIt = LoadedSlices.begin(), - LSItEnd = LoadedSlices.end(); - LSIt != LSItEnd; ++LSIt) { - SDValue SliceInst = LSIt->loadSlice(); - CombineTo(LSIt->Inst, SliceInst, true); - if (SliceInst.getOpcode() != ISD::LOAD) - SliceInst = SliceInst.getOperand(0); - assert(SliceInst->getOpcode() == ISD::LOAD && - "It takes more than a zext to get to the loaded slice!!"); - ArgChains.push_back(SliceInst.getValue(1)); - } - - SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, - ArgChains); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); - AddToWorklist(Chain.getNode()); - return true; -} - -/// Check to see if V is (and load (ptr), imm), where the load is having -/// specific bytes cleared out. If so, return the byte size being masked out -/// and the shift amount. -static std::pair<unsigned, unsigned> -CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { - std::pair<unsigned, unsigned> Result(0, 0); - - // Check for the structure we're looking for. - if (V->getOpcode() != ISD::AND || - !isa<ConstantSDNode>(V->getOperand(1)) || - !ISD::isNormalLoad(V->getOperand(0).getNode())) - return Result; - - // Check the chain and pointer. - LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); - if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. - - // This only handles simple types. - if (V.getValueType() != MVT::i16 && - V.getValueType() != MVT::i32 && - V.getValueType() != MVT::i64) - return Result; - - // Check the constant mask. Invert it so that the bits being masked out are - // 0 and the bits being kept are 1. Use getSExtValue so that leading bits - // follow the sign bit for uniformity. - uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); - unsigned NotMaskLZ = countLeadingZeros(NotMask); - if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. - unsigned NotMaskTZ = countTrailingZeros(NotMask); - if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. - if (NotMaskLZ == 64) return Result; // All zero mask. - - // See if we have a continuous run of bits. If so, we have 0*1+0* - if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) - return Result; - - // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. - if (V.getValueType() != MVT::i64 && NotMaskLZ) - NotMaskLZ -= 64-V.getValueSizeInBits(); - - unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; - switch (MaskedBytes) { - case 1: - case 2: - case 4: break; - default: return Result; // All one mask, or 5-byte mask. - } - - // Verify that the first bit starts at a multiple of mask so that the access - // is aligned the same as the access width. - if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; - - // For narrowing to be valid, it must be the case that the load the - // immediately preceeding memory operation before the store. - if (LD == Chain.getNode()) - ; // ok. - else if (Chain->getOpcode() == ISD::TokenFactor && - SDValue(LD, 1).hasOneUse()) { - // LD has only 1 chain use so they are no indirect dependencies. - bool isOk = false; - for (const SDValue &ChainOp : Chain->op_values()) - if (ChainOp.getNode() == LD) { - isOk = true; - break; - } - if (!isOk) - return Result; - } else - return Result; // Fail. - - Result.first = MaskedBytes; - Result.second = NotMaskTZ/8; - return Result; -} - -/// Check to see if IVal is something that provides a value as specified by -/// MaskInfo. If so, replace the specified store with a narrower store of -/// truncated IVal. -static SDNode * -ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, - SDValue IVal, StoreSDNode *St, - DAGCombiner *DC) { - unsigned NumBytes = MaskInfo.first; - unsigned ByteShift = MaskInfo.second; - SelectionDAG &DAG = DC->getDAG(); - - // Check to see if IVal is all zeros in the part being masked in by the 'or' - // that uses this. If not, this is not a replacement. - APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), - ByteShift*8, (ByteShift+NumBytes)*8); - if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; - - // Check that it is legal on the target to do this. It is legal if the new - // VT we're shrinking to (i8/i16/i32) is legal or we're still before type - // legalization. - MVT VT = MVT::getIntegerVT(NumBytes*8); - if (!DC->isTypeLegal(VT)) - return nullptr; - - // Okay, we can do this! Replace the 'St' store with a store of IVal that is - // shifted by ByteShift and truncated down to NumBytes. - if (ByteShift) { - SDLoc DL(IVal); - IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, - DAG.getConstant(ByteShift*8, DL, - DC->getShiftAmountTy(IVal.getValueType()))); - } - - // Figure out the offset for the store and the alignment of the access. - unsigned StOffset; - unsigned NewAlign = St->getAlignment(); - - if (DAG.getDataLayout().isLittleEndian()) - StOffset = ByteShift; - else - StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; - - SDValue Ptr = St->getBasePtr(); - if (StOffset) { - SDLoc DL(IVal); - Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), - Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); - NewAlign = MinAlign(NewAlign, StOffset); - } - - // Truncate down to the new size. - IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); - - ++OpsNarrowed; - return DAG - .getStore(St->getChain(), SDLoc(St), IVal, Ptr, - St->getPointerInfo().getWithOffset(StOffset), NewAlign) - .getNode(); -} - -/// Look for sequence of load / op / store where op is one of 'or', 'xor', and -/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try -/// narrowing the load and store if it would end up being a win for performance -/// or code size. -SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { - StoreSDNode *ST = cast<StoreSDNode>(N); - if (ST->isVolatile()) - return SDValue(); - - SDValue Chain = ST->getChain(); - SDValue Value = ST->getValue(); - SDValue Ptr = ST->getBasePtr(); - EVT VT = Value.getValueType(); - - if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) - return SDValue(); - - unsigned Opc = Value.getOpcode(); - - // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst - // is a byte mask indicating a consecutive number of bytes, check to see if - // Y is known to provide just those bytes. If so, we try to replace the - // load + replace + store sequence with a single (narrower) store, which makes - // the load dead. - if (Opc == ISD::OR) { - std::pair<unsigned, unsigned> MaskedLoad; - MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); - if (MaskedLoad.first) - if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, - Value.getOperand(1), ST,this)) - return SDValue(NewST, 0); - - // Or is commutative, so try swapping X and Y. - MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); - if (MaskedLoad.first) - if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, - Value.getOperand(0), ST,this)) - return SDValue(NewST, 0); - } - - if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || - Value.getOperand(1).getOpcode() != ISD::Constant) - return SDValue(); - - SDValue N0 = Value.getOperand(0); - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - Chain == SDValue(N0.getNode(), 1)) { - LoadSDNode *LD = cast<LoadSDNode>(N0); - if (LD->getBasePtr() != Ptr || - LD->getPointerInfo().getAddrSpace() != - ST->getPointerInfo().getAddrSpace()) - return SDValue(); - - // Find the type to narrow it the load / op / store to. - SDValue N1 = Value.getOperand(1); - unsigned BitWidth = N1.getValueSizeInBits(); - APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); - if (Opc == ISD::AND) - Imm ^= APInt::getAllOnesValue(BitWidth); - if (Imm == 0 || Imm.isAllOnesValue()) - return SDValue(); - unsigned ShAmt = Imm.countTrailingZeros(); - unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; - unsigned NewBW = NextPowerOf2(MSB - ShAmt); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); - // The narrowing should be profitable, the load/store operation should be - // legal (or custom) and the store size should be equal to the NewVT width. - while (NewBW < BitWidth && - (NewVT.getStoreSizeInBits() != NewBW || - !TLI.isOperationLegalOrCustom(Opc, NewVT) || - !TLI.isNarrowingProfitable(VT, NewVT))) { - NewBW = NextPowerOf2(NewBW); - NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); - } - if (NewBW >= BitWidth) - return SDValue(); - - // If the lsb changed does not start at the type bitwidth boundary, - // start at the previous one. - if (ShAmt % NewBW) - ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; - APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, - std::min(BitWidth, ShAmt + NewBW)); - if ((Imm & Mask) == Imm) { - APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); - if (Opc == ISD::AND) - NewImm ^= APInt::getAllOnesValue(NewBW); - uint64_t PtrOff = ShAmt / 8; - // For big endian targets, we need to adjust the offset to the pointer to - // load the correct bytes. - if (DAG.getDataLayout().isBigEndian()) - PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; - - unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); - Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); - if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) - return SDValue(); - - SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), - Ptr.getValueType(), Ptr, - DAG.getConstant(PtrOff, SDLoc(LD), - Ptr.getValueType())); - SDValue NewLD = - DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, - LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, - DAG.getConstant(NewImm, SDLoc(Value), - NewVT)); - SDValue NewST = - DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, - ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); - - AddToWorklist(NewPtr.getNode()); - AddToWorklist(NewLD.getNode()); - AddToWorklist(NewVal.getNode()); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); - ++OpsNarrowed; - return NewST; - } - } - - return SDValue(); -} - -/// For a given floating point load / store pair, if the load value isn't used -/// by any other operations, then consider transforming the pair to integer -/// load / store operations if the target deems the transformation profitable. -SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { - StoreSDNode *ST = cast<StoreSDNode>(N); - SDValue Chain = ST->getChain(); - SDValue Value = ST->getValue(); - if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && - Value.hasOneUse() && - Chain == SDValue(Value.getNode(), 1)) { - LoadSDNode *LD = cast<LoadSDNode>(Value); - EVT VT = LD->getMemoryVT(); - if (!VT.isFloatingPoint() || - VT != ST->getMemoryVT() || - LD->isNonTemporal() || - ST->isNonTemporal() || - LD->getPointerInfo().getAddrSpace() != 0 || - ST->getPointerInfo().getAddrSpace() != 0) - return SDValue(); - - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); - if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || - !TLI.isOperationLegal(ISD::STORE, IntVT) || - !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || - !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) - return SDValue(); - - unsigned LDAlign = LD->getAlignment(); - unsigned STAlign = ST->getAlignment(); - Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); - unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); - if (LDAlign < ABIAlign || STAlign < ABIAlign) - return SDValue(); - - SDValue NewLD = - DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), - LD->getPointerInfo(), LDAlign); - - SDValue NewST = - DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(), - ST->getPointerInfo(), STAlign); - - AddToWorklist(NewLD.getNode()); - AddToWorklist(NewST.getNode()); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); - ++LdStFP2Int; - return NewST; - } - - return SDValue(); -} - -// This is a helper function for visitMUL to check the profitability -// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). -// MulNode is the original multiply, AddNode is (add x, c1), -// and ConstNode is c2. -// -// If the (add x, c1) has multiple uses, we could increase -// the number of adds if we make this transformation. -// It would only be worth doing this if we can remove a -// multiply in the process. Check for that here. -// To illustrate: -// (A + c1) * c3 -// (A + c2) * c3 -// We're checking for cases where we have common "c3 * A" expressions. -bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, - SDValue &AddNode, - SDValue &ConstNode) { - APInt Val; - - // If the add only has one use, this would be OK to do. - if (AddNode.getNode()->hasOneUse()) - return true; - - // Walk all the users of the constant with which we're multiplying. - for (SDNode *Use : ConstNode->uses()) { - if (Use == MulNode) // This use is the one we're on right now. Skip it. - continue; - - if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. - SDNode *OtherOp; - SDNode *MulVar = AddNode.getOperand(0).getNode(); - - // OtherOp is what we're multiplying against the constant. - if (Use->getOperand(0) == ConstNode) - OtherOp = Use->getOperand(1).getNode(); - else - OtherOp = Use->getOperand(0).getNode(); - - // Check to see if multiply is with the same operand of our "add". - // - // ConstNode = CONST - // Use = ConstNode * A <-- visiting Use. OtherOp is A. - // ... - // AddNode = (A + c1) <-- MulVar is A. - // = AddNode * ConstNode <-- current visiting instruction. - // - // If we make this transformation, we will have a common - // multiply (ConstNode * A) that we can save. - if (OtherOp == MulVar) - return true; - - // Now check to see if a future expansion will give us a common - // multiply. - // - // ConstNode = CONST - // AddNode = (A + c1) - // ... = AddNode * ConstNode <-- current visiting instruction. - // ... - // OtherOp = (A + c2) - // Use = OtherOp * ConstNode <-- visiting Use. - // - // If we make this transformation, we will have a common - // multiply (CONST * A) after we also do the same transformation - // to the "t2" instruction. - if (OtherOp->getOpcode() == ISD::ADD && - DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && - OtherOp->getOperand(0).getNode() == MulVar) - return true; - } - } - - // Didn't find a case where this would be profitable. - return false; -} - -SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumStores) { - SmallVector<SDValue, 8> Chains; - SmallPtrSet<const SDNode *, 8> Visited; - SDLoc StoreDL(StoreNodes[0].MemNode); - - for (unsigned i = 0; i < NumStores; ++i) { - Visited.insert(StoreNodes[i].MemNode); - } - - // don't include nodes that are children - for (unsigned i = 0; i < NumStores; ++i) { - if (Visited.count(StoreNodes[i].MemNode->getChain().getNode()) == 0) - Chains.push_back(StoreNodes[i].MemNode->getChain()); - } - - assert(Chains.size() > 0 && "Chain should have generated a chain"); - return DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, Chains); -} - -bool DAGCombiner::MergeStoresOfConstantsOrVecElts( - SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, - bool IsConstantSrc, bool UseVector, bool UseTrunc) { - // Make sure we have something to merge. - if (NumStores < 2) - return false; - - // The latest Node in the DAG. - SDLoc DL(StoreNodes[0].MemNode); - - int64_t ElementSizeBits = MemVT.getStoreSizeInBits(); - unsigned SizeInBits = NumStores * ElementSizeBits; - unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; - - EVT StoreTy; - if (UseVector) { - unsigned Elts = NumStores * NumMemElts; - // Get the type for the merged vector store. - StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); - } else - StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); - - SDValue StoredVal; - if (UseVector) { - if (IsConstantSrc) { - SmallVector<SDValue, 8> BuildVector; - for (unsigned I = 0; I != NumStores; ++I) { - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); - SDValue Val = St->getValue(); - // If constant is of the wrong type, convert it now. - if (MemVT != Val.getValueType()) { - Val = peekThroughBitcasts(Val); - // Deal with constants of wrong size. - if (ElementSizeBits != Val.getValueSizeInBits()) { - EVT IntMemVT = - EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); - if (isa<ConstantFPSDNode>(Val)) { - // Not clear how to truncate FP values. - return false; - } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) - Val = DAG.getConstant(C->getAPIntValue() - .zextOrTrunc(Val.getValueSizeInBits()) - .zextOrTrunc(ElementSizeBits), - SDLoc(C), IntMemVT); - } - // Make sure correctly size type is the correct type. - Val = DAG.getBitcast(MemVT, Val); - } - BuildVector.push_back(Val); - } - StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS - : ISD::BUILD_VECTOR, - DL, StoreTy, BuildVector); - } else { - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0; i < NumStores; ++i) { - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); - SDValue Val = peekThroughBitcasts(St->getValue()); - // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of - // type MemVT. If the underlying value is not the correct - // type, but it is an extraction of an appropriate vector we - // can recast Val to be of the correct type. This may require - // converting between EXTRACT_VECTOR_ELT and - // EXTRACT_SUBVECTOR. - if ((MemVT != Val.getValueType()) && - (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || - Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { - EVT MemVTScalarTy = MemVT.getScalarType(); - // We may need to add a bitcast here to get types to line up. - if (MemVTScalarTy != Val.getValueType().getScalarType()) { - Val = DAG.getBitcast(MemVT, Val); - } else { - unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR - : ISD::EXTRACT_VECTOR_ELT; - SDValue Vec = Val.getOperand(0); - SDValue Idx = Val.getOperand(1); - Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); - } - } - Ops.push_back(Val); - } - - // Build the extracted vector elements back into a vector. - StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS - : ISD::BUILD_VECTOR, - DL, StoreTy, Ops); - } - } else { - // We should always use a vector store when merging extracted vector - // elements, so this path implies a store of constants. - assert(IsConstantSrc && "Merged vector elements should use vector store"); - - APInt StoreInt(SizeInBits, 0); - - // Construct a single integer constant which is made of the smaller - // constant inputs. - bool IsLE = DAG.getDataLayout().isLittleEndian(); - for (unsigned i = 0; i < NumStores; ++i) { - unsigned Idx = IsLE ? (NumStores - 1 - i) : i; - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); - - SDValue Val = St->getValue(); - Val = peekThroughBitcasts(Val); - StoreInt <<= ElementSizeBits; - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { - StoreInt |= C->getAPIntValue() - .zextOrTrunc(ElementSizeBits) - .zextOrTrunc(SizeInBits); - } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { - StoreInt |= C->getValueAPF() - .bitcastToAPInt() - .zextOrTrunc(ElementSizeBits) - .zextOrTrunc(SizeInBits); - // If fp truncation is necessary give up for now. - if (MemVT.getSizeInBits() != ElementSizeBits) - return false; - } else { - llvm_unreachable("Invalid constant element type"); - } - } - - // Create the new Load and Store operations. - StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); - } - - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); - - // make sure we use trunc store if it's necessary to be legal. - SDValue NewStore; - if (!UseTrunc) { - NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), - FirstInChain->getPointerInfo(), - FirstInChain->getAlignment()); - } else { // Must be realized as a trunc store - EVT LegalizedStoredValTy = - TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); - unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); - ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); - SDValue ExtendedStoreVal = - DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, - LegalizedStoredValTy); - NewStore = DAG.getTruncStore( - NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), - FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, - FirstInChain->getAlignment(), - FirstInChain->getMemOperand()->getFlags()); - } - - // Replace all merged stores with the new store. - for (unsigned i = 0; i < NumStores; ++i) - CombineTo(StoreNodes[i].MemNode, NewStore); - - AddToWorklist(NewChain.getNode()); - return true; -} - -void DAGCombiner::getStoreMergeCandidates( - StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, - SDNode *&RootNode) { - // This holds the base pointer, index, and the offset in bytes from the base - // pointer. - BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); - EVT MemVT = St->getMemoryVT(); - - SDValue Val = peekThroughBitcasts(St->getValue()); - // We must have a base and an offset. - if (!BasePtr.getBase().getNode()) - return; - - // Do not handle stores to undef base pointers. - if (BasePtr.getBase().isUndef()) - return; - - bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val); - bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || - Val.getOpcode() == ISD::EXTRACT_SUBVECTOR); - bool IsLoadSrc = isa<LoadSDNode>(Val); - BaseIndexOffset LBasePtr; - // Match on loadbaseptr if relevant. - EVT LoadVT; - if (IsLoadSrc) { - auto *Ld = cast<LoadSDNode>(Val); - LBasePtr = BaseIndexOffset::match(Ld, DAG); - LoadVT = Ld->getMemoryVT(); - // Load and store should be the same type. - if (MemVT != LoadVT) - return; - // Loads must only have one use. - if (!Ld->hasNUsesOfValue(1, 0)) - return; - // The memory operands must not be volatile. - if (Ld->isVolatile() || Ld->isIndexed()) - return; - } - auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, - int64_t &Offset) -> bool { - if (Other->isVolatile() || Other->isIndexed()) - return false; - SDValue Val = peekThroughBitcasts(Other->getValue()); - // Allow merging constants of different types as integers. - bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) - : Other->getMemoryVT() != MemVT; - if (IsLoadSrc) { - if (NoTypeMatch) - return false; - // The Load's Base Ptr must also match - if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(Val)) { - auto LPtr = BaseIndexOffset::match(OtherLd, DAG); - if (LoadVT != OtherLd->getMemoryVT()) - return false; - // Loads must only have one use. - if (!OtherLd->hasNUsesOfValue(1, 0)) - return false; - // The memory operands must not be volatile. - if (OtherLd->isVolatile() || OtherLd->isIndexed()) - return false; - if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) - return false; - } else - return false; - } - if (IsConstantSrc) { - if (NoTypeMatch) - return false; - if (!(isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val))) - return false; - } - if (IsExtractVecSrc) { - // Do not merge truncated stores here. - if (Other->isTruncatingStore()) - return false; - if (!MemVT.bitsEq(Val.getValueType())) - return false; - if (Val.getOpcode() != ISD::EXTRACT_VECTOR_ELT && - Val.getOpcode() != ISD::EXTRACT_SUBVECTOR) - return false; - } - Ptr = BaseIndexOffset::match(Other, DAG); - return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); - }; - - // We looking for a root node which is an ancestor to all mergable - // stores. We search up through a load, to our root and then down - // through all children. For instance we will find Store{1,2,3} if - // St is Store1, Store2. or Store3 where the root is not a load - // which always true for nonvolatile ops. TODO: Expand - // the search to find all valid candidates through multiple layers of loads. - // - // Root - // |-------|-------| - // Load Load Store3 - // | | - // Store1 Store2 - // - // FIXME: We should be able to climb and - // descend TokenFactors to find candidates as well. - - RootNode = St->getChain().getNode(); - - if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) { - RootNode = Ldn->getChain().getNode(); - for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I) - if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain - for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) - if (I2.getOperandNo() == 0) - if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) { - BaseIndexOffset Ptr; - int64_t PtrDiff; - if (CandidateMatch(OtherST, Ptr, PtrDiff)) - StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); - } - } else - for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I) - if (I.getOperandNo() == 0) - if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { - BaseIndexOffset Ptr; - int64_t PtrDiff; - if (CandidateMatch(OtherST, Ptr, PtrDiff)) - StoreNodes.push_back(MemOpLink(OtherST, PtrDiff)); - } -} - -// We need to check that merging these stores does not cause a loop in -// the DAG. Any store candidate may depend on another candidate -// indirectly through its operand (we already consider dependencies -// through the chain). Check in parallel by searching up from -// non-chain operands of candidates. -bool DAGCombiner::checkMergeStoreCandidatesForDependencies( - SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, - SDNode *RootNode) { - // FIXME: We should be able to truncate a full search of - // predecessors by doing a BFS and keeping tabs the originating - // stores from which worklist nodes come from in a similar way to - // TokenFactor simplfication. - - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 8> Worklist; - - // RootNode is a predecessor to all candidates so we need not search - // past it. Add RootNode (peeking through TokenFactors). Do not count - // these towards size check. - - Worklist.push_back(RootNode); - while (!Worklist.empty()) { - auto N = Worklist.pop_back_val(); - if (!Visited.insert(N).second) - continue; // Already present in Visited. - if (N->getOpcode() == ISD::TokenFactor) { - for (SDValue Op : N->ops()) - Worklist.push_back(Op.getNode()); - } - } - - // Don't count pruning nodes towards max. - unsigned int Max = 1024 + Visited.size(); - // Search Ops of store candidates. - for (unsigned i = 0; i < NumStores; ++i) { - SDNode *N = StoreNodes[i].MemNode; - // Of the 4 Store Operands: - // * Chain (Op 0) -> We have already considered these - // in candidate selection and can be - // safely ignored - // * Value (Op 1) -> Cycles may happen (e.g. through load chains) - // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, - // but aren't necessarily fromt the same base node, so - // cycles possible (e.g. via indexed store). - // * (Op 3) -> Represents the pre or post-indexing offset (or undef for - // non-indexed stores). Not constant on all targets (e.g. ARM) - // and so can participate in a cycle. - for (unsigned j = 1; j < N->getNumOperands(); ++j) - Worklist.push_back(N->getOperand(j).getNode()); - } - // Search through DAG. We can stop early if we find a store node. - for (unsigned i = 0; i < NumStores; ++i) - if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, - Max)) - return false; - return true; -} - -bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) { - if (OptLevel == CodeGenOpt::None) - return false; - - EVT MemVT = St->getMemoryVT(); - int64_t ElementSizeBytes = MemVT.getStoreSize(); - unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; - - if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) - return false; - - bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute( - Attribute::NoImplicitFloat); - - // This function cannot currently deal with non-byte-sized memory sizes. - if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) - return false; - - if (!MemVT.isSimple()) - return false; - - // Perform an early exit check. Do not bother looking at stored values that - // are not constants, loads, or extracted vector elements. - SDValue StoredVal = peekThroughBitcasts(St->getValue()); - bool IsLoadSrc = isa<LoadSDNode>(StoredVal); - bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || - isa<ConstantFPSDNode>(StoredVal); - bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || - StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); - - if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) - return false; - - SmallVector<MemOpLink, 8> StoreNodes; - SDNode *RootNode; - // Find potential store merge candidates by searching through chain sub-DAG - getStoreMergeCandidates(St, StoreNodes, RootNode); - - // Check if there is anything to merge. - if (StoreNodes.size() < 2) - return false; - - // Sort the memory operands according to their distance from the - // base pointer. - llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { - return LHS.OffsetFromBase < RHS.OffsetFromBase; - }); - - // Store Merge attempts to merge the lowest stores. This generally - // works out as if successful, as the remaining stores are checked - // after the first collection of stores is merged. However, in the - // case that a non-mergeable store is found first, e.g., {p[-2], - // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent - // mergeable cases. To prevent this, we prune such stores from the - // front of StoreNodes here. - - bool RV = false; - while (StoreNodes.size() > 1) { - unsigned StartIdx = 0; - while ((StartIdx + 1 < StoreNodes.size()) && - StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != - StoreNodes[StartIdx + 1].OffsetFromBase) - ++StartIdx; - - // Bail if we don't have enough candidates to merge. - if (StartIdx + 1 >= StoreNodes.size()) - return RV; - - if (StartIdx) - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); - - // Scan the memory operations on the chain and find the first - // non-consecutive store memory address. - unsigned NumConsecutiveStores = 1; - int64_t StartAddress = StoreNodes[0].OffsetFromBase; - // Check that the addresses are consecutive starting from the second - // element in the list of stores. - for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { - int64_t CurrAddress = StoreNodes[i].OffsetFromBase; - if (CurrAddress - StartAddress != (ElementSizeBytes * i)) - break; - NumConsecutiveStores = i + 1; - } - - if (NumConsecutiveStores < 2) { - StoreNodes.erase(StoreNodes.begin(), - StoreNodes.begin() + NumConsecutiveStores); - continue; - } - - // The node with the lowest store address. - LLVMContext &Context = *DAG.getContext(); - const DataLayout &DL = DAG.getDataLayout(); - - // Store the constants into memory as one consecutive store. - if (IsConstantSrc) { - while (NumConsecutiveStores >= 2) { - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - unsigned FirstStoreAS = FirstInChain->getAddressSpace(); - unsigned FirstStoreAlign = FirstInChain->getAlignment(); - unsigned LastLegalType = 1; - unsigned LastLegalVectorType = 1; - bool LastIntegerTrunc = false; - bool NonZero = false; - unsigned FirstZeroAfterNonZero = NumConsecutiveStores; - for (unsigned i = 0; i < NumConsecutiveStores; ++i) { - StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); - SDValue StoredVal = ST->getValue(); - bool IsElementZero = false; - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) - IsElementZero = C->isNullValue(); - else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) - IsElementZero = C->getConstantFPValue()->isNullValue(); - if (IsElementZero) { - if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) - FirstZeroAfterNonZero = i; - } - NonZero |= !IsElementZero; - - // Find a legal type for the constant store. - unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; - EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); - bool IsFast = false; - - // Break early when size is too large to be legal. - if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) - break; - - if (TLI.isTypeLegal(StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, - FirstStoreAlign, &IsFast) && - IsFast) { - LastIntegerTrunc = false; - LastLegalType = i + 1; - // Or check whether a truncstore is legal. - } else if (TLI.getTypeAction(Context, StoreTy) == - TargetLowering::TypePromoteInteger) { - EVT LegalizedStoredValTy = - TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); - if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, - FirstStoreAlign, &IsFast) && - IsFast) { - LastIntegerTrunc = true; - LastLegalType = i + 1; - } - } - - // We only use vectors if the constant is known to be zero or the - // target allows it and the function is not marked with the - // noimplicitfloat attribute. - if ((!NonZero || - TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && - !NoVectors) { - // Find a legal type for the vector store. - unsigned Elts = (i + 1) * NumMemElts; - EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); - if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && - TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && - TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, - FirstStoreAlign, &IsFast) && - IsFast) - LastLegalVectorType = i + 1; - } - } - - bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; - unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; - - // Check if we found a legal integer type that creates a meaningful - // merge. - if (NumElem < 2) { - // We know that candidate stores are in order and of correct - // shape. While there is no mergeable sequence from the - // beginning one may start later in the sequence. The only - // reason a merge of size N could have failed where another of - // the same size would not have, is if the alignment has - // improved or we've dropped a non-zero value. Drop as many - // candidates as we can here. - unsigned NumSkip = 1; - while ( - (NumSkip < NumConsecutiveStores) && - (NumSkip < FirstZeroAfterNonZero) && - (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) - NumSkip++; - - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); - NumConsecutiveStores -= NumSkip; - continue; - } - - // Check that we can merge these candidates without causing a cycle. - if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, - RootNode)) { - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - continue; - } - - RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true, - UseVector, LastIntegerTrunc); - - // Remove merged stores for next iteration. - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - } - continue; - } - - // When extracting multiple vector elements, try to store them - // in one vector store rather than a sequence of scalar stores. - if (IsExtractVecSrc) { - // Loop on Consecutive Stores on success. - while (NumConsecutiveStores >= 2) { - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - unsigned FirstStoreAS = FirstInChain->getAddressSpace(); - unsigned FirstStoreAlign = FirstInChain->getAlignment(); - unsigned NumStoresToMerge = 1; - for (unsigned i = 0; i < NumConsecutiveStores; ++i) { - // Find a legal type for the vector store. - unsigned Elts = (i + 1) * NumMemElts; - EVT Ty = - EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); - bool IsFast; - - // Break early when size is too large to be legal. - if (Ty.getSizeInBits() > MaximumLegalStoreInBits) - break; - - if (TLI.isTypeLegal(Ty) && - TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && - TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, - FirstStoreAlign, &IsFast) && - IsFast) - NumStoresToMerge = i + 1; - } - - // Check if we found a legal integer type creating a meaningful - // merge. - if (NumStoresToMerge < 2) { - // We know that candidate stores are in order and of correct - // shape. While there is no mergeable sequence from the - // beginning one may start later in the sequence. The only - // reason a merge of size N could have failed where another of - // the same size would not have, is if the alignment has - // improved. Drop as many candidates as we can here. - unsigned NumSkip = 1; - while ( - (NumSkip < NumConsecutiveStores) && - (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) - NumSkip++; - - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); - NumConsecutiveStores -= NumSkip; - continue; - } - - // Check that we can merge these candidates without causing a cycle. - if (!checkMergeStoreCandidatesForDependencies( - StoreNodes, NumStoresToMerge, RootNode)) { - StoreNodes.erase(StoreNodes.begin(), - StoreNodes.begin() + NumStoresToMerge); - NumConsecutiveStores -= NumStoresToMerge; - continue; - } - - RV |= MergeStoresOfConstantsOrVecElts( - StoreNodes, MemVT, NumStoresToMerge, false, true, false); - - StoreNodes.erase(StoreNodes.begin(), - StoreNodes.begin() + NumStoresToMerge); - NumConsecutiveStores -= NumStoresToMerge; - } - continue; - } - - // Below we handle the case of multiple consecutive stores that - // come from multiple consecutive loads. We merge them into a single - // wide load and a single wide store. - - // Look for load nodes which are used by the stored values. - SmallVector<MemOpLink, 8> LoadNodes; - - // Find acceptable loads. Loads need to have the same chain (token factor), - // must not be zext, volatile, indexed, and they must be consecutive. - BaseIndexOffset LdBasePtr; - - for (unsigned i = 0; i < NumConsecutiveStores; ++i) { - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); - SDValue Val = peekThroughBitcasts(St->getValue()); - LoadSDNode *Ld = cast<LoadSDNode>(Val); - - BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); - // If this is not the first ptr that we check. - int64_t LdOffset = 0; - if (LdBasePtr.getBase().getNode()) { - // The base ptr must be the same. - if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) - break; - } else { - // Check that all other base pointers are the same as this one. - LdBasePtr = LdPtr; - } - - // We found a potential memory operand to merge. - LoadNodes.push_back(MemOpLink(Ld, LdOffset)); - } - - while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { - // If we have load/store pair instructions and we only have two values, - // don't bother merging. - unsigned RequiredAlignment; - if (LoadNodes.size() == 2 && - TLI.hasPairedLoad(MemVT, RequiredAlignment) && - StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) { - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); - break; - } - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - unsigned FirstStoreAS = FirstInChain->getAddressSpace(); - unsigned FirstStoreAlign = FirstInChain->getAlignment(); - LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); - unsigned FirstLoadAS = FirstLoad->getAddressSpace(); - unsigned FirstLoadAlign = FirstLoad->getAlignment(); - - // Scan the memory operations on the chain and find the first - // non-consecutive load memory address. These variables hold the index in - // the store node array. - - unsigned LastConsecutiveLoad = 1; - - // This variable refers to the size and not index in the array. - unsigned LastLegalVectorType = 1; - unsigned LastLegalIntegerType = 1; - bool isDereferenceable = true; - bool DoIntegerTruncate = false; - StartAddress = LoadNodes[0].OffsetFromBase; - SDValue FirstChain = FirstLoad->getChain(); - for (unsigned i = 1; i < LoadNodes.size(); ++i) { - // All loads must share the same chain. - if (LoadNodes[i].MemNode->getChain() != FirstChain) - break; - - int64_t CurrAddress = LoadNodes[i].OffsetFromBase; - if (CurrAddress - StartAddress != (ElementSizeBytes * i)) - break; - LastConsecutiveLoad = i; - - if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) - isDereferenceable = false; - - // Find a legal type for the vector store. - unsigned Elts = (i + 1) * NumMemElts; - EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); - - // Break early when size is too large to be legal. - if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) - break; - - bool IsFastSt, IsFastLd; - if (TLI.isTypeLegal(StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, - FirstStoreAlign, &IsFastSt) && - IsFastSt && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, - FirstLoadAlign, &IsFastLd) && - IsFastLd) { - LastLegalVectorType = i + 1; - } - - // Find a legal type for the integer store. - unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; - StoreTy = EVT::getIntegerVT(Context, SizeInBits); - if (TLI.isTypeLegal(StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, - FirstStoreAlign, &IsFastSt) && - IsFastSt && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, - FirstLoadAlign, &IsFastLd) && - IsFastLd) { - LastLegalIntegerType = i + 1; - DoIntegerTruncate = false; - // Or check whether a truncstore and extload is legal. - } else if (TLI.getTypeAction(Context, StoreTy) == - TargetLowering::TypePromoteInteger) { - EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); - if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && - TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, - StoreTy) && - TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, - StoreTy) && - TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, - FirstStoreAlign, &IsFastSt) && - IsFastSt && - TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, - FirstLoadAlign, &IsFastLd) && - IsFastLd) { - LastLegalIntegerType = i + 1; - DoIntegerTruncate = true; - } - } - } - - // Only use vector types if the vector type is larger than the integer - // type. If they are the same, use integers. - bool UseVectorTy = - LastLegalVectorType > LastLegalIntegerType && !NoVectors; - unsigned LastLegalType = - std::max(LastLegalVectorType, LastLegalIntegerType); - - // We add +1 here because the LastXXX variables refer to location while - // the NumElem refers to array/index size. - unsigned NumElem = - std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); - NumElem = std::min(LastLegalType, NumElem); - - if (NumElem < 2) { - // We know that candidate stores are in order and of correct - // shape. While there is no mergeable sequence from the - // beginning one may start later in the sequence. The only - // reason a merge of size N could have failed where another of - // the same size would not have is if the alignment or either - // the load or store has improved. Drop as many candidates as we - // can here. - unsigned NumSkip = 1; - while ((NumSkip < LoadNodes.size()) && - (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) && - (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) - NumSkip++; - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); - NumConsecutiveStores -= NumSkip; - continue; - } - - // Check that we can merge these candidates without causing a cycle. - if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, - RootNode)) { - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - continue; - } - - // Find if it is better to use vectors or integers to load and store - // to memory. - EVT JointMemOpVT; - if (UseVectorTy) { - // Find a legal type for the vector store. - unsigned Elts = NumElem * NumMemElts; - JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); - } else { - unsigned SizeInBits = NumElem * ElementSizeBytes * 8; - JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); - } - - SDLoc LoadDL(LoadNodes[0].MemNode); - SDLoc StoreDL(StoreNodes[0].MemNode); - - // The merged loads are required to have the same incoming chain, so - // using the first's chain is acceptable. - - SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); - AddToWorklist(NewStoreChain.getNode()); - - MachineMemOperand::Flags MMOFlags = - isDereferenceable ? MachineMemOperand::MODereferenceable - : MachineMemOperand::MONone; - - SDValue NewLoad, NewStore; - if (UseVectorTy || !DoIntegerTruncate) { - NewLoad = - DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(), - FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), - FirstLoadAlign, MMOFlags); - NewStore = DAG.getStore( - NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), - FirstInChain->getPointerInfo(), FirstStoreAlign); - } else { // This must be the truncstore/extload case - EVT ExtendedTy = - TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); - NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, - FirstLoad->getChain(), FirstLoad->getBasePtr(), - FirstLoad->getPointerInfo(), JointMemOpVT, - FirstLoadAlign, MMOFlags); - NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad, - FirstInChain->getBasePtr(), - FirstInChain->getPointerInfo(), - JointMemOpVT, FirstInChain->getAlignment(), - FirstInChain->getMemOperand()->getFlags()); - } - - // Transfer chain users from old loads to the new load. - for (unsigned i = 0; i < NumElem; ++i) { - LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); - DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), - SDValue(NewLoad.getNode(), 1)); - } - - // Replace the all stores with the new store. Recursively remove - // corresponding value if its no longer used. - for (unsigned i = 0; i < NumElem; ++i) { - SDValue Val = StoreNodes[i].MemNode->getOperand(1); - CombineTo(StoreNodes[i].MemNode, NewStore); - if (Val.getNode()->use_empty()) - recursivelyDeleteUnusedNodes(Val.getNode()); - } - - RV = true; - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - } - } - return RV; -} - -SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { - SDLoc SL(ST); - SDValue ReplStore; - - // Replace the chain to avoid dependency. - if (ST->isTruncatingStore()) { - ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), - ST->getBasePtr(), ST->getMemoryVT(), - ST->getMemOperand()); - } else { - ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), - ST->getMemOperand()); - } - - // Create token to keep both nodes around. - SDValue Token = DAG.getNode(ISD::TokenFactor, SL, - MVT::Other, ST->getChain(), ReplStore); - - // Make sure the new and old chains are cleaned up. - AddToWorklist(Token.getNode()); - - // Don't add users to work list. - return CombineTo(ST, Token, false); -} - -SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { - SDValue Value = ST->getValue(); - if (Value.getOpcode() == ISD::TargetConstantFP) - return SDValue(); - - SDLoc DL(ST); - - SDValue Chain = ST->getChain(); - SDValue Ptr = ST->getBasePtr(); - - const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); - - // NOTE: If the original store is volatile, this transform must not increase - // the number of stores. For example, on x86-32 an f64 can be stored in one - // processor operation but an i64 (which is not legal) requires two. So the - // transform should not be done in this case. - - SDValue Tmp; - switch (CFP->getSimpleValueType(0).SimpleTy) { - default: - llvm_unreachable("Unknown FP type"); - case MVT::f16: // We don't do this for these yet. - case MVT::f80: - case MVT::f128: - case MVT::ppcf128: - return SDValue(); - case MVT::f32: - if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || - TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { - ; - Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). - bitcastToAPInt().getZExtValue(), SDLoc(CFP), - MVT::i32); - return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); - } - - return SDValue(); - case MVT::f64: - if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && - !ST->isVolatile()) || - TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { - ; - Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). - getZExtValue(), SDLoc(CFP), MVT::i64); - return DAG.getStore(Chain, DL, Tmp, - Ptr, ST->getMemOperand()); - } - - if (!ST->isVolatile() && - TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { - // Many FP stores are not made apparent until after legalize, e.g. for - // argument passing. Since this is so common, custom legalize the - // 64-bit integer store into two 32-bit stores. - uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); - SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); - SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); - if (DAG.getDataLayout().isBigEndian()) - std::swap(Lo, Hi); - - unsigned Alignment = ST->getAlignment(); - MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); - AAMDNodes AAInfo = ST->getAAInfo(); - - SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), - ST->getAlignment(), MMOFlags, AAInfo); - Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, - DAG.getConstant(4, DL, Ptr.getValueType())); - Alignment = MinAlign(Alignment, 4U); - SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, - ST->getPointerInfo().getWithOffset(4), - Alignment, MMOFlags, AAInfo); - return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, - St0, St1); - } - - return SDValue(); - } -} - -SDValue DAGCombiner::visitSTORE(SDNode *N) { - StoreSDNode *ST = cast<StoreSDNode>(N); - SDValue Chain = ST->getChain(); - SDValue Value = ST->getValue(); - SDValue Ptr = ST->getBasePtr(); - - // If this is a store of a bit convert, store the input value if the - // resultant store does not need a higher alignment than the original. - if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && - ST->isUnindexed()) { - EVT SVT = Value.getOperand(0).getValueType(); - // If the store is volatile, we only want to change the store type if the - // resulting store is legal. Otherwise we might increase the number of - // memory accesses. We don't care if the original type was legal or not - // as we assume software couldn't rely on the number of accesses of an - // illegal type. - if (((!LegalOperations && !ST->isVolatile()) || - TLI.isOperationLegal(ISD::STORE, SVT)) && - TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { - unsigned OrigAlign = ST->getAlignment(); - bool Fast = false; - if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, - ST->getAddressSpace(), OrigAlign, &Fast) && - Fast) { - return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, - ST->getPointerInfo(), OrigAlign, - ST->getMemOperand()->getFlags(), ST->getAAInfo()); - } - } - } - - // Turn 'store undef, Ptr' -> nothing. - if (Value.isUndef() && ST->isUnindexed()) - return Chain; - - // Try to infer better alignment information than the store already has. - if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { - if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { - if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) { - SDValue NewStore = - DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), - ST->getMemoryVT(), Align, - ST->getMemOperand()->getFlags(), ST->getAAInfo()); - // NewStore will always be N as we are only refining the alignment - assert(NewStore.getNode() == N); - (void)NewStore; - } - } - } - - // Try transforming a pair floating point load / store ops to integer - // load / store ops. - if (SDValue NewST = TransformFPLoadStorePair(N)) - return NewST; - - if (ST->isUnindexed()) { - // Walk up chain skipping non-aliasing memory nodes, on this store and any - // adjacent stores. - if (findBetterNeighborChains(ST)) { - // replaceStoreChain uses CombineTo, which handled all of the worklist - // manipulation. Return the original node to not do anything else. - return SDValue(ST, 0); - } - Chain = ST->getChain(); - } - - // FIXME: is there such a thing as a truncating indexed store? - if (ST->isTruncatingStore() && ST->isUnindexed() && - Value.getValueType().isInteger() && - (!isa<ConstantSDNode>(Value) || - !cast<ConstantSDNode>(Value)->isOpaque())) { - // See if we can simplify the input to this truncstore with knowledge that - // only the low bits are being used. For example: - // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" - SDValue Shorter = DAG.GetDemandedBits( - Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), - ST->getMemoryVT().getScalarSizeInBits())); - AddToWorklist(Value.getNode()); - if (Shorter.getNode()) - return DAG.getTruncStore(Chain, SDLoc(N), Shorter, - Ptr, ST->getMemoryVT(), ST->getMemOperand()); - - // Otherwise, see if we can simplify the operation with - // SimplifyDemandedBits, which only works if the value has a single use. - if (SimplifyDemandedBits( - Value, - APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), - ST->getMemoryVT().getScalarSizeInBits()))) { - // Re-visit the store if anything changed and the store hasn't been merged - // with another node (N is deleted) SimplifyDemandedBits will add Value's - // node back to the worklist if necessary, but we also need to re-visit - // the Store node itself. - if (N->getOpcode() != ISD::DELETED_NODE) - AddToWorklist(N); - return SDValue(N, 0); - } - } - - // If this is a load followed by a store to the same location, then the store - // is dead/noop. - if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { - if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && - ST->isUnindexed() && !ST->isVolatile() && - // There can't be any side effects between the load and store, such as - // a call or store. - Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { - // The store is dead, remove it. - return Chain; - } - } - - if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { - if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() && - !ST1->isVolatile() && ST1->getBasePtr() == Ptr && - ST->getMemoryVT() == ST1->getMemoryVT()) { - // If this is a store followed by a store with the same value to the same - // location, then the store is dead/noop. - if (ST1->getValue() == Value) { - // The store is dead, remove it. - return Chain; - } - - // If this is a store who's preceeding store to the same location - // and no one other node is chained to that store we can effectively - // drop the store. Do not remove stores to undef as they may be used as - // data sinks. - if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && - !ST1->getBasePtr().isUndef()) { - // ST1 is fully overwritten and can be elided. Combine with it's chain - // value. - CombineTo(ST1, ST1->getChain()); - return SDValue(); - } - } - } - - // If this is an FP_ROUND or TRUNC followed by a store, fold this into a - // truncating store. We can do this even if this is already a truncstore. - if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) - && Value.getNode()->hasOneUse() && ST->isUnindexed() && - TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), - ST->getMemoryVT())) { - return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), - Ptr, ST->getMemoryVT(), ST->getMemOperand()); - } - - // Always perform this optimization before types are legal. If the target - // prefers, also try this after legalization to catch stores that were created - // by intrinsics or other nodes. - if (!LegalTypes || (TLI.mergeStoresAfterLegalization())) { - while (true) { - // There can be multiple store sequences on the same chain. - // Keep trying to merge store sequences until we are unable to do so - // or until we merge the last store on the chain. - bool Changed = MergeConsecutiveStores(ST); - if (!Changed) break; - // Return N as merge only uses CombineTo and no worklist clean - // up is necessary. - if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) - return SDValue(N, 0); - } - } - - // Try transforming N to an indexed store. - if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) - return SDValue(N, 0); - - // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' - // - // Make sure to do this only after attempting to merge stores in order to - // avoid changing the types of some subset of stores due to visit order, - // preventing their merging. - if (isa<ConstantFPSDNode>(ST->getValue())) { - if (SDValue NewSt = replaceStoreOfFPConstant(ST)) - return NewSt; - } - - if (SDValue NewSt = splitMergedValStore(ST)) - return NewSt; - - return ReduceLoadOpStoreWidth(N); -} - -/// For the instruction sequence of store below, F and I values -/// are bundled together as an i64 value before being stored into memory. -/// Sometimes it is more efficent to generate separate stores for F and I, -/// which can remove the bitwise instructions or sink them to colder places. -/// -/// (store (or (zext (bitcast F to i32) to i64), -/// (shl (zext I to i64), 32)), addr) --> -/// (store F, addr) and (store I, addr+4) -/// -/// Similarly, splitting for other merged store can also be beneficial, like: -/// For pair of {i32, i32}, i64 store --> two i32 stores. -/// For pair of {i32, i16}, i64 store --> two i32 stores. -/// For pair of {i16, i16}, i32 store --> two i16 stores. -/// For pair of {i16, i8}, i32 store --> two i16 stores. -/// For pair of {i8, i8}, i16 store --> two i8 stores. -/// -/// We allow each target to determine specifically which kind of splitting is -/// supported. -/// -/// The store patterns are commonly seen from the simple code snippet below -/// if only std::make_pair(...) is sroa transformed before inlined into hoo. -/// void goo(const std::pair<int, float> &); -/// hoo() { -/// ... -/// goo(std::make_pair(tmp, ftmp)); -/// ... -/// } -/// -SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { - if (OptLevel == CodeGenOpt::None) - return SDValue(); - - SDValue Val = ST->getValue(); - SDLoc DL(ST); - - // Match OR operand. - if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) - return SDValue(); - - // Match SHL operand and get Lower and Higher parts of Val. - SDValue Op1 = Val.getOperand(0); - SDValue Op2 = Val.getOperand(1); - SDValue Lo, Hi; - if (Op1.getOpcode() != ISD::SHL) { - std::swap(Op1, Op2); - if (Op1.getOpcode() != ISD::SHL) - return SDValue(); - } - Lo = Op2; - Hi = Op1.getOperand(0); - if (!Op1.hasOneUse()) - return SDValue(); - - // Match shift amount to HalfValBitSize. - unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; - ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); - if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) - return SDValue(); - - // Lo and Hi are zero-extended from int with size less equal than 32 - // to i64. - if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || - !Lo.getOperand(0).getValueType().isScalarInteger() || - Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || - Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || - !Hi.getOperand(0).getValueType().isScalarInteger() || - Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) - return SDValue(); - - // Use the EVT of low and high parts before bitcast as the input - // of target query. - EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) - ? Lo.getOperand(0).getValueType() - : Lo.getValueType(); - EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) - ? Hi.getOperand(0).getValueType() - : Hi.getValueType(); - if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) - return SDValue(); - - // Start to split store. - unsigned Alignment = ST->getAlignment(); - MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); - AAMDNodes AAInfo = ST->getAAInfo(); - - // Change the sizes of Lo and Hi's value types to HalfValBitSize. - EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); - Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); - Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); - - SDValue Chain = ST->getChain(); - SDValue Ptr = ST->getBasePtr(); - // Lower value store. - SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), - ST->getAlignment(), MMOFlags, AAInfo); - Ptr = - DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, - DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType())); - // Higher value store. - SDValue St1 = - DAG.getStore(St0, DL, Hi, Ptr, - ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), - Alignment / 2, MMOFlags, AAInfo); - return St1; -} - -/// Convert a disguised subvector insertion into a shuffle: -/// insert_vector_elt V, (bitcast X from vector type), IdxC --> -/// bitcast(shuffle (bitcast V), (extended X), Mask) -/// Note: We do not use an insert_subvector node because that requires a legal -/// subvector type. -SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { - SDValue InsertVal = N->getOperand(1); - if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || - !InsertVal.getOperand(0).getValueType().isVector()) - return SDValue(); - - SDValue SubVec = InsertVal.getOperand(0); - SDValue DestVec = N->getOperand(0); - EVT SubVecVT = SubVec.getValueType(); - EVT VT = DestVec.getValueType(); - unsigned NumSrcElts = SubVecVT.getVectorNumElements(); - unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); - unsigned NumMaskVals = ExtendRatio * NumSrcElts; - - // Step 1: Create a shuffle mask that implements this insert operation. The - // vector that we are inserting into will be operand 0 of the shuffle, so - // those elements are just 'i'. The inserted subvector is in the first - // positions of operand 1 of the shuffle. Example: - // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} - SmallVector<int, 16> Mask(NumMaskVals); - for (unsigned i = 0; i != NumMaskVals; ++i) { - if (i / NumSrcElts == InsIndex) - Mask[i] = (i % NumSrcElts) + NumMaskVals; - else - Mask[i] = i; - } - - // Bail out if the target can not handle the shuffle we want to create. - EVT SubVecEltVT = SubVecVT.getVectorElementType(); - EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); - if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) - return SDValue(); - - // Step 2: Create a wide vector from the inserted source vector by appending - // undefined elements. This is the same size as our destination vector. - SDLoc DL(N); - SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); - ConcatOps[0] = SubVec; - SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); - - // Step 3: Shuffle in the padded subvector. - SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); - SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); - AddToWorklist(PaddedSubV.getNode()); - AddToWorklist(DestVecBC.getNode()); - AddToWorklist(Shuf.getNode()); - return DAG.getBitcast(VT, Shuf); -} - -SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { - SDValue InVec = N->getOperand(0); - SDValue InVal = N->getOperand(1); - SDValue EltNo = N->getOperand(2); - SDLoc DL(N); - - // If the inserted element is an UNDEF, just use the input vector. - if (InVal.isUndef()) - return InVec; - - EVT VT = InVec.getValueType(); - unsigned NumElts = VT.getVectorNumElements(); - - // Remove redundant insertions: - // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x - if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) - return InVec; - - auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); - if (!IndexC) { - // If this is variable insert to undef vector, it might be better to splat: - // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > - if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { - SmallVector<SDValue, 8> Ops(NumElts, InVal); - return DAG.getBuildVector(VT, DL, Ops); - } - return SDValue(); - } - - // We must know which element is being inserted for folds below here. - unsigned Elt = IndexC->getZExtValue(); - if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) - return Shuf; - - // Canonicalize insert_vector_elt dag nodes. - // Example: - // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) - // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) - // - // Do this only if the child insert_vector node has one use; also - // do this only if indices are both constants and Idx1 < Idx0. - if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() - && isa<ConstantSDNode>(InVec.getOperand(2))) { - unsigned OtherElt = InVec.getConstantOperandVal(2); - if (Elt < OtherElt) { - // Swap nodes. - SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, - InVec.getOperand(0), InVal, EltNo); - AddToWorklist(NewOp.getNode()); - return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), - VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); - } - } - - // If we can't generate a legal BUILD_VECTOR, exit - if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) - return SDValue(); - - // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially - // be converted to a BUILD_VECTOR). Fill in the Ops vector with the - // vector elements. - SmallVector<SDValue, 8> Ops; - // Do not combine these two vectors if the output vector will not replace - // the input vector. - if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { - Ops.append(InVec.getNode()->op_begin(), - InVec.getNode()->op_end()); - } else if (InVec.isUndef()) { - Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); - } else { - return SDValue(); - } - assert(Ops.size() == NumElts && "Unexpected vector size"); - - // Insert the element - if (Elt < Ops.size()) { - // All the operands of BUILD_VECTOR must have the same type; - // we enforce that here. - EVT OpVT = Ops[0].getValueType(); - Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; - } - - // Return the new vector - return DAG.getBuildVector(VT, DL, Ops); -} - -SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, - SDValue EltNo, - LoadSDNode *OriginalLoad) { - assert(!OriginalLoad->isVolatile()); - - EVT ResultVT = EVE->getValueType(0); - EVT VecEltVT = InVecVT.getVectorElementType(); - unsigned Align = OriginalLoad->getAlignment(); - unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( - VecEltVT.getTypeForEVT(*DAG.getContext())); - - if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) - return SDValue(); - - ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? - ISD::NON_EXTLOAD : ISD::EXTLOAD; - if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) - return SDValue(); - - Align = NewAlign; - - SDValue NewPtr = OriginalLoad->getBasePtr(); - SDValue Offset; - EVT PtrType = NewPtr.getValueType(); - MachinePointerInfo MPI; - SDLoc DL(EVE); - if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { - int Elt = ConstEltNo->getZExtValue(); - unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; - Offset = DAG.getConstant(PtrOff, DL, PtrType); - MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); - } else { - Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); - Offset = DAG.getNode( - ISD::MUL, DL, PtrType, Offset, - DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); - MPI = OriginalLoad->getPointerInfo(); - } - NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); - - // The replacement we need to do here is a little tricky: we need to - // replace an extractelement of a load with a load. - // Use ReplaceAllUsesOfValuesWith to do the replacement. - // Note that this replacement assumes that the extractvalue is the only - // use of the load; that's okay because we don't want to perform this - // transformation in other cases anyway. - SDValue Load; - SDValue Chain; - if (ResultVT.bitsGT(VecEltVT)) { - // If the result type of vextract is wider than the load, then issue an - // extending load instead. - ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, - VecEltVT) - ? ISD::ZEXTLOAD - : ISD::EXTLOAD; - Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, - OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, - Align, OriginalLoad->getMemOperand()->getFlags(), - OriginalLoad->getAAInfo()); - Chain = Load.getValue(1); - } else { - Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, - MPI, Align, OriginalLoad->getMemOperand()->getFlags(), - OriginalLoad->getAAInfo()); - Chain = Load.getValue(1); - if (ResultVT.bitsLT(VecEltVT)) - Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); - else - Load = DAG.getBitcast(ResultVT, Load); - } - WorklistRemover DeadNodes(*this); - SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; - SDValue To[] = { Load, Chain }; - DAG.ReplaceAllUsesOfValuesWith(From, To, 2); - // Since we're explicitly calling ReplaceAllUses, add the new node to the - // worklist explicitly as well. - AddToWorklist(Load.getNode()); - AddUsersToWorklist(Load.getNode()); // Add users too - // Make sure to revisit this node to clean it up; it will usually be dead. - AddToWorklist(EVE); - ++OpsNarrowed; - return SDValue(EVE, 0); -} - -/// Transform a vector binary operation into a scalar binary operation by moving -/// the math/logic after an extract element of a vector. -static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, - bool LegalOperations) { - SDValue Vec = ExtElt->getOperand(0); - SDValue Index = ExtElt->getOperand(1); - auto *IndexC = dyn_cast<ConstantSDNode>(Index); - if (!IndexC || !ISD::isBinaryOp(Vec.getNode()) || !Vec.hasOneUse()) - return SDValue(); - - // Targets may want to avoid this to prevent an expensive register transfer. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.shouldScalarizeBinop(Vec)) - return SDValue(); - - // Extracting an element of a vector constant is constant-folded, so this - // transform is just replacing a vector op with a scalar op while moving the - // extract. - SDValue Op0 = Vec.getOperand(0); - SDValue Op1 = Vec.getOperand(1); - if (isAnyConstantBuildVector(Op0, true) || - isAnyConstantBuildVector(Op1, true)) { - // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' - // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) - SDLoc DL(ExtElt); - EVT VT = ExtElt->getValueType(0); - SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); - SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); - return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { - SDValue VecOp = N->getOperand(0); - SDValue Index = N->getOperand(1); - EVT ScalarVT = N->getValueType(0); - EVT VecVT = VecOp.getValueType(); - if (VecOp.isUndef()) - return DAG.getUNDEF(ScalarVT); - - // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val - // - // This only really matters if the index is non-constant since other combines - // on the constant elements already work. - SDLoc DL(N); - if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && - Index == VecOp.getOperand(2)) { - SDValue Elt = VecOp.getOperand(1); - return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; - } - - // (vextract (scalar_to_vector val, 0) -> val - if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { - // Check if the result type doesn't match the inserted element type. A - // SCALAR_TO_VECTOR may truncate the inserted element and the - // EXTRACT_VECTOR_ELT may widen the extracted vector. - SDValue InOp = VecOp.getOperand(0); - if (InOp.getValueType() != ScalarVT) { - assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); - return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); - } - return InOp; - } - - // extract_vector_elt of out-of-bounds element -> UNDEF - auto *IndexC = dyn_cast<ConstantSDNode>(Index); - unsigned NumElts = VecVT.getVectorNumElements(); - if (IndexC && IndexC->getAPIntValue().uge(NumElts)) - return DAG.getUNDEF(ScalarVT); - - // extract_vector_elt (build_vector x, y), 1 -> y - if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR && - TLI.isTypeLegal(VecVT) && - (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { - SDValue Elt = VecOp.getOperand(IndexC->getZExtValue()); - EVT InEltVT = Elt.getValueType(); - - // Sometimes build_vector's scalar input types do not match result type. - if (ScalarVT == InEltVT) - return Elt; - - // TODO: It may be useful to truncate if free if the build_vector implicitly - // converts. - } - - // TODO: These transforms should not require the 'hasOneUse' restriction, but - // there are regressions on multiple targets without it. We can end up with a - // mess of scalar and vector code if we reduce only part of the DAG to scalar. - if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && - VecOp.hasOneUse()) { - // The vector index of the LSBs of the source depend on the endian-ness. - bool IsLE = DAG.getDataLayout().isLittleEndian(); - unsigned ExtractIndex = IndexC->getZExtValue(); - // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) - unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; - SDValue BCSrc = VecOp.getOperand(0); - if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) - return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); - - if (LegalTypes && BCSrc.getValueType().isInteger() && - BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { - // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> - // trunc i64 X to i32 - SDValue X = BCSrc.getOperand(0); - assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && - "Extract element and scalar to vector can't change element type " - "from FP to integer."); - unsigned XBitWidth = X.getValueSizeInBits(); - unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); - BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; - - // An extract element return value type can be wider than its vector - // operand element type. In that case, the high bits are undefined, so - // it's possible that we may need to extend rather than truncate. - if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { - assert(XBitWidth % VecEltBitWidth == 0 && - "Scalar bitwidth must be a multiple of vector element bitwidth"); - return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); - } - } - } - - if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) - return BO; - - // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. - // We only perform this optimization before the op legalization phase because - // we may introduce new vector instructions which are not backed by TD - // patterns. For example on AVX, extracting elements from a wide vector - // without using extract_subvector. However, if we can find an underlying - // scalar value, then we can always use that. - if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { - auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); - // Find the new index to extract from. - int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); - - // Extracting an undef index is undef. - if (OrigElt == -1) - return DAG.getUNDEF(ScalarVT); - - // Select the right vector half to extract from. - SDValue SVInVec; - if (OrigElt < (int)NumElts) { - SVInVec = VecOp.getOperand(0); - } else { - SVInVec = VecOp.getOperand(1); - OrigElt -= NumElts; - } - - if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { - SDValue InOp = SVInVec.getOperand(OrigElt); - if (InOp.getValueType() != ScalarVT) { - assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); - InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); - } - - return InOp; - } - - // FIXME: We should handle recursing on other vector shuffles and - // scalar_to_vector here as well. - - if (!LegalOperations || - // FIXME: Should really be just isOperationLegalOrCustom. - TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || - TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { - EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, - DAG.getConstant(OrigElt, DL, IndexTy)); - } - } - - // If only EXTRACT_VECTOR_ELT nodes use the source vector we can - // simplify it based on the (valid) extraction indices. - if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { - return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && - Use->getOperand(0) == VecOp && - isa<ConstantSDNode>(Use->getOperand(1)); - })) { - APInt DemandedElts = APInt::getNullValue(NumElts); - for (SDNode *Use : VecOp->uses()) { - auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); - if (CstElt->getAPIntValue().ult(NumElts)) - DemandedElts.setBit(CstElt->getZExtValue()); - } - if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { - // We simplified the vector operand of this extract element. If this - // extract is not dead, visit it again so it is folded properly. - if (N->getOpcode() != ISD::DELETED_NODE) - AddToWorklist(N); - return SDValue(N, 0); - } - } - - // Everything under here is trying to match an extract of a loaded value. - // If the result of load has to be truncated, then it's not necessarily - // profitable. - bool BCNumEltsChanged = false; - EVT ExtVT = VecVT.getVectorElementType(); - EVT LVT = ExtVT; - if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) - return SDValue(); - - if (VecOp.getOpcode() == ISD::BITCAST) { - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - EVT BCVT = VecOp.getOperand(0).getValueType(); - if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) - return SDValue(); - if (NumElts != BCVT.getVectorNumElements()) - BCNumEltsChanged = true; - VecOp = VecOp.getOperand(0); - ExtVT = BCVT.getVectorElementType(); - } - - // extract (vector load $addr), i --> load $addr + i * size - if (!LegalOperations && !IndexC && VecOp.hasOneUse() && - ISD::isNormalLoad(VecOp.getNode()) && - !Index->hasPredecessor(VecOp.getNode())) { - auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); - if (VecLoad && !VecLoad->isVolatile()) - return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); - } - - // Perform only after legalization to ensure build_vector / vector_shuffle - // optimizations have already been done. - if (!LegalOperations || !IndexC) - return SDValue(); - - // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) - // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) - // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) - int Elt = IndexC->getZExtValue(); - LoadSDNode *LN0 = nullptr; - if (ISD::isNormalLoad(VecOp.getNode())) { - LN0 = cast<LoadSDNode>(VecOp); - } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && - VecOp.getOperand(0).getValueType() == ExtVT && - ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); - } - if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { - // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) - // => - // (load $addr+1*size) - - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - // If the bit convert changed the number of elements, it is unsafe - // to examine the mask. - if (BCNumEltsChanged) - return SDValue(); - - // Select the input vector, guarding against out of range extract vector. - int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); - VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); - - if (VecOp.getOpcode() == ISD::BITCAST) { - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - VecOp = VecOp.getOperand(0); - } - if (ISD::isNormalLoad(VecOp.getNode())) { - LN0 = cast<LoadSDNode>(VecOp); - Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; - Index = DAG.getConstant(Elt, DL, Index.getValueType()); - } - } - - // Make sure we found a non-volatile load and the extractelement is - // the only use. - if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) - return SDValue(); - - // If Idx was -1 above, Elt is going to be -1, so just return undef. - if (Elt == -1) - return DAG.getUNDEF(LVT); - - return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); -} - -// Simplify (build_vec (ext )) to (bitcast (build_vec )) -SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { - // We perform this optimization post type-legalization because - // the type-legalizer often scalarizes integer-promoted vectors. - // Performing this optimization before may create bit-casts which - // will be type-legalized to complex code sequences. - // We perform this optimization only before the operation legalizer because we - // may introduce illegal operations. - if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) - return SDValue(); - - unsigned NumInScalars = N->getNumOperands(); - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // Check to see if this is a BUILD_VECTOR of a bunch of values - // which come from any_extend or zero_extend nodes. If so, we can create - // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR - // optimizations. We do not handle sign-extend because we can't fill the sign - // using shuffles. - EVT SourceType = MVT::Other; - bool AllAnyExt = true; - - for (unsigned i = 0; i != NumInScalars; ++i) { - SDValue In = N->getOperand(i); - // Ignore undef inputs. - if (In.isUndef()) continue; - - bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; - bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; - - // Abort if the element is not an extension. - if (!ZeroExt && !AnyExt) { - SourceType = MVT::Other; - break; - } - - // The input is a ZeroExt or AnyExt. Check the original type. - EVT InTy = In.getOperand(0).getValueType(); - - // Check that all of the widened source types are the same. - if (SourceType == MVT::Other) - // First time. - SourceType = InTy; - else if (InTy != SourceType) { - // Multiple income types. Abort. - SourceType = MVT::Other; - break; - } - - // Check if all of the extends are ANY_EXTENDs. - AllAnyExt &= AnyExt; - } - - // In order to have valid types, all of the inputs must be extended from the - // same source type and all of the inputs must be any or zero extend. - // Scalar sizes must be a power of two. - EVT OutScalarTy = VT.getScalarType(); - bool ValidTypes = SourceType != MVT::Other && - isPowerOf2_32(OutScalarTy.getSizeInBits()) && - isPowerOf2_32(SourceType.getSizeInBits()); - - // Create a new simpler BUILD_VECTOR sequence which other optimizations can - // turn into a single shuffle instruction. - if (!ValidTypes) - return SDValue(); - - bool isLE = DAG.getDataLayout().isLittleEndian(); - unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); - assert(ElemRatio > 1 && "Invalid element size ratio"); - SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): - DAG.getConstant(0, DL, SourceType); - - unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); - SmallVector<SDValue, 8> Ops(NewBVElems, Filler); - - // Populate the new build_vector - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - SDValue Cast = N->getOperand(i); - assert((Cast.getOpcode() == ISD::ANY_EXTEND || - Cast.getOpcode() == ISD::ZERO_EXTEND || - Cast.isUndef()) && "Invalid cast opcode"); - SDValue In; - if (Cast.isUndef()) - In = DAG.getUNDEF(SourceType); - else - In = Cast->getOperand(0); - unsigned Index = isLE ? (i * ElemRatio) : - (i * ElemRatio + (ElemRatio - 1)); - - assert(Index < Ops.size() && "Invalid index"); - Ops[Index] = In; - } - - // The type of the new BUILD_VECTOR node. - EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); - assert(VecVT.getSizeInBits() == VT.getSizeInBits() && - "Invalid vector size"); - // Check if the new vector type is legal. - if (!isTypeLegal(VecVT) || - (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && - TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) - return SDValue(); - - // Make the new BUILD_VECTOR. - SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); - - // The new BUILD_VECTOR node has the potential to be further optimized. - AddToWorklist(BV.getNode()); - // Bitcast to the desired type. - return DAG.getBitcast(VT, BV); -} - -SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, - ArrayRef<int> VectorMask, - SDValue VecIn1, SDValue VecIn2, - unsigned LeftIdx) { - MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); - SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy); - - EVT VT = N->getValueType(0); - EVT InVT1 = VecIn1.getValueType(); - EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; - - unsigned Vec2Offset = 0; - unsigned NumElems = VT.getVectorNumElements(); - unsigned ShuffleNumElems = NumElems; - - // In case both the input vectors are extracted from same base - // vector we do not need extra addend (Vec2Offset) while - // computing shuffle mask. - if (!VecIn2 || !(VecIn1.getOpcode() == ISD::EXTRACT_SUBVECTOR) || - !(VecIn2.getOpcode() == ISD::EXTRACT_SUBVECTOR) || - !(VecIn1.getOperand(0) == VecIn2.getOperand(0))) - Vec2Offset = InVT1.getVectorNumElements(); - - // We can't generate a shuffle node with mismatched input and output types. - // Try to make the types match the type of the output. - if (InVT1 != VT || InVT2 != VT) { - if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) { - // If the output vector length is a multiple of both input lengths, - // we can concatenate them and pad the rest with undefs. - unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits(); - assert(NumConcats >= 2 && "Concat needs at least two inputs!"); - SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); - ConcatOps[0] = VecIn1; - ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); - VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); - VecIn2 = SDValue(); - } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) { - if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) - return SDValue(); - - if (!VecIn2.getNode()) { - // If we only have one input vector, and it's twice the size of the - // output, split it in two. - VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, - DAG.getConstant(NumElems, DL, IdxTy)); - VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); - // Since we now have shorter input vectors, adjust the offset of the - // second vector's start. - Vec2Offset = NumElems; - } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) { - // VecIn1 is wider than the output, and we have another, possibly - // smaller input. Pad the smaller input with undefs, shuffle at the - // input vector width, and extract the output. - // The shuffle type is different than VT, so check legality again. - if (LegalOperations && - !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) - return SDValue(); - - // Legalizing INSERT_SUBVECTOR is tricky - you basically have to - // lower it back into a BUILD_VECTOR. So if the inserted type is - // illegal, don't even try. - if (InVT1 != InVT2) { - if (!TLI.isTypeLegal(InVT2)) - return SDValue(); - VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, - DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); - } - ShuffleNumElems = NumElems * 2; - } else { - // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider - // than VecIn1. We can't handle this for now - this case will disappear - // when we start sorting the vectors by type. - return SDValue(); - } - } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() && - InVT1.getSizeInBits() == VT.getSizeInBits()) { - SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); - ConcatOps[0] = VecIn2; - VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); - } else { - // TODO: Support cases where the length mismatch isn't exactly by a - // factor of 2. - // TODO: Move this check upwards, so that if we have bad type - // mismatches, we don't create any DAG nodes. - return SDValue(); - } - } - - // Initialize mask to undef. - SmallVector<int, 8> Mask(ShuffleNumElems, -1); - - // Only need to run up to the number of elements actually used, not the - // total number of elements in the shuffle - if we are shuffling a wider - // vector, the high lanes should be set to undef. - for (unsigned i = 0; i != NumElems; ++i) { - if (VectorMask[i] <= 0) - continue; - - unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); - if (VectorMask[i] == (int)LeftIdx) { - Mask[i] = ExtIndex; - } else if (VectorMask[i] == (int)LeftIdx + 1) { - Mask[i] = Vec2Offset + ExtIndex; - } - } - - // The type the input vectors may have changed above. - InVT1 = VecIn1.getValueType(); - - // If we already have a VecIn2, it should have the same type as VecIn1. - // If we don't, get an undef/zero vector of the appropriate type. - VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); - assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); - - SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); - if (ShuffleNumElems > NumElems) - Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); - - return Shuffle; -} - -static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { - assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); - - // First, determine where the build vector is not undef. - // TODO: We could extend this to handle zero elements as well as undefs. - int NumBVOps = BV->getNumOperands(); - int ZextElt = -1; - for (int i = 0; i != NumBVOps; ++i) { - SDValue Op = BV->getOperand(i); - if (Op.isUndef()) - continue; - if (ZextElt == -1) - ZextElt = i; - else - return SDValue(); - } - // Bail out if there's no non-undef element. - if (ZextElt == -1) - return SDValue(); - - // The build vector contains some number of undef elements and exactly - // one other element. That other element must be a zero-extended scalar - // extracted from a vector at a constant index to turn this into a shuffle. - // Also, require that the build vector does not implicitly truncate/extend - // its elements. - // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. - EVT VT = BV->getValueType(0); - SDValue Zext = BV->getOperand(ZextElt); - if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || - Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || - !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || - Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) - return SDValue(); - - // The zero-extend must be a multiple of the source size, and we must be - // building a vector of the same size as the source of the extract element. - SDValue Extract = Zext.getOperand(0); - unsigned DestSize = Zext.getValueSizeInBits(); - unsigned SrcSize = Extract.getValueSizeInBits(); - if (DestSize % SrcSize != 0 || - Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - // Create a shuffle mask that will combine the extracted element with zeros - // and undefs. - int ZextRatio = DestSize / SrcSize; - int NumMaskElts = NumBVOps * ZextRatio; - SmallVector<int, 32> ShufMask(NumMaskElts, -1); - for (int i = 0; i != NumMaskElts; ++i) { - if (i / ZextRatio == ZextElt) { - // The low bits of the (potentially translated) extracted element map to - // the source vector. The high bits map to zero. We will use a zero vector - // as the 2nd source operand of the shuffle, so use the 1st element of - // that vector (mask value is number-of-elements) for the high bits. - if (i % ZextRatio == 0) - ShufMask[i] = Extract.getConstantOperandVal(1); - else - ShufMask[i] = NumMaskElts; - } - - // Undef elements of the build vector remain undef because we initialize - // the shuffle mask with -1. - } - - // Turn this into a shuffle with zero if that's legal. - EVT VecVT = Extract.getOperand(0).getValueType(); - if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask, VecVT)) - return SDValue(); - - // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> - // bitcast (shuffle V, ZeroVec, VectorMask) - SDLoc DL(BV); - SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); - SDValue Shuf = DAG.getVectorShuffle(VecVT, DL, Extract.getOperand(0), ZeroVec, - ShufMask); - return DAG.getBitcast(VT, Shuf); -} - -// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT -// operations. If the types of the vectors we're extracting from allow it, -// turn this into a vector_shuffle node. -SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. - if (!isTypeLegal(VT)) - return SDValue(); - - if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) - return V; - - // May only combine to shuffle after legalize if shuffle is legal. - if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) - return SDValue(); - - bool UsesZeroVector = false; - unsigned NumElems = N->getNumOperands(); - - // Record, for each element of the newly built vector, which input vector - // that element comes from. -1 stands for undef, 0 for the zero vector, - // and positive values for the input vectors. - // VectorMask maps each element to its vector number, and VecIn maps vector - // numbers to their initial SDValues. - - SmallVector<int, 8> VectorMask(NumElems, -1); - SmallVector<SDValue, 8> VecIn; - VecIn.push_back(SDValue()); - - for (unsigned i = 0; i != NumElems; ++i) { - SDValue Op = N->getOperand(i); - - if (Op.isUndef()) - continue; - - // See if we can use a blend with a zero vector. - // TODO: Should we generalize this to a blend with an arbitrary constant - // vector? - if (isNullConstant(Op) || isNullFPConstant(Op)) { - UsesZeroVector = true; - VectorMask[i] = 0; - continue; - } - - // Not an undef or zero. If the input is something other than an - // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. - if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || - !isa<ConstantSDNode>(Op.getOperand(1))) - return SDValue(); - SDValue ExtractedFromVec = Op.getOperand(0); - - APInt ExtractIdx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); - if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) - return SDValue(); - - // All inputs must have the same element type as the output. - if (VT.getVectorElementType() != - ExtractedFromVec.getValueType().getVectorElementType()) - return SDValue(); - - // Have we seen this input vector before? - // The vectors are expected to be tiny (usually 1 or 2 elements), so using - // a map back from SDValues to numbers isn't worth it. - unsigned Idx = std::distance( - VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec)); - if (Idx == VecIn.size()) - VecIn.push_back(ExtractedFromVec); - - VectorMask[i] = Idx; - } - - // If we didn't find at least one input vector, bail out. - if (VecIn.size() < 2) - return SDValue(); - - // If all the Operands of BUILD_VECTOR extract from same - // vector, then split the vector efficiently based on the maximum - // vector access index and adjust the VectorMask and - // VecIn accordingly. - if (VecIn.size() == 2) { - unsigned MaxIndex = 0; - unsigned NearestPow2 = 0; - SDValue Vec = VecIn.back(); - EVT InVT = Vec.getValueType(); - MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); - SmallVector<unsigned, 8> IndexVec(NumElems, 0); - - for (unsigned i = 0; i < NumElems; i++) { - if (VectorMask[i] <= 0) - continue; - unsigned Index = N->getOperand(i).getConstantOperandVal(1); - IndexVec[i] = Index; - MaxIndex = std::max(MaxIndex, Index); - } - - NearestPow2 = PowerOf2Ceil(MaxIndex); - if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && - NumElems * 2 < NearestPow2) { - unsigned SplitSize = NearestPow2 / 2; - EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), - InVT.getVectorElementType(), SplitSize); - if (TLI.isTypeLegal(SplitVT)) { - SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, - DAG.getConstant(SplitSize, DL, IdxTy)); - SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, - DAG.getConstant(0, DL, IdxTy)); - VecIn.pop_back(); - VecIn.push_back(VecIn1); - VecIn.push_back(VecIn2); - - for (unsigned i = 0; i < NumElems; i++) { - if (VectorMask[i] <= 0) - continue; - VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; - } - } - } - } - - // TODO: We want to sort the vectors by descending length, so that adjacent - // pairs have similar length, and the longer vector is always first in the - // pair. - - // TODO: Should this fire if some of the input vectors has illegal type (like - // it does now), or should we let legalization run its course first? - - // Shuffle phase: - // Take pairs of vectors, and shuffle them so that the result has elements - // from these vectors in the correct places. - // For example, given: - // t10: i32 = extract_vector_elt t1, Constant:i64<0> - // t11: i32 = extract_vector_elt t2, Constant:i64<0> - // t12: i32 = extract_vector_elt t3, Constant:i64<0> - // t13: i32 = extract_vector_elt t1, Constant:i64<1> - // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 - // We will generate: - // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 - // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef - SmallVector<SDValue, 4> Shuffles; - for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { - unsigned LeftIdx = 2 * In + 1; - SDValue VecLeft = VecIn[LeftIdx]; - SDValue VecRight = - (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); - - if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, - VecRight, LeftIdx)) - Shuffles.push_back(Shuffle); - else - return SDValue(); - } - - // If we need the zero vector as an "ingredient" in the blend tree, add it - // to the list of shuffles. - if (UsesZeroVector) - Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) - : DAG.getConstantFP(0.0, DL, VT)); - - // If we only have one shuffle, we're done. - if (Shuffles.size() == 1) - return Shuffles[0]; - - // Update the vector mask to point to the post-shuffle vectors. - for (int &Vec : VectorMask) - if (Vec == 0) - Vec = Shuffles.size() - 1; - else - Vec = (Vec - 1) / 2; - - // More than one shuffle. Generate a binary tree of blends, e.g. if from - // the previous step we got the set of shuffles t10, t11, t12, t13, we will - // generate: - // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 - // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 - // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 - // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 - // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 - // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 - // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 - - // Make sure the initial size of the shuffle list is even. - if (Shuffles.size() % 2) - Shuffles.push_back(DAG.getUNDEF(VT)); - - for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { - if (CurSize % 2) { - Shuffles[CurSize] = DAG.getUNDEF(VT); - CurSize++; - } - for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { - int Left = 2 * In; - int Right = 2 * In + 1; - SmallVector<int, 8> Mask(NumElems, -1); - for (unsigned i = 0; i != NumElems; ++i) { - if (VectorMask[i] == Left) { - Mask[i] = i; - VectorMask[i] = In; - } else if (VectorMask[i] == Right) { - Mask[i] = i + NumElems; - VectorMask[i] = In; - } - } - - Shuffles[In] = - DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); - } - } - return Shuffles[0]; -} - -// Try to turn a build vector of zero extends of extract vector elts into a -// a vector zero extend and possibly an extract subvector. -// TODO: Support sign extend or any extend? -// TODO: Allow undef elements? -// TODO: Don't require the extracts to start at element 0. -SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { - if (LegalOperations) - return SDValue(); - - EVT VT = N->getValueType(0); - - SDValue Op0 = N->getOperand(0); - auto checkElem = [&](SDValue Op) -> int64_t { - if (Op.getOpcode() == ISD::ZERO_EXTEND && - Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && - Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) - if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) - return C->getZExtValue(); - return -1; - }; - - // Make sure the first element matches - // (zext (extract_vector_elt X, C)) - int64_t Offset = checkElem(Op0); - if (Offset < 0) - return SDValue(); - - unsigned NumElems = N->getNumOperands(); - SDValue In = Op0.getOperand(0).getOperand(0); - EVT InSVT = In.getValueType().getScalarType(); - EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); - - // Don't create an illegal input type after type legalization. - if (LegalTypes && !TLI.isTypeLegal(InVT)) - return SDValue(); - - // Ensure all the elements come from the same vector and are adjacent. - for (unsigned i = 1; i != NumElems; ++i) { - if ((Offset + i) != checkElem(N->getOperand(i))) - return SDValue(); - } - - SDLoc DL(N); - In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, - Op0.getOperand(0).getOperand(1)); - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, In); -} - -SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { - EVT VT = N->getValueType(0); - - // A vector built entirely of undefs is undef. - if (ISD::allOperandsUndef(N)) - return DAG.getUNDEF(VT); - - // If this is a splat of a bitcast from another vector, change to a - // concat_vector. - // For example: - // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> - // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) - // - // If X is a build_vector itself, the concat can become a larger build_vector. - // TODO: Maybe this is useful for non-splat too? - if (!LegalOperations) { - if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { - Splat = peekThroughBitcasts(Splat); - EVT SrcVT = Splat.getValueType(); - if (SrcVT.isVector()) { - unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); - EVT NewVT = EVT::getVectorVT(*DAG.getContext(), - SrcVT.getVectorElementType(), NumElts); - if (!LegalTypes || TLI.isTypeLegal(NewVT)) { - SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); - SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), - NewVT, Ops); - return DAG.getBitcast(VT, Concat); - } - } - } - } - - // Check if we can express BUILD VECTOR via subvector extract. - if (!LegalTypes && (N->getNumOperands() > 1)) { - SDValue Op0 = N->getOperand(0); - auto checkElem = [&](SDValue Op) -> uint64_t { - if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && - (Op0.getOperand(0) == Op.getOperand(0))) - if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) - return CNode->getZExtValue(); - return -1; - }; - - int Offset = checkElem(Op0); - for (unsigned i = 0; i < N->getNumOperands(); ++i) { - if (Offset + i != checkElem(N->getOperand(i))) { - Offset = -1; - break; - } - } - - if ((Offset == 0) && - (Op0.getOperand(0).getValueType() == N->getValueType(0))) - return Op0.getOperand(0); - if ((Offset != -1) && - ((Offset % N->getValueType(0).getVectorNumElements()) == - 0)) // IDX must be multiple of output size. - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), - Op0.getOperand(0), Op0.getOperand(1)); - } - - if (SDValue V = convertBuildVecZextToZext(N)) - return V; - - if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) - return V; - - if (SDValue V = reduceBuildVecToShuffle(N)) - return V; - - return SDValue(); -} - -static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT OpVT = N->getOperand(0).getValueType(); - - // If the operands are legal vectors, leave them alone. - if (TLI.isTypeLegal(OpVT)) - return SDValue(); - - SDLoc DL(N); - EVT VT = N->getValueType(0); - SmallVector<SDValue, 8> Ops; - - EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); - SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); - - // Keep track of what we encounter. - bool AnyInteger = false; - bool AnyFP = false; - for (const SDValue &Op : N->ops()) { - if (ISD::BITCAST == Op.getOpcode() && - !Op.getOperand(0).getValueType().isVector()) - Ops.push_back(Op.getOperand(0)); - else if (ISD::UNDEF == Op.getOpcode()) - Ops.push_back(ScalarUndef); - else - return SDValue(); - - // Note whether we encounter an integer or floating point scalar. - // If it's neither, bail out, it could be something weird like x86mmx. - EVT LastOpVT = Ops.back().getValueType(); - if (LastOpVT.isFloatingPoint()) - AnyFP = true; - else if (LastOpVT.isInteger()) - AnyInteger = true; - else - return SDValue(); - } - - // If any of the operands is a floating point scalar bitcast to a vector, - // use floating point types throughout, and bitcast everything. - // Replace UNDEFs by another scalar UNDEF node, of the final desired type. - if (AnyFP) { - SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); - ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); - if (AnyInteger) { - for (SDValue &Op : Ops) { - if (Op.getValueType() == SVT) - continue; - if (Op.isUndef()) - Op = ScalarUndef; - else - Op = DAG.getBitcast(SVT, Op); - } - } - } - - EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, - VT.getSizeInBits() / SVT.getSizeInBits()); - return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); -} - -// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR -// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at -// most two distinct vectors the same size as the result, attempt to turn this -// into a legal shuffle. -static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - EVT OpVT = N->getOperand(0).getValueType(); - int NumElts = VT.getVectorNumElements(); - int NumOpElts = OpVT.getVectorNumElements(); - - SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); - SmallVector<int, 8> Mask; - - for (SDValue Op : N->ops()) { - Op = peekThroughBitcasts(Op); - - // UNDEF nodes convert to UNDEF shuffle mask values. - if (Op.isUndef()) { - Mask.append((unsigned)NumOpElts, -1); - continue; - } - - if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) - return SDValue(); - - // What vector are we extracting the subvector from and at what index? - SDValue ExtVec = Op.getOperand(0); - - // We want the EVT of the original extraction to correctly scale the - // extraction index. - EVT ExtVT = ExtVec.getValueType(); - ExtVec = peekThroughBitcasts(ExtVec); - - // UNDEF nodes convert to UNDEF shuffle mask values. - if (ExtVec.isUndef()) { - Mask.append((unsigned)NumOpElts, -1); - continue; - } - - if (!isa<ConstantSDNode>(Op.getOperand(1))) - return SDValue(); - int ExtIdx = Op.getConstantOperandVal(1); - - // Ensure that we are extracting a subvector from a vector the same - // size as the result. - if (ExtVT.getSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - // Scale the subvector index to account for any bitcast. - int NumExtElts = ExtVT.getVectorNumElements(); - if (0 == (NumExtElts % NumElts)) - ExtIdx /= (NumExtElts / NumElts); - else if (0 == (NumElts % NumExtElts)) - ExtIdx *= (NumElts / NumExtElts); - else - return SDValue(); - - // At most we can reference 2 inputs in the final shuffle. - if (SV0.isUndef() || SV0 == ExtVec) { - SV0 = ExtVec; - for (int i = 0; i != NumOpElts; ++i) - Mask.push_back(i + ExtIdx); - } else if (SV1.isUndef() || SV1 == ExtVec) { - SV1 = ExtVec; - for (int i = 0; i != NumOpElts; ++i) - Mask.push_back(i + ExtIdx + NumElts); - } else { - return SDValue(); - } - } - - if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) - return SDValue(); - - return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), - DAG.getBitcast(VT, SV1), Mask); -} - -SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { - // If we only have one input vector, we don't need to do any concatenation. - if (N->getNumOperands() == 1) - return N->getOperand(0); - - // Check if all of the operands are undefs. - EVT VT = N->getValueType(0); - if (ISD::allOperandsUndef(N)) - return DAG.getUNDEF(VT); - - // Optimize concat_vectors where all but the first of the vectors are undef. - if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { - return Op.isUndef(); - })) { - SDValue In = N->getOperand(0); - assert(In.getValueType().isVector() && "Must concat vectors"); - - SDValue Scalar = peekThroughOneUseBitcasts(In); - - // concat_vectors(scalar_to_vector(scalar), undef) -> - // scalar_to_vector(scalar) - if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && - Scalar.hasOneUse()) { - EVT SVT = Scalar.getValueType().getVectorElementType(); - if (SVT == Scalar.getOperand(0).getValueType()) - Scalar = Scalar.getOperand(0); - } - - // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) - if (!Scalar.getValueType().isVector()) { - // If the bitcast type isn't legal, it might be a trunc of a legal type; - // look through the trunc so we can still do the transform: - // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) - if (Scalar->getOpcode() == ISD::TRUNCATE && - !TLI.isTypeLegal(Scalar.getValueType()) && - TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) - Scalar = Scalar->getOperand(0); - - EVT SclTy = Scalar.getValueType(); - - if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) - return SDValue(); - - // Bail out if the vector size is not a multiple of the scalar size. - if (VT.getSizeInBits() % SclTy.getSizeInBits()) - return SDValue(); - - unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); - if (VNTNumElms < 2) - return SDValue(); - - EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); - if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) - return SDValue(); - - SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); - return DAG.getBitcast(VT, Res); - } - } - - // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. - // We have already tested above for an UNDEF only concatenation. - // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) - // -> (BUILD_VECTOR A, B, ..., C, D, ...) - auto IsBuildVectorOrUndef = [](const SDValue &Op) { - return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); - }; - if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { - SmallVector<SDValue, 8> Opnds; - EVT SVT = VT.getScalarType(); - - EVT MinVT = SVT; - if (!SVT.isFloatingPoint()) { - // If BUILD_VECTOR are from built from integer, they may have different - // operand types. Get the smallest type and truncate all operands to it. - bool FoundMinVT = false; - for (const SDValue &Op : N->ops()) - if (ISD::BUILD_VECTOR == Op.getOpcode()) { - EVT OpSVT = Op.getOperand(0).getValueType(); - MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; - FoundMinVT = true; - } - assert(FoundMinVT && "Concat vector type mismatch"); - } - - for (const SDValue &Op : N->ops()) { - EVT OpVT = Op.getValueType(); - unsigned NumElts = OpVT.getVectorNumElements(); - - if (ISD::UNDEF == Op.getOpcode()) - Opnds.append(NumElts, DAG.getUNDEF(MinVT)); - - if (ISD::BUILD_VECTOR == Op.getOpcode()) { - if (SVT.isFloatingPoint()) { - assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); - Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); - } else { - for (unsigned i = 0; i != NumElts; ++i) - Opnds.push_back( - DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); - } - } - } - - assert(VT.getVectorNumElements() == Opnds.size() && - "Concat vector type mismatch"); - return DAG.getBuildVector(VT, SDLoc(N), Opnds); - } - - // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. - if (SDValue V = combineConcatVectorOfScalars(N, DAG)) - return V; - - // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. - if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) - if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) - return V; - - // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR - // nodes often generate nop CONCAT_VECTOR nodes. - // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that - // place the incoming vectors at the exact same location. - SDValue SingleSource = SDValue(); - unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); - - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - SDValue Op = N->getOperand(i); - - if (Op.isUndef()) - continue; - - // Check if this is the identity extract: - if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) - return SDValue(); - - // Find the single incoming vector for the extract_subvector. - if (SingleSource.getNode()) { - if (Op.getOperand(0) != SingleSource) - return SDValue(); - } else { - SingleSource = Op.getOperand(0); - - // Check the source type is the same as the type of the result. - // If not, this concat may extend the vector, so we can not - // optimize it away. - if (SingleSource.getValueType() != N->getValueType(0)) - return SDValue(); - } - - unsigned IdentityIndex = i * PartNumElem; - ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - // The extract index must be constant. - if (!CS) - return SDValue(); - - // Check that we are reading from the identity index. - if (CS->getZExtValue() != IdentityIndex) - return SDValue(); - } - - if (SingleSource.getNode()) - return SingleSource; - - return SDValue(); -} - -/// If we are extracting a subvector produced by a wide binary operator try -/// to use a narrow binary operator and/or avoid concatenation and extraction. -static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) { - // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share - // some of these bailouts with other transforms. - - // The extract index must be a constant, so we can map it to a concat operand. - auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); - if (!ExtractIndexC) - return SDValue(); - - // We are looking for an optionally bitcasted wide vector binary operator - // feeding an extract subvector. - SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); - if (!ISD::isBinaryOp(BinOp.getNode())) - return SDValue(); - - // The binop must be a vector type, so we can extract some fraction of it. - EVT WideBVT = BinOp.getValueType(); - if (!WideBVT.isVector()) - return SDValue(); - - EVT VT = Extract->getValueType(0); - unsigned ExtractIndex = ExtractIndexC->getZExtValue(); - assert(ExtractIndex % VT.getVectorNumElements() == 0 && - "Extract index is not a multiple of the vector length."); - - // Bail out if this is not a proper multiple width extraction. - unsigned WideWidth = WideBVT.getSizeInBits(); - unsigned NarrowWidth = VT.getSizeInBits(); - if (WideWidth % NarrowWidth != 0) - return SDValue(); - - // Bail out if we are extracting a fraction of a single operation. This can - // occur because we potentially looked through a bitcast of the binop. - unsigned NarrowingRatio = WideWidth / NarrowWidth; - unsigned WideNumElts = WideBVT.getVectorNumElements(); - if (WideNumElts % NarrowingRatio != 0) - return SDValue(); - - // Bail out if the target does not support a narrower version of the binop. - EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), - WideNumElts / NarrowingRatio); - unsigned BOpcode = BinOp.getOpcode(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) - return SDValue(); - - // If extraction is cheap, we don't need to look at the binop operands - // for concat ops. The narrow binop alone makes this transform profitable. - // We can't just reuse the original extract index operand because we may have - // bitcasted. - unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); - unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); - EVT ExtBOIdxVT = Extract->getOperand(1).getValueType(); - if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && - BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { - // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) - SDLoc DL(Extract); - SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT); - SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(0), NewExtIndex); - SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(1), NewExtIndex); - SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, - BinOp.getNode()->getFlags()); - return DAG.getBitcast(VT, NarrowBinOp); - } - - // Only handle the case where we are doubling and then halving. A larger ratio - // may require more than two narrow binops to replace the wide binop. - if (NarrowingRatio != 2) - return SDValue(); - - // TODO: The motivating case for this transform is an x86 AVX1 target. That - // target has temptingly almost legal versions of bitwise logic ops in 256-bit - // flavors, but no other 256-bit integer support. This could be extended to - // handle any binop, but that may require fixing/adding other folds to avoid - // codegen regressions. - if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) - return SDValue(); - - // We need at least one concatenation operation of a binop operand to make - // this transform worthwhile. The concat must double the input vector sizes. - // TODO: Should we also handle INSERT_SUBVECTOR patterns? - SDValue LHS = peekThroughBitcasts(BinOp.getOperand(0)); - SDValue RHS = peekThroughBitcasts(BinOp.getOperand(1)); - bool ConcatL = - LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2; - bool ConcatR = - RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2; - if (!ConcatL && !ConcatR) - return SDValue(); - - // If one of the binop operands was not the result of a concat, we must - // extract a half-sized operand for our new narrow binop. - SDLoc DL(Extract); - - // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN - // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, N) - // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, N), YN - SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum)) - : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(0), - DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT)); - - SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum)) - : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(1), - DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT)); - - SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); - return DAG.getBitcast(VT, NarrowBinOp); -} - -/// If we are extracting a subvector from a wide vector load, convert to a -/// narrow load to eliminate the extraction: -/// (extract_subvector (load wide vector)) --> (load narrow vector) -static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { - // TODO: Add support for big-endian. The offset calculation must be adjusted. - if (DAG.getDataLayout().isBigEndian()) - return SDValue(); - - auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); - auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); - if (!Ld || Ld->getExtensionType() || Ld->isVolatile() || !ExtIdx) - return SDValue(); - - // Allow targets to opt-out. - EVT VT = Extract->getValueType(0); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) - return SDValue(); - - // The narrow load will be offset from the base address of the old load if - // we are extracting from something besides index 0 (little-endian). - SDLoc DL(Extract); - SDValue BaseAddr = Ld->getOperand(1); - unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize(); - - // TODO: Use "BaseIndexOffset" to make this more effective. - SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); - MachineFunction &MF = DAG.getMachineFunction(); - MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset, - VT.getStoreSize()); - SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); - DAG.makeEquivalentMemoryOrdering(Ld, NewLd); - return NewLd; -} - -SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { - EVT NVT = N->getValueType(0); - SDValue V = N->getOperand(0); - - // Extract from UNDEF is UNDEF. - if (V.isUndef()) - return DAG.getUNDEF(NVT); - - if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) - if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) - return NarrowLoad; - - // Combine: - // (extract_subvec (concat V1, V2, ...), i) - // Into: - // Vi if possible - // Only operand 0 is checked as 'concat' assumes all inputs of the same - // type. - if (V.getOpcode() == ISD::CONCAT_VECTORS && - isa<ConstantSDNode>(N->getOperand(1)) && - V.getOperand(0).getValueType() == NVT) { - unsigned Idx = N->getConstantOperandVal(1); - unsigned NumElems = NVT.getVectorNumElements(); - assert((Idx % NumElems) == 0 && - "IDX in concat is not a multiple of the result vector length."); - return V->getOperand(Idx / NumElems); - } - - V = peekThroughBitcasts(V); - - // If the input is a build vector. Try to make a smaller build vector. - if (V.getOpcode() == ISD::BUILD_VECTOR) { - if (auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))) { - EVT InVT = V.getValueType(); - unsigned ExtractSize = NVT.getSizeInBits(); - unsigned EltSize = InVT.getScalarSizeInBits(); - // Only do this if we won't split any elements. - if (ExtractSize % EltSize == 0) { - unsigned NumElems = ExtractSize / EltSize; - EVT EltVT = InVT.getVectorElementType(); - EVT ExtractVT = NumElems == 1 ? EltVT : - EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); - if ((Level < AfterLegalizeDAG || - (NumElems == 1 || - TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && - (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { - unsigned IdxVal = (Idx->getZExtValue() * NVT.getScalarSizeInBits()) / - EltSize; - if (NumElems == 1) { - SDValue Src = V->getOperand(IdxVal); - if (EltVT != Src.getValueType()) - Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); - - return DAG.getBitcast(NVT, Src); - } - - // Extract the pieces from the original build_vector. - SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), - makeArrayRef(V->op_begin() + IdxVal, - NumElems)); - return DAG.getBitcast(NVT, BuildVec); - } - } - } - } - - if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { - // Handle only simple case where vector being inserted and vector - // being extracted are of same size. - EVT SmallVT = V.getOperand(1).getValueType(); - if (!NVT.bitsEq(SmallVT)) - return SDValue(); - - // Only handle cases where both indexes are constants. - auto *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); - auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); - - if (InsIdx && ExtIdx) { - // Combine: - // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) - // Into: - // indices are equal or bit offsets are equal => V1 - // otherwise => (extract_subvec V1, ExtIdx) - if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() == - ExtIdx->getZExtValue() * NVT.getScalarSizeInBits()) - return DAG.getBitcast(NVT, V.getOperand(1)); - return DAG.getNode( - ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, - DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), - N->getOperand(1)); - } - } - - if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG)) - return NarrowBOp; - - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, -// or turn a shuffle of a single concat into simpler shuffle then concat. -static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); - - SmallVector<SDValue, 4> Ops; - EVT ConcatVT = N0.getOperand(0).getValueType(); - unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); - unsigned NumConcats = NumElts / NumElemsPerConcat; - - // Special case: shuffle(concat(A,B)) can be more efficiently represented - // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high - // half vector elements. - if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && - std::all_of(SVN->getMask().begin() + NumElemsPerConcat, - SVN->getMask().end(), [](int i) { return i == -1; })) { - N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), - makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); - N1 = DAG.getUNDEF(ConcatVT); - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); - } - - // Look at every vector that's inserted. We're looking for exact - // subvector-sized copies from a concatenated vector - for (unsigned I = 0; I != NumConcats; ++I) { - // Make sure we're dealing with a copy. - unsigned Begin = I * NumElemsPerConcat; - bool AllUndef = true, NoUndef = true; - for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { - if (SVN->getMaskElt(J) >= 0) - AllUndef = false; - else - NoUndef = false; - } - - if (NoUndef) { - if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) - return SDValue(); - - for (unsigned J = 1; J != NumElemsPerConcat; ++J) - if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) - return SDValue(); - - unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; - if (FirstElt < N0.getNumOperands()) - Ops.push_back(N0.getOperand(FirstElt)); - else - Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); - - } else if (AllUndef) { - Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); - } else { // Mixed with general masks and undefs, can't do optimization. - return SDValue(); - } - } - - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); -} - -// Attempt to combine a shuffle of 2 inputs of 'scalar sources' - -// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. -// -// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always -// a simplification in some sense, but it isn't appropriate in general: some -// BUILD_VECTORs are substantially cheaper than others. The general case -// of a BUILD_VECTOR requires inserting each element individually (or -// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of -// all constants is a single constant pool load. A BUILD_VECTOR where each -// element is identical is a splat. A BUILD_VECTOR where most of the operands -// are undef lowers to a small number of element insertions. -// -// To deal with this, we currently use a bunch of mostly arbitrary heuristics. -// We don't fold shuffles where one side is a non-zero constant, and we don't -// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate -// non-constant operands. This seems to work out reasonably well in practice. -static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, - SelectionDAG &DAG, - const TargetLowering &TLI) { - EVT VT = SVN->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - SDValue N0 = SVN->getOperand(0); - SDValue N1 = SVN->getOperand(1); - - if (!N0->hasOneUse()) - return SDValue(); - - // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as - // discussed above. - if (!N1.isUndef()) { - if (!N1->hasOneUse()) - return SDValue(); - - bool N0AnyConst = isAnyConstantBuildVector(N0); - bool N1AnyConst = isAnyConstantBuildVector(N1); - if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) - return SDValue(); - if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) - return SDValue(); - } - - // If both inputs are splats of the same value then we can safely merge this - // to a single BUILD_VECTOR with undef elements based on the shuffle mask. - bool IsSplat = false; - auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); - auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); - if (BV0 && BV1) - if (SDValue Splat0 = BV0->getSplatValue()) - IsSplat = (Splat0 == BV1->getSplatValue()); - - SmallVector<SDValue, 8> Ops; - SmallSet<SDValue, 16> DuplicateOps; - for (int M : SVN->getMask()) { - SDValue Op = DAG.getUNDEF(VT.getScalarType()); - if (M >= 0) { - int Idx = M < (int)NumElts ? M : M - NumElts; - SDValue &S = (M < (int)NumElts ? N0 : N1); - if (S.getOpcode() == ISD::BUILD_VECTOR) { - Op = S.getOperand(Idx); - } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { - assert(Idx == 0 && "Unexpected SCALAR_TO_VECTOR operand index."); - Op = S.getOperand(0); - } else { - // Operand can't be combined - bail out. - return SDValue(); - } - } - - // Don't duplicate a non-constant BUILD_VECTOR operand unless we're - // generating a splat; semantically, this is fine, but it's likely to - // generate low-quality code if the target can't reconstruct an appropriate - // shuffle. - if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) - if (!IsSplat && !DuplicateOps.insert(Op).second) - return SDValue(); - - Ops.push_back(Op); - } - - // BUILD_VECTOR requires all inputs to be of the same type, find the - // maximum type and extend them all. - EVT SVT = VT.getScalarType(); - if (SVT.isInteger()) - for (SDValue &Op : Ops) - SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); - if (SVT != VT.getScalarType()) - for (SDValue &Op : Ops) - Op = TLI.isZExtFree(Op.getValueType(), SVT) - ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) - : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); - return DAG.getBuildVector(VT, SDLoc(SVN), Ops); -} - -// Match shuffles that can be converted to any_vector_extend_in_reg. -// This is often generated during legalization. -// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) -// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. -static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, - SelectionDAG &DAG, - const TargetLowering &TLI, - bool LegalOperations) { - EVT VT = SVN->getValueType(0); - bool IsBigEndian = DAG.getDataLayout().isBigEndian(); - - // TODO Add support for big-endian when we have a test case. - if (!VT.isInteger() || IsBigEndian) - return SDValue(); - - unsigned NumElts = VT.getVectorNumElements(); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - ArrayRef<int> Mask = SVN->getMask(); - SDValue N0 = SVN->getOperand(0); - - // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) - auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { - for (unsigned i = 0; i != NumElts; ++i) { - if (Mask[i] < 0) - continue; - if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) - continue; - return false; - } - return true; - }; - - // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for - // power-of-2 extensions as they are the most likely. - for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { - // Check for non power of 2 vector sizes - if (NumElts % Scale != 0) - continue; - if (!isAnyExtend(Scale)) - continue; - - EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); - EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); - // Never create an illegal type. Only create unsupported operations if we - // are pre-legalization. - if (TLI.isTypeLegal(OutVT)) - if (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) - return DAG.getBitcast(VT, - DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, - SDLoc(SVN), OutVT, N0)); - } - - return SDValue(); -} - -// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of -// each source element of a large type into the lowest elements of a smaller -// destination type. This is often generated during legalization. -// If the source node itself was a '*_extend_vector_inreg' node then we should -// then be able to remove it. -static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, - SelectionDAG &DAG) { - EVT VT = SVN->getValueType(0); - bool IsBigEndian = DAG.getDataLayout().isBigEndian(); - - // TODO Add support for big-endian when we have a test case. - if (!VT.isInteger() || IsBigEndian) - return SDValue(); - - SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); - - unsigned Opcode = N0.getOpcode(); - if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && - Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && - Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) - return SDValue(); - - SDValue N00 = N0.getOperand(0); - ArrayRef<int> Mask = SVN->getMask(); - unsigned NumElts = VT.getVectorNumElements(); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); - unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); - - if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) - return SDValue(); - unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; - - // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> - // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> - // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> - auto isTruncate = [&Mask, &NumElts](unsigned Scale) { - for (unsigned i = 0; i != NumElts; ++i) { - if (Mask[i] < 0) - continue; - if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) - continue; - return false; - } - return true; - }; - - // At the moment we just handle the case where we've truncated back to the - // same size as before the extension. - // TODO: handle more extension/truncation cases as cases arise. - if (EltSizeInBits != ExtSrcSizeInBits) - return SDValue(); - - // We can remove *extend_vector_inreg only if the truncation happens at - // the same scale as the extension. - if (isTruncate(ExtScale)) - return DAG.getBitcast(VT, N00); - - return SDValue(); -} - -// Combine shuffles of splat-shuffles of the form: -// shuffle (shuffle V, undef, splat-mask), undef, M -// If splat-mask contains undef elements, we need to be careful about -// introducing undef's in the folded mask which are not the result of composing -// the masks of the shuffles. -static SDValue combineShuffleOfSplat(ArrayRef<int> UserMask, - ShuffleVectorSDNode *Splat, - SelectionDAG &DAG) { - ArrayRef<int> SplatMask = Splat->getMask(); - assert(UserMask.size() == SplatMask.size() && "Mask length mismatch"); - - // Prefer simplifying to the splat-shuffle, if possible. This is legal if - // every undef mask element in the splat-shuffle has a corresponding undef - // element in the user-shuffle's mask or if the composition of mask elements - // would result in undef. - // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): - // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] - // In this case it is not legal to simplify to the splat-shuffle because we - // may be exposing the users of the shuffle an undef element at index 1 - // which was not there before the combine. - // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] - // In this case the composition of masks yields SplatMask, so it's ok to - // simplify to the splat-shuffle. - // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] - // In this case the composed mask includes all undef elements of SplatMask - // and in addition sets element zero to undef. It is safe to simplify to - // the splat-shuffle. - auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, - ArrayRef<int> SplatMask) { - for (unsigned i = 0, e = UserMask.size(); i != e; ++i) - if (UserMask[i] != -1 && SplatMask[i] == -1 && - SplatMask[UserMask[i]] != -1) - return false; - return true; - }; - if (CanSimplifyToExistingSplat(UserMask, SplatMask)) - return SDValue(Splat, 0); - - // Create a new shuffle with a mask that is composed of the two shuffles' - // masks. - SmallVector<int, 32> NewMask; - for (int Idx : UserMask) - NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); - - return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), - Splat->getOperand(0), Splat->getOperand(1), - NewMask); -} - -/// If the shuffle mask is taking exactly one element from the first vector -/// operand and passing through all other elements from the second vector -/// operand, return the index of the mask element that is choosing an element -/// from the first operand. Otherwise, return -1. -static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { - int MaskSize = Mask.size(); - int EltFromOp0 = -1; - // TODO: This does not match if there are undef elements in the shuffle mask. - // Should we ignore undefs in the shuffle mask instead? The trade-off is - // removing an instruction (a shuffle), but losing the knowledge that some - // vector lanes are not needed. - for (int i = 0; i != MaskSize; ++i) { - if (Mask[i] >= 0 && Mask[i] < MaskSize) { - // We're looking for a shuffle of exactly one element from operand 0. - if (EltFromOp0 != -1) - return -1; - EltFromOp0 = i; - } else if (Mask[i] != i + MaskSize) { - // Nothing from operand 1 can change lanes. - return -1; - } - } - return EltFromOp0; -} - -/// If a shuffle inserts exactly one element from a source vector operand into -/// another vector operand and we can access the specified element as a scalar, -/// then we can eliminate the shuffle. -static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, - SelectionDAG &DAG) { - // First, check if we are taking one element of a vector and shuffling that - // element into another vector. - ArrayRef<int> Mask = Shuf->getMask(); - SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); - SDValue Op0 = Shuf->getOperand(0); - SDValue Op1 = Shuf->getOperand(1); - int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); - if (ShufOp0Index == -1) { - // Commute mask and check again. - ShuffleVectorSDNode::commuteMask(CommutedMask); - ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); - if (ShufOp0Index == -1) - return SDValue(); - // Commute operands to match the commuted shuffle mask. - std::swap(Op0, Op1); - Mask = CommutedMask; - } - - // The shuffle inserts exactly one element from operand 0 into operand 1. - // Now see if we can access that element as a scalar via a real insert element - // instruction. - // TODO: We can try harder to locate the element as a scalar. Examples: it - // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. - assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && - "Shuffle mask value must be from operand 0"); - if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) - return SDValue(); - - auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); - if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) - return SDValue(); - - // There's an existing insertelement with constant insertion index, so we - // don't need to check the legality/profitability of a replacement operation - // that differs at most in the constant value. The target should be able to - // lower any of those in a similar way. If not, legalization will expand this - // to a scalar-to-vector plus shuffle. - // - // Note that the shuffle may move the scalar from the position that the insert - // element used. Therefore, our new insert element occurs at the shuffle's - // mask index value, not the insert's index value. - // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' - SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf), - Op0.getOperand(2).getValueType()); - return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), - Op1, Op0.getOperand(1), NewInsIndex); -} - -SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { - EVT VT = N->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); - - // Canonicalize shuffle undef, undef -> undef - if (N0.isUndef() && N1.isUndef()) - return DAG.getUNDEF(VT); - - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); - - // Canonicalize shuffle v, v -> v, undef - if (N0 == N1) { - SmallVector<int, 8> NewMask; - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx >= (int)NumElts) Idx -= NumElts; - NewMask.push_back(Idx); - } - return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); - } - - // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. - if (N0.isUndef()) - return DAG.getCommutedVectorShuffle(*SVN); - - // Remove references to rhs if it is undef - if (N1.isUndef()) { - bool Changed = false; - SmallVector<int, 8> NewMask; - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx >= (int)NumElts) { - Idx = -1; - Changed = true; - } - NewMask.push_back(Idx); - } - if (Changed) - return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); - } - - if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) - return InsElt; - - // A shuffle of a single vector that is a splat can always be folded. - if (auto *N0Shuf = dyn_cast<ShuffleVectorSDNode>(N0)) - if (N1->isUndef() && N0Shuf->isSplat()) - return combineShuffleOfSplat(SVN->getMask(), N0Shuf, DAG); - - // If it is a splat, check if the argument vector is another splat or a - // build_vector. - if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { - SDNode *V = N0.getNode(); - - // If this is a bit convert that changes the element type of the vector but - // not the number of vector elements, look through it. Be careful not to - // look though conversions that change things like v4f32 to v2f64. - if (V->getOpcode() == ISD::BITCAST) { - SDValue ConvInput = V->getOperand(0); - if (ConvInput.getValueType().isVector() && - ConvInput.getValueType().getVectorNumElements() == NumElts) - V = ConvInput.getNode(); - } - - if (V->getOpcode() == ISD::BUILD_VECTOR) { - assert(V->getNumOperands() == NumElts && - "BUILD_VECTOR has wrong number of operands"); - SDValue Base; - bool AllSame = true; - for (unsigned i = 0; i != NumElts; ++i) { - if (!V->getOperand(i).isUndef()) { - Base = V->getOperand(i); - break; - } - } - // Splat of <u, u, u, u>, return <u, u, u, u> - if (!Base.getNode()) - return N0; - for (unsigned i = 0; i != NumElts; ++i) { - if (V->getOperand(i) != Base) { - AllSame = false; - break; - } - } - // Splat of <x, x, x, x>, return <x, x, x, x> - if (AllSame) - return N0; - - // Canonicalize any other splat as a build_vector. - const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); - SmallVector<SDValue, 8> Ops(NumElts, Splatted); - SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); - - // We may have jumped through bitcasts, so the type of the - // BUILD_VECTOR may not match the type of the shuffle. - if (V->getValueType(0) != VT) - NewBV = DAG.getBitcast(VT, NewBV); - return NewBV; - } - } - - // Simplify source operands based on shuffle mask. - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - // Match shuffles that can be converted to any_vector_extend_in_reg. - if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) - return V; - - // Combine "truncate_vector_in_reg" style shuffles. - if (SDValue V = combineTruncationShuffle(SVN, DAG)) - return V; - - if (N0.getOpcode() == ISD::CONCAT_VECTORS && - Level < AfterLegalizeVectorOps && - (N1.isUndef() || - (N1.getOpcode() == ISD::CONCAT_VECTORS && - N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { - if (SDValue V = partitionShuffleOfConcats(N, DAG)) - return V; - } - - // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - - // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. - if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) - if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) - return Res; - - // If this shuffle only has a single input that is a bitcasted shuffle, - // attempt to merge the 2 shuffles and suitably bitcast the inputs/output - // back to their original types. - if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && - N1.isUndef() && Level < AfterLegalizeVectorOps && - TLI.isTypeLegal(VT)) { - auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { - if (Scale == 1) - return SmallVector<int, 8>(Mask.begin(), Mask.end()); - - SmallVector<int, 8> NewMask; - for (int M : Mask) - for (int s = 0; s != Scale; ++s) - NewMask.push_back(M < 0 ? -1 : Scale * M + s); - return NewMask; - }; - - SDValue BC0 = peekThroughOneUseBitcasts(N0); - if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { - EVT SVT = VT.getScalarType(); - EVT InnerVT = BC0->getValueType(0); - EVT InnerSVT = InnerVT.getScalarType(); - - // Determine which shuffle works with the smaller scalar type. - EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; - EVT ScaleSVT = ScaleVT.getScalarType(); - - if (TLI.isTypeLegal(ScaleVT) && - 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && - 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { - int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); - int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); - - // Scale the shuffle masks to the smaller scalar type. - ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); - SmallVector<int, 8> InnerMask = - ScaleShuffleMask(InnerSVN->getMask(), InnerScale); - SmallVector<int, 8> OuterMask = - ScaleShuffleMask(SVN->getMask(), OuterScale); - - // Merge the shuffle masks. - SmallVector<int, 8> NewMask; - for (int M : OuterMask) - NewMask.push_back(M < 0 ? -1 : InnerMask[M]); - - // Test for shuffle mask legality over both commutations. - SDValue SV0 = BC0->getOperand(0); - SDValue SV1 = BC0->getOperand(1); - bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); - if (!LegalMask) { - std::swap(SV0, SV1); - ShuffleVectorSDNode::commuteMask(NewMask); - LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); - } - - if (LegalMask) { - SV0 = DAG.getBitcast(ScaleVT, SV0); - SV1 = DAG.getBitcast(ScaleVT, SV1); - return DAG.getBitcast( - VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); - } - } - } - } - - // Canonicalize shuffles according to rules: - // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) - // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) - // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) - if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && - N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && - TLI.isTypeLegal(VT)) { - // The incoming shuffle must be of the same type as the result of the - // current shuffle. - assert(N1->getOperand(0).getValueType() == VT && - "Shuffle types don't match"); - - SDValue SV0 = N1->getOperand(0); - SDValue SV1 = N1->getOperand(1); - bool HasSameOp0 = N0 == SV0; - bool IsSV1Undef = SV1.isUndef(); - if (HasSameOp0 || IsSV1Undef || N0 == SV1) - // Commute the operands of this shuffle so that next rule - // will trigger. - return DAG.getCommutedVectorShuffle(*SVN); - } - - // Try to fold according to rules: - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) - // Don't try to fold shuffles with illegal type. - // Only fold if this shuffle is the only user of the other shuffle. - if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && - Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { - ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); - - // Don't try to fold splats; they're likely to simplify somehow, or they - // might be free. - if (OtherSV->isSplat()) - return SDValue(); - - // The incoming shuffle must be of the same type as the result of the - // current shuffle. - assert(OtherSV->getOperand(0).getValueType() == VT && - "Shuffle types don't match"); - - SDValue SV0, SV1; - SmallVector<int, 4> Mask; - // Compute the combined shuffle mask for a shuffle with SV0 as the first - // operand, and SV1 as the second operand. - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx < 0) { - // Propagate Undef. - Mask.push_back(Idx); - continue; - } - - SDValue CurrentVec; - if (Idx < (int)NumElts) { - // This shuffle index refers to the inner shuffle N0. Lookup the inner - // shuffle mask to identify which vector is actually referenced. - Idx = OtherSV->getMaskElt(Idx); - if (Idx < 0) { - // Propagate Undef. - Mask.push_back(Idx); - continue; - } - - CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) - : OtherSV->getOperand(1); - } else { - // This shuffle index references an element within N1. - CurrentVec = N1; - } - - // Simple case where 'CurrentVec' is UNDEF. - if (CurrentVec.isUndef()) { - Mask.push_back(-1); - continue; - } - - // Canonicalize the shuffle index. We don't know yet if CurrentVec - // will be the first or second operand of the combined shuffle. - Idx = Idx % NumElts; - if (!SV0.getNode() || SV0 == CurrentVec) { - // Ok. CurrentVec is the left hand side. - // Update the mask accordingly. - SV0 = CurrentVec; - Mask.push_back(Idx); - continue; - } - - // Bail out if we cannot convert the shuffle pair into a single shuffle. - if (SV1.getNode() && SV1 != CurrentVec) - return SDValue(); - - // Ok. CurrentVec is the right hand side. - // Update the mask accordingly. - SV1 = CurrentVec; - Mask.push_back(Idx + NumElts); - } - - // Check if all indices in Mask are Undef. In case, propagate Undef. - bool isUndefMask = true; - for (unsigned i = 0; i != NumElts && isUndefMask; ++i) - isUndefMask &= Mask[i] < 0; - - if (isUndefMask) - return DAG.getUNDEF(VT); - - if (!SV0.getNode()) - SV0 = DAG.getUNDEF(VT); - if (!SV1.getNode()) - SV1 = DAG.getUNDEF(VT); - - // Avoid introducing shuffles with illegal mask. - if (!TLI.isShuffleMaskLegal(Mask, VT)) { - ShuffleVectorSDNode::commuteMask(Mask); - - if (!TLI.isShuffleMaskLegal(Mask, VT)) - return SDValue(); - - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) - std::swap(SV0, SV1); - } - - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) - // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) - return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { - SDValue InVal = N->getOperand(0); - EVT VT = N->getValueType(0); - - // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern - // with a VECTOR_SHUFFLE and possible truncate. - if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { - SDValue InVec = InVal->getOperand(0); - SDValue EltNo = InVal->getOperand(1); - auto InVecT = InVec.getValueType(); - if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { - SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); - int Elt = C0->getZExtValue(); - NewMask[0] = Elt; - SDValue Val; - // If we have an implict truncate do truncate here as long as it's legal. - // if it's not legal, this should - if (VT.getScalarType() != InVal.getValueType() && - InVal.getValueType().isScalarInteger() && - isTypeLegal(VT.getScalarType())) { - Val = - DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); - return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); - } - if (VT.getScalarType() == InVecT.getScalarType() && - VT.getVectorNumElements() <= InVecT.getVectorNumElements() && - TLI.isShuffleMaskLegal(NewMask, VT)) { - Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec, - DAG.getUNDEF(InVecT), NewMask); - // If the initial vector is the correct size this shuffle is a - // valid result. - if (VT == InVecT) - return Val; - // If not we must truncate the vector. - if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { - MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); - SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy); - EVT SubVT = - EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(), - VT.getVectorNumElements()); - Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val, - ZeroIdx); - return Val; - } - } - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { - EVT VT = N->getValueType(0); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - - // If inserting an UNDEF, just return the original vector. - if (N1.isUndef()) - return N0; - - // If this is an insert of an extracted vector into an undef vector, we can - // just use the input to the extract. - if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && - N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) - return N1.getOperand(0); - - // If we are inserting a bitcast value into an undef, with the same - // number of elements, just use the bitcast input of the extract. - // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> - // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) - if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && - N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && - N1.getOperand(0).getOperand(1) == N2 && - N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() == - VT.getVectorNumElements() && - N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == - VT.getSizeInBits()) { - return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); - } - - // If both N1 and N2 are bitcast values on which insert_subvector - // would makes sense, pull the bitcast through. - // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> - // BITCAST (INSERT_SUBVECTOR N0 N1 N2) - if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { - SDValue CN0 = N0.getOperand(0); - SDValue CN1 = N1.getOperand(0); - EVT CN0VT = CN0.getValueType(); - EVT CN1VT = CN1.getValueType(); - if (CN0VT.isVector() && CN1VT.isVector() && - CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && - CN0VT.getVectorNumElements() == VT.getVectorNumElements()) { - SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), - CN0.getValueType(), CN0, CN1, N2); - return DAG.getBitcast(VT, NewINSERT); - } - } - - // Combine INSERT_SUBVECTORs where we are inserting to the same index. - // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) - // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) - if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && - N0.getOperand(1).getValueType() == N1.getValueType() && - N0.getOperand(2) == N2) - return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), - N1, N2); - - // Eliminate an intermediate insert into an undef vector: - // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> - // insert_subvector undef, X, N2 - if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && - N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) - return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, - N1.getOperand(1), N2); - - if (!isa<ConstantSDNode>(N2)) - return SDValue(); - - unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue(); - - // Canonicalize insert_subvector dag nodes. - // Example: - // (insert_subvector (insert_subvector A, Idx0), Idx1) - // -> (insert_subvector (insert_subvector A, Idx1), Idx0) - if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && - N1.getValueType() == N0.getOperand(1).getValueType() && - isa<ConstantSDNode>(N0.getOperand(2))) { - unsigned OtherIdx = N0.getConstantOperandVal(2); - if (InsIdx < OtherIdx) { - // Swap nodes. - SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, - N0.getOperand(0), N1, N2); - AddToWorklist(NewOp.getNode()); - return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), - VT, NewOp, N0.getOperand(1), N0.getOperand(2)); - } - } - - // If the input vector is a concatenation, and the insert replaces - // one of the pieces, we can optimize into a single concat_vectors. - if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && - N0.getOperand(0).getValueType() == N1.getValueType()) { - unsigned Factor = N1.getValueType().getVectorNumElements(); - - SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); - Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1; - - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); - } - - // Simplify source operands based on insertion. - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { - SDValue N0 = N->getOperand(0); - - // fold (fp_to_fp16 (fp16_to_fp op)) -> op - if (N0->getOpcode() == ISD::FP16_TO_FP) - return N0->getOperand(0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { - SDValue N0 = N->getOperand(0); - - // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) - if (N0->getOpcode() == ISD::AND) { - ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); - if (AndConst && AndConst->getAPIntValue() == 0xffff) { - return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), - N0.getOperand(0)); - } - } - - return SDValue(); -} - -/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle -/// with the destination vector and a zero vector. -/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> -/// vector_shuffle V, Zero, <0, 4, 2, 4> -SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { - assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); - - EVT VT = N->getValueType(0); - SDValue LHS = N->getOperand(0); - SDValue RHS = peekThroughBitcasts(N->getOperand(1)); - SDLoc DL(N); - - // Make sure we're not running after operation legalization where it - // may have custom lowered the vector shuffles. - if (LegalOperations) - return SDValue(); - - if (RHS.getOpcode() != ISD::BUILD_VECTOR) - return SDValue(); - - EVT RVT = RHS.getValueType(); - unsigned NumElts = RHS.getNumOperands(); - - // Attempt to create a valid clear mask, splitting the mask into - // sub elements and checking to see if each is - // all zeros or all ones - suitable for shuffle masking. - auto BuildClearMask = [&](int Split) { - int NumSubElts = NumElts * Split; - int NumSubBits = RVT.getScalarSizeInBits() / Split; - - SmallVector<int, 8> Indices; - for (int i = 0; i != NumSubElts; ++i) { - int EltIdx = i / Split; - int SubIdx = i % Split; - SDValue Elt = RHS.getOperand(EltIdx); - if (Elt.isUndef()) { - Indices.push_back(-1); - continue; - } - - APInt Bits; - if (isa<ConstantSDNode>(Elt)) - Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); - else if (isa<ConstantFPSDNode>(Elt)) - Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); - else - return SDValue(); - - // Extract the sub element from the constant bit mask. - if (DAG.getDataLayout().isBigEndian()) { - Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits); - } else { - Bits.lshrInPlace(SubIdx * NumSubBits); - } - - if (Split > 1) - Bits = Bits.trunc(NumSubBits); - - if (Bits.isAllOnesValue()) - Indices.push_back(i); - else if (Bits == 0) - Indices.push_back(i + NumSubElts); - else - return SDValue(); - } - - // Let's see if the target supports this vector_shuffle. - EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); - EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); - if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) - return SDValue(); - - SDValue Zero = DAG.getConstant(0, DL, ClearVT); - return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, - DAG.getBitcast(ClearVT, LHS), - Zero, Indices)); - }; - - // Determine maximum split level (byte level masking). - int MaxSplit = 1; - if (RVT.getScalarSizeInBits() % 8 == 0) - MaxSplit = RVT.getScalarSizeInBits() / 8; - - for (int Split = 1; Split <= MaxSplit; ++Split) - if (RVT.getScalarSizeInBits() % Split == 0) - if (SDValue S = BuildClearMask(Split)) - return S; - - return SDValue(); -} - -/// Visit a binary vector operation, like ADD. -SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { - assert(N->getValueType(0).isVector() && - "SimplifyVBinOp only works on vectors!"); - - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - SDValue Ops[] = {LHS, RHS}; - - // See if we can constant fold the vector operation. - if (SDValue Fold = DAG.FoldConstantVectorArithmetic( - N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) - return Fold; - - // Type legalization might introduce new shuffles in the DAG. - // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) - // -> (shuffle (VBinOp (A, B)), Undef, Mask). - if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && - isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && - LHS.getOperand(1).isUndef() && - RHS.getOperand(1).isUndef()) { - ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); - ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); - - if (SVN0->getMask().equals(SVN1->getMask())) { - EVT VT = N->getValueType(0); - SDValue UndefVector = LHS.getOperand(1); - SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, - LHS.getOperand(0), RHS.getOperand(0), - N->getFlags()); - AddUsersToWorklist(N); - return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, - SVN0->getMask()); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2) { - assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); - - SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - - // If we got a simplified select_cc node back from SimplifySelectCC, then - // break it down into a new SETCC node, and a new SELECT node, and then return - // the SELECT node, since we were called with a SELECT node. - if (SCC.getNode()) { - // Check to see if we got a select_cc back (to turn into setcc/select). - // Otherwise, just return whatever node we got back, like fabs. - if (SCC.getOpcode() == ISD::SELECT_CC) { - SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), - N0.getValueType(), - SCC.getOperand(0), SCC.getOperand(1), - SCC.getOperand(4)); - AddToWorklist(SETCC.getNode()); - return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, - SCC.getOperand(2), SCC.getOperand(3)); - } - - return SCC; - } - return SDValue(); -} - -/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values -/// being selected between, see if we can simplify the select. Callers of this -/// should assume that TheSelect is deleted if this returns true. As such, they -/// should return the appropriate thing (e.g. the node) back to the top-level of -/// the DAG combiner loop to avoid it being looked at. -bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, - SDValue RHS) { - // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) - // The select + setcc is redundant, because fsqrt returns NaN for X < 0. - if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { - if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { - // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) - SDValue Sqrt = RHS; - ISD::CondCode CC; - SDValue CmpLHS; - const ConstantFPSDNode *Zero = nullptr; - - if (TheSelect->getOpcode() == ISD::SELECT_CC) { - CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); - CmpLHS = TheSelect->getOperand(0); - Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); - } else { - // SELECT or VSELECT - SDValue Cmp = TheSelect->getOperand(0); - if (Cmp.getOpcode() == ISD::SETCC) { - CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); - CmpLHS = Cmp.getOperand(0); - Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); - } - } - if (Zero && Zero->isZero() && - Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || - CC == ISD::SETULT || CC == ISD::SETLT)) { - // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) - CombineTo(TheSelect, Sqrt); - return true; - } - } - } - // Cannot simplify select with vector condition - if (TheSelect->getOperand(0).getValueType().isVector()) return false; - - // If this is a select from two identical things, try to pull the operation - // through the select. - if (LHS.getOpcode() != RHS.getOpcode() || - !LHS.hasOneUse() || !RHS.hasOneUse()) - return false; - - // If this is a load and the token chain is identical, replace the select - // of two loads with a load through a select of the address to load from. - // This triggers in things like "select bool X, 10.0, 123.0" after the FP - // constants have been dropped into the constant pool. - if (LHS.getOpcode() == ISD::LOAD) { - LoadSDNode *LLD = cast<LoadSDNode>(LHS); - LoadSDNode *RLD = cast<LoadSDNode>(RHS); - - // Token chains must be identical. - if (LHS.getOperand(0) != RHS.getOperand(0) || - // Do not let this transformation reduce the number of volatile loads. - LLD->isVolatile() || RLD->isVolatile() || - // FIXME: If either is a pre/post inc/dec load, - // we'd need to split out the address adjustment. - LLD->isIndexed() || RLD->isIndexed() || - // If this is an EXTLOAD, the VT's must match. - LLD->getMemoryVT() != RLD->getMemoryVT() || - // If this is an EXTLOAD, the kind of extension must match. - (LLD->getExtensionType() != RLD->getExtensionType() && - // The only exception is if one of the extensions is anyext. - LLD->getExtensionType() != ISD::EXTLOAD && - RLD->getExtensionType() != ISD::EXTLOAD) || - // FIXME: this discards src value information. This is - // over-conservative. It would be beneficial to be able to remember - // both potential memory locations. Since we are discarding - // src value info, don't do the transformation if the memory - // locations are not in the default address space. - LLD->getPointerInfo().getAddrSpace() != 0 || - RLD->getPointerInfo().getAddrSpace() != 0 || - !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), - LLD->getBasePtr().getValueType())) - return false; - - // The loads must not depend on one another. - if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) - return false; - - // Check that the select condition doesn't reach either load. If so, - // folding this will induce a cycle into the DAG. If not, this is safe to - // xform, so create a select of the addresses. - - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 16> Worklist; - - // Always fail if LLD and RLD are not independent. TheSelect is a - // predecessor to all Nodes in question so we need not search past it. - - Visited.insert(TheSelect); - Worklist.push_back(LLD); - Worklist.push_back(RLD); - - if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || - SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) - return false; - - SDValue Addr; - if (TheSelect->getOpcode() == ISD::SELECT) { - // We cannot do this optimization if any pair of {RLD, LLD} is a - // predecessor to {RLD, LLD, CondNode}. As we've already compared the - // Loads, we only need to check if CondNode is a successor to one of the - // loads. We can further avoid this if there's no use of their chain - // value. - SDNode *CondNode = TheSelect->getOperand(0).getNode(); - Worklist.push_back(CondNode); - - if ((LLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || - (RLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) - return false; - - Addr = DAG.getSelect(SDLoc(TheSelect), - LLD->getBasePtr().getValueType(), - TheSelect->getOperand(0), LLD->getBasePtr(), - RLD->getBasePtr()); - } else { // Otherwise SELECT_CC - // We cannot do this optimization if any pair of {RLD, LLD} is a - // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared - // the Loads, we only need to check if CondLHS/CondRHS is a successor to - // one of the loads. We can further avoid this if there's no use of their - // chain value. - - SDNode *CondLHS = TheSelect->getOperand(0).getNode(); - SDNode *CondRHS = TheSelect->getOperand(1).getNode(); - Worklist.push_back(CondLHS); - Worklist.push_back(CondRHS); - - if ((LLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || - (RLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) - return false; - - Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), - LLD->getBasePtr().getValueType(), - TheSelect->getOperand(0), - TheSelect->getOperand(1), - LLD->getBasePtr(), RLD->getBasePtr(), - TheSelect->getOperand(4)); - } - - SDValue Load; - // It is safe to replace the two loads if they have different alignments, - // but the new load must be the minimum (most restrictive) alignment of the - // inputs. - unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); - MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); - if (!RLD->isInvariant()) - MMOFlags &= ~MachineMemOperand::MOInvariant; - if (!RLD->isDereferenceable()) - MMOFlags &= ~MachineMemOperand::MODereferenceable; - if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { - // FIXME: Discards pointer and AA info. - Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), - LLD->getChain(), Addr, MachinePointerInfo(), Alignment, - MMOFlags); - } else { - // FIXME: Discards pointer and AA info. - Load = DAG.getExtLoad( - LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() - : LLD->getExtensionType(), - SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, - MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); - } - - // Users of the select now use the result of the load. - CombineTo(TheSelect, Load); - - // Users of the old loads now use the new load's chain. We know the - // old-load value is dead now. - CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); - CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); - return true; - } - - return false; -} - -/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and -/// bitwise 'and'. -SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, - SDValue N1, SDValue N2, SDValue N3, - ISD::CondCode CC) { - // If this is a select where the false operand is zero and the compare is a - // check of the sign bit, see if we can perform the "gzip trick": - // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A - // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A - EVT XType = N0.getValueType(); - EVT AType = N2.getValueType(); - if (!isNullConstant(N3) || !XType.bitsGE(AType)) - return SDValue(); - - // If the comparison is testing for a positive value, we have to invert - // the sign bit mask, so only do that transform if the target has a bitwise - // 'and not' instruction (the invert is free). - if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { - // (X > -1) ? A : 0 - // (X > 0) ? X : 0 <-- This is canonical signed max. - if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) - return SDValue(); - } else if (CC == ISD::SETLT) { - // (X < 0) ? A : 0 - // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. - if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) - return SDValue(); - } else { - return SDValue(); - } - - // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit - // constant. - EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); - auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); - if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { - unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; - SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); - SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); - AddToWorklist(Shift.getNode()); - - if (XType.bitsGT(AType)) { - Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); - AddToWorklist(Shift.getNode()); - } - - if (CC == ISD::SETGT) - Shift = DAG.getNOT(DL, Shift, AType); - - return DAG.getNode(ISD::AND, DL, AType, Shift, N2); - } - - SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy); - SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); - AddToWorklist(Shift.getNode()); - - if (XType.bitsGT(AType)) { - Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); - AddToWorklist(Shift.getNode()); - } - - if (CC == ISD::SETGT) - Shift = DAG.getNOT(DL, Shift, AType); - - return DAG.getNode(ISD::AND, DL, AType, Shift, N2); -} - -/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" -/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 -/// in it. This may be a win when the constant is not otherwise available -/// because it replaces two constant pool loads with one. -SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( - const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, - ISD::CondCode CC) { - if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType().isFloatingPoint())) - return SDValue(); - - // If we are before legalize types, we want the other legalization to happen - // first (for example, to avoid messing with soft float). - auto *TV = dyn_cast<ConstantFPSDNode>(N2); - auto *FV = dyn_cast<ConstantFPSDNode>(N3); - EVT VT = N2.getValueType(); - if (!TV || !FV || !TLI.isTypeLegal(VT)) - return SDValue(); - - // If a constant can be materialized without loads, this does not make sense. - if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || - TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) || - TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) - return SDValue(); - - // If both constants have multiple uses, then we won't need to do an extra - // load. The values are likely around in registers for other users. - if (!TV->hasOneUse() && !FV->hasOneUse()) - return SDValue(); - - Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), - const_cast<ConstantFP*>(TV->getConstantFPValue()) }; - Type *FPTy = Elts[0]->getType(); - const DataLayout &TD = DAG.getDataLayout(); - - // Create a ConstantArray of the two constants. - Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); - SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), - TD.getPrefTypeAlignment(FPTy)); - unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); - - // Get offsets to the 0 and 1 elements of the array, so we can select between - // them. - SDValue Zero = DAG.getIntPtrConstant(0, DL); - unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); - SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); - SDValue Cond = - DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); - AddToWorklist(Cond.getNode()); - SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); - AddToWorklist(CstOffset.getNode()); - CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); - AddToWorklist(CPIdx.getNode()); - return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, - MachinePointerInfo::getConstantPool( - DAG.getMachineFunction()), Alignment); -} - -/// Simplify an expression of the form (N0 cond N1) ? N2 : N3 -/// where 'cond' is the comparison specified by CC. -SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2, SDValue N3, ISD::CondCode CC, - bool NotExtCompare) { - // (x ? y : y) -> y. - if (N2 == N3) return N2; - - EVT CmpOpVT = N0.getValueType(); - EVT VT = N2.getValueType(); - auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); - auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); - auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); - - // Determine if the condition we're dealing with is constant. - SDValue SCC = SimplifySetCC(getSetCCResultType(CmpOpVT), N0, N1, CC, DL, - false); - if (SCC.getNode()) AddToWorklist(SCC.getNode()); - - if (auto *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { - // fold select_cc true, x, y -> x - // fold select_cc false, x, y -> y - return !SCCC->isNullValue() ? N2 : N3; - } - - if (SDValue V = - convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) - return V; - - if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) - return V; - - // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) - // where y is has a single bit set. - // A plaintext description would be, we can turn the SELECT_CC into an AND - // when the condition can be materialized as an all-ones register. Any - // single bit-test can be materialized as an all-ones register with - // shift-left and shift-right-arith. - if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && - N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { - SDValue AndLHS = N0->getOperand(0); - auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); - if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { - // Shift the tested bit over the sign bit. - const APInt &AndMask = ConstAndRHS->getAPIntValue(); - SDValue ShlAmt = - DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), - getShiftAmountTy(AndLHS.getValueType())); - SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); - - // Now arithmetic right shift it all the way over, so the result is either - // all-ones, or zero. - SDValue ShrAmt = - DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), - getShiftAmountTy(Shl.getValueType())); - SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); - - return DAG.getNode(ISD::AND, DL, VT, Shr, N3); - } - } - - // fold select C, 16, 0 -> shl C, 4 - bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); - bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); - - if ((Fold || Swap) && - TLI.getBooleanContents(CmpOpVT) == - TargetLowering::ZeroOrOneBooleanContent && - (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { - - if (Swap) { - CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger()); - std::swap(N2C, N3C); - } - - // If the caller doesn't want us to simplify this into a zext of a compare, - // don't do it. - if (NotExtCompare && N2C->isOne()) - return SDValue(); - - SDValue Temp, SCC; - // zext (setcc n0, n1) - if (LegalTypes) { - SCC = DAG.getSetCC(DL, getSetCCResultType(CmpOpVT), N0, N1, CC); - if (VT.bitsLT(SCC.getValueType())) - Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); - else - Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); - } else { - SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); - Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); - } - - AddToWorklist(SCC.getNode()); - AddToWorklist(Temp.getNode()); - - if (N2C->isOne()) - return Temp; - - // shl setcc result by log2 n2c - return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, - DAG.getConstant(N2C->getAPIntValue().logBase2(), - SDLoc(Temp), - getShiftAmountTy(Temp.getValueType()))); - } - - // Check to see if this is an integer abs. - // select_cc setg[te] X, 0, X, -X -> - // select_cc setgt X, -1, X, -X -> - // select_cc setl[te] X, 0, -X, X -> - // select_cc setlt X, 1, -X, X -> - // Y = sra (X, size(X)-1); xor (add (X, Y), Y) - if (N1C) { - ConstantSDNode *SubC = nullptr; - if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || - (N1C->isAllOnesValue() && CC == ISD::SETGT)) && - N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) - SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); - else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || - (N1C->isOne() && CC == ISD::SETLT)) && - N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) - SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); - - if (SubC && SubC->isNullValue() && CmpOpVT.isInteger()) { - SDLoc DL(N0); - SDValue Shift = DAG.getNode(ISD::SRA, DL, CmpOpVT, N0, - DAG.getConstant(CmpOpVT.getSizeInBits() - 1, - DL, - getShiftAmountTy(CmpOpVT))); - SDValue Add = DAG.getNode(ISD::ADD, DL, CmpOpVT, N0, Shift); - AddToWorklist(Shift.getNode()); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::XOR, DL, CmpOpVT, Add, Shift); - } - } - - // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) - // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) - // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) - // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) - // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) - // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) - // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) - // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) - if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { - SDValue ValueOnZero = N2; - SDValue Count = N3; - // If the condition is NE instead of E, swap the operands. - if (CC == ISD::SETNE) - std::swap(ValueOnZero, Count); - // Check if the value on zero is a constant equal to the bits in the type. - if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { - if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { - // If the other operand is cttz/cttz_zero_undef of N0, and cttz is - // legal, combine to just cttz. - if ((Count.getOpcode() == ISD::CTTZ || - Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && - N0 == Count.getOperand(0) && - (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) - return DAG.getNode(ISD::CTTZ, DL, VT, N0); - // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is - // legal, combine to just ctlz. - if ((Count.getOpcode() == ISD::CTLZ || - Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && - N0 == Count.getOperand(0) && - (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) - return DAG.getNode(ISD::CTLZ, DL, VT, N0); - } - } - } - - return SDValue(); -} - -/// This is a stub for TargetLowering::SimplifySetCC. -SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, - ISD::CondCode Cond, const SDLoc &DL, - bool foldBooleans) { - TargetLowering::DAGCombinerInfo - DagCombineInfo(DAG, Level, false, this); - return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); -} - -/// Given an ISD::SDIV node expressing a divide by constant, return -/// a DAG expression to select that will generate the same value by multiplying -/// by a magic number. -/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". -SDValue DAGCombiner::BuildSDIV(SDNode *N) { - // when optimising for minimum size, we don't want to expand a div to a mul - // and a shift. - if (DAG.getMachineFunction().getFunction().optForMinSize()) - return SDValue(); - - SmallVector<SDNode *, 8> Built; - if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { - for (SDNode *N : Built) - AddToWorklist(N); - return S; - } - - return SDValue(); -} - -/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a -/// DAG expression that will generate the same value by right shifting. -SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { - ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); - if (!C) - return SDValue(); - - // Avoid division by zero. - if (C->isNullValue()) - return SDValue(); - - SmallVector<SDNode *, 8> Built; - if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { - for (SDNode *N : Built) - AddToWorklist(N); - return S; - } - - return SDValue(); -} - -/// Given an ISD::UDIV node expressing a divide by constant, return a DAG -/// expression that will generate the same value by multiplying by a magic -/// number. -/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". -SDValue DAGCombiner::BuildUDIV(SDNode *N) { - // when optimising for minimum size, we don't want to expand a div to a mul - // and a shift. - if (DAG.getMachineFunction().getFunction().optForMinSize()) - return SDValue(); - - SmallVector<SDNode *, 8> Built; - if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { - for (SDNode *N : Built) - AddToWorklist(N); - return S; - } - - return SDValue(); -} - -/// Determines the LogBase2 value for a non-null input value using the -/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). -SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { - EVT VT = V.getValueType(); - unsigned EltBits = VT.getScalarSizeInBits(); - SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); - SDValue Base = DAG.getConstant(EltBits - 1, DL, VT); - SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); - return LogBase2; -} - -/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) -/// For the reciprocal, we need to find the zero of the function: -/// F(X) = A X - 1 [which has a zero at X = 1/A] -/// => -/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form -/// does not require additional intermediate precision] -SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) { - if (Level >= AfterLegalizeDAG) - return SDValue(); - - // TODO: Handle half and/or extended types? - EVT VT = Op.getValueType(); - if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) - return SDValue(); - - // If estimates are explicitly disabled for this function, we're done. - MachineFunction &MF = DAG.getMachineFunction(); - int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); - if (Enabled == TLI.ReciprocalEstimate::Disabled) - return SDValue(); - - // Estimates may be explicitly enabled for this type with a custom number of - // refinement steps. - int Iterations = TLI.getDivRefinementSteps(VT, MF); - if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { - AddToWorklist(Est.getNode()); - - if (Iterations) { - EVT VT = Op.getValueType(); - SDLoc DL(Op); - SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); - - // Newton iterations: Est = Est + Est (1 - Arg * Est) - for (int i = 0; i < Iterations; ++i) { - SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); - AddToWorklist(NewEst.getNode()); - - NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); - AddToWorklist(NewEst.getNode()); - - NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); - AddToWorklist(NewEst.getNode()); - - Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); - AddToWorklist(Est.getNode()); - } - } - return Est; - } - - return SDValue(); -} - -/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) -/// For the reciprocal sqrt, we need to find the zero of the function: -/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] -/// => -/// X_{i+1} = X_i (1.5 - A X_i^2 / 2) -/// As a result, we precompute A/2 prior to the iteration loop. -SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, - unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal) { - EVT VT = Arg.getValueType(); - SDLoc DL(Arg); - SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); - - // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that - // this entire sequence requires only one FP constant. - SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); - AddToWorklist(HalfArg.getNode()); - - HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); - AddToWorklist(HalfArg.getNode()); - - // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) - for (unsigned i = 0; i < Iterations; ++i) { - SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); - AddToWorklist(NewEst.getNode()); - - NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); - AddToWorklist(NewEst.getNode()); - - NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); - AddToWorklist(NewEst.getNode()); - - Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); - AddToWorklist(Est.getNode()); - } - - // If non-reciprocal square root is requested, multiply the result by Arg. - if (!Reciprocal) { - Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); - AddToWorklist(Est.getNode()); - } - - return Est; -} - -/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) -/// For the reciprocal sqrt, we need to find the zero of the function: -/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] -/// => -/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) -SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, - unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal) { - EVT VT = Arg.getValueType(); - SDLoc DL(Arg); - SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); - SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); - - // This routine must enter the loop below to work correctly - // when (Reciprocal == false). - assert(Iterations > 0); - - // Newton iterations for reciprocal square root: - // E = (E * -0.5) * ((A * E) * E + -3.0) - for (unsigned i = 0; i < Iterations; ++i) { - SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); - AddToWorklist(AE.getNode()); - - SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); - AddToWorklist(AEE.getNode()); - - SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); - AddToWorklist(RHS.getNode()); - - // When calculating a square root at the last iteration build: - // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) - // (notice a common subexpression) - SDValue LHS; - if (Reciprocal || (i + 1) < Iterations) { - // RSQRT: LHS = (E * -0.5) - LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); - } else { - // SQRT: LHS = (A * E) * -0.5 - LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); - } - AddToWorklist(LHS.getNode()); - - Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); - AddToWorklist(Est.getNode()); - } - - return Est; -} - -/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case -/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if -/// Op can be zero. -SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, - bool Reciprocal) { - if (Level >= AfterLegalizeDAG) - return SDValue(); - - // TODO: Handle half and/or extended types? - EVT VT = Op.getValueType(); - if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) - return SDValue(); - - // If estimates are explicitly disabled for this function, we're done. - MachineFunction &MF = DAG.getMachineFunction(); - int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); - if (Enabled == TLI.ReciprocalEstimate::Disabled) - return SDValue(); - - // Estimates may be explicitly enabled for this type with a custom number of - // refinement steps. - int Iterations = TLI.getSqrtRefinementSteps(VT, MF); - - bool UseOneConstNR = false; - if (SDValue Est = - TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, - Reciprocal)) { - AddToWorklist(Est.getNode()); - - if (Iterations) { - Est = UseOneConstNR - ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) - : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); - - if (!Reciprocal) { - // The estimate is now completely wrong if the input was exactly 0.0 or - // possibly a denormal. Force the answer to 0.0 for those cases. - EVT VT = Op.getValueType(); - SDLoc DL(Op); - EVT CCVT = getSetCCResultType(VT); - ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; - const Function &F = DAG.getMachineFunction().getFunction(); - Attribute Denorms = F.getFnAttribute("denormal-fp-math"); - if (Denorms.getValueAsString().equals("ieee")) { - // fabs(X) < SmallestNormal ? 0.0 : Est - const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); - APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); - SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); - SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); - SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); - SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); - Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est); - AddToWorklist(Fabs.getNode()); - AddToWorklist(IsDenorm.getNode()); - AddToWorklist(Est.getNode()); - } else { - // X == 0.0 ? 0.0 : Est - SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); - SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); - Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est); - AddToWorklist(IsZero.getNode()); - AddToWorklist(Est.getNode()); - } - } - } - return Est; - } - - return SDValue(); -} - -SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { - return buildSqrtEstimateImpl(Op, Flags, true); -} - -SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { - return buildSqrtEstimateImpl(Op, Flags, false); -} - -/// Return true if there is any possibility that the two addresses overlap. -bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { - // If they are the same then they must be aliases. - if (Op0->getBasePtr() == Op1->getBasePtr()) return true; - - // If they are both volatile then they cannot be reordered. - if (Op0->isVolatile() && Op1->isVolatile()) return true; - - // If one operation reads from invariant memory, and the other may store, they - // cannot alias. These should really be checking the equivalent of mayWrite, - // but it only matters for memory nodes other than load /store. - if (Op0->isInvariant() && Op1->writeMem()) - return false; - - if (Op1->isInvariant() && Op0->writeMem()) - return false; - - unsigned NumBytes0 = Op0->getMemoryVT().getStoreSize(); - unsigned NumBytes1 = Op1->getMemoryVT().getStoreSize(); - - // Check for BaseIndexOffset matching. - BaseIndexOffset BasePtr0 = BaseIndexOffset::match(Op0, DAG); - BaseIndexOffset BasePtr1 = BaseIndexOffset::match(Op1, DAG); - int64_t PtrDiff; - if (BasePtr0.getBase().getNode() && BasePtr1.getBase().getNode()) { - if (BasePtr0.equalBaseIndex(BasePtr1, DAG, PtrDiff)) - return !((NumBytes0 <= PtrDiff) || (PtrDiff + NumBytes1 <= 0)); - - // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be - // able to calculate their relative offset if at least one arises - // from an alloca. However, these allocas cannot overlap and we - // can infer there is no alias. - if (auto *A = dyn_cast<FrameIndexSDNode>(BasePtr0.getBase())) - if (auto *B = dyn_cast<FrameIndexSDNode>(BasePtr1.getBase())) { - MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); - // If the base are the same frame index but the we couldn't find a - // constant offset, (indices are different) be conservative. - if (A != B && (!MFI.isFixedObjectIndex(A->getIndex()) || - !MFI.isFixedObjectIndex(B->getIndex()))) - return false; - } - - bool IsFI0 = isa<FrameIndexSDNode>(BasePtr0.getBase()); - bool IsFI1 = isa<FrameIndexSDNode>(BasePtr1.getBase()); - bool IsGV0 = isa<GlobalAddressSDNode>(BasePtr0.getBase()); - bool IsGV1 = isa<GlobalAddressSDNode>(BasePtr1.getBase()); - bool IsCV0 = isa<ConstantPoolSDNode>(BasePtr0.getBase()); - bool IsCV1 = isa<ConstantPoolSDNode>(BasePtr1.getBase()); - - // If of mismatched base types or checkable indices we can check - // they do not alias. - if ((BasePtr0.getIndex() == BasePtr1.getIndex() || (IsFI0 != IsFI1) || - (IsGV0 != IsGV1) || (IsCV0 != IsCV1)) && - (IsFI0 || IsGV0 || IsCV0) && (IsFI1 || IsGV1 || IsCV1)) - return false; - } - - // If we know required SrcValue1 and SrcValue2 have relatively large - // alignment compared to the size and offset of the access, we may be able - // to prove they do not alias. This check is conservative for now to catch - // cases created by splitting vector types. - int64_t SrcValOffset0 = Op0->getSrcValueOffset(); - int64_t SrcValOffset1 = Op1->getSrcValueOffset(); - unsigned OrigAlignment0 = Op0->getOriginalAlignment(); - unsigned OrigAlignment1 = Op1->getOriginalAlignment(); - if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && - NumBytes0 == NumBytes1 && OrigAlignment0 > NumBytes0) { - int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0; - int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1; - - // There is no overlap between these relatively aligned accesses of - // similar size. Return no alias. - if ((OffAlign0 + NumBytes0) <= OffAlign1 || - (OffAlign1 + NumBytes1) <= OffAlign0) - return false; - } - - bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 - ? CombinerGlobalAA - : DAG.getSubtarget().useAA(); -#ifndef NDEBUG - if (CombinerAAOnlyFunc.getNumOccurrences() && - CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) - UseAA = false; -#endif - - if (UseAA && AA && - Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { - // Use alias analysis information. - int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); - int64_t Overlap0 = NumBytes0 + SrcValOffset0 - MinOffset; - int64_t Overlap1 = NumBytes1 + SrcValOffset1 - MinOffset; - AliasResult AAResult = - AA->alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap0, - UseTBAA ? Op0->getAAInfo() : AAMDNodes()), - MemoryLocation(Op1->getMemOperand()->getValue(), Overlap1, - UseTBAA ? Op1->getAAInfo() : AAMDNodes()) ); - if (AAResult == NoAlias) - return false; - } - - // Otherwise we have to assume they alias. - return true; -} - -/// Walk up chain skipping non-aliasing memory nodes, -/// looking for aliasing nodes and adding them to the Aliases vector. -void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, - SmallVectorImpl<SDValue> &Aliases) { - SmallVector<SDValue, 8> Chains; // List of chains to visit. - SmallPtrSet<SDNode *, 16> Visited; // Visited node set. - - // Get alias information for node. - bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); - - // Starting off. - Chains.push_back(OriginalChain); - unsigned Depth = 0; - - // Look at each chain and determine if it is an alias. If so, add it to the - // aliases list. If not, then continue up the chain looking for the next - // candidate. - while (!Chains.empty()) { - SDValue Chain = Chains.pop_back_val(); - - // For TokenFactor nodes, look at each operand and only continue up the - // chain until we reach the depth limit. - // - // FIXME: The depth check could be made to return the last non-aliasing - // chain we found before we hit a tokenfactor rather than the original - // chain. - if (Depth > TLI.getGatherAllAliasesMaxDepth()) { - Aliases.clear(); - Aliases.push_back(OriginalChain); - return; - } - - // Don't bother if we've been before. - if (!Visited.insert(Chain.getNode()).second) - continue; - - switch (Chain.getOpcode()) { - case ISD::EntryToken: - // Entry token is ideal chain operand, but handled in FindBetterChain. - break; - - case ISD::LOAD: - case ISD::STORE: { - // Get alias information for Chain. - bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && - !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); - - // If chain is alias then stop here. - if (!(IsLoad && IsOpLoad) && - isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { - Aliases.push_back(Chain); - } else { - // Look further up the chain. - Chains.push_back(Chain.getOperand(0)); - ++Depth; - } - break; - } - - case ISD::TokenFactor: - // We have to check each of the operands of the token factor for "small" - // token factors, so we queue them up. Adding the operands to the queue - // (stack) in reverse order maintains the original order and increases the - // likelihood that getNode will find a matching token factor (CSE.) - if (Chain.getNumOperands() > 16) { - Aliases.push_back(Chain); - break; - } - for (unsigned n = Chain.getNumOperands(); n;) - Chains.push_back(Chain.getOperand(--n)); - ++Depth; - break; - - case ISD::CopyFromReg: - // Forward past CopyFromReg. - Chains.push_back(Chain.getOperand(0)); - ++Depth; - break; - - default: - // For all other instructions we will just have to take what we can get. - Aliases.push_back(Chain); - break; - } - } -} - -/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain -/// (aliasing node.) -SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { - if (OptLevel == CodeGenOpt::None) - return OldChain; - - // Ops for replacing token factor. - SmallVector<SDValue, 8> Aliases; - - // Accumulate all the aliases to this node. - GatherAllAliases(N, OldChain, Aliases); - - // If no operands then chain to entry token. - if (Aliases.size() == 0) - return DAG.getEntryNode(); - - // If a single operand then chain to it. We don't need to revisit it. - if (Aliases.size() == 1) - return Aliases[0]; - - // Construct a custom tailored token factor. - return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); -} - -// TODO: Replace with with std::monostate when we move to C++17. -struct UnitT { } Unit; -bool operator==(const UnitT &, const UnitT &) { return true; } -bool operator!=(const UnitT &, const UnitT &) { return false; } - -// This function tries to collect a bunch of potentially interesting -// nodes to improve the chains of, all at once. This might seem -// redundant, as this function gets called when visiting every store -// node, so why not let the work be done on each store as it's visited? -// -// I believe this is mainly important because MergeConsecutiveStores -// is unable to deal with merging stores of different sizes, so unless -// we improve the chains of all the potential candidates up-front -// before running MergeConsecutiveStores, it might only see some of -// the nodes that will eventually be candidates, and then not be able -// to go from a partially-merged state to the desired final -// fully-merged state. - -bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { - SmallVector<StoreSDNode *, 8> ChainedStores; - StoreSDNode *STChain = St; - // Intervals records which offsets from BaseIndex have been covered. In - // the common case, every store writes to the immediately previous address - // space and thus merged with the previous interval at insertion time. - - using IMap = - llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; - IMap::Allocator A; - IMap Intervals(A); - - // This holds the base pointer, index, and the offset in bytes from the base - // pointer. - const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); - - // We must have a base and an offset. - if (!BasePtr.getBase().getNode()) - return false; - - // Do not handle stores to undef base pointers. - if (BasePtr.getBase().isUndef()) - return false; - - // Add ST's interval. - Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); - - while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { - // If the chain has more than one use, then we can't reorder the mem ops. - if (!SDValue(Chain, 0)->hasOneUse()) - break; - if (Chain->isVolatile() || Chain->isIndexed()) - break; - - // Find the base pointer and offset for this memory node. - const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); - // Check that the base pointer is the same as the original one. - int64_t Offset; - if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) - break; - int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; - // Make sure we don't overlap with other intervals by checking the ones to - // the left or right before inserting. - auto I = Intervals.find(Offset); - // If there's a next interval, we should end before it. - if (I != Intervals.end() && I.start() < (Offset + Length)) - break; - // If there's a previous interval, we should start after it. - if (I != Intervals.begin() && (--I).stop() <= Offset) - break; - Intervals.insert(Offset, Offset + Length, Unit); - - ChainedStores.push_back(Chain); - STChain = Chain; - } - - // If we didn't find a chained store, exit. - if (ChainedStores.size() == 0) - return false; - - // Improve all chained stores (St and ChainedStores members) starting from - // where the store chain ended and return single TokenFactor. - SDValue NewChain = STChain->getChain(); - SmallVector<SDValue, 8> TFOps; - for (unsigned I = ChainedStores.size(); I;) { - StoreSDNode *S = ChainedStores[--I]; - SDValue BetterChain = FindBetterChain(S, NewChain); - S = cast<StoreSDNode>(DAG.UpdateNodeOperands( - S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); - TFOps.push_back(SDValue(S, 0)); - ChainedStores[I] = S; - } - - // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. - SDValue BetterChain = FindBetterChain(St, NewChain); - SDValue NewST; - if (St->isTruncatingStore()) - NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), - St->getBasePtr(), St->getMemoryVT(), - St->getMemOperand()); - else - NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), - St->getBasePtr(), St->getMemOperand()); - - TFOps.push_back(NewST); - - // If we improved every element of TFOps, then we've lost the dependence on - // NewChain to successors of St and we need to add it back to TFOps. Do so at - // the beginning to keep relative order consistent with FindBetterChains. - auto hasImprovedChain = [&](SDValue ST) -> bool { - return ST->getOperand(0) != NewChain; - }; - bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); - if (AddNewChain) - TFOps.insert(TFOps.begin(), NewChain); - - SDValue TF = DAG.getNode(ISD::TokenFactor, SDLoc(STChain), MVT::Other, TFOps); - CombineTo(St, TF); - - AddToWorklist(STChain); - // Add TF operands worklist in reverse order. - for (auto I = TF->getNumOperands(); I;) - AddToWorklist(TF->getOperand(--I).getNode()); - AddToWorklist(TF.getNode()); - return true; -} - -bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { - if (OptLevel == CodeGenOpt::None) - return false; - - const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); - - // We must have a base and an offset. - if (!BasePtr.getBase().getNode()) - return false; - - // Do not handle stores to undef base pointers. - if (BasePtr.getBase().isUndef()) - return false; - - // Directly improve a chain of disjoint stores starting at St. - if (parallelizeChainedStores(St)) - return true; - - // Improve St's Chain.. - SDValue BetterChain = FindBetterChain(St, St->getChain()); - if (St->getChain() != BetterChain) { - replaceStoreChain(St, BetterChain); - return true; - } - return false; -} - -/// This is the entry point for the file. -void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, - CodeGenOpt::Level OptLevel) { - /// This is the main entry point to this class. - DAGCombiner(*this, AA, OptLevel).Run(Level); -} |
