summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp19403
1 files changed, 0 insertions, 19403 deletions
diff --git a/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
deleted file mode 100644
index 8203476ed4e..00000000000
--- a/gnu/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ /dev/null
@@ -1,19403 +0,0 @@
-//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
-// both before and after the DAG is legalized.
-//
-// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
-// primarily intended to handle simplification opportunities that are implicit
-// in the LLVM IR and exposed by the various codegen lowering phases.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/IntervalMap.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/CodeGen/DAGCombine.h"
-#include "llvm/CodeGen/ISDOpcodes.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/RuntimeLibcalls.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
-#include "llvm/CodeGen/SelectionDAGNodes.h"
-#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CodeGen.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MachineValueType.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <functional>
-#include <iterator>
-#include <string>
-#include <tuple>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "dagcombine"
-
-STATISTIC(NodesCombined , "Number of dag nodes combined");
-STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
-STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
-STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
-STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
-STATISTIC(SlicedLoads, "Number of load sliced");
-STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
-
-static cl::opt<bool>
-CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
- cl::desc("Enable DAG combiner's use of IR alias analysis"));
-
-static cl::opt<bool>
-UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
- cl::desc("Enable DAG combiner's use of TBAA"));
-
-#ifndef NDEBUG
-static cl::opt<std::string>
-CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
- cl::desc("Only use DAG-combiner alias analysis in this"
- " function"));
-#endif
-
-/// Hidden option to stress test load slicing, i.e., when this option
-/// is enabled, load slicing bypasses most of its profitability guards.
-static cl::opt<bool>
-StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
- cl::desc("Bypass the profitability model of load slicing"),
- cl::init(false));
-
-static cl::opt<bool>
- MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
- cl::desc("DAG combiner may split indexing from loads"));
-
-namespace {
-
- class DAGCombiner {
- SelectionDAG &DAG;
- const TargetLowering &TLI;
- CombineLevel Level;
- CodeGenOpt::Level OptLevel;
- bool LegalOperations = false;
- bool LegalTypes = false;
- bool ForCodeSize;
-
- /// Worklist of all of the nodes that need to be simplified.
- ///
- /// This must behave as a stack -- new nodes to process are pushed onto the
- /// back and when processing we pop off of the back.
- ///
- /// The worklist will not contain duplicates but may contain null entries
- /// due to nodes being deleted from the underlying DAG.
- SmallVector<SDNode *, 64> Worklist;
-
- /// Mapping from an SDNode to its position on the worklist.
- ///
- /// This is used to find and remove nodes from the worklist (by nulling
- /// them) when they are deleted from the underlying DAG. It relies on
- /// stable indices of nodes within the worklist.
- DenseMap<SDNode *, unsigned> WorklistMap;
-
- /// Set of nodes which have been combined (at least once).
- ///
- /// This is used to allow us to reliably add any operands of a DAG node
- /// which have not yet been combined to the worklist.
- SmallPtrSet<SDNode *, 32> CombinedNodes;
-
- // AA - Used for DAG load/store alias analysis.
- AliasAnalysis *AA;
-
- /// When an instruction is simplified, add all users of the instruction to
- /// the work lists because they might get more simplified now.
- void AddUsersToWorklist(SDNode *N) {
- for (SDNode *Node : N->uses())
- AddToWorklist(Node);
- }
-
- /// Call the node-specific routine that folds each particular type of node.
- SDValue visit(SDNode *N);
-
- public:
- DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
- : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
- OptLevel(OL), AA(AA) {
- ForCodeSize = DAG.getMachineFunction().getFunction().optForSize();
-
- MaximumLegalStoreInBits = 0;
- for (MVT VT : MVT::all_valuetypes())
- if (EVT(VT).isSimple() && VT != MVT::Other &&
- TLI.isTypeLegal(EVT(VT)) &&
- VT.getSizeInBits() >= MaximumLegalStoreInBits)
- MaximumLegalStoreInBits = VT.getSizeInBits();
- }
-
- /// Add to the worklist making sure its instance is at the back (next to be
- /// processed.)
- void AddToWorklist(SDNode *N) {
- assert(N->getOpcode() != ISD::DELETED_NODE &&
- "Deleted Node added to Worklist");
-
- // Skip handle nodes as they can't usefully be combined and confuse the
- // zero-use deletion strategy.
- if (N->getOpcode() == ISD::HANDLENODE)
- return;
-
- if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
- Worklist.push_back(N);
- }
-
- /// Remove all instances of N from the worklist.
- void removeFromWorklist(SDNode *N) {
- CombinedNodes.erase(N);
-
- auto It = WorklistMap.find(N);
- if (It == WorklistMap.end())
- return; // Not in the worklist.
-
- // Null out the entry rather than erasing it to avoid a linear operation.
- Worklist[It->second] = nullptr;
- WorklistMap.erase(It);
- }
-
- void deleteAndRecombine(SDNode *N);
- bool recursivelyDeleteUnusedNodes(SDNode *N);
-
- /// Replaces all uses of the results of one DAG node with new values.
- SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
- bool AddTo = true);
-
- /// Replaces all uses of the results of one DAG node with new values.
- SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
- return CombineTo(N, &Res, 1, AddTo);
- }
-
- /// Replaces all uses of the results of one DAG node with new values.
- SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
- bool AddTo = true) {
- SDValue To[] = { Res0, Res1 };
- return CombineTo(N, To, 2, AddTo);
- }
-
- void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
-
- private:
- unsigned MaximumLegalStoreInBits;
-
- /// Check the specified integer node value to see if it can be simplified or
- /// if things it uses can be simplified by bit propagation.
- /// If so, return true.
- bool SimplifyDemandedBits(SDValue Op) {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- APInt Demanded = APInt::getAllOnesValue(BitWidth);
- return SimplifyDemandedBits(Op, Demanded);
- }
-
- /// Check the specified vector node value to see if it can be simplified or
- /// if things it uses can be simplified as it only uses some of the
- /// elements. If so, return true.
- bool SimplifyDemandedVectorElts(SDValue Op) {
- unsigned NumElts = Op.getValueType().getVectorNumElements();
- APInt Demanded = APInt::getAllOnesValue(NumElts);
- return SimplifyDemandedVectorElts(Op, Demanded);
- }
-
- bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
- bool SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded,
- bool AssumeSingleUse = false);
-
- bool CombineToPreIndexedLoadStore(SDNode *N);
- bool CombineToPostIndexedLoadStore(SDNode *N);
- SDValue SplitIndexingFromLoad(LoadSDNode *LD);
- bool SliceUpLoad(SDNode *N);
-
- // Scalars have size 0 to distinguish from singleton vectors.
- SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
- bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
- bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
-
- /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
- /// load.
- ///
- /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
- /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
- /// \param EltNo index of the vector element to load.
- /// \param OriginalLoad load that EVE came from to be replaced.
- /// \returns EVE on success SDValue() on failure.
- SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
- SDValue EltNo,
- LoadSDNode *OriginalLoad);
- void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
- SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
- SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
- SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
- SDValue PromoteIntBinOp(SDValue Op);
- SDValue PromoteIntShiftOp(SDValue Op);
- SDValue PromoteExtend(SDValue Op);
- bool PromoteLoad(SDValue Op);
-
- /// Call the node-specific routine that knows how to fold each
- /// particular type of node. If that doesn't do anything, try the
- /// target-specific DAG combines.
- SDValue combine(SDNode *N);
-
- // Visitation implementation - Implement dag node combining for different
- // node types. The semantics are as follows:
- // Return Value:
- // SDValue.getNode() == 0 - No change was made
- // SDValue.getNode() == N - N was replaced, is dead and has been handled.
- // otherwise - N should be replaced by the returned Operand.
- //
- SDValue visitTokenFactor(SDNode *N);
- SDValue visitMERGE_VALUES(SDNode *N);
- SDValue visitADD(SDNode *N);
- SDValue visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference);
- SDValue visitSUB(SDNode *N);
- SDValue visitADDSAT(SDNode *N);
- SDValue visitSUBSAT(SDNode *N);
- SDValue visitADDC(SDNode *N);
- SDValue visitUADDO(SDNode *N);
- SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitSUBC(SDNode *N);
- SDValue visitUSUBO(SDNode *N);
- SDValue visitADDE(SDNode *N);
- SDValue visitADDCARRY(SDNode *N);
- SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
- SDValue visitSUBE(SDNode *N);
- SDValue visitSUBCARRY(SDNode *N);
- SDValue visitMUL(SDNode *N);
- SDValue useDivRem(SDNode *N);
- SDValue visitSDIV(SDNode *N);
- SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitUDIV(SDNode *N);
- SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitREM(SDNode *N);
- SDValue visitMULHU(SDNode *N);
- SDValue visitMULHS(SDNode *N);
- SDValue visitSMUL_LOHI(SDNode *N);
- SDValue visitUMUL_LOHI(SDNode *N);
- SDValue visitSMULO(SDNode *N);
- SDValue visitUMULO(SDNode *N);
- SDValue visitIMINMAX(SDNode *N);
- SDValue visitAND(SDNode *N);
- SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitOR(SDNode *N);
- SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitXOR(SDNode *N);
- SDValue SimplifyVBinOp(SDNode *N);
- SDValue visitSHL(SDNode *N);
- SDValue visitSRA(SDNode *N);
- SDValue visitSRL(SDNode *N);
- SDValue visitFunnelShift(SDNode *N);
- SDValue visitRotate(SDNode *N);
- SDValue visitABS(SDNode *N);
- SDValue visitBSWAP(SDNode *N);
- SDValue visitBITREVERSE(SDNode *N);
- SDValue visitCTLZ(SDNode *N);
- SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
- SDValue visitCTTZ(SDNode *N);
- SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
- SDValue visitCTPOP(SDNode *N);
- SDValue visitSELECT(SDNode *N);
- SDValue visitVSELECT(SDNode *N);
- SDValue visitSELECT_CC(SDNode *N);
- SDValue visitSETCC(SDNode *N);
- SDValue visitSETCCCARRY(SDNode *N);
- SDValue visitSIGN_EXTEND(SDNode *N);
- SDValue visitZERO_EXTEND(SDNode *N);
- SDValue visitANY_EXTEND(SDNode *N);
- SDValue visitAssertExt(SDNode *N);
- SDValue visitSIGN_EXTEND_INREG(SDNode *N);
- SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
- SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
- SDValue visitTRUNCATE(SDNode *N);
- SDValue visitBITCAST(SDNode *N);
- SDValue visitBUILD_PAIR(SDNode *N);
- SDValue visitFADD(SDNode *N);
- SDValue visitFSUB(SDNode *N);
- SDValue visitFMUL(SDNode *N);
- SDValue visitFMA(SDNode *N);
- SDValue visitFDIV(SDNode *N);
- SDValue visitFREM(SDNode *N);
- SDValue visitFSQRT(SDNode *N);
- SDValue visitFCOPYSIGN(SDNode *N);
- SDValue visitFPOW(SDNode *N);
- SDValue visitSINT_TO_FP(SDNode *N);
- SDValue visitUINT_TO_FP(SDNode *N);
- SDValue visitFP_TO_SINT(SDNode *N);
- SDValue visitFP_TO_UINT(SDNode *N);
- SDValue visitFP_ROUND(SDNode *N);
- SDValue visitFP_ROUND_INREG(SDNode *N);
- SDValue visitFP_EXTEND(SDNode *N);
- SDValue visitFNEG(SDNode *N);
- SDValue visitFABS(SDNode *N);
- SDValue visitFCEIL(SDNode *N);
- SDValue visitFTRUNC(SDNode *N);
- SDValue visitFFLOOR(SDNode *N);
- SDValue visitFMINNUM(SDNode *N);
- SDValue visitFMAXNUM(SDNode *N);
- SDValue visitFMINIMUM(SDNode *N);
- SDValue visitFMAXIMUM(SDNode *N);
- SDValue visitBRCOND(SDNode *N);
- SDValue visitBR_CC(SDNode *N);
- SDValue visitLOAD(SDNode *N);
-
- SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
- SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
-
- SDValue visitSTORE(SDNode *N);
- SDValue visitINSERT_VECTOR_ELT(SDNode *N);
- SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
- SDValue visitBUILD_VECTOR(SDNode *N);
- SDValue visitCONCAT_VECTORS(SDNode *N);
- SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
- SDValue visitVECTOR_SHUFFLE(SDNode *N);
- SDValue visitSCALAR_TO_VECTOR(SDNode *N);
- SDValue visitINSERT_SUBVECTOR(SDNode *N);
- SDValue visitMLOAD(SDNode *N);
- SDValue visitMSTORE(SDNode *N);
- SDValue visitMGATHER(SDNode *N);
- SDValue visitMSCATTER(SDNode *N);
- SDValue visitFP_TO_FP16(SDNode *N);
- SDValue visitFP16_TO_FP(SDNode *N);
-
- SDValue visitFADDForFMACombine(SDNode *N);
- SDValue visitFSUBForFMACombine(SDNode *N);
- SDValue visitFMULForFMADistributiveCombine(SDNode *N);
-
- SDValue XformToShuffleWithZero(SDNode *N);
- SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
- SDValue N1, SDNodeFlags Flags);
-
- SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
-
- SDValue foldSelectOfConstants(SDNode *N);
- SDValue foldVSelectOfConstants(SDNode *N);
- SDValue foldBinOpIntoSelect(SDNode *BO);
- bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
- SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
- SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
- SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2, SDValue N3, ISD::CondCode CC,
- bool NotExtCompare = false);
- SDValue convertSelectOfFPConstantsToLoadOffset(
- const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC);
- SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2, SDValue N3, ISD::CondCode CC);
- SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
- const SDLoc &DL);
- SDValue unfoldMaskedMerge(SDNode *N);
- SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
- SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
- const SDLoc &DL, bool foldBooleans);
- SDValue rebuildSetCC(SDValue N);
-
- bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
- SDValue &CC) const;
- bool isOneUseSetCC(SDValue N) const;
-
- SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
- unsigned HiOp);
- SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
- SDValue CombineExtLoad(SDNode *N);
- SDValue CombineZExtLogicopShiftLoad(SDNode *N);
- SDValue combineRepeatedFPDivisors(SDNode *N);
- SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
- SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
- SDValue BuildSDIV(SDNode *N);
- SDValue BuildSDIVPow2(SDNode *N);
- SDValue BuildUDIV(SDNode *N);
- SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
- SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags);
- SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
- SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
- SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
- SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal);
- SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal);
- SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
- bool DemandHighBits = true);
- SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
- SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
- SDValue InnerPos, SDValue InnerNeg,
- unsigned PosOpcode, unsigned NegOpcode,
- const SDLoc &DL);
- SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
- SDValue MatchLoadCombine(SDNode *N);
- SDValue ReduceLoadWidth(SDNode *N);
- SDValue ReduceLoadOpStoreWidth(SDNode *N);
- SDValue splitMergedValStore(StoreSDNode *ST);
- SDValue TransformFPLoadStorePair(SDNode *N);
- SDValue convertBuildVecZextToZext(SDNode *N);
- SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
- SDValue reduceBuildVecToShuffle(SDNode *N);
- SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
- ArrayRef<int> VectorMask, SDValue VecIn1,
- SDValue VecIn2, unsigned LeftIdx);
- SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
-
- /// Walk up chain skipping non-aliasing memory nodes,
- /// looking for aliasing nodes and adding them to the Aliases vector.
- void GatherAllAliases(SDNode *N, SDValue OriginalChain,
- SmallVectorImpl<SDValue> &Aliases);
-
- /// Return true if there is any possibility that the two addresses overlap.
- bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
-
- /// Walk up chain skipping non-aliasing memory nodes, looking for a better
- /// chain (aliasing node.)
- SDValue FindBetterChain(SDNode *N, SDValue Chain);
-
- /// Try to replace a store and any possibly adjacent stores on
- /// consecutive chains with better chains. Return true only if St is
- /// replaced.
- ///
- /// Notice that other chains may still be replaced even if the function
- /// returns false.
- bool findBetterNeighborChains(StoreSDNode *St);
-
- // Helper for findBetterNeighborChains. Walk up store chain add additional
- // chained stores that do not overlap and can be parallelized.
- bool parallelizeChainedStores(StoreSDNode *St);
-
- /// Holds a pointer to an LSBaseSDNode as well as information on where it
- /// is located in a sequence of memory operations connected by a chain.
- struct MemOpLink {
- // Ptr to the mem node.
- LSBaseSDNode *MemNode;
-
- // Offset from the base ptr.
- int64_t OffsetFromBase;
-
- MemOpLink(LSBaseSDNode *N, int64_t Offset)
- : MemNode(N), OffsetFromBase(Offset) {}
- };
-
- /// This is a helper function for visitMUL to check the profitability
- /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
- /// MulNode is the original multiply, AddNode is (add x, c1),
- /// and ConstNode is c2.
- bool isMulAddWithConstProfitable(SDNode *MulNode,
- SDValue &AddNode,
- SDValue &ConstNode);
-
- /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
- /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
- /// the type of the loaded value to be extended.
- bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
- EVT LoadResultTy, EVT &ExtVT);
-
- /// Helper function to calculate whether the given Load/Store can have its
- /// width reduced to ExtVT.
- bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
- EVT &MemVT, unsigned ShAmt = 0);
-
- /// Used by BackwardsPropagateMask to find suitable loads.
- bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
- SmallPtrSetImpl<SDNode*> &NodesWithConsts,
- ConstantSDNode *Mask, SDNode *&NodeToMask);
- /// Attempt to propagate a given AND node back to load leaves so that they
- /// can be combined into narrow loads.
- bool BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG);
-
- /// Helper function for MergeConsecutiveStores which merges the
- /// component store chains.
- SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumStores);
-
- /// This is a helper function for MergeConsecutiveStores. When the
- /// source elements of the consecutive stores are all constants or
- /// all extracted vector elements, try to merge them into one
- /// larger store introducing bitcasts if necessary. \return True
- /// if a merged store was created.
- bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
- EVT MemVT, unsigned NumStores,
- bool IsConstantSrc, bool UseVector,
- bool UseTrunc);
-
- /// This is a helper function for MergeConsecutiveStores. Stores
- /// that potentially may be merged with St are placed in
- /// StoreNodes. RootNode is a chain predecessor to all store
- /// candidates.
- void getStoreMergeCandidates(StoreSDNode *St,
- SmallVectorImpl<MemOpLink> &StoreNodes,
- SDNode *&Root);
-
- /// Helper function for MergeConsecutiveStores. Checks if
- /// candidate stores have indirect dependency through their
- /// operands. RootNode is the predecessor to all stores calculated
- /// by getStoreMergeCandidates and is used to prune the dependency check.
- /// \return True if safe to merge.
- bool checkMergeStoreCandidatesForDependencies(
- SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
- SDNode *RootNode);
-
- /// Merge consecutive store operations into a wide store.
- /// This optimization uses wide integers or vectors when possible.
- /// \return number of stores that were merged into a merged store (the
- /// affected nodes are stored as a prefix in \p StoreNodes).
- bool MergeConsecutiveStores(StoreSDNode *St);
-
- /// Try to transform a truncation where C is a constant:
- /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
- ///
- /// \p N needs to be a truncation and its first operand an AND. Other
- /// requirements are checked by the function (e.g. that trunc is
- /// single-use) and if missed an empty SDValue is returned.
- SDValue distributeTruncateThroughAnd(SDNode *N);
-
- /// Helper function to determine whether the target supports operation
- /// given by \p Opcode for type \p VT, that is, whether the operation
- /// is legal or custom before legalizing operations, and whether is
- /// legal (but not custom) after legalization.
- bool hasOperation(unsigned Opcode, EVT VT) {
- if (LegalOperations)
- return TLI.isOperationLegal(Opcode, VT);
- return TLI.isOperationLegalOrCustom(Opcode, VT);
- }
-
- public:
- /// Runs the dag combiner on all nodes in the work list
- void Run(CombineLevel AtLevel);
-
- SelectionDAG &getDAG() const { return DAG; }
-
- /// Returns a type large enough to hold any valid shift amount - before type
- /// legalization these can be huge.
- EVT getShiftAmountTy(EVT LHSTy) {
- assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
- return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
- }
-
- /// This method returns true if we are running before type legalization or
- /// if the specified VT is legal.
- bool isTypeLegal(const EVT &VT) {
- if (!LegalTypes) return true;
- return TLI.isTypeLegal(VT);
- }
-
- /// Convenience wrapper around TargetLowering::getSetCCResultType
- EVT getSetCCResultType(EVT VT) const {
- return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- }
-
- void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
- SDValue OrigLoad, SDValue ExtLoad,
- ISD::NodeType ExtType);
- };
-
-/// This class is a DAGUpdateListener that removes any deleted
-/// nodes from the worklist.
-class WorklistRemover : public SelectionDAG::DAGUpdateListener {
- DAGCombiner &DC;
-
-public:
- explicit WorklistRemover(DAGCombiner &dc)
- : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
-
- void NodeDeleted(SDNode *N, SDNode *E) override {
- DC.removeFromWorklist(N);
- }
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// TargetLowering::DAGCombinerInfo implementation
-//===----------------------------------------------------------------------===//
-
-void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
- ((DAGCombiner*)DC)->AddToWorklist(N);
-}
-
-SDValue TargetLowering::DAGCombinerInfo::
-CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
- return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
-}
-
-SDValue TargetLowering::DAGCombinerInfo::
-CombineTo(SDNode *N, SDValue Res, bool AddTo) {
- return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
-}
-
-SDValue TargetLowering::DAGCombinerInfo::
-CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
- return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
-}
-
-void TargetLowering::DAGCombinerInfo::
-CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
- return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
-}
-
-//===----------------------------------------------------------------------===//
-// Helper Functions
-//===----------------------------------------------------------------------===//
-
-void DAGCombiner::deleteAndRecombine(SDNode *N) {
- removeFromWorklist(N);
-
- // If the operands of this node are only used by the node, they will now be
- // dead. Make sure to re-visit them and recursively delete dead nodes.
- for (const SDValue &Op : N->ops())
- // For an operand generating multiple values, one of the values may
- // become dead allowing further simplification (e.g. split index
- // arithmetic from an indexed load).
- if (Op->hasOneUse() || Op->getNumValues() > 1)
- AddToWorklist(Op.getNode());
-
- DAG.DeleteNode(N);
-}
-
-/// Return 1 if we can compute the negated form of the specified expression for
-/// the same cost as the expression itself, or 2 if we can compute the negated
-/// form more cheaply than the expression itself.
-static char isNegatibleForFree(SDValue Op, bool LegalOperations,
- const TargetLowering &TLI,
- const TargetOptions *Options,
- unsigned Depth = 0) {
- // fneg is removable even if it has multiple uses.
- if (Op.getOpcode() == ISD::FNEG) return 2;
-
- // Don't allow anything with multiple uses unless we know it is free.
- EVT VT = Op.getValueType();
- const SDNodeFlags Flags = Op->getFlags();
- if (!Op.hasOneUse())
- if (!(Op.getOpcode() == ISD::FP_EXTEND &&
- TLI.isFPExtFree(VT, Op.getOperand(0).getValueType())))
- return 0;
-
- // Don't recurse exponentially.
- if (Depth > 6) return 0;
-
- switch (Op.getOpcode()) {
- default: return false;
- case ISD::ConstantFP: {
- if (!LegalOperations)
- return 1;
-
- // Don't invert constant FP values after legalization unless the target says
- // the negated constant is legal.
- return TLI.isOperationLegal(ISD::ConstantFP, VT) ||
- TLI.isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT);
- }
- case ISD::FADD:
- if (!Options->UnsafeFPMath && !Flags.hasNoSignedZeros())
- return 0;
-
- // After operation legalization, it might not be legal to create new FSUBs.
- if (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
- return 0;
-
- // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
- if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
- Options, Depth + 1))
- return V;
- // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
- return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
- Depth + 1);
- case ISD::FSUB:
- // We can't turn -(A-B) into B-A when we honor signed zeros.
- if (!Options->NoSignedZerosFPMath &&
- !Flags.hasNoSignedZeros())
- return 0;
-
- // fold (fneg (fsub A, B)) -> (fsub B, A)
- return 1;
-
- case ISD::FMUL:
- case ISD::FDIV:
- // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
- if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
- Options, Depth + 1))
- return V;
-
- return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
- Depth + 1);
-
- case ISD::FP_EXTEND:
- case ISD::FP_ROUND:
- case ISD::FSIN:
- return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
- Depth + 1);
- }
-}
-
-/// If isNegatibleForFree returns true, return the newly negated expression.
-static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
- bool LegalOperations, unsigned Depth = 0) {
- const TargetOptions &Options = DAG.getTarget().Options;
- // fneg is removable even if it has multiple uses.
- if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
-
- assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
-
- const SDNodeFlags Flags = Op.getNode()->getFlags();
-
- switch (Op.getOpcode()) {
- default: llvm_unreachable("Unknown code");
- case ISD::ConstantFP: {
- APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
- V.changeSign();
- return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
- }
- case ISD::FADD:
- assert(Options.UnsafeFPMath || Flags.hasNoSignedZeros());
-
- // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
- if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
- DAG.getTargetLoweringInfo(), &Options, Depth+1))
- return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
- GetNegatedExpression(Op.getOperand(0), DAG,
- LegalOperations, Depth+1),
- Op.getOperand(1), Flags);
- // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
- return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
- GetNegatedExpression(Op.getOperand(1), DAG,
- LegalOperations, Depth+1),
- Op.getOperand(0), Flags);
- case ISD::FSUB:
- // fold (fneg (fsub 0, B)) -> B
- if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
- if (N0CFP->isZero())
- return Op.getOperand(1);
-
- // fold (fneg (fsub A, B)) -> (fsub B, A)
- return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
- Op.getOperand(1), Op.getOperand(0), Flags);
-
- case ISD::FMUL:
- case ISD::FDIV:
- // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
- if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
- DAG.getTargetLoweringInfo(), &Options, Depth+1))
- return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
- GetNegatedExpression(Op.getOperand(0), DAG,
- LegalOperations, Depth+1),
- Op.getOperand(1), Flags);
-
- // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
- return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
- Op.getOperand(0),
- GetNegatedExpression(Op.getOperand(1), DAG,
- LegalOperations, Depth+1), Flags);
-
- case ISD::FP_EXTEND:
- case ISD::FSIN:
- return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
- GetNegatedExpression(Op.getOperand(0), DAG,
- LegalOperations, Depth+1));
- case ISD::FP_ROUND:
- return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
- GetNegatedExpression(Op.getOperand(0), DAG,
- LegalOperations, Depth+1),
- Op.getOperand(1));
- }
-}
-
-// APInts must be the same size for most operations, this helper
-// function zero extends the shorter of the pair so that they match.
-// We provide an Offset so that we can create bitwidths that won't overflow.
-static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
- unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
- LHS = LHS.zextOrSelf(Bits);
- RHS = RHS.zextOrSelf(Bits);
-}
-
-// Return true if this node is a setcc, or is a select_cc
-// that selects between the target values used for true and false, making it
-// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
-// the appropriate nodes based on the type of node we are checking. This
-// simplifies life a bit for the callers.
-bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
- SDValue &CC) const {
- if (N.getOpcode() == ISD::SETCC) {
- LHS = N.getOperand(0);
- RHS = N.getOperand(1);
- CC = N.getOperand(2);
- return true;
- }
-
- if (N.getOpcode() != ISD::SELECT_CC ||
- !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
- !TLI.isConstFalseVal(N.getOperand(3).getNode()))
- return false;
-
- if (TLI.getBooleanContents(N.getValueType()) ==
- TargetLowering::UndefinedBooleanContent)
- return false;
-
- LHS = N.getOperand(0);
- RHS = N.getOperand(1);
- CC = N.getOperand(4);
- return true;
-}
-
-/// Return true if this is a SetCC-equivalent operation with only one use.
-/// If this is true, it allows the users to invert the operation for free when
-/// it is profitable to do so.
-bool DAGCombiner::isOneUseSetCC(SDValue N) const {
- SDValue N0, N1, N2;
- if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
- return true;
- return false;
-}
-
-// Returns the SDNode if it is a constant float BuildVector
-// or constant float.
-static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
- if (isa<ConstantFPSDNode>(N))
- return N.getNode();
- if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
- return N.getNode();
- return nullptr;
-}
-
-// Determines if it is a constant integer or a build vector of constant
-// integers (and undefs).
-// Do not permit build vector implicit truncation.
-static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
- if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
- return !(Const->isOpaque() && NoOpaques);
- if (N.getOpcode() != ISD::BUILD_VECTOR)
- return false;
- unsigned BitWidth = N.getScalarValueSizeInBits();
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
- if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
- (Const->isOpaque() && NoOpaques))
- return false;
- }
- return true;
-}
-
-// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
-// undef's.
-static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
- if (V.getOpcode() != ISD::BUILD_VECTOR)
- return false;
- return isConstantOrConstantVector(V, NoOpaques) ||
- ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
-}
-
-SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
- SDValue N1, SDNodeFlags Flags) {
- // Don't reassociate reductions.
- if (Flags.hasVectorReduction())
- return SDValue();
-
- EVT VT = N0.getValueType();
- if (N0.getOpcode() == Opc && !N0->getFlags().hasVectorReduction()) {
- if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
- if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
- // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
- if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
- return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
- return SDValue();
- }
- if (N0.hasOneUse()) {
- // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
- // use
- SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
- if (!OpNode.getNode())
- return SDValue();
- AddToWorklist(OpNode.getNode());
- return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
- }
- }
- }
-
- if (N1.getOpcode() == Opc && !N1->getFlags().hasVectorReduction()) {
- if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
- if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
- // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
- if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
- return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
- return SDValue();
- }
- if (N1.hasOneUse()) {
- // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one
- // use
- SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0));
- if (!OpNode.getNode())
- return SDValue();
- AddToWorklist(OpNode.getNode());
- return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
- }
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
- bool AddTo) {
- assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
- To[0].getNode()->dump(&DAG);
- dbgs() << " and " << NumTo - 1 << " other values\n");
- for (unsigned i = 0, e = NumTo; i != e; ++i)
- assert((!To[i].getNode() ||
- N->getValueType(i) == To[i].getValueType()) &&
- "Cannot combine value to value of different type!");
-
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesWith(N, To);
- if (AddTo) {
- // Push the new nodes and any users onto the worklist
- for (unsigned i = 0, e = NumTo; i != e; ++i) {
- if (To[i].getNode()) {
- AddToWorklist(To[i].getNode());
- AddUsersToWorklist(To[i].getNode());
- }
- }
- }
-
- // Finally, if the node is now dead, remove it from the graph. The node
- // may not be dead if the replacement process recursively simplified to
- // something else needing this node.
- if (N->use_empty())
- deleteAndRecombine(N);
- return SDValue(N, 0);
-}
-
-void DAGCombiner::
-CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
- // Replace all uses. If any nodes become isomorphic to other nodes and
- // are deleted, make sure to remove them from our worklist.
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
-
- // Push the new node and any (possibly new) users onto the worklist.
- AddToWorklist(TLO.New.getNode());
- AddUsersToWorklist(TLO.New.getNode());
-
- // Finally, if the node is now dead, remove it from the graph. The node
- // may not be dead if the replacement process recursively simplified to
- // something else needing this node.
- if (TLO.Old.getNode()->use_empty())
- deleteAndRecombine(TLO.Old.getNode());
-}
-
-/// Check the specified integer node value to see if it can be simplified or if
-/// things it uses can be simplified by bit propagation. If so, return true.
-bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
- TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
- KnownBits Known;
- if (!TLI.SimplifyDemandedBits(Op, Demanded, Known, TLO))
- return false;
-
- // Revisit the node.
- AddToWorklist(Op.getNode());
-
- // Replace the old value with the new one.
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
- dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
- dbgs() << '\n');
-
- CommitTargetLoweringOpt(TLO);
- return true;
-}
-
-/// Check the specified vector node value to see if it can be simplified or
-/// if things it uses can be simplified as it only uses some of the elements.
-/// If so, return true.
-bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, const APInt &Demanded,
- bool AssumeSingleUse) {
- TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
- APInt KnownUndef, KnownZero;
- if (!TLI.SimplifyDemandedVectorElts(Op, Demanded, KnownUndef, KnownZero, TLO,
- 0, AssumeSingleUse))
- return false;
-
- // Revisit the node.
- AddToWorklist(Op.getNode());
-
- // Replace the old value with the new one.
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
- dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
- dbgs() << '\n');
-
- CommitTargetLoweringOpt(TLO);
- return true;
-}
-
-void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
- SDLoc DL(Load);
- EVT VT = Load->getValueType(0);
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
-
- LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
- Trunc.getNode()->dump(&DAG); dbgs() << '\n');
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
- deleteAndRecombine(Load);
- AddToWorklist(Trunc.getNode());
-}
-
-SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
- Replace = false;
- SDLoc DL(Op);
- if (ISD::isUNINDEXEDLoad(Op.getNode())) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- EVT MemVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
- : LD->getExtensionType();
- Replace = true;
- return DAG.getExtLoad(ExtType, DL, PVT,
- LD->getChain(), LD->getBasePtr(),
- MemVT, LD->getMemOperand());
- }
-
- unsigned Opc = Op.getOpcode();
- switch (Opc) {
- default: break;
- case ISD::AssertSext:
- if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
- return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
- break;
- case ISD::AssertZext:
- if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
- return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
- break;
- case ISD::Constant: {
- unsigned ExtOpc =
- Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- return DAG.getNode(ExtOpc, DL, PVT, Op);
- }
- }
-
- if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
- return SDValue();
- return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
-}
-
-SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
- if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
- return SDValue();
- EVT OldVT = Op.getValueType();
- SDLoc DL(Op);
- bool Replace = false;
- SDValue NewOp = PromoteOperand(Op, PVT, Replace);
- if (!NewOp.getNode())
- return SDValue();
- AddToWorklist(NewOp.getNode());
-
- if (Replace)
- ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
- DAG.getValueType(OldVT));
-}
-
-SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
- EVT OldVT = Op.getValueType();
- SDLoc DL(Op);
- bool Replace = false;
- SDValue NewOp = PromoteOperand(Op, PVT, Replace);
- if (!NewOp.getNode())
- return SDValue();
- AddToWorklist(NewOp.getNode());
-
- if (Replace)
- ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
- return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
-}
-
-/// Promote the specified integer binary operation if the target indicates it is
-/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
-/// i32 since i16 instructions are longer.
-SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
- if (!LegalOperations)
- return SDValue();
-
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
-
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return SDValue();
-
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
-
- LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
-
- bool Replace0 = false;
- SDValue N0 = Op.getOperand(0);
- SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
-
- bool Replace1 = false;
- SDValue N1 = Op.getOperand(1);
- SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
- SDLoc DL(Op);
-
- SDValue RV =
- DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
-
- // We are always replacing N0/N1's use in N and only need
- // additional replacements if there are additional uses.
- Replace0 &= !N0->hasOneUse();
- Replace1 &= (N0 != N1) && !N1->hasOneUse();
-
- // Combine Op here so it is preserved past replacements.
- CombineTo(Op.getNode(), RV);
-
- // If operands have a use ordering, make sure we deal with
- // predecessor first.
- if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
- std::swap(N0, N1);
- std::swap(NN0, NN1);
- }
-
- if (Replace0) {
- AddToWorklist(NN0.getNode());
- ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
- }
- if (Replace1) {
- AddToWorklist(NN1.getNode());
- ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
- }
- return Op;
- }
- return SDValue();
-}
-
-/// Promote the specified integer shift operation if the target indicates it is
-/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
-/// i32 since i16 instructions are longer.
-SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
- if (!LegalOperations)
- return SDValue();
-
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
-
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return SDValue();
-
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
-
- LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
-
- bool Replace = false;
- SDValue N0 = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- if (Opc == ISD::SRA)
- N0 = SExtPromoteOperand(N0, PVT);
- else if (Opc == ISD::SRL)
- N0 = ZExtPromoteOperand(N0, PVT);
- else
- N0 = PromoteOperand(N0, PVT, Replace);
-
- if (!N0.getNode())
- return SDValue();
-
- SDLoc DL(Op);
- SDValue RV =
- DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
-
- AddToWorklist(N0.getNode());
- if (Replace)
- ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
-
- // Deal with Op being deleted.
- if (Op && Op.getOpcode() != ISD::DELETED_NODE)
- return RV;
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::PromoteExtend(SDValue Op) {
- if (!LegalOperations)
- return SDValue();
-
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
-
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return SDValue();
-
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
- // fold (aext (aext x)) -> (aext x)
- // fold (aext (zext x)) -> (zext x)
- // fold (aext (sext x)) -> (sext x)
- LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
- return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
- }
- return SDValue();
-}
-
-bool DAGCombiner::PromoteLoad(SDValue Op) {
- if (!LegalOperations)
- return false;
-
- if (!ISD::isUNINDEXEDLoad(Op.getNode()))
- return false;
-
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return false;
-
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return false;
-
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
-
- SDLoc DL(Op);
- SDNode *N = Op.getNode();
- LoadSDNode *LD = cast<LoadSDNode>(N);
- EVT MemVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
- : LD->getExtensionType();
- SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
- LD->getChain(), LD->getBasePtr(),
- MemVT, LD->getMemOperand());
- SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
-
- LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
- Result.getNode()->dump(&DAG); dbgs() << '\n');
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
- deleteAndRecombine(N);
- AddToWorklist(Result.getNode());
- return true;
- }
- return false;
-}
-
-/// Recursively delete a node which has no uses and any operands for
-/// which it is the only use.
-///
-/// Note that this both deletes the nodes and removes them from the worklist.
-/// It also adds any nodes who have had a user deleted to the worklist as they
-/// may now have only one use and subject to other combines.
-bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
- if (!N->use_empty())
- return false;
-
- SmallSetVector<SDNode *, 16> Nodes;
- Nodes.insert(N);
- do {
- N = Nodes.pop_back_val();
- if (!N)
- continue;
-
- if (N->use_empty()) {
- for (const SDValue &ChildN : N->op_values())
- Nodes.insert(ChildN.getNode());
-
- removeFromWorklist(N);
- DAG.DeleteNode(N);
- } else {
- AddToWorklist(N);
- }
- } while (!Nodes.empty());
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// Main DAG Combiner implementation
-//===----------------------------------------------------------------------===//
-
-void DAGCombiner::Run(CombineLevel AtLevel) {
- // set the instance variables, so that the various visit routines may use it.
- Level = AtLevel;
- LegalOperations = Level >= AfterLegalizeVectorOps;
- LegalTypes = Level >= AfterLegalizeTypes;
-
- // Add all the dag nodes to the worklist.
- for (SDNode &Node : DAG.allnodes())
- AddToWorklist(&Node);
-
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted, and tracking any
- // changes of the root.
- HandleSDNode Dummy(DAG.getRoot());
-
- // While the worklist isn't empty, find a node and try to combine it.
- while (!WorklistMap.empty()) {
- SDNode *N;
- // The Worklist holds the SDNodes in order, but it may contain null entries.
- do {
- N = Worklist.pop_back_val();
- } while (!N);
-
- bool GoodWorklistEntry = WorklistMap.erase(N);
- (void)GoodWorklistEntry;
- assert(GoodWorklistEntry &&
- "Found a worklist entry without a corresponding map entry!");
-
- // If N has no uses, it is dead. Make sure to revisit all N's operands once
- // N is deleted from the DAG, since they too may now be dead or may have a
- // reduced number of uses, allowing other xforms.
- if (recursivelyDeleteUnusedNodes(N))
- continue;
-
- WorklistRemover DeadNodes(*this);
-
- // If this combine is running after legalizing the DAG, re-legalize any
- // nodes pulled off the worklist.
- if (Level == AfterLegalizeDAG) {
- SmallSetVector<SDNode *, 16> UpdatedNodes;
- bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
-
- for (SDNode *LN : UpdatedNodes) {
- AddToWorklist(LN);
- AddUsersToWorklist(LN);
- }
- if (!NIsValid)
- continue;
- }
-
- LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
-
- // Add any operands of the new node which have not yet been combined to the
- // worklist as well. Because the worklist uniques things already, this
- // won't repeatedly process the same operand.
- CombinedNodes.insert(N);
- for (const SDValue &ChildN : N->op_values())
- if (!CombinedNodes.count(ChildN.getNode()))
- AddToWorklist(ChildN.getNode());
-
- SDValue RV = combine(N);
-
- if (!RV.getNode())
- continue;
-
- ++NodesCombined;
-
- // If we get back the same node we passed in, rather than a new node or
- // zero, we know that the node must have defined multiple values and
- // CombineTo was used. Since CombineTo takes care of the worklist
- // mechanics for us, we have no work to do in this case.
- if (RV.getNode() == N)
- continue;
-
- assert(N->getOpcode() != ISD::DELETED_NODE &&
- RV.getOpcode() != ISD::DELETED_NODE &&
- "Node was deleted but visit returned new node!");
-
- LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
-
- if (N->getNumValues() == RV.getNode()->getNumValues())
- DAG.ReplaceAllUsesWith(N, RV.getNode());
- else {
- assert(N->getValueType(0) == RV.getValueType() &&
- N->getNumValues() == 1 && "Type mismatch");
- DAG.ReplaceAllUsesWith(N, &RV);
- }
-
- // Push the new node and any users onto the worklist
- AddToWorklist(RV.getNode());
- AddUsersToWorklist(RV.getNode());
-
- // Finally, if the node is now dead, remove it from the graph. The node
- // may not be dead if the replacement process recursively simplified to
- // something else needing this node. This will also take care of adding any
- // operands which have lost a user to the worklist.
- recursivelyDeleteUnusedNodes(N);
- }
-
- // If the root changed (e.g. it was a dead load, update the root).
- DAG.setRoot(Dummy.getValue());
- DAG.RemoveDeadNodes();
-}
-
-SDValue DAGCombiner::visit(SDNode *N) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::TokenFactor: return visitTokenFactor(N);
- case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
- case ISD::ADD: return visitADD(N);
- case ISD::SUB: return visitSUB(N);
- case ISD::SADDSAT:
- case ISD::UADDSAT: return visitADDSAT(N);
- case ISD::SSUBSAT:
- case ISD::USUBSAT: return visitSUBSAT(N);
- case ISD::ADDC: return visitADDC(N);
- case ISD::UADDO: return visitUADDO(N);
- case ISD::SUBC: return visitSUBC(N);
- case ISD::USUBO: return visitUSUBO(N);
- case ISD::ADDE: return visitADDE(N);
- case ISD::ADDCARRY: return visitADDCARRY(N);
- case ISD::SUBE: return visitSUBE(N);
- case ISD::SUBCARRY: return visitSUBCARRY(N);
- case ISD::MUL: return visitMUL(N);
- case ISD::SDIV: return visitSDIV(N);
- case ISD::UDIV: return visitUDIV(N);
- case ISD::SREM:
- case ISD::UREM: return visitREM(N);
- case ISD::MULHU: return visitMULHU(N);
- case ISD::MULHS: return visitMULHS(N);
- case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
- case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
- case ISD::SMULO: return visitSMULO(N);
- case ISD::UMULO: return visitUMULO(N);
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX: return visitIMINMAX(N);
- case ISD::AND: return visitAND(N);
- case ISD::OR: return visitOR(N);
- case ISD::XOR: return visitXOR(N);
- case ISD::SHL: return visitSHL(N);
- case ISD::SRA: return visitSRA(N);
- case ISD::SRL: return visitSRL(N);
- case ISD::ROTR:
- case ISD::ROTL: return visitRotate(N);
- case ISD::FSHL:
- case ISD::FSHR: return visitFunnelShift(N);
- case ISD::ABS: return visitABS(N);
- case ISD::BSWAP: return visitBSWAP(N);
- case ISD::BITREVERSE: return visitBITREVERSE(N);
- case ISD::CTLZ: return visitCTLZ(N);
- case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
- case ISD::CTTZ: return visitCTTZ(N);
- case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
- case ISD::CTPOP: return visitCTPOP(N);
- case ISD::SELECT: return visitSELECT(N);
- case ISD::VSELECT: return visitVSELECT(N);
- case ISD::SELECT_CC: return visitSELECT_CC(N);
- case ISD::SETCC: return visitSETCC(N);
- case ISD::SETCCCARRY: return visitSETCCCARRY(N);
- case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
- case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
- case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
- case ISD::AssertSext:
- case ISD::AssertZext: return visitAssertExt(N);
- case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
- case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
- case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
- case ISD::TRUNCATE: return visitTRUNCATE(N);
- case ISD::BITCAST: return visitBITCAST(N);
- case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
- case ISD::FADD: return visitFADD(N);
- case ISD::FSUB: return visitFSUB(N);
- case ISD::FMUL: return visitFMUL(N);
- case ISD::FMA: return visitFMA(N);
- case ISD::FDIV: return visitFDIV(N);
- case ISD::FREM: return visitFREM(N);
- case ISD::FSQRT: return visitFSQRT(N);
- case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
- case ISD::FPOW: return visitFPOW(N);
- case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
- case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
- case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
- case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
- case ISD::FP_ROUND: return visitFP_ROUND(N);
- case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
- case ISD::FP_EXTEND: return visitFP_EXTEND(N);
- case ISD::FNEG: return visitFNEG(N);
- case ISD::FABS: return visitFABS(N);
- case ISD::FFLOOR: return visitFFLOOR(N);
- case ISD::FMINNUM: return visitFMINNUM(N);
- case ISD::FMAXNUM: return visitFMAXNUM(N);
- case ISD::FMINIMUM: return visitFMINIMUM(N);
- case ISD::FMAXIMUM: return visitFMAXIMUM(N);
- case ISD::FCEIL: return visitFCEIL(N);
- case ISD::FTRUNC: return visitFTRUNC(N);
- case ISD::BRCOND: return visitBRCOND(N);
- case ISD::BR_CC: return visitBR_CC(N);
- case ISD::LOAD: return visitLOAD(N);
- case ISD::STORE: return visitSTORE(N);
- case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
- case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
- case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
- case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
- case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
- case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
- case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
- case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
- case ISD::MGATHER: return visitMGATHER(N);
- case ISD::MLOAD: return visitMLOAD(N);
- case ISD::MSCATTER: return visitMSCATTER(N);
- case ISD::MSTORE: return visitMSTORE(N);
- case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
- case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::combine(SDNode *N) {
- SDValue RV = visit(N);
-
- // If nothing happened, try a target-specific DAG combine.
- if (!RV.getNode()) {
- assert(N->getOpcode() != ISD::DELETED_NODE &&
- "Node was deleted but visit returned NULL!");
-
- if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
- TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
-
- // Expose the DAG combiner to the target combiner impls.
- TargetLowering::DAGCombinerInfo
- DagCombineInfo(DAG, Level, false, this);
-
- RV = TLI.PerformDAGCombine(N, DagCombineInfo);
- }
- }
-
- // If nothing happened still, try promoting the operation.
- if (!RV.getNode()) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- RV = PromoteIntBinOp(SDValue(N, 0));
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- RV = PromoteIntShiftOp(SDValue(N, 0));
- break;
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::ANY_EXTEND:
- RV = PromoteExtend(SDValue(N, 0));
- break;
- case ISD::LOAD:
- if (PromoteLoad(SDValue(N, 0)))
- RV = SDValue(N, 0);
- break;
- }
- }
-
- // If N is a commutative binary node, try eliminate it if the commuted
- // version is already present in the DAG.
- if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
- N->getNumValues() == 1) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
-
- // Constant operands are canonicalized to RHS.
- if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
- SDValue Ops[] = {N1, N0};
- SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
- N->getFlags());
- if (CSENode)
- return SDValue(CSENode, 0);
- }
- }
-
- return RV;
-}
-
-/// Given a node, return its input chain if it has one, otherwise return a null
-/// sd operand.
-static SDValue getInputChainForNode(SDNode *N) {
- if (unsigned NumOps = N->getNumOperands()) {
- if (N->getOperand(0).getValueType() == MVT::Other)
- return N->getOperand(0);
- if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
- return N->getOperand(NumOps-1);
- for (unsigned i = 1; i < NumOps-1; ++i)
- if (N->getOperand(i).getValueType() == MVT::Other)
- return N->getOperand(i);
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
- // If N has two operands, where one has an input chain equal to the other,
- // the 'other' chain is redundant.
- if (N->getNumOperands() == 2) {
- if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
- return N->getOperand(0);
- if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
- return N->getOperand(1);
- }
-
- // Don't simplify token factors if optnone.
- if (OptLevel == CodeGenOpt::None)
- return SDValue();
-
- SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
- SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
- SmallPtrSet<SDNode*, 16> SeenOps;
- bool Changed = false; // If we should replace this token factor.
-
- // Start out with this token factor.
- TFs.push_back(N);
-
- // Iterate through token factors. The TFs grows when new token factors are
- // encountered.
- for (unsigned i = 0; i < TFs.size(); ++i) {
- SDNode *TF = TFs[i];
-
- // Check each of the operands.
- for (const SDValue &Op : TF->op_values()) {
- switch (Op.getOpcode()) {
- case ISD::EntryToken:
- // Entry tokens don't need to be added to the list. They are
- // redundant.
- Changed = true;
- break;
-
- case ISD::TokenFactor:
- if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
- // Queue up for processing.
- TFs.push_back(Op.getNode());
- // Clean up in case the token factor is removed.
- AddToWorklist(Op.getNode());
- Changed = true;
- break;
- }
- LLVM_FALLTHROUGH;
-
- default:
- // Only add if it isn't already in the list.
- if (SeenOps.insert(Op.getNode()).second)
- Ops.push_back(Op);
- else
- Changed = true;
- break;
- }
- }
- }
-
- // Remove Nodes that are chained to another node in the list. Do so
- // by walking up chains breath-first stopping when we've seen
- // another operand. In general we must climb to the EntryNode, but we can exit
- // early if we find all remaining work is associated with just one operand as
- // no further pruning is possible.
-
- // List of nodes to search through and original Ops from which they originate.
- SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
- SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
- SmallPtrSet<SDNode *, 16> SeenChains;
- bool DidPruneOps = false;
-
- unsigned NumLeftToConsider = 0;
- for (const SDValue &Op : Ops) {
- Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
- OpWorkCount.push_back(1);
- }
-
- auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
- // If this is an Op, we can remove the op from the list. Remark any
- // search associated with it as from the current OpNumber.
- if (SeenOps.count(Op) != 0) {
- Changed = true;
- DidPruneOps = true;
- unsigned OrigOpNumber = 0;
- while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
- OrigOpNumber++;
- assert((OrigOpNumber != Ops.size()) &&
- "expected to find TokenFactor Operand");
- // Re-mark worklist from OrigOpNumber to OpNumber
- for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
- if (Worklist[i].second == OrigOpNumber) {
- Worklist[i].second = OpNumber;
- }
- }
- OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
- OpWorkCount[OrigOpNumber] = 0;
- NumLeftToConsider--;
- }
- // Add if it's a new chain
- if (SeenChains.insert(Op).second) {
- OpWorkCount[OpNumber]++;
- Worklist.push_back(std::make_pair(Op, OpNumber));
- }
- };
-
- for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
- // We need at least be consider at least 2 Ops to prune.
- if (NumLeftToConsider <= 1)
- break;
- auto CurNode = Worklist[i].first;
- auto CurOpNumber = Worklist[i].second;
- assert((OpWorkCount[CurOpNumber] > 0) &&
- "Node should not appear in worklist");
- switch (CurNode->getOpcode()) {
- case ISD::EntryToken:
- // Hitting EntryToken is the only way for the search to terminate without
- // hitting
- // another operand's search. Prevent us from marking this operand
- // considered.
- NumLeftToConsider++;
- break;
- case ISD::TokenFactor:
- for (const SDValue &Op : CurNode->op_values())
- AddToWorklist(i, Op.getNode(), CurOpNumber);
- break;
- case ISD::CopyFromReg:
- case ISD::CopyToReg:
- AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
- break;
- default:
- if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
- AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
- break;
- }
- OpWorkCount[CurOpNumber]--;
- if (OpWorkCount[CurOpNumber] == 0)
- NumLeftToConsider--;
- }
-
- // If we've changed things around then replace token factor.
- if (Changed) {
- SDValue Result;
- if (Ops.empty()) {
- // The entry token is the only possible outcome.
- Result = DAG.getEntryNode();
- } else {
- if (DidPruneOps) {
- SmallVector<SDValue, 8> PrunedOps;
- //
- for (const SDValue &Op : Ops) {
- if (SeenChains.count(Op.getNode()) == 0)
- PrunedOps.push_back(Op);
- }
- Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, PrunedOps);
- } else {
- Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
- }
- }
- return Result;
- }
- return SDValue();
-}
-
-/// MERGE_VALUES can always be eliminated.
-SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
- WorklistRemover DeadNodes(*this);
- // Replacing results may cause a different MERGE_VALUES to suddenly
- // be CSE'd with N, and carry its uses with it. Iterate until no
- // uses remain, to ensure that the node can be safely deleted.
- // First add the users of this node to the work list so that they
- // can be tried again once they have new operands.
- AddUsersToWorklist(N);
- do {
- // Do as a single replacement to avoid rewalking use lists.
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- Ops.push_back(N->getOperand(i));
- DAG.ReplaceAllUsesWith(N, Ops.data());
- } while (!N->use_empty());
- deleteAndRecombine(N);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
-}
-
-/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
-/// ConstantSDNode pointer else nullptr.
-static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
- return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
-}
-
-SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
- assert(ISD::isBinaryOp(BO) && "Unexpected binary operator");
-
- // Don't do this unless the old select is going away. We want to eliminate the
- // binary operator, not replace a binop with a select.
- // TODO: Handle ISD::SELECT_CC.
- unsigned SelOpNo = 0;
- SDValue Sel = BO->getOperand(0);
- if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
- SelOpNo = 1;
- Sel = BO->getOperand(1);
- }
-
- if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
- return SDValue();
-
- SDValue CT = Sel.getOperand(1);
- if (!isConstantOrConstantVector(CT, true) &&
- !isConstantFPBuildVectorOrConstantFP(CT))
- return SDValue();
-
- SDValue CF = Sel.getOperand(2);
- if (!isConstantOrConstantVector(CF, true) &&
- !isConstantFPBuildVectorOrConstantFP(CF))
- return SDValue();
-
- // Bail out if any constants are opaque because we can't constant fold those.
- // The exception is "and" and "or" with either 0 or -1 in which case we can
- // propagate non constant operands into select. I.e.:
- // and (select Cond, 0, -1), X --> select Cond, 0, X
- // or X, (select Cond, -1, 0) --> select Cond, -1, X
- auto BinOpcode = BO->getOpcode();
- bool CanFoldNonConst =
- (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
- (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
- (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
-
- SDValue CBO = BO->getOperand(SelOpNo ^ 1);
- if (!CanFoldNonConst &&
- !isConstantOrConstantVector(CBO, true) &&
- !isConstantFPBuildVectorOrConstantFP(CBO))
- return SDValue();
-
- EVT VT = Sel.getValueType();
-
- // In case of shift value and shift amount may have different VT. For instance
- // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
- // swapped operands and value types do not match. NB: x86 is fine if operands
- // are not swapped with shift amount VT being not bigger than shifted value.
- // TODO: that is possible to check for a shift operation, correct VTs and
- // still perform optimization on x86 if needed.
- if (SelOpNo && VT != CBO.getValueType())
- return SDValue();
-
- // We have a select-of-constants followed by a binary operator with a
- // constant. Eliminate the binop by pulling the constant math into the select.
- // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
- SDLoc DL(Sel);
- SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
- : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
- if (!CanFoldNonConst && !NewCT.isUndef() &&
- !isConstantOrConstantVector(NewCT, true) &&
- !isConstantFPBuildVectorOrConstantFP(NewCT))
- return SDValue();
-
- SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
- : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
- if (!CanFoldNonConst && !NewCF.isUndef() &&
- !isConstantOrConstantVector(NewCF, true) &&
- !isConstantFPBuildVectorOrConstantFP(NewCF))
- return SDValue();
-
- return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
-}
-
-static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
- assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
- "Expecting add or sub");
-
- // Match a constant operand and a zext operand for the math instruction:
- // add Z, C
- // sub C, Z
- bool IsAdd = N->getOpcode() == ISD::ADD;
- SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
- SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
- auto *CN = dyn_cast<ConstantSDNode>(C);
- if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
- return SDValue();
-
- // Match the zext operand as a setcc of a boolean.
- if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
- Z.getOperand(0).getValueType() != MVT::i1)
- return SDValue();
-
- // Match the compare as: setcc (X & 1), 0, eq.
- SDValue SetCC = Z.getOperand(0);
- ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
- if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
- SetCC.getOperand(0).getOpcode() != ISD::AND ||
- !isOneConstant(SetCC.getOperand(0).getOperand(1)))
- return SDValue();
-
- // We are adding/subtracting a constant and an inverted low bit. Turn that
- // into a subtract/add of the low bit with incremented/decremented constant:
- // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
- // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
- EVT VT = C.getValueType();
- SDLoc DL(N);
- SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
- SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
- DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
- return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
-}
-
-/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
-/// a shift and add with a different constant.
-static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
- assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
- "Expecting add or sub");
-
- // We need a constant operand for the add/sub, and the other operand is a
- // logical shift right: add (srl), C or sub C, (srl).
- bool IsAdd = N->getOpcode() == ISD::ADD;
- SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
- SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
- ConstantSDNode *C = isConstOrConstSplat(ConstantOp);
- if (!C || ShiftOp.getOpcode() != ISD::SRL)
- return SDValue();
-
- // The shift must be of a 'not' value.
- SDValue Not = ShiftOp.getOperand(0);
- if (!Not.hasOneUse() || !isBitwiseNot(Not))
- return SDValue();
-
- // The shift must be moving the sign bit to the least-significant-bit.
- EVT VT = ShiftOp.getValueType();
- SDValue ShAmt = ShiftOp.getOperand(1);
- ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
- if (!ShAmtC || ShAmtC->getZExtValue() != VT.getScalarSizeInBits() - 1)
- return SDValue();
-
- // Eliminate the 'not' by adjusting the shift and add/sub constant:
- // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
- // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
- SDLoc DL(N);
- auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
- SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
- APInt NewC = IsAdd ? C->getAPIntValue() + 1 : C->getAPIntValue() - 1;
- return DAG.getNode(ISD::ADD, DL, VT, NewShift, DAG.getConstant(NewC, DL, VT));
-}
-
-SDValue DAGCombiner::visitADD(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
-
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (add x, 0) -> x, vector edition
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N0;
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N1;
- }
-
- // fold (add x, undef) -> undef
- if (N0.isUndef())
- return N0;
-
- if (N1.isUndef())
- return N1;
-
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
- // canonicalize constant to RHS
- if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
- // fold (add c1, c2) -> c1+c2
- return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
- N1.getNode());
- }
-
- // fold (add x, 0) -> x
- if (isNullConstant(N1))
- return N0;
-
- if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
- // fold ((c1-A)+c2) -> (c1+c2)-A
- if (N0.getOpcode() == ISD::SUB &&
- isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
- // FIXME: Adding 2 constants should be handled by FoldConstantArithmetic.
- return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
- N0.getOperand(1));
- }
-
- // add (sext i1 X), 1 -> zext (not i1 X)
- // We don't transform this pattern:
- // add (zext i1 X), -1 -> sext (not i1 X)
- // because most (?) targets generate better code for the zext form.
- if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
- isOneOrOneSplat(N1)) {
- SDValue X = N0.getOperand(0);
- if ((!LegalOperations ||
- (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
- TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
- X.getScalarValueSizeInBits() == 1) {
- SDValue Not = DAG.getNOT(DL, X, X.getValueType());
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
- }
- }
-
- // Undo the add -> or combine to merge constant offsets from a frame index.
- if (N0.getOpcode() == ISD::OR &&
- isa<FrameIndexSDNode>(N0.getOperand(0)) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
- SDValue Add0 = DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(1));
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
- }
- }
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // reassociate add
- if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
- return RADD;
-
- // fold ((0-A) + B) -> B-A
- if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
- return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
-
- // fold (A + (0-B)) -> A-B
- if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
- return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
-
- // fold (A+(B-A)) -> B
- if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
- return N1.getOperand(0);
-
- // fold ((B-A)+A) -> B
- if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
- return N0.getOperand(0);
-
- // fold (A+(B-(A+C))) to (B-C)
- if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
- N0 == N1.getOperand(1).getOperand(0))
- return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
- N1.getOperand(1).getOperand(1));
-
- // fold (A+(B-(C+A))) to (B-C)
- if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
- N0 == N1.getOperand(1).getOperand(1))
- return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
- N1.getOperand(1).getOperand(0));
-
- // fold (A+((B-A)+or-C)) to (B+or-C)
- if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
- N1.getOperand(0).getOpcode() == ISD::SUB &&
- N0 == N1.getOperand(0).getOperand(1))
- return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
- N1.getOperand(1));
-
- // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
- if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- SDValue N10 = N1.getOperand(0);
- SDValue N11 = N1.getOperand(1);
-
- if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
- return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
- DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
- }
-
- if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
- return V;
-
- if (SDValue V = foldAddSubOfSignBit(N, DAG))
- return V;
-
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // fold (a+b) -> (a|b) iff a and b share no bits.
- if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
- DAG.haveNoCommonBitsSet(N0, N1))
- return DAG.getNode(ISD::OR, DL, VT, N0, N1);
-
- // fold (add (xor a, -1), 1) -> (sub 0, a)
- if (isBitwiseNot(N0) && isOneOrOneSplat(N1))
- return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
- N0.getOperand(0));
-
- if (SDValue Combined = visitADDLike(N0, N1, N))
- return Combined;
-
- if (SDValue Combined = visitADDLike(N1, N0, N))
- return Combined;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitADDSAT(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
-
- // fold vector ops
- if (VT.isVector()) {
- // TODO SimplifyVBinOp
-
- // fold (add_sat x, 0) -> x, vector edition
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N0;
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N1;
- }
-
- // fold (add_sat x, undef) -> -1
- if (N0.isUndef() || N1.isUndef())
- return DAG.getAllOnesConstant(DL, VT);
-
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
- // canonicalize constant to RHS
- if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(Opcode, DL, VT, N1, N0);
- // fold (add_sat c1, c2) -> c3
- return DAG.FoldConstantArithmetic(Opcode, DL, VT, N0.getNode(),
- N1.getNode());
- }
-
- // fold (add_sat x, 0) -> x
- if (isNullConstant(N1))
- return N0;
-
- // If it cannot overflow, transform into an add.
- if (Opcode == ISD::UADDSAT)
- if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
- return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
-
- return SDValue();
-}
-
-static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
- bool Masked = false;
-
- // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
- while (true) {
- if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
- V = V.getOperand(0);
- continue;
- }
-
- if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
- Masked = true;
- V = V.getOperand(0);
- continue;
- }
-
- break;
- }
-
- // If this is not a carry, return.
- if (V.getResNo() != 1)
- return SDValue();
-
- if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
- V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
- return SDValue();
-
- // If the result is masked, then no matter what kind of bool it is we can
- // return. If it isn't, then we need to make sure the bool type is either 0 or
- // 1 and not other values.
- if (Masked ||
- TLI.getBooleanContents(V.getValueType()) ==
- TargetLoweringBase::ZeroOrOneBooleanContent)
- return V;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitADDLike(SDValue N0, SDValue N1, SDNode *LocReference) {
- EVT VT = N0.getValueType();
- SDLoc DL(LocReference);
-
- // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
- if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
- isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
- return DAG.getNode(ISD::SUB, DL, VT, N0,
- DAG.getNode(ISD::SHL, DL, VT,
- N1.getOperand(0).getOperand(1),
- N1.getOperand(1)));
-
- if (N1.getOpcode() == ISD::AND) {
- SDValue AndOp0 = N1.getOperand(0);
- unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
- unsigned DestBits = VT.getScalarSizeInBits();
-
- // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
- // and similar xforms where the inner op is either ~0 or 0.
- if (NumSignBits == DestBits && isOneOrOneSplat(N1->getOperand(1)))
- return DAG.getNode(ISD::SUB, DL, VT, N0, AndOp0);
- }
-
- // add (sext i1), X -> sub X, (zext i1)
- if (N0.getOpcode() == ISD::SIGN_EXTEND &&
- N0.getOperand(0).getValueType() == MVT::i1 &&
- !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
- SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
- return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
- }
-
- // add X, (sextinreg Y i1) -> sub X, (and Y 1)
- if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
- if (TN->getVT() == MVT::i1) {
- SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
- DAG.getConstant(1, DL, VT));
- return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
- }
- }
-
- // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
- if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
- N1.getResNo() == 0)
- return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
- N0, N1.getOperand(0), N1.getOperand(2));
-
- // (add X, Carry) -> (addcarry X, 0, Carry)
- if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
- if (SDValue Carry = getAsCarry(TLI, N1))
- return DAG.getNode(ISD::ADDCARRY, DL,
- DAG.getVTList(VT, Carry.getValueType()), N0,
- DAG.getConstant(0, DL, VT), Carry);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitADDC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
-
- // If the flag result is dead, turn this into an ADD.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
-
- // canonicalize constant to RHS.
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
-
- // fold (addc x, 0) -> x + no carry out
- if (isNullConstant(N1))
- return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
- DL, MVT::Glue));
-
- // If it cannot overflow, transform into an add.
- if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
-
- return SDValue();
-}
-
-static SDValue flipBoolean(SDValue V, const SDLoc &DL, EVT VT,
- SelectionDAG &DAG, const TargetLowering &TLI) {
- SDValue Cst;
- switch (TLI.getBooleanContents(VT)) {
- case TargetLowering::ZeroOrOneBooleanContent:
- case TargetLowering::UndefinedBooleanContent:
- Cst = DAG.getConstant(1, DL, VT);
- break;
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- Cst = DAG.getConstant(-1, DL, VT);
- break;
- }
-
- return DAG.getNode(ISD::XOR, DL, VT, V, Cst);
-}
-
-static bool isBooleanFlip(SDValue V, EVT VT, const TargetLowering &TLI) {
- if (V.getOpcode() != ISD::XOR) return false;
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V.getOperand(1));
- if (!Const) return false;
-
- switch(TLI.getBooleanContents(VT)) {
- case TargetLowering::ZeroOrOneBooleanContent:
- return Const->isOne();
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- return Const->isAllOnesValue();
- case TargetLowering::UndefinedBooleanContent:
- return (Const->getAPIntValue() & 0x01) == 1;
- }
- llvm_unreachable("Unsupported boolean content");
-}
-
-SDValue DAGCombiner::visitUADDO(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- if (VT.isVector())
- return SDValue();
-
- EVT CarryVT = N->getValueType(1);
- SDLoc DL(N);
-
- // If the flag result is dead, turn this into an ADD.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getUNDEF(CarryVT));
-
- // canonicalize constant to RHS.
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N1, N0);
-
- // fold (uaddo x, 0) -> x + no carry out
- if (isNullConstant(N1))
- return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
-
- // If it cannot overflow, transform into an add.
- if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getConstant(0, DL, CarryVT));
-
- // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
- if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
- SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
- DAG.getConstant(0, DL, VT),
- N0.getOperand(0));
- return CombineTo(N, Sub,
- flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI));
- }
-
- if (SDValue Combined = visitUADDOLike(N0, N1, N))
- return Combined;
-
- if (SDValue Combined = visitUADDOLike(N1, N0, N))
- return Combined;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
- auto VT = N0.getValueType();
-
- // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
- // If Y + 1 cannot overflow.
- if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
- SDValue Y = N1.getOperand(0);
- SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
- if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
- N1.getOperand(2));
- }
-
- // (uaddo X, Carry) -> (addcarry X, 0, Carry)
- if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
- if (SDValue Carry = getAsCarry(TLI, N1))
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
- DAG.getConstant(0, SDLoc(N), VT), Carry);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitADDE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
-
- // canonicalize constant to RHS
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
- N1, N0, CarryIn);
-
- // fold (adde x, y, false) -> (addc x, y)
- if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
- return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- SDLoc DL(N);
-
- // canonicalize constant to RHS
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
-
- // fold (addcarry x, y, false) -> (uaddo x, y)
- if (isNullConstant(CarryIn)) {
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
- return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
- }
-
- EVT CarryVT = CarryIn.getValueType();
-
- // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
- if (isNullConstant(N0) && isNullConstant(N1)) {
- EVT VT = N0.getValueType();
- SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
- AddToWorklist(CarryExt.getNode());
- return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
- DAG.getConstant(1, DL, VT)),
- DAG.getConstant(0, DL, CarryVT));
- }
-
- // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry.
- if (isBitwiseNot(N0) && isNullConstant(N1) &&
- isBooleanFlip(CarryIn, CarryVT, TLI)) {
- SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(),
- DAG.getConstant(0, DL, N0.getValueType()),
- N0.getOperand(0), CarryIn.getOperand(0));
- return CombineTo(N, Sub,
- flipBoolean(Sub.getValue(1), DL, CarryVT, DAG, TLI));
- }
-
- if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
- return Combined;
-
- if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
- return Combined;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
- SDNode *N) {
- // Iff the flag result is dead:
- // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
- if ((N0.getOpcode() == ISD::ADD ||
- (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0)) &&
- isNullConstant(N1) && !N->hasAnyUseOfValue(1))
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
- N0.getOperand(0), N0.getOperand(1), CarryIn);
-
- /**
- * When one of the addcarry argument is itself a carry, we may be facing
- * a diamond carry propagation. In which case we try to transform the DAG
- * to ensure linear carry propagation if that is possible.
- *
- * We are trying to get:
- * (addcarry X, 0, (addcarry A, B, Z):Carry)
- */
- if (auto Y = getAsCarry(TLI, N1)) {
- /**
- * (uaddo A, B)
- * / \
- * Carry Sum
- * | \
- * | (addcarry *, 0, Z)
- * | /
- * \ Carry
- * | /
- * (addcarry X, *, *)
- */
- if (Y.getOpcode() == ISD::UADDO &&
- CarryIn.getResNo() == 1 &&
- CarryIn.getOpcode() == ISD::ADDCARRY &&
- isNullConstant(CarryIn.getOperand(1)) &&
- CarryIn.getOperand(0) == Y.getValue(0)) {
- auto NewY = DAG.getNode(ISD::ADDCARRY, SDLoc(N), Y->getVTList(),
- Y.getOperand(0), Y.getOperand(1),
- CarryIn.getOperand(2));
- AddToWorklist(NewY.getNode());
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
- DAG.getConstant(0, SDLoc(N), N0.getValueType()),
- NewY.getValue(1));
- }
- }
-
- return SDValue();
-}
-
-// Since it may not be valid to emit a fold to zero for vector initializers
-// check if we can before folding.
-static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
- SelectionDAG &DAG, bool LegalOperations) {
- if (!VT.isVector())
- return DAG.getConstant(0, DL, VT);
- if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
- return DAG.getConstant(0, DL, VT);
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSUB(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
-
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (sub x, 0) -> x, vector edition
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N0;
- }
-
- // fold (sub x, x) -> 0
- // FIXME: Refactor this and xor and other similar operations together.
- if (N0 == N1)
- return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
- // fold (sub c1, c2) -> c1-c2
- return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
- N1.getNode());
- }
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
-
- // fold (sub x, c) -> (add x, -c)
- if (N1C) {
- return DAG.getNode(ISD::ADD, DL, VT, N0,
- DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
- }
-
- if (isNullOrNullSplat(N0)) {
- unsigned BitWidth = VT.getScalarSizeInBits();
- // Right-shifting everything out but the sign bit followed by negation is
- // the same as flipping arithmetic/logical shift type without the negation:
- // -(X >>u 31) -> (X >>s 31)
- // -(X >>s 31) -> (X >>u 31)
- if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
- ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
- if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) {
- auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
- if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
- return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
- }
- }
-
- // 0 - X --> 0 if the sub is NUW.
- if (N->getFlags().hasNoUnsignedWrap())
- return N0;
-
- if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
- // N1 is either 0 or the minimum signed value. If the sub is NSW, then
- // N1 must be 0 because negating the minimum signed value is undefined.
- if (N->getFlags().hasNoSignedWrap())
- return N0;
-
- // 0 - X --> X if X is 0 or the minimum signed value.
- return N1;
- }
- }
-
- // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
- if (isAllOnesOrAllOnesSplat(N0))
- return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
-
- // fold (A - (0-B)) -> A+B
- if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
- return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
-
- // fold A-(A-B) -> B
- if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
- return N1.getOperand(1);
-
- // fold (A+B)-A -> B
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
- return N0.getOperand(1);
-
- // fold (A+B)-B -> A
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
- return N0.getOperand(0);
-
- // fold C2-(A+C1) -> (C2-C1)-A
- if (N1.getOpcode() == ISD::ADD) {
- SDValue N11 = N1.getOperand(1);
- if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
- isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
- SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11);
- return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
- }
- }
-
- // fold ((A+(B+or-C))-B) -> A+or-C
- if (N0.getOpcode() == ISD::ADD &&
- (N0.getOperand(1).getOpcode() == ISD::SUB ||
- N0.getOperand(1).getOpcode() == ISD::ADD) &&
- N0.getOperand(1).getOperand(0) == N1)
- return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
- N0.getOperand(1).getOperand(1));
-
- // fold ((A+(C+B))-B) -> A+C
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
- N0.getOperand(1).getOperand(1) == N1)
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
- N0.getOperand(1).getOperand(0));
-
- // fold ((A-(B-C))-C) -> A-B
- if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
- N0.getOperand(1).getOperand(1) == N1)
- return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
- N0.getOperand(1).getOperand(0));
-
- // fold (A-(B-C)) -> A+(C-B)
- if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
- return DAG.getNode(ISD::ADD, DL, VT, N0,
- DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
- N1.getOperand(0)));
-
- // fold (X - (-Y * Z)) -> (X + (Y * Z))
- if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
- if (N1.getOperand(0).getOpcode() == ISD::SUB &&
- isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
- N1.getOperand(0).getOperand(1),
- N1.getOperand(1));
- return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
- }
- if (N1.getOperand(1).getOpcode() == ISD::SUB &&
- isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
- N1.getOperand(0),
- N1.getOperand(1).getOperand(1));
- return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
- }
- }
-
- // If either operand of a sub is undef, the result is undef
- if (N0.isUndef())
- return N0;
- if (N1.isUndef())
- return N1;
-
- if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
- return V;
-
- if (SDValue V = foldAddSubOfSignBit(N, DAG))
- return V;
-
- // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
- if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
- if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
- SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
- SDValue S0 = N1.getOperand(0);
- if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) {
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
- if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
- if (C->getAPIntValue() == (OpSizeInBits - 1))
- return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
- }
- }
- }
-
- // If the relocation model supports it, consider symbol offsets.
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
- if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
- // fold (sub Sym, c) -> Sym-c
- if (N1C && GA->getOpcode() == ISD::GlobalAddress)
- return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
- GA->getOffset() -
- (uint64_t)N1C->getSExtValue());
- // fold (sub Sym+c1, Sym+c2) -> c1-c2
- if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
- if (GA->getGlobal() == GB->getGlobal())
- return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
- DL, VT);
- }
-
- // sub X, (sextinreg Y i1) -> add X, (and Y 1)
- if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
- if (TN->getVT() == MVT::i1) {
- SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
- DAG.getConstant(1, DL, VT));
- return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
- }
- }
-
- // Prefer an add for more folding potential and possibly better codegen:
- // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
- if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
- SDValue ShAmt = N1.getOperand(1);
- ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
- if (ShAmtC && ShAmtC->getZExtValue() == N1.getScalarValueSizeInBits() - 1) {
- SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
- return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
-
- // fold vector ops
- if (VT.isVector()) {
- // TODO SimplifyVBinOp
-
- // fold (sub_sat x, 0) -> x, vector edition
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N0;
- }
-
- // fold (sub_sat x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
-
- // fold (sub_sat x, x) -> 0
- if (N0 == N1)
- return DAG.getConstant(0, DL, VT);
-
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
- // fold (sub_sat c1, c2) -> c3
- return DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, N0.getNode(),
- N1.getNode());
- }
-
- // fold (sub_sat x, 0) -> x
- if (isNullConstant(N1))
- return N0;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSUBC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
-
- // If the flag result is dead, turn this into an SUB.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
-
- // fold (subc x, x) -> 0 + no borrow
- if (N0 == N1)
- return CombineTo(N, DAG.getConstant(0, DL, VT),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
-
- // fold (subc x, 0) -> x + no borrow
- if (isNullConstant(N1))
- return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
-
- // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
- if (isAllOnesConstant(N0))
- return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUSUBO(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- if (VT.isVector())
- return SDValue();
-
- EVT CarryVT = N->getValueType(1);
- SDLoc DL(N);
-
- // If the flag result is dead, turn this into an SUB.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
- DAG.getUNDEF(CarryVT));
-
- // fold (usubo x, x) -> 0 + no borrow
- if (N0 == N1)
- return CombineTo(N, DAG.getConstant(0, DL, VT),
- DAG.getConstant(0, DL, CarryVT));
-
- // fold (usubo x, 0) -> x + no borrow
- if (isNullConstant(N1))
- return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
-
- // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
- if (isAllOnesConstant(N0))
- return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
- DAG.getConstant(0, DL, CarryVT));
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSUBE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
-
- // fold (sube x, y, false) -> (subc x, y)
- if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
- return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
-
- // fold (subcarry x, y, false) -> (usubo x, y)
- if (isNullConstant(CarryIn)) {
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
- return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitMUL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
-
- // fold (mul x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, SDLoc(N), VT);
-
- bool N0IsConst = false;
- bool N1IsConst = false;
- bool N1IsOpaqueConst = false;
- bool N0IsOpaqueConst = false;
- APInt ConstValue0, ConstValue1;
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0);
- N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
- assert((!N0IsConst ||
- ConstValue0.getBitWidth() == VT.getScalarSizeInBits()) &&
- "Splat APInt should be element width");
- assert((!N1IsConst ||
- ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
- "Splat APInt should be element width");
- } else {
- N0IsConst = isa<ConstantSDNode>(N0);
- if (N0IsConst) {
- ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
- N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
- }
- N1IsConst = isa<ConstantSDNode>(N1);
- if (N1IsConst) {
- ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
- N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
- }
- }
-
- // fold (mul c1, c2) -> c1*c2
- if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
- return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
- N0.getNode(), N1.getNode());
-
- // canonicalize constant to RHS (vector doesn't have to splat)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
- // fold (mul x, 0) -> 0
- if (N1IsConst && ConstValue1.isNullValue())
- return N1;
- // fold (mul x, 1) -> x
- if (N1IsConst && ConstValue1.isOneValue())
- return N0;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // fold (mul x, -1) -> 0-x
- if (N1IsConst && ConstValue1.isAllOnesValue()) {
- SDLoc DL(N);
- return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getConstant(0, DL, VT), N0);
- }
- // fold (mul x, (1 << c)) -> x << c
- if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N1) &&
- (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
- SDLoc DL(N);
- SDValue LogBase2 = BuildLogBase2(N1, DL);
- EVT ShiftVT = getShiftAmountTy(N0.getValueType());
- SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
- return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
- }
- // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
- if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
- unsigned Log2Val = (-ConstValue1).logBase2();
- SDLoc DL(N);
- // FIXME: If the input is something that is easily negated (e.g. a
- // single-use add), we should put the negate there.
- return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getConstant(0, DL, VT),
- DAG.getNode(ISD::SHL, DL, VT, N0,
- DAG.getConstant(Log2Val, DL,
- getShiftAmountTy(N0.getValueType()))));
- }
-
- // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
- // mul x, (2^N + 1) --> add (shl x, N), x
- // mul x, (2^N - 1) --> sub (shl x, N), x
- // Examples: x * 33 --> (x << 5) + x
- // x * 15 --> (x << 4) - x
- // x * -33 --> -((x << 5) + x)
- // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
- if (N1IsConst && TLI.decomposeMulByConstant(VT, N1)) {
- // TODO: We could handle more general decomposition of any constant by
- // having the target set a limit on number of ops and making a
- // callback to determine that sequence (similar to sqrt expansion).
- unsigned MathOp = ISD::DELETED_NODE;
- APInt MulC = ConstValue1.abs();
- if ((MulC - 1).isPowerOf2())
- MathOp = ISD::ADD;
- else if ((MulC + 1).isPowerOf2())
- MathOp = ISD::SUB;
-
- if (MathOp != ISD::DELETED_NODE) {
- unsigned ShAmt = MathOp == ISD::ADD ? (MulC - 1).logBase2()
- : (MulC + 1).logBase2();
- assert(ShAmt > 0 && ShAmt < VT.getScalarSizeInBits() &&
- "Not expecting multiply-by-constant that could have simplified");
- SDLoc DL(N);
- SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, N0,
- DAG.getConstant(ShAmt, DL, VT));
- SDValue R = DAG.getNode(MathOp, DL, VT, Shl, N0);
- if (ConstValue1.isNegative())
- R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
- return R;
- }
- }
-
- // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
- if (N0.getOpcode() == ISD::SHL &&
- isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
- isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
- SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
- if (isConstantOrConstantVector(C3))
- return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
- }
-
- // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
- // use.
- {
- SDValue Sh(nullptr, 0), Y(nullptr, 0);
-
- // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
- if (N0.getOpcode() == ISD::SHL &&
- isConstantOrConstantVector(N0.getOperand(1)) &&
- N0.getNode()->hasOneUse()) {
- Sh = N0; Y = N1;
- } else if (N1.getOpcode() == ISD::SHL &&
- isConstantOrConstantVector(N1.getOperand(1)) &&
- N1.getNode()->hasOneUse()) {
- Sh = N1; Y = N0;
- }
-
- if (Sh.getNode()) {
- SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
- }
- }
-
- // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
- N0.getOpcode() == ISD::ADD &&
- DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
- isMulAddWithConstProfitable(N, N0, N1))
- return DAG.getNode(ISD::ADD, SDLoc(N), VT,
- DAG.getNode(ISD::MUL, SDLoc(N0), VT,
- N0.getOperand(0), N1),
- DAG.getNode(ISD::MUL, SDLoc(N1), VT,
- N0.getOperand(1), N1));
-
- // reassociate mul
- if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
- return RMUL;
-
- return SDValue();
-}
-
-/// Return true if divmod libcall is available.
-static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
- const TargetLowering &TLI) {
- RTLIB::Libcall LC;
- EVT NodeType = Node->getValueType(0);
- if (!NodeType.isSimple())
- return false;
- switch (NodeType.getSimpleVT().SimpleTy) {
- default: return false; // No libcall for vector types.
- case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
- case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
- case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
- case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
- case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
- }
-
- return TLI.getLibcallName(LC) != nullptr;
-}
-
-/// Issue divrem if both quotient and remainder are needed.
-SDValue DAGCombiner::useDivRem(SDNode *Node) {
- if (Node->use_empty())
- return SDValue(); // This is a dead node, leave it alone.
-
- unsigned Opcode = Node->getOpcode();
- bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
- unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
-
- // DivMod lib calls can still work on non-legal types if using lib-calls.
- EVT VT = Node->getValueType(0);
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
-
- if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
- return SDValue();
-
- // If DIVREM is going to get expanded into a libcall,
- // but there is no libcall available, then don't combine.
- if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
- !isDivRemLibcallAvailable(Node, isSigned, TLI))
- return SDValue();
-
- // If div is legal, it's better to do the normal expansion
- unsigned OtherOpcode = 0;
- if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
- OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
- if (TLI.isOperationLegalOrCustom(Opcode, VT))
- return SDValue();
- } else {
- OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
- if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
- return SDValue();
- }
-
- SDValue Op0 = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue combined;
- for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
- UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
- User->use_empty())
- continue;
- // Convert the other matching node(s), too;
- // otherwise, the DIVREM may get target-legalized into something
- // target-specific that we won't be able to recognize.
- unsigned UserOpc = User->getOpcode();
- if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
- User->getOperand(0) == Op0 &&
- User->getOperand(1) == Op1) {
- if (!combined) {
- if (UserOpc == OtherOpcode) {
- SDVTList VTs = DAG.getVTList(VT, VT);
- combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
- } else if (UserOpc == DivRemOpc) {
- combined = SDValue(User, 0);
- } else {
- assert(UserOpc == Opcode);
- continue;
- }
- }
- if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
- CombineTo(User, combined);
- else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
- CombineTo(User, combined.getValue(1));
- }
- }
- return combined;
-}
-
-static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
-
- unsigned Opc = N->getOpcode();
- bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
-
- // X / undef -> undef
- // X % undef -> undef
- // X / 0 -> undef
- // X % 0 -> undef
- // NOTE: This includes vectors where any divisor element is zero/undef.
- if (DAG.isUndef(Opc, {N0, N1}))
- return DAG.getUNDEF(VT);
-
- // undef / X -> 0
- // undef % X -> 0
- if (N0.isUndef())
- return DAG.getConstant(0, DL, VT);
-
- // 0 / X -> 0
- // 0 % X -> 0
- ConstantSDNode *N0C = isConstOrConstSplat(N0);
- if (N0C && N0C->isNullValue())
- return N0;
-
- // X / X -> 1
- // X % X -> 0
- if (N0 == N1)
- return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
-
- // X / 1 -> X
- // X % 1 -> 0
- // If this is a boolean op (single-bit element type), we can't have
- // division-by-zero or remainder-by-zero, so assume the divisor is 1.
- // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
- // it's a 1.
- if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
- return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSDIV(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- SDLoc DL(N);
-
- // fold (sdiv c1, c2) -> c1/c2
- ConstantSDNode *N0C = isConstOrConstSplat(N0);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
- return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
- // fold (sdiv X, -1) -> 0-X
- if (N1C && N1C->isAllOnesValue())
- return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
- // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
- if (N1C && N1C->getAPIntValue().isMinSignedValue())
- return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
- DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT));
-
- if (SDValue V = simplifyDivRem(N, DAG))
- return V;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // If we know the sign bits of both operands are zero, strength reduce to a
- // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
- if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
-
- if (SDValue V = visitSDIVLike(N0, N1, N)) {
- // If the corresponding remainder node exists, update its users with
- // (Dividend - (Quotient * Divisor).
- if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
- { N0, N1 })) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
- AddToWorklist(Mul.getNode());
- AddToWorklist(Sub.getNode());
- CombineTo(RemNode, Sub);
- }
- return V;
- }
-
- // sdiv, srem -> sdivrem
- // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
- // true. Otherwise, we break the simplification logic in visitREM().
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue DivRem = useDivRem(N))
- return DivRem;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
- unsigned BitWidth = VT.getScalarSizeInBits();
-
- // Helper for determining whether a value is a power-2 constant scalar or a
- // vector of such elements.
- auto IsPowerOfTwo = [](ConstantSDNode *C) {
- if (C->isNullValue() || C->isOpaque())
- return false;
- if (C->getAPIntValue().isPowerOf2())
- return true;
- if ((-C->getAPIntValue()).isPowerOf2())
- return true;
- return false;
- };
-
- // fold (sdiv X, pow2) -> simple ops after legalize
- // FIXME: We check for the exact bit here because the generic lowering gives
- // better results in that case. The target-specific lowering should learn how
- // to handle exact sdivs efficiently.
- if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
- // Target-specific implementation of sdiv x, pow2.
- if (SDValue Res = BuildSDIVPow2(N))
- return Res;
-
- // Create constants that are functions of the shift amount value.
- EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
- SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
- SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
- C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
- SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
- if (!isConstantOrConstantVector(Inexact))
- return SDValue();
-
- // Splat the sign bit into the register
- SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
- DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
- AddToWorklist(Sign.getNode());
-
- // Add (N0 < 0) ? abs2 - 1 : 0;
- SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
- AddToWorklist(Srl.getNode());
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
- AddToWorklist(Add.getNode());
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
- AddToWorklist(Sra.getNode());
-
- // Special case: (sdiv X, 1) -> X
- // Special Case: (sdiv X, -1) -> 0-X
- SDValue One = DAG.getConstant(1, DL, VT);
- SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
- SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
- SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
- SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
- Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
-
- // If dividing by a positive value, we're done. Otherwise, the result must
- // be negated.
- SDValue Zero = DAG.getConstant(0, DL, VT);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
-
- // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
- SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
- SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
- return Res;
- }
-
- // If integer divide is expensive and we satisfy the requirements, emit an
- // alternate sequence. Targets may check function attributes for size/speed
- // trade-offs.
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (isConstantOrConstantVector(N1) &&
- !TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue Op = BuildSDIV(N))
- return Op;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUDIV(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- SDLoc DL(N);
-
- // fold (udiv c1, c2) -> c1/c2
- ConstantSDNode *N0C = isConstOrConstSplat(N0);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N0C && N1C)
- if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
- N0C, N1C))
- return Folded;
- // fold (udiv X, -1) -> select(X == -1, 1, 0)
- if (N1C && N1C->getAPIntValue().isAllOnesValue())
- return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
- DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT));
-
- if (SDValue V = simplifyDivRem(N, DAG))
- return V;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- if (SDValue V = visitUDIVLike(N0, N1, N)) {
- // If the corresponding remainder node exists, update its users with
- // (Dividend - (Quotient * Divisor).
- if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
- { N0, N1 })) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
- AddToWorklist(Mul.getNode());
- AddToWorklist(Sub.getNode());
- CombineTo(RemNode, Sub);
- }
- return V;
- }
-
- // sdiv, srem -> sdivrem
- // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
- // true. Otherwise, we break the simplification logic in visitREM().
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue DivRem = useDivRem(N))
- return DivRem;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // fold (udiv x, (1 << c)) -> x >>u c
- if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N1)) {
- SDValue LogBase2 = BuildLogBase2(N1, DL);
- AddToWorklist(LogBase2.getNode());
-
- EVT ShiftVT = getShiftAmountTy(N0.getValueType());
- SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
- AddToWorklist(Trunc.getNode());
- return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
- }
-
- // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
- if (N1.getOpcode() == ISD::SHL) {
- SDValue N10 = N1.getOperand(0);
- if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N10)) {
- SDValue LogBase2 = BuildLogBase2(N10, DL);
- AddToWorklist(LogBase2.getNode());
-
- EVT ADDVT = N1.getOperand(1).getValueType();
- SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
- AddToWorklist(Trunc.getNode());
- SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
- }
- }
-
- // fold (udiv x, c) -> alternate
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (isConstantOrConstantVector(N1) &&
- !TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue Op = BuildUDIV(N))
- return Op;
-
- return SDValue();
-}
-
-// handles ISD::SREM and ISD::UREM
-SDValue DAGCombiner::visitREM(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
-
- bool isSigned = (Opcode == ISD::SREM);
- SDLoc DL(N);
-
- // fold (rem c1, c2) -> c1%c2
- ConstantSDNode *N0C = isConstOrConstSplat(N0);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N0C && N1C)
- if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
- return Folded;
- // fold (urem X, -1) -> select(X == -1, 0, x)
- if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
- return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
- DAG.getConstant(0, DL, VT), N0);
-
- if (SDValue V = simplifyDivRem(N, DAG))
- return V;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- if (isSigned) {
- // If we know the sign bits of both operands are zero, strength reduce to a
- // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
- if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
- } else {
- SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
- if (DAG.isKnownToBeAPowerOfTwo(N1)) {
- // fold (urem x, pow2) -> (and x, pow2-1)
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::AND, DL, VT, N0, Add);
- }
- if (N1.getOpcode() == ISD::SHL &&
- DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
- // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::AND, DL, VT, N0, Add);
- }
- }
-
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
-
- // If X/C can be simplified by the division-by-constant logic, lower
- // X%C to the equivalent of X-X/C*C.
- // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
- // speculative DIV must not cause a DIVREM conversion. We guard against this
- // by skipping the simplification if isIntDivCheap(). When div is not cheap,
- // combine will not return a DIVREM. Regardless, checking cheapness here
- // makes sense since the simplification results in fatter code.
- if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
- SDValue OptimizedDiv =
- isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
- if (OptimizedDiv.getNode()) {
- // If the equivalent Div node also exists, update its users.
- unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
- if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
- { N0, N1 }))
- CombineTo(DivNode, OptimizedDiv);
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
- AddToWorklist(OptimizedDiv.getNode());
- AddToWorklist(Mul.getNode());
- return Sub;
- }
- }
-
- // sdiv, srem -> sdivrem
- if (SDValue DivRem = useDivRem(N))
- return DivRem.getValue(1);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitMULHS(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
-
- if (VT.isVector()) {
- // fold (mulhs x, 0) -> 0
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N1;
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N0;
- }
-
- // fold (mulhs x, 0) -> 0
- if (isNullConstant(N1))
- return N1;
- // fold (mulhs x, 1) -> (sra x, size(x)-1)
- if (isOneConstant(N1))
- return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
- DAG.getConstant(N0.getValueSizeInBits() - 1, DL,
- getShiftAmountTy(N0.getValueType())));
-
- // fold (mulhs x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
-
- // If the type twice as wide is legal, transform the mulhs to a wider multiply
- // plus a shift.
- if (VT.isSimple() && !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
- N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
- N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
- N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(N1.getValueType())));
- return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitMULHU(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
-
- if (VT.isVector()) {
- // fold (mulhu x, 0) -> 0
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N1;
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N0;
- }
-
- // fold (mulhu x, 0) -> 0
- if (isNullConstant(N1))
- return N1;
- // fold (mulhu x, 1) -> 0
- if (isOneConstant(N1))
- return DAG.getConstant(0, DL, N0.getValueType());
- // fold (mulhu x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
-
- // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
- if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
- SDLoc DL(N);
- unsigned NumEltBits = VT.getScalarSizeInBits();
- SDValue LogBase2 = BuildLogBase2(N1, DL);
- SDValue SRLAmt = DAG.getNode(
- ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
- EVT ShiftVT = getShiftAmountTy(N0.getValueType());
- SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
- return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
- }
-
- // If the type twice as wide is legal, transform the mulhu to a wider multiply
- // plus a shift.
- if (VT.isSimple() && !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
- N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
- N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
- N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(N1.getValueType())));
- return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
- }
- }
-
- return SDValue();
-}
-
-/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
-/// give the opcodes for the two computations that are being performed. Return
-/// true if a simplification was made.
-SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
- unsigned HiOp) {
- // If the high half is not needed, just compute the low half.
- bool HiExists = N->hasAnyUseOfValue(1);
- if (!HiExists && (!LegalOperations ||
- TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
- SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
- return CombineTo(N, Res, Res);
- }
-
- // If the low half is not needed, just compute the high half.
- bool LoExists = N->hasAnyUseOfValue(0);
- if (!LoExists && (!LegalOperations ||
- TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
- SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
- return CombineTo(N, Res, Res);
- }
-
- // If both halves are used, return as it is.
- if (LoExists && HiExists)
- return SDValue();
-
- // If the two computed results can be simplified separately, separate them.
- if (LoExists) {
- SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
- AddToWorklist(Lo.getNode());
- SDValue LoOpt = combine(Lo.getNode());
- if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
- return CombineTo(N, LoOpt, LoOpt);
- }
-
- if (HiExists) {
- SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
- AddToWorklist(Hi.getNode());
- SDValue HiOpt = combine(Hi.getNode());
- if (HiOpt.getNode() && HiOpt != Hi &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
- return CombineTo(N, HiOpt, HiOpt);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
- if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
- return Res;
-
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
-
- // If the type is twice as wide is legal, transform the mulhu to a wider
- // multiply plus a shift.
- if (VT.isSimple() && !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
- SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
- Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
- // Compute the high part as N1.
- Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(Lo.getValueType())));
- Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
- // Compute the low part as N0.
- Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
- return CombineTo(N, Lo, Hi);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
- if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
- return Res;
-
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
-
- // If the type is twice as wide is legal, transform the mulhu to a wider
- // multiply plus a shift.
- if (VT.isSimple() && !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
- SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
- Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
- // Compute the high part as N1.
- Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(Lo.getValueType())));
- Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
- // Compute the low part as N0.
- Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
- return CombineTo(N, Lo, Hi);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSMULO(SDNode *N) {
- // (smulo x, 2) -> (saddo x, x)
- if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
- if (C2->getAPIntValue() == 2)
- return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
- N->getOperand(0), N->getOperand(0));
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUMULO(SDNode *N) {
- // (umulo x, 2) -> (uaddo x, x)
- if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
- if (C2->getAPIntValue() == 2)
- return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
- N->getOperand(0), N->getOperand(0));
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold operation with constant operands.
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
- if (N0C && N1C)
- return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
-
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
-
- // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
- // Only do this if the current op isn't legal and the flipped is.
- unsigned Opcode = N->getOpcode();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.isOperationLegal(Opcode, VT) &&
- (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
- (N1.isUndef() || DAG.SignBitIsZero(N1))) {
- unsigned AltOpcode;
- switch (Opcode) {
- case ISD::SMIN: AltOpcode = ISD::UMIN; break;
- case ISD::SMAX: AltOpcode = ISD::UMAX; break;
- case ISD::UMIN: AltOpcode = ISD::SMIN; break;
- case ISD::UMAX: AltOpcode = ISD::SMAX; break;
- default: llvm_unreachable("Unknown MINMAX opcode");
- }
- if (TLI.isOperationLegal(AltOpcode, VT))
- return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
- }
-
- return SDValue();
-}
-
-/// If this is a bitwise logic instruction and both operands have the same
-/// opcode, try to sink the other opcode after the logic instruction.
-SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
- SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- unsigned LogicOpcode = N->getOpcode();
- unsigned HandOpcode = N0.getOpcode();
- assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
- LogicOpcode == ISD::XOR) && "Expected logic opcode");
- assert(HandOpcode == N1.getOpcode() && "Bad input!");
-
- // Bail early if none of these transforms apply.
- if (N0.getNumOperands() == 0)
- return SDValue();
-
- // FIXME: We should check number of uses of the operands to not increase
- // the instruction count for all transforms.
-
- // Handle size-changing casts.
- SDValue X = N0.getOperand(0);
- SDValue Y = N1.getOperand(0);
- EVT XVT = X.getValueType();
- SDLoc DL(N);
- if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
- HandOpcode == ISD::SIGN_EXTEND) {
- // If both operands have other uses, this transform would create extra
- // instructions without eliminating anything.
- if (!N0.hasOneUse() && !N1.hasOneUse())
- return SDValue();
- // We need matching integer source types.
- if (XVT != Y.getValueType())
- return SDValue();
- // Don't create an illegal op during or after legalization. Don't ever
- // create an unsupported vector op.
- if ((VT.isVector() || LegalOperations) &&
- !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
- return SDValue();
- // Avoid infinite looping with PromoteIntBinOp.
- // TODO: Should we apply desirable/legal constraints to all opcodes?
- if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
- !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
- return SDValue();
- // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
-
- // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
- if (HandOpcode == ISD::TRUNCATE) {
- // If both operands have other uses, this transform would create extra
- // instructions without eliminating anything.
- if (!N0.hasOneUse() && !N1.hasOneUse())
- return SDValue();
- // We need matching source types.
- if (XVT != Y.getValueType())
- return SDValue();
- // Don't create an illegal op during or after legalization.
- if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
- return SDValue();
- // Be extra careful sinking truncate. If it's free, there's no benefit in
- // widening a binop. Also, don't create a logic op on an illegal type.
- if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
- return SDValue();
- if (!TLI.isTypeLegal(XVT))
- return SDValue();
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
-
- // For binops SHL/SRL/SRA/AND:
- // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
- if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
- HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
- N0.getOperand(1) == N1.getOperand(1)) {
- // If either operand has other uses, this transform is not an improvement.
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
- }
-
- // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
- if (HandOpcode == ISD::BSWAP) {
- // If either operand has other uses, this transform is not an improvement.
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
-
- // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
- // Only perform this optimization up until type legalization, before
- // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
- // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
- // we don't want to undo this promotion.
- // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
- // on scalars.
- if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
- Level <= AfterLegalizeTypes) {
- // Input types must be integer and the same.
- if (XVT.isInteger() && XVT == Y.getValueType()) {
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
- }
-
- // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
- // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
- // If both shuffles use the same mask, and both shuffle within a single
- // vector, then it is worthwhile to move the swizzle after the operation.
- // The type-legalizer generates this pattern when loading illegal
- // vector types from memory. In many cases this allows additional shuffle
- // optimizations.
- // There are other cases where moving the shuffle after the xor/and/or
- // is profitable even if shuffles don't perform a swizzle.
- // If both shuffles use the same mask, and both shuffles have the same first
- // or second operand, then it might still be profitable to move the shuffle
- // after the xor/and/or operation.
- if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
- auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
- auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
- assert(X.getValueType() == Y.getValueType() &&
- "Inputs to shuffles are not the same type");
-
- // Check that both shuffles use the same mask. The masks are known to be of
- // the same length because the result vector type is the same.
- // Check also that shuffles have only one use to avoid introducing extra
- // instructions.
- if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
- !SVN0->getMask().equals(SVN1->getMask()))
- return SDValue();
-
- // Don't try to fold this node if it requires introducing a
- // build vector of all zeros that might be illegal at this stage.
- SDValue ShOp = N0.getOperand(1);
- if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
- ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
-
- // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
- if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
- SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
- N0.getOperand(0), N1.getOperand(0));
- return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
- }
-
- // Don't try to fold this node if it requires introducing a
- // build vector of all zeros that might be illegal at this stage.
- ShOp = N0.getOperand(0);
- if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
- ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
-
- // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
- if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
- SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
- N1.getOperand(1));
- return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
- }
- }
-
- return SDValue();
-}
-
-/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
-SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
- const SDLoc &DL) {
- SDValue LL, LR, RL, RR, N0CC, N1CC;
- if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
- !isSetCCEquivalent(N1, RL, RR, N1CC))
- return SDValue();
-
- assert(N0.getValueType() == N1.getValueType() &&
- "Unexpected operand types for bitwise logic op");
- assert(LL.getValueType() == LR.getValueType() &&
- RL.getValueType() == RR.getValueType() &&
- "Unexpected operand types for setcc");
-
- // If we're here post-legalization or the logic op type is not i1, the logic
- // op type must match a setcc result type. Also, all folds require new
- // operations on the left and right operands, so those types must match.
- EVT VT = N0.getValueType();
- EVT OpVT = LL.getValueType();
- if (LegalOperations || VT.getScalarType() != MVT::i1)
- if (VT != getSetCCResultType(OpVT))
- return SDValue();
- if (OpVT != RL.getValueType())
- return SDValue();
-
- ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
- ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
- bool IsInteger = OpVT.isInteger();
- if (LR == RR && CC0 == CC1 && IsInteger) {
- bool IsZero = isNullOrNullSplat(LR);
- bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
-
- // All bits clear?
- bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
- // All sign bits clear?
- bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
- // Any bits set?
- bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
- // Any sign bits set?
- bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
-
- // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
- // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
- // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
- // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
- if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
- SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
- AddToWorklist(Or.getNode());
- return DAG.getSetCC(DL, VT, Or, LR, CC1);
- }
-
- // All bits set?
- bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
- // All sign bits set?
- bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
- // Any bits clear?
- bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
- // Any sign bits clear?
- bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
-
- // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
- // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
- // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
- // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
- if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
- SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
- AddToWorklist(And.getNode());
- return DAG.getSetCC(DL, VT, And, LR, CC1);
- }
- }
-
- // TODO: What is the 'or' equivalent of this fold?
- // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
- if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
- IsInteger && CC0 == ISD::SETNE &&
- ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
- (isAllOnesConstant(LR) && isNullConstant(RR)))) {
- SDValue One = DAG.getConstant(1, DL, OpVT);
- SDValue Two = DAG.getConstant(2, DL, OpVT);
- SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
- AddToWorklist(Add.getNode());
- return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
- }
-
- // Try more general transforms if the predicates match and the only user of
- // the compares is the 'and' or 'or'.
- if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
- N0.hasOneUse() && N1.hasOneUse()) {
- // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
- // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
- if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
- SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
- SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
- SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
- SDValue Zero = DAG.getConstant(0, DL, OpVT);
- return DAG.getSetCC(DL, VT, Or, Zero, CC1);
- }
- }
-
- // Canonicalize equivalent operands to LL == RL.
- if (LL == RR && LR == RL) {
- CC1 = ISD::getSetCCSwappedOperands(CC1);
- std::swap(RL, RR);
- }
-
- // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
- // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
- if (LL == RL && LR == RR) {
- ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, IsInteger)
- : ISD::getSetCCOrOperation(CC0, CC1, IsInteger);
- if (NewCC != ISD::SETCC_INVALID &&
- (!LegalOperations ||
- (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
- TLI.isOperationLegal(ISD::SETCC, OpVT))))
- return DAG.getSetCC(DL, VT, LL, LR, NewCC);
- }
-
- return SDValue();
-}
-
-/// This contains all DAGCombine rules which reduce two values combined by
-/// an And operation to a single value. This makes them reusable in the context
-/// of visitSELECT(). Rules involving constants are not included as
-/// visitSELECT() already handles those cases.
-SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
- EVT VT = N1.getValueType();
- SDLoc DL(N);
-
- // fold (and x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
-
- if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
- return V;
-
- if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
- VT.getSizeInBits() <= 64) {
- if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
- // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
- // immediate for an add, but it is legal if its top c2 bits are set,
- // transform the ADD so the immediate doesn't need to be materialized
- // in a register.
- APInt ADDC = ADDI->getAPIntValue();
- APInt SRLC = SRLI->getAPIntValue();
- if (ADDC.getMinSignedBits() <= 64 &&
- SRLC.ult(VT.getSizeInBits()) &&
- !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
- APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
- SRLC.getZExtValue());
- if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
- ADDC |= Mask;
- if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
- SDLoc DL0(N0);
- SDValue NewAdd =
- DAG.getNode(ISD::ADD, DL0, VT,
- N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
- CombineTo(N0.getNode(), NewAdd);
- // Return N so it doesn't get rechecked!
- return SDValue(N, 0);
- }
- }
- }
- }
- }
- }
-
- // Reduce bit extract of low half of an integer to the narrower type.
- // (and (srl i64:x, K), KMask) ->
- // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
- if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
- if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
- if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- unsigned Size = VT.getSizeInBits();
- const APInt &AndMask = CAnd->getAPIntValue();
- unsigned ShiftBits = CShift->getZExtValue();
-
- // Bail out, this node will probably disappear anyway.
- if (ShiftBits == 0)
- return SDValue();
-
- unsigned MaskBits = AndMask.countTrailingOnes();
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
-
- if (AndMask.isMask() &&
- // Required bits must not span the two halves of the integer and
- // must fit in the half size type.
- (ShiftBits + MaskBits <= Size / 2) &&
- TLI.isNarrowingProfitable(VT, HalfVT) &&
- TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
- TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
- TLI.isTruncateFree(VT, HalfVT) &&
- TLI.isZExtFree(HalfVT, VT)) {
- // The isNarrowingProfitable is to avoid regressions on PPC and
- // AArch64 which match a few 64-bit bit insert / bit extract patterns
- // on downstream users of this. Those patterns could probably be
- // extended to handle extensions mixed in.
-
- SDValue SL(N0);
- assert(MaskBits <= Size);
-
- // Extracting the highest bit of the low half.
- EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
- N0.getOperand(0));
-
- SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
- SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
- SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
- SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
- return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
- }
- }
- }
- }
-
- return SDValue();
-}
-
-bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
- EVT LoadResultTy, EVT &ExtVT) {
- if (!AndC->getAPIntValue().isMask())
- return false;
-
- unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
-
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- EVT LoadedVT = LoadN->getMemoryVT();
-
- if (ExtVT == LoadedVT &&
- (!LegalOperations ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
- // ZEXTLOAD will match without needing to change the size of the value being
- // loaded.
- return true;
- }
-
- // Do not change the width of a volatile load.
- if (LoadN->isVolatile())
- return false;
-
- // Do not generate loads of non-round integer types since these can
- // be expensive (and would be wrong if the type is not byte sized).
- if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
- return false;
-
- if (LegalOperations &&
- !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
- return false;
-
- if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
- return false;
-
- return true;
-}
-
-bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
- ISD::LoadExtType ExtType, EVT &MemVT,
- unsigned ShAmt) {
- if (!LDST)
- return false;
- // Only allow byte offsets.
- if (ShAmt % 8)
- return false;
-
- // Do not generate loads of non-round integer types since these can
- // be expensive (and would be wrong if the type is not byte sized).
- if (!MemVT.isRound())
- return false;
-
- // Don't change the width of a volatile load.
- if (LDST->isVolatile())
- return false;
-
- // Verify that we are actually reducing a load width here.
- if (LDST->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits())
- return false;
-
- // Ensure that this isn't going to produce an unsupported unaligned access.
- if (ShAmt &&
- !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
- LDST->getAddressSpace(), ShAmt / 8))
- return false;
-
- // It's not possible to generate a constant of extended or untyped type.
- EVT PtrType = LDST->getBasePtr().getValueType();
- if (PtrType == MVT::Untyped || PtrType.isExtended())
- return false;
-
- if (isa<LoadSDNode>(LDST)) {
- LoadSDNode *Load = cast<LoadSDNode>(LDST);
- // Don't transform one with multiple uses, this would require adding a new
- // load.
- if (!SDValue(Load, 0).hasOneUse())
- return false;
-
- if (LegalOperations &&
- !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
- return false;
-
- // For the transform to be legal, the load must produce only two values
- // (the value loaded and the chain). Don't transform a pre-increment
- // load, for example, which produces an extra value. Otherwise the
- // transformation is not equivalent, and the downstream logic to replace
- // uses gets things wrong.
- if (Load->getNumValues() > 2)
- return false;
-
- // If the load that we're shrinking is an extload and we're not just
- // discarding the extension we can't simply shrink the load. Bail.
- // TODO: It would be possible to merge the extensions in some cases.
- if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
- Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
- return false;
-
- if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
- return false;
- } else {
- assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
- StoreSDNode *Store = cast<StoreSDNode>(LDST);
- // Can't write outside the original store
- if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
- return false;
-
- if (LegalOperations &&
- !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
- return false;
- }
- return true;
-}
-
-bool DAGCombiner::SearchForAndLoads(SDNode *N,
- SmallVectorImpl<LoadSDNode*> &Loads,
- SmallPtrSetImpl<SDNode*> &NodesWithConsts,
- ConstantSDNode *Mask,
- SDNode *&NodeToMask) {
- // Recursively search for the operands, looking for loads which can be
- // narrowed.
- for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) {
- SDValue Op = N->getOperand(i);
-
- if (Op.getValueType().isVector())
- return false;
-
- // Some constants may need fixing up later if they are too large.
- if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
- if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
- (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
- NodesWithConsts.insert(N);
- continue;
- }
-
- if (!Op.hasOneUse())
- return false;
-
- switch(Op.getOpcode()) {
- case ISD::LOAD: {
- auto *Load = cast<LoadSDNode>(Op);
- EVT ExtVT;
- if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
- isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
-
- // ZEXTLOAD is already small enough.
- if (Load->getExtensionType() == ISD::ZEXTLOAD &&
- ExtVT.bitsGE(Load->getMemoryVT()))
- continue;
-
- // Use LE to convert equal sized loads to zext.
- if (ExtVT.bitsLE(Load->getMemoryVT()))
- Loads.push_back(Load);
-
- continue;
- }
- return false;
- }
- case ISD::ZERO_EXTEND:
- case ISD::AssertZext: {
- unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
- EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- EVT VT = Op.getOpcode() == ISD::AssertZext ?
- cast<VTSDNode>(Op.getOperand(1))->getVT() :
- Op.getOperand(0).getValueType();
-
- // We can accept extending nodes if the mask is wider or an equal
- // width to the original type.
- if (ExtVT.bitsGE(VT))
- continue;
- break;
- }
- case ISD::OR:
- case ISD::XOR:
- case ISD::AND:
- if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
- NodeToMask))
- return false;
- continue;
- }
-
- // Allow one node which will masked along with any loads found.
- if (NodeToMask)
- return false;
-
- // Also ensure that the node to be masked only produces one data result.
- NodeToMask = Op.getNode();
- if (NodeToMask->getNumValues() > 1) {
- bool HasValue = false;
- for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
- MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
- if (VT != MVT::Glue && VT != MVT::Other) {
- if (HasValue) {
- NodeToMask = nullptr;
- return false;
- }
- HasValue = true;
- }
- }
- assert(HasValue && "Node to be masked has no data result?");
- }
- }
- return true;
-}
-
-bool DAGCombiner::BackwardsPropagateMask(SDNode *N, SelectionDAG &DAG) {
- auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!Mask)
- return false;
-
- if (!Mask->getAPIntValue().isMask())
- return false;
-
- // No need to do anything if the and directly uses a load.
- if (isa<LoadSDNode>(N->getOperand(0)))
- return false;
-
- SmallVector<LoadSDNode*, 8> Loads;
- SmallPtrSet<SDNode*, 2> NodesWithConsts;
- SDNode *FixupNode = nullptr;
- if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
- if (Loads.size() == 0)
- return false;
-
- LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
- SDValue MaskOp = N->getOperand(1);
-
- // If it exists, fixup the single node we allow in the tree that needs
- // masking.
- if (FixupNode) {
- LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
- SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
- FixupNode->getValueType(0),
- SDValue(FixupNode, 0), MaskOp);
- DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
- if (And.getOpcode() == ISD ::AND)
- DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
- }
-
- // Narrow any constants that need it.
- for (auto *LogicN : NodesWithConsts) {
- SDValue Op0 = LogicN->getOperand(0);
- SDValue Op1 = LogicN->getOperand(1);
-
- if (isa<ConstantSDNode>(Op0))
- std::swap(Op0, Op1);
-
- SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
- Op1, MaskOp);
-
- DAG.UpdateNodeOperands(LogicN, Op0, And);
- }
-
- // Create narrow loads.
- for (auto *Load : Loads) {
- LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
- SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
- SDValue(Load, 0), MaskOp);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
- if (And.getOpcode() == ISD ::AND)
- And = SDValue(
- DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
- SDValue NewLoad = ReduceLoadWidth(And.getNode());
- assert(NewLoad &&
- "Shouldn't be masking the load if it can't be narrowed");
- CombineTo(Load, NewLoad, NewLoad.getValue(1));
- }
- DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
- return true;
- }
- return false;
-}
-
-// Unfold
-// x & (-1 'logical shift' y)
-// To
-// (x 'opposite logical shift' y) 'logical shift' y
-// if it is better for performance.
-SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
- assert(N->getOpcode() == ISD::AND);
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
-
- // Do we actually prefer shifts over mask?
- if (!TLI.preferShiftsToClearExtremeBits(N0))
- return SDValue();
-
- // Try to match (-1 '[outer] logical shift' y)
- unsigned OuterShift;
- unsigned InnerShift; // The opposite direction to the OuterShift.
- SDValue Y; // Shift amount.
- auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
- if (!M.hasOneUse())
- return false;
- OuterShift = M->getOpcode();
- if (OuterShift == ISD::SHL)
- InnerShift = ISD::SRL;
- else if (OuterShift == ISD::SRL)
- InnerShift = ISD::SHL;
- else
- return false;
- if (!isAllOnesConstant(M->getOperand(0)))
- return false;
- Y = M->getOperand(1);
- return true;
- };
-
- SDValue X;
- if (matchMask(N1))
- X = N0;
- else if (matchMask(N0))
- X = N1;
- else
- return SDValue();
-
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // tmp = x 'opposite logical shift' y
- SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
- // ret = tmp 'logical shift' y
- SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
-
- return T1;
-}
-
-SDValue DAGCombiner::visitAND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N1.getValueType();
-
- // x & x --> x
- if (N0 == N1)
- return N0;
-
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (and x, 0) -> 0, vector edition
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- // do not return N0, because undef node may exist in N0
- return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
- SDLoc(N), N0.getValueType());
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- // do not return N1, because undef node may exist in N1
- return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
- SDLoc(N), N1.getValueType());
-
- // fold (and x, -1) -> x, vector edition
- if (ISD::isBuildVectorAllOnes(N0.getNode()))
- return N1;
- if (ISD::isBuildVectorAllOnes(N1.getNode()))
- return N0;
- }
-
- // fold (and c1, c2) -> c1&c2
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N0C && N1C && !N1C->isOpaque())
- return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
- // fold (and x, -1) -> x
- if (isAllOnesConstant(N1))
- return N0;
- // if (and x, c) is known to be zero, return 0
- unsigned BitWidth = VT.getScalarSizeInBits();
- if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
- APInt::getAllOnesValue(BitWidth)))
- return DAG.getConstant(0, SDLoc(N), VT);
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // reassociate and
- if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
- return RAND;
-
- // Try to convert a constant mask AND into a shuffle clear mask.
- if (VT.isVector())
- if (SDValue Shuffle = XformToShuffleWithZero(N))
- return Shuffle;
-
- // fold (and (or x, C), D) -> D if (C & D) == D
- auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
- return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
- };
- if (N0.getOpcode() == ISD::OR &&
- ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
- return N1;
- // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
- if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue N0Op0 = N0.getOperand(0);
- APInt Mask = ~N1C->getAPIntValue();
- Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
- if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
- SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
- N0.getValueType(), N0Op0);
-
- // Replace uses of the AND with uses of the Zero extend node.
- CombineTo(N, Zext);
-
- // We actually want to replace all uses of the any_extend with the
- // zero_extend, to avoid duplicating things. This will later cause this
- // AND to be folded.
- CombineTo(N0.getNode(), Zext);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
- // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
- // already be zero by virtue of the width of the base type of the load.
- //
- // the 'X' node here can either be nothing or an extract_vector_elt to catch
- // more cases.
- if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
- N0.getOperand(0).getOpcode() == ISD::LOAD &&
- N0.getOperand(0).getResNo() == 0) ||
- (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
- LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
- N0 : N0.getOperand(0) );
-
- // Get the constant (if applicable) the zero'th operand is being ANDed with.
- // This can be a pure constant or a vector splat, in which case we treat the
- // vector as a scalar and use the splat value.
- APInt Constant = APInt::getNullValue(1);
- if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
- Constant = C->getAPIntValue();
- } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
- APInt SplatValue, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
- SplatBitSize, HasAnyUndefs);
- if (IsSplat) {
- // Undef bits can contribute to a possible optimisation if set, so
- // set them.
- SplatValue |= SplatUndef;
-
- // The splat value may be something like "0x00FFFFFF", which means 0 for
- // the first vector value and FF for the rest, repeating. We need a mask
- // that will apply equally to all members of the vector, so AND all the
- // lanes of the constant together.
- EVT VT = Vector->getValueType(0);
- unsigned BitWidth = VT.getScalarSizeInBits();
-
- // If the splat value has been compressed to a bitlength lower
- // than the size of the vector lane, we need to re-expand it to
- // the lane size.
- if (BitWidth > SplatBitSize)
- for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
- SplatBitSize < BitWidth;
- SplatBitSize = SplatBitSize * 2)
- SplatValue |= SplatValue.shl(SplatBitSize);
-
- // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
- // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
- if (SplatBitSize % BitWidth == 0) {
- Constant = APInt::getAllOnesValue(BitWidth);
- for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
- Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
- }
- }
- }
-
- // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
- // actually legal and isn't going to get expanded, else this is a false
- // optimisation.
- bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
- Load->getValueType(0),
- Load->getMemoryVT());
-
- // Resize the constant to the same size as the original memory access before
- // extension. If it is still the AllOnesValue then this AND is completely
- // unneeded.
- Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
-
- bool B;
- switch (Load->getExtensionType()) {
- default: B = false; break;
- case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
- case ISD::ZEXTLOAD:
- case ISD::NON_EXTLOAD: B = true; break;
- }
-
- if (B && Constant.isAllOnesValue()) {
- // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
- // preserve semantics once we get rid of the AND.
- SDValue NewLoad(Load, 0);
-
- // Fold the AND away. NewLoad may get replaced immediately.
- CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
-
- if (Load->getExtensionType() == ISD::EXTLOAD) {
- NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
- Load->getValueType(0), SDLoc(Load),
- Load->getChain(), Load->getBasePtr(),
- Load->getOffset(), Load->getMemoryVT(),
- Load->getMemOperand());
- // Replace uses of the EXTLOAD with the new ZEXTLOAD.
- if (Load->getNumValues() == 3) {
- // PRE/POST_INC loads have 3 values.
- SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
- NewLoad.getValue(2) };
- CombineTo(Load, To, 3, true);
- } else {
- CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
- }
- }
-
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
-
- // fold (and (load x), 255) -> (zextload x, i8)
- // fold (and (extload x, i16), 255) -> (zextload x, i8)
- // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
- if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
- (N0.getOpcode() == ISD::ANY_EXTEND &&
- N0.getOperand(0).getOpcode() == ISD::LOAD))) {
- if (SDValue Res = ReduceLoadWidth(N)) {
- LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
- ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
- AddToWorklist(N);
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
- return SDValue(N, 0);
- }
- }
-
- if (Level >= AfterLegalizeTypes) {
- // Attempt to propagate the AND back up to the leaves which, if they're
- // loads, can be combined to narrow loads and the AND node can be removed.
- // Perform after legalization so that extend nodes will already be
- // combined into the loads.
- if (BackwardsPropagateMask(N, DAG)) {
- return SDValue(N, 0);
- }
- }
-
- if (SDValue Combined = visitANDLike(N0, N1, N))
- return Combined;
-
- // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
- if (N0.getOpcode() == N1.getOpcode())
- if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
- return V;
-
- // Masking the negated extension of a boolean is just the zero-extended
- // boolean:
- // and (sub 0, zext(bool X)), 1 --> zext(bool X)
- // and (sub 0, sext(bool X)), 1 --> zext(bool X)
- //
- // Note: the SimplifyDemandedBits fold below can make an information-losing
- // transform, and then we have no way to find this better fold.
- if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
- if (isNullOrNullSplat(N0.getOperand(0))) {
- SDValue SubRHS = N0.getOperand(1);
- if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
- SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
- return SubRHS;
- if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
- SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
- }
- }
-
- // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
- // fold (and (sra)) -> (and (srl)) when possible.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // fold (zext_inreg (extload x)) -> (zextload x)
- if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- EVT MemVT = LN0->getMemoryVT();
- // If we zero all the possible extended bits, then we can turn this into
- // a zextload if we are running before legalize or the operation is legal.
- unsigned BitWidth = N1.getScalarValueSizeInBits();
- if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
- BitWidth - MemVT.getScalarSizeInBits())) &&
- ((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
- LN0->getChain(), LN0->getBasePtr(),
- MemVT, LN0->getMemOperand());
- AddToWorklist(N);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
- if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
- N0.hasOneUse()) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- EVT MemVT = LN0->getMemoryVT();
- // If we zero all the possible extended bits, then we can turn this into
- // a zextload if we are running before legalize or the operation is legal.
- unsigned BitWidth = N1.getScalarValueSizeInBits();
- if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
- BitWidth - MemVT.getScalarSizeInBits())) &&
- ((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
- LN0->getChain(), LN0->getBasePtr(),
- MemVT, LN0->getMemOperand());
- AddToWorklist(N);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
- if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
- if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
- N0.getOperand(1), false))
- return BSwap;
- }
-
- if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
- return Shifts;
-
- return SDValue();
-}
-
-/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
-SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
- bool DemandHighBits) {
- if (!LegalOperations)
- return SDValue();
-
- EVT VT = N->getValueType(0);
- if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
- return SDValue();
- if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
- return SDValue();
-
- // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
- bool LookPassAnd0 = false;
- bool LookPassAnd1 = false;
- if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
- std::swap(N0, N1);
- if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
- std::swap(N0, N1);
- if (N0.getOpcode() == ISD::AND) {
- if (!N0.getNode()->hasOneUse())
- return SDValue();
- ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- // Also handle 0xffff since the LHS is guaranteed to have zeros there.
- // This is needed for X86.
- if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
- N01C->getZExtValue() != 0xFFFF))
- return SDValue();
- N0 = N0.getOperand(0);
- LookPassAnd0 = true;
- }
-
- if (N1.getOpcode() == ISD::AND) {
- if (!N1.getNode()->hasOneUse())
- return SDValue();
- ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
- if (!N11C || N11C->getZExtValue() != 0xFF)
- return SDValue();
- N1 = N1.getOperand(0);
- LookPassAnd1 = true;
- }
-
- if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
- std::swap(N0, N1);
- if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
- return SDValue();
- if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
- return SDValue();
-
- ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
- if (!N01C || !N11C)
- return SDValue();
- if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
- return SDValue();
-
- // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
- SDValue N00 = N0->getOperand(0);
- if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
- if (!N00.getNode()->hasOneUse())
- return SDValue();
- ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
- if (!N001C || N001C->getZExtValue() != 0xFF)
- return SDValue();
- N00 = N00.getOperand(0);
- LookPassAnd0 = true;
- }
-
- SDValue N10 = N1->getOperand(0);
- if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
- if (!N10.getNode()->hasOneUse())
- return SDValue();
- ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
- // Also allow 0xFFFF since the bits will be shifted out. This is needed
- // for X86.
- if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
- N101C->getZExtValue() != 0xFFFF))
- return SDValue();
- N10 = N10.getOperand(0);
- LookPassAnd1 = true;
- }
-
- if (N00 != N10)
- return SDValue();
-
- // Make sure everything beyond the low halfword gets set to zero since the SRL
- // 16 will clear the top bits.
- unsigned OpSizeInBits = VT.getSizeInBits();
- if (DemandHighBits && OpSizeInBits > 16) {
- // If the left-shift isn't masked out then the only way this is a bswap is
- // if all bits beyond the low 8 are 0. In that case the entire pattern
- // reduces to a left shift anyway: leave it for other parts of the combiner.
- if (!LookPassAnd0)
- return SDValue();
-
- // However, if the right shift isn't masked out then it might be because
- // it's not needed. See if we can spot that too.
- if (!LookPassAnd1 &&
- !DAG.MaskedValueIsZero(
- N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
- return SDValue();
- }
-
- SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
- if (OpSizeInBits > 16) {
- SDLoc DL(N);
- Res = DAG.getNode(ISD::SRL, DL, VT, Res,
- DAG.getConstant(OpSizeInBits - 16, DL,
- getShiftAmountTy(VT)));
- }
- return Res;
-}
-
-/// Return true if the specified node is an element that makes up a 32-bit
-/// packed halfword byteswap.
-/// ((x & 0x000000ff) << 8) |
-/// ((x & 0x0000ff00) >> 8) |
-/// ((x & 0x00ff0000) << 8) |
-/// ((x & 0xff000000) >> 8)
-static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
- if (!N.getNode()->hasOneUse())
- return false;
-
- unsigned Opc = N.getOpcode();
- if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
- return false;
-
- SDValue N0 = N.getOperand(0);
- unsigned Opc0 = N0.getOpcode();
- if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
- return false;
-
- ConstantSDNode *N1C = nullptr;
- // SHL or SRL: look upstream for AND mask operand
- if (Opc == ISD::AND)
- N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
- else if (Opc0 == ISD::AND)
- N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!N1C)
- return false;
-
- unsigned MaskByteOffset;
- switch (N1C->getZExtValue()) {
- default:
- return false;
- case 0xFF: MaskByteOffset = 0; break;
- case 0xFF00: MaskByteOffset = 1; break;
- case 0xFFFF:
- // In case demanded bits didn't clear the bits that will be shifted out.
- // This is needed for X86.
- if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
- MaskByteOffset = 1;
- break;
- }
- return false;
- case 0xFF0000: MaskByteOffset = 2; break;
- case 0xFF000000: MaskByteOffset = 3; break;
- }
-
- // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
- if (Opc == ISD::AND) {
- if (MaskByteOffset == 0 || MaskByteOffset == 2) {
- // (x >> 8) & 0xff
- // (x >> 8) & 0xff0000
- if (Opc0 != ISD::SRL)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- } else {
- // (x << 8) & 0xff00
- // (x << 8) & 0xff000000
- if (Opc0 != ISD::SHL)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- }
- } else if (Opc == ISD::SHL) {
- // (x & 0xff) << 8
- // (x & 0xff0000) << 8
- if (MaskByteOffset != 0 && MaskByteOffset != 2)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- } else { // Opc == ISD::SRL
- // (x & 0xff00) >> 8
- // (x & 0xff000000) >> 8
- if (MaskByteOffset != 1 && MaskByteOffset != 3)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- }
-
- if (Parts[MaskByteOffset])
- return false;
-
- Parts[MaskByteOffset] = N0.getOperand(0).getNode();
- return true;
-}
-
-/// Match a 32-bit packed halfword bswap. That is
-/// ((x & 0x000000ff) << 8) |
-/// ((x & 0x0000ff00) >> 8) |
-/// ((x & 0x00ff0000) << 8) |
-/// ((x & 0xff000000) >> 8)
-/// => (rotl (bswap x), 16)
-SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
- if (!LegalOperations)
- return SDValue();
-
- EVT VT = N->getValueType(0);
- if (VT != MVT::i32)
- return SDValue();
- if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
- return SDValue();
-
- // Look for either
- // (or (or (and), (and)), (or (and), (and)))
- // (or (or (or (and), (and)), (and)), (and))
- if (N0.getOpcode() != ISD::OR)
- return SDValue();
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- SDNode *Parts[4] = {};
-
- if (N1.getOpcode() == ISD::OR &&
- N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
- // (or (or (and), (and)), (or (and), (and)))
- if (!isBSwapHWordElement(N00, Parts))
- return SDValue();
-
- if (!isBSwapHWordElement(N01, Parts))
- return SDValue();
- SDValue N10 = N1.getOperand(0);
- if (!isBSwapHWordElement(N10, Parts))
- return SDValue();
- SDValue N11 = N1.getOperand(1);
- if (!isBSwapHWordElement(N11, Parts))
- return SDValue();
- } else {
- // (or (or (or (and), (and)), (and)), (and))
- if (!isBSwapHWordElement(N1, Parts))
- return SDValue();
- if (!isBSwapHWordElement(N01, Parts))
- return SDValue();
- if (N00.getOpcode() != ISD::OR)
- return SDValue();
- SDValue N000 = N00.getOperand(0);
- if (!isBSwapHWordElement(N000, Parts))
- return SDValue();
- SDValue N001 = N00.getOperand(1);
- if (!isBSwapHWordElement(N001, Parts))
- return SDValue();
- }
-
- // Make sure the parts are all coming from the same node.
- if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
- return SDValue();
-
- SDLoc DL(N);
- SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
- SDValue(Parts[0], 0));
-
- // Result of the bswap should be rotated by 16. If it's not legal, then
- // do (x << 16) | (x >> 16).
- SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
- if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
- return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
- if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
- return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
- return DAG.getNode(ISD::OR, DL, VT,
- DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
- DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
-}
-
-/// This contains all DAGCombine rules which reduce two values combined by
-/// an Or operation to a single value \see visitANDLike().
-SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
- EVT VT = N1.getValueType();
- SDLoc DL(N);
-
- // fold (or x, undef) -> -1
- if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
- return DAG.getAllOnesConstant(DL, VT);
-
- if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
- return V;
-
- // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
- if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
- // Don't increase # computations.
- (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
- // We can only do this xform if we know that bits from X that are set in C2
- // but not in C1 are already zero. Likewise for Y.
- if (const ConstantSDNode *N0O1C =
- getAsNonOpaqueConstant(N0.getOperand(1))) {
- if (const ConstantSDNode *N1O1C =
- getAsNonOpaqueConstant(N1.getOperand(1))) {
- // We can only do this xform if we know that bits from X that are set in
- // C2 but not in C1 are already zero. Likewise for Y.
- const APInt &LHSMask = N0O1C->getAPIntValue();
- const APInt &RHSMask = N1O1C->getAPIntValue();
-
- if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
- DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
- SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
- N0.getOperand(0), N1.getOperand(0));
- return DAG.getNode(ISD::AND, DL, VT, X,
- DAG.getConstant(LHSMask | RHSMask, DL, VT));
- }
- }
- }
- }
-
- // (or (and X, M), (and X, N)) -> (and X, (or M, N))
- if (N0.getOpcode() == ISD::AND &&
- N1.getOpcode() == ISD::AND &&
- N0.getOperand(0) == N1.getOperand(0) &&
- // Don't increase # computations.
- (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
- SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
- N0.getOperand(1), N1.getOperand(1));
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitOR(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N1.getValueType();
-
- // x | x --> x
- if (N0 == N1)
- return N0;
-
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (or x, 0) -> x, vector edition
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N1;
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N0;
-
- // fold (or x, -1) -> -1, vector edition
- if (ISD::isBuildVectorAllOnes(N0.getNode()))
- // do not return N0, because undef node may exist in N0
- return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
- if (ISD::isBuildVectorAllOnes(N1.getNode()))
- // do not return N1, because undef node may exist in N1
- return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
-
- // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
- // Do this only if the resulting shuffle is legal.
- if (isa<ShuffleVectorSDNode>(N0) &&
- isa<ShuffleVectorSDNode>(N1) &&
- // Avoid folding a node with illegal type.
- TLI.isTypeLegal(VT)) {
- bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
- bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
- bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
- bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
- // Ensure both shuffles have a zero input.
- if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
- assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
- assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
- const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
- const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
- bool CanFold = true;
- int NumElts = VT.getVectorNumElements();
- SmallVector<int, 4> Mask(NumElts);
-
- for (int i = 0; i != NumElts; ++i) {
- int M0 = SV0->getMaskElt(i);
- int M1 = SV1->getMaskElt(i);
-
- // Determine if either index is pointing to a zero vector.
- bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
- bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
-
- // If one element is zero and the otherside is undef, keep undef.
- // This also handles the case that both are undef.
- if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
- Mask[i] = -1;
- continue;
- }
-
- // Make sure only one of the elements is zero.
- if (M0Zero == M1Zero) {
- CanFold = false;
- break;
- }
-
- assert((M0 >= 0 || M1 >= 0) && "Undef index!");
-
- // We have a zero and non-zero element. If the non-zero came from
- // SV0 make the index a LHS index. If it came from SV1, make it
- // a RHS index. We need to mod by NumElts because we don't care
- // which operand it came from in the original shuffles.
- Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
- }
-
- if (CanFold) {
- SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
- SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
-
- bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
- if (!LegalMask) {
- std::swap(NewLHS, NewRHS);
- ShuffleVectorSDNode::commuteMask(Mask);
- LegalMask = TLI.isShuffleMaskLegal(Mask, VT);
- }
-
- if (LegalMask)
- return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask);
- }
- }
- }
- }
-
- // fold (or c1, c2) -> c1|c2
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && N1C && !N1C->isOpaque())
- return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
- // fold (or x, 0) -> x
- if (isNullConstant(N1))
- return N0;
- // fold (or x, -1) -> -1
- if (isAllOnesConstant(N1))
- return N1;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // fold (or x, c) -> c iff (x & ~c) == 0
- if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
- return N1;
-
- if (SDValue Combined = visitORLike(N0, N1, N))
- return Combined;
-
- // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
- if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
- return BSwap;
- if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
- return BSwap;
-
- // reassociate or
- if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
- return ROR;
-
- // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
- // iff (c1 & c2) != 0 or c1/c2 are undef.
- auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
- return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
- };
- if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
- ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
- if (SDValue COR = DAG.FoldConstantArithmetic(
- ISD::OR, SDLoc(N1), VT, N1.getNode(), N0.getOperand(1).getNode())) {
- SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
- AddToWorklist(IOR.getNode());
- return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
- }
- }
-
- // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
- if (N0.getOpcode() == N1.getOpcode())
- if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
- return V;
-
- // See if this is some rotate idiom.
- if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
- return SDValue(Rot, 0);
-
- if (SDValue Load = MatchLoadCombine(N))
- return Load;
-
- // Simplify the operands using demanded-bits information.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
- if (Op.getOpcode() == ISD::AND &&
- DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
- Mask = Op.getOperand(1);
- return Op.getOperand(0);
- }
- return Op;
-}
-
-/// Match "(X shl/srl V1) & V2" where V2 may not be present.
-static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
- SDValue &Mask) {
- Op = stripConstantMask(DAG, Op, Mask);
- if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
- Shift = Op;
- return true;
- }
- return false;
-}
-
-/// Helper function for visitOR to extract the needed side of a rotate idiom
-/// from a shl/srl/mul/udiv. This is meant to handle cases where
-/// InstCombine merged some outside op with one of the shifts from
-/// the rotate pattern.
-/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
-/// Otherwise, returns an expansion of \p ExtractFrom based on the following
-/// patterns:
-///
-/// (or (mul v c0) (shrl (mul v c1) c2)):
-/// expands (mul v c0) -> (shl (mul v c1) c3)
-///
-/// (or (udiv v c0) (shl (udiv v c1) c2)):
-/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
-///
-/// (or (shl v c0) (shrl (shl v c1) c2)):
-/// expands (shl v c0) -> (shl (shl v c1) c3)
-///
-/// (or (shrl v c0) (shl (shrl v c1) c2)):
-/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
-///
-/// Such that in all cases, c3+c2==bitwidth(op v c1).
-static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
- SDValue ExtractFrom, SDValue &Mask,
- const SDLoc &DL) {
- assert(OppShift && ExtractFrom && "Empty SDValue");
- assert(
- (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
- "Existing shift must be valid as a rotate half");
-
- ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
- // Preconditions:
- // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
- //
- // Find opcode of the needed shift to be extracted from (op0 v c0).
- unsigned Opcode = ISD::DELETED_NODE;
- bool IsMulOrDiv = false;
- // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
- // opcode or its arithmetic (mul or udiv) variant.
- auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
- IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
- if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
- return false;
- Opcode = NeededShift;
- return true;
- };
- // op0 must be either the needed shift opcode or the mul/udiv equivalent
- // that the needed shift can be extracted from.
- if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
- (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
- return SDValue();
-
- // op0 must be the same opcode on both sides, have the same LHS argument,
- // and produce the same value type.
- SDValue OppShiftLHS = OppShift.getOperand(0);
- EVT ShiftedVT = OppShiftLHS.getValueType();
- if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
- OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
- ShiftedVT != ExtractFrom.getValueType())
- return SDValue();
-
- // Amount of the existing shift.
- ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
- // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
- ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
- // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
- ConstantSDNode *ExtractFromCst =
- isConstOrConstSplat(ExtractFrom.getOperand(1));
- // TODO: We should be able to handle non-uniform constant vectors for these values
- // Check that we have constant values.
- if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
- !OppLHSCst || !OppLHSCst->getAPIntValue() ||
- !ExtractFromCst || !ExtractFromCst->getAPIntValue())
- return SDValue();
-
- // Compute the shift amount we need to extract to complete the rotate.
- const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
- if (OppShiftCst->getAPIntValue().ugt(VTWidth))
- return SDValue();
- APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
- // Normalize the bitwidth of the two mul/udiv/shift constant operands.
- APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
- APInt OppLHSAmt = OppLHSCst->getAPIntValue();
- zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
-
- // Now try extract the needed shift from the ExtractFrom op and see if the
- // result matches up with the existing shift's LHS op.
- if (IsMulOrDiv) {
- // Op to extract from is a mul or udiv by a constant.
- // Check:
- // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
- // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
- const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
- NeededShiftAmt.getZExtValue());
- APInt ResultAmt;
- APInt Rem;
- APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
- if (Rem != 0 || ResultAmt != OppLHSAmt)
- return SDValue();
- } else {
- // Op to extract from is a shift by a constant.
- // Check:
- // c2 - (bitwidth(op0 v c0) - c1) == c0
- if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
- ExtractFromAmt.getBitWidth()))
- return SDValue();
- }
-
- // Return the expanded shift op that should allow a rotate to be formed.
- EVT ShiftVT = OppShift.getOperand(1).getValueType();
- EVT ResVT = ExtractFrom.getValueType();
- SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
- return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
-}
-
-// Return true if we can prove that, whenever Neg and Pos are both in the
-// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
-// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
-//
-// (or (shift1 X, Neg), (shift2 X, Pos))
-//
-// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
-// in direction shift1 by Neg. The range [0, EltSize) means that we only need
-// to consider shift amounts with defined behavior.
-static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
- SelectionDAG &DAG) {
- // If EltSize is a power of 2 then:
- //
- // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
- // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
- //
- // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
- // for the stronger condition:
- //
- // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
- //
- // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
- // we can just replace Neg with Neg' for the rest of the function.
- //
- // In other cases we check for the even stronger condition:
- //
- // Neg == EltSize - Pos [B]
- //
- // for all Neg and Pos. Note that the (or ...) then invokes undefined
- // behavior if Pos == 0 (and consequently Neg == EltSize).
- //
- // We could actually use [A] whenever EltSize is a power of 2, but the
- // only extra cases that it would match are those uninteresting ones
- // where Neg and Pos are never in range at the same time. E.g. for
- // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
- // as well as (sub 32, Pos), but:
- //
- // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
- //
- // always invokes undefined behavior for 32-bit X.
- //
- // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
- unsigned MaskLoBits = 0;
- if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
- if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
- KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
- unsigned Bits = Log2_64(EltSize);
- if (NegC->getAPIntValue().getActiveBits() <= Bits &&
- ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
- Neg = Neg.getOperand(0);
- MaskLoBits = Bits;
- }
- }
- }
-
- // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
- if (Neg.getOpcode() != ISD::SUB)
- return false;
- ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
- if (!NegC)
- return false;
- SDValue NegOp1 = Neg.getOperand(1);
-
- // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
- // Pos'. The truncation is redundant for the purpose of the equality.
- if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
- if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
- KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
- if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
- ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
- MaskLoBits))
- Pos = Pos.getOperand(0);
- }
- }
-
- // The condition we need is now:
- //
- // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
- //
- // If NegOp1 == Pos then we need:
- //
- // EltSize & Mask == NegC & Mask
- //
- // (because "x & Mask" is a truncation and distributes through subtraction).
- APInt Width;
- if (Pos == NegOp1)
- Width = NegC->getAPIntValue();
-
- // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
- // Then the condition we want to prove becomes:
- //
- // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
- //
- // which, again because "x & Mask" is a truncation, becomes:
- //
- // NegC & Mask == (EltSize - PosC) & Mask
- // EltSize & Mask == (NegC + PosC) & Mask
- else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
- if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
- Width = PosC->getAPIntValue() + NegC->getAPIntValue();
- else
- return false;
- } else
- return false;
-
- // Now we just need to check that EltSize & Mask == Width & Mask.
- if (MaskLoBits)
- // EltSize & Mask is 0 since Mask is EltSize - 1.
- return Width.getLoBits(MaskLoBits) == 0;
- return Width == EltSize;
-}
-
-// A subroutine of MatchRotate used once we have found an OR of two opposite
-// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
-// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
-// former being preferred if supported. InnerPos and InnerNeg are Pos and
-// Neg with outer conversions stripped away.
-SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
- SDValue Neg, SDValue InnerPos,
- SDValue InnerNeg, unsigned PosOpcode,
- unsigned NegOpcode, const SDLoc &DL) {
- // fold (or (shl x, (*ext y)),
- // (srl x, (*ext (sub 32, y)))) ->
- // (rotl x, y) or (rotr x, (sub 32, y))
- //
- // fold (or (shl x, (*ext (sub 32, y))),
- // (srl x, (*ext y))) ->
- // (rotr x, y) or (rotl x, (sub 32, y))
- EVT VT = Shifted.getValueType();
- if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG)) {
- bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
- return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
- HasPos ? Pos : Neg).getNode();
- }
-
- return nullptr;
-}
-
-// MatchRotate - Handle an 'or' of two operands. If this is one of the many
-// idioms for rotate, and if the target supports rotation instructions, generate
-// a rot[lr].
-SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
- // Must be a legal type. Expanded 'n promoted things won't work with rotates.
- EVT VT = LHS.getValueType();
- if (!TLI.isTypeLegal(VT)) return nullptr;
-
- // The target must have at least one rotate flavor.
- bool HasROTL = hasOperation(ISD::ROTL, VT);
- bool HasROTR = hasOperation(ISD::ROTR, VT);
- if (!HasROTL && !HasROTR) return nullptr;
-
- // Check for truncated rotate.
- if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
- LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
- assert(LHS.getValueType() == RHS.getValueType());
- if (SDNode *Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
- return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(),
- SDValue(Rot, 0)).getNode();
- }
- }
-
- // Match "(X shl/srl V1) & V2" where V2 may not be present.
- SDValue LHSShift; // The shift.
- SDValue LHSMask; // AND value if any.
- matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
-
- SDValue RHSShift; // The shift.
- SDValue RHSMask; // AND value if any.
- matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
-
- // If neither side matched a rotate half, bail
- if (!LHSShift && !RHSShift)
- return nullptr;
-
- // InstCombine may have combined a constant shl, srl, mul, or udiv with one
- // side of the rotate, so try to handle that here. In all cases we need to
- // pass the matched shift from the opposite side to compute the opcode and
- // needed shift amount to extract. We still want to do this if both sides
- // matched a rotate half because one half may be a potential overshift that
- // can be broken down (ie if InstCombine merged two shl or srl ops into a
- // single one).
-
- // Have LHS side of the rotate, try to extract the needed shift from the RHS.
- if (LHSShift)
- if (SDValue NewRHSShift =
- extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
- RHSShift = NewRHSShift;
- // Have RHS side of the rotate, try to extract the needed shift from the LHS.
- if (RHSShift)
- if (SDValue NewLHSShift =
- extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
- LHSShift = NewLHSShift;
-
- // If a side is still missing, nothing else we can do.
- if (!RHSShift || !LHSShift)
- return nullptr;
-
- // At this point we've matched or extracted a shift op on each side.
-
- if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
- return nullptr; // Not shifting the same value.
-
- if (LHSShift.getOpcode() == RHSShift.getOpcode())
- return nullptr; // Shifts must disagree.
-
- // Canonicalize shl to left side in a shl/srl pair.
- if (RHSShift.getOpcode() == ISD::SHL) {
- std::swap(LHS, RHS);
- std::swap(LHSShift, RHSShift);
- std::swap(LHSMask, RHSMask);
- }
-
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- SDValue LHSShiftArg = LHSShift.getOperand(0);
- SDValue LHSShiftAmt = LHSShift.getOperand(1);
- SDValue RHSShiftArg = RHSShift.getOperand(0);
- SDValue RHSShiftAmt = RHSShift.getOperand(1);
-
- // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
- // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
- auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
- };
- if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
- SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
- LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
-
- // If there is an AND of either shifted operand, apply it to the result.
- if (LHSMask.getNode() || RHSMask.getNode()) {
- SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
- SDValue Mask = AllOnes;
-
- if (LHSMask.getNode()) {
- SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
- Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
- DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
- }
- if (RHSMask.getNode()) {
- SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
- Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
- DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
- }
-
- Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
- }
-
- return Rot.getNode();
- }
-
- // If there is a mask here, and we have a variable shift, we can't be sure
- // that we're masking out the right stuff.
- if (LHSMask.getNode() || RHSMask.getNode())
- return nullptr;
-
- // If the shift amount is sign/zext/any-extended just peel it off.
- SDValue LExtOp0 = LHSShiftAmt;
- SDValue RExtOp0 = RHSShiftAmt;
- if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
- LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
- LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
- LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
- (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
- RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
- RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
- RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
- LExtOp0 = LHSShiftAmt.getOperand(0);
- RExtOp0 = RHSShiftAmt.getOperand(0);
- }
-
- SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
- LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
- if (TryL)
- return TryL;
-
- SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
- RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
- if (TryR)
- return TryR;
-
- return nullptr;
-}
-
-namespace {
-
-/// Represents known origin of an individual byte in load combine pattern. The
-/// value of the byte is either constant zero or comes from memory.
-struct ByteProvider {
- // For constant zero providers Load is set to nullptr. For memory providers
- // Load represents the node which loads the byte from memory.
- // ByteOffset is the offset of the byte in the value produced by the load.
- LoadSDNode *Load = nullptr;
- unsigned ByteOffset = 0;
-
- ByteProvider() = default;
-
- static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
- return ByteProvider(Load, ByteOffset);
- }
-
- static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
-
- bool isConstantZero() const { return !Load; }
- bool isMemory() const { return Load; }
-
- bool operator==(const ByteProvider &Other) const {
- return Other.Load == Load && Other.ByteOffset == ByteOffset;
- }
-
-private:
- ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
- : Load(Load), ByteOffset(ByteOffset) {}
-};
-
-} // end anonymous namespace
-
-/// Recursively traverses the expression calculating the origin of the requested
-/// byte of the given value. Returns None if the provider can't be calculated.
-///
-/// For all the values except the root of the expression verifies that the value
-/// has exactly one use and if it's not true return None. This way if the origin
-/// of the byte is returned it's guaranteed that the values which contribute to
-/// the byte are not used outside of this expression.
-///
-/// Because the parts of the expression are not allowed to have more than one
-/// use this function iterates over trees, not DAGs. So it never visits the same
-/// node more than once.
-static const Optional<ByteProvider>
-calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
- bool Root = false) {
- // Typical i64 by i8 pattern requires recursion up to 8 calls depth
- if (Depth == 10)
- return None;
-
- if (!Root && !Op.hasOneUse())
- return None;
-
- assert(Op.getValueType().isScalarInteger() && "can't handle other types");
- unsigned BitWidth = Op.getValueSizeInBits();
- if (BitWidth % 8 != 0)
- return None;
- unsigned ByteWidth = BitWidth / 8;
- assert(Index < ByteWidth && "invalid index requested");
- (void) ByteWidth;
-
- switch (Op.getOpcode()) {
- case ISD::OR: {
- auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
- if (!LHS)
- return None;
- auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
- if (!RHS)
- return None;
-
- if (LHS->isConstantZero())
- return RHS;
- if (RHS->isConstantZero())
- return LHS;
- return None;
- }
- case ISD::SHL: {
- auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
- if (!ShiftOp)
- return None;
-
- uint64_t BitShift = ShiftOp->getZExtValue();
- if (BitShift % 8 != 0)
- return None;
- uint64_t ByteShift = BitShift / 8;
-
- return Index < ByteShift
- ? ByteProvider::getConstantZero()
- : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
- Depth + 1);
- }
- case ISD::ANY_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND: {
- SDValue NarrowOp = Op->getOperand(0);
- unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
- if (NarrowBitWidth % 8 != 0)
- return None;
- uint64_t NarrowByteWidth = NarrowBitWidth / 8;
-
- if (Index >= NarrowByteWidth)
- return Op.getOpcode() == ISD::ZERO_EXTEND
- ? Optional<ByteProvider>(ByteProvider::getConstantZero())
- : None;
- return calculateByteProvider(NarrowOp, Index, Depth + 1);
- }
- case ISD::BSWAP:
- return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
- Depth + 1);
- case ISD::LOAD: {
- auto L = cast<LoadSDNode>(Op.getNode());
- if (L->isVolatile() || L->isIndexed())
- return None;
-
- unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
- if (NarrowBitWidth % 8 != 0)
- return None;
- uint64_t NarrowByteWidth = NarrowBitWidth / 8;
-
- if (Index >= NarrowByteWidth)
- return L->getExtensionType() == ISD::ZEXTLOAD
- ? Optional<ByteProvider>(ByteProvider::getConstantZero())
- : None;
- return ByteProvider::getMemory(L, Index);
- }
- }
-
- return None;
-}
-
-/// Match a pattern where a wide type scalar value is loaded by several narrow
-/// loads and combined by shifts and ors. Fold it into a single load or a load
-/// and a BSWAP if the targets supports it.
-///
-/// Assuming little endian target:
-/// i8 *a = ...
-/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
-/// =>
-/// i32 val = *((i32)a)
-///
-/// i8 *a = ...
-/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
-/// =>
-/// i32 val = BSWAP(*((i32)a))
-///
-/// TODO: This rule matches complex patterns with OR node roots and doesn't
-/// interact well with the worklist mechanism. When a part of the pattern is
-/// updated (e.g. one of the loads) its direct users are put into the worklist,
-/// but the root node of the pattern which triggers the load combine is not
-/// necessarily a direct user of the changed node. For example, once the address
-/// of t28 load is reassociated load combine won't be triggered:
-/// t25: i32 = add t4, Constant:i32<2>
-/// t26: i64 = sign_extend t25
-/// t27: i64 = add t2, t26
-/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
-/// t29: i32 = zero_extend t28
-/// t32: i32 = shl t29, Constant:i8<8>
-/// t33: i32 = or t23, t32
-/// As a possible fix visitLoad can check if the load can be a part of a load
-/// combine pattern and add corresponding OR roots to the worklist.
-SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
- assert(N->getOpcode() == ISD::OR &&
- "Can only match load combining against OR nodes");
-
- // Handles simple types only
- EVT VT = N->getValueType(0);
- if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
- return SDValue();
- unsigned ByteWidth = VT.getSizeInBits() / 8;
-
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Before legalize we can introduce too wide illegal loads which will be later
- // split into legal sized loads. This enables us to combine i64 load by i8
- // patterns to a couple of i32 loads on 32 bit targets.
- if (LegalOperations && !TLI.isOperationLegal(ISD::LOAD, VT))
- return SDValue();
-
- std::function<unsigned(unsigned, unsigned)> LittleEndianByteAt = [](
- unsigned BW, unsigned i) { return i; };
- std::function<unsigned(unsigned, unsigned)> BigEndianByteAt = [](
- unsigned BW, unsigned i) { return BW - i - 1; };
-
- bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
- auto MemoryByteOffset = [&] (ByteProvider P) {
- assert(P.isMemory() && "Must be a memory byte provider");
- unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
- assert(LoadBitWidth % 8 == 0 &&
- "can only analyze providers for individual bytes not bit");
- unsigned LoadByteWidth = LoadBitWidth / 8;
- return IsBigEndianTarget
- ? BigEndianByteAt(LoadByteWidth, P.ByteOffset)
- : LittleEndianByteAt(LoadByteWidth, P.ByteOffset);
- };
-
- Optional<BaseIndexOffset> Base;
- SDValue Chain;
-
- SmallPtrSet<LoadSDNode *, 8> Loads;
- Optional<ByteProvider> FirstByteProvider;
- int64_t FirstOffset = INT64_MAX;
-
- // Check if all the bytes of the OR we are looking at are loaded from the same
- // base address. Collect bytes offsets from Base address in ByteOffsets.
- SmallVector<int64_t, 4> ByteOffsets(ByteWidth);
- for (unsigned i = 0; i < ByteWidth; i++) {
- auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
- if (!P || !P->isMemory()) // All the bytes must be loaded from memory
- return SDValue();
-
- LoadSDNode *L = P->Load;
- assert(L->hasNUsesOfValue(1, 0) && !L->isVolatile() && !L->isIndexed() &&
- "Must be enforced by calculateByteProvider");
- assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
-
- // All loads must share the same chain
- SDValue LChain = L->getChain();
- if (!Chain)
- Chain = LChain;
- else if (Chain != LChain)
- return SDValue();
-
- // Loads must share the same base address
- BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
- int64_t ByteOffsetFromBase = 0;
- if (!Base)
- Base = Ptr;
- else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
- return SDValue();
-
- // Calculate the offset of the current byte from the base address
- ByteOffsetFromBase += MemoryByteOffset(*P);
- ByteOffsets[i] = ByteOffsetFromBase;
-
- // Remember the first byte load
- if (ByteOffsetFromBase < FirstOffset) {
- FirstByteProvider = P;
- FirstOffset = ByteOffsetFromBase;
- }
-
- Loads.insert(L);
- }
- assert(!Loads.empty() && "All the bytes of the value must be loaded from "
- "memory, so there must be at least one load which produces the value");
- assert(Base && "Base address of the accessed memory location must be set");
- assert(FirstOffset != INT64_MAX && "First byte offset must be set");
-
- // Check if the bytes of the OR we are looking at match with either big or
- // little endian value load
- bool BigEndian = true, LittleEndian = true;
- for (unsigned i = 0; i < ByteWidth; i++) {
- int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
- LittleEndian &= CurrentByteOffset == LittleEndianByteAt(ByteWidth, i);
- BigEndian &= CurrentByteOffset == BigEndianByteAt(ByteWidth, i);
- if (!BigEndian && !LittleEndian)
- return SDValue();
- }
- assert((BigEndian != LittleEndian) && "should be either or");
- assert(FirstByteProvider && "must be set");
-
- // Ensure that the first byte is loaded from zero offset of the first load.
- // So the combined value can be loaded from the first load address.
- if (MemoryByteOffset(*FirstByteProvider) != 0)
- return SDValue();
- LoadSDNode *FirstLoad = FirstByteProvider->Load;
-
- // The node we are looking at matches with the pattern, check if we can
- // replace it with a single load and bswap if needed.
-
- // If the load needs byte swap check if the target supports it
- bool NeedsBswap = IsBigEndianTarget != BigEndian;
-
- // Before legalize we can introduce illegal bswaps which will be later
- // converted to an explicit bswap sequence. This way we end up with a single
- // load and byte shuffling instead of several loads and byte shuffling.
- if (NeedsBswap && LegalOperations && !TLI.isOperationLegal(ISD::BSWAP, VT))
- return SDValue();
-
- // Check that a load of the wide type is both allowed and fast on the target
- bool Fast = false;
- bool Allowed = TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
- VT, FirstLoad->getAddressSpace(),
- FirstLoad->getAlignment(), &Fast);
- if (!Allowed || !Fast)
- return SDValue();
-
- SDValue NewLoad =
- DAG.getLoad(VT, SDLoc(N), Chain, FirstLoad->getBasePtr(),
- FirstLoad->getPointerInfo(), FirstLoad->getAlignment());
-
- // Transfer chain users from old loads to the new load.
- for (LoadSDNode *L : Loads)
- DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
-
- return NeedsBswap ? DAG.getNode(ISD::BSWAP, SDLoc(N), VT, NewLoad) : NewLoad;
-}
-
-// If the target has andn, bsl, or a similar bit-select instruction,
-// we want to unfold masked merge, with canonical pattern of:
-// | A | |B|
-// ((x ^ y) & m) ^ y
-// | D |
-// Into:
-// (x & m) | (y & ~m)
-// If y is a constant, and the 'andn' does not work with immediates,
-// we unfold into a different pattern:
-// ~(~x & m) & (m | y)
-// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
-// the very least that breaks andnpd / andnps patterns, and because those
-// patterns are simplified in IR and shouldn't be created in the DAG
-SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
- assert(N->getOpcode() == ISD::XOR);
-
- // Don't touch 'not' (i.e. where y = -1).
- if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
- return SDValue();
-
- EVT VT = N->getValueType(0);
-
- // There are 3 commutable operators in the pattern,
- // so we have to deal with 8 possible variants of the basic pattern.
- SDValue X, Y, M;
- auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
- if (And.getOpcode() != ISD::AND || !And.hasOneUse())
- return false;
- SDValue Xor = And.getOperand(XorIdx);
- if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
- return false;
- SDValue Xor0 = Xor.getOperand(0);
- SDValue Xor1 = Xor.getOperand(1);
- // Don't touch 'not' (i.e. where y = -1).
- if (isAllOnesOrAllOnesSplat(Xor1))
- return false;
- if (Other == Xor0)
- std::swap(Xor0, Xor1);
- if (Other != Xor1)
- return false;
- X = Xor0;
- Y = Xor1;
- M = And.getOperand(XorIdx ? 0 : 1);
- return true;
- };
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
- !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
- return SDValue();
-
- // Don't do anything if the mask is constant. This should not be reachable.
- // InstCombine should have already unfolded this pattern, and DAGCombiner
- // probably shouldn't produce it, too.
- if (isa<ConstantSDNode>(M.getNode()))
- return SDValue();
-
- // We can transform if the target has AndNot
- if (!TLI.hasAndNot(M))
- return SDValue();
-
- SDLoc DL(N);
-
- // If Y is a constant, check that 'andn' works with immediates.
- if (!TLI.hasAndNot(Y)) {
- assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
- // If not, we need to do a bit more work to make sure andn is still used.
- SDValue NotX = DAG.getNOT(DL, X, VT);
- SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
- SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
- SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
- return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
- }
-
- SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
- SDValue NotM = DAG.getNOT(DL, M, VT);
- SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
-
- return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
-}
-
-SDValue DAGCombiner::visitXOR(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
-
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (xor x, 0) -> x, vector edition
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N1;
- if (ISD::isBuildVectorAllZeros(N1.getNode()))
- return N0;
- }
-
- // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
- SDLoc DL(N);
- if (N0.isUndef() && N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- // fold (xor x, undef) -> undef
- if (N0.isUndef())
- return N0;
- if (N1.isUndef())
- return N1;
- // fold (xor c1, c2) -> c1^c2
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
- if (N0C && N1C)
- return DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, N0C, N1C);
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
- // fold (xor x, 0) -> x
- if (isNullConstant(N1))
- return N0;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // reassociate xor
- if (SDValue RXOR = ReassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
- return RXOR;
-
- // fold !(x cc y) -> (x !cc y)
- unsigned N0Opcode = N0.getOpcode();
- SDValue LHS, RHS, CC;
- if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
- ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
- LHS.getValueType().isInteger());
- if (!LegalOperations ||
- TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
- switch (N0Opcode) {
- default:
- llvm_unreachable("Unhandled SetCC Equivalent!");
- case ISD::SETCC:
- return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
- case ISD::SELECT_CC:
- return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
- N0.getOperand(3), NotCC);
- }
- }
- }
-
- // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
- if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
- isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
- SDValue V = N0.getOperand(0);
- SDLoc DL0(N0);
- V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
- DAG.getConstant(1, DL0, V.getValueType()));
- AddToWorklist(V.getNode());
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
- }
-
- // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
- if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
- (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
- SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
- if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
- unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
- LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
- RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
- AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
- return DAG.getNode(NewOpcode, DL, VT, LHS, RHS);
- }
- }
- // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
- if (isAllOnesConstant(N1) && N0.hasOneUse() &&
- (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
- SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
- if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
- unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
- LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
- RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
- AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
- return DAG.getNode(NewOpcode, DL, VT, LHS, RHS);
- }
- }
- // fold (xor (and x, y), y) -> (and (not x), y)
- if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
- SDValue X = N0.getOperand(0);
- SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
- AddToWorklist(NotX.getNode());
- return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
- }
-
- if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
- ConstantSDNode *XorC = isConstOrConstSplat(N1);
- ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
- unsigned BitWidth = VT.getScalarSizeInBits();
- if (XorC && ShiftC) {
- // Don't crash on an oversized shift. We can not guarantee that a bogus
- // shift has been simplified to undef.
- uint64_t ShiftAmt = ShiftC->getLimitedValue();
- if (ShiftAmt < BitWidth) {
- APInt Ones = APInt::getAllOnesValue(BitWidth);
- Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
- if (XorC->getAPIntValue() == Ones) {
- // If the xor constant is a shifted -1, do a 'not' before the shift:
- // xor (X << ShiftC), XorC --> (not X) << ShiftC
- // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
- SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
- return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
- }
- }
- }
- }
-
- // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
- if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
- SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
- SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
- if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
- SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
- SDValue S0 = S.getOperand(0);
- if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) {
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
- if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
- if (C->getAPIntValue() == (OpSizeInBits - 1))
- return DAG.getNode(ISD::ABS, DL, VT, S0);
- }
- }
- }
-
- // fold (xor x, x) -> 0
- if (N0 == N1)
- return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
-
- // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
- // Here is a concrete example of this equivalence:
- // i16 x == 14
- // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
- // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
- //
- // =>
- //
- // i16 ~1 == 0b1111111111111110
- // i16 rol(~1, 14) == 0b1011111111111111
- //
- // Some additional tips to help conceptualize this transform:
- // - Try to see the operation as placing a single zero in a value of all ones.
- // - There exists no value for x which would allow the result to contain zero.
- // - Values of x larger than the bitwidth are undefined and do not require a
- // consistent result.
- // - Pushing the zero left requires shifting one bits in from the right.
- // A rotate left of ~1 is a nice way of achieving the desired result.
- if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
- isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
- return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
- N0.getOperand(1));
- }
-
- // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
- if (N0Opcode == N1.getOpcode())
- if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
- return V;
-
- // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
- if (SDValue MM = unfoldMaskedMerge(N))
- return MM;
-
- // Simplify the expression using non-local knowledge.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-/// Handle transforms common to the three shifts, when the shift amount is a
-/// constant.
-SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
- // Do not turn a 'not' into a regular xor.
- if (isBitwiseNot(N->getOperand(0)))
- return SDValue();
-
- SDNode *LHS = N->getOperand(0).getNode();
- if (!LHS->hasOneUse()) return SDValue();
-
- // We want to pull some binops through shifts, so that we have (and (shift))
- // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
- // thing happens with address calculations, so it's important to canonicalize
- // it.
- bool HighBitSet = false; // Can we transform this if the high bit is set?
-
- switch (LHS->getOpcode()) {
- default: return SDValue();
- case ISD::OR:
- case ISD::XOR:
- HighBitSet = false; // We can only transform sra if the high bit is clear.
- break;
- case ISD::AND:
- HighBitSet = true; // We can only transform sra if the high bit is set.
- break;
- case ISD::ADD:
- if (N->getOpcode() != ISD::SHL)
- return SDValue(); // only shl(add) not sr[al](add).
- HighBitSet = false; // We can only transform sra if the high bit is clear.
- break;
- }
-
- // We require the RHS of the binop to be a constant and not opaque as well.
- ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
- if (!BinOpCst) return SDValue();
-
- // FIXME: disable this unless the input to the binop is a shift by a constant
- // or is copy/select.Enable this in other cases when figure out it's exactly profitable.
- SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
- bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL ||
- BinOpLHSVal->getOpcode() == ISD::SRA ||
- BinOpLHSVal->getOpcode() == ISD::SRL;
- bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg ||
- BinOpLHSVal->getOpcode() == ISD::SELECT;
-
- if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) &&
- !isCopyOrSelect)
- return SDValue();
-
- if (isCopyOrSelect && N->hasOneUse())
- return SDValue();
-
- EVT VT = N->getValueType(0);
-
- // If this is a signed shift right, and the high bit is modified by the
- // logical operation, do not perform the transformation. The highBitSet
- // boolean indicates the value of the high bit of the constant which would
- // cause it to be modified for this operation.
- if (N->getOpcode() == ISD::SRA) {
- bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
- if (BinOpRHSSignSet != HighBitSet)
- return SDValue();
- }
-
- if (!TLI.isDesirableToCommuteWithShift(N, Level))
- return SDValue();
-
- // Fold the constants, shifting the binop RHS by the shift amount.
- SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
- N->getValueType(0),
- LHS->getOperand(1), N->getOperand(1));
- assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
-
- // Create the new shift.
- SDValue NewShift = DAG.getNode(N->getOpcode(),
- SDLoc(LHS->getOperand(0)),
- VT, LHS->getOperand(0), N->getOperand(1));
-
- // Create the new binop.
- return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
-}
-
-SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
- assert(N->getOpcode() == ISD::TRUNCATE);
- assert(N->getOperand(0).getOpcode() == ISD::AND);
-
- // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
- if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
- SDValue N01 = N->getOperand(0).getOperand(1);
- if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
- SDLoc DL(N);
- EVT TruncVT = N->getValueType(0);
- SDValue N00 = N->getOperand(0).getOperand(0);
- SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
- SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
- AddToWorklist(Trunc00.getNode());
- AddToWorklist(Trunc01.getNode());
- return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitRotate(SDNode *N) {
- SDLoc dl(N);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- unsigned Bitsize = VT.getScalarSizeInBits();
-
- // fold (rot x, 0) -> x
- if (isNullOrNullSplat(N1))
- return N0;
-
- // fold (rot x, c) -> x iff (c % BitSize) == 0
- if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
- APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
- if (DAG.MaskedValueIsZero(N1, ModuloMask))
- return N0;
- }
-
- // fold (rot x, c) -> (rot x, c % BitSize)
- if (ConstantSDNode *Cst = isConstOrConstSplat(N1)) {
- if (Cst->getAPIntValue().uge(Bitsize)) {
- uint64_t RotAmt = Cst->getAPIntValue().urem(Bitsize);
- return DAG.getNode(N->getOpcode(), dl, VT, N0,
- DAG.getConstant(RotAmt, dl, N1.getValueType()));
- }
- }
-
- // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
- }
-
- unsigned NextOp = N0.getOpcode();
- // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
- if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
- SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
- SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
- if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
- EVT ShiftVT = C1->getValueType(0);
- bool SameSide = (N->getOpcode() == NextOp);
- unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
- if (SDValue CombinedShift =
- DAG.FoldConstantArithmetic(CombineOp, dl, ShiftVT, C1, C2)) {
- SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
- SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
- ISD::SREM, dl, ShiftVT, CombinedShift.getNode(),
- BitsizeC.getNode());
- return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
- CombinedShiftNorm);
- }
- }
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSHL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
-
- EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
-
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
- // If setcc produces all-one true value then:
- // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
- if (N1CV && N1CV->isConstant()) {
- if (N0.getOpcode() == ISD::AND) {
- SDValue N00 = N0->getOperand(0);
- SDValue N01 = N0->getOperand(1);
- BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
-
- if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
- TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent) {
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
- N01CV, N1CV))
- return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
- }
- }
- }
- }
-
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
-
- // fold (shl c1, c2) -> c1<<c2
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- if (N0C && N1C && !N1C->isOpaque())
- return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // if (shl x, c) is known to be zero, return 0
- if (DAG.MaskedValueIsZero(SDValue(N, 0),
- APInt::getAllOnesValue(OpSizeInBits)))
- return DAG.getConstant(0, SDLoc(N), VT);
- // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
- }
-
- if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
- if (N0.getOpcode() == ISD::SHL) {
- auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).uge(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
- return DAG.getConstant(0, SDLoc(N), VT);
-
- auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).ult(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
- SDLoc DL(N);
- EVT ShiftVT = N1.getValueType();
- SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
- return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
- }
- }
-
- // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
- // For this to be valid, the second form must not preserve any of the bits
- // that are shifted out by the inner shift in the first form. This means
- // the outer shift size must be >= the number of bits added by the ext.
- // As a corollary, we don't care what kind of ext it is.
- if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
- N0.getOpcode() == ISD::ANY_EXTEND ||
- N0.getOpcode() == ISD::SIGN_EXTEND) &&
- N0.getOperand(0).getOpcode() == ISD::SHL) {
- SDValue N0Op0 = N0.getOperand(0);
- if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
- APInt c1 = N0Op0C1->getAPIntValue();
- APInt c2 = N1C->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
-
- EVT InnerShiftVT = N0Op0.getValueType();
- uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
- if (c2.uge(OpSizeInBits - InnerShiftSize)) {
- SDLoc DL(N0);
- APInt Sum = c1 + c2;
- if (Sum.uge(OpSizeInBits))
- return DAG.getConstant(0, DL, VT);
-
- return DAG.getNode(
- ISD::SHL, DL, VT,
- DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)),
- DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
- }
- }
- }
-
- // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
- // Only fold this if the inner zext has no other uses to avoid increasing
- // the total number of instructions.
- if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::SRL) {
- SDValue N0Op0 = N0.getOperand(0);
- if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
- if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) {
- uint64_t c1 = N0Op0C1->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
- if (c1 == c2) {
- SDValue NewOp0 = N0.getOperand(0);
- EVT CountVT = NewOp0.getOperand(1).getValueType();
- SDLoc DL(N);
- SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
- NewOp0,
- DAG.getConstant(c2, DL, CountVT));
- AddToWorklist(NewSHL.getNode());
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
- }
- }
- }
- }
-
- // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
- // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
- if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
- N0->getFlags().hasExact()) {
- if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
- uint64_t C1 = N0C1->getZExtValue();
- uint64_t C2 = N1C->getZExtValue();
- SDLoc DL(N);
- if (C1 <= C2)
- return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
- DAG.getConstant(C2 - C1, DL, N1.getValueType()));
- return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
- DAG.getConstant(C1 - C2, DL, N1.getValueType()));
- }
- }
-
- // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
- // (and (srl x, (sub c1, c2), MASK)
- // Only fold this if the inner shift has no other uses -- if it does, folding
- // this will increase the total number of instructions.
- if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
- TLI.shouldFoldShiftPairToMask(N, Level)) {
- if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
- uint64_t c1 = N0C1->getZExtValue();
- if (c1 < OpSizeInBits) {
- uint64_t c2 = N1C->getZExtValue();
- APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
- SDValue Shift;
- if (c2 > c1) {
- Mask <<= c2 - c1;
- SDLoc DL(N);
- Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
- DAG.getConstant(c2 - c1, DL, N1.getValueType()));
- } else {
- Mask.lshrInPlace(c1 - c2);
- SDLoc DL(N);
- Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
- DAG.getConstant(c1 - c2, DL, N1.getValueType()));
- }
- SDLoc DL(N0);
- return DAG.getNode(ISD::AND, DL, VT, Shift,
- DAG.getConstant(Mask, DL, VT));
- }
- }
- }
-
- // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
- if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
- isConstantOrConstantVector(N1, /* No Opaques */ true)) {
- SDLoc DL(N);
- SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
- SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
- }
-
- // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
- // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
- // Variant of version done on multiply, except mul by a power of 2 is turned
- // into a shift.
- if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
- N0.getNode()->hasOneUse() &&
- isConstantOrConstantVector(N1, /* No Opaques */ true) &&
- isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
- TLI.isDesirableToCommuteWithShift(N, Level)) {
- SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
- SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
- AddToWorklist(Shl0.getNode());
- AddToWorklist(Shl1.getNode());
- return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
- }
-
- // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
- if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
- isConstantOrConstantVector(N1, /* No Opaques */ true) &&
- isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
- SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
- if (isConstantOrConstantVector(Shl))
- return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
- }
-
- if (N1C && !N1C->isOpaque())
- if (SDValue NewSHL = visitShiftByConstant(N, N1C))
- return NewSHL;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSRA(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
-
- EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
-
- // Arithmetic shifting an all-sign-bit value is a no-op.
- // fold (sra 0, x) -> 0
- // fold (sra -1, x) -> -1
- if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
- return N0;
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
-
- // fold (sra c1, c2) -> (sra c1, c2)
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- if (N0C && N1C && !N1C->isOpaque())
- return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
- // sext_inreg.
- if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
- unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
- EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
- if (VT.isVector())
- ExtVT = EVT::getVectorVT(*DAG.getContext(),
- ExtVT, VT.getVectorNumElements());
- if ((!LegalOperations ||
- TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
- N0.getOperand(0), DAG.getValueType(ExtVT));
- }
-
- // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
- // clamp (add c1, c2) to max shift.
- if (N0.getOpcode() == ISD::SRA) {
- SDLoc DL(N);
- EVT ShiftVT = N1.getValueType();
- EVT ShiftSVT = ShiftVT.getScalarType();
- SmallVector<SDValue, 16> ShiftValues;
-
- auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- APInt Sum = c1 + c2;
- unsigned ShiftSum =
- Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
- ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
- return true;
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
- SDValue ShiftValue;
- if (VT.isVector())
- ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
- else
- ShiftValue = ShiftValues[0];
- return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
- }
- }
-
- // fold (sra (shl X, m), (sub result_size, n))
- // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
- // result_size - n != m.
- // If truncate is free for the target sext(shl) is likely to result in better
- // code.
- if (N0.getOpcode() == ISD::SHL && N1C) {
- // Get the two constanst of the shifts, CN0 = m, CN = n.
- const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
- if (N01C) {
- LLVMContext &Ctx = *DAG.getContext();
- // Determine what the truncate's result bitsize and type would be.
- EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
-
- if (VT.isVector())
- TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
-
- // Determine the residual right-shift amount.
- int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
-
- // If the shift is not a no-op (in which case this should be just a sign
- // extend already), the truncated to type is legal, sign_extend is legal
- // on that type, and the truncate to that type is both legal and free,
- // perform the transform.
- if ((ShiftAmt > 0) &&
- TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
- TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
- TLI.isTruncateFree(VT, TruncVT)) {
- SDLoc DL(N);
- SDValue Amt = DAG.getConstant(ShiftAmt, DL,
- getShiftAmountTy(N0.getOperand(0).getValueType()));
- SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
- N0.getOperand(0), Amt);
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
- Shift);
- return DAG.getNode(ISD::SIGN_EXTEND, DL,
- N->getValueType(0), Trunc);
- }
- }
- }
-
- // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
- }
-
- // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
- // if c1 is equal to the number of bits the trunc removes
- if (N0.getOpcode() == ISD::TRUNCATE &&
- (N0.getOperand(0).getOpcode() == ISD::SRL ||
- N0.getOperand(0).getOpcode() == ISD::SRA) &&
- N0.getOperand(0).hasOneUse() &&
- N0.getOperand(0).getOperand(1).hasOneUse() &&
- N1C) {
- SDValue N0Op0 = N0.getOperand(0);
- if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
- unsigned LargeShiftVal = LargeShift->getZExtValue();
- EVT LargeVT = N0Op0.getValueType();
-
- if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
- SDLoc DL(N);
- SDValue Amt =
- DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
- getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
- SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
- N0Op0.getOperand(0), Amt);
- return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
- }
- }
- }
-
- // Simplify, based on bits shifted out of the LHS.
- if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // If the sign bit is known to be zero, switch this to a SRL.
- if (DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
-
- if (N1C && !N1C->isOpaque())
- if (SDValue NewSRA = visitShiftByConstant(N, N1C))
- return NewSRA;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSRL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
-
- EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
-
- // fold (srl c1, c2) -> c1 >>u c2
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- if (N0C && N1C && !N1C->isOpaque())
- return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // if (srl x, c) is known to be zero, return 0
- if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
- APInt::getAllOnesValue(OpSizeInBits)))
- return DAG.getConstant(0, SDLoc(N), VT);
-
- // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
- if (N0.getOpcode() == ISD::SRL) {
- auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).uge(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
- return DAG.getConstant(0, SDLoc(N), VT);
-
- auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).ult(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
- SDLoc DL(N);
- EVT ShiftVT = N1.getValueType();
- SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
- return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
- }
- }
-
- // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
- if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
- N0.getOperand(0).getOpcode() == ISD::SRL) {
- if (auto N001C = isConstOrConstSplat(N0.getOperand(0).getOperand(1))) {
- uint64_t c1 = N001C->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
- EVT InnerShiftVT = N0.getOperand(0).getValueType();
- EVT ShiftCountVT = N0.getOperand(0).getOperand(1).getValueType();
- uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
- // This is only valid if the OpSizeInBits + c1 = size of inner shift.
- if (c1 + OpSizeInBits == InnerShiftSize) {
- SDLoc DL(N0);
- if (c1 + c2 >= InnerShiftSize)
- return DAG.getConstant(0, DL, VT);
- return DAG.getNode(ISD::TRUNCATE, DL, VT,
- DAG.getNode(ISD::SRL, DL, InnerShiftVT,
- N0.getOperand(0).getOperand(0),
- DAG.getConstant(c1 + c2, DL,
- ShiftCountVT)));
- }
- }
- }
-
- // fold (srl (shl x, c), c) -> (and x, cst2)
- if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
- isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
- SDLoc DL(N);
- SDValue Mask =
- DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
- AddToWorklist(Mask.getNode());
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
- }
-
- // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
- if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
- // Shifting in all undef bits?
- EVT SmallVT = N0.getOperand(0).getValueType();
- unsigned BitSize = SmallVT.getScalarSizeInBits();
- if (N1C->getZExtValue() >= BitSize)
- return DAG.getUNDEF(VT);
-
- if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
- uint64_t ShiftAmt = N1C->getZExtValue();
- SDLoc DL0(N0);
- SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
- N0.getOperand(0),
- DAG.getConstant(ShiftAmt, DL0,
- getShiftAmountTy(SmallVT)));
- AddToWorklist(SmallShift.getNode());
- APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
- SDLoc DL(N);
- return DAG.getNode(ISD::AND, DL, VT,
- DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
- DAG.getConstant(Mask, DL, VT));
- }
- }
-
- // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
- // bit, which is unmodified by sra.
- if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
- if (N0.getOpcode() == ISD::SRA)
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
- }
-
- // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
- if (N1C && N0.getOpcode() == ISD::CTLZ &&
- N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
- KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
-
- // If any of the input bits are KnownOne, then the input couldn't be all
- // zeros, thus the result of the srl will always be zero.
- if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
-
- // If all of the bits input the to ctlz node are known to be zero, then
- // the result of the ctlz is "32" and the result of the shift is one.
- APInt UnknownBits = ~Known.Zero;
- if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
-
- // Otherwise, check to see if there is exactly one bit input to the ctlz.
- if (UnknownBits.isPowerOf2()) {
- // Okay, we know that only that the single bit specified by UnknownBits
- // could be set on input to the CTLZ node. If this bit is set, the SRL
- // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
- // to an SRL/XOR pair, which is likely to simplify more.
- unsigned ShAmt = UnknownBits.countTrailingZeros();
- SDValue Op = N0.getOperand(0);
-
- if (ShAmt) {
- SDLoc DL(N0);
- Op = DAG.getNode(ISD::SRL, DL, VT, Op,
- DAG.getConstant(ShAmt, DL,
- getShiftAmountTy(Op.getValueType())));
- AddToWorklist(Op.getNode());
- }
-
- SDLoc DL(N);
- return DAG.getNode(ISD::XOR, DL, VT,
- Op, DAG.getConstant(1, DL, VT));
- }
- }
-
- // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
- }
-
- // fold operands of srl based on knowledge that the low bits are not
- // demanded.
- if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- if (N1C && !N1C->isOpaque())
- if (SDValue NewSRL = visitShiftByConstant(N, N1C))
- return NewSRL;
-
- // Attempt to convert a srl of a load into a narrower zero-extending load.
- if (SDValue NarrowLoad = ReduceLoadWidth(N))
- return NarrowLoad;
-
- // Here is a common situation. We want to optimize:
- //
- // %a = ...
- // %b = and i32 %a, 2
- // %c = srl i32 %b, 1
- // brcond i32 %c ...
- //
- // into
- //
- // %a = ...
- // %b = and %a, 2
- // %c = setcc eq %b, 0
- // brcond %c ...
- //
- // However when after the source operand of SRL is optimized into AND, the SRL
- // itself may not be optimized further. Look for it and add the BRCOND into
- // the worklist.
- if (N->hasOneUse()) {
- SDNode *Use = *N->use_begin();
- if (Use->getOpcode() == ISD::BRCOND)
- AddToWorklist(Use);
- else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
- // Also look pass the truncate.
- Use = *Use->use_begin();
- if (Use->getOpcode() == ISD::BRCOND)
- AddToWorklist(Use);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
- EVT VT = N->getValueType(0);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- bool IsFSHL = N->getOpcode() == ISD::FSHL;
- unsigned BitWidth = VT.getScalarSizeInBits();
-
- // fold (fshl N0, N1, 0) -> N0
- // fold (fshr N0, N1, 0) -> N1
- if (isPowerOf2_32(BitWidth))
- if (DAG.MaskedValueIsZero(
- N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
- return IsFSHL ? N0 : N1;
-
- // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
- if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
- if (Cst->getAPIntValue().uge(BitWidth)) {
- uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
- DAG.getConstant(RotAmt, SDLoc(N), N2.getValueType()));
- }
- }
-
- // fold (fshl N0, N0, N2) -> (rotl N0, N2)
- // fold (fshr N0, N0, N2) -> (rotr N0, N2)
- // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
- // is legal as well we might be better off avoiding non-constant (BW - N2).
- unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
- if (N0 == N1 && hasOperation(RotOpc, VT))
- return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitABS(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (abs c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
- // fold (abs (abs x)) -> (abs x)
- if (N0.getOpcode() == ISD::ABS)
- return N0;
- // fold (abs x) -> x iff not-negative
- if (DAG.SignBitIsZero(N0))
- return N0;
- return SDValue();
-}
-
-SDValue DAGCombiner::visitBSWAP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (bswap c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
- // fold (bswap (bswap x)) -> x
- if (N0.getOpcode() == ISD::BSWAP)
- return N0->getOperand(0);
- return SDValue();
-}
-
-SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (bitreverse c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
- // fold (bitreverse (bitreverse x)) -> x
- if (N0.getOpcode() == ISD::BITREVERSE)
- return N0.getOperand(0);
- return SDValue();
-}
-
-SDValue DAGCombiner::visitCTLZ(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (ctlz c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
-
- // If the value is known never to be zero, switch to the undef version.
- if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
- if (DAG.isKnownNeverZero(N0))
- return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (ctlz_zero_undef c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- return SDValue();
-}
-
-SDValue DAGCombiner::visitCTTZ(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (cttz c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
-
- // If the value is known never to be zero, switch to the undef version.
- if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
- if (DAG.isKnownNeverZero(N0))
- return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (cttz_zero_undef c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- return SDValue();
-}
-
-SDValue DAGCombiner::visitCTPOP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (ctpop c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
- return SDValue();
-}
-
-// FIXME: This should be checking for no signed zeros on individual operands, as
-// well as no nans.
-static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, SDValue RHS) {
- const TargetOptions &Options = DAG.getTarget().Options;
- EVT VT = LHS.getValueType();
-
- return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
- DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
-}
-
-/// Generate Min/Max node
-static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
- SDValue RHS, SDValue True, SDValue False,
- ISD::CondCode CC, const TargetLowering &TLI,
- SelectionDAG &DAG) {
- if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
- return SDValue();
-
- EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
- switch (CC) {
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETULT:
- case ISD::SETULE: {
- // Since it's known never nan to get here already, either fminnum or
- // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
- // expanded in terms of it.
- unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
- if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
- return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
-
- unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
- if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
- return DAG.getNode(Opcode, DL, VT, LHS, RHS);
- return SDValue();
- }
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETGT:
- case ISD::SETGE:
- case ISD::SETUGT:
- case ISD::SETUGE: {
- unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
- if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
- return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
-
- unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
- if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
- return DAG.getNode(Opcode, DL, VT, LHS, RHS);
- return SDValue();
- }
- default:
- return SDValue();
- }
-}
-
-SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
- SDValue Cond = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- EVT CondVT = Cond.getValueType();
- SDLoc DL(N);
-
- if (!VT.isInteger())
- return SDValue();
-
- auto *C1 = dyn_cast<ConstantSDNode>(N1);
- auto *C2 = dyn_cast<ConstantSDNode>(N2);
- if (!C1 || !C2)
- return SDValue();
-
- // Only do this before legalization to avoid conflicting with target-specific
- // transforms in the other direction (create a select from a zext/sext). There
- // is also a target-independent combine here in DAGCombiner in the other
- // direction for (select Cond, -1, 0) when the condition is not i1.
- if (CondVT == MVT::i1 && !LegalOperations) {
- if (C1->isNullValue() && C2->isOne()) {
- // select Cond, 0, 1 --> zext (!Cond)
- SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
- if (VT != MVT::i1)
- NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
- return NotCond;
- }
- if (C1->isNullValue() && C2->isAllOnesValue()) {
- // select Cond, 0, -1 --> sext (!Cond)
- SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
- if (VT != MVT::i1)
- NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
- return NotCond;
- }
- if (C1->isOne() && C2->isNullValue()) {
- // select Cond, 1, 0 --> zext (Cond)
- if (VT != MVT::i1)
- Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
- return Cond;
- }
- if (C1->isAllOnesValue() && C2->isNullValue()) {
- // select Cond, -1, 0 --> sext (Cond)
- if (VT != MVT::i1)
- Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
- return Cond;
- }
-
- // For any constants that differ by 1, we can transform the select into an
- // extend and add. Use a target hook because some targets may prefer to
- // transform in the other direction.
- if (TLI.convertSelectOfConstantsToMath(VT)) {
- if (C1->getAPIntValue() - 1 == C2->getAPIntValue()) {
- // select Cond, C1, C1-1 --> add (zext Cond), C1-1
- if (VT != MVT::i1)
- Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
- return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
- }
- if (C1->getAPIntValue() + 1 == C2->getAPIntValue()) {
- // select Cond, C1, C1+1 --> add (sext Cond), C1+1
- if (VT != MVT::i1)
- Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
- return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
- }
- }
-
- return SDValue();
- }
-
- // fold (select Cond, 0, 1) -> (xor Cond, 1)
- // We can't do this reliably if integer based booleans have different contents
- // to floating point based booleans. This is because we can't tell whether we
- // have an integer-based boolean or a floating-point-based boolean unless we
- // can find the SETCC that produced it and inspect its operands. This is
- // fairly easy if C is the SETCC node, but it can potentially be
- // undiscoverable (or not reasonably discoverable). For example, it could be
- // in another basic block or it could require searching a complicated
- // expression.
- if (CondVT.isInteger() &&
- TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- C1->isNullValue() && C2->isOne()) {
- SDValue NotCond =
- DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
- if (VT.bitsEq(CondVT))
- return NotCond;
- return DAG.getZExtOrTrunc(NotCond, DL, VT);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSELECT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- EVT VT0 = N0.getValueType();
- SDLoc DL(N);
-
- if (SDValue V = DAG.simplifySelect(N0, N1, N2))
- return V;
-
- // fold (select X, X, Y) -> (or X, Y)
- // fold (select X, 1, Y) -> (or C, Y)
- if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
- return DAG.getNode(ISD::OR, DL, VT, N0, N2);
-
- if (SDValue V = foldSelectOfConstants(N))
- return V;
-
- // fold (select C, 0, X) -> (and (not C), X)
- if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
- SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
- AddToWorklist(NOTNode.getNode());
- return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2);
- }
- // fold (select C, X, 1) -> (or (not C), X)
- if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
- SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
- AddToWorklist(NOTNode.getNode());
- return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1);
- }
- // fold (select X, Y, X) -> (and X, Y)
- // fold (select X, Y, 0) -> (and X, Y)
- if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
- return DAG.getNode(ISD::AND, DL, VT, N0, N1);
-
- // If we can fold this based on the true/false value, do so.
- if (SimplifySelectOps(N, N1, N2))
- return SDValue(N, 0); // Don't revisit N.
-
- if (VT0 == MVT::i1) {
- // The code in this block deals with the following 2 equivalences:
- // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
- // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
- // The target can specify its preferred form with the
- // shouldNormalizeToSelectSequence() callback. However we always transform
- // to the right anyway if we find the inner select exists in the DAG anyway
- // and we always transform to the left side if we know that we can further
- // optimize the combination of the conditions.
- bool normalizeToSequence =
- TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
- // select (and Cond0, Cond1), X, Y
- // -> select Cond0, (select Cond1, X, Y), Y
- if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
- SDValue Cond0 = N0->getOperand(0);
- SDValue Cond1 = N0->getOperand(1);
- SDValue InnerSelect =
- DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2);
- if (normalizeToSequence || !InnerSelect.use_empty())
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
- InnerSelect, N2);
- }
- // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
- if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
- SDValue Cond0 = N0->getOperand(0);
- SDValue Cond1 = N0->getOperand(1);
- SDValue InnerSelect =
- DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2);
- if (normalizeToSequence || !InnerSelect.use_empty())
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
- InnerSelect);
- }
-
- // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
- if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
- SDValue N1_0 = N1->getOperand(0);
- SDValue N1_1 = N1->getOperand(1);
- SDValue N1_2 = N1->getOperand(2);
- if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
- // Create the actual and node if we can generate good code for it.
- if (!normalizeToSequence) {
- SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, N2);
- }
- // Otherwise see if we can optimize the "and" to a better pattern.
- if (SDValue Combined = visitANDLike(N0, N1_0, N))
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
- N2);
- }
- }
- // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
- if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
- SDValue N2_0 = N2->getOperand(0);
- SDValue N2_1 = N2->getOperand(1);
- SDValue N2_2 = N2->getOperand(2);
- if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
- // Create the actual or node if we can generate good code for it.
- if (!normalizeToSequence) {
- SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, N2_2);
- }
- // Otherwise see if we can optimize to a better pattern.
- if (SDValue Combined = visitORLike(N0, N2_0, N))
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
- N2_2);
- }
- }
- }
-
- if (VT0 == MVT::i1) {
- // select (not Cond), N1, N2 -> select Cond, N2, N1
- if (isBitwiseNot(N0))
- return DAG.getNode(ISD::SELECT, DL, VT, N0->getOperand(0), N2, N1);
- }
-
- // Fold selects based on a setcc into other things, such as min/max/abs.
- if (N0.getOpcode() == ISD::SETCC) {
- SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
-
- // select (fcmp lt x, y), x, y -> fminnum x, y
- // select (fcmp gt x, y), x, y -> fmaxnum x, y
- //
- // This is OK if we don't care what happens if either operand is a NaN.
- if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2))
- if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
- CC, TLI, DAG))
- return FMinMax;
-
- // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
- // This is conservatively limited to pre-legal-operations to give targets
- // a chance to reverse the transform if they want to do that. Also, it is
- // unlikely that the pattern would be formed late, so it's probably not
- // worth going through the other checks.
- if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
- CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
- N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
- auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
- auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
- if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
- // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
- // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
- //
- // The IR equivalent of this transform would have this form:
- // %a = add %x, C
- // %c = icmp ugt %x, ~C
- // %r = select %c, -1, %a
- // =>
- // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
- // %u0 = extractvalue %u, 0
- // %u1 = extractvalue %u, 1
- // %r = select %u1, -1, %u0
- SDVTList VTs = DAG.getVTList(VT, VT0);
- SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
- return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
- }
- }
-
- if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
- (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)))
- return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2,
- N0.getOperand(2));
-
- return SimplifySelect(DL, N0, N1, N2);
- }
-
- return SDValue();
-}
-
-static
-std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
- SDLoc DL(N);
- EVT LoVT, HiVT;
- std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
-
- // Split the inputs.
- SDValue Lo, Hi, LL, LH, RL, RH;
- std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
- std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
-
- Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
- Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
-
- return std::make_pair(Lo, Hi);
-}
-
-// This function assumes all the vselect's arguments are CONCAT_VECTOR
-// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
-static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
- SDLoc DL(N);
- SDValue Cond = N->getOperand(0);
- SDValue LHS = N->getOperand(1);
- SDValue RHS = N->getOperand(2);
- EVT VT = N->getValueType(0);
- int NumElems = VT.getVectorNumElements();
- assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
- RHS.getOpcode() == ISD::CONCAT_VECTORS &&
- Cond.getOpcode() == ISD::BUILD_VECTOR);
-
- // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
- // binary ones here.
- if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
- return SDValue();
-
- // We're sure we have an even number of elements due to the
- // concat_vectors we have as arguments to vselect.
- // Skip BV elements until we find one that's not an UNDEF
- // After we find an UNDEF element, keep looping until we get to half the
- // length of the BV and see if all the non-undef nodes are the same.
- ConstantSDNode *BottomHalf = nullptr;
- for (int i = 0; i < NumElems / 2; ++i) {
- if (Cond->getOperand(i)->isUndef())
- continue;
-
- if (BottomHalf == nullptr)
- BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
- else if (Cond->getOperand(i).getNode() != BottomHalf)
- return SDValue();
- }
-
- // Do the same for the second half of the BuildVector
- ConstantSDNode *TopHalf = nullptr;
- for (int i = NumElems / 2; i < NumElems; ++i) {
- if (Cond->getOperand(i)->isUndef())
- continue;
-
- if (TopHalf == nullptr)
- TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
- else if (Cond->getOperand(i).getNode() != TopHalf)
- return SDValue();
- }
-
- assert(TopHalf && BottomHalf &&
- "One half of the selector was all UNDEFs and the other was all the "
- "same value. This should have been addressed before this function.");
- return DAG.getNode(
- ISD::CONCAT_VECTORS, DL, VT,
- BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
- TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
-}
-
-SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
- if (Level >= AfterLegalizeTypes)
- return SDValue();
-
- MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
- SDValue Mask = MSC->getMask();
- SDValue Data = MSC->getValue();
- SDLoc DL(N);
-
- // If the MSCATTER data type requires splitting and the mask is provided by a
- // SETCC, then split both nodes and its operands before legalization. This
- // prevents the type legalizer from unrolling SETCC into scalar comparisons
- // and enables future optimizations (e.g. min/max pattern matching on X86).
- if (Mask.getOpcode() != ISD::SETCC)
- return SDValue();
-
- // Check if any splitting is required.
- if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
- TargetLowering::TypeSplitVector)
- return SDValue();
- SDValue MaskLo, MaskHi;
- std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
-
- EVT LoVT, HiVT;
- std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
-
- SDValue Chain = MSC->getChain();
-
- EVT MemoryVT = MSC->getMemoryVT();
- unsigned Alignment = MSC->getOriginalAlignment();
-
- EVT LoMemVT, HiMemVT;
- std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
-
- SDValue DataLo, DataHi;
- std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
-
- SDValue Scale = MSC->getScale();
- SDValue BasePtr = MSC->getBasePtr();
- SDValue IndexLo, IndexHi;
- std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
-
- MachineMemOperand *MMO = DAG.getMachineFunction().
- getMachineMemOperand(MSC->getPointerInfo(),
- MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
- Alignment, MSC->getAAInfo(), MSC->getRanges());
-
- SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo, Scale };
- SDValue Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
- DataLo.getValueType(), DL, OpsLo, MMO);
-
- // The order of the Scatter operation after split is well defined. The "Hi"
- // part comes after the "Lo". So these two operations should be chained one
- // after another.
- SDValue OpsHi[] = { Lo, DataHi, MaskHi, BasePtr, IndexHi, Scale };
- return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
- DL, OpsHi, MMO);
-}
-
-SDValue DAGCombiner::visitMSTORE(SDNode *N) {
- if (Level >= AfterLegalizeTypes)
- return SDValue();
-
- MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
- SDValue Mask = MST->getMask();
- SDValue Data = MST->getValue();
- EVT VT = Data.getValueType();
- SDLoc DL(N);
-
- // If the MSTORE data type requires splitting and the mask is provided by a
- // SETCC, then split both nodes and its operands before legalization. This
- // prevents the type legalizer from unrolling SETCC into scalar comparisons
- // and enables future optimizations (e.g. min/max pattern matching on X86).
- if (Mask.getOpcode() == ISD::SETCC) {
- // Check if any splitting is required.
- if (TLI.getTypeAction(*DAG.getContext(), VT) !=
- TargetLowering::TypeSplitVector)
- return SDValue();
-
- SDValue MaskLo, MaskHi, Lo, Hi;
- std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
-
- SDValue Chain = MST->getChain();
- SDValue Ptr = MST->getBasePtr();
-
- EVT MemoryVT = MST->getMemoryVT();
- unsigned Alignment = MST->getOriginalAlignment();
-
- // if Alignment is equal to the vector size,
- // take the half of it for the second part
- unsigned SecondHalfAlignment =
- (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment;
-
- EVT LoMemVT, HiMemVT;
- std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
-
- SDValue DataLo, DataHi;
- std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
-
- MachineMemOperand *MMO = DAG.getMachineFunction().
- getMachineMemOperand(MST->getPointerInfo(),
- MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
- Alignment, MST->getAAInfo(), MST->getRanges());
-
- Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
- MST->isTruncatingStore(),
- MST->isCompressingStore());
-
- Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
- MST->isCompressingStore());
- unsigned HiOffset = LoMemVT.getStoreSize();
-
- MMO = DAG.getMachineFunction().getMachineMemOperand(
- MST->getPointerInfo().getWithOffset(HiOffset),
- MachineMemOperand::MOStore, HiMemVT.getStoreSize(), SecondHalfAlignment,
- MST->getAAInfo(), MST->getRanges());
-
- Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
- MST->isTruncatingStore(),
- MST->isCompressingStore());
-
- AddToWorklist(Lo.getNode());
- AddToWorklist(Hi.getNode());
-
- return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::visitMGATHER(SDNode *N) {
- if (Level >= AfterLegalizeTypes)
- return SDValue();
-
- MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
- SDValue Mask = MGT->getMask();
- SDLoc DL(N);
-
- // If the MGATHER result requires splitting and the mask is provided by a
- // SETCC, then split both nodes and its operands before legalization. This
- // prevents the type legalizer from unrolling SETCC into scalar comparisons
- // and enables future optimizations (e.g. min/max pattern matching on X86).
-
- if (Mask.getOpcode() != ISD::SETCC)
- return SDValue();
-
- EVT VT = N->getValueType(0);
-
- // Check if any splitting is required.
- if (TLI.getTypeAction(*DAG.getContext(), VT) !=
- TargetLowering::TypeSplitVector)
- return SDValue();
-
- SDValue MaskLo, MaskHi, Lo, Hi;
- std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
-
- SDValue PassThru = MGT->getPassThru();
- SDValue PassThruLo, PassThruHi;
- std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL);
-
- EVT LoVT, HiVT;
- std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
-
- SDValue Chain = MGT->getChain();
- EVT MemoryVT = MGT->getMemoryVT();
- unsigned Alignment = MGT->getOriginalAlignment();
-
- EVT LoMemVT, HiMemVT;
- std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
-
- SDValue Scale = MGT->getScale();
- SDValue BasePtr = MGT->getBasePtr();
- SDValue Index = MGT->getIndex();
- SDValue IndexLo, IndexHi;
- std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
-
- MachineMemOperand *MMO = DAG.getMachineFunction().
- getMachineMemOperand(MGT->getPointerInfo(),
- MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
- Alignment, MGT->getAAInfo(), MGT->getRanges());
-
- SDValue OpsLo[] = { Chain, PassThruLo, MaskLo, BasePtr, IndexLo, Scale };
- Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
- MMO);
-
- SDValue OpsHi[] = { Chain, PassThruHi, MaskHi, BasePtr, IndexHi, Scale };
- Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
- MMO);
-
- AddToWorklist(Lo.getNode());
- AddToWorklist(Hi.getNode());
-
- // Build a factor node to remember that this load is independent of the
- // other one.
- Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
- Hi.getValue(1));
-
- // Legalized the chain result - switch anything that used the old chain to
- // use the new one.
- DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
-
- SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
-
- SDValue RetOps[] = { GatherRes, Chain };
- return DAG.getMergeValues(RetOps, DL);
-}
-
-SDValue DAGCombiner::visitMLOAD(SDNode *N) {
- if (Level >= AfterLegalizeTypes)
- return SDValue();
-
- MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
- SDValue Mask = MLD->getMask();
- SDLoc DL(N);
-
- // If the MLOAD result requires splitting and the mask is provided by a
- // SETCC, then split both nodes and its operands before legalization. This
- // prevents the type legalizer from unrolling SETCC into scalar comparisons
- // and enables future optimizations (e.g. min/max pattern matching on X86).
- if (Mask.getOpcode() == ISD::SETCC) {
- EVT VT = N->getValueType(0);
-
- // Check if any splitting is required.
- if (TLI.getTypeAction(*DAG.getContext(), VT) !=
- TargetLowering::TypeSplitVector)
- return SDValue();
-
- SDValue MaskLo, MaskHi, Lo, Hi;
- std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
-
- SDValue PassThru = MLD->getPassThru();
- SDValue PassThruLo, PassThruHi;
- std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, DL);
-
- EVT LoVT, HiVT;
- std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
-
- SDValue Chain = MLD->getChain();
- SDValue Ptr = MLD->getBasePtr();
- EVT MemoryVT = MLD->getMemoryVT();
- unsigned Alignment = MLD->getOriginalAlignment();
-
- // if Alignment is equal to the vector size,
- // take the half of it for the second part
- unsigned SecondHalfAlignment =
- (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
- Alignment/2 : Alignment;
-
- EVT LoMemVT, HiMemVT;
- std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
-
- MachineMemOperand *MMO = DAG.getMachineFunction().
- getMachineMemOperand(MLD->getPointerInfo(),
- MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
- Alignment, MLD->getAAInfo(), MLD->getRanges());
-
- Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, PassThruLo, LoMemVT,
- MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad());
-
- Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
- MLD->isExpandingLoad());
- unsigned HiOffset = LoMemVT.getStoreSize();
-
- MMO = DAG.getMachineFunction().getMachineMemOperand(
- MLD->getPointerInfo().getWithOffset(HiOffset),
- MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), SecondHalfAlignment,
- MLD->getAAInfo(), MLD->getRanges());
-
- Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, PassThruHi, HiMemVT,
- MMO, ISD::NON_EXTLOAD, MLD->isExpandingLoad());
-
- AddToWorklist(Lo.getNode());
- AddToWorklist(Hi.getNode());
-
- // Build a factor node to remember that this load is independent of the
- // other one.
- Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
- Hi.getValue(1));
-
- // Legalized the chain result - switch anything that used the old chain to
- // use the new one.
- DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
-
- SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
-
- SDValue RetOps[] = { LoadRes, Chain };
- return DAG.getMergeValues(RetOps, DL);
- }
- return SDValue();
-}
-
-/// A vector select of 2 constant vectors can be simplified to math/logic to
-/// avoid a variable select instruction and possibly avoid constant loads.
-SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
- SDValue Cond = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
- !TLI.convertSelectOfConstantsToMath(VT) ||
- !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
- !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
- return SDValue();
-
- // Check if we can use the condition value to increment/decrement a single
- // constant value. This simplifies a select to an add and removes a constant
- // load/materialization from the general case.
- bool AllAddOne = true;
- bool AllSubOne = true;
- unsigned Elts = VT.getVectorNumElements();
- for (unsigned i = 0; i != Elts; ++i) {
- SDValue N1Elt = N1.getOperand(i);
- SDValue N2Elt = N2.getOperand(i);
- if (N1Elt.isUndef() || N2Elt.isUndef())
- continue;
-
- const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
- const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
- if (C1 != C2 + 1)
- AllAddOne = false;
- if (C1 != C2 - 1)
- AllSubOne = false;
- }
-
- // Further simplifications for the extra-special cases where the constants are
- // all 0 or all -1 should be implemented as folds of these patterns.
- SDLoc DL(N);
- if (AllAddOne || AllSubOne) {
- // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
- // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
- auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
- SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
- return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
- }
-
- // The general case for select-of-constants:
- // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
- // ...but that only makes sense if a vselect is slower than 2 logic ops, so
- // leave that to a machine-specific pass.
- return SDValue();
-}
-
-SDValue DAGCombiner::visitVSELECT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- SDLoc DL(N);
-
- if (SDValue V = DAG.simplifySelect(N0, N1, N2))
- return V;
-
- // Canonicalize integer abs.
- // vselect (setg[te] X, 0), X, -X ->
- // vselect (setgt X, -1), X, -X ->
- // vselect (setl[te] X, 0), -X, X ->
- // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
- if (N0.getOpcode() == ISD::SETCC) {
- SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- bool isAbs = false;
- bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
-
- if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
- (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
- N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
- isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
- else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
- N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
- isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
-
- if (isAbs) {
- EVT VT = LHS.getValueType();
- if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
- return DAG.getNode(ISD::ABS, DL, VT, LHS);
-
- SDValue Shift = DAG.getNode(
- ISD::SRA, DL, VT, LHS,
- DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
- AddToWorklist(Shift.getNode());
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
- }
-
- // vselect x, y (fcmp lt x, y) -> fminnum x, y
- // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
- //
- // This is OK if we don't care about what happens if either operand is a
- // NaN.
- //
- EVT VT = N->getValueType(0);
- if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N0.getOperand(0), N0.getOperand(1))) {
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- if (SDValue FMinMax = combineMinNumMaxNum(
- DL, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, CC, TLI, DAG))
- return FMinMax;
- }
-
- // If this select has a condition (setcc) with narrower operands than the
- // select, try to widen the compare to match the select width.
- // TODO: This should be extended to handle any constant.
- // TODO: This could be extended to handle non-loading patterns, but that
- // requires thorough testing to avoid regressions.
- if (isNullOrNullSplat(RHS)) {
- EVT NarrowVT = LHS.getValueType();
- EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
- EVT SetCCVT = getSetCCResultType(LHS.getValueType());
- unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
- unsigned WideWidth = WideVT.getScalarSizeInBits();
- bool IsSigned = isSignedIntSetCC(CC);
- auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
- if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
- SetCCWidth != 1 && SetCCWidth < WideWidth &&
- TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
- TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
- // Both compare operands can be widened for free. The LHS can use an
- // extended load, and the RHS is a constant:
- // vselect (ext (setcc load(X), C)), N1, N2 -->
- // vselect (setcc extload(X), C'), N1, N2
- auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
- SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
- EVT WideSetCCVT = getSetCCResultType(WideVT);
- SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
- return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
- }
- }
- }
-
- if (SimplifySelectOps(N, N1, N2))
- return SDValue(N, 0); // Don't revisit N.
-
- // Fold (vselect (build_vector all_ones), N1, N2) -> N1
- if (ISD::isBuildVectorAllOnes(N0.getNode()))
- return N1;
- // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
- if (ISD::isBuildVectorAllZeros(N0.getNode()))
- return N2;
-
- // The ConvertSelectToConcatVector function is assuming both the above
- // checks for (vselect (build_vector all{ones,zeros) ...) have been made
- // and addressed.
- if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N2.getOpcode() == ISD::CONCAT_VECTORS &&
- ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
- if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
- return CV;
- }
-
- if (SDValue V = foldVSelectOfConstants(N))
- return V;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- SDValue N3 = N->getOperand(3);
- SDValue N4 = N->getOperand(4);
- ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
-
- // fold select_cc lhs, rhs, x, x, cc -> x
- if (N2 == N3)
- return N2;
-
- // Determine if the condition we're dealing with is constant
- if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
- CC, SDLoc(N), false)) {
- AddToWorklist(SCC.getNode());
-
- if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
- if (!SCCC->isNullValue())
- return N2; // cond always true -> true val
- else
- return N3; // cond always false -> false val
- } else if (SCC->isUndef()) {
- // When the condition is UNDEF, just return the first operand. This is
- // coherent the DAG creation, no setcc node is created in this case
- return N2;
- } else if (SCC.getOpcode() == ISD::SETCC) {
- // Fold to a simpler select_cc
- return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
- SCC.getOperand(0), SCC.getOperand(1), N2, N3,
- SCC.getOperand(2));
- }
- }
-
- // If we can fold this based on the true/false value, do so.
- if (SimplifySelectOps(N, N2, N3))
- return SDValue(N, 0); // Don't revisit N.
-
- // fold select_cc into other things, such as min/max/abs
- return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
-}
-
-SDValue DAGCombiner::visitSETCC(SDNode *N) {
- // setcc is very commonly used as an argument to brcond. This pattern
- // also lend itself to numerous combines and, as a result, it is desired
- // we keep the argument to a brcond as a setcc as much as possible.
- bool PreferSetCC =
- N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
-
- SDValue Combined = SimplifySetCC(
- N->getValueType(0), N->getOperand(0), N->getOperand(1),
- cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
-
- if (!Combined)
- return SDValue();
-
- // If we prefer to have a setcc, and we don't, we'll try our best to
- // recreate one using rebuildSetCC.
- if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
- SDValue NewSetCC = rebuildSetCC(Combined);
-
- // We don't have anything interesting to combine to.
- if (NewSetCC.getNode() == N)
- return SDValue();
-
- if (NewSetCC)
- return NewSetCC;
- }
-
- return Combined;
-}
-
-SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- SDValue Carry = N->getOperand(2);
- SDValue Cond = N->getOperand(3);
-
- // If Carry is false, fold to a regular SETCC.
- if (isNullConstant(Carry))
- return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
-
- return SDValue();
-}
-
-/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
-/// a build_vector of constants.
-/// This function is called by the DAGCombiner when visiting sext/zext/aext
-/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
-/// Vector extends are not folded if operations are legal; this is to
-/// avoid introducing illegal build_vector dag nodes.
-static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
- SelectionDAG &DAG, bool LegalTypes) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
- Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
- Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
- && "Expected EXTEND dag node in input!");
-
- // fold (sext c1) -> c1
- // fold (zext c1) -> c1
- // fold (aext c1) -> c1
- if (isa<ConstantSDNode>(N0))
- return DAG.getNode(Opcode, SDLoc(N), VT, N0);
-
- // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
- // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
- // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
- EVT SVT = VT.getScalarType();
- if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
- ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
- return SDValue();
-
- // We can fold this node into a build_vector.
- unsigned VTBits = SVT.getSizeInBits();
- unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
- SmallVector<SDValue, 8> Elts;
- unsigned NumElts = VT.getVectorNumElements();
- SDLoc DL(N);
-
- // For zero-extensions, UNDEF elements still guarantee to have the upper
- // bits set to zero.
- bool IsZext =
- Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
-
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue Op = N0.getOperand(i);
- if (Op.isUndef()) {
- Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
- continue;
- }
-
- SDLoc DL(Op);
- // Get the constant value and if needed trunc it to the size of the type.
- // Nodes like build_vector might have constants wider than the scalar type.
- APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
- if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
- Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
- else
- Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
- }
-
- return DAG.getBuildVector(VT, DL, Elts);
-}
-
-// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
-// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
-// transformation. Returns true if extension are possible and the above
-// mentioned transformation is profitable.
-static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
- unsigned ExtOpc,
- SmallVectorImpl<SDNode *> &ExtendNodes,
- const TargetLowering &TLI) {
- bool HasCopyToRegUses = false;
- bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
- for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
- UE = N0.getNode()->use_end();
- UI != UE; ++UI) {
- SDNode *User = *UI;
- if (User == N)
- continue;
- if (UI.getUse().getResNo() != N0.getResNo())
- continue;
- // FIXME: Only extend SETCC N, N and SETCC N, c for now.
- if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
- ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
- if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
- // Sign bits will be lost after a zext.
- return false;
- bool Add = false;
- for (unsigned i = 0; i != 2; ++i) {
- SDValue UseOp = User->getOperand(i);
- if (UseOp == N0)
- continue;
- if (!isa<ConstantSDNode>(UseOp))
- return false;
- Add = true;
- }
- if (Add)
- ExtendNodes.push_back(User);
- continue;
- }
- // If truncates aren't free and there are users we can't
- // extend, it isn't worthwhile.
- if (!isTruncFree)
- return false;
- // Remember if this value is live-out.
- if (User->getOpcode() == ISD::CopyToReg)
- HasCopyToRegUses = true;
- }
-
- if (HasCopyToRegUses) {
- bool BothLiveOut = false;
- for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- UI != UE; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
- BothLiveOut = true;
- break;
- }
- }
- if (BothLiveOut)
- // Both unextended and extended values are live out. There had better be
- // a good reason for the transformation.
- return ExtendNodes.size();
- }
- return true;
-}
-
-void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
- SDValue OrigLoad, SDValue ExtLoad,
- ISD::NodeType ExtType) {
- // Extend SetCC uses if necessary.
- SDLoc DL(ExtLoad);
- for (SDNode *SetCC : SetCCs) {
- SmallVector<SDValue, 4> Ops;
-
- for (unsigned j = 0; j != 2; ++j) {
- SDValue SOp = SetCC->getOperand(j);
- if (SOp == OrigLoad)
- Ops.push_back(ExtLoad);
- else
- Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
- }
-
- Ops.push_back(SetCC->getOperand(2));
- CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
- }
-}
-
-// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
-SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT DstVT = N->getValueType(0);
- EVT SrcVT = N0.getValueType();
-
- assert((N->getOpcode() == ISD::SIGN_EXTEND ||
- N->getOpcode() == ISD::ZERO_EXTEND) &&
- "Unexpected node type (not an extend)!");
-
- // fold (sext (load x)) to multiple smaller sextloads; same for zext.
- // For example, on a target with legal v4i32, but illegal v8i32, turn:
- // (v8i32 (sext (v8i16 (load x))))
- // into:
- // (v8i32 (concat_vectors (v4i32 (sextload x)),
- // (v4i32 (sextload (x + 16)))))
- // Where uses of the original load, i.e.:
- // (v8i16 (load x))
- // are replaced with:
- // (v8i16 (truncate
- // (v8i32 (concat_vectors (v4i32 (sextload x)),
- // (v4i32 (sextload (x + 16)))))))
- //
- // This combine is only applicable to illegal, but splittable, vectors.
- // All legal types, and illegal non-vector types, are handled elsewhere.
- // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
- //
- if (N0->getOpcode() != ISD::LOAD)
- return SDValue();
-
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
-
- if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
- !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
- !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
- return SDValue();
-
- SmallVector<SDNode *, 4> SetCCs;
- if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
- return SDValue();
-
- ISD::LoadExtType ExtType =
- N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
-
- // Try to split the vector types to get down to legal types.
- EVT SplitSrcVT = SrcVT;
- EVT SplitDstVT = DstVT;
- while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
- SplitSrcVT.getVectorNumElements() > 1) {
- SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
- SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
- }
-
- if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
- return SDValue();
-
- SDLoc DL(N);
- const unsigned NumSplits =
- DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
- const unsigned Stride = SplitSrcVT.getStoreSize();
- SmallVector<SDValue, 4> Loads;
- SmallVector<SDValue, 4> Chains;
-
- SDValue BasePtr = LN0->getBasePtr();
- for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
- const unsigned Offset = Idx * Stride;
- const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
-
- SDValue SplitLoad = DAG.getExtLoad(
- ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
- LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
- LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
-
- BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
- DAG.getConstant(Stride, DL, BasePtr.getValueType()));
-
- Loads.push_back(SplitLoad.getValue(0));
- Chains.push_back(SplitLoad.getValue(1));
- }
-
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
- SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
-
- // Simplify TF.
- AddToWorklist(NewChain.getNode());
-
- CombineTo(N, NewValue);
-
- // Replace uses of the original load (before extension)
- // with a truncate of the concatenated sextloaded vectors.
- SDValue Trunc =
- DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
- ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
- CombineTo(N0.getNode(), Trunc, NewChain);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
-}
-
-// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
-// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
-SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
- assert(N->getOpcode() == ISD::ZERO_EXTEND);
- EVT VT = N->getValueType(0);
-
- // and/or/xor
- SDValue N0 = N->getOperand(0);
- if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
- N0.getOpcode() == ISD::XOR) ||
- N0.getOperand(1).getOpcode() != ISD::Constant ||
- (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
- return SDValue();
-
- // shl/shr
- SDValue N1 = N0->getOperand(0);
- if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
- N1.getOperand(1).getOpcode() != ISD::Constant ||
- (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
- return SDValue();
-
- // load
- if (!isa<LoadSDNode>(N1.getOperand(0)))
- return SDValue();
- LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
- EVT MemVT = Load->getMemoryVT();
- if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
- Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
- return SDValue();
-
-
- // If the shift op is SHL, the logic op must be AND, otherwise the result
- // will be wrong.
- if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
- return SDValue();
-
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
-
- SmallVector<SDNode*, 4> SetCCs;
- if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
- ISD::ZERO_EXTEND, SetCCs, TLI))
- return SDValue();
-
- // Actually do the transformation.
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
- Load->getChain(), Load->getBasePtr(),
- Load->getMemoryVT(), Load->getMemOperand());
-
- SDLoc DL1(N1);
- SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
- N1.getOperand(1));
-
- APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- Mask = Mask.zext(VT.getSizeInBits());
- SDLoc DL0(N0);
- SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
- DAG.getConstant(Mask, DL0, VT));
-
- ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
- CombineTo(N, And);
- if (SDValue(Load, 0).hasOneUse()) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
- Load->getValueType(0), ExtLoad);
- CombineTo(Load, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N,0); // Return N so it doesn't get rechecked!
-}
-
-/// If we're narrowing or widening the result of a vector select and the final
-/// size is the same size as a setcc (compare) feeding the select, then try to
-/// apply the cast operation to the select's operands because matching vector
-/// sizes for a select condition and other operands should be more efficient.
-SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
- unsigned CastOpcode = Cast->getOpcode();
- assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
- CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
- CastOpcode == ISD::FP_ROUND) &&
- "Unexpected opcode for vector select narrowing/widening");
-
- // We only do this transform before legal ops because the pattern may be
- // obfuscated by target-specific operations after legalization. Do not create
- // an illegal select op, however, because that may be difficult to lower.
- EVT VT = Cast->getValueType(0);
- if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
- return SDValue();
-
- SDValue VSel = Cast->getOperand(0);
- if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
- VSel.getOperand(0).getOpcode() != ISD::SETCC)
- return SDValue();
-
- // Does the setcc have the same vector size as the casted select?
- SDValue SetCC = VSel.getOperand(0);
- EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
- if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
- return SDValue();
-
- // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
- SDValue A = VSel.getOperand(1);
- SDValue B = VSel.getOperand(2);
- SDValue CastA, CastB;
- SDLoc DL(Cast);
- if (CastOpcode == ISD::FP_ROUND) {
- // FP_ROUND (fptrunc) has an extra flag operand to pass along.
- CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
- CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
- } else {
- CastA = DAG.getNode(CastOpcode, DL, VT, A);
- CastB = DAG.getNode(CastOpcode, DL, VT, B);
- }
- return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
-}
-
-// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
-// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
-static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
- const TargetLowering &TLI, EVT VT,
- bool LegalOperations, SDNode *N,
- SDValue N0, ISD::LoadExtType ExtLoadType) {
- SDNode *N0Node = N0.getNode();
- bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
- : ISD::isZEXTLoad(N0Node);
- if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
- !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
- return {};
-
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- EVT MemVT = LN0->getMemoryVT();
- if ((LegalOperations || LN0->isVolatile() || VT.isVector()) &&
- !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
- return {};
-
- SDValue ExtLoad =
- DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
- LN0->getBasePtr(), MemVT, LN0->getMemOperand());
- Combiner.CombineTo(N, ExtLoad);
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
-}
-
-// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
-// Only generate vector extloads when 1) they're legal, and 2) they are
-// deemed desirable by the target.
-static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
- const TargetLowering &TLI, EVT VT,
- bool LegalOperations, SDNode *N, SDValue N0,
- ISD::LoadExtType ExtLoadType,
- ISD::NodeType ExtOpc) {
- if (!ISD::isNON_EXTLoad(N0.getNode()) ||
- !ISD::isUNINDEXEDLoad(N0.getNode()) ||
- ((LegalOperations || VT.isVector() ||
- cast<LoadSDNode>(N0)->isVolatile()) &&
- !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
- return {};
-
- bool DoXform = true;
- SmallVector<SDNode *, 4> SetCCs;
- if (!N0.hasOneUse())
- DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
- if (VT.isVector())
- DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
- if (!DoXform)
- return {};
-
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
- LN0->getBasePtr(), N0.getValueType(),
- LN0->getMemOperand());
- Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
- // If the load value is used only by N, replace it via CombineTo N.
- bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
- Combiner.CombineTo(N, ExtLoad);
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc =
- DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
- Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
-}
-
-static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
- bool LegalOperations) {
- assert((N->getOpcode() == ISD::SIGN_EXTEND ||
- N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
-
- SDValue SetCC = N->getOperand(0);
- if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
- !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
- return SDValue();
-
- SDValue X = SetCC.getOperand(0);
- SDValue Ones = SetCC.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
- EVT VT = N->getValueType(0);
- EVT XVT = X.getValueType();
- // setge X, C is canonicalized to setgt, so we do not need to match that
- // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
- // not require the 'not' op.
- if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
- // Invert and smear/shift the sign bit:
- // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
- // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
- SDLoc DL(N);
- SDValue NotX = DAG.getNOT(DL, X, VT);
- SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
- auto ShiftOpcode = N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
- return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
-
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
-
- // fold (sext (sext x)) -> (sext x)
- // fold (sext (aext x)) -> (sext x)
- if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
- return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
-
- if (N0.getOpcode() == ISD::TRUNCATE) {
- // fold (sext (truncate (load x))) -> (sext (smaller load x))
- // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
- if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getOperand(0).getNode();
- if (NarrowLoad.getNode() != N0.getNode()) {
- CombineTo(N0.getNode(), NarrowLoad);
- // CombineTo deleted the truncate, if needed, but not what's under it.
- AddToWorklist(oye);
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
-
- // See if the value being truncated is already sign extended. If so, just
- // eliminate the trunc/sext pair.
- SDValue Op = N0.getOperand(0);
- unsigned OpBits = Op.getScalarValueSizeInBits();
- unsigned MidBits = N0.getScalarValueSizeInBits();
- unsigned DestBits = VT.getScalarSizeInBits();
- unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
-
- if (OpBits == DestBits) {
- // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
- // bits, it is already ready.
- if (NumSignBits > DestBits-MidBits)
- return Op;
- } else if (OpBits < DestBits) {
- // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
- // bits, just sext from i32.
- if (NumSignBits > OpBits-MidBits)
- return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
- } else {
- // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
- // bits, just truncate to i32.
- if (NumSignBits > OpBits-MidBits)
- return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
- }
-
- // fold (sext (truncate x)) -> (sextinreg x).
- if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
- N0.getValueType())) {
- if (OpBits < DestBits)
- Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
- else if (OpBits > DestBits)
- Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
- DAG.getValueType(N0.getValueType()));
- }
- }
-
- // Try to simplify (sext (load x)).
- if (SDValue foldedExt =
- tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
- ISD::SEXTLOAD, ISD::SIGN_EXTEND))
- return foldedExt;
-
- // fold (sext (load x)) to multiple smaller sextloads.
- // Only on illegal but splittable vectors.
- if (SDValue ExtLoad = CombineExtLoad(N))
- return ExtLoad;
-
- // Try to simplify (sext (sextload x)).
- if (SDValue foldedExt = tryToFoldExtOfExtload(
- DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
- return foldedExt;
-
- // fold (sext (and/or/xor (load x), cst)) ->
- // (and/or/xor (sextload x), (sext cst))
- if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
- N0.getOpcode() == ISD::XOR) &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
- LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
- EVT MemVT = LN00->getMemoryVT();
- if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
- LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
- SmallVector<SDNode*, 4> SetCCs;
- bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
- ISD::SIGN_EXTEND, SetCCs, TLI);
- if (DoXform) {
- SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
- LN00->getChain(), LN00->getBasePtr(),
- LN00->getMemoryVT(),
- LN00->getMemOperand());
- APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- Mask = Mask.sext(VT.getSizeInBits());
- SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
- ExtLoad, DAG.getConstant(Mask, DL, VT));
- ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
- bool NoReplaceTruncAnd = !N0.hasOneUse();
- bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
- CombineTo(N, And);
- // If N0 has multiple uses, change other uses as well.
- if (NoReplaceTruncAnd) {
- SDValue TruncAnd =
- DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
- CombineTo(N0.getNode(), TruncAnd);
- }
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
- LN00->getValueType(0), ExtLoad);
- CombineTo(LN00, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N,0); // Return N so it doesn't get rechecked!
- }
- }
- }
-
- if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
- return V;
-
- if (N0.getOpcode() == ISD::SETCC) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- EVT N00VT = N0.getOperand(0).getValueType();
-
- // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
- // Only do this before legalize for now.
- if (VT.isVector() && !LegalOperations &&
- TLI.getBooleanContents(N00VT) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent) {
- // On some architectures (such as SSE/NEON/etc) the SETCC result type is
- // of the same size as the compared operands. Only optimize sext(setcc())
- // if this is the case.
- EVT SVT = getSetCCResultType(N00VT);
-
- // If we already have the desired type, don't change it.
- if (SVT != N0.getValueType()) {
- // We know that the # elements of the results is the same as the
- // # elements of the compare (and the # elements of the compare result
- // for that matter). Check to see that they are the same size. If so,
- // we know that the element size of the sext'd result matches the
- // element size of the compare operands.
- if (VT.getSizeInBits() == SVT.getSizeInBits())
- return DAG.getSetCC(DL, VT, N00, N01, CC);
-
- // If the desired elements are smaller or larger than the source
- // elements, we can use a matching integer vector type and then
- // truncate/sign extend.
- EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
- if (SVT == MatchingVecType) {
- SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
- return DAG.getSExtOrTrunc(VsetCC, DL, VT);
- }
- }
- }
-
- // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
- // Here, T can be 1 or -1, depending on the type of the setcc and
- // getBooleanContents().
- unsigned SetCCWidth = N0.getScalarValueSizeInBits();
-
- // To determine the "true" side of the select, we need to know the high bit
- // of the value returned by the setcc if it evaluates to true.
- // If the type of the setcc is i1, then the true case of the select is just
- // sext(i1 1), that is, -1.
- // If the type of the setcc is larger (say, i8) then the value of the high
- // bit depends on getBooleanContents(), so ask TLI for a real "true" value
- // of the appropriate width.
- SDValue ExtTrueVal = (SetCCWidth == 1)
- ? DAG.getAllOnesConstant(DL, VT)
- : DAG.getBoolConstant(true, DL, VT, N00VT);
- SDValue Zero = DAG.getConstant(0, DL, VT);
- if (SDValue SCC =
- SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
- return SCC;
-
- if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
- EVT SetCCVT = getSetCCResultType(N00VT);
- // Don't do this transform for i1 because there's a select transform
- // that would reverse it.
- // TODO: We should not do this transform at all without a target hook
- // because a sext is likely cheaper than a select?
- if (SetCCVT.getScalarSizeInBits() != 1 &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
- SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
- return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
- }
- }
- }
-
- // fold (sext x) -> (zext x) if the sign bit is known zero.
- if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
- DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
-
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
-
- return SDValue();
-}
-
-// isTruncateOf - If N is a truncate of some other value, return true, record
-// the value being truncated in Op and which of Op's bits are zero/one in Known.
-// This function computes KnownBits to avoid a duplicated call to
-// computeKnownBits in the caller.
-static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
- KnownBits &Known) {
- if (N->getOpcode() == ISD::TRUNCATE) {
- Op = N->getOperand(0);
- Known = DAG.computeKnownBits(Op);
- return true;
- }
-
- if (N.getOpcode() != ISD::SETCC ||
- N.getValueType().getScalarType() != MVT::i1 ||
- cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
- return false;
-
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- assert(Op0.getValueType() == Op1.getValueType());
-
- if (isNullOrNullSplat(Op0))
- Op = Op1;
- else if (isNullOrNullSplat(Op1))
- Op = Op0;
- else
- return false;
-
- Known = DAG.computeKnownBits(Op);
-
- return (Known.Zero | 1).isAllOnesValue();
-}
-
-SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
-
- // fold (zext (zext x)) -> (zext x)
- // fold (zext (aext x)) -> (zext x)
- if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
- N0.getOperand(0));
-
- // fold (zext (truncate x)) -> (zext x) or
- // (zext (truncate x)) -> (truncate x)
- // This is valid when the truncated bits of x are already zero.
- SDValue Op;
- KnownBits Known;
- if (isTruncateOf(DAG, N0, Op, Known)) {
- APInt TruncatedBits =
- (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
- APInt(Op.getScalarValueSizeInBits(), 0) :
- APInt::getBitsSet(Op.getScalarValueSizeInBits(),
- N0.getScalarValueSizeInBits(),
- std::min(Op.getScalarValueSizeInBits(),
- VT.getScalarSizeInBits()));
- if (TruncatedBits.isSubsetOf(Known.Zero))
- return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
- }
-
- // fold (zext (truncate x)) -> (and x, mask)
- if (N0.getOpcode() == ISD::TRUNCATE) {
- // fold (zext (truncate (load x))) -> (zext (smaller load x))
- // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
- if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getOperand(0).getNode();
- if (NarrowLoad.getNode() != N0.getNode()) {
- CombineTo(N0.getNode(), NarrowLoad);
- // CombineTo deleted the truncate, if needed, but not what's under it.
- AddToWorklist(oye);
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
-
- EVT SrcVT = N0.getOperand(0).getValueType();
- EVT MinVT = N0.getValueType();
-
- // Try to mask before the extension to avoid having to generate a larger mask,
- // possibly over several sub-vectors.
- if (SrcVT.bitsLT(VT) && VT.isVector()) {
- if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
- TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
- SDValue Op = N0.getOperand(0);
- Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
- AddToWorklist(Op.getNode());
- SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
- // Transfer the debug info; the new node is equivalent to N0.
- DAG.transferDbgValues(N0, ZExtOrTrunc);
- return ZExtOrTrunc;
- }
- }
-
- if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
- SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
- AddToWorklist(Op.getNode());
- SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
- // We may safely transfer the debug info describing the truncate node over
- // to the equivalent and operation.
- DAG.transferDbgValues(N0, And);
- return And;
- }
- }
-
- // Fold (zext (and (trunc x), cst)) -> (and x, cst),
- // if either of the casts is not free.
- if (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
- N0.getValueType()) ||
- !TLI.isZExtFree(N0.getValueType(), VT))) {
- SDValue X = N0.getOperand(0).getOperand(0);
- X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
- APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- Mask = Mask.zext(VT.getSizeInBits());
- SDLoc DL(N);
- return DAG.getNode(ISD::AND, DL, VT,
- X, DAG.getConstant(Mask, DL, VT));
- }
-
- // Try to simplify (zext (load x)).
- if (SDValue foldedExt =
- tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
- ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
- return foldedExt;
-
- // fold (zext (load x)) to multiple smaller zextloads.
- // Only on illegal but splittable vectors.
- if (SDValue ExtLoad = CombineExtLoad(N))
- return ExtLoad;
-
- // fold (zext (and/or/xor (load x), cst)) ->
- // (and/or/xor (zextload x), (zext cst))
- // Unless (and (load x) cst) will match as a zextload already and has
- // additional users.
- if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
- N0.getOpcode() == ISD::XOR) &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
- LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
- EVT MemVT = LN00->getMemoryVT();
- if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
- LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
- bool DoXform = true;
- SmallVector<SDNode*, 4> SetCCs;
- if (!N0.hasOneUse()) {
- if (N0.getOpcode() == ISD::AND) {
- auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
- EVT LoadResultTy = AndC->getValueType(0);
- EVT ExtVT;
- if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
- DoXform = false;
- }
- }
- if (DoXform)
- DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
- ISD::ZERO_EXTEND, SetCCs, TLI);
- if (DoXform) {
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
- LN00->getChain(), LN00->getBasePtr(),
- LN00->getMemoryVT(),
- LN00->getMemOperand());
- APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- Mask = Mask.zext(VT.getSizeInBits());
- SDLoc DL(N);
- SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
- ExtLoad, DAG.getConstant(Mask, DL, VT));
- ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
- bool NoReplaceTruncAnd = !N0.hasOneUse();
- bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
- CombineTo(N, And);
- // If N0 has multiple uses, change other uses as well.
- if (NoReplaceTruncAnd) {
- SDValue TruncAnd =
- DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
- CombineTo(N0.getNode(), TruncAnd);
- }
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
- LN00->getValueType(0), ExtLoad);
- CombineTo(LN00, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N,0); // Return N so it doesn't get rechecked!
- }
- }
- }
-
- // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
- // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
- if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
- return ZExtLoad;
-
- // Try to simplify (zext (zextload x)).
- if (SDValue foldedExt = tryToFoldExtOfExtload(
- DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
- return foldedExt;
-
- if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
- return V;
-
- if (N0.getOpcode() == ISD::SETCC) {
- // Only do this before legalize for now.
- if (!LegalOperations && VT.isVector() &&
- N0.getValueType().getVectorElementType() == MVT::i1) {
- EVT N00VT = N0.getOperand(0).getValueType();
- if (getSetCCResultType(N00VT) == N0.getValueType())
- return SDValue();
-
- // We know that the # elements of the results is the same as the #
- // elements of the compare (and the # elements of the compare result for
- // that matter). Check to see that they are the same size. If so, we know
- // that the element size of the sext'd result matches the element size of
- // the compare operands.
- SDLoc DL(N);
- SDValue VecOnes = DAG.getConstant(1, DL, VT);
- if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
- // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
- SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
- N0.getOperand(1), N0.getOperand(2));
- return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes);
- }
-
- // If the desired elements are smaller or larger than the source
- // elements we can use a matching integer vector type and then
- // truncate/sign extend.
- EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
- SDValue VsetCC =
- DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
- N0.getOperand(1), N0.getOperand(2));
- return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT),
- VecOnes);
- }
-
- // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
- SDLoc DL(N);
- if (SDValue SCC = SimplifySelectCC(
- DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT),
- cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
- return SCC;
- }
-
- // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
- if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
- N0.hasOneUse()) {
- SDValue ShAmt = N0.getOperand(1);
- unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
- if (N0.getOpcode() == ISD::SHL) {
- SDValue InnerZExt = N0.getOperand(0);
- // If the original shl may be shifting out bits, do not perform this
- // transformation.
- unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
- InnerZExt.getOperand(0).getValueSizeInBits();
- if (ShAmtVal > KnownZeroBits)
- return SDValue();
- }
-
- SDLoc DL(N);
-
- // Ensure that the shift amount is wide enough for the shifted value.
- if (VT.getSizeInBits() >= 256)
- ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
-
- return DAG.getNode(N0.getOpcode(), DL, VT,
- DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
- ShAmt);
- }
-
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
-
- // fold (aext (aext x)) -> (aext x)
- // fold (aext (zext x)) -> (zext x)
- // fold (aext (sext x)) -> (sext x)
- if (N0.getOpcode() == ISD::ANY_EXTEND ||
- N0.getOpcode() == ISD::ZERO_EXTEND ||
- N0.getOpcode() == ISD::SIGN_EXTEND)
- return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
-
- // fold (aext (truncate (load x))) -> (aext (smaller load x))
- // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
- if (N0.getOpcode() == ISD::TRUNCATE) {
- if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getOperand(0).getNode();
- if (NarrowLoad.getNode() != N0.getNode()) {
- CombineTo(N0.getNode(), NarrowLoad);
- // CombineTo deleted the truncate, if needed, but not what's under it.
- AddToWorklist(oye);
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
-
- // fold (aext (truncate x))
- if (N0.getOpcode() == ISD::TRUNCATE)
- return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
-
- // Fold (aext (and (trunc x), cst)) -> (and x, cst)
- // if the trunc is not free.
- if (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
- N0.getValueType())) {
- SDLoc DL(N);
- SDValue X = N0.getOperand(0).getOperand(0);
- X = DAG.getAnyExtOrTrunc(X, DL, VT);
- APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- Mask = Mask.zext(VT.getSizeInBits());
- return DAG.getNode(ISD::AND, DL, VT,
- X, DAG.getConstant(Mask, DL, VT));
- }
-
- // fold (aext (load x)) -> (aext (truncate (extload x)))
- // None of the supported targets knows how to perform load and any_ext
- // on vectors in one instruction. We only perform this transformation on
- // scalars.
- if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
- ISD::isUNINDEXEDLoad(N0.getNode()) &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
- bool DoXform = true;
- SmallVector<SDNode*, 4> SetCCs;
- if (!N0.hasOneUse())
- DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs,
- TLI);
- if (DoXform) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), N0.getValueType(),
- LN0->getMemOperand());
- ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
- // If the load value is used only by N, replace it via CombineTo N.
- bool NoReplaceTrunc = N0.hasOneUse();
- CombineTo(N, ExtLoad);
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
- N0.getValueType(), ExtLoad);
- CombineTo(LN0, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
-
- // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
- // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
- // fold (aext ( extload x)) -> (aext (truncate (extload x)))
- if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
- ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- ISD::LoadExtType ExtType = LN0->getExtensionType();
- EVT MemVT = LN0->getMemoryVT();
- if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
- SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
- VT, LN0->getChain(), LN0->getBasePtr(),
- MemVT, LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
-
- if (N0.getOpcode() == ISD::SETCC) {
- // For vectors:
- // aext(setcc) -> vsetcc
- // aext(setcc) -> truncate(vsetcc)
- // aext(setcc) -> aext(vsetcc)
- // Only do this before legalize for now.
- if (VT.isVector() && !LegalOperations) {
- EVT N00VT = N0.getOperand(0).getValueType();
- if (getSetCCResultType(N00VT) == N0.getValueType())
- return SDValue();
-
- // We know that the # elements of the results is the same as the
- // # elements of the compare (and the # elements of the compare result
- // for that matter). Check to see that they are the same size. If so,
- // we know that the element size of the sext'd result matches the
- // element size of the compare operands.
- if (VT.getSizeInBits() == N00VT.getSizeInBits())
- return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
- N0.getOperand(1),
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
-
- // If the desired elements are smaller or larger than the source
- // elements we can use a matching integer vector type and then
- // truncate/any extend
- EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
- SDValue VsetCC =
- DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
- N0.getOperand(1),
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
- return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
- }
-
- // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
- SDLoc DL(N);
- if (SDValue SCC = SimplifySelectCC(
- DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT),
- cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
- return SCC;
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitAssertExt(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT AssertVT = cast<VTSDNode>(N1)->getVT();
-
- // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
- if (N0.getOpcode() == Opcode &&
- AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
- return N0;
-
- if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == Opcode) {
- // We have an assert, truncate, assert sandwich. Make one stronger assert
- // by asserting on the smallest asserted type to the larger source type.
- // This eliminates the later assert:
- // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
- // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
- SDValue BigA = N0.getOperand(0);
- EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
- assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
- "Asserting zero/sign-extended bits to a type larger than the "
- "truncated destination does not provide information");
-
- SDLoc DL(N);
- EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
- SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
- SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
- BigA.getOperand(0), MinAssertVTVal);
- return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
- }
-
- // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
- // than X. Just move the AssertZext in front of the truncate and drop the
- // AssertSExt.
- if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::AssertSext &&
- Opcode == ISD::AssertZext) {
- SDValue BigA = N0.getOperand(0);
- EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
- assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
- "Asserting zero/sign-extended bits to a type larger than the "
- "truncated destination does not provide information");
-
- if (AssertVT.bitsLT(BigA_AssertVT)) {
- SDLoc DL(N);
- SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
- BigA.getOperand(0), N1);
- return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
- }
- }
-
- return SDValue();
-}
-
-/// If the result of a wider load is shifted to right of N bits and then
-/// truncated to a narrower type and where N is a multiple of number of bits of
-/// the narrower type, transform it to a narrower load from address + N / num of
-/// bits of new type. Also narrow the load if the result is masked with an AND
-/// to effectively produce a smaller type. If the result is to be extended, also
-/// fold the extension to form a extending load.
-SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
- unsigned Opc = N->getOpcode();
-
- ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT ExtVT = VT;
-
- // This transformation isn't valid for vector loads.
- if (VT.isVector())
- return SDValue();
-
- unsigned ShAmt = 0;
- bool HasShiftedOffset = false;
- // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
- // extended to VT.
- if (Opc == ISD::SIGN_EXTEND_INREG) {
- ExtType = ISD::SEXTLOAD;
- ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
- } else if (Opc == ISD::SRL) {
- // Another special-case: SRL is basically zero-extending a narrower value,
- // or it maybe shifting a higher subword, half or byte into the lowest
- // bits.
- ExtType = ISD::ZEXTLOAD;
- N0 = SDValue(N, 0);
-
- auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
- auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!N01 || !LN0)
- return SDValue();
-
- uint64_t ShiftAmt = N01->getZExtValue();
- uint64_t MemoryWidth = LN0->getMemoryVT().getSizeInBits();
- if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
- else
- ExtVT = EVT::getIntegerVT(*DAG.getContext(),
- VT.getSizeInBits() - ShiftAmt);
- } else if (Opc == ISD::AND) {
- // An AND with a constant mask is the same as a truncate + zero-extend.
- auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!AndC)
- return SDValue();
-
- const APInt &Mask = AndC->getAPIntValue();
- unsigned ActiveBits = 0;
- if (Mask.isMask()) {
- ActiveBits = Mask.countTrailingOnes();
- } else if (Mask.isShiftedMask()) {
- ShAmt = Mask.countTrailingZeros();
- APInt ShiftedMask = Mask.lshr(ShAmt);
- ActiveBits = ShiftedMask.countTrailingOnes();
- HasShiftedOffset = true;
- } else
- return SDValue();
-
- ExtType = ISD::ZEXTLOAD;
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- }
-
- if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
- SDValue SRL = N0;
- if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
- ShAmt = ConstShift->getZExtValue();
- unsigned EVTBits = ExtVT.getSizeInBits();
- // Is the shift amount a multiple of size of VT?
- if ((ShAmt & (EVTBits-1)) == 0) {
- N0 = N0.getOperand(0);
- // Is the load width a multiple of size of VT?
- if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
- return SDValue();
- }
-
- // At this point, we must have a load or else we can't do the transform.
- if (!isa<LoadSDNode>(N0)) return SDValue();
-
- auto *LN0 = cast<LoadSDNode>(N0);
-
- // Because a SRL must be assumed to *need* to zero-extend the high bits
- // (as opposed to anyext the high bits), we can't combine the zextload
- // lowering of SRL and an sextload.
- if (LN0->getExtensionType() == ISD::SEXTLOAD)
- return SDValue();
-
- // If the shift amount is larger than the input type then we're not
- // accessing any of the loaded bytes. If the load was a zextload/extload
- // then the result of the shift+trunc is zero/undef (handled elsewhere).
- if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
- return SDValue();
-
- // If the SRL is only used by a masking AND, we may be able to adjust
- // the ExtVT to make the AND redundant.
- SDNode *Mask = *(SRL->use_begin());
- if (Mask->getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(Mask->getOperand(1))) {
- const APInt &ShiftMask =
- cast<ConstantSDNode>(Mask->getOperand(1))->getAPIntValue();
- if (ShiftMask.isMask()) {
- EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
- ShiftMask.countTrailingOnes());
- // If the mask is smaller, recompute the type.
- if ((ExtVT.getSizeInBits() > MaskedVT.getSizeInBits()) &&
- TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
- ExtVT = MaskedVT;
- }
- }
- }
- }
-
- // If the load is shifted left (and the result isn't shifted back right),
- // we can fold the truncate through the shift.
- unsigned ShLeftAmt = 0;
- if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
- ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
- if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- ShLeftAmt = N01->getZExtValue();
- N0 = N0.getOperand(0);
- }
- }
-
- // If we haven't found a load, we can't narrow it.
- if (!isa<LoadSDNode>(N0))
- return SDValue();
-
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- if (!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
- return SDValue();
-
- auto AdjustBigEndianShift = [&](unsigned ShAmt) {
- unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
- unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
- return LVTStoreBits - EVTStoreBits - ShAmt;
- };
-
- // For big endian targets, we need to adjust the offset to the pointer to
- // load the correct bytes.
- if (DAG.getDataLayout().isBigEndian())
- ShAmt = AdjustBigEndianShift(ShAmt);
-
- EVT PtrType = N0.getOperand(1).getValueType();
- uint64_t PtrOff = ShAmt / 8;
- unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
- SDLoc DL(LN0);
- // The original load itself didn't wrap, so an offset within it doesn't.
- SDNodeFlags Flags;
- Flags.setNoUnsignedWrap(true);
- SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
- PtrType, LN0->getBasePtr(),
- DAG.getConstant(PtrOff, DL, PtrType),
- Flags);
- AddToWorklist(NewPtr.getNode());
-
- SDValue Load;
- if (ExtType == ISD::NON_EXTLOAD)
- Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
- LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
- LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
- else
- Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(), NewPtr,
- LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
- NewAlign, LN0->getMemOperand()->getFlags(),
- LN0->getAAInfo());
-
- // Replace the old load's chain with the new load's chain.
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
-
- // Shift the result left, if we've swallowed a left shift.
- SDValue Result = Load;
- if (ShLeftAmt != 0) {
- EVT ShImmTy = getShiftAmountTy(Result.getValueType());
- if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
- ShImmTy = VT;
- // If the shift amount is as large as the result size (but, presumably,
- // no larger than the source) then the useful bits of the result are
- // zero; we can't simply return the shortened shift, because the result
- // of that operation is undefined.
- SDLoc DL(N0);
- if (ShLeftAmt >= VT.getSizeInBits())
- Result = DAG.getConstant(0, DL, VT);
- else
- Result = DAG.getNode(ISD::SHL, DL, VT,
- Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
- }
-
- if (HasShiftedOffset) {
- // Recalculate the shift amount after it has been altered to calculate
- // the offset.
- if (DAG.getDataLayout().isBigEndian())
- ShAmt = AdjustBigEndianShift(ShAmt);
-
- // We're using a shifted mask, so the load now has an offset. This means
- // that data has been loaded into the lower bytes than it would have been
- // before, so we need to shl the loaded data into the correct position in the
- // register.
- SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
- Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
- }
-
- // Return the new loaded value.
- return Result;
-}
-
-SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT EVT = cast<VTSDNode>(N1)->getVT();
- unsigned VTBits = VT.getScalarSizeInBits();
- unsigned EVTBits = EVT.getScalarSizeInBits();
-
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
-
- // fold (sext_in_reg c1) -> c1
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
-
- // If the input is already sign extended, just drop the extension.
- if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
- return N0;
-
- // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
- if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
- N0.getOperand(0), N1);
-
- // fold (sext_in_reg (sext x)) -> (sext x)
- // fold (sext_in_reg (aext x)) -> (sext x)
- // if x is small enough or if we know that x has more than 1 sign bit and the
- // sign_extend_inreg is extending from one of them.
- if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- unsigned N00Bits = N00.getScalarValueSizeInBits();
- if ((N00Bits <= EVTBits ||
- (N00Bits - DAG.ComputeNumSignBits(N00)) < EVTBits) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
- return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
- }
-
- // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
- if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
- N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
- N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) &&
- N0.getOperand(0).getScalarValueSizeInBits() == EVTBits) {
- if (!LegalOperations ||
- TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT))
- return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
- N0.getOperand(0));
- }
-
- // fold (sext_in_reg (zext x)) -> (sext x)
- // iff we are extending the source sign bit.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getScalarValueSizeInBits() == EVTBits &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
- return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
- }
-
- // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
- if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, EVTBits - 1)))
- return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
-
- // fold operands of sext_in_reg based on knowledge that the top bits are not
- // demanded.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // fold (sext_in_reg (load x)) -> (smaller sextload x)
- // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
- if (SDValue NarrowLoad = ReduceLoadWidth(N))
- return NarrowLoad;
-
- // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
- // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
- // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
- if (N0.getOpcode() == ISD::SRL) {
- if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
- if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
- // We can turn this into an SRA iff the input to the SRL is already sign
- // extended enough.
- unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
- if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
- return DAG.getNode(ISD::SRA, SDLoc(N), VT,
- N0.getOperand(0), N0.getOperand(1));
- }
- }
-
- // fold (sext_inreg (extload x)) -> (sextload x)
- // If sextload is not supported by target, we can only do the combine when
- // load has one use. Doing otherwise can block folding the extload with other
- // extends that the target does support.
- if (ISD::isEXTLoad(N0.getNode()) &&
- ISD::isUNINDEXEDLoad(N0.getNode()) &&
- EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
- ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile() &&
- N0.hasOneUse()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), EVT,
- LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- AddToWorklist(ExtLoad.getNode());
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
- if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
- N0.hasOneUse() &&
- EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
- ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), EVT,
- LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
-
- // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
- if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
- if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
- N0.getOperand(1), false))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
- BSwap, N1);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
-
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
-
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
-
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
-
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- bool isLE = DAG.getDataLayout().isLittleEndian();
-
- // noop truncate
- if (N0.getValueType() == N->getValueType(0))
- return N0;
-
- // fold (truncate (truncate x)) -> (truncate x)
- if (N0.getOpcode() == ISD::TRUNCATE)
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
-
- // fold (truncate c1) -> c1
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
- SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
- if (C.getNode() != N)
- return C;
- }
-
- // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
- if (N0.getOpcode() == ISD::ZERO_EXTEND ||
- N0.getOpcode() == ISD::SIGN_EXTEND ||
- N0.getOpcode() == ISD::ANY_EXTEND) {
- // if the source is smaller than the dest, we still need an extend.
- if (N0.getOperand(0).getValueType().bitsLT(VT))
- return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
- // if the source is larger than the dest, than we just need the truncate.
- if (N0.getOperand(0).getValueType().bitsGT(VT))
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
- // if the source and dest are the same type, we can drop both the extend
- // and the truncate.
- return N0.getOperand(0);
- }
-
- // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
- if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
- return SDValue();
-
- // Fold extract-and-trunc into a narrow extract. For example:
- // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
- // i32 y = TRUNCATE(i64 x)
- // -- becomes --
- // v16i8 b = BITCAST (v2i64 val)
- // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
- //
- // Note: We only run this optimization after type legalization (which often
- // creates this pattern) and before operation legalization after which
- // we need to be more careful about the vector instructions that we generate.
- if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
- EVT VecTy = N0.getOperand(0).getValueType();
- EVT ExTy = N0.getValueType();
- EVT TrTy = N->getValueType(0);
-
- unsigned NumElem = VecTy.getVectorNumElements();
- unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
-
- EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
- assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
-
- SDValue EltNo = N0->getOperand(1);
- if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
- int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
- EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
-
- SDLoc DL(N);
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
- DAG.getBitcast(NVT, N0.getOperand(0)),
- DAG.getConstant(Index, DL, IndexTy));
- }
- }
-
- // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
- if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
- EVT SrcVT = N0.getValueType();
- if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
- TLI.isTruncateFree(SrcVT, VT)) {
- SDLoc SL(N0);
- SDValue Cond = N0.getOperand(0);
- SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
- SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
- return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
- }
- }
-
- // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
- if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) &&
- TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
- SDValue Amt = N0.getOperand(1);
- KnownBits Known = DAG.computeKnownBits(Amt);
- unsigned Size = VT.getScalarSizeInBits();
- if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
- SDLoc SL(N);
- EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
-
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
- if (AmtVT != Amt.getValueType()) {
- Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
- AddToWorklist(Amt.getNode());
- }
- return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
- }
- }
-
- // Fold a series of buildvector, bitcast, and truncate if possible.
- // For example fold
- // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
- // (2xi32 (buildvector x, y)).
- if (Level == AfterLegalizeVectorOps && VT.isVector() &&
- N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
- N0.getOperand(0).hasOneUse()) {
- SDValue BuildVect = N0.getOperand(0);
- EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
- EVT TruncVecEltTy = VT.getVectorElementType();
-
- // Check that the element types match.
- if (BuildVectEltTy == TruncVecEltTy) {
- // Now we only need to compute the offset of the truncated elements.
- unsigned BuildVecNumElts = BuildVect.getNumOperands();
- unsigned TruncVecNumElts = VT.getVectorNumElements();
- unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
-
- assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
- "Invalid number of elements");
-
- SmallVector<SDValue, 8> Opnds;
- for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
- Opnds.push_back(BuildVect.getOperand(i));
-
- return DAG.getBuildVector(VT, SDLoc(N), Opnds);
- }
- }
-
- // See if we can simplify the input to this truncate through knowledge that
- // only the low bits are being used.
- // For example "trunc (or (shl x, 8), y)" // -> trunc y
- // Currently we only perform this optimization on scalars because vectors
- // may have different active low bits.
- if (!VT.isVector()) {
- APInt Mask =
- APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
- if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
- }
-
- // fold (truncate (load x)) -> (smaller load x)
- // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
- if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
- if (SDValue Reduced = ReduceLoadWidth(N))
- return Reduced;
-
- // Handle the case where the load remains an extending load even
- // after truncation.
- if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- if (!LN0->isVolatile() &&
- LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
- SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
- VT, LN0->getChain(), LN0->getBasePtr(),
- LN0->getMemoryVT(),
- LN0->getMemOperand());
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
- return NewLoad;
- }
- }
- }
-
- // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
- // where ... are all 'undef'.
- if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
- SmallVector<EVT, 8> VTs;
- SDValue V;
- unsigned Idx = 0;
- unsigned NumDefs = 0;
-
- for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
- SDValue X = N0.getOperand(i);
- if (!X.isUndef()) {
- V = X;
- Idx = i;
- NumDefs++;
- }
- // Stop if more than one members are non-undef.
- if (NumDefs > 1)
- break;
- VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
- VT.getVectorElementType(),
- X.getValueType().getVectorNumElements()));
- }
-
- if (NumDefs == 0)
- return DAG.getUNDEF(VT);
-
- if (NumDefs == 1) {
- assert(V.getNode() && "The single defined operand is empty!");
- SmallVector<SDValue, 8> Opnds;
- for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
- if (i != Idx) {
- Opnds.push_back(DAG.getUNDEF(VTs[i]));
- continue;
- }
- SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
- AddToWorklist(NV.getNode());
- Opnds.push_back(NV);
- }
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
- }
- }
-
- // Fold truncate of a bitcast of a vector to an extract of the low vector
- // element.
- //
- // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
- if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
- SDValue VecSrc = N0.getOperand(0);
- EVT SrcVT = VecSrc.getValueType();
- if (SrcVT.isVector() && SrcVT.getScalarType() == VT &&
- (!LegalOperations ||
- TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) {
- SDLoc SL(N);
-
- EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
- unsigned Idx = isLE ? 0 : SrcVT.getVectorNumElements() - 1;
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT,
- VecSrc, DAG.getConstant(Idx, SL, IdxVT));
- }
- }
-
- // Simplify the operands using demanded-bits information.
- if (!VT.isVector() &&
- SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
- // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
- // When the adde's carry is not used.
- // Don't make an illegal adde: LegalizeDAG can't expand nor promote it.
- if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
- N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
- ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
- TLI.isOperationLegal(N0.getOpcode(), VT))) {
- SDLoc SL(N);
- auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
- auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
- auto VTs = DAG.getVTList(VT, N0->getValueType(1));
- return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
- }
-
- // fold (truncate (extract_subvector(ext x))) ->
- // (extract_subvector x)
- // TODO: This can be generalized to cover cases where the truncate and extract
- // do not fully cancel each other out.
- if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == ISD::SIGN_EXTEND ||
- N00.getOpcode() == ISD::ZERO_EXTEND ||
- N00.getOpcode() == ISD::ANY_EXTEND) {
- if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
- VT.getVectorElementType())
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
- N00.getOperand(0), N0.getOperand(1));
- }
- }
-
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
-
- // Narrow a suitable binary operation with a non-opaque constant operand by
- // moving it ahead of the truncate. This is limited to pre-legalization
- // because targets may prefer a wider type during later combines and invert
- // this transform.
- switch (N0.getOpcode()) {
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- if (!LegalOperations && N0.hasOneUse() &&
- (isConstantOrConstantVector(N0.getOperand(0), true) ||
- isConstantOrConstantVector(N0.getOperand(1), true))) {
- // TODO: We already restricted this to pre-legalization, but for vectors
- // we are extra cautious to not create an unsupported operation.
- // Target-specific changes are likely needed to avoid regressions here.
- if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
- SDLoc DL(N);
- SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
- SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
- return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
- }
- }
- }
-
- return SDValue();
-}
-
-static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
- SDValue Elt = N->getOperand(i);
- if (Elt.getOpcode() != ISD::MERGE_VALUES)
- return Elt.getNode();
- return Elt.getOperand(Elt.getResNo()).getNode();
-}
-
-/// build_pair (load, load) -> load
-/// if load locations are consecutive.
-SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
- assert(N->getOpcode() == ISD::BUILD_PAIR);
-
- LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
- LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
-
- // A BUILD_PAIR is always having the least significant part in elt 0 and the
- // most significant part in elt 1. So when combining into one large load, we
- // need to consider the endianness.
- if (DAG.getDataLayout().isBigEndian())
- std::swap(LD1, LD2);
-
- if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
- LD1->getAddressSpace() != LD2->getAddressSpace())
- return SDValue();
- EVT LD1VT = LD1->getValueType(0);
- unsigned LD1Bytes = LD1VT.getStoreSize();
- if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
- DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
- unsigned Align = LD1->getAlignment();
- unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
- VT.getTypeForEVT(*DAG.getContext()));
-
- if (NewAlign <= Align &&
- (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
- return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
- LD1->getPointerInfo(), Align);
- }
-
- return SDValue();
-}
-
-static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
- // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
- // and Lo parts; on big-endian machines it doesn't.
- return DAG.getDataLayout().isBigEndian() ? 1 : 0;
-}
-
-static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // If this is not a bitcast to an FP type or if the target doesn't have
- // IEEE754-compliant FP logic, we're done.
- EVT VT = N->getValueType(0);
- if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
- return SDValue();
-
- // TODO: Handle cases where the integer constant is a different scalar
- // bitwidth to the FP.
- SDValue N0 = N->getOperand(0);
- EVT SourceVT = N0.getValueType();
- if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
- return SDValue();
-
- unsigned FPOpcode;
- APInt SignMask;
- switch (N0.getOpcode()) {
- case ISD::AND:
- FPOpcode = ISD::FABS;
- SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
- break;
- case ISD::XOR:
- FPOpcode = ISD::FNEG;
- SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
- break;
- case ISD::OR:
- FPOpcode = ISD::FABS;
- SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
- break;
- default:
- return SDValue();
- }
-
- // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
- // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
- // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
- // fneg (fabs X)
- SDValue LogicOp0 = N0.getOperand(0);
- ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
- if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
- LogicOp0.getOpcode() == ISD::BITCAST &&
- LogicOp0.getOperand(0).getValueType() == VT) {
- SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
- NumFPLogicOpsConv++;
- if (N0.getOpcode() == ISD::OR)
- return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
- return FPOp;
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitBITCAST(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
-
- // If the input is a BUILD_VECTOR with all constant elements, fold this now.
- // Only do this before legalize types, since we might create an illegal
- // scalar type. Even if we knew we wouldn't create an illegal scalar type
- // we can only do this before legalize ops, since the target maybe
- // depending on the bitcast.
- // First check to see if this is all constant.
- if (!LegalTypes &&
- N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
- VT.isVector() && cast<BuildVectorSDNode>(N0)->isConstant())
- return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
- VT.getVectorElementType());
-
- // If the input is a constant, let getNode fold it.
- if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
- // If we can't allow illegal operations, we need to check that this is just
- // a fp -> int or int -> conversion and that the resulting operation will
- // be legal.
- if (!LegalOperations ||
- (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
- TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
- (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
- TLI.isOperationLegal(ISD::Constant, VT))) {
- SDValue C = DAG.getBitcast(VT, N0);
- if (C.getNode() != N)
- return C;
- }
- }
-
- // (conv (conv x, t1), t2) -> (conv x, t2)
- if (N0.getOpcode() == ISD::BITCAST)
- return DAG.getBitcast(VT, N0.getOperand(0));
-
- // fold (conv (load x)) -> (load (conv*)x)
- // If the resultant load doesn't need a higher alignment than the original!
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- // Do not remove the cast if the types differ in endian layout.
- TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
- TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
- // If the load is volatile, we only want to change the load type if the
- // resulting load is legal. Otherwise we might increase the number of
- // memory accesses. We don't care if the original type was legal or not
- // as we assume software couldn't rely on the number of accesses of an
- // illegal type.
- ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
- TLI.isOperationLegal(ISD::LOAD, VT)) &&
- TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- unsigned OrigAlign = LN0->getAlignment();
-
- bool Fast = false;
- if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
- LN0->getAddressSpace(), OrigAlign, &Fast) &&
- Fast) {
- SDValue Load =
- DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(), OrigAlign,
- LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
- return Load;
- }
- }
-
- if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
- return V;
-
- // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
- // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
- //
- // For ppc_fp128:
- // fold (bitcast (fneg x)) ->
- // flipbit = signbit
- // (xor (bitcast x) (build_pair flipbit, flipbit))
- //
- // fold (bitcast (fabs x)) ->
- // flipbit = (and (extract_element (bitcast x), 0), signbit)
- // (xor (bitcast x) (build_pair flipbit, flipbit))
- // This often reduces constant pool loads.
- if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
- (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
- N0.getNode()->hasOneUse() && VT.isInteger() &&
- !VT.isVector() && !N0.getValueType().isVector()) {
- SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
- AddToWorklist(NewConv.getNode());
-
- SDLoc DL(N);
- if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
- assert(VT.getSizeInBits() == 128);
- SDValue SignBit = DAG.getConstant(
- APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
- SDValue FlipBit;
- if (N0.getOpcode() == ISD::FNEG) {
- FlipBit = SignBit;
- AddToWorklist(FlipBit.getNode());
- } else {
- assert(N0.getOpcode() == ISD::FABS);
- SDValue Hi =
- DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
- DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
- SDLoc(NewConv)));
- AddToWorklist(Hi.getNode());
- FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
- AddToWorklist(FlipBit.getNode());
- }
- SDValue FlipBits =
- DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
- AddToWorklist(FlipBits.getNode());
- return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
- }
- APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
- if (N0.getOpcode() == ISD::FNEG)
- return DAG.getNode(ISD::XOR, DL, VT,
- NewConv, DAG.getConstant(SignBit, DL, VT));
- assert(N0.getOpcode() == ISD::FABS);
- return DAG.getNode(ISD::AND, DL, VT,
- NewConv, DAG.getConstant(~SignBit, DL, VT));
- }
-
- // fold (bitconvert (fcopysign cst, x)) ->
- // (or (and (bitconvert x), sign), (and cst, (not sign)))
- // Note that we don't handle (copysign x, cst) because this can always be
- // folded to an fneg or fabs.
- //
- // For ppc_fp128:
- // fold (bitcast (fcopysign cst, x)) ->
- // flipbit = (and (extract_element
- // (xor (bitcast cst), (bitcast x)), 0),
- // signbit)
- // (xor (bitcast cst) (build_pair flipbit, flipbit))
- if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
- isa<ConstantFPSDNode>(N0.getOperand(0)) &&
- VT.isInteger() && !VT.isVector()) {
- unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
- EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
- if (isTypeLegal(IntXVT)) {
- SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
- AddToWorklist(X.getNode());
-
- // If X has a different width than the result/lhs, sext it or truncate it.
- unsigned VTWidth = VT.getSizeInBits();
- if (OrigXWidth < VTWidth) {
- X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
- AddToWorklist(X.getNode());
- } else if (OrigXWidth > VTWidth) {
- // To get the sign bit in the right place, we have to shift it right
- // before truncating.
- SDLoc DL(X);
- X = DAG.getNode(ISD::SRL, DL,
- X.getValueType(), X,
- DAG.getConstant(OrigXWidth-VTWidth, DL,
- X.getValueType()));
- AddToWorklist(X.getNode());
- X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
- AddToWorklist(X.getNode());
- }
-
- if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
- APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
- SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
- AddToWorklist(Cst.getNode());
- SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
- AddToWorklist(X.getNode());
- SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
- AddToWorklist(XorResult.getNode());
- SDValue XorResult64 = DAG.getNode(
- ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
- DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
- SDLoc(XorResult)));
- AddToWorklist(XorResult64.getNode());
- SDValue FlipBit =
- DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
- DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
- AddToWorklist(FlipBit.getNode());
- SDValue FlipBits =
- DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
- AddToWorklist(FlipBits.getNode());
- return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
- }
- APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
- X = DAG.getNode(ISD::AND, SDLoc(X), VT,
- X, DAG.getConstant(SignBit, SDLoc(X), VT));
- AddToWorklist(X.getNode());
-
- SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
- Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
- Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
- AddToWorklist(Cst.getNode());
-
- return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
- }
- }
-
- // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
- if (N0.getOpcode() == ISD::BUILD_PAIR)
- if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
- return CombineLD;
-
- // Remove double bitcasts from shuffles - this is often a legacy of
- // XformToShuffleWithZero being used to combine bitmaskings (of
- // float vectors bitcast to integer vectors) into shuffles.
- // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
- if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
- N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
- VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
- !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
-
- // If operands are a bitcast, peek through if it casts the original VT.
- // If operands are a constant, just bitcast back to original VT.
- auto PeekThroughBitcast = [&](SDValue Op) {
- if (Op.getOpcode() == ISD::BITCAST &&
- Op.getOperand(0).getValueType() == VT)
- return SDValue(Op.getOperand(0));
- if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
- ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
- return DAG.getBitcast(VT, Op);
- return SDValue();
- };
-
- // FIXME: If either input vector is bitcast, try to convert the shuffle to
- // the result type of this bitcast. This would eliminate at least one
- // bitcast. See the transform in InstCombine.
- SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
- SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
- if (!(SV0 && SV1))
- return SDValue();
-
- int MaskScale =
- VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
- SmallVector<int, 8> NewMask;
- for (int M : SVN->getMask())
- for (int i = 0; i != MaskScale; ++i)
- NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
-
- bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
- if (!LegalMask) {
- std::swap(SV0, SV1);
- ShuffleVectorSDNode::commuteMask(NewMask);
- LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
- }
-
- if (LegalMask)
- return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
- EVT VT = N->getValueType(0);
- return CombineConsecutiveLoads(N, VT);
-}
-
-/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
-/// operands. DstEltVT indicates the destination element value type.
-SDValue DAGCombiner::
-ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
- EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
-
- // If this is already the right type, we're done.
- if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
-
- unsigned SrcBitSize = SrcEltVT.getSizeInBits();
- unsigned DstBitSize = DstEltVT.getSizeInBits();
-
- // If this is a conversion of N elements of one type to N elements of another
- // type, convert each element. This handles FP<->INT cases.
- if (SrcBitSize == DstBitSize) {
- SmallVector<SDValue, 8> Ops;
- for (SDValue Op : BV->op_values()) {
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated. Make that explicit here.
- if (Op.getValueType() != SrcEltVT)
- Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
- Ops.push_back(DAG.getBitcast(DstEltVT, Op));
- AddToWorklist(Ops.back().getNode());
- }
- EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
- BV->getValueType(0).getVectorNumElements());
- return DAG.getBuildVector(VT, SDLoc(BV), Ops);
- }
-
- // Otherwise, we're growing or shrinking the elements. To avoid having to
- // handle annoying details of growing/shrinking FP values, we convert them to
- // int first.
- if (SrcEltVT.isFloatingPoint()) {
- // Convert the input float vector to a int vector where the elements are the
- // same sizes.
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
- BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
- SrcEltVT = IntVT;
- }
-
- // Now we know the input is an integer vector. If the output is a FP type,
- // convert to integer first, then to FP of the right size.
- if (DstEltVT.isFloatingPoint()) {
- EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
- SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
-
- // Next, convert to FP elements of the same size.
- return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
- }
-
- SDLoc DL(BV);
-
- // Okay, we know the src/dst types are both integers of differing types.
- // Handling growing first.
- assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
- if (SrcBitSize < DstBitSize) {
- unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
-
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0, e = BV->getNumOperands(); i != e;
- i += NumInputsPerOutput) {
- bool isLE = DAG.getDataLayout().isLittleEndian();
- APInt NewBits = APInt(DstBitSize, 0);
- bool EltIsUndef = true;
- for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
- // Shift the previously computed bits over.
- NewBits <<= SrcBitSize;
- SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
- if (Op.isUndef()) continue;
- EltIsUndef = false;
-
- NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
- zextOrTrunc(SrcBitSize).zext(DstBitSize);
- }
-
- if (EltIsUndef)
- Ops.push_back(DAG.getUNDEF(DstEltVT));
- else
- Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
- }
-
- EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
- return DAG.getBuildVector(VT, DL, Ops);
- }
-
- // Finally, this must be the case where we are shrinking elements: each input
- // turns into multiple outputs.
- unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
- EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
- NumOutputsPerInput*BV->getNumOperands());
- SmallVector<SDValue, 8> Ops;
-
- for (const SDValue &Op : BV->op_values()) {
- if (Op.isUndef()) {
- Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
- continue;
- }
-
- APInt OpVal = cast<ConstantSDNode>(Op)->
- getAPIntValue().zextOrTrunc(SrcBitSize);
-
- for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
- APInt ThisVal = OpVal.trunc(DstBitSize);
- Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
- OpVal.lshrInPlace(DstBitSize);
- }
-
- // For big endian targets, swap the order of the pieces of each element.
- if (DAG.getDataLayout().isBigEndian())
- std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
- }
-
- return DAG.getBuildVector(VT, DL, Ops);
-}
-
-static bool isContractable(SDNode *N) {
- SDNodeFlags F = N->getFlags();
- return F.hasAllowContract() || F.hasAllowReassociation();
-}
-
-/// Try to perform FMA combining on a given FADD node.
-SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc SL(N);
-
- const TargetOptions &Options = DAG.getTarget().Options;
-
- // Floating-point multiply-add with intermediate rounding.
- bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
-
- // Floating-point multiply-add without intermediate rounding.
- bool HasFMA =
- TLI.isFMAFasterThanFMulAndFAdd(VT) &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
-
- // No valid opcode, do not combine.
- if (!HasFMAD && !HasFMA)
- return SDValue();
-
- SDNodeFlags Flags = N->getFlags();
- bool CanFuse = Options.UnsafeFPMath || isContractable(N);
- bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
- CanFuse || HasFMAD);
- // If the addition is not contractable, do not combine.
- if (!AllowFusionGlobally && !isContractable(N))
- return SDValue();
-
- const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
- if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
- return SDValue();
-
- // Always prefer FMAD to FMA for precision.
- unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
- bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
-
- // Is the node an FMUL and contractable either due to global flags or
- // SDNodeFlags.
- auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
- if (N.getOpcode() != ISD::FMUL)
- return false;
- return AllowFusionGlobally || isContractable(N.getNode());
- };
- // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
- // prefer to fold the multiply with fewer uses.
- if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
- if (N0.getNode()->use_size() > N1.getNode()->use_size())
- std::swap(N0, N1);
- }
-
- // fold (fadd (fmul x, y), z) -> (fma x, y, z)
- if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(0), N0.getOperand(1), N1, Flags);
- }
-
- // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
- // Note: Commutes FADD operands.
- if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N1.getOperand(0), N1.getOperand(1), N0, Flags);
- }
-
- // Look through FP_EXTEND nodes to do more combining.
-
- // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (isContractableFMUL(N00) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N00.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N00.getOperand(1)), N1, Flags);
- }
- }
-
- // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
- // Note: Commutes FADD operands.
- if (N1.getOpcode() == ISD::FP_EXTEND) {
- SDValue N10 = N1.getOperand(0);
- if (isContractableFMUL(N10) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N10.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N10.getOperand(1)), N0, Flags);
- }
- }
-
- // More folding opportunities when target permits.
- if (Aggressive) {
- // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
- if (CanFuse &&
- N0.getOpcode() == PreferredFusedOpcode &&
- N0.getOperand(2).getOpcode() == ISD::FMUL &&
- N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(0), N0.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(2).getOperand(0),
- N0.getOperand(2).getOperand(1),
- N1, Flags), Flags);
- }
-
- // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
- if (CanFuse &&
- N1->getOpcode() == PreferredFusedOpcode &&
- N1.getOperand(2).getOpcode() == ISD::FMUL &&
- N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N1.getOperand(0), N1.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- N1.getOperand(2).getOperand(0),
- N1.getOperand(2).getOperand(1),
- N0, Flags), Flags);
- }
-
-
- // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
- // -> (fma x, y, (fma (fpext u), (fpext v), z))
- auto FoldFAddFMAFPExtFMul = [&] (
- SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
- SDNodeFlags Flags) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
- Z, Flags), Flags);
- };
- if (N0.getOpcode() == PreferredFusedOpcode) {
- SDValue N02 = N0.getOperand(2);
- if (N02.getOpcode() == ISD::FP_EXTEND) {
- SDValue N020 = N02.getOperand(0);
- if (isContractableFMUL(N020) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
- return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
- N020.getOperand(0), N020.getOperand(1),
- N1, Flags);
- }
- }
- }
-
- // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
- // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- auto FoldFAddFPExtFMAFMul = [&] (
- SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z,
- SDNodeFlags Flags) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
- Z, Flags), Flags);
- };
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == PreferredFusedOpcode) {
- SDValue N002 = N00.getOperand(2);
- if (isContractableFMUL(N002) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
- return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
- N002.getOperand(0), N002.getOperand(1),
- N1, Flags);
- }
- }
- }
-
- // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
- // -> (fma y, z, (fma (fpext u), (fpext v), x))
- if (N1.getOpcode() == PreferredFusedOpcode) {
- SDValue N12 = N1.getOperand(2);
- if (N12.getOpcode() == ISD::FP_EXTEND) {
- SDValue N120 = N12.getOperand(0);
- if (isContractableFMUL(N120) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
- return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
- N120.getOperand(0), N120.getOperand(1),
- N0, Flags);
- }
- }
- }
-
- // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
- // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- if (N1.getOpcode() == ISD::FP_EXTEND) {
- SDValue N10 = N1.getOperand(0);
- if (N10.getOpcode() == PreferredFusedOpcode) {
- SDValue N102 = N10.getOperand(2);
- if (isContractableFMUL(N102) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
- return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
- N102.getOperand(0), N102.getOperand(1),
- N0, Flags);
- }
- }
- }
- }
-
- return SDValue();
-}
-
-/// Try to perform FMA combining on a given FSUB node.
-SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc SL(N);
-
- const TargetOptions &Options = DAG.getTarget().Options;
- // Floating-point multiply-add with intermediate rounding.
- bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
-
- // Floating-point multiply-add without intermediate rounding.
- bool HasFMA =
- TLI.isFMAFasterThanFMulAndFAdd(VT) &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
-
- // No valid opcode, do not combine.
- if (!HasFMAD && !HasFMA)
- return SDValue();
-
- const SDNodeFlags Flags = N->getFlags();
- bool CanFuse = Options.UnsafeFPMath || isContractable(N);
- bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
- CanFuse || HasFMAD);
-
- // If the subtraction is not contractable, do not combine.
- if (!AllowFusionGlobally && !isContractable(N))
- return SDValue();
-
- const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo();
- if (STI && STI->generateFMAsInMachineCombiner(OptLevel))
- return SDValue();
-
- // Always prefer FMAD to FMA for precision.
- unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
- bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
-
- // Is the node an FMUL and contractable either due to global flags or
- // SDNodeFlags.
- auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
- if (N.getOpcode() != ISD::FMUL)
- return false;
- return AllowFusionGlobally || isContractable(N.getNode());
- };
-
- // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
- if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(0), N0.getOperand(1),
- DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
- }
-
- // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
- // Note: Commutes FSUB operands.
- if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- N1.getOperand(0)),
- N1.getOperand(1), N0, Flags);
- }
-
- // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
- if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
- (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
- SDValue N00 = N0.getOperand(0).getOperand(0);
- SDValue N01 = N0.getOperand(0).getOperand(1);
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
- DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
- }
-
- // Look through FP_EXTEND nodes to do more combining.
-
- // fold (fsub (fpext (fmul x, y)), z)
- // -> (fma (fpext x), (fpext y), (fneg z))
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (isContractableFMUL(N00) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N00.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N00.getOperand(1)),
- DAG.getNode(ISD::FNEG, SL, VT, N1), Flags);
- }
- }
-
- // fold (fsub x, (fpext (fmul y, z)))
- // -> (fma (fneg (fpext y)), (fpext z), x)
- // Note: Commutes FSUB operands.
- if (N1.getOpcode() == ISD::FP_EXTEND) {
- SDValue N10 = N1.getOperand(0);
- if (isContractableFMUL(N10) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N10.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N10.getOperand(0))),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N10.getOperand(1)),
- N0, Flags);
- }
- }
-
- // fold (fsub (fpext (fneg (fmul, x, y))), z)
- // -> (fneg (fma (fpext x), (fpext y), z))
- // Note: This could be removed with appropriate canonicalization of the
- // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
- // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
- // from implementing the canonicalization in visitFSUB.
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == ISD::FNEG) {
- SDValue N000 = N00.getOperand(0);
- if (isContractableFMUL(N000) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
- return DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N000.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N000.getOperand(1)),
- N1, Flags));
- }
- }
- }
-
- // fold (fsub (fneg (fpext (fmul, x, y))), z)
- // -> (fneg (fma (fpext x)), (fpext y), z)
- // Note: This could be removed with appropriate canonicalization of the
- // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
- // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
- // from implementing the canonicalization in visitFSUB.
- if (N0.getOpcode() == ISD::FNEG) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == ISD::FP_EXTEND) {
- SDValue N000 = N00.getOperand(0);
- if (isContractableFMUL(N000) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N000.getValueType())) {
- return DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N000.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N000.getOperand(1)),
- N1, Flags));
- }
- }
- }
-
- // More folding opportunities when target permits.
- if (Aggressive) {
- // fold (fsub (fma x, y, (fmul u, v)), z)
- // -> (fma x, y (fma u, v, (fneg z)))
- if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
- isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
- N0.getOperand(2)->hasOneUse()) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(0), N0.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(2).getOperand(0),
- N0.getOperand(2).getOperand(1),
- DAG.getNode(ISD::FNEG, SL, VT,
- N1), Flags), Flags);
- }
-
- // fold (fsub x, (fma y, z, (fmul u, v)))
- // -> (fma (fneg y), z, (fma (fneg u), v, x))
- if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
- isContractableFMUL(N1.getOperand(2))) {
- SDValue N20 = N1.getOperand(2).getOperand(0);
- SDValue N21 = N1.getOperand(2).getOperand(1);
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- N1.getOperand(0)),
- N1.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N20),
- N21, N0, Flags), Flags);
- }
-
-
- // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
- // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
- if (N0.getOpcode() == PreferredFusedOpcode) {
- SDValue N02 = N0.getOperand(2);
- if (N02.getOpcode() == ISD::FP_EXTEND) {
- SDValue N020 = N02.getOperand(0);
- if (isContractableFMUL(N020) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N020.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(0), N0.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N020.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N020.getOperand(1)),
- DAG.getNode(ISD::FNEG, SL, VT,
- N1), Flags), Flags);
- }
- }
- }
-
- // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
- // -> (fma (fpext x), (fpext y),
- // (fma (fpext u), (fpext v), (fneg z)))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == PreferredFusedOpcode) {
- SDValue N002 = N00.getOperand(2);
- if (isContractableFMUL(N002) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N00.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N00.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N00.getOperand(1)),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N002.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N002.getOperand(1)),
- DAG.getNode(ISD::FNEG, SL, VT,
- N1), Flags), Flags);
- }
- }
- }
-
- // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
- // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
- if (N1.getOpcode() == PreferredFusedOpcode &&
- N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
- SDValue N120 = N1.getOperand(2).getOperand(0);
- if (isContractableFMUL(N120) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, N120.getValueType())) {
- SDValue N1200 = N120.getOperand(0);
- SDValue N1201 = N120.getOperand(1);
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
- N1.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL,
- VT, N1200)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N1201),
- N0, Flags), Flags);
- }
- }
-
- // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
- // -> (fma (fneg (fpext y)), (fpext z),
- // (fma (fneg (fpext u)), (fpext v), x))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- if (N1.getOpcode() == ISD::FP_EXTEND &&
- N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
- SDValue CvtSrc = N1.getOperand(0);
- SDValue N100 = CvtSrc.getOperand(0);
- SDValue N101 = CvtSrc.getOperand(1);
- SDValue N102 = CvtSrc.getOperand(2);
- if (isContractableFMUL(N102) &&
- TLI.isFPExtFoldable(PreferredFusedOpcode, VT, CvtSrc.getValueType())) {
- SDValue N1020 = N102.getOperand(0);
- SDValue N1021 = N102.getOperand(1);
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N100)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL,
- VT, N1020)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT,
- N1021),
- N0, Flags), Flags);
- }
- }
- }
-
- return SDValue();
-}
-
-/// Try to perform FMA combining on a given FMUL node based on the distributive
-/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
-/// subtraction instead of addition).
-SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc SL(N);
- const SDNodeFlags Flags = N->getFlags();
-
- assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
-
- const TargetOptions &Options = DAG.getTarget().Options;
-
- // The transforms below are incorrect when x == 0 and y == inf, because the
- // intermediate multiplication produces a nan.
- if (!Options.NoInfsFPMath)
- return SDValue();
-
- // Floating-point multiply-add without intermediate rounding.
- bool HasFMA =
- (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
- TLI.isFMAFasterThanFMulAndFAdd(VT) &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
-
- // Floating-point multiply-add with intermediate rounding. This can result
- // in a less precise result due to the changed rounding order.
- bool HasFMAD = Options.UnsafeFPMath &&
- (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
-
- // No valid opcode, do not combine.
- if (!HasFMAD && !HasFMA)
- return SDValue();
-
- // Always prefer FMAD to FMA for precision.
- unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
- bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
-
- // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
- // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
- auto FuseFADD = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
- if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
- if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
- if (C->isExactlyValue(+1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- Y, Flags);
- if (C->isExactlyValue(-1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
- }
- }
- return SDValue();
- };
-
- if (SDValue FMA = FuseFADD(N0, N1, Flags))
- return FMA;
- if (SDValue FMA = FuseFADD(N1, N0, Flags))
- return FMA;
-
- // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
- // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
- // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
- // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
- auto FuseFSUB = [&](SDValue X, SDValue Y, const SDNodeFlags Flags) {
- if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
- if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
- if (C0->isExactlyValue(+1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
- Y, Flags);
- if (C0->isExactlyValue(-1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
- DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
- }
- if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
- if (C1->isExactlyValue(+1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- DAG.getNode(ISD::FNEG, SL, VT, Y), Flags);
- if (C1->isExactlyValue(-1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- Y, Flags);
- }
- }
- return SDValue();
- };
-
- if (SDValue FMA = FuseFSUB(N0, N1, Flags))
- return FMA;
- if (SDValue FMA = FuseFSUB(N1, N0, Flags))
- return FMA;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFADD(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
- bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- const SDNodeFlags Flags = N->getFlags();
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (fadd c1, c2) -> c1 + c2
- if (N0CFP && N1CFP)
- return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
-
- // canonicalize constant to RHS
- if (N0CFP && !N1CFP)
- return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
-
- // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
- ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
- if (N1C && N1C->isZero())
- if (N1C->isNegative() || Options.UnsafeFPMath || Flags.hasNoSignedZeros())
- return N0;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // fold (fadd A, (fneg B)) -> (fsub A, B)
- if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
- isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
- return DAG.getNode(ISD::FSUB, DL, VT, N0,
- GetNegatedExpression(N1, DAG, LegalOperations), Flags);
-
- // fold (fadd (fneg A), B) -> (fsub B, A)
- if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
- isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
- return DAG.getNode(ISD::FSUB, DL, VT, N1,
- GetNegatedExpression(N0, DAG, LegalOperations), Flags);
-
- auto isFMulNegTwo = [](SDValue FMul) {
- if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
- return false;
- auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
- return C && C->isExactlyValue(-2.0);
- };
-
- // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
- if (isFMulNegTwo(N0)) {
- SDValue B = N0.getOperand(0);
- SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
- return DAG.getNode(ISD::FSUB, DL, VT, N1, Add, Flags);
- }
- // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
- if (isFMulNegTwo(N1)) {
- SDValue B = N1.getOperand(0);
- SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B, Flags);
- return DAG.getNode(ISD::FSUB, DL, VT, N0, Add, Flags);
- }
-
- // No FP constant should be created after legalization as Instruction
- // Selection pass has a hard time dealing with FP constants.
- bool AllowNewConst = (Level < AfterLegalizeDAG);
-
- // If 'unsafe math' or nnan is enabled, fold lots of things.
- if ((Options.UnsafeFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
- // If allowed, fold (fadd (fneg x), x) -> 0.0
- if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
- return DAG.getConstantFP(0.0, DL, VT);
-
- // If allowed, fold (fadd x, (fneg x)) -> 0.0
- if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
- return DAG.getConstantFP(0.0, DL, VT);
- }
-
- // If 'unsafe math' or reassoc and nsz, fold lots of things.
- // TODO: break out portions of the transformations below for which Unsafe is
- // considered and which do not require both nsz and reassoc
- if ((Options.UnsafeFPMath ||
- (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
- AllowNewConst) {
- // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
- if (N1CFP && N0.getOpcode() == ISD::FADD &&
- isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
- SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, Flags);
- return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC, Flags);
- }
-
- // We can fold chains of FADD's of the same value into multiplications.
- // This transform is not safe in general because we are reducing the number
- // of rounding steps.
- if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
- if (N0.getOpcode() == ISD::FMUL) {
- bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
- bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
-
- // (fadd (fmul x, c), x) -> (fmul x, c+1)
- if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
- DAG.getConstantFP(1.0, DL, VT), Flags);
- return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
- }
-
- // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
- if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(0) == N1.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
- DAG.getConstantFP(2.0, DL, VT), Flags);
- return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
- }
- }
-
- if (N1.getOpcode() == ISD::FMUL) {
- bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
- bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
-
- // (fadd x, (fmul x, c)) -> (fmul x, c+1)
- if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
- DAG.getConstantFP(1.0, DL, VT), Flags);
- return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
- }
-
- // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
- if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
- N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(0) == N0.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
- DAG.getConstantFP(2.0, DL, VT), Flags);
- return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
- }
- }
-
- if (N0.getOpcode() == ISD::FADD) {
- bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
- // (fadd (fadd x, x), x) -> (fmul x, 3.0)
- if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
- (N0.getOperand(0) == N1)) {
- return DAG.getNode(ISD::FMUL, DL, VT,
- N1, DAG.getConstantFP(3.0, DL, VT), Flags);
- }
- }
-
- if (N1.getOpcode() == ISD::FADD) {
- bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
- // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
- if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
- N1.getOperand(0) == N0) {
- return DAG.getNode(ISD::FMUL, DL, VT,
- N0, DAG.getConstantFP(3.0, DL, VT), Flags);
- }
- }
-
- // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
- if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
- N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(0) == N1.getOperand(0)) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
- DAG.getConstantFP(4.0, DL, VT), Flags);
- }
- }
- } // enable-unsafe-fp-math
-
- // FADD -> FMA combines:
- if (SDValue Fused = visitFADDForFMACombine(N)) {
- AddToWorklist(Fused.getNode());
- return Fused;
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFSUB(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
- ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- const SDNodeFlags Flags = N->getFlags();
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (fsub c1, c2) -> c1-c2
- if (N0CFP && N1CFP)
- return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- // (fsub A, 0) -> A
- if (N1CFP && N1CFP->isZero()) {
- if (!N1CFP->isNegative() || Options.UnsafeFPMath ||
- Flags.hasNoSignedZeros()) {
- return N0;
- }
- }
-
- if (N0 == N1) {
- // (fsub x, x) -> 0.0
- if (Options.UnsafeFPMath || Flags.hasNoNaNs())
- return DAG.getConstantFP(0.0f, DL, VT);
- }
-
- // (fsub -0.0, N1) -> -N1
- if (N0CFP && N0CFP->isZero()) {
- if (N0CFP->isNegative() ||
- (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
- if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
- return GetNegatedExpression(N1, DAG, LegalOperations);
- if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
- }
- }
-
- if ((Options.UnsafeFPMath ||
- (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()))
- && N1.getOpcode() == ISD::FADD) {
- // X - (X + Y) -> -Y
- if (N0 == N1->getOperand(0))
- return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1), Flags);
- // X - (Y + X) -> -Y
- if (N0 == N1->getOperand(1))
- return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0), Flags);
- }
-
- // fold (fsub A, (fneg B)) -> (fadd A, B)
- if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
- return DAG.getNode(ISD::FADD, DL, VT, N0,
- GetNegatedExpression(N1, DAG, LegalOperations), Flags);
-
- // FSUB -> FMA combines:
- if (SDValue Fused = visitFSUBForFMACombine(N)) {
- AddToWorklist(Fused.getNode());
- return Fused;
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFMUL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
- ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- const SDNodeFlags Flags = N->getFlags();
-
- // fold vector ops
- if (VT.isVector()) {
- // This just handles C1 * C2 for vectors. Other vector folds are below.
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
- }
-
- // fold (fmul c1, c2) -> c1*c2
- if (N0CFP && N1CFP)
- return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
-
- // canonicalize constant to RHS
- if (isConstantFPBuildVectorOrConstantFP(N0) &&
- !isConstantFPBuildVectorOrConstantFP(N1))
- return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
-
- // fold (fmul A, 1.0) -> A
- if (N1CFP && N1CFP->isExactlyValue(1.0))
- return N0;
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- if (Options.UnsafeFPMath ||
- (Flags.hasNoNaNs() && Flags.hasNoSignedZeros())) {
- // fold (fmul A, 0) -> 0
- if (N1CFP && N1CFP->isZero())
- return N1;
- }
-
- if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
- // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
- if (isConstantFPBuildVectorOrConstantFP(N1) &&
- N0.getOpcode() == ISD::FMUL) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- // Avoid an infinite loop by making sure that N00 is not a constant
- // (the inner multiply has not been constant folded yet).
- if (isConstantFPBuildVectorOrConstantFP(N01) &&
- !isConstantFPBuildVectorOrConstantFP(N00)) {
- SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
- return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
- }
- }
-
- // Match a special-case: we convert X * 2.0 into fadd.
- // fmul (fadd X, X), C -> fmul X, 2.0 * C
- if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
- N0.getOperand(0) == N0.getOperand(1)) {
- const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
- SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
- return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
- }
- }
-
- // fold (fmul X, 2.0) -> (fadd X, X)
- if (N1CFP && N1CFP->isExactlyValue(+2.0))
- return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
-
- // fold (fmul X, -1.0) -> (fneg X)
- if (N1CFP && N1CFP->isExactlyValue(-1.0))
- if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, DL, VT, N0);
-
- // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
- if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
- if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
- // Both can be negated for free, check to see if at least one is cheaper
- // negated.
- if (LHSNeg == 2 || RHSNeg == 2)
- return DAG.getNode(ISD::FMUL, DL, VT,
- GetNegatedExpression(N0, DAG, LegalOperations),
- GetNegatedExpression(N1, DAG, LegalOperations),
- Flags);
- }
- }
-
- // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
- // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
- if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
- (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
- TLI.isOperationLegal(ISD::FABS, VT)) {
- SDValue Select = N0, X = N1;
- if (Select.getOpcode() != ISD::SELECT)
- std::swap(Select, X);
-
- SDValue Cond = Select.getOperand(0);
- auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
- auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
-
- if (TrueOpnd && FalseOpnd &&
- Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
- isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
- cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
- switch (CC) {
- default: break;
- case ISD::SETOLT:
- case ISD::SETULT:
- case ISD::SETOLE:
- case ISD::SETULE:
- case ISD::SETLT:
- case ISD::SETLE:
- std::swap(TrueOpnd, FalseOpnd);
- LLVM_FALLTHROUGH;
- case ISD::SETOGT:
- case ISD::SETUGT:
- case ISD::SETOGE:
- case ISD::SETUGE:
- case ISD::SETGT:
- case ISD::SETGE:
- if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
- TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, DL, VT,
- DAG.getNode(ISD::FABS, DL, VT, X));
- if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
- return DAG.getNode(ISD::FABS, DL, VT, X);
-
- break;
- }
- }
- }
-
- // FMUL -> FMA combines:
- if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
- AddToWorklist(Fused.getNode());
- return Fused;
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFMA(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
-
- // FMA nodes have flags that propagate to the created nodes.
- const SDNodeFlags Flags = N->getFlags();
- bool UnsafeFPMath = Options.UnsafeFPMath || isContractable(N);
-
- // Constant fold FMA.
- if (isa<ConstantFPSDNode>(N0) &&
- isa<ConstantFPSDNode>(N1) &&
- isa<ConstantFPSDNode>(N2)) {
- return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
- }
-
- if (UnsafeFPMath) {
- if (N0CFP && N0CFP->isZero())
- return N2;
- if (N1CFP && N1CFP->isZero())
- return N2;
- }
- // TODO: The FMA node should have flags that propagate to these nodes.
- if (N0CFP && N0CFP->isExactlyValue(1.0))
- return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
- if (N1CFP && N1CFP->isExactlyValue(1.0))
- return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
-
- // Canonicalize (fma c, x, y) -> (fma x, c, y)
- if (isConstantFPBuildVectorOrConstantFP(N0) &&
- !isConstantFPBuildVectorOrConstantFP(N1))
- return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
-
- if (UnsafeFPMath) {
- // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
- if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
- isConstantFPBuildVectorOrConstantFP(N1) &&
- isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
- Flags), Flags);
- }
-
- // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
- if (N0.getOpcode() == ISD::FMUL &&
- isConstantFPBuildVectorOrConstantFP(N1) &&
- isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
- return DAG.getNode(ISD::FMA, DL, VT,
- N0.getOperand(0),
- DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
- Flags),
- N2);
- }
- }
-
- // (fma x, 1, y) -> (fadd x, y)
- // (fma x, -1, y) -> (fadd (fneg x), y)
- if (N1CFP) {
- if (N1CFP->isExactlyValue(1.0))
- // TODO: The FMA node should have flags that propagate to this node.
- return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
-
- if (N1CFP->isExactlyValue(-1.0) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
- SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
- AddToWorklist(RHSNeg.getNode());
- // TODO: The FMA node should have flags that propagate to this node.
- return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
- }
-
- // fma (fneg x), K, y -> fma x -K, y
- if (N0.getOpcode() == ISD::FNEG &&
- (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
- (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT)))) {
- return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
- DAG.getNode(ISD::FNEG, DL, VT, N1, Flags), N2);
- }
- }
-
- if (UnsafeFPMath) {
- // (fma x, c, x) -> (fmul x, (c+1))
- if (N1CFP && N0 == N2) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getNode(ISD::FADD, DL, VT, N1,
- DAG.getConstantFP(1.0, DL, VT), Flags),
- Flags);
- }
-
- // (fma x, c, (fneg x)) -> (fmul x, (c-1))
- if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getNode(ISD::FADD, DL, VT, N1,
- DAG.getConstantFP(-1.0, DL, VT), Flags),
- Flags);
- }
- }
-
- return SDValue();
-}
-
-// Combine multiple FDIVs with the same divisor into multiple FMULs by the
-// reciprocal.
-// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
-// Notice that this is not always beneficial. One reason is different targets
-// may have different costs for FDIV and FMUL, so sometimes the cost of two
-// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
-// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
-SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
- bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
- const SDNodeFlags Flags = N->getFlags();
- if (!UnsafeMath && !Flags.hasAllowReciprocal())
- return SDValue();
-
- // Skip if current node is a reciprocal.
- SDValue N0 = N->getOperand(0);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- if (N0CFP && N0CFP->isExactlyValue(1.0))
- return SDValue();
-
- // Exit early if the target does not want this transform or if there can't
- // possibly be enough uses of the divisor to make the transform worthwhile.
- SDValue N1 = N->getOperand(1);
- unsigned MinUses = TLI.combineRepeatedFPDivisors();
- if (!MinUses || N1->use_size() < MinUses)
- return SDValue();
-
- // Find all FDIV users of the same divisor.
- // Use a set because duplicates may be present in the user list.
- SetVector<SDNode *> Users;
- for (auto *U : N1->uses()) {
- if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
- // This division is eligible for optimization only if global unsafe math
- // is enabled or if this division allows reciprocal formation.
- if (UnsafeMath || U->getFlags().hasAllowReciprocal())
- Users.insert(U);
- }
- }
-
- // Now that we have the actual number of divisor uses, make sure it meets
- // the minimum threshold specified by the target.
- if (Users.size() < MinUses)
- return SDValue();
-
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
- SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
-
- // Dividend / Divisor -> Dividend * Reciprocal
- for (auto *U : Users) {
- SDValue Dividend = U->getOperand(0);
- if (Dividend != FPOne) {
- SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
- Reciprocal, Flags);
- CombineTo(U, NewNode);
- } else if (U != Reciprocal.getNode()) {
- // In the absence of fast-math-flags, this user node is always the
- // same node as Reciprocal, but with FMF they may be different nodes.
- CombineTo(U, Reciprocal);
- }
- }
- return SDValue(N, 0); // N was replaced.
-}
-
-SDValue DAGCombiner::visitFDIV(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- SDNodeFlags Flags = N->getFlags();
-
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N))
- return FoldedVOp;
-
- // fold (fdiv c1, c2) -> c1/c2
- if (N0CFP && N1CFP)
- return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
- // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
- if (N1CFP) {
- // Compute the reciprocal 1.0 / c2.
- const APFloat &N1APF = N1CFP->getValueAPF();
- APFloat Recip(N1APF.getSemantics(), 1); // 1.0
- APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
- // Only do the transform if the reciprocal is a legal fp immediate that
- // isn't too nasty (eg NaN, denormal, ...).
- if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
- (!LegalOperations ||
- // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
- // backend)... we should handle this gracefully after Legalize.
- // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
- TLI.isOperationLegal(ISD::ConstantFP, VT) ||
- TLI.isFPImmLegal(Recip, VT)))
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getConstantFP(Recip, DL, VT), Flags);
- }
-
- // If this FDIV is part of a reciprocal square root, it may be folded
- // into a target-specific square root estimate instruction.
- if (N1.getOpcode() == ISD::FSQRT) {
- if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
- }
- } else if (N1.getOpcode() == ISD::FP_EXTEND &&
- N1.getOperand(0).getOpcode() == ISD::FSQRT) {
- if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
- Flags)) {
- RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
- AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
- }
- } else if (N1.getOpcode() == ISD::FP_ROUND &&
- N1.getOperand(0).getOpcode() == ISD::FSQRT) {
- if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0),
- Flags)) {
- RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
- AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
- }
- } else if (N1.getOpcode() == ISD::FMUL) {
- // Look through an FMUL. Even though this won't remove the FDIV directly,
- // it's still worthwhile to get rid of the FSQRT if possible.
- SDValue SqrtOp;
- SDValue OtherOp;
- if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
- SqrtOp = N1.getOperand(0);
- OtherOp = N1.getOperand(1);
- } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
- SqrtOp = N1.getOperand(1);
- OtherOp = N1.getOperand(0);
- }
- if (SqrtOp.getNode()) {
- // We found a FSQRT, so try to make this fold:
- // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
- if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
- RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
- AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
- }
- }
- }
-
- // Fold into a reciprocal estimate and multiply instead of a real divide.
- if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
- AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
- }
- }
-
- // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
- if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
- if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
- // Both can be negated for free, check to see if at least one is cheaper
- // negated.
- if (LHSNeg == 2 || RHSNeg == 2)
- return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
- GetNegatedExpression(N0, DAG, LegalOperations),
- GetNegatedExpression(N1, DAG, LegalOperations),
- Flags);
- }
- }
-
- if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
- return CombineRepeatedDivisors;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFREM(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- EVT VT = N->getValueType(0);
-
- // fold (frem c1, c2) -> fmod(c1,c2)
- if (N0CFP && N1CFP)
- return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, N->getFlags());
-
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFSQRT(SDNode *N) {
- SDNodeFlags Flags = N->getFlags();
- if (!DAG.getTarget().Options.UnsafeFPMath &&
- !Flags.hasApproximateFuncs())
- return SDValue();
-
- SDValue N0 = N->getOperand(0);
- if (TLI.isFsqrtCheap(N0, DAG))
- return SDValue();
-
- // FSQRT nodes have flags that propagate to the created nodes.
- return buildSqrtEstimate(N0, Flags);
-}
-
-/// copysign(x, fp_extend(y)) -> copysign(x, y)
-/// copysign(x, fp_round(y)) -> copysign(x, y)
-static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
- SDValue N1 = N->getOperand(1);
- if ((N1.getOpcode() == ISD::FP_EXTEND ||
- N1.getOpcode() == ISD::FP_ROUND)) {
- // Do not optimize out type conversion of f128 type yet.
- // For some targets like x86_64, configuration is changed to keep one f128
- // value in one SSE register, but instruction selection cannot handle
- // FCOPYSIGN on SSE registers yet.
- EVT N1VT = N1->getValueType(0);
- EVT N1Op0VT = N1->getOperand(0).getValueType();
- return (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
- }
- return false;
-}
-
-SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
- bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
- EVT VT = N->getValueType(0);
-
- if (N0CFP && N1CFP) // Constant fold
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
-
- if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
- const APFloat &V = N1C->getValueAPF();
- // copysign(x, c1) -> fabs(x) iff ispos(c1)
- // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
- if (!V.isNegative()) {
- if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
- } else {
- if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
- DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
- }
- }
-
- // copysign(fabs(x), y) -> copysign(x, y)
- // copysign(fneg(x), y) -> copysign(x, y)
- // copysign(copysign(x,z), y) -> copysign(x, y)
- if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
- N0.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
-
- // copysign(x, abs(y)) -> abs(x)
- if (N1.getOpcode() == ISD::FABS)
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
-
- // copysign(x, copysign(y,z)) -> copysign(x, z)
- if (N1.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
-
- // copysign(x, fp_extend(y)) -> copysign(x, y)
- // copysign(x, fp_round(y)) -> copysign(x, y)
- if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFPOW(SDNode *N) {
- ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
- if (!ExponentC)
- return SDValue();
-
- // Try to convert x ** (1/3) into cube root.
- // TODO: Handle the various flavors of long double.
- // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
- // Some range near 1/3 should be fine.
- EVT VT = N->getValueType(0);
- if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
- (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
- // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
- // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
- // pow(-val, 1/3) = nan; cbrt(-val) = -num.
- // For regular numbers, rounding may cause the results to differ.
- // Therefore, we require { nsz ninf nnan afn } for this transform.
- // TODO: We could select out the special cases if we don't have nsz/ninf.
- SDNodeFlags Flags = N->getFlags();
- if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
- !Flags.hasApproximateFuncs())
- return SDValue();
-
- // Do not create a cbrt() libcall if the target does not have it, and do not
- // turn a pow that has lowering support into a cbrt() libcall.
- if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
- (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
- DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
- return SDValue();
-
- return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0), Flags);
- }
-
- // Try to convert x ** (1/4) into square roots.
- // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
- // TODO: This could be extended (using a target hook) to handle smaller
- // power-of-2 fractional exponents.
- if (ExponentC->getValueAPF().isExactlyValue(0.25)) {
- // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
- // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
- // For regular numbers, rounding may cause the results to differ.
- // Therefore, we require { nsz ninf afn } for this transform.
- // TODO: We could select out the special cases if we don't have nsz/ninf.
- SDNodeFlags Flags = N->getFlags();
- if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() ||
- !Flags.hasApproximateFuncs())
- return SDValue();
-
- // Don't double the number of libcalls. We are trying to inline fast code.
- if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
- return SDValue();
-
- // Assume that libcalls are the smallest code.
- // TODO: This restriction should probably be lifted for vectors.
- if (DAG.getMachineFunction().getFunction().optForSize())
- return SDValue();
-
- // pow(X, 0.25) --> sqrt(sqrt(X))
- SDLoc DL(N);
- SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0), Flags);
- return DAG.getNode(ISD::FSQRT, DL, VT, Sqrt, Flags);
- }
-
- return SDValue();
-}
-
-static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // This optimization is guarded by a function attribute because it may produce
- // unexpected results. Ie, programs may be relying on the platform-specific
- // undefined behavior when the float-to-int conversion overflows.
- const Function &F = DAG.getMachineFunction().getFunction();
- Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
- if (StrictOverflow.getValueAsString().equals("false"))
- return SDValue();
-
- // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
- // replacing casts with a libcall. We also must be allowed to ignore -0.0
- // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
- // conversions would return +0.0.
- // FIXME: We should be able to use node-level FMF here.
- // TODO: If strict math, should we use FABS (+ range check for signed cast)?
- EVT VT = N->getValueType(0);
- if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
- !DAG.getTarget().Options.NoSignedZerosFPMath)
- return SDValue();
-
- // fptosi/fptoui round towards zero, so converting from FP to integer and
- // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
- SDValue N0 = N->getOperand(0);
- if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
- N0.getOperand(0).getValueType() == VT)
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
-
- if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
- N0.getOperand(0).getValueType() == VT)
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT OpVT = N0.getValueType();
-
- // fold (sint_to_fp c1) -> c1fp
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- // ...but only if the target supports immediate floating-point values
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
- return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
-
- // If the input is a legal type, and SINT_TO_FP is not legal on this target,
- // but UINT_TO_FP is legal on this target, try to convert.
- if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
- hasOperation(ISD::UINT_TO_FP, OpVT)) {
- // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
- if (DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
- }
-
- // The next optimizations are desirable only if SELECT_CC can be lowered.
- if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
- // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
- if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
- !VT.isVector() &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
- SDLoc DL(N);
- SDValue Ops[] =
- { N0.getOperand(0), N0.getOperand(1),
- DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
- N0.getOperand(2) };
- return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
- }
-
- // fold (sint_to_fp (zext (setcc x, y, cc))) ->
- // (select_cc x, y, 1.0, 0.0,, cc)
- if (N0.getOpcode() == ISD::ZERO_EXTEND &&
- N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
- SDLoc DL(N);
- SDValue Ops[] =
- { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
- DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
- N0.getOperand(0).getOperand(2) };
- return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
- }
- }
-
- if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
- return FTrunc;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT OpVT = N0.getValueType();
-
- // fold (uint_to_fp c1) -> c1fp
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- // ...but only if the target supports immediate floating-point values
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
- return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
-
- // If the input is a legal type, and UINT_TO_FP is not legal on this target,
- // but SINT_TO_FP is legal on this target, try to convert.
- if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
- hasOperation(ISD::SINT_TO_FP, OpVT)) {
- // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
- if (DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
- }
-
- // The next optimizations are desirable only if SELECT_CC can be lowered.
- if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
- // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
- if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
- SDLoc DL(N);
- SDValue Ops[] =
- { N0.getOperand(0), N0.getOperand(1),
- DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
- N0.getOperand(2) };
- return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
- }
- }
-
- if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
- return FTrunc;
-
- return SDValue();
-}
-
-// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
-static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
- return SDValue();
-
- SDValue Src = N0.getOperand(0);
- EVT SrcVT = Src.getValueType();
- bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
- bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
-
- // We can safely assume the conversion won't overflow the output range,
- // because (for example) (uint8_t)18293.f is undefined behavior.
-
- // Since we can assume the conversion won't overflow, our decision as to
- // whether the input will fit in the float should depend on the minimum
- // of the input range and output range.
-
- // This means this is also safe for a signed input and unsigned output, since
- // a negative input would lead to undefined behavior.
- unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
- unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
- unsigned ActualSize = std::min(InputSize, OutputSize);
- const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
-
- // We can only fold away the float conversion if the input range can be
- // represented exactly in the float range.
- if (APFloat::semanticsPrecision(sem) >= ActualSize) {
- if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
- unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
- : ISD::ZERO_EXTEND;
- return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
- }
- if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
- return DAG.getBitcast(VT, Src);
- }
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (fp_to_sint c1fp) -> c1
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
-
- return FoldIntToFPToInt(N, DAG);
-}
-
-SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (fp_to_uint c1fp) -> c1
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
-
- return FoldIntToFPToInt(N, DAG);
-}
-
-SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- EVT VT = N->getValueType(0);
-
- // fold (fp_round c1fp) -> c1fp
- if (N0CFP)
- return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
-
- // fold (fp_round (fp_extend x)) -> x
- if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
- return N0.getOperand(0);
-
- // fold (fp_round (fp_round x)) -> (fp_round x)
- if (N0.getOpcode() == ISD::FP_ROUND) {
- const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
- const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
-
- // Skip this folding if it results in an fp_round from f80 to f16.
- //
- // f80 to f16 always generates an expensive (and as yet, unimplemented)
- // libcall to __truncxfhf2 instead of selecting native f16 conversion
- // instructions from f32 or f64. Moreover, the first (value-preserving)
- // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
- // x86.
- if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
- return SDValue();
-
- // If the first fp_round isn't a value preserving truncation, it might
- // introduce a tie in the second fp_round, that wouldn't occur in the
- // single-step fp_round we want to fold to.
- // In other words, double rounding isn't the same as rounding.
- // Also, this is a value preserving truncation iff both fp_round's are.
- if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
- SDLoc DL(N);
- return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
- DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
- }
- }
-
- // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
- if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
- SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
- N0.getOperand(0), N1);
- AddToWorklist(Tmp.getNode());
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
- Tmp, N0.getOperand(1));
- }
-
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
-
- // fold (fp_round_inreg c1fp) -> c1fp
- if (N0CFP && isTypeLegal(EVT)) {
- SDLoc DL(N);
- SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
- return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
- if (N->hasOneUse() &&
- N->use_begin()->getOpcode() == ISD::FP_ROUND)
- return SDValue();
-
- // fold (fp_extend c1fp) -> c1fp
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
-
- // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
- if (N0.getOpcode() == ISD::FP16_TO_FP &&
- TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
- return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
-
- // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
- // value of X.
- if (N0.getOpcode() == ISD::FP_ROUND
- && N0.getConstantOperandVal(1) == 1) {
- SDValue In = N0.getOperand(0);
- if (In.getValueType() == VT) return In;
- if (VT.bitsLT(In.getValueType()))
- return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
- In, N0.getOperand(1));
- return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
- }
-
- // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), N0.getValueType(),
- LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- CombineTo(N0.getNode(),
- DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
- N0.getValueType(), ExtLoad,
- DAG.getIntPtrConstant(1, SDLoc(N0))),
- ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
-
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFCEIL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (fceil c1) -> fceil(c1)
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (ftrunc c1) -> ftrunc(c1)
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
-
- // fold ftrunc (known rounded int x) -> x
- // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
- // likely to be generated to extract integer from a rounded floating value.
- switch (N0.getOpcode()) {
- default: break;
- case ISD::FRINT:
- case ISD::FTRUNC:
- case ISD::FNEARBYINT:
- case ISD::FFLOOR:
- case ISD::FCEIL:
- return N0;
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (ffloor c1) -> ffloor(c1)
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
-
- return SDValue();
-}
-
-// FIXME: FNEG and FABS have a lot in common; refactor.
-SDValue DAGCombiner::visitFNEG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // Constant fold FNEG.
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
-
- if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
- &DAG.getTarget().Options))
- return GetNegatedExpression(N0, DAG, LegalOperations);
-
- // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
- // constant pool values.
- if (!TLI.isFNegFree(VT) &&
- N0.getOpcode() == ISD::BITCAST &&
- N0.getNode()->hasOneUse()) {
- SDValue Int = N0.getOperand(0);
- EVT IntVT = Int.getValueType();
- if (IntVT.isInteger() && !IntVT.isVector()) {
- APInt SignMask;
- if (N0.getValueType().isVector()) {
- // For a vector, get a mask such as 0x80... per scalar element
- // and splat it.
- SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
- SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
- } else {
- // For a scalar, just generate 0x80...
- SignMask = APInt::getSignMask(IntVT.getSizeInBits());
- }
- SDLoc DL0(N0);
- Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
- DAG.getConstant(SignMask, DL0, IntVT));
- AddToWorklist(Int.getNode());
- return DAG.getBitcast(VT, Int);
- }
- }
-
- // (fneg (fmul c, x)) -> (fmul -c, x)
- if (N0.getOpcode() == ISD::FMUL &&
- (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
- ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
- if (CFP1) {
- APFloat CVal = CFP1->getValueAPF();
- CVal.changeSign();
- if (Level >= AfterLegalizeDAG &&
- (TLI.isFPImmLegal(CVal, VT) ||
- TLI.isOperationLegal(ISD::ConstantFP, VT)))
- return DAG.getNode(
- ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
- DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)),
- N0->getFlags());
- }
- }
-
- return SDValue();
-}
-
-static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
- APFloat (*Op)(const APFloat &, const APFloat &)) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
- const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
-
- if (N0CFP && N1CFP) {
- const APFloat &C0 = N0CFP->getValueAPF();
- const APFloat &C1 = N1CFP->getValueAPF();
- return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
- }
-
- // Canonicalize to constant on RHS.
- if (isConstantFPBuildVectorOrConstantFP(N0) &&
- !isConstantFPBuildVectorOrConstantFP(N1))
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
- return visitFMinMax(DAG, N, minnum);
-}
-
-SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
- return visitFMinMax(DAG, N, maxnum);
-}
-
-SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
- return visitFMinMax(DAG, N, minimum);
-}
-
-SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
- return visitFMinMax(DAG, N, maximum);
-}
-
-SDValue DAGCombiner::visitFABS(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // fold (fabs c1) -> fabs(c1)
- if (isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
-
- // fold (fabs (fabs x)) -> (fabs x)
- if (N0.getOpcode() == ISD::FABS)
- return N->getOperand(0);
-
- // fold (fabs (fneg x)) -> (fabs x)
- // fold (fabs (fcopysign x, y)) -> (fabs x)
- if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
-
- // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
- if (!TLI.isFAbsFree(VT) && N0.getOpcode() == ISD::BITCAST && N0.hasOneUse()) {
- SDValue Int = N0.getOperand(0);
- EVT IntVT = Int.getValueType();
- if (IntVT.isInteger() && !IntVT.isVector()) {
- APInt SignMask;
- if (N0.getValueType().isVector()) {
- // For a vector, get a mask such as 0x7f... per scalar element
- // and splat it.
- SignMask = ~APInt::getSignMask(N0.getScalarValueSizeInBits());
- SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
- } else {
- // For a scalar, just generate 0x7f...
- SignMask = ~APInt::getSignMask(IntVT.getSizeInBits());
- }
- SDLoc DL(N0);
- Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
- DAG.getConstant(SignMask, DL, IntVT));
- AddToWorklist(Int.getNode());
- return DAG.getBitcast(N->getValueType(0), Int);
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitBRCOND(SDNode *N) {
- SDValue Chain = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
-
- // If N is a constant we could fold this into a fallthrough or unconditional
- // branch. However that doesn't happen very often in normal code, because
- // Instcombine/SimplifyCFG should have handled the available opportunities.
- // If we did this folding here, it would be necessary to update the
- // MachineBasicBlock CFG, which is awkward.
-
- // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
- // on the target.
- if (N1.getOpcode() == ISD::SETCC &&
- TLI.isOperationLegalOrCustom(ISD::BR_CC,
- N1.getOperand(0).getValueType())) {
- return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
- Chain, N1.getOperand(2),
- N1.getOperand(0), N1.getOperand(1), N2);
- }
-
- if (N1.hasOneUse()) {
- if (SDValue NewN1 = rebuildSetCC(N1))
- return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain, NewN1, N2);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::rebuildSetCC(SDValue N) {
- if (N.getOpcode() == ISD::SRL ||
- (N.getOpcode() == ISD::TRUNCATE &&
- (N.getOperand(0).hasOneUse() &&
- N.getOperand(0).getOpcode() == ISD::SRL))) {
- // Look pass the truncate.
- if (N.getOpcode() == ISD::TRUNCATE)
- N = N.getOperand(0);
-
- // Match this pattern so that we can generate simpler code:
- //
- // %a = ...
- // %b = and i32 %a, 2
- // %c = srl i32 %b, 1
- // brcond i32 %c ...
- //
- // into
- //
- // %a = ...
- // %b = and i32 %a, 2
- // %c = setcc eq %b, 0
- // brcond %c ...
- //
- // This applies only when the AND constant value has one bit set and the
- // SRL constant is equal to the log2 of the AND constant. The back-end is
- // smart enough to convert the result into a TEST/JMP sequence.
- SDValue Op0 = N.getOperand(0);
- SDValue Op1 = N.getOperand(1);
-
- if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
- SDValue AndOp1 = Op0.getOperand(1);
-
- if (AndOp1.getOpcode() == ISD::Constant) {
- const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
-
- if (AndConst.isPowerOf2() &&
- cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
- SDLoc DL(N);
- return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
- Op0, DAG.getConstant(0, DL, Op0.getValueType()),
- ISD::SETNE);
- }
- }
- }
- }
-
- // Transform br(xor(x, y)) -> br(x != y)
- // Transform br(xor(xor(x,y), 1)) -> br (x == y)
- if (N.getOpcode() == ISD::XOR) {
- // Because we may call this on a speculatively constructed
- // SimplifiedSetCC Node, we need to simplify this node first.
- // Ideally this should be folded into SimplifySetCC and not
- // here. For now, grab a handle to N so we don't lose it from
- // replacements interal to the visit.
- HandleSDNode XORHandle(N);
- while (N.getOpcode() == ISD::XOR) {
- SDValue Tmp = visitXOR(N.getNode());
- // No simplification done.
- if (!Tmp.getNode())
- break;
- // Returning N is form in-visit replacement that may invalidated
- // N. Grab value from Handle.
- if (Tmp.getNode() == N.getNode())
- N = XORHandle.getValue();
- else // Node simplified. Try simplifying again.
- N = Tmp;
- }
-
- if (N.getOpcode() != ISD::XOR)
- return N;
-
- SDNode *TheXor = N.getNode();
-
- SDValue Op0 = TheXor->getOperand(0);
- SDValue Op1 = TheXor->getOperand(1);
-
- if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
- bool Equal = false;
- if (isOneConstant(Op0) && Op0.hasOneUse() &&
- Op0.getOpcode() == ISD::XOR) {
- TheXor = Op0.getNode();
- Equal = true;
- }
-
- EVT SetCCVT = N.getValueType();
- if (LegalTypes)
- SetCCVT = getSetCCResultType(SetCCVT);
- // Replace the uses of XOR with SETCC
- return DAG.getSetCC(SDLoc(TheXor), SetCCVT, Op0, Op1,
- Equal ? ISD::SETEQ : ISD::SETNE);
- }
- }
-
- return SDValue();
-}
-
-// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
-//
-SDValue DAGCombiner::visitBR_CC(SDNode *N) {
- CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
- SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
-
- // If N is a constant we could fold this into a fallthrough or unconditional
- // branch. However that doesn't happen very often in normal code, because
- // Instcombine/SimplifyCFG should have handled the available opportunities.
- // If we did this folding here, it would be necessary to update the
- // MachineBasicBlock CFG, which is awkward.
-
- // Use SimplifySetCC to simplify SETCC's.
- SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
- CondLHS, CondRHS, CC->get(), SDLoc(N),
- false);
- if (Simp.getNode()) AddToWorklist(Simp.getNode());
-
- // fold to a simpler setcc
- if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
- return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
- N->getOperand(0), Simp.getOperand(2),
- Simp.getOperand(0), Simp.getOperand(1),
- N->getOperand(4));
-
- return SDValue();
-}
-
-/// Return true if 'Use' is a load or a store that uses N as its base pointer
-/// and that N may be folded in the load / store addressing mode.
-static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- EVT VT;
- unsigned AS;
-
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
- if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
- return false;
- VT = LD->getMemoryVT();
- AS = LD->getAddressSpace();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
- if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
- return false;
- VT = ST->getMemoryVT();
- AS = ST->getAddressSpace();
- } else
- return false;
-
- TargetLowering::AddrMode AM;
- if (N->getOpcode() == ISD::ADD) {
- ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (Offset)
- // [reg +/- imm]
- AM.BaseOffs = Offset->getSExtValue();
- else
- // [reg +/- reg]
- AM.Scale = 1;
- } else if (N->getOpcode() == ISD::SUB) {
- ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (Offset)
- // [reg +/- imm]
- AM.BaseOffs = -Offset->getSExtValue();
- else
- // [reg +/- reg]
- AM.Scale = 1;
- } else
- return false;
-
- return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
- VT.getTypeForEVT(*DAG.getContext()), AS);
-}
-
-/// Try turning a load/store into a pre-indexed load/store when the base
-/// pointer is an add or subtract and it has other uses besides the load/store.
-/// After the transformation, the new indexed load/store has effectively folded
-/// the add/subtract in and all of its other uses are redirected to the
-/// new load/store.
-bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
- if (Level < AfterLegalizeDAG)
- return false;
-
- bool isLoad = true;
- SDValue Ptr;
- EVT VT;
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- if (LD->isIndexed())
- return false;
- VT = LD->getMemoryVT();
- if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
- !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
- return false;
- Ptr = LD->getBasePtr();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- if (ST->isIndexed())
- return false;
- VT = ST->getMemoryVT();
- if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
- !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
- return false;
- Ptr = ST->getBasePtr();
- isLoad = false;
- } else {
- return false;
- }
-
- // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
- // out. There is no reason to make this a preinc/predec.
- if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
- Ptr.getNode()->hasOneUse())
- return false;
-
- // Ask the target to do addressing mode selection.
- SDValue BasePtr;
- SDValue Offset;
- ISD::MemIndexedMode AM = ISD::UNINDEXED;
- if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
- return false;
-
- // Backends without true r+i pre-indexed forms may need to pass a
- // constant base with a variable offset so that constant coercion
- // will work with the patterns in canonical form.
- bool Swapped = false;
- if (isa<ConstantSDNode>(BasePtr)) {
- std::swap(BasePtr, Offset);
- Swapped = true;
- }
-
- // Don't create a indexed load / store with zero offset.
- if (isNullConstant(Offset))
- return false;
-
- // Try turning it into a pre-indexed load / store except when:
- // 1) The new base ptr is a frame index.
- // 2) If N is a store and the new base ptr is either the same as or is a
- // predecessor of the value being stored.
- // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
- // that would create a cycle.
- // 4) All uses are load / store ops that use it as old base ptr.
-
- // Check #1. Preinc'ing a frame index would require copying the stack pointer
- // (plus the implicit offset) to a register to preinc anyway.
- if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
- return false;
-
- // Check #2.
- if (!isLoad) {
- SDValue Val = cast<StoreSDNode>(N)->getValue();
- if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
- return false;
- }
-
- // Caches for hasPredecessorHelper.
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- Worklist.push_back(N);
-
- // If the offset is a constant, there may be other adds of constants that
- // can be folded with this one. We should do this to avoid having to keep
- // a copy of the original base pointer.
- SmallVector<SDNode *, 16> OtherUses;
- if (isa<ConstantSDNode>(Offset))
- for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
- UE = BasePtr.getNode()->use_end();
- UI != UE; ++UI) {
- SDUse &Use = UI.getUse();
- // Skip the use that is Ptr and uses of other results from BasePtr's
- // node (important for nodes that return multiple results).
- if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
- continue;
-
- if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
- continue;
-
- if (Use.getUser()->getOpcode() != ISD::ADD &&
- Use.getUser()->getOpcode() != ISD::SUB) {
- OtherUses.clear();
- break;
- }
-
- SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
- if (!isa<ConstantSDNode>(Op1)) {
- OtherUses.clear();
- break;
- }
-
- // FIXME: In some cases, we can be smarter about this.
- if (Op1.getValueType() != Offset.getValueType()) {
- OtherUses.clear();
- break;
- }
-
- OtherUses.push_back(Use.getUser());
- }
-
- if (Swapped)
- std::swap(BasePtr, Offset);
-
- // Now check for #3 and #4.
- bool RealUse = false;
-
- for (SDNode *Use : Ptr.getNode()->uses()) {
- if (Use == N)
- continue;
- if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
- return false;
-
- // If Ptr may be folded in addressing mode of other use, then it's
- // not profitable to do this transformation.
- if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
- RealUse = true;
- }
-
- if (!RealUse)
- return false;
-
- SDValue Result;
- if (isLoad)
- Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
- BasePtr, Offset, AM);
- else
- Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
- BasePtr, Offset, AM);
- ++PreIndexedNodes;
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
- Result.getNode()->dump(&DAG); dbgs() << '\n');
- WorklistRemover DeadNodes(*this);
- if (isLoad) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
- } else {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
- }
-
- // Finally, since the node is now dead, remove it from the graph.
- deleteAndRecombine(N);
-
- if (Swapped)
- std::swap(BasePtr, Offset);
-
- // Replace other uses of BasePtr that can be updated to use Ptr
- for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
- unsigned OffsetIdx = 1;
- if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
- OffsetIdx = 0;
- assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
- BasePtr.getNode() && "Expected BasePtr operand");
-
- // We need to replace ptr0 in the following expression:
- // x0 * offset0 + y0 * ptr0 = t0
- // knowing that
- // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
- //
- // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
- // indexed load/store and the expression that needs to be re-written.
- //
- // Therefore, we have:
- // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
-
- ConstantSDNode *CN =
- cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
- int X0, X1, Y0, Y1;
- const APInt &Offset0 = CN->getAPIntValue();
- APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
-
- X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
- Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
- X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
- Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
-
- unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
-
- APInt CNV = Offset0;
- if (X0 < 0) CNV = -CNV;
- if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
- else CNV = CNV - Offset1;
-
- SDLoc DL(OtherUses[i]);
-
- // We can now generate the new expression.
- SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
- SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
-
- SDValue NewUse = DAG.getNode(Opcode,
- DL,
- OtherUses[i]->getValueType(0), NewOp1, NewOp2);
- DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
- deleteAndRecombine(OtherUses[i]);
- }
-
- // Replace the uses of Ptr with uses of the updated base value.
- DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
- deleteAndRecombine(Ptr.getNode());
- AddToWorklist(Result.getNode());
-
- return true;
-}
-
-/// Try to combine a load/store with a add/sub of the base pointer node into a
-/// post-indexed load/store. The transformation folded the add/subtract into the
-/// new indexed load/store effectively and all of its uses are redirected to the
-/// new load/store.
-bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
- if (Level < AfterLegalizeDAG)
- return false;
-
- bool isLoad = true;
- SDValue Ptr;
- EVT VT;
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- if (LD->isIndexed())
- return false;
- VT = LD->getMemoryVT();
- if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
- !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
- return false;
- Ptr = LD->getBasePtr();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- if (ST->isIndexed())
- return false;
- VT = ST->getMemoryVT();
- if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
- !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
- return false;
- Ptr = ST->getBasePtr();
- isLoad = false;
- } else {
- return false;
- }
-
- if (Ptr.getNode()->hasOneUse())
- return false;
-
- for (SDNode *Op : Ptr.getNode()->uses()) {
- if (Op == N ||
- (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
- continue;
-
- SDValue BasePtr;
- SDValue Offset;
- ISD::MemIndexedMode AM = ISD::UNINDEXED;
- if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
- // Don't create a indexed load / store with zero offset.
- if (isNullConstant(Offset))
- continue;
-
- // Try turning it into a post-indexed load / store except when
- // 1) All uses are load / store ops that use it as base ptr (and
- // it may be folded as addressing mmode).
- // 2) Op must be independent of N, i.e. Op is neither a predecessor
- // nor a successor of N. Otherwise, if Op is folded that would
- // create a cycle.
-
- if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
- continue;
-
- // Check for #1.
- bool TryNext = false;
- for (SDNode *Use : BasePtr.getNode()->uses()) {
- if (Use == Ptr.getNode())
- continue;
-
- // If all the uses are load / store addresses, then don't do the
- // transformation.
- if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
- bool RealUse = false;
- for (SDNode *UseUse : Use->uses()) {
- if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
- RealUse = true;
- }
-
- if (!RealUse) {
- TryNext = true;
- break;
- }
- }
- }
-
- if (TryNext)
- continue;
-
- // Check for #2.
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 8> Worklist;
- // Ptr is predecessor to both N and Op.
- Visited.insert(Ptr.getNode());
- Worklist.push_back(N);
- Worklist.push_back(Op);
- if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
- !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) {
- SDValue Result = isLoad
- ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
- BasePtr, Offset, AM)
- : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
- BasePtr, Offset, AM);
- ++PostIndexedNodes;
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
- dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
- dbgs() << '\n');
- WorklistRemover DeadNodes(*this);
- if (isLoad) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
- } else {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
- }
-
- // Finally, since the node is now dead, remove it from the graph.
- deleteAndRecombine(N);
-
- // Replace the uses of Use with uses of the updated base value.
- DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
- Result.getValue(isLoad ? 1 : 0));
- deleteAndRecombine(Op);
- return true;
- }
- }
- }
-
- return false;
-}
-
-/// Return the base-pointer arithmetic from an indexed \p LD.
-SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
- ISD::MemIndexedMode AM = LD->getAddressingMode();
- assert(AM != ISD::UNINDEXED);
- SDValue BP = LD->getOperand(1);
- SDValue Inc = LD->getOperand(2);
-
- // Some backends use TargetConstants for load offsets, but don't expect
- // TargetConstants in general ADD nodes. We can convert these constants into
- // regular Constants (if the constant is not opaque).
- assert((Inc.getOpcode() != ISD::TargetConstant ||
- !cast<ConstantSDNode>(Inc)->isOpaque()) &&
- "Cannot split out indexing using opaque target constants");
- if (Inc.getOpcode() == ISD::TargetConstant) {
- ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
- Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
- ConstInc->getValueType(0));
- }
-
- unsigned Opc =
- (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
- return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
-}
-
-static inline int numVectorEltsOrZero(EVT T) {
- return T.isVector() ? T.getVectorNumElements() : 0;
-}
-
-bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
- Val = ST->getValue();
- EVT STType = Val.getValueType();
- EVT STMemType = ST->getMemoryVT();
- if (STType == STMemType)
- return true;
- if (isTypeLegal(STMemType))
- return false; // fail.
- if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
- TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
- Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
- return true;
- }
- if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
- STType.isInteger() && STMemType.isInteger()) {
- Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
- return true;
- }
- if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
- Val = DAG.getBitcast(STMemType, Val);
- return true;
- }
- return false; // fail.
-}
-
-bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
- EVT LDMemType = LD->getMemoryVT();
- EVT LDType = LD->getValueType(0);
- assert(Val.getValueType() == LDMemType &&
- "Attempting to extend value of non-matching type");
- if (LDType == LDMemType)
- return true;
- if (LDMemType.isInteger() && LDType.isInteger()) {
- switch (LD->getExtensionType()) {
- case ISD::NON_EXTLOAD:
- Val = DAG.getBitcast(LDType, Val);
- return true;
- case ISD::EXTLOAD:
- Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
- return true;
- case ISD::SEXTLOAD:
- Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
- return true;
- case ISD::ZEXTLOAD:
- Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
- return true;
- }
- }
- return false;
-}
-
-SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
- if (OptLevel == CodeGenOpt::None || LD->isVolatile())
- return SDValue();
- SDValue Chain = LD->getOperand(0);
- StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
- if (!ST || ST->isVolatile())
- return SDValue();
-
- EVT LDType = LD->getValueType(0);
- EVT LDMemType = LD->getMemoryVT();
- EVT STMemType = ST->getMemoryVT();
- EVT STType = ST->getValue().getValueType();
-
- BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
- BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
- int64_t Offset;
- if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
- return SDValue();
-
- // Normalize for Endianness. After this Offset=0 will denote that the least
- // significant bit in the loaded value maps to the least significant bit in
- // the stored value). With Offset=n (for n > 0) the loaded value starts at the
- // n:th least significant byte of the stored value.
- if (DAG.getDataLayout().isBigEndian())
- Offset = (STMemType.getStoreSizeInBits() -
- LDMemType.getStoreSizeInBits()) / 8 - Offset;
-
- // Check that the stored value cover all bits that are loaded.
- bool STCoversLD =
- (Offset >= 0) &&
- (Offset * 8 + LDMemType.getSizeInBits() <= STMemType.getSizeInBits());
-
- auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
- if (LD->isIndexed()) {
- bool IsSub = (LD->getAddressingMode() == ISD::PRE_DEC ||
- LD->getAddressingMode() == ISD::POST_DEC);
- unsigned Opc = IsSub ? ISD::SUB : ISD::ADD;
- SDValue Idx = DAG.getNode(Opc, SDLoc(LD), LD->getOperand(1).getValueType(),
- LD->getOperand(1), LD->getOperand(2));
- SDValue Ops[] = {Val, Idx, Chain};
- return CombineTo(LD, Ops, 3);
- }
- return CombineTo(LD, Val, Chain);
- };
-
- if (!STCoversLD)
- return SDValue();
-
- // Memory as copy space (potentially masked).
- if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
- // Simple case: Direct non-truncating forwarding
- if (LDType.getSizeInBits() == LDMemType.getSizeInBits())
- return ReplaceLd(LD, ST->getValue(), Chain);
- // Can we model the truncate and extension with an and mask?
- if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
- !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
- // Mask to size of LDMemType
- auto Mask =
- DAG.getConstant(APInt::getLowBitsSet(STType.getSizeInBits(),
- STMemType.getSizeInBits()),
- SDLoc(ST), STType);
- auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
- return ReplaceLd(LD, Val, Chain);
- }
- }
-
- // TODO: Deal with nonzero offset.
- if (LD->getBasePtr().isUndef() || Offset != 0)
- return SDValue();
- // Model necessary truncations / extenstions.
- SDValue Val;
- // Truncate Value To Stored Memory Size.
- do {
- if (!getTruncatedStoreValue(ST, Val))
- continue;
- if (!isTypeLegal(LDMemType))
- continue;
- if (STMemType != LDMemType) {
- // TODO: Support vectors? This requires extract_subvector/bitcast.
- if (!STMemType.isVector() && !LDMemType.isVector() &&
- STMemType.isInteger() && LDMemType.isInteger())
- Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
- else
- continue;
- }
- if (!extendLoadedValueToExtension(LD, Val))
- continue;
- return ReplaceLd(LD, Val, Chain);
- } while (false);
-
- // On failure, cleanup dead nodes we may have created.
- if (Val->use_empty())
- deleteAndRecombine(Val.getNode());
- return SDValue();
-}
-
-SDValue DAGCombiner::visitLOAD(SDNode *N) {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- SDValue Chain = LD->getChain();
- SDValue Ptr = LD->getBasePtr();
-
- // If load is not volatile and there are no uses of the loaded value (and
- // the updated indexed value in case of indexed loads), change uses of the
- // chain value into uses of the chain input (i.e. delete the dead load).
- if (!LD->isVolatile()) {
- if (N->getValueType(1) == MVT::Other) {
- // Unindexed loads.
- if (!N->hasAnyUseOfValue(0)) {
- // It's not safe to use the two value CombineTo variant here. e.g.
- // v1, chain2 = load chain1, loc
- // v2, chain3 = load chain2, loc
- // v3 = add v2, c
- // Now we replace use of chain2 with chain1. This makes the second load
- // isomorphic to the one we are deleting, and thus makes this load live.
- LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
- dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
- dbgs() << "\n");
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
- AddUsersToWorklist(Chain.getNode());
- if (N->use_empty())
- deleteAndRecombine(N);
-
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- } else {
- // Indexed loads.
- assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
-
- // If this load has an opaque TargetConstant offset, then we cannot split
- // the indexing into an add/sub directly (that TargetConstant may not be
- // valid for a different type of node, and we cannot convert an opaque
- // target constant into a regular constant).
- bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
- cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
-
- if (!N->hasAnyUseOfValue(0) &&
- ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
- SDValue Undef = DAG.getUNDEF(N->getValueType(0));
- SDValue Index;
- if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
- Index = SplitIndexingFromLoad(LD);
- // Try to fold the base pointer arithmetic into subsequent loads and
- // stores.
- AddUsersToWorklist(N);
- } else
- Index = DAG.getUNDEF(N->getValueType(1));
- LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
- dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
- dbgs() << " and 2 other values\n");
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
- deleteAndRecombine(N);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- }
-
- // If this load is directly stored, replace the load value with the stored
- // value.
- if (auto V = ForwardStoreValueToDirectLoad(LD))
- return V;
-
- // Try to infer better alignment information than the load already has.
- if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
- if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
- if (Align > LD->getAlignment() && LD->getSrcValueOffset() % Align == 0) {
- SDValue NewLoad = DAG.getExtLoad(
- LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
- LD->getPointerInfo(), LD->getMemoryVT(), Align,
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- // NewLoad will always be N as we are only refining the alignment
- assert(NewLoad.getNode() == N);
- (void)NewLoad;
- }
- }
- }
-
- if (LD->isUnindexed()) {
- // Walk up chain skipping non-aliasing memory nodes.
- SDValue BetterChain = FindBetterChain(N, Chain);
-
- // If there is a better chain.
- if (Chain != BetterChain) {
- SDValue ReplLoad;
-
- // Replace the chain to void dependency.
- if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
- ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
- BetterChain, Ptr, LD->getMemOperand());
- } else {
- ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
- LD->getValueType(0),
- BetterChain, Ptr, LD->getMemoryVT(),
- LD->getMemOperand());
- }
-
- // Create token factor to keep old chain connected.
- SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
- MVT::Other, Chain, ReplLoad.getValue(1));
-
- // Replace uses with load result and token factor
- return CombineTo(N, ReplLoad.getValue(0), Token);
- }
- }
-
- // Try transforming N to an indexed load.
- if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
- return SDValue(N, 0);
-
- // Try to slice up N to more direct loads if the slices are mapped to
- // different register banks or pairing can take place.
- if (SliceUpLoad(N))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-namespace {
-
-/// Helper structure used to slice a load in smaller loads.
-/// Basically a slice is obtained from the following sequence:
-/// Origin = load Ty1, Base
-/// Shift = srl Ty1 Origin, CstTy Amount
-/// Inst = trunc Shift to Ty2
-///
-/// Then, it will be rewritten into:
-/// Slice = load SliceTy, Base + SliceOffset
-/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
-///
-/// SliceTy is deduced from the number of bits that are actually used to
-/// build Inst.
-struct LoadedSlice {
- /// Helper structure used to compute the cost of a slice.
- struct Cost {
- /// Are we optimizing for code size.
- bool ForCodeSize;
-
- /// Various cost.
- unsigned Loads = 0;
- unsigned Truncates = 0;
- unsigned CrossRegisterBanksCopies = 0;
- unsigned ZExts = 0;
- unsigned Shift = 0;
-
- Cost(bool ForCodeSize = false) : ForCodeSize(ForCodeSize) {}
-
- /// Get the cost of one isolated slice.
- Cost(const LoadedSlice &LS, bool ForCodeSize = false)
- : ForCodeSize(ForCodeSize), Loads(1) {
- EVT TruncType = LS.Inst->getValueType(0);
- EVT LoadedType = LS.getLoadedType();
- if (TruncType != LoadedType &&
- !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
- ZExts = 1;
- }
-
- /// Account for slicing gain in the current cost.
- /// Slicing provide a few gains like removing a shift or a
- /// truncate. This method allows to grow the cost of the original
- /// load with the gain from this slice.
- void addSliceGain(const LoadedSlice &LS) {
- // Each slice saves a truncate.
- const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
- if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
- LS.Inst->getValueType(0)))
- ++Truncates;
- // If there is a shift amount, this slice gets rid of it.
- if (LS.Shift)
- ++Shift;
- // If this slice can merge a cross register bank copy, account for it.
- if (LS.canMergeExpensiveCrossRegisterBankCopy())
- ++CrossRegisterBanksCopies;
- }
-
- Cost &operator+=(const Cost &RHS) {
- Loads += RHS.Loads;
- Truncates += RHS.Truncates;
- CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
- ZExts += RHS.ZExts;
- Shift += RHS.Shift;
- return *this;
- }
-
- bool operator==(const Cost &RHS) const {
- return Loads == RHS.Loads && Truncates == RHS.Truncates &&
- CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
- ZExts == RHS.ZExts && Shift == RHS.Shift;
- }
-
- bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
-
- bool operator<(const Cost &RHS) const {
- // Assume cross register banks copies are as expensive as loads.
- // FIXME: Do we want some more target hooks?
- unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
- unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
- // Unless we are optimizing for code size, consider the
- // expensive operation first.
- if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
- return ExpensiveOpsLHS < ExpensiveOpsRHS;
- return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
- (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
- }
-
- bool operator>(const Cost &RHS) const { return RHS < *this; }
-
- bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
-
- bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
- };
-
- // The last instruction that represent the slice. This should be a
- // truncate instruction.
- SDNode *Inst;
-
- // The original load instruction.
- LoadSDNode *Origin;
-
- // The right shift amount in bits from the original load.
- unsigned Shift;
-
- // The DAG from which Origin came from.
- // This is used to get some contextual information about legal types, etc.
- SelectionDAG *DAG;
-
- LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
- unsigned Shift = 0, SelectionDAG *DAG = nullptr)
- : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
-
- /// Get the bits used in a chunk of bits \p BitWidth large.
- /// \return Result is \p BitWidth and has used bits set to 1 and
- /// not used bits set to 0.
- APInt getUsedBits() const {
- // Reproduce the trunc(lshr) sequence:
- // - Start from the truncated value.
- // - Zero extend to the desired bit width.
- // - Shift left.
- assert(Origin && "No original load to compare against.");
- unsigned BitWidth = Origin->getValueSizeInBits(0);
- assert(Inst && "This slice is not bound to an instruction");
- assert(Inst->getValueSizeInBits(0) <= BitWidth &&
- "Extracted slice is bigger than the whole type!");
- APInt UsedBits(Inst->getValueSizeInBits(0), 0);
- UsedBits.setAllBits();
- UsedBits = UsedBits.zext(BitWidth);
- UsedBits <<= Shift;
- return UsedBits;
- }
-
- /// Get the size of the slice to be loaded in bytes.
- unsigned getLoadedSize() const {
- unsigned SliceSize = getUsedBits().countPopulation();
- assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
- return SliceSize / 8;
- }
-
- /// Get the type that will be loaded for this slice.
- /// Note: This may not be the final type for the slice.
- EVT getLoadedType() const {
- assert(DAG && "Missing context");
- LLVMContext &Ctxt = *DAG->getContext();
- return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
- }
-
- /// Get the alignment of the load used for this slice.
- unsigned getAlignment() const {
- unsigned Alignment = Origin->getAlignment();
- unsigned Offset = getOffsetFromBase();
- if (Offset != 0)
- Alignment = MinAlign(Alignment, Alignment + Offset);
- return Alignment;
- }
-
- /// Check if this slice can be rewritten with legal operations.
- bool isLegal() const {
- // An invalid slice is not legal.
- if (!Origin || !Inst || !DAG)
- return false;
-
- // Offsets are for indexed load only, we do not handle that.
- if (!Origin->getOffset().isUndef())
- return false;
-
- const TargetLowering &TLI = DAG->getTargetLoweringInfo();
-
- // Check that the type is legal.
- EVT SliceType = getLoadedType();
- if (!TLI.isTypeLegal(SliceType))
- return false;
-
- // Check that the load is legal for this type.
- if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
- return false;
-
- // Check that the offset can be computed.
- // 1. Check its type.
- EVT PtrType = Origin->getBasePtr().getValueType();
- if (PtrType == MVT::Untyped || PtrType.isExtended())
- return false;
-
- // 2. Check that it fits in the immediate.
- if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
- return false;
-
- // 3. Check that the computation is legal.
- if (!TLI.isOperationLegal(ISD::ADD, PtrType))
- return false;
-
- // Check that the zext is legal if it needs one.
- EVT TruncateType = Inst->getValueType(0);
- if (TruncateType != SliceType &&
- !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
- return false;
-
- return true;
- }
-
- /// Get the offset in bytes of this slice in the original chunk of
- /// bits.
- /// \pre DAG != nullptr.
- uint64_t getOffsetFromBase() const {
- assert(DAG && "Missing context.");
- bool IsBigEndian = DAG->getDataLayout().isBigEndian();
- assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
- uint64_t Offset = Shift / 8;
- unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
- assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
- "The size of the original loaded type is not a multiple of a"
- " byte.");
- // If Offset is bigger than TySizeInBytes, it means we are loading all
- // zeros. This should have been optimized before in the process.
- assert(TySizeInBytes > Offset &&
- "Invalid shift amount for given loaded size");
- if (IsBigEndian)
- Offset = TySizeInBytes - Offset - getLoadedSize();
- return Offset;
- }
-
- /// Generate the sequence of instructions to load the slice
- /// represented by this object and redirect the uses of this slice to
- /// this new sequence of instructions.
- /// \pre this->Inst && this->Origin are valid Instructions and this
- /// object passed the legal check: LoadedSlice::isLegal returned true.
- /// \return The last instruction of the sequence used to load the slice.
- SDValue loadSlice() const {
- assert(Inst && Origin && "Unable to replace a non-existing slice.");
- const SDValue &OldBaseAddr = Origin->getBasePtr();
- SDValue BaseAddr = OldBaseAddr;
- // Get the offset in that chunk of bytes w.r.t. the endianness.
- int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
- assert(Offset >= 0 && "Offset too big to fit in int64_t!");
- if (Offset) {
- // BaseAddr = BaseAddr + Offset.
- EVT ArithType = BaseAddr.getValueType();
- SDLoc DL(Origin);
- BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
- DAG->getConstant(Offset, DL, ArithType));
- }
-
- // Create the type of the loaded slice according to its size.
- EVT SliceType = getLoadedType();
-
- // Create the load for the slice.
- SDValue LastInst =
- DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
- Origin->getPointerInfo().getWithOffset(Offset),
- getAlignment(), Origin->getMemOperand()->getFlags());
- // If the final type is not the same as the loaded type, this means that
- // we have to pad with zero. Create a zero extend for that.
- EVT FinalType = Inst->getValueType(0);
- if (SliceType != FinalType)
- LastInst =
- DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
- return LastInst;
- }
-
- /// Check if this slice can be merged with an expensive cross register
- /// bank copy. E.g.,
- /// i = load i32
- /// f = bitcast i32 i to float
- bool canMergeExpensiveCrossRegisterBankCopy() const {
- if (!Inst || !Inst->hasOneUse())
- return false;
- SDNode *Use = *Inst->use_begin();
- if (Use->getOpcode() != ISD::BITCAST)
- return false;
- assert(DAG && "Missing context");
- const TargetLowering &TLI = DAG->getTargetLoweringInfo();
- EVT ResVT = Use->getValueType(0);
- const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
- const TargetRegisterClass *ArgRC =
- TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
- if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
- return false;
-
- // At this point, we know that we perform a cross-register-bank copy.
- // Check if it is expensive.
- const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
- // Assume bitcasts are cheap, unless both register classes do not
- // explicitly share a common sub class.
- if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
- return false;
-
- // Check if it will be merged with the load.
- // 1. Check the alignment constraint.
- unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
- ResVT.getTypeForEVT(*DAG->getContext()));
-
- if (RequiredAlignment > getAlignment())
- return false;
-
- // 2. Check that the load is a legal operation for that type.
- if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
- return false;
-
- // 3. Check that we do not have a zext in the way.
- if (Inst->getValueType(0) != getLoadedType())
- return false;
-
- return true;
- }
-};
-
-} // end anonymous namespace
-
-/// Check that all bits set in \p UsedBits form a dense region, i.e.,
-/// \p UsedBits looks like 0..0 1..1 0..0.
-static bool areUsedBitsDense(const APInt &UsedBits) {
- // If all the bits are one, this is dense!
- if (UsedBits.isAllOnesValue())
- return true;
-
- // Get rid of the unused bits on the right.
- APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
- // Get rid of the unused bits on the left.
- if (NarrowedUsedBits.countLeadingZeros())
- NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
- // Check that the chunk of bits is completely used.
- return NarrowedUsedBits.isAllOnesValue();
-}
-
-/// Check whether or not \p First and \p Second are next to each other
-/// in memory. This means that there is no hole between the bits loaded
-/// by \p First and the bits loaded by \p Second.
-static bool areSlicesNextToEachOther(const LoadedSlice &First,
- const LoadedSlice &Second) {
- assert(First.Origin == Second.Origin && First.Origin &&
- "Unable to match different memory origins.");
- APInt UsedBits = First.getUsedBits();
- assert((UsedBits & Second.getUsedBits()) == 0 &&
- "Slices are not supposed to overlap.");
- UsedBits |= Second.getUsedBits();
- return areUsedBitsDense(UsedBits);
-}
-
-/// Adjust the \p GlobalLSCost according to the target
-/// paring capabilities and the layout of the slices.
-/// \pre \p GlobalLSCost should account for at least as many loads as
-/// there is in the slices in \p LoadedSlices.
-static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
- LoadedSlice::Cost &GlobalLSCost) {
- unsigned NumberOfSlices = LoadedSlices.size();
- // If there is less than 2 elements, no pairing is possible.
- if (NumberOfSlices < 2)
- return;
-
- // Sort the slices so that elements that are likely to be next to each
- // other in memory are next to each other in the list.
- llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
- assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
- return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
- });
- const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
- // First (resp. Second) is the first (resp. Second) potentially candidate
- // to be placed in a paired load.
- const LoadedSlice *First = nullptr;
- const LoadedSlice *Second = nullptr;
- for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
- // Set the beginning of the pair.
- First = Second) {
- Second = &LoadedSlices[CurrSlice];
-
- // If First is NULL, it means we start a new pair.
- // Get to the next slice.
- if (!First)
- continue;
-
- EVT LoadedType = First->getLoadedType();
-
- // If the types of the slices are different, we cannot pair them.
- if (LoadedType != Second->getLoadedType())
- continue;
-
- // Check if the target supplies paired loads for this type.
- unsigned RequiredAlignment = 0;
- if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
- // move to the next pair, this type is hopeless.
- Second = nullptr;
- continue;
- }
- // Check if we meet the alignment requirement.
- if (RequiredAlignment > First->getAlignment())
- continue;
-
- // Check that both loads are next to each other in memory.
- if (!areSlicesNextToEachOther(*First, *Second))
- continue;
-
- assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
- --GlobalLSCost.Loads;
- // Move to the next pair.
- Second = nullptr;
- }
-}
-
-/// Check the profitability of all involved LoadedSlice.
-/// Currently, it is considered profitable if there is exactly two
-/// involved slices (1) which are (2) next to each other in memory, and
-/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
-///
-/// Note: The order of the elements in \p LoadedSlices may be modified, but not
-/// the elements themselves.
-///
-/// FIXME: When the cost model will be mature enough, we can relax
-/// constraints (1) and (2).
-static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
- const APInt &UsedBits, bool ForCodeSize) {
- unsigned NumberOfSlices = LoadedSlices.size();
- if (StressLoadSlicing)
- return NumberOfSlices > 1;
-
- // Check (1).
- if (NumberOfSlices != 2)
- return false;
-
- // Check (2).
- if (!areUsedBitsDense(UsedBits))
- return false;
-
- // Check (3).
- LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
- // The original code has one big load.
- OrigCost.Loads = 1;
- for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
- const LoadedSlice &LS = LoadedSlices[CurrSlice];
- // Accumulate the cost of all the slices.
- LoadedSlice::Cost SliceCost(LS, ForCodeSize);
- GlobalSlicingCost += SliceCost;
-
- // Account as cost in the original configuration the gain obtained
- // with the current slices.
- OrigCost.addSliceGain(LS);
- }
-
- // If the target supports paired load, adjust the cost accordingly.
- adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
- return OrigCost > GlobalSlicingCost;
-}
-
-/// If the given load, \p LI, is used only by trunc or trunc(lshr)
-/// operations, split it in the various pieces being extracted.
-///
-/// This sort of thing is introduced by SROA.
-/// This slicing takes care not to insert overlapping loads.
-/// \pre LI is a simple load (i.e., not an atomic or volatile load).
-bool DAGCombiner::SliceUpLoad(SDNode *N) {
- if (Level < AfterLegalizeDAG)
- return false;
-
- LoadSDNode *LD = cast<LoadSDNode>(N);
- if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
- !LD->getValueType(0).isInteger())
- return false;
-
- // Keep track of already used bits to detect overlapping values.
- // In that case, we will just abort the transformation.
- APInt UsedBits(LD->getValueSizeInBits(0), 0);
-
- SmallVector<LoadedSlice, 4> LoadedSlices;
-
- // Check if this load is used as several smaller chunks of bits.
- // Basically, look for uses in trunc or trunc(lshr) and record a new chain
- // of computation for each trunc.
- for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
- UI != UIEnd; ++UI) {
- // Skip the uses of the chain.
- if (UI.getUse().getResNo() != 0)
- continue;
-
- SDNode *User = *UI;
- unsigned Shift = 0;
-
- // Check if this is a trunc(lshr).
- if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
- isa<ConstantSDNode>(User->getOperand(1))) {
- Shift = User->getConstantOperandVal(1);
- User = *User->use_begin();
- }
-
- // At this point, User is a Truncate, iff we encountered, trunc or
- // trunc(lshr).
- if (User->getOpcode() != ISD::TRUNCATE)
- return false;
-
- // The width of the type must be a power of 2 and greater than 8-bits.
- // Otherwise the load cannot be represented in LLVM IR.
- // Moreover, if we shifted with a non-8-bits multiple, the slice
- // will be across several bytes. We do not support that.
- unsigned Width = User->getValueSizeInBits(0);
- if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
- return false;
-
- // Build the slice for this chain of computations.
- LoadedSlice LS(User, LD, Shift, &DAG);
- APInt CurrentUsedBits = LS.getUsedBits();
-
- // Check if this slice overlaps with another.
- if ((CurrentUsedBits & UsedBits) != 0)
- return false;
- // Update the bits used globally.
- UsedBits |= CurrentUsedBits;
-
- // Check if the new slice would be legal.
- if (!LS.isLegal())
- return false;
-
- // Record the slice.
- LoadedSlices.push_back(LS);
- }
-
- // Abort slicing if it does not seem to be profitable.
- if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
- return false;
-
- ++SlicedLoads;
-
- // Rewrite each chain to use an independent load.
- // By construction, each chain can be represented by a unique load.
-
- // Prepare the argument for the new token factor for all the slices.
- SmallVector<SDValue, 8> ArgChains;
- for (SmallVectorImpl<LoadedSlice>::const_iterator
- LSIt = LoadedSlices.begin(),
- LSItEnd = LoadedSlices.end();
- LSIt != LSItEnd; ++LSIt) {
- SDValue SliceInst = LSIt->loadSlice();
- CombineTo(LSIt->Inst, SliceInst, true);
- if (SliceInst.getOpcode() != ISD::LOAD)
- SliceInst = SliceInst.getOperand(0);
- assert(SliceInst->getOpcode() == ISD::LOAD &&
- "It takes more than a zext to get to the loaded slice!!");
- ArgChains.push_back(SliceInst.getValue(1));
- }
-
- SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
- ArgChains);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
- AddToWorklist(Chain.getNode());
- return true;
-}
-
-/// Check to see if V is (and load (ptr), imm), where the load is having
-/// specific bytes cleared out. If so, return the byte size being masked out
-/// and the shift amount.
-static std::pair<unsigned, unsigned>
-CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
- std::pair<unsigned, unsigned> Result(0, 0);
-
- // Check for the structure we're looking for.
- if (V->getOpcode() != ISD::AND ||
- !isa<ConstantSDNode>(V->getOperand(1)) ||
- !ISD::isNormalLoad(V->getOperand(0).getNode()))
- return Result;
-
- // Check the chain and pointer.
- LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
- if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
-
- // This only handles simple types.
- if (V.getValueType() != MVT::i16 &&
- V.getValueType() != MVT::i32 &&
- V.getValueType() != MVT::i64)
- return Result;
-
- // Check the constant mask. Invert it so that the bits being masked out are
- // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
- // follow the sign bit for uniformity.
- uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
- unsigned NotMaskLZ = countLeadingZeros(NotMask);
- if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
- unsigned NotMaskTZ = countTrailingZeros(NotMask);
- if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
- if (NotMaskLZ == 64) return Result; // All zero mask.
-
- // See if we have a continuous run of bits. If so, we have 0*1+0*
- if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
- return Result;
-
- // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
- if (V.getValueType() != MVT::i64 && NotMaskLZ)
- NotMaskLZ -= 64-V.getValueSizeInBits();
-
- unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
- switch (MaskedBytes) {
- case 1:
- case 2:
- case 4: break;
- default: return Result; // All one mask, or 5-byte mask.
- }
-
- // Verify that the first bit starts at a multiple of mask so that the access
- // is aligned the same as the access width.
- if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
-
- // For narrowing to be valid, it must be the case that the load the
- // immediately preceeding memory operation before the store.
- if (LD == Chain.getNode())
- ; // ok.
- else if (Chain->getOpcode() == ISD::TokenFactor &&
- SDValue(LD, 1).hasOneUse()) {
- // LD has only 1 chain use so they are no indirect dependencies.
- bool isOk = false;
- for (const SDValue &ChainOp : Chain->op_values())
- if (ChainOp.getNode() == LD) {
- isOk = true;
- break;
- }
- if (!isOk)
- return Result;
- } else
- return Result; // Fail.
-
- Result.first = MaskedBytes;
- Result.second = NotMaskTZ/8;
- return Result;
-}
-
-/// Check to see if IVal is something that provides a value as specified by
-/// MaskInfo. If so, replace the specified store with a narrower store of
-/// truncated IVal.
-static SDNode *
-ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
- SDValue IVal, StoreSDNode *St,
- DAGCombiner *DC) {
- unsigned NumBytes = MaskInfo.first;
- unsigned ByteShift = MaskInfo.second;
- SelectionDAG &DAG = DC->getDAG();
-
- // Check to see if IVal is all zeros in the part being masked in by the 'or'
- // that uses this. If not, this is not a replacement.
- APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
- ByteShift*8, (ByteShift+NumBytes)*8);
- if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
-
- // Check that it is legal on the target to do this. It is legal if the new
- // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
- // legalization.
- MVT VT = MVT::getIntegerVT(NumBytes*8);
- if (!DC->isTypeLegal(VT))
- return nullptr;
-
- // Okay, we can do this! Replace the 'St' store with a store of IVal that is
- // shifted by ByteShift and truncated down to NumBytes.
- if (ByteShift) {
- SDLoc DL(IVal);
- IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
- DAG.getConstant(ByteShift*8, DL,
- DC->getShiftAmountTy(IVal.getValueType())));
- }
-
- // Figure out the offset for the store and the alignment of the access.
- unsigned StOffset;
- unsigned NewAlign = St->getAlignment();
-
- if (DAG.getDataLayout().isLittleEndian())
- StOffset = ByteShift;
- else
- StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
-
- SDValue Ptr = St->getBasePtr();
- if (StOffset) {
- SDLoc DL(IVal);
- Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
- Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
- NewAlign = MinAlign(NewAlign, StOffset);
- }
-
- // Truncate down to the new size.
- IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
-
- ++OpsNarrowed;
- return DAG
- .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
- St->getPointerInfo().getWithOffset(StOffset), NewAlign)
- .getNode();
-}
-
-/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
-/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
-/// narrowing the load and store if it would end up being a win for performance
-/// or code size.
-SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- if (ST->isVolatile())
- return SDValue();
-
- SDValue Chain = ST->getChain();
- SDValue Value = ST->getValue();
- SDValue Ptr = ST->getBasePtr();
- EVT VT = Value.getValueType();
-
- if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
- return SDValue();
-
- unsigned Opc = Value.getOpcode();
-
- // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
- // is a byte mask indicating a consecutive number of bytes, check to see if
- // Y is known to provide just those bytes. If so, we try to replace the
- // load + replace + store sequence with a single (narrower) store, which makes
- // the load dead.
- if (Opc == ISD::OR) {
- std::pair<unsigned, unsigned> MaskedLoad;
- MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
- if (MaskedLoad.first)
- if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
- Value.getOperand(1), ST,this))
- return SDValue(NewST, 0);
-
- // Or is commutative, so try swapping X and Y.
- MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
- if (MaskedLoad.first)
- if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
- Value.getOperand(0), ST,this))
- return SDValue(NewST, 0);
- }
-
- if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
- Value.getOperand(1).getOpcode() != ISD::Constant)
- return SDValue();
-
- SDValue N0 = Value.getOperand(0);
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- Chain == SDValue(N0.getNode(), 1)) {
- LoadSDNode *LD = cast<LoadSDNode>(N0);
- if (LD->getBasePtr() != Ptr ||
- LD->getPointerInfo().getAddrSpace() !=
- ST->getPointerInfo().getAddrSpace())
- return SDValue();
-
- // Find the type to narrow it the load / op / store to.
- SDValue N1 = Value.getOperand(1);
- unsigned BitWidth = N1.getValueSizeInBits();
- APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
- if (Opc == ISD::AND)
- Imm ^= APInt::getAllOnesValue(BitWidth);
- if (Imm == 0 || Imm.isAllOnesValue())
- return SDValue();
- unsigned ShAmt = Imm.countTrailingZeros();
- unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
- unsigned NewBW = NextPowerOf2(MSB - ShAmt);
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
- // The narrowing should be profitable, the load/store operation should be
- // legal (or custom) and the store size should be equal to the NewVT width.
- while (NewBW < BitWidth &&
- (NewVT.getStoreSizeInBits() != NewBW ||
- !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
- !TLI.isNarrowingProfitable(VT, NewVT))) {
- NewBW = NextPowerOf2(NewBW);
- NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
- }
- if (NewBW >= BitWidth)
- return SDValue();
-
- // If the lsb changed does not start at the type bitwidth boundary,
- // start at the previous one.
- if (ShAmt % NewBW)
- ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
- APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
- std::min(BitWidth, ShAmt + NewBW));
- if ((Imm & Mask) == Imm) {
- APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
- if (Opc == ISD::AND)
- NewImm ^= APInt::getAllOnesValue(NewBW);
- uint64_t PtrOff = ShAmt / 8;
- // For big endian targets, we need to adjust the offset to the pointer to
- // load the correct bytes.
- if (DAG.getDataLayout().isBigEndian())
- PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
-
- unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
- Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
- if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
- return SDValue();
-
- SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
- Ptr.getValueType(), Ptr,
- DAG.getConstant(PtrOff, SDLoc(LD),
- Ptr.getValueType()));
- SDValue NewLD =
- DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
- LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
- DAG.getConstant(NewImm, SDLoc(Value),
- NewVT));
- SDValue NewST =
- DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
- ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
-
- AddToWorklist(NewPtr.getNode());
- AddToWorklist(NewLD.getNode());
- AddToWorklist(NewVal.getNode());
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
- ++OpsNarrowed;
- return NewST;
- }
- }
-
- return SDValue();
-}
-
-/// For a given floating point load / store pair, if the load value isn't used
-/// by any other operations, then consider transforming the pair to integer
-/// load / store operations if the target deems the transformation profitable.
-SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- SDValue Chain = ST->getChain();
- SDValue Value = ST->getValue();
- if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
- Value.hasOneUse() &&
- Chain == SDValue(Value.getNode(), 1)) {
- LoadSDNode *LD = cast<LoadSDNode>(Value);
- EVT VT = LD->getMemoryVT();
- if (!VT.isFloatingPoint() ||
- VT != ST->getMemoryVT() ||
- LD->isNonTemporal() ||
- ST->isNonTemporal() ||
- LD->getPointerInfo().getAddrSpace() != 0 ||
- ST->getPointerInfo().getAddrSpace() != 0)
- return SDValue();
-
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
- if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
- !TLI.isOperationLegal(ISD::STORE, IntVT) ||
- !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
- !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
- return SDValue();
-
- unsigned LDAlign = LD->getAlignment();
- unsigned STAlign = ST->getAlignment();
- Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
- unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
- if (LDAlign < ABIAlign || STAlign < ABIAlign)
- return SDValue();
-
- SDValue NewLD =
- DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
- LD->getPointerInfo(), LDAlign);
-
- SDValue NewST =
- DAG.getStore(NewLD.getValue(1), SDLoc(N), NewLD, ST->getBasePtr(),
- ST->getPointerInfo(), STAlign);
-
- AddToWorklist(NewLD.getNode());
- AddToWorklist(NewST.getNode());
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
- ++LdStFP2Int;
- return NewST;
- }
-
- return SDValue();
-}
-
-// This is a helper function for visitMUL to check the profitability
-// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
-// MulNode is the original multiply, AddNode is (add x, c1),
-// and ConstNode is c2.
-//
-// If the (add x, c1) has multiple uses, we could increase
-// the number of adds if we make this transformation.
-// It would only be worth doing this if we can remove a
-// multiply in the process. Check for that here.
-// To illustrate:
-// (A + c1) * c3
-// (A + c2) * c3
-// We're checking for cases where we have common "c3 * A" expressions.
-bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
- SDValue &AddNode,
- SDValue &ConstNode) {
- APInt Val;
-
- // If the add only has one use, this would be OK to do.
- if (AddNode.getNode()->hasOneUse())
- return true;
-
- // Walk all the users of the constant with which we're multiplying.
- for (SDNode *Use : ConstNode->uses()) {
- if (Use == MulNode) // This use is the one we're on right now. Skip it.
- continue;
-
- if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
- SDNode *OtherOp;
- SDNode *MulVar = AddNode.getOperand(0).getNode();
-
- // OtherOp is what we're multiplying against the constant.
- if (Use->getOperand(0) == ConstNode)
- OtherOp = Use->getOperand(1).getNode();
- else
- OtherOp = Use->getOperand(0).getNode();
-
- // Check to see if multiply is with the same operand of our "add".
- //
- // ConstNode = CONST
- // Use = ConstNode * A <-- visiting Use. OtherOp is A.
- // ...
- // AddNode = (A + c1) <-- MulVar is A.
- // = AddNode * ConstNode <-- current visiting instruction.
- //
- // If we make this transformation, we will have a common
- // multiply (ConstNode * A) that we can save.
- if (OtherOp == MulVar)
- return true;
-
- // Now check to see if a future expansion will give us a common
- // multiply.
- //
- // ConstNode = CONST
- // AddNode = (A + c1)
- // ... = AddNode * ConstNode <-- current visiting instruction.
- // ...
- // OtherOp = (A + c2)
- // Use = OtherOp * ConstNode <-- visiting Use.
- //
- // If we make this transformation, we will have a common
- // multiply (CONST * A) after we also do the same transformation
- // to the "t2" instruction.
- if (OtherOp->getOpcode() == ISD::ADD &&
- DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
- OtherOp->getOperand(0).getNode() == MulVar)
- return true;
- }
- }
-
- // Didn't find a case where this would be profitable.
- return false;
-}
-
-SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumStores) {
- SmallVector<SDValue, 8> Chains;
- SmallPtrSet<const SDNode *, 8> Visited;
- SDLoc StoreDL(StoreNodes[0].MemNode);
-
- for (unsigned i = 0; i < NumStores; ++i) {
- Visited.insert(StoreNodes[i].MemNode);
- }
-
- // don't include nodes that are children
- for (unsigned i = 0; i < NumStores; ++i) {
- if (Visited.count(StoreNodes[i].MemNode->getChain().getNode()) == 0)
- Chains.push_back(StoreNodes[i].MemNode->getChain());
- }
-
- assert(Chains.size() > 0 && "Chain should have generated a chain");
- return DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, Chains);
-}
-
-bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
- SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
- bool IsConstantSrc, bool UseVector, bool UseTrunc) {
- // Make sure we have something to merge.
- if (NumStores < 2)
- return false;
-
- // The latest Node in the DAG.
- SDLoc DL(StoreNodes[0].MemNode);
-
- int64_t ElementSizeBits = MemVT.getStoreSizeInBits();
- unsigned SizeInBits = NumStores * ElementSizeBits;
- unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
-
- EVT StoreTy;
- if (UseVector) {
- unsigned Elts = NumStores * NumMemElts;
- // Get the type for the merged vector store.
- StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
- } else
- StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
-
- SDValue StoredVal;
- if (UseVector) {
- if (IsConstantSrc) {
- SmallVector<SDValue, 8> BuildVector;
- for (unsigned I = 0; I != NumStores; ++I) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
- SDValue Val = St->getValue();
- // If constant is of the wrong type, convert it now.
- if (MemVT != Val.getValueType()) {
- Val = peekThroughBitcasts(Val);
- // Deal with constants of wrong size.
- if (ElementSizeBits != Val.getValueSizeInBits()) {
- EVT IntMemVT =
- EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
- if (isa<ConstantFPSDNode>(Val)) {
- // Not clear how to truncate FP values.
- return false;
- } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
- Val = DAG.getConstant(C->getAPIntValue()
- .zextOrTrunc(Val.getValueSizeInBits())
- .zextOrTrunc(ElementSizeBits),
- SDLoc(C), IntMemVT);
- }
- // Make sure correctly size type is the correct type.
- Val = DAG.getBitcast(MemVT, Val);
- }
- BuildVector.push_back(Val);
- }
- StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
- : ISD::BUILD_VECTOR,
- DL, StoreTy, BuildVector);
- } else {
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0; i < NumStores; ++i) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
- SDValue Val = peekThroughBitcasts(St->getValue());
- // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
- // type MemVT. If the underlying value is not the correct
- // type, but it is an extraction of an appropriate vector we
- // can recast Val to be of the correct type. This may require
- // converting between EXTRACT_VECTOR_ELT and
- // EXTRACT_SUBVECTOR.
- if ((MemVT != Val.getValueType()) &&
- (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
- Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
- EVT MemVTScalarTy = MemVT.getScalarType();
- // We may need to add a bitcast here to get types to line up.
- if (MemVTScalarTy != Val.getValueType().getScalarType()) {
- Val = DAG.getBitcast(MemVT, Val);
- } else {
- unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
- : ISD::EXTRACT_VECTOR_ELT;
- SDValue Vec = Val.getOperand(0);
- SDValue Idx = Val.getOperand(1);
- Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
- }
- }
- Ops.push_back(Val);
- }
-
- // Build the extracted vector elements back into a vector.
- StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
- : ISD::BUILD_VECTOR,
- DL, StoreTy, Ops);
- }
- } else {
- // We should always use a vector store when merging extracted vector
- // elements, so this path implies a store of constants.
- assert(IsConstantSrc && "Merged vector elements should use vector store");
-
- APInt StoreInt(SizeInBits, 0);
-
- // Construct a single integer constant which is made of the smaller
- // constant inputs.
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- for (unsigned i = 0; i < NumStores; ++i) {
- unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
-
- SDValue Val = St->getValue();
- Val = peekThroughBitcasts(Val);
- StoreInt <<= ElementSizeBits;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
- StoreInt |= C->getAPIntValue()
- .zextOrTrunc(ElementSizeBits)
- .zextOrTrunc(SizeInBits);
- } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
- StoreInt |= C->getValueAPF()
- .bitcastToAPInt()
- .zextOrTrunc(ElementSizeBits)
- .zextOrTrunc(SizeInBits);
- // If fp truncation is necessary give up for now.
- if (MemVT.getSizeInBits() != ElementSizeBits)
- return false;
- } else {
- llvm_unreachable("Invalid constant element type");
- }
- }
-
- // Create the new Load and Store operations.
- StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
- }
-
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
-
- // make sure we use trunc store if it's necessary to be legal.
- SDValue NewStore;
- if (!UseTrunc) {
- NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(),
- FirstInChain->getAlignment());
- } else { // Must be realized as a trunc store
- EVT LegalizedStoredValTy =
- TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
- unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
- ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
- SDValue ExtendedStoreVal =
- DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
- LegalizedStoredValTy);
- NewStore = DAG.getTruncStore(
- NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
- FirstInChain->getAlignment(),
- FirstInChain->getMemOperand()->getFlags());
- }
-
- // Replace all merged stores with the new store.
- for (unsigned i = 0; i < NumStores; ++i)
- CombineTo(StoreNodes[i].MemNode, NewStore);
-
- AddToWorklist(NewChain.getNode());
- return true;
-}
-
-void DAGCombiner::getStoreMergeCandidates(
- StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
- SDNode *&RootNode) {
- // This holds the base pointer, index, and the offset in bytes from the base
- // pointer.
- BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
- EVT MemVT = St->getMemoryVT();
-
- SDValue Val = peekThroughBitcasts(St->getValue());
- // We must have a base and an offset.
- if (!BasePtr.getBase().getNode())
- return;
-
- // Do not handle stores to undef base pointers.
- if (BasePtr.getBase().isUndef())
- return;
-
- bool IsConstantSrc = isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val);
- bool IsExtractVecSrc = (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
- Val.getOpcode() == ISD::EXTRACT_SUBVECTOR);
- bool IsLoadSrc = isa<LoadSDNode>(Val);
- BaseIndexOffset LBasePtr;
- // Match on loadbaseptr if relevant.
- EVT LoadVT;
- if (IsLoadSrc) {
- auto *Ld = cast<LoadSDNode>(Val);
- LBasePtr = BaseIndexOffset::match(Ld, DAG);
- LoadVT = Ld->getMemoryVT();
- // Load and store should be the same type.
- if (MemVT != LoadVT)
- return;
- // Loads must only have one use.
- if (!Ld->hasNUsesOfValue(1, 0))
- return;
- // The memory operands must not be volatile.
- if (Ld->isVolatile() || Ld->isIndexed())
- return;
- }
- auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
- int64_t &Offset) -> bool {
- if (Other->isVolatile() || Other->isIndexed())
- return false;
- SDValue Val = peekThroughBitcasts(Other->getValue());
- // Allow merging constants of different types as integers.
- bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
- : Other->getMemoryVT() != MemVT;
- if (IsLoadSrc) {
- if (NoTypeMatch)
- return false;
- // The Load's Base Ptr must also match
- if (LoadSDNode *OtherLd = dyn_cast<LoadSDNode>(Val)) {
- auto LPtr = BaseIndexOffset::match(OtherLd, DAG);
- if (LoadVT != OtherLd->getMemoryVT())
- return false;
- // Loads must only have one use.
- if (!OtherLd->hasNUsesOfValue(1, 0))
- return false;
- // The memory operands must not be volatile.
- if (OtherLd->isVolatile() || OtherLd->isIndexed())
- return false;
- if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
- return false;
- } else
- return false;
- }
- if (IsConstantSrc) {
- if (NoTypeMatch)
- return false;
- if (!(isa<ConstantSDNode>(Val) || isa<ConstantFPSDNode>(Val)))
- return false;
- }
- if (IsExtractVecSrc) {
- // Do not merge truncated stores here.
- if (Other->isTruncatingStore())
- return false;
- if (!MemVT.bitsEq(Val.getValueType()))
- return false;
- if (Val.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
- Val.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return false;
- }
- Ptr = BaseIndexOffset::match(Other, DAG);
- return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
- };
-
- // We looking for a root node which is an ancestor to all mergable
- // stores. We search up through a load, to our root and then down
- // through all children. For instance we will find Store{1,2,3} if
- // St is Store1, Store2. or Store3 where the root is not a load
- // which always true for nonvolatile ops. TODO: Expand
- // the search to find all valid candidates through multiple layers of loads.
- //
- // Root
- // |-------|-------|
- // Load Load Store3
- // | |
- // Store1 Store2
- //
- // FIXME: We should be able to climb and
- // descend TokenFactors to find candidates as well.
-
- RootNode = St->getChain().getNode();
-
- if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
- RootNode = Ldn->getChain().getNode();
- for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I)
- if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) // walk down chain
- for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
- if (I2.getOperandNo() == 0)
- if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I2)) {
- BaseIndexOffset Ptr;
- int64_t PtrDiff;
- if (CandidateMatch(OtherST, Ptr, PtrDiff))
- StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
- }
- } else
- for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E; ++I)
- if (I.getOperandNo() == 0)
- if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
- BaseIndexOffset Ptr;
- int64_t PtrDiff;
- if (CandidateMatch(OtherST, Ptr, PtrDiff))
- StoreNodes.push_back(MemOpLink(OtherST, PtrDiff));
- }
-}
-
-// We need to check that merging these stores does not cause a loop in
-// the DAG. Any store candidate may depend on another candidate
-// indirectly through its operand (we already consider dependencies
-// through the chain). Check in parallel by searching up from
-// non-chain operands of candidates.
-bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
- SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
- SDNode *RootNode) {
- // FIXME: We should be able to truncate a full search of
- // predecessors by doing a BFS and keeping tabs the originating
- // stores from which worklist nodes come from in a similar way to
- // TokenFactor simplfication.
-
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 8> Worklist;
-
- // RootNode is a predecessor to all candidates so we need not search
- // past it. Add RootNode (peeking through TokenFactors). Do not count
- // these towards size check.
-
- Worklist.push_back(RootNode);
- while (!Worklist.empty()) {
- auto N = Worklist.pop_back_val();
- if (!Visited.insert(N).second)
- continue; // Already present in Visited.
- if (N->getOpcode() == ISD::TokenFactor) {
- for (SDValue Op : N->ops())
- Worklist.push_back(Op.getNode());
- }
- }
-
- // Don't count pruning nodes towards max.
- unsigned int Max = 1024 + Visited.size();
- // Search Ops of store candidates.
- for (unsigned i = 0; i < NumStores; ++i) {
- SDNode *N = StoreNodes[i].MemNode;
- // Of the 4 Store Operands:
- // * Chain (Op 0) -> We have already considered these
- // in candidate selection and can be
- // safely ignored
- // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
- // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
- // but aren't necessarily fromt the same base node, so
- // cycles possible (e.g. via indexed store).
- // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
- // non-indexed stores). Not constant on all targets (e.g. ARM)
- // and so can participate in a cycle.
- for (unsigned j = 1; j < N->getNumOperands(); ++j)
- Worklist.push_back(N->getOperand(j).getNode());
- }
- // Search through DAG. We can stop early if we find a store node.
- for (unsigned i = 0; i < NumStores; ++i)
- if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
- Max))
- return false;
- return true;
-}
-
-bool DAGCombiner::MergeConsecutiveStores(StoreSDNode *St) {
- if (OptLevel == CodeGenOpt::None)
- return false;
-
- EVT MemVT = St->getMemoryVT();
- int64_t ElementSizeBytes = MemVT.getStoreSize();
- unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
-
- if (MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
- return false;
-
- bool NoVectors = DAG.getMachineFunction().getFunction().hasFnAttribute(
- Attribute::NoImplicitFloat);
-
- // This function cannot currently deal with non-byte-sized memory sizes.
- if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
- return false;
-
- if (!MemVT.isSimple())
- return false;
-
- // Perform an early exit check. Do not bother looking at stored values that
- // are not constants, loads, or extracted vector elements.
- SDValue StoredVal = peekThroughBitcasts(St->getValue());
- bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
- bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
- isa<ConstantFPSDNode>(StoredVal);
- bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
- StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
-
- if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
- return false;
-
- SmallVector<MemOpLink, 8> StoreNodes;
- SDNode *RootNode;
- // Find potential store merge candidates by searching through chain sub-DAG
- getStoreMergeCandidates(St, StoreNodes, RootNode);
-
- // Check if there is anything to merge.
- if (StoreNodes.size() < 2)
- return false;
-
- // Sort the memory operands according to their distance from the
- // base pointer.
- llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
- return LHS.OffsetFromBase < RHS.OffsetFromBase;
- });
-
- // Store Merge attempts to merge the lowest stores. This generally
- // works out as if successful, as the remaining stores are checked
- // after the first collection of stores is merged. However, in the
- // case that a non-mergeable store is found first, e.g., {p[-2],
- // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
- // mergeable cases. To prevent this, we prune such stores from the
- // front of StoreNodes here.
-
- bool RV = false;
- while (StoreNodes.size() > 1) {
- unsigned StartIdx = 0;
- while ((StartIdx + 1 < StoreNodes.size()) &&
- StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
- StoreNodes[StartIdx + 1].OffsetFromBase)
- ++StartIdx;
-
- // Bail if we don't have enough candidates to merge.
- if (StartIdx + 1 >= StoreNodes.size())
- return RV;
-
- if (StartIdx)
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
-
- // Scan the memory operations on the chain and find the first
- // non-consecutive store memory address.
- unsigned NumConsecutiveStores = 1;
- int64_t StartAddress = StoreNodes[0].OffsetFromBase;
- // Check that the addresses are consecutive starting from the second
- // element in the list of stores.
- for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
- int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
- if (CurrAddress - StartAddress != (ElementSizeBytes * i))
- break;
- NumConsecutiveStores = i + 1;
- }
-
- if (NumConsecutiveStores < 2) {
- StoreNodes.erase(StoreNodes.begin(),
- StoreNodes.begin() + NumConsecutiveStores);
- continue;
- }
-
- // The node with the lowest store address.
- LLVMContext &Context = *DAG.getContext();
- const DataLayout &DL = DAG.getDataLayout();
-
- // Store the constants into memory as one consecutive store.
- if (IsConstantSrc) {
- while (NumConsecutiveStores >= 2) {
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- unsigned FirstStoreAS = FirstInChain->getAddressSpace();
- unsigned FirstStoreAlign = FirstInChain->getAlignment();
- unsigned LastLegalType = 1;
- unsigned LastLegalVectorType = 1;
- bool LastIntegerTrunc = false;
- bool NonZero = false;
- unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
- for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
- StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
- SDValue StoredVal = ST->getValue();
- bool IsElementZero = false;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
- IsElementZero = C->isNullValue();
- else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
- IsElementZero = C->getConstantFPValue()->isNullValue();
- if (IsElementZero) {
- if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
- FirstZeroAfterNonZero = i;
- }
- NonZero |= !IsElementZero;
-
- // Find a legal type for the constant store.
- unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
- EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
- bool IsFast = false;
-
- // Break early when size is too large to be legal.
- if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
- break;
-
- if (TLI.isTypeLegal(StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
- FirstStoreAlign, &IsFast) &&
- IsFast) {
- LastIntegerTrunc = false;
- LastLegalType = i + 1;
- // Or check whether a truncstore is legal.
- } else if (TLI.getTypeAction(Context, StoreTy) ==
- TargetLowering::TypePromoteInteger) {
- EVT LegalizedStoredValTy =
- TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
- if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
- FirstStoreAlign, &IsFast) &&
- IsFast) {
- LastIntegerTrunc = true;
- LastLegalType = i + 1;
- }
- }
-
- // We only use vectors if the constant is known to be zero or the
- // target allows it and the function is not marked with the
- // noimplicitfloat attribute.
- if ((!NonZero ||
- TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
- !NoVectors) {
- // Find a legal type for the vector store.
- unsigned Elts = (i + 1) * NumMemElts;
- EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
- if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
- TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
- TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
- FirstStoreAlign, &IsFast) &&
- IsFast)
- LastLegalVectorType = i + 1;
- }
- }
-
- bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
- unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
-
- // Check if we found a legal integer type that creates a meaningful
- // merge.
- if (NumElem < 2) {
- // We know that candidate stores are in order and of correct
- // shape. While there is no mergeable sequence from the
- // beginning one may start later in the sequence. The only
- // reason a merge of size N could have failed where another of
- // the same size would not have, is if the alignment has
- // improved or we've dropped a non-zero value. Drop as many
- // candidates as we can here.
- unsigned NumSkip = 1;
- while (
- (NumSkip < NumConsecutiveStores) &&
- (NumSkip < FirstZeroAfterNonZero) &&
- (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
- NumSkip++;
-
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
- NumConsecutiveStores -= NumSkip;
- continue;
- }
-
- // Check that we can merge these candidates without causing a cycle.
- if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
- RootNode)) {
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- continue;
- }
-
- RV |= MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, true,
- UseVector, LastIntegerTrunc);
-
- // Remove merged stores for next iteration.
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- }
- continue;
- }
-
- // When extracting multiple vector elements, try to store them
- // in one vector store rather than a sequence of scalar stores.
- if (IsExtractVecSrc) {
- // Loop on Consecutive Stores on success.
- while (NumConsecutiveStores >= 2) {
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- unsigned FirstStoreAS = FirstInChain->getAddressSpace();
- unsigned FirstStoreAlign = FirstInChain->getAlignment();
- unsigned NumStoresToMerge = 1;
- for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
- // Find a legal type for the vector store.
- unsigned Elts = (i + 1) * NumMemElts;
- EVT Ty =
- EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
- bool IsFast;
-
- // Break early when size is too large to be legal.
- if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
- break;
-
- if (TLI.isTypeLegal(Ty) &&
- TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
- TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
- FirstStoreAlign, &IsFast) &&
- IsFast)
- NumStoresToMerge = i + 1;
- }
-
- // Check if we found a legal integer type creating a meaningful
- // merge.
- if (NumStoresToMerge < 2) {
- // We know that candidate stores are in order and of correct
- // shape. While there is no mergeable sequence from the
- // beginning one may start later in the sequence. The only
- // reason a merge of size N could have failed where another of
- // the same size would not have, is if the alignment has
- // improved. Drop as many candidates as we can here.
- unsigned NumSkip = 1;
- while (
- (NumSkip < NumConsecutiveStores) &&
- (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
- NumSkip++;
-
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
- NumConsecutiveStores -= NumSkip;
- continue;
- }
-
- // Check that we can merge these candidates without causing a cycle.
- if (!checkMergeStoreCandidatesForDependencies(
- StoreNodes, NumStoresToMerge, RootNode)) {
- StoreNodes.erase(StoreNodes.begin(),
- StoreNodes.begin() + NumStoresToMerge);
- NumConsecutiveStores -= NumStoresToMerge;
- continue;
- }
-
- RV |= MergeStoresOfConstantsOrVecElts(
- StoreNodes, MemVT, NumStoresToMerge, false, true, false);
-
- StoreNodes.erase(StoreNodes.begin(),
- StoreNodes.begin() + NumStoresToMerge);
- NumConsecutiveStores -= NumStoresToMerge;
- }
- continue;
- }
-
- // Below we handle the case of multiple consecutive stores that
- // come from multiple consecutive loads. We merge them into a single
- // wide load and a single wide store.
-
- // Look for load nodes which are used by the stored values.
- SmallVector<MemOpLink, 8> LoadNodes;
-
- // Find acceptable loads. Loads need to have the same chain (token factor),
- // must not be zext, volatile, indexed, and they must be consecutive.
- BaseIndexOffset LdBasePtr;
-
- for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
- SDValue Val = peekThroughBitcasts(St->getValue());
- LoadSDNode *Ld = cast<LoadSDNode>(Val);
-
- BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
- // If this is not the first ptr that we check.
- int64_t LdOffset = 0;
- if (LdBasePtr.getBase().getNode()) {
- // The base ptr must be the same.
- if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
- break;
- } else {
- // Check that all other base pointers are the same as this one.
- LdBasePtr = LdPtr;
- }
-
- // We found a potential memory operand to merge.
- LoadNodes.push_back(MemOpLink(Ld, LdOffset));
- }
-
- while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
- // If we have load/store pair instructions and we only have two values,
- // don't bother merging.
- unsigned RequiredAlignment;
- if (LoadNodes.size() == 2 &&
- TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
- StoreNodes[0].MemNode->getAlignment() >= RequiredAlignment) {
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
- break;
- }
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- unsigned FirstStoreAS = FirstInChain->getAddressSpace();
- unsigned FirstStoreAlign = FirstInChain->getAlignment();
- LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
- unsigned FirstLoadAS = FirstLoad->getAddressSpace();
- unsigned FirstLoadAlign = FirstLoad->getAlignment();
-
- // Scan the memory operations on the chain and find the first
- // non-consecutive load memory address. These variables hold the index in
- // the store node array.
-
- unsigned LastConsecutiveLoad = 1;
-
- // This variable refers to the size and not index in the array.
- unsigned LastLegalVectorType = 1;
- unsigned LastLegalIntegerType = 1;
- bool isDereferenceable = true;
- bool DoIntegerTruncate = false;
- StartAddress = LoadNodes[0].OffsetFromBase;
- SDValue FirstChain = FirstLoad->getChain();
- for (unsigned i = 1; i < LoadNodes.size(); ++i) {
- // All loads must share the same chain.
- if (LoadNodes[i].MemNode->getChain() != FirstChain)
- break;
-
- int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
- if (CurrAddress - StartAddress != (ElementSizeBytes * i))
- break;
- LastConsecutiveLoad = i;
-
- if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
- isDereferenceable = false;
-
- // Find a legal type for the vector store.
- unsigned Elts = (i + 1) * NumMemElts;
- EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
-
- // Break early when size is too large to be legal.
- if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
- break;
-
- bool IsFastSt, IsFastLd;
- if (TLI.isTypeLegal(StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
- FirstStoreAlign, &IsFastSt) &&
- IsFastSt &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
- FirstLoadAlign, &IsFastLd) &&
- IsFastLd) {
- LastLegalVectorType = i + 1;
- }
-
- // Find a legal type for the integer store.
- unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
- StoreTy = EVT::getIntegerVT(Context, SizeInBits);
- if (TLI.isTypeLegal(StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
- FirstStoreAlign, &IsFastSt) &&
- IsFastSt &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
- FirstLoadAlign, &IsFastLd) &&
- IsFastLd) {
- LastLegalIntegerType = i + 1;
- DoIntegerTruncate = false;
- // Or check whether a truncstore and extload is legal.
- } else if (TLI.getTypeAction(Context, StoreTy) ==
- TargetLowering::TypePromoteInteger) {
- EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
- if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy,
- StoreTy) &&
- TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy,
- StoreTy) &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
- FirstStoreAlign, &IsFastSt) &&
- IsFastSt &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
- FirstLoadAlign, &IsFastLd) &&
- IsFastLd) {
- LastLegalIntegerType = i + 1;
- DoIntegerTruncate = true;
- }
- }
- }
-
- // Only use vector types if the vector type is larger than the integer
- // type. If they are the same, use integers.
- bool UseVectorTy =
- LastLegalVectorType > LastLegalIntegerType && !NoVectors;
- unsigned LastLegalType =
- std::max(LastLegalVectorType, LastLegalIntegerType);
-
- // We add +1 here because the LastXXX variables refer to location while
- // the NumElem refers to array/index size.
- unsigned NumElem =
- std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
- NumElem = std::min(LastLegalType, NumElem);
-
- if (NumElem < 2) {
- // We know that candidate stores are in order and of correct
- // shape. While there is no mergeable sequence from the
- // beginning one may start later in the sequence. The only
- // reason a merge of size N could have failed where another of
- // the same size would not have is if the alignment or either
- // the load or store has improved. Drop as many candidates as we
- // can here.
- unsigned NumSkip = 1;
- while ((NumSkip < LoadNodes.size()) &&
- (LoadNodes[NumSkip].MemNode->getAlignment() <= FirstLoadAlign) &&
- (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
- NumSkip++;
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
- NumConsecutiveStores -= NumSkip;
- continue;
- }
-
- // Check that we can merge these candidates without causing a cycle.
- if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
- RootNode)) {
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- continue;
- }
-
- // Find if it is better to use vectors or integers to load and store
- // to memory.
- EVT JointMemOpVT;
- if (UseVectorTy) {
- // Find a legal type for the vector store.
- unsigned Elts = NumElem * NumMemElts;
- JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
- } else {
- unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
- JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
- }
-
- SDLoc LoadDL(LoadNodes[0].MemNode);
- SDLoc StoreDL(StoreNodes[0].MemNode);
-
- // The merged loads are required to have the same incoming chain, so
- // using the first's chain is acceptable.
-
- SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
- AddToWorklist(NewStoreChain.getNode());
-
- MachineMemOperand::Flags MMOFlags =
- isDereferenceable ? MachineMemOperand::MODereferenceable
- : MachineMemOperand::MONone;
-
- SDValue NewLoad, NewStore;
- if (UseVectorTy || !DoIntegerTruncate) {
- NewLoad =
- DAG.getLoad(JointMemOpVT, LoadDL, FirstLoad->getChain(),
- FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
- FirstLoadAlign, MMOFlags);
- NewStore = DAG.getStore(
- NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(), FirstStoreAlign);
- } else { // This must be the truncstore/extload case
- EVT ExtendedTy =
- TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
- NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
- FirstLoad->getChain(), FirstLoad->getBasePtr(),
- FirstLoad->getPointerInfo(), JointMemOpVT,
- FirstLoadAlign, MMOFlags);
- NewStore = DAG.getTruncStore(NewStoreChain, StoreDL, NewLoad,
- FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(),
- JointMemOpVT, FirstInChain->getAlignment(),
- FirstInChain->getMemOperand()->getFlags());
- }
-
- // Transfer chain users from old loads to the new load.
- for (unsigned i = 0; i < NumElem; ++i) {
- LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
- SDValue(NewLoad.getNode(), 1));
- }
-
- // Replace the all stores with the new store. Recursively remove
- // corresponding value if its no longer used.
- for (unsigned i = 0; i < NumElem; ++i) {
- SDValue Val = StoreNodes[i].MemNode->getOperand(1);
- CombineTo(StoreNodes[i].MemNode, NewStore);
- if (Val.getNode()->use_empty())
- recursivelyDeleteUnusedNodes(Val.getNode());
- }
-
- RV = true;
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- }
- }
- return RV;
-}
-
-SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
- SDLoc SL(ST);
- SDValue ReplStore;
-
- // Replace the chain to avoid dependency.
- if (ST->isTruncatingStore()) {
- ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
- ST->getBasePtr(), ST->getMemoryVT(),
- ST->getMemOperand());
- } else {
- ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
- ST->getMemOperand());
- }
-
- // Create token to keep both nodes around.
- SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
- MVT::Other, ST->getChain(), ReplStore);
-
- // Make sure the new and old chains are cleaned up.
- AddToWorklist(Token.getNode());
-
- // Don't add users to work list.
- return CombineTo(ST, Token, false);
-}
-
-SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
- SDValue Value = ST->getValue();
- if (Value.getOpcode() == ISD::TargetConstantFP)
- return SDValue();
-
- SDLoc DL(ST);
-
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
-
- const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
-
- // NOTE: If the original store is volatile, this transform must not increase
- // the number of stores. For example, on x86-32 an f64 can be stored in one
- // processor operation but an i64 (which is not legal) requires two. So the
- // transform should not be done in this case.
-
- SDValue Tmp;
- switch (CFP->getSimpleValueType(0).SimpleTy) {
- default:
- llvm_unreachable("Unknown FP type");
- case MVT::f16: // We don't do this for these yet.
- case MVT::f80:
- case MVT::f128:
- case MVT::ppcf128:
- return SDValue();
- case MVT::f32:
- if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
- ;
- Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
- bitcastToAPInt().getZExtValue(), SDLoc(CFP),
- MVT::i32);
- return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
- }
-
- return SDValue();
- case MVT::f64:
- if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
- !ST->isVolatile()) ||
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
- ;
- Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
- getZExtValue(), SDLoc(CFP), MVT::i64);
- return DAG.getStore(Chain, DL, Tmp,
- Ptr, ST->getMemOperand());
- }
-
- if (!ST->isVolatile() &&
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
- // Many FP stores are not made apparent until after legalize, e.g. for
- // argument passing. Since this is so common, custom legalize the
- // 64-bit integer store into two 32-bit stores.
- uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
- SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
- SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
- if (DAG.getDataLayout().isBigEndian())
- std::swap(Lo, Hi);
-
- unsigned Alignment = ST->getAlignment();
- MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
- AAMDNodes AAInfo = ST->getAAInfo();
-
- SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
- ST->getAlignment(), MMOFlags, AAInfo);
- Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
- DAG.getConstant(4, DL, Ptr.getValueType()));
- Alignment = MinAlign(Alignment, 4U);
- SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
- ST->getPointerInfo().getWithOffset(4),
- Alignment, MMOFlags, AAInfo);
- return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
- St0, St1);
- }
-
- return SDValue();
- }
-}
-
-SDValue DAGCombiner::visitSTORE(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- SDValue Chain = ST->getChain();
- SDValue Value = ST->getValue();
- SDValue Ptr = ST->getBasePtr();
-
- // If this is a store of a bit convert, store the input value if the
- // resultant store does not need a higher alignment than the original.
- if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
- ST->isUnindexed()) {
- EVT SVT = Value.getOperand(0).getValueType();
- // If the store is volatile, we only want to change the store type if the
- // resulting store is legal. Otherwise we might increase the number of
- // memory accesses. We don't care if the original type was legal or not
- // as we assume software couldn't rely on the number of accesses of an
- // illegal type.
- if (((!LegalOperations && !ST->isVolatile()) ||
- TLI.isOperationLegal(ISD::STORE, SVT)) &&
- TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) {
- unsigned OrigAlign = ST->getAlignment();
- bool Fast = false;
- if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT,
- ST->getAddressSpace(), OrigAlign, &Fast) &&
- Fast) {
- return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
- ST->getPointerInfo(), OrigAlign,
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
- }
- }
- }
-
- // Turn 'store undef, Ptr' -> nothing.
- if (Value.isUndef() && ST->isUnindexed())
- return Chain;
-
- // Try to infer better alignment information than the store already has.
- if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
- if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
- if (Align > ST->getAlignment() && ST->getSrcValueOffset() % Align == 0) {
- SDValue NewStore =
- DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
- ST->getMemoryVT(), Align,
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
- // NewStore will always be N as we are only refining the alignment
- assert(NewStore.getNode() == N);
- (void)NewStore;
- }
- }
- }
-
- // Try transforming a pair floating point load / store ops to integer
- // load / store ops.
- if (SDValue NewST = TransformFPLoadStorePair(N))
- return NewST;
-
- if (ST->isUnindexed()) {
- // Walk up chain skipping non-aliasing memory nodes, on this store and any
- // adjacent stores.
- if (findBetterNeighborChains(ST)) {
- // replaceStoreChain uses CombineTo, which handled all of the worklist
- // manipulation. Return the original node to not do anything else.
- return SDValue(ST, 0);
- }
- Chain = ST->getChain();
- }
-
- // FIXME: is there such a thing as a truncating indexed store?
- if (ST->isTruncatingStore() && ST->isUnindexed() &&
- Value.getValueType().isInteger() &&
- (!isa<ConstantSDNode>(Value) ||
- !cast<ConstantSDNode>(Value)->isOpaque())) {
- // See if we can simplify the input to this truncstore with knowledge that
- // only the low bits are being used. For example:
- // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
- SDValue Shorter = DAG.GetDemandedBits(
- Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
- ST->getMemoryVT().getScalarSizeInBits()));
- AddToWorklist(Value.getNode());
- if (Shorter.getNode())
- return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
- Ptr, ST->getMemoryVT(), ST->getMemOperand());
-
- // Otherwise, see if we can simplify the operation with
- // SimplifyDemandedBits, which only works if the value has a single use.
- if (SimplifyDemandedBits(
- Value,
- APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
- ST->getMemoryVT().getScalarSizeInBits()))) {
- // Re-visit the store if anything changed and the store hasn't been merged
- // with another node (N is deleted) SimplifyDemandedBits will add Value's
- // node back to the worklist if necessary, but we also need to re-visit
- // the Store node itself.
- if (N->getOpcode() != ISD::DELETED_NODE)
- AddToWorklist(N);
- return SDValue(N, 0);
- }
- }
-
- // If this is a load followed by a store to the same location, then the store
- // is dead/noop.
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
- if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
- ST->isUnindexed() && !ST->isVolatile() &&
- // There can't be any side effects between the load and store, such as
- // a call or store.
- Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
- // The store is dead, remove it.
- return Chain;
- }
- }
-
- if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
- if (ST->isUnindexed() && !ST->isVolatile() && ST1->isUnindexed() &&
- !ST1->isVolatile() && ST1->getBasePtr() == Ptr &&
- ST->getMemoryVT() == ST1->getMemoryVT()) {
- // If this is a store followed by a store with the same value to the same
- // location, then the store is dead/noop.
- if (ST1->getValue() == Value) {
- // The store is dead, remove it.
- return Chain;
- }
-
- // If this is a store who's preceeding store to the same location
- // and no one other node is chained to that store we can effectively
- // drop the store. Do not remove stores to undef as they may be used as
- // data sinks.
- if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
- !ST1->getBasePtr().isUndef()) {
- // ST1 is fully overwritten and can be elided. Combine with it's chain
- // value.
- CombineTo(ST1, ST1->getChain());
- return SDValue();
- }
- }
- }
-
- // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
- // truncating store. We can do this even if this is already a truncstore.
- if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
- && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
- TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
- ST->getMemoryVT())) {
- return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
- Ptr, ST->getMemoryVT(), ST->getMemOperand());
- }
-
- // Always perform this optimization before types are legal. If the target
- // prefers, also try this after legalization to catch stores that were created
- // by intrinsics or other nodes.
- if (!LegalTypes || (TLI.mergeStoresAfterLegalization())) {
- while (true) {
- // There can be multiple store sequences on the same chain.
- // Keep trying to merge store sequences until we are unable to do so
- // or until we merge the last store on the chain.
- bool Changed = MergeConsecutiveStores(ST);
- if (!Changed) break;
- // Return N as merge only uses CombineTo and no worklist clean
- // up is necessary.
- if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
- return SDValue(N, 0);
- }
- }
-
- // Try transforming N to an indexed store.
- if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
- return SDValue(N, 0);
-
- // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
- //
- // Make sure to do this only after attempting to merge stores in order to
- // avoid changing the types of some subset of stores due to visit order,
- // preventing their merging.
- if (isa<ConstantFPSDNode>(ST->getValue())) {
- if (SDValue NewSt = replaceStoreOfFPConstant(ST))
- return NewSt;
- }
-
- if (SDValue NewSt = splitMergedValStore(ST))
- return NewSt;
-
- return ReduceLoadOpStoreWidth(N);
-}
-
-/// For the instruction sequence of store below, F and I values
-/// are bundled together as an i64 value before being stored into memory.
-/// Sometimes it is more efficent to generate separate stores for F and I,
-/// which can remove the bitwise instructions or sink them to colder places.
-///
-/// (store (or (zext (bitcast F to i32) to i64),
-/// (shl (zext I to i64), 32)), addr) -->
-/// (store F, addr) and (store I, addr+4)
-///
-/// Similarly, splitting for other merged store can also be beneficial, like:
-/// For pair of {i32, i32}, i64 store --> two i32 stores.
-/// For pair of {i32, i16}, i64 store --> two i32 stores.
-/// For pair of {i16, i16}, i32 store --> two i16 stores.
-/// For pair of {i16, i8}, i32 store --> two i16 stores.
-/// For pair of {i8, i8}, i16 store --> two i8 stores.
-///
-/// We allow each target to determine specifically which kind of splitting is
-/// supported.
-///
-/// The store patterns are commonly seen from the simple code snippet below
-/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
-/// void goo(const std::pair<int, float> &);
-/// hoo() {
-/// ...
-/// goo(std::make_pair(tmp, ftmp));
-/// ...
-/// }
-///
-SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
- if (OptLevel == CodeGenOpt::None)
- return SDValue();
-
- SDValue Val = ST->getValue();
- SDLoc DL(ST);
-
- // Match OR operand.
- if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
- return SDValue();
-
- // Match SHL operand and get Lower and Higher parts of Val.
- SDValue Op1 = Val.getOperand(0);
- SDValue Op2 = Val.getOperand(1);
- SDValue Lo, Hi;
- if (Op1.getOpcode() != ISD::SHL) {
- std::swap(Op1, Op2);
- if (Op1.getOpcode() != ISD::SHL)
- return SDValue();
- }
- Lo = Op2;
- Hi = Op1.getOperand(0);
- if (!Op1.hasOneUse())
- return SDValue();
-
- // Match shift amount to HalfValBitSize.
- unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
- ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
- if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
- return SDValue();
-
- // Lo and Hi are zero-extended from int with size less equal than 32
- // to i64.
- if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
- !Lo.getOperand(0).getValueType().isScalarInteger() ||
- Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
- Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
- !Hi.getOperand(0).getValueType().isScalarInteger() ||
- Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
- return SDValue();
-
- // Use the EVT of low and high parts before bitcast as the input
- // of target query.
- EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
- ? Lo.getOperand(0).getValueType()
- : Lo.getValueType();
- EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
- ? Hi.getOperand(0).getValueType()
- : Hi.getValueType();
- if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
- return SDValue();
-
- // Start to split store.
- unsigned Alignment = ST->getAlignment();
- MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
- AAMDNodes AAInfo = ST->getAAInfo();
-
- // Change the sizes of Lo and Hi's value types to HalfValBitSize.
- EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
- Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
- Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
-
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
- // Lower value store.
- SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
- ST->getAlignment(), MMOFlags, AAInfo);
- Ptr =
- DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
- DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
- // Higher value store.
- SDValue St1 =
- DAG.getStore(St0, DL, Hi, Ptr,
- ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
- Alignment / 2, MMOFlags, AAInfo);
- return St1;
-}
-
-/// Convert a disguised subvector insertion into a shuffle:
-/// insert_vector_elt V, (bitcast X from vector type), IdxC -->
-/// bitcast(shuffle (bitcast V), (extended X), Mask)
-/// Note: We do not use an insert_subvector node because that requires a legal
-/// subvector type.
-SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
- SDValue InsertVal = N->getOperand(1);
- if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
- !InsertVal.getOperand(0).getValueType().isVector())
- return SDValue();
-
- SDValue SubVec = InsertVal.getOperand(0);
- SDValue DestVec = N->getOperand(0);
- EVT SubVecVT = SubVec.getValueType();
- EVT VT = DestVec.getValueType();
- unsigned NumSrcElts = SubVecVT.getVectorNumElements();
- unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
- unsigned NumMaskVals = ExtendRatio * NumSrcElts;
-
- // Step 1: Create a shuffle mask that implements this insert operation. The
- // vector that we are inserting into will be operand 0 of the shuffle, so
- // those elements are just 'i'. The inserted subvector is in the first
- // positions of operand 1 of the shuffle. Example:
- // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
- SmallVector<int, 16> Mask(NumMaskVals);
- for (unsigned i = 0; i != NumMaskVals; ++i) {
- if (i / NumSrcElts == InsIndex)
- Mask[i] = (i % NumSrcElts) + NumMaskVals;
- else
- Mask[i] = i;
- }
-
- // Bail out if the target can not handle the shuffle we want to create.
- EVT SubVecEltVT = SubVecVT.getVectorElementType();
- EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
- if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
- return SDValue();
-
- // Step 2: Create a wide vector from the inserted source vector by appending
- // undefined elements. This is the same size as our destination vector.
- SDLoc DL(N);
- SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
- ConcatOps[0] = SubVec;
- SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
-
- // Step 3: Shuffle in the padded subvector.
- SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
- SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
- AddToWorklist(PaddedSubV.getNode());
- AddToWorklist(DestVecBC.getNode());
- AddToWorklist(Shuf.getNode());
- return DAG.getBitcast(VT, Shuf);
-}
-
-SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
- SDValue InVec = N->getOperand(0);
- SDValue InVal = N->getOperand(1);
- SDValue EltNo = N->getOperand(2);
- SDLoc DL(N);
-
- // If the inserted element is an UNDEF, just use the input vector.
- if (InVal.isUndef())
- return InVec;
-
- EVT VT = InVec.getValueType();
- unsigned NumElts = VT.getVectorNumElements();
-
- // Remove redundant insertions:
- // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
- if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
- return InVec;
-
- auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
- if (!IndexC) {
- // If this is variable insert to undef vector, it might be better to splat:
- // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
- if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
- SmallVector<SDValue, 8> Ops(NumElts, InVal);
- return DAG.getBuildVector(VT, DL, Ops);
- }
- return SDValue();
- }
-
- // We must know which element is being inserted for folds below here.
- unsigned Elt = IndexC->getZExtValue();
- if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
- return Shuf;
-
- // Canonicalize insert_vector_elt dag nodes.
- // Example:
- // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
- // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
- //
- // Do this only if the child insert_vector node has one use; also
- // do this only if indices are both constants and Idx1 < Idx0.
- if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
- && isa<ConstantSDNode>(InVec.getOperand(2))) {
- unsigned OtherElt = InVec.getConstantOperandVal(2);
- if (Elt < OtherElt) {
- // Swap nodes.
- SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
- InVec.getOperand(0), InVal, EltNo);
- AddToWorklist(NewOp.getNode());
- return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
- VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
- }
- }
-
- // If we can't generate a legal BUILD_VECTOR, exit
- if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
- return SDValue();
-
- // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
- // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
- // vector elements.
- SmallVector<SDValue, 8> Ops;
- // Do not combine these two vectors if the output vector will not replace
- // the input vector.
- if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
- Ops.append(InVec.getNode()->op_begin(),
- InVec.getNode()->op_end());
- } else if (InVec.isUndef()) {
- Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
- } else {
- return SDValue();
- }
- assert(Ops.size() == NumElts && "Unexpected vector size");
-
- // Insert the element
- if (Elt < Ops.size()) {
- // All the operands of BUILD_VECTOR must have the same type;
- // we enforce that here.
- EVT OpVT = Ops[0].getValueType();
- Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
- }
-
- // Return the new vector
- return DAG.getBuildVector(VT, DL, Ops);
-}
-
-SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
- SDValue EltNo,
- LoadSDNode *OriginalLoad) {
- assert(!OriginalLoad->isVolatile());
-
- EVT ResultVT = EVE->getValueType(0);
- EVT VecEltVT = InVecVT.getVectorElementType();
- unsigned Align = OriginalLoad->getAlignment();
- unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
- VecEltVT.getTypeForEVT(*DAG.getContext()));
-
- if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
- return SDValue();
-
- ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
- ISD::NON_EXTLOAD : ISD::EXTLOAD;
- if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
- return SDValue();
-
- Align = NewAlign;
-
- SDValue NewPtr = OriginalLoad->getBasePtr();
- SDValue Offset;
- EVT PtrType = NewPtr.getValueType();
- MachinePointerInfo MPI;
- SDLoc DL(EVE);
- if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
- int Elt = ConstEltNo->getZExtValue();
- unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
- Offset = DAG.getConstant(PtrOff, DL, PtrType);
- MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
- } else {
- Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
- Offset = DAG.getNode(
- ISD::MUL, DL, PtrType, Offset,
- DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
- MPI = OriginalLoad->getPointerInfo();
- }
- NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
-
- // The replacement we need to do here is a little tricky: we need to
- // replace an extractelement of a load with a load.
- // Use ReplaceAllUsesOfValuesWith to do the replacement.
- // Note that this replacement assumes that the extractvalue is the only
- // use of the load; that's okay because we don't want to perform this
- // transformation in other cases anyway.
- SDValue Load;
- SDValue Chain;
- if (ResultVT.bitsGT(VecEltVT)) {
- // If the result type of vextract is wider than the load, then issue an
- // extending load instead.
- ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
- VecEltVT)
- ? ISD::ZEXTLOAD
- : ISD::EXTLOAD;
- Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
- OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
- Align, OriginalLoad->getMemOperand()->getFlags(),
- OriginalLoad->getAAInfo());
- Chain = Load.getValue(1);
- } else {
- Load = DAG.getLoad(VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr,
- MPI, Align, OriginalLoad->getMemOperand()->getFlags(),
- OriginalLoad->getAAInfo());
- Chain = Load.getValue(1);
- if (ResultVT.bitsLT(VecEltVT))
- Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
- else
- Load = DAG.getBitcast(ResultVT, Load);
- }
- WorklistRemover DeadNodes(*this);
- SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
- SDValue To[] = { Load, Chain };
- DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
- // Since we're explicitly calling ReplaceAllUses, add the new node to the
- // worklist explicitly as well.
- AddToWorklist(Load.getNode());
- AddUsersToWorklist(Load.getNode()); // Add users too
- // Make sure to revisit this node to clean it up; it will usually be dead.
- AddToWorklist(EVE);
- ++OpsNarrowed;
- return SDValue(EVE, 0);
-}
-
-/// Transform a vector binary operation into a scalar binary operation by moving
-/// the math/logic after an extract element of a vector.
-static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
- bool LegalOperations) {
- SDValue Vec = ExtElt->getOperand(0);
- SDValue Index = ExtElt->getOperand(1);
- auto *IndexC = dyn_cast<ConstantSDNode>(Index);
- if (!IndexC || !ISD::isBinaryOp(Vec.getNode()) || !Vec.hasOneUse())
- return SDValue();
-
- // Targets may want to avoid this to prevent an expensive register transfer.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.shouldScalarizeBinop(Vec))
- return SDValue();
-
- // Extracting an element of a vector constant is constant-folded, so this
- // transform is just replacing a vector op with a scalar op while moving the
- // extract.
- SDValue Op0 = Vec.getOperand(0);
- SDValue Op1 = Vec.getOperand(1);
- if (isAnyConstantBuildVector(Op0, true) ||
- isAnyConstantBuildVector(Op1, true)) {
- // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
- // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
- SDLoc DL(ExtElt);
- EVT VT = ExtElt->getValueType(0);
- SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
- SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
- return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
- SDValue VecOp = N->getOperand(0);
- SDValue Index = N->getOperand(1);
- EVT ScalarVT = N->getValueType(0);
- EVT VecVT = VecOp.getValueType();
- if (VecOp.isUndef())
- return DAG.getUNDEF(ScalarVT);
-
- // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
- //
- // This only really matters if the index is non-constant since other combines
- // on the constant elements already work.
- SDLoc DL(N);
- if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
- Index == VecOp.getOperand(2)) {
- SDValue Elt = VecOp.getOperand(1);
- return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
- }
-
- // (vextract (scalar_to_vector val, 0) -> val
- if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- // Check if the result type doesn't match the inserted element type. A
- // SCALAR_TO_VECTOR may truncate the inserted element and the
- // EXTRACT_VECTOR_ELT may widen the extracted vector.
- SDValue InOp = VecOp.getOperand(0);
- if (InOp.getValueType() != ScalarVT) {
- assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
- return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
- }
- return InOp;
- }
-
- // extract_vector_elt of out-of-bounds element -> UNDEF
- auto *IndexC = dyn_cast<ConstantSDNode>(Index);
- unsigned NumElts = VecVT.getVectorNumElements();
- if (IndexC && IndexC->getAPIntValue().uge(NumElts))
- return DAG.getUNDEF(ScalarVT);
-
- // extract_vector_elt (build_vector x, y), 1 -> y
- if (IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR &&
- TLI.isTypeLegal(VecVT) &&
- (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
- SDValue Elt = VecOp.getOperand(IndexC->getZExtValue());
- EVT InEltVT = Elt.getValueType();
-
- // Sometimes build_vector's scalar input types do not match result type.
- if (ScalarVT == InEltVT)
- return Elt;
-
- // TODO: It may be useful to truncate if free if the build_vector implicitly
- // converts.
- }
-
- // TODO: These transforms should not require the 'hasOneUse' restriction, but
- // there are regressions on multiple targets without it. We can end up with a
- // mess of scalar and vector code if we reduce only part of the DAG to scalar.
- if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
- VecOp.hasOneUse()) {
- // The vector index of the LSBs of the source depend on the endian-ness.
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- unsigned ExtractIndex = IndexC->getZExtValue();
- // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
- unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
- SDValue BCSrc = VecOp.getOperand(0);
- if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
- return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
-
- if (LegalTypes && BCSrc.getValueType().isInteger() &&
- BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
- // trunc i64 X to i32
- SDValue X = BCSrc.getOperand(0);
- assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
- "Extract element and scalar to vector can't change element type "
- "from FP to integer.");
- unsigned XBitWidth = X.getValueSizeInBits();
- unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
- BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
-
- // An extract element return value type can be wider than its vector
- // operand element type. In that case, the high bits are undefined, so
- // it's possible that we may need to extend rather than truncate.
- if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
- assert(XBitWidth % VecEltBitWidth == 0 &&
- "Scalar bitwidth must be a multiple of vector element bitwidth");
- return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
- }
- }
- }
-
- if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
- return BO;
-
- // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
- // We only perform this optimization before the op legalization phase because
- // we may introduce new vector instructions which are not backed by TD
- // patterns. For example on AVX, extracting elements from a wide vector
- // without using extract_subvector. However, if we can find an underlying
- // scalar value, then we can always use that.
- if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
- auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
- // Find the new index to extract from.
- int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
-
- // Extracting an undef index is undef.
- if (OrigElt == -1)
- return DAG.getUNDEF(ScalarVT);
-
- // Select the right vector half to extract from.
- SDValue SVInVec;
- if (OrigElt < (int)NumElts) {
- SVInVec = VecOp.getOperand(0);
- } else {
- SVInVec = VecOp.getOperand(1);
- OrigElt -= NumElts;
- }
-
- if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
- SDValue InOp = SVInVec.getOperand(OrigElt);
- if (InOp.getValueType() != ScalarVT) {
- assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
- InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
- }
-
- return InOp;
- }
-
- // FIXME: We should handle recursing on other vector shuffles and
- // scalar_to_vector here as well.
-
- if (!LegalOperations ||
- // FIXME: Should really be just isOperationLegalOrCustom.
- TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
- TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
- EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
- DAG.getConstant(OrigElt, DL, IndexTy));
- }
- }
-
- // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
- // simplify it based on the (valid) extraction indices.
- if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
- return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- Use->getOperand(0) == VecOp &&
- isa<ConstantSDNode>(Use->getOperand(1));
- })) {
- APInt DemandedElts = APInt::getNullValue(NumElts);
- for (SDNode *Use : VecOp->uses()) {
- auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
- if (CstElt->getAPIntValue().ult(NumElts))
- DemandedElts.setBit(CstElt->getZExtValue());
- }
- if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
- // We simplified the vector operand of this extract element. If this
- // extract is not dead, visit it again so it is folded properly.
- if (N->getOpcode() != ISD::DELETED_NODE)
- AddToWorklist(N);
- return SDValue(N, 0);
- }
- }
-
- // Everything under here is trying to match an extract of a loaded value.
- // If the result of load has to be truncated, then it's not necessarily
- // profitable.
- bool BCNumEltsChanged = false;
- EVT ExtVT = VecVT.getVectorElementType();
- EVT LVT = ExtVT;
- if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
- return SDValue();
-
- if (VecOp.getOpcode() == ISD::BITCAST) {
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
-
- EVT BCVT = VecOp.getOperand(0).getValueType();
- if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
- return SDValue();
- if (NumElts != BCVT.getVectorNumElements())
- BCNumEltsChanged = true;
- VecOp = VecOp.getOperand(0);
- ExtVT = BCVT.getVectorElementType();
- }
-
- // extract (vector load $addr), i --> load $addr + i * size
- if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
- ISD::isNormalLoad(VecOp.getNode()) &&
- !Index->hasPredecessor(VecOp.getNode())) {
- auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
- if (VecLoad && !VecLoad->isVolatile())
- return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
- }
-
- // Perform only after legalization to ensure build_vector / vector_shuffle
- // optimizations have already been done.
- if (!LegalOperations || !IndexC)
- return SDValue();
-
- // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
- // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
- // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
- int Elt = IndexC->getZExtValue();
- LoadSDNode *LN0 = nullptr;
- if (ISD::isNormalLoad(VecOp.getNode())) {
- LN0 = cast<LoadSDNode>(VecOp);
- } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- VecOp.getOperand(0).getValueType() == ExtVT &&
- ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
-
- LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
- }
- if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
- // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
- // =>
- // (load $addr+1*size)
-
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
-
- // If the bit convert changed the number of elements, it is unsafe
- // to examine the mask.
- if (BCNumEltsChanged)
- return SDValue();
-
- // Select the input vector, guarding against out of range extract vector.
- int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
- VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
-
- if (VecOp.getOpcode() == ISD::BITCAST) {
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
-
- VecOp = VecOp.getOperand(0);
- }
- if (ISD::isNormalLoad(VecOp.getNode())) {
- LN0 = cast<LoadSDNode>(VecOp);
- Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
- Index = DAG.getConstant(Elt, DL, Index.getValueType());
- }
- }
-
- // Make sure we found a non-volatile load and the extractelement is
- // the only use.
- if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
- return SDValue();
-
- // If Idx was -1 above, Elt is going to be -1, so just return undef.
- if (Elt == -1)
- return DAG.getUNDEF(LVT);
-
- return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
-}
-
-// Simplify (build_vec (ext )) to (bitcast (build_vec ))
-SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
- // We perform this optimization post type-legalization because
- // the type-legalizer often scalarizes integer-promoted vectors.
- // Performing this optimization before may create bit-casts which
- // will be type-legalized to complex code sequences.
- // We perform this optimization only before the operation legalizer because we
- // may introduce illegal operations.
- if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
- return SDValue();
-
- unsigned NumInScalars = N->getNumOperands();
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // Check to see if this is a BUILD_VECTOR of a bunch of values
- // which come from any_extend or zero_extend nodes. If so, we can create
- // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
- // optimizations. We do not handle sign-extend because we can't fill the sign
- // using shuffles.
- EVT SourceType = MVT::Other;
- bool AllAnyExt = true;
-
- for (unsigned i = 0; i != NumInScalars; ++i) {
- SDValue In = N->getOperand(i);
- // Ignore undef inputs.
- if (In.isUndef()) continue;
-
- bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
- bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
-
- // Abort if the element is not an extension.
- if (!ZeroExt && !AnyExt) {
- SourceType = MVT::Other;
- break;
- }
-
- // The input is a ZeroExt or AnyExt. Check the original type.
- EVT InTy = In.getOperand(0).getValueType();
-
- // Check that all of the widened source types are the same.
- if (SourceType == MVT::Other)
- // First time.
- SourceType = InTy;
- else if (InTy != SourceType) {
- // Multiple income types. Abort.
- SourceType = MVT::Other;
- break;
- }
-
- // Check if all of the extends are ANY_EXTENDs.
- AllAnyExt &= AnyExt;
- }
-
- // In order to have valid types, all of the inputs must be extended from the
- // same source type and all of the inputs must be any or zero extend.
- // Scalar sizes must be a power of two.
- EVT OutScalarTy = VT.getScalarType();
- bool ValidTypes = SourceType != MVT::Other &&
- isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
- isPowerOf2_32(SourceType.getSizeInBits());
-
- // Create a new simpler BUILD_VECTOR sequence which other optimizations can
- // turn into a single shuffle instruction.
- if (!ValidTypes)
- return SDValue();
-
- bool isLE = DAG.getDataLayout().isLittleEndian();
- unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
- assert(ElemRatio > 1 && "Invalid element size ratio");
- SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
- DAG.getConstant(0, DL, SourceType);
-
- unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
- SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
-
- // Populate the new build_vector
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- SDValue Cast = N->getOperand(i);
- assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
- Cast.getOpcode() == ISD::ZERO_EXTEND ||
- Cast.isUndef()) && "Invalid cast opcode");
- SDValue In;
- if (Cast.isUndef())
- In = DAG.getUNDEF(SourceType);
- else
- In = Cast->getOperand(0);
- unsigned Index = isLE ? (i * ElemRatio) :
- (i * ElemRatio + (ElemRatio - 1));
-
- assert(Index < Ops.size() && "Invalid index");
- Ops[Index] = In;
- }
-
- // The type of the new BUILD_VECTOR node.
- EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
- assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
- "Invalid vector size");
- // Check if the new vector type is legal.
- if (!isTypeLegal(VecVT) ||
- (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
- TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
- return SDValue();
-
- // Make the new BUILD_VECTOR.
- SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
-
- // The new BUILD_VECTOR node has the potential to be further optimized.
- AddToWorklist(BV.getNode());
- // Bitcast to the desired type.
- return DAG.getBitcast(VT, BV);
-}
-
-SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
- ArrayRef<int> VectorMask,
- SDValue VecIn1, SDValue VecIn2,
- unsigned LeftIdx) {
- MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
-
- EVT VT = N->getValueType(0);
- EVT InVT1 = VecIn1.getValueType();
- EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
-
- unsigned Vec2Offset = 0;
- unsigned NumElems = VT.getVectorNumElements();
- unsigned ShuffleNumElems = NumElems;
-
- // In case both the input vectors are extracted from same base
- // vector we do not need extra addend (Vec2Offset) while
- // computing shuffle mask.
- if (!VecIn2 || !(VecIn1.getOpcode() == ISD::EXTRACT_SUBVECTOR) ||
- !(VecIn2.getOpcode() == ISD::EXTRACT_SUBVECTOR) ||
- !(VecIn1.getOperand(0) == VecIn2.getOperand(0)))
- Vec2Offset = InVT1.getVectorNumElements();
-
- // We can't generate a shuffle node with mismatched input and output types.
- // Try to make the types match the type of the output.
- if (InVT1 != VT || InVT2 != VT) {
- if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
- // If the output vector length is a multiple of both input lengths,
- // we can concatenate them and pad the rest with undefs.
- unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
- assert(NumConcats >= 2 && "Concat needs at least two inputs!");
- SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
- ConcatOps[0] = VecIn1;
- ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
- VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
- VecIn2 = SDValue();
- } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
- if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
- return SDValue();
-
- if (!VecIn2.getNode()) {
- // If we only have one input vector, and it's twice the size of the
- // output, split it in two.
- VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
- DAG.getConstant(NumElems, DL, IdxTy));
- VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
- // Since we now have shorter input vectors, adjust the offset of the
- // second vector's start.
- Vec2Offset = NumElems;
- } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
- // VecIn1 is wider than the output, and we have another, possibly
- // smaller input. Pad the smaller input with undefs, shuffle at the
- // input vector width, and extract the output.
- // The shuffle type is different than VT, so check legality again.
- if (LegalOperations &&
- !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
- return SDValue();
-
- // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
- // lower it back into a BUILD_VECTOR. So if the inserted type is
- // illegal, don't even try.
- if (InVT1 != InVT2) {
- if (!TLI.isTypeLegal(InVT2))
- return SDValue();
- VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
- DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
- }
- ShuffleNumElems = NumElems * 2;
- } else {
- // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
- // than VecIn1. We can't handle this for now - this case will disappear
- // when we start sorting the vectors by type.
- return SDValue();
- }
- } else if (InVT2.getSizeInBits() * 2 == VT.getSizeInBits() &&
- InVT1.getSizeInBits() == VT.getSizeInBits()) {
- SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
- ConcatOps[0] = VecIn2;
- VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
- } else {
- // TODO: Support cases where the length mismatch isn't exactly by a
- // factor of 2.
- // TODO: Move this check upwards, so that if we have bad type
- // mismatches, we don't create any DAG nodes.
- return SDValue();
- }
- }
-
- // Initialize mask to undef.
- SmallVector<int, 8> Mask(ShuffleNumElems, -1);
-
- // Only need to run up to the number of elements actually used, not the
- // total number of elements in the shuffle - if we are shuffling a wider
- // vector, the high lanes should be set to undef.
- for (unsigned i = 0; i != NumElems; ++i) {
- if (VectorMask[i] <= 0)
- continue;
-
- unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
- if (VectorMask[i] == (int)LeftIdx) {
- Mask[i] = ExtIndex;
- } else if (VectorMask[i] == (int)LeftIdx + 1) {
- Mask[i] = Vec2Offset + ExtIndex;
- }
- }
-
- // The type the input vectors may have changed above.
- InVT1 = VecIn1.getValueType();
-
- // If we already have a VecIn2, it should have the same type as VecIn1.
- // If we don't, get an undef/zero vector of the appropriate type.
- VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
- assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
-
- SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
- if (ShuffleNumElems > NumElems)
- Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
-
- return Shuffle;
-}
-
-static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
- assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
-
- // First, determine where the build vector is not undef.
- // TODO: We could extend this to handle zero elements as well as undefs.
- int NumBVOps = BV->getNumOperands();
- int ZextElt = -1;
- for (int i = 0; i != NumBVOps; ++i) {
- SDValue Op = BV->getOperand(i);
- if (Op.isUndef())
- continue;
- if (ZextElt == -1)
- ZextElt = i;
- else
- return SDValue();
- }
- // Bail out if there's no non-undef element.
- if (ZextElt == -1)
- return SDValue();
-
- // The build vector contains some number of undef elements and exactly
- // one other element. That other element must be a zero-extended scalar
- // extracted from a vector at a constant index to turn this into a shuffle.
- // Also, require that the build vector does not implicitly truncate/extend
- // its elements.
- // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
- EVT VT = BV->getValueType(0);
- SDValue Zext = BV->getOperand(ZextElt);
- if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
- Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
- Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
- return SDValue();
-
- // The zero-extend must be a multiple of the source size, and we must be
- // building a vector of the same size as the source of the extract element.
- SDValue Extract = Zext.getOperand(0);
- unsigned DestSize = Zext.getValueSizeInBits();
- unsigned SrcSize = Extract.getValueSizeInBits();
- if (DestSize % SrcSize != 0 ||
- Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
- return SDValue();
-
- // Create a shuffle mask that will combine the extracted element with zeros
- // and undefs.
- int ZextRatio = DestSize / SrcSize;
- int NumMaskElts = NumBVOps * ZextRatio;
- SmallVector<int, 32> ShufMask(NumMaskElts, -1);
- for (int i = 0; i != NumMaskElts; ++i) {
- if (i / ZextRatio == ZextElt) {
- // The low bits of the (potentially translated) extracted element map to
- // the source vector. The high bits map to zero. We will use a zero vector
- // as the 2nd source operand of the shuffle, so use the 1st element of
- // that vector (mask value is number-of-elements) for the high bits.
- if (i % ZextRatio == 0)
- ShufMask[i] = Extract.getConstantOperandVal(1);
- else
- ShufMask[i] = NumMaskElts;
- }
-
- // Undef elements of the build vector remain undef because we initialize
- // the shuffle mask with -1.
- }
-
- // Turn this into a shuffle with zero if that's legal.
- EVT VecVT = Extract.getOperand(0).getValueType();
- if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask, VecVT))
- return SDValue();
-
- // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
- // bitcast (shuffle V, ZeroVec, VectorMask)
- SDLoc DL(BV);
- SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
- SDValue Shuf = DAG.getVectorShuffle(VecVT, DL, Extract.getOperand(0), ZeroVec,
- ShufMask);
- return DAG.getBitcast(VT, Shuf);
-}
-
-// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
-// operations. If the types of the vectors we're extracting from allow it,
-// turn this into a vector_shuffle node.
-SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
-
- // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
- if (!isTypeLegal(VT))
- return SDValue();
-
- if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
- return V;
-
- // May only combine to shuffle after legalize if shuffle is legal.
- if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
- return SDValue();
-
- bool UsesZeroVector = false;
- unsigned NumElems = N->getNumOperands();
-
- // Record, for each element of the newly built vector, which input vector
- // that element comes from. -1 stands for undef, 0 for the zero vector,
- // and positive values for the input vectors.
- // VectorMask maps each element to its vector number, and VecIn maps vector
- // numbers to their initial SDValues.
-
- SmallVector<int, 8> VectorMask(NumElems, -1);
- SmallVector<SDValue, 8> VecIn;
- VecIn.push_back(SDValue());
-
- for (unsigned i = 0; i != NumElems; ++i) {
- SDValue Op = N->getOperand(i);
-
- if (Op.isUndef())
- continue;
-
- // See if we can use a blend with a zero vector.
- // TODO: Should we generalize this to a blend with an arbitrary constant
- // vector?
- if (isNullConstant(Op) || isNullFPConstant(Op)) {
- UsesZeroVector = true;
- VectorMask[i] = 0;
- continue;
- }
-
- // Not an undef or zero. If the input is something other than an
- // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
- if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(Op.getOperand(1)))
- return SDValue();
- SDValue ExtractedFromVec = Op.getOperand(0);
-
- APInt ExtractIdx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
- if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
- return SDValue();
-
- // All inputs must have the same element type as the output.
- if (VT.getVectorElementType() !=
- ExtractedFromVec.getValueType().getVectorElementType())
- return SDValue();
-
- // Have we seen this input vector before?
- // The vectors are expected to be tiny (usually 1 or 2 elements), so using
- // a map back from SDValues to numbers isn't worth it.
- unsigned Idx = std::distance(
- VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
- if (Idx == VecIn.size())
- VecIn.push_back(ExtractedFromVec);
-
- VectorMask[i] = Idx;
- }
-
- // If we didn't find at least one input vector, bail out.
- if (VecIn.size() < 2)
- return SDValue();
-
- // If all the Operands of BUILD_VECTOR extract from same
- // vector, then split the vector efficiently based on the maximum
- // vector access index and adjust the VectorMask and
- // VecIn accordingly.
- if (VecIn.size() == 2) {
- unsigned MaxIndex = 0;
- unsigned NearestPow2 = 0;
- SDValue Vec = VecIn.back();
- EVT InVT = Vec.getValueType();
- MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- SmallVector<unsigned, 8> IndexVec(NumElems, 0);
-
- for (unsigned i = 0; i < NumElems; i++) {
- if (VectorMask[i] <= 0)
- continue;
- unsigned Index = N->getOperand(i).getConstantOperandVal(1);
- IndexVec[i] = Index;
- MaxIndex = std::max(MaxIndex, Index);
- }
-
- NearestPow2 = PowerOf2Ceil(MaxIndex);
- if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
- NumElems * 2 < NearestPow2) {
- unsigned SplitSize = NearestPow2 / 2;
- EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
- InVT.getVectorElementType(), SplitSize);
- if (TLI.isTypeLegal(SplitVT)) {
- SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
- DAG.getConstant(SplitSize, DL, IdxTy));
- SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
- DAG.getConstant(0, DL, IdxTy));
- VecIn.pop_back();
- VecIn.push_back(VecIn1);
- VecIn.push_back(VecIn2);
-
- for (unsigned i = 0; i < NumElems; i++) {
- if (VectorMask[i] <= 0)
- continue;
- VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
- }
- }
- }
- }
-
- // TODO: We want to sort the vectors by descending length, so that adjacent
- // pairs have similar length, and the longer vector is always first in the
- // pair.
-
- // TODO: Should this fire if some of the input vectors has illegal type (like
- // it does now), or should we let legalization run its course first?
-
- // Shuffle phase:
- // Take pairs of vectors, and shuffle them so that the result has elements
- // from these vectors in the correct places.
- // For example, given:
- // t10: i32 = extract_vector_elt t1, Constant:i64<0>
- // t11: i32 = extract_vector_elt t2, Constant:i64<0>
- // t12: i32 = extract_vector_elt t3, Constant:i64<0>
- // t13: i32 = extract_vector_elt t1, Constant:i64<1>
- // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
- // We will generate:
- // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
- // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
- SmallVector<SDValue, 4> Shuffles;
- for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
- unsigned LeftIdx = 2 * In + 1;
- SDValue VecLeft = VecIn[LeftIdx];
- SDValue VecRight =
- (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
-
- if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
- VecRight, LeftIdx))
- Shuffles.push_back(Shuffle);
- else
- return SDValue();
- }
-
- // If we need the zero vector as an "ingredient" in the blend tree, add it
- // to the list of shuffles.
- if (UsesZeroVector)
- Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
- : DAG.getConstantFP(0.0, DL, VT));
-
- // If we only have one shuffle, we're done.
- if (Shuffles.size() == 1)
- return Shuffles[0];
-
- // Update the vector mask to point to the post-shuffle vectors.
- for (int &Vec : VectorMask)
- if (Vec == 0)
- Vec = Shuffles.size() - 1;
- else
- Vec = (Vec - 1) / 2;
-
- // More than one shuffle. Generate a binary tree of blends, e.g. if from
- // the previous step we got the set of shuffles t10, t11, t12, t13, we will
- // generate:
- // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
- // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
- // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
- // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
- // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
- // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
- // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
-
- // Make sure the initial size of the shuffle list is even.
- if (Shuffles.size() % 2)
- Shuffles.push_back(DAG.getUNDEF(VT));
-
- for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
- if (CurSize % 2) {
- Shuffles[CurSize] = DAG.getUNDEF(VT);
- CurSize++;
- }
- for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
- int Left = 2 * In;
- int Right = 2 * In + 1;
- SmallVector<int, 8> Mask(NumElems, -1);
- for (unsigned i = 0; i != NumElems; ++i) {
- if (VectorMask[i] == Left) {
- Mask[i] = i;
- VectorMask[i] = In;
- } else if (VectorMask[i] == Right) {
- Mask[i] = i + NumElems;
- VectorMask[i] = In;
- }
- }
-
- Shuffles[In] =
- DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
- }
- }
- return Shuffles[0];
-}
-
-// Try to turn a build vector of zero extends of extract vector elts into a
-// a vector zero extend and possibly an extract subvector.
-// TODO: Support sign extend or any extend?
-// TODO: Allow undef elements?
-// TODO: Don't require the extracts to start at element 0.
-SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
- if (LegalOperations)
- return SDValue();
-
- EVT VT = N->getValueType(0);
-
- SDValue Op0 = N->getOperand(0);
- auto checkElem = [&](SDValue Op) -> int64_t {
- if (Op.getOpcode() == ISD::ZERO_EXTEND &&
- Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
- if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
- return C->getZExtValue();
- return -1;
- };
-
- // Make sure the first element matches
- // (zext (extract_vector_elt X, C))
- int64_t Offset = checkElem(Op0);
- if (Offset < 0)
- return SDValue();
-
- unsigned NumElems = N->getNumOperands();
- SDValue In = Op0.getOperand(0).getOperand(0);
- EVT InSVT = In.getValueType().getScalarType();
- EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
-
- // Don't create an illegal input type after type legalization.
- if (LegalTypes && !TLI.isTypeLegal(InVT))
- return SDValue();
-
- // Ensure all the elements come from the same vector and are adjacent.
- for (unsigned i = 1; i != NumElems; ++i) {
- if ((Offset + i) != checkElem(N->getOperand(i)))
- return SDValue();
- }
-
- SDLoc DL(N);
- In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
- Op0.getOperand(0).getOperand(1));
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, In);
-}
-
-SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
- EVT VT = N->getValueType(0);
-
- // A vector built entirely of undefs is undef.
- if (ISD::allOperandsUndef(N))
- return DAG.getUNDEF(VT);
-
- // If this is a splat of a bitcast from another vector, change to a
- // concat_vector.
- // For example:
- // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
- // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
- //
- // If X is a build_vector itself, the concat can become a larger build_vector.
- // TODO: Maybe this is useful for non-splat too?
- if (!LegalOperations) {
- if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
- Splat = peekThroughBitcasts(Splat);
- EVT SrcVT = Splat.getValueType();
- if (SrcVT.isVector()) {
- unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
- EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
- SrcVT.getVectorElementType(), NumElts);
- if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
- SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
- SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
- NewVT, Ops);
- return DAG.getBitcast(VT, Concat);
- }
- }
- }
- }
-
- // Check if we can express BUILD VECTOR via subvector extract.
- if (!LegalTypes && (N->getNumOperands() > 1)) {
- SDValue Op0 = N->getOperand(0);
- auto checkElem = [&](SDValue Op) -> uint64_t {
- if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
- (Op0.getOperand(0) == Op.getOperand(0)))
- if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- return CNode->getZExtValue();
- return -1;
- };
-
- int Offset = checkElem(Op0);
- for (unsigned i = 0; i < N->getNumOperands(); ++i) {
- if (Offset + i != checkElem(N->getOperand(i))) {
- Offset = -1;
- break;
- }
- }
-
- if ((Offset == 0) &&
- (Op0.getOperand(0).getValueType() == N->getValueType(0)))
- return Op0.getOperand(0);
- if ((Offset != -1) &&
- ((Offset % N->getValueType(0).getVectorNumElements()) ==
- 0)) // IDX must be multiple of output size.
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
- Op0.getOperand(0), Op0.getOperand(1));
- }
-
- if (SDValue V = convertBuildVecZextToZext(N))
- return V;
-
- if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
- return V;
-
- if (SDValue V = reduceBuildVecToShuffle(N))
- return V;
-
- return SDValue();
-}
-
-static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT OpVT = N->getOperand(0).getValueType();
-
- // If the operands are legal vectors, leave them alone.
- if (TLI.isTypeLegal(OpVT))
- return SDValue();
-
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- SmallVector<SDValue, 8> Ops;
-
- EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
- SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
-
- // Keep track of what we encounter.
- bool AnyInteger = false;
- bool AnyFP = false;
- for (const SDValue &Op : N->ops()) {
- if (ISD::BITCAST == Op.getOpcode() &&
- !Op.getOperand(0).getValueType().isVector())
- Ops.push_back(Op.getOperand(0));
- else if (ISD::UNDEF == Op.getOpcode())
- Ops.push_back(ScalarUndef);
- else
- return SDValue();
-
- // Note whether we encounter an integer or floating point scalar.
- // If it's neither, bail out, it could be something weird like x86mmx.
- EVT LastOpVT = Ops.back().getValueType();
- if (LastOpVT.isFloatingPoint())
- AnyFP = true;
- else if (LastOpVT.isInteger())
- AnyInteger = true;
- else
- return SDValue();
- }
-
- // If any of the operands is a floating point scalar bitcast to a vector,
- // use floating point types throughout, and bitcast everything.
- // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
- if (AnyFP) {
- SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
- ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
- if (AnyInteger) {
- for (SDValue &Op : Ops) {
- if (Op.getValueType() == SVT)
- continue;
- if (Op.isUndef())
- Op = ScalarUndef;
- else
- Op = DAG.getBitcast(SVT, Op);
- }
- }
- }
-
- EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
- VT.getSizeInBits() / SVT.getSizeInBits());
- return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
-}
-
-// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
-// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
-// most two distinct vectors the same size as the result, attempt to turn this
-// into a legal shuffle.
-static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
- EVT OpVT = N->getOperand(0).getValueType();
- int NumElts = VT.getVectorNumElements();
- int NumOpElts = OpVT.getVectorNumElements();
-
- SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
- SmallVector<int, 8> Mask;
-
- for (SDValue Op : N->ops()) {
- Op = peekThroughBitcasts(Op);
-
- // UNDEF nodes convert to UNDEF shuffle mask values.
- if (Op.isUndef()) {
- Mask.append((unsigned)NumOpElts, -1);
- continue;
- }
-
- if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return SDValue();
-
- // What vector are we extracting the subvector from and at what index?
- SDValue ExtVec = Op.getOperand(0);
-
- // We want the EVT of the original extraction to correctly scale the
- // extraction index.
- EVT ExtVT = ExtVec.getValueType();
- ExtVec = peekThroughBitcasts(ExtVec);
-
- // UNDEF nodes convert to UNDEF shuffle mask values.
- if (ExtVec.isUndef()) {
- Mask.append((unsigned)NumOpElts, -1);
- continue;
- }
-
- if (!isa<ConstantSDNode>(Op.getOperand(1)))
- return SDValue();
- int ExtIdx = Op.getConstantOperandVal(1);
-
- // Ensure that we are extracting a subvector from a vector the same
- // size as the result.
- if (ExtVT.getSizeInBits() != VT.getSizeInBits())
- return SDValue();
-
- // Scale the subvector index to account for any bitcast.
- int NumExtElts = ExtVT.getVectorNumElements();
- if (0 == (NumExtElts % NumElts))
- ExtIdx /= (NumExtElts / NumElts);
- else if (0 == (NumElts % NumExtElts))
- ExtIdx *= (NumElts / NumExtElts);
- else
- return SDValue();
-
- // At most we can reference 2 inputs in the final shuffle.
- if (SV0.isUndef() || SV0 == ExtVec) {
- SV0 = ExtVec;
- for (int i = 0; i != NumOpElts; ++i)
- Mask.push_back(i + ExtIdx);
- } else if (SV1.isUndef() || SV1 == ExtVec) {
- SV1 = ExtVec;
- for (int i = 0; i != NumOpElts; ++i)
- Mask.push_back(i + ExtIdx + NumElts);
- } else {
- return SDValue();
- }
- }
-
- if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
- return SDValue();
-
- return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
- DAG.getBitcast(VT, SV1), Mask);
-}
-
-SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
- // If we only have one input vector, we don't need to do any concatenation.
- if (N->getNumOperands() == 1)
- return N->getOperand(0);
-
- // Check if all of the operands are undefs.
- EVT VT = N->getValueType(0);
- if (ISD::allOperandsUndef(N))
- return DAG.getUNDEF(VT);
-
- // Optimize concat_vectors where all but the first of the vectors are undef.
- if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
- return Op.isUndef();
- })) {
- SDValue In = N->getOperand(0);
- assert(In.getValueType().isVector() && "Must concat vectors");
-
- SDValue Scalar = peekThroughOneUseBitcasts(In);
-
- // concat_vectors(scalar_to_vector(scalar), undef) ->
- // scalar_to_vector(scalar)
- if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- Scalar.hasOneUse()) {
- EVT SVT = Scalar.getValueType().getVectorElementType();
- if (SVT == Scalar.getOperand(0).getValueType())
- Scalar = Scalar.getOperand(0);
- }
-
- // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
- if (!Scalar.getValueType().isVector()) {
- // If the bitcast type isn't legal, it might be a trunc of a legal type;
- // look through the trunc so we can still do the transform:
- // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
- if (Scalar->getOpcode() == ISD::TRUNCATE &&
- !TLI.isTypeLegal(Scalar.getValueType()) &&
- TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
- Scalar = Scalar->getOperand(0);
-
- EVT SclTy = Scalar.getValueType();
-
- if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
- return SDValue();
-
- // Bail out if the vector size is not a multiple of the scalar size.
- if (VT.getSizeInBits() % SclTy.getSizeInBits())
- return SDValue();
-
- unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
- if (VNTNumElms < 2)
- return SDValue();
-
- EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
- if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
- return SDValue();
-
- SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
- return DAG.getBitcast(VT, Res);
- }
- }
-
- // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
- // We have already tested above for an UNDEF only concatenation.
- // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
- // -> (BUILD_VECTOR A, B, ..., C, D, ...)
- auto IsBuildVectorOrUndef = [](const SDValue &Op) {
- return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
- };
- if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
- SmallVector<SDValue, 8> Opnds;
- EVT SVT = VT.getScalarType();
-
- EVT MinVT = SVT;
- if (!SVT.isFloatingPoint()) {
- // If BUILD_VECTOR are from built from integer, they may have different
- // operand types. Get the smallest type and truncate all operands to it.
- bool FoundMinVT = false;
- for (const SDValue &Op : N->ops())
- if (ISD::BUILD_VECTOR == Op.getOpcode()) {
- EVT OpSVT = Op.getOperand(0).getValueType();
- MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
- FoundMinVT = true;
- }
- assert(FoundMinVT && "Concat vector type mismatch");
- }
-
- for (const SDValue &Op : N->ops()) {
- EVT OpVT = Op.getValueType();
- unsigned NumElts = OpVT.getVectorNumElements();
-
- if (ISD::UNDEF == Op.getOpcode())
- Opnds.append(NumElts, DAG.getUNDEF(MinVT));
-
- if (ISD::BUILD_VECTOR == Op.getOpcode()) {
- if (SVT.isFloatingPoint()) {
- assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
- Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
- } else {
- for (unsigned i = 0; i != NumElts; ++i)
- Opnds.push_back(
- DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
- }
- }
- }
-
- assert(VT.getVectorNumElements() == Opnds.size() &&
- "Concat vector type mismatch");
- return DAG.getBuildVector(VT, SDLoc(N), Opnds);
- }
-
- // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
- if (SDValue V = combineConcatVectorOfScalars(N, DAG))
- return V;
-
- // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
- if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
- if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
- return V;
-
- // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
- // nodes often generate nop CONCAT_VECTOR nodes.
- // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
- // place the incoming vectors at the exact same location.
- SDValue SingleSource = SDValue();
- unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
-
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- SDValue Op = N->getOperand(i);
-
- if (Op.isUndef())
- continue;
-
- // Check if this is the identity extract:
- if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return SDValue();
-
- // Find the single incoming vector for the extract_subvector.
- if (SingleSource.getNode()) {
- if (Op.getOperand(0) != SingleSource)
- return SDValue();
- } else {
- SingleSource = Op.getOperand(0);
-
- // Check the source type is the same as the type of the result.
- // If not, this concat may extend the vector, so we can not
- // optimize it away.
- if (SingleSource.getValueType() != N->getValueType(0))
- return SDValue();
- }
-
- unsigned IdentityIndex = i * PartNumElem;
- ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- // The extract index must be constant.
- if (!CS)
- return SDValue();
-
- // Check that we are reading from the identity index.
- if (CS->getZExtValue() != IdentityIndex)
- return SDValue();
- }
-
- if (SingleSource.getNode())
- return SingleSource;
-
- return SDValue();
-}
-
-/// If we are extracting a subvector produced by a wide binary operator try
-/// to use a narrow binary operator and/or avoid concatenation and extraction.
-static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG) {
- // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
- // some of these bailouts with other transforms.
-
- // The extract index must be a constant, so we can map it to a concat operand.
- auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
- if (!ExtractIndexC)
- return SDValue();
-
- // We are looking for an optionally bitcasted wide vector binary operator
- // feeding an extract subvector.
- SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
- if (!ISD::isBinaryOp(BinOp.getNode()))
- return SDValue();
-
- // The binop must be a vector type, so we can extract some fraction of it.
- EVT WideBVT = BinOp.getValueType();
- if (!WideBVT.isVector())
- return SDValue();
-
- EVT VT = Extract->getValueType(0);
- unsigned ExtractIndex = ExtractIndexC->getZExtValue();
- assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
- "Extract index is not a multiple of the vector length.");
-
- // Bail out if this is not a proper multiple width extraction.
- unsigned WideWidth = WideBVT.getSizeInBits();
- unsigned NarrowWidth = VT.getSizeInBits();
- if (WideWidth % NarrowWidth != 0)
- return SDValue();
-
- // Bail out if we are extracting a fraction of a single operation. This can
- // occur because we potentially looked through a bitcast of the binop.
- unsigned NarrowingRatio = WideWidth / NarrowWidth;
- unsigned WideNumElts = WideBVT.getVectorNumElements();
- if (WideNumElts % NarrowingRatio != 0)
- return SDValue();
-
- // Bail out if the target does not support a narrower version of the binop.
- EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
- WideNumElts / NarrowingRatio);
- unsigned BOpcode = BinOp.getOpcode();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
- return SDValue();
-
- // If extraction is cheap, we don't need to look at the binop operands
- // for concat ops. The narrow binop alone makes this transform profitable.
- // We can't just reuse the original extract index operand because we may have
- // bitcasted.
- unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
- unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
- EVT ExtBOIdxVT = Extract->getOperand(1).getValueType();
- if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
- BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
- // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
- SDLoc DL(Extract);
- SDValue NewExtIndex = DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT);
- SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(0), NewExtIndex);
- SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(1), NewExtIndex);
- SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
- BinOp.getNode()->getFlags());
- return DAG.getBitcast(VT, NarrowBinOp);
- }
-
- // Only handle the case where we are doubling and then halving. A larger ratio
- // may require more than two narrow binops to replace the wide binop.
- if (NarrowingRatio != 2)
- return SDValue();
-
- // TODO: The motivating case for this transform is an x86 AVX1 target. That
- // target has temptingly almost legal versions of bitwise logic ops in 256-bit
- // flavors, but no other 256-bit integer support. This could be extended to
- // handle any binop, but that may require fixing/adding other folds to avoid
- // codegen regressions.
- if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
- return SDValue();
-
- // We need at least one concatenation operation of a binop operand to make
- // this transform worthwhile. The concat must double the input vector sizes.
- // TODO: Should we also handle INSERT_SUBVECTOR patterns?
- SDValue LHS = peekThroughBitcasts(BinOp.getOperand(0));
- SDValue RHS = peekThroughBitcasts(BinOp.getOperand(1));
- bool ConcatL =
- LHS.getOpcode() == ISD::CONCAT_VECTORS && LHS.getNumOperands() == 2;
- bool ConcatR =
- RHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getNumOperands() == 2;
- if (!ConcatL && !ConcatR)
- return SDValue();
-
- // If one of the binop operands was not the result of a concat, we must
- // extract a half-sized operand for our new narrow binop.
- SDLoc DL(Extract);
-
- // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
- // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, N)
- // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, N), YN
- SDValue X = ConcatL ? DAG.getBitcast(NarrowBVT, LHS.getOperand(ConcatOpNum))
- : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(0),
- DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT));
-
- SDValue Y = ConcatR ? DAG.getBitcast(NarrowBVT, RHS.getOperand(ConcatOpNum))
- : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(1),
- DAG.getConstant(ExtBOIdx, DL, ExtBOIdxVT));
-
- SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
- return DAG.getBitcast(VT, NarrowBinOp);
-}
-
-/// If we are extracting a subvector from a wide vector load, convert to a
-/// narrow load to eliminate the extraction:
-/// (extract_subvector (load wide vector)) --> (load narrow vector)
-static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
- // TODO: Add support for big-endian. The offset calculation must be adjusted.
- if (DAG.getDataLayout().isBigEndian())
- return SDValue();
-
- auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
- auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
- if (!Ld || Ld->getExtensionType() || Ld->isVolatile() || !ExtIdx)
- return SDValue();
-
- // Allow targets to opt-out.
- EVT VT = Extract->getValueType(0);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
- return SDValue();
-
- // The narrow load will be offset from the base address of the old load if
- // we are extracting from something besides index 0 (little-endian).
- SDLoc DL(Extract);
- SDValue BaseAddr = Ld->getOperand(1);
- unsigned Offset = ExtIdx->getZExtValue() * VT.getScalarType().getStoreSize();
-
- // TODO: Use "BaseIndexOffset" to make this more effective.
- SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset,
- VT.getStoreSize());
- SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
- DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
- return NewLd;
-}
-
-SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
- EVT NVT = N->getValueType(0);
- SDValue V = N->getOperand(0);
-
- // Extract from UNDEF is UNDEF.
- if (V.isUndef())
- return DAG.getUNDEF(NVT);
-
- if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
- if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
- return NarrowLoad;
-
- // Combine:
- // (extract_subvec (concat V1, V2, ...), i)
- // Into:
- // Vi if possible
- // Only operand 0 is checked as 'concat' assumes all inputs of the same
- // type.
- if (V.getOpcode() == ISD::CONCAT_VECTORS &&
- isa<ConstantSDNode>(N->getOperand(1)) &&
- V.getOperand(0).getValueType() == NVT) {
- unsigned Idx = N->getConstantOperandVal(1);
- unsigned NumElems = NVT.getVectorNumElements();
- assert((Idx % NumElems) == 0 &&
- "IDX in concat is not a multiple of the result vector length.");
- return V->getOperand(Idx / NumElems);
- }
-
- V = peekThroughBitcasts(V);
-
- // If the input is a build vector. Try to make a smaller build vector.
- if (V.getOpcode() == ISD::BUILD_VECTOR) {
- if (auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
- EVT InVT = V.getValueType();
- unsigned ExtractSize = NVT.getSizeInBits();
- unsigned EltSize = InVT.getScalarSizeInBits();
- // Only do this if we won't split any elements.
- if (ExtractSize % EltSize == 0) {
- unsigned NumElems = ExtractSize / EltSize;
- EVT EltVT = InVT.getVectorElementType();
- EVT ExtractVT = NumElems == 1 ? EltVT :
- EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
- if ((Level < AfterLegalizeDAG ||
- (NumElems == 1 ||
- TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
- (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
- unsigned IdxVal = (Idx->getZExtValue() * NVT.getScalarSizeInBits()) /
- EltSize;
- if (NumElems == 1) {
- SDValue Src = V->getOperand(IdxVal);
- if (EltVT != Src.getValueType())
- Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
-
- return DAG.getBitcast(NVT, Src);
- }
-
- // Extract the pieces from the original build_vector.
- SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
- makeArrayRef(V->op_begin() + IdxVal,
- NumElems));
- return DAG.getBitcast(NVT, BuildVec);
- }
- }
- }
- }
-
- if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
- // Handle only simple case where vector being inserted and vector
- // being extracted are of same size.
- EVT SmallVT = V.getOperand(1).getValueType();
- if (!NVT.bitsEq(SmallVT))
- return SDValue();
-
- // Only handle cases where both indexes are constants.
- auto *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
- auto *InsIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
-
- if (InsIdx && ExtIdx) {
- // Combine:
- // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
- // Into:
- // indices are equal or bit offsets are equal => V1
- // otherwise => (extract_subvec V1, ExtIdx)
- if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
- ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
- return DAG.getBitcast(NVT, V.getOperand(1));
- return DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
- DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
- N->getOperand(1));
- }
- }
-
- if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG))
- return NarrowBOp;
-
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
-// or turn a shuffle of a single concat into simpler shuffle then concat.
-static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
-
- SmallVector<SDValue, 4> Ops;
- EVT ConcatVT = N0.getOperand(0).getValueType();
- unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
- unsigned NumConcats = NumElts / NumElemsPerConcat;
-
- // Special case: shuffle(concat(A,B)) can be more efficiently represented
- // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
- // half vector elements.
- if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
- std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
- SVN->getMask().end(), [](int i) { return i == -1; })) {
- N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
- makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
- N1 = DAG.getUNDEF(ConcatVT);
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
- }
-
- // Look at every vector that's inserted. We're looking for exact
- // subvector-sized copies from a concatenated vector
- for (unsigned I = 0; I != NumConcats; ++I) {
- // Make sure we're dealing with a copy.
- unsigned Begin = I * NumElemsPerConcat;
- bool AllUndef = true, NoUndef = true;
- for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
- if (SVN->getMaskElt(J) >= 0)
- AllUndef = false;
- else
- NoUndef = false;
- }
-
- if (NoUndef) {
- if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
- return SDValue();
-
- for (unsigned J = 1; J != NumElemsPerConcat; ++J)
- if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
- return SDValue();
-
- unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
- if (FirstElt < N0.getNumOperands())
- Ops.push_back(N0.getOperand(FirstElt));
- else
- Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
-
- } else if (AllUndef) {
- Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
- } else { // Mixed with general masks and undefs, can't do optimization.
- return SDValue();
- }
- }
-
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
-}
-
-// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
-// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
-//
-// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
-// a simplification in some sense, but it isn't appropriate in general: some
-// BUILD_VECTORs are substantially cheaper than others. The general case
-// of a BUILD_VECTOR requires inserting each element individually (or
-// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
-// all constants is a single constant pool load. A BUILD_VECTOR where each
-// element is identical is a splat. A BUILD_VECTOR where most of the operands
-// are undef lowers to a small number of element insertions.
-//
-// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
-// We don't fold shuffles where one side is a non-zero constant, and we don't
-// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
-// non-constant operands. This seems to work out reasonably well in practice.
-static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- EVT VT = SVN->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- SDValue N0 = SVN->getOperand(0);
- SDValue N1 = SVN->getOperand(1);
-
- if (!N0->hasOneUse())
- return SDValue();
-
- // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
- // discussed above.
- if (!N1.isUndef()) {
- if (!N1->hasOneUse())
- return SDValue();
-
- bool N0AnyConst = isAnyConstantBuildVector(N0);
- bool N1AnyConst = isAnyConstantBuildVector(N1);
- if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
- return SDValue();
- if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
- return SDValue();
- }
-
- // If both inputs are splats of the same value then we can safely merge this
- // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
- bool IsSplat = false;
- auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
- auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
- if (BV0 && BV1)
- if (SDValue Splat0 = BV0->getSplatValue())
- IsSplat = (Splat0 == BV1->getSplatValue());
-
- SmallVector<SDValue, 8> Ops;
- SmallSet<SDValue, 16> DuplicateOps;
- for (int M : SVN->getMask()) {
- SDValue Op = DAG.getUNDEF(VT.getScalarType());
- if (M >= 0) {
- int Idx = M < (int)NumElts ? M : M - NumElts;
- SDValue &S = (M < (int)NumElts ? N0 : N1);
- if (S.getOpcode() == ISD::BUILD_VECTOR) {
- Op = S.getOperand(Idx);
- } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- assert(Idx == 0 && "Unexpected SCALAR_TO_VECTOR operand index.");
- Op = S.getOperand(0);
- } else {
- // Operand can't be combined - bail out.
- return SDValue();
- }
- }
-
- // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
- // generating a splat; semantically, this is fine, but it's likely to
- // generate low-quality code if the target can't reconstruct an appropriate
- // shuffle.
- if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
- if (!IsSplat && !DuplicateOps.insert(Op).second)
- return SDValue();
-
- Ops.push_back(Op);
- }
-
- // BUILD_VECTOR requires all inputs to be of the same type, find the
- // maximum type and extend them all.
- EVT SVT = VT.getScalarType();
- if (SVT.isInteger())
- for (SDValue &Op : Ops)
- SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
- if (SVT != VT.getScalarType())
- for (SDValue &Op : Ops)
- Op = TLI.isZExtFree(Op.getValueType(), SVT)
- ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
- : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
- return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
-}
-
-// Match shuffles that can be converted to any_vector_extend_in_reg.
-// This is often generated during legalization.
-// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
-// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
-static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG,
- const TargetLowering &TLI,
- bool LegalOperations) {
- EVT VT = SVN->getValueType(0);
- bool IsBigEndian = DAG.getDataLayout().isBigEndian();
-
- // TODO Add support for big-endian when we have a test case.
- if (!VT.isInteger() || IsBigEndian)
- return SDValue();
-
- unsigned NumElts = VT.getVectorNumElements();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- ArrayRef<int> Mask = SVN->getMask();
- SDValue N0 = SVN->getOperand(0);
-
- // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
- auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
- for (unsigned i = 0; i != NumElts; ++i) {
- if (Mask[i] < 0)
- continue;
- if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
- continue;
- return false;
- }
- return true;
- };
-
- // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
- // power-of-2 extensions as they are the most likely.
- for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
- // Check for non power of 2 vector sizes
- if (NumElts % Scale != 0)
- continue;
- if (!isAnyExtend(Scale))
- continue;
-
- EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
- EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
- // Never create an illegal type. Only create unsupported operations if we
- // are pre-legalization.
- if (TLI.isTypeLegal(OutVT))
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
- return DAG.getBitcast(VT,
- DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
- SDLoc(SVN), OutVT, N0));
- }
-
- return SDValue();
-}
-
-// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
-// each source element of a large type into the lowest elements of a smaller
-// destination type. This is often generated during legalization.
-// If the source node itself was a '*_extend_vector_inreg' node then we should
-// then be able to remove it.
-static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG) {
- EVT VT = SVN->getValueType(0);
- bool IsBigEndian = DAG.getDataLayout().isBigEndian();
-
- // TODO Add support for big-endian when we have a test case.
- if (!VT.isInteger() || IsBigEndian)
- return SDValue();
-
- SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
-
- unsigned Opcode = N0.getOpcode();
- if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
- Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
- Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
- return SDValue();
-
- SDValue N00 = N0.getOperand(0);
- ArrayRef<int> Mask = SVN->getMask();
- unsigned NumElts = VT.getVectorNumElements();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
- unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
-
- if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
- return SDValue();
- unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
-
- // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
- // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
- // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
- auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
- for (unsigned i = 0; i != NumElts; ++i) {
- if (Mask[i] < 0)
- continue;
- if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
- continue;
- return false;
- }
- return true;
- };
-
- // At the moment we just handle the case where we've truncated back to the
- // same size as before the extension.
- // TODO: handle more extension/truncation cases as cases arise.
- if (EltSizeInBits != ExtSrcSizeInBits)
- return SDValue();
-
- // We can remove *extend_vector_inreg only if the truncation happens at
- // the same scale as the extension.
- if (isTruncate(ExtScale))
- return DAG.getBitcast(VT, N00);
-
- return SDValue();
-}
-
-// Combine shuffles of splat-shuffles of the form:
-// shuffle (shuffle V, undef, splat-mask), undef, M
-// If splat-mask contains undef elements, we need to be careful about
-// introducing undef's in the folded mask which are not the result of composing
-// the masks of the shuffles.
-static SDValue combineShuffleOfSplat(ArrayRef<int> UserMask,
- ShuffleVectorSDNode *Splat,
- SelectionDAG &DAG) {
- ArrayRef<int> SplatMask = Splat->getMask();
- assert(UserMask.size() == SplatMask.size() && "Mask length mismatch");
-
- // Prefer simplifying to the splat-shuffle, if possible. This is legal if
- // every undef mask element in the splat-shuffle has a corresponding undef
- // element in the user-shuffle's mask or if the composition of mask elements
- // would result in undef.
- // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
- // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
- // In this case it is not legal to simplify to the splat-shuffle because we
- // may be exposing the users of the shuffle an undef element at index 1
- // which was not there before the combine.
- // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
- // In this case the composition of masks yields SplatMask, so it's ok to
- // simplify to the splat-shuffle.
- // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
- // In this case the composed mask includes all undef elements of SplatMask
- // and in addition sets element zero to undef. It is safe to simplify to
- // the splat-shuffle.
- auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
- ArrayRef<int> SplatMask) {
- for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
- if (UserMask[i] != -1 && SplatMask[i] == -1 &&
- SplatMask[UserMask[i]] != -1)
- return false;
- return true;
- };
- if (CanSimplifyToExistingSplat(UserMask, SplatMask))
- return SDValue(Splat, 0);
-
- // Create a new shuffle with a mask that is composed of the two shuffles'
- // masks.
- SmallVector<int, 32> NewMask;
- for (int Idx : UserMask)
- NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
-
- return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
- Splat->getOperand(0), Splat->getOperand(1),
- NewMask);
-}
-
-/// If the shuffle mask is taking exactly one element from the first vector
-/// operand and passing through all other elements from the second vector
-/// operand, return the index of the mask element that is choosing an element
-/// from the first operand. Otherwise, return -1.
-static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
- int MaskSize = Mask.size();
- int EltFromOp0 = -1;
- // TODO: This does not match if there are undef elements in the shuffle mask.
- // Should we ignore undefs in the shuffle mask instead? The trade-off is
- // removing an instruction (a shuffle), but losing the knowledge that some
- // vector lanes are not needed.
- for (int i = 0; i != MaskSize; ++i) {
- if (Mask[i] >= 0 && Mask[i] < MaskSize) {
- // We're looking for a shuffle of exactly one element from operand 0.
- if (EltFromOp0 != -1)
- return -1;
- EltFromOp0 = i;
- } else if (Mask[i] != i + MaskSize) {
- // Nothing from operand 1 can change lanes.
- return -1;
- }
- }
- return EltFromOp0;
-}
-
-/// If a shuffle inserts exactly one element from a source vector operand into
-/// another vector operand and we can access the specified element as a scalar,
-/// then we can eliminate the shuffle.
-static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
- SelectionDAG &DAG) {
- // First, check if we are taking one element of a vector and shuffling that
- // element into another vector.
- ArrayRef<int> Mask = Shuf->getMask();
- SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
- SDValue Op0 = Shuf->getOperand(0);
- SDValue Op1 = Shuf->getOperand(1);
- int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
- if (ShufOp0Index == -1) {
- // Commute mask and check again.
- ShuffleVectorSDNode::commuteMask(CommutedMask);
- ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
- if (ShufOp0Index == -1)
- return SDValue();
- // Commute operands to match the commuted shuffle mask.
- std::swap(Op0, Op1);
- Mask = CommutedMask;
- }
-
- // The shuffle inserts exactly one element from operand 0 into operand 1.
- // Now see if we can access that element as a scalar via a real insert element
- // instruction.
- // TODO: We can try harder to locate the element as a scalar. Examples: it
- // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
- assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
- "Shuffle mask value must be from operand 0");
- if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
- return SDValue();
-
- auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
- if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
- return SDValue();
-
- // There's an existing insertelement with constant insertion index, so we
- // don't need to check the legality/profitability of a replacement operation
- // that differs at most in the constant value. The target should be able to
- // lower any of those in a similar way. If not, legalization will expand this
- // to a scalar-to-vector plus shuffle.
- //
- // Note that the shuffle may move the scalar from the position that the insert
- // element used. Therefore, our new insert element occurs at the shuffle's
- // mask index value, not the insert's index value.
- // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
- SDValue NewInsIndex = DAG.getConstant(ShufOp0Index, SDLoc(Shuf),
- Op0.getOperand(2).getValueType());
- return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
- Op1, Op0.getOperand(1), NewInsIndex);
-}
-
-SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
- EVT VT = N->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
-
- assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
-
- // Canonicalize shuffle undef, undef -> undef
- if (N0.isUndef() && N1.isUndef())
- return DAG.getUNDEF(VT);
-
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
-
- // Canonicalize shuffle v, v -> v, undef
- if (N0 == N1) {
- SmallVector<int, 8> NewMask;
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (Idx >= (int)NumElts) Idx -= NumElts;
- NewMask.push_back(Idx);
- }
- return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
- }
-
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N0.isUndef())
- return DAG.getCommutedVectorShuffle(*SVN);
-
- // Remove references to rhs if it is undef
- if (N1.isUndef()) {
- bool Changed = false;
- SmallVector<int, 8> NewMask;
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (Idx >= (int)NumElts) {
- Idx = -1;
- Changed = true;
- }
- NewMask.push_back(Idx);
- }
- if (Changed)
- return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
- }
-
- if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
- return InsElt;
-
- // A shuffle of a single vector that is a splat can always be folded.
- if (auto *N0Shuf = dyn_cast<ShuffleVectorSDNode>(N0))
- if (N1->isUndef() && N0Shuf->isSplat())
- return combineShuffleOfSplat(SVN->getMask(), N0Shuf, DAG);
-
- // If it is a splat, check if the argument vector is another splat or a
- // build_vector.
- if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
- SDNode *V = N0.getNode();
-
- // If this is a bit convert that changes the element type of the vector but
- // not the number of vector elements, look through it. Be careful not to
- // look though conversions that change things like v4f32 to v2f64.
- if (V->getOpcode() == ISD::BITCAST) {
- SDValue ConvInput = V->getOperand(0);
- if (ConvInput.getValueType().isVector() &&
- ConvInput.getValueType().getVectorNumElements() == NumElts)
- V = ConvInput.getNode();
- }
-
- if (V->getOpcode() == ISD::BUILD_VECTOR) {
- assert(V->getNumOperands() == NumElts &&
- "BUILD_VECTOR has wrong number of operands");
- SDValue Base;
- bool AllSame = true;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!V->getOperand(i).isUndef()) {
- Base = V->getOperand(i);
- break;
- }
- }
- // Splat of <u, u, u, u>, return <u, u, u, u>
- if (!Base.getNode())
- return N0;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (V->getOperand(i) != Base) {
- AllSame = false;
- break;
- }
- }
- // Splat of <x, x, x, x>, return <x, x, x, x>
- if (AllSame)
- return N0;
-
- // Canonicalize any other splat as a build_vector.
- const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
- SmallVector<SDValue, 8> Ops(NumElts, Splatted);
- SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
-
- // We may have jumped through bitcasts, so the type of the
- // BUILD_VECTOR may not match the type of the shuffle.
- if (V->getValueType(0) != VT)
- NewBV = DAG.getBitcast(VT, NewBV);
- return NewBV;
- }
- }
-
- // Simplify source operands based on shuffle mask.
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
-
- // Match shuffles that can be converted to any_vector_extend_in_reg.
- if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
- return V;
-
- // Combine "truncate_vector_in_reg" style shuffles.
- if (SDValue V = combineTruncationShuffle(SVN, DAG))
- return V;
-
- if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
- Level < AfterLegalizeVectorOps &&
- (N1.isUndef() ||
- (N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
- if (SDValue V = partitionShuffleOfConcats(N, DAG))
- return V;
- }
-
- // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
- // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
- if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
- if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
- return Res;
-
- // If this shuffle only has a single input that is a bitcasted shuffle,
- // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
- // back to their original types.
- if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
- N1.isUndef() && Level < AfterLegalizeVectorOps &&
- TLI.isTypeLegal(VT)) {
- auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
- if (Scale == 1)
- return SmallVector<int, 8>(Mask.begin(), Mask.end());
-
- SmallVector<int, 8> NewMask;
- for (int M : Mask)
- for (int s = 0; s != Scale; ++s)
- NewMask.push_back(M < 0 ? -1 : Scale * M + s);
- return NewMask;
- };
-
- SDValue BC0 = peekThroughOneUseBitcasts(N0);
- if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
- EVT SVT = VT.getScalarType();
- EVT InnerVT = BC0->getValueType(0);
- EVT InnerSVT = InnerVT.getScalarType();
-
- // Determine which shuffle works with the smaller scalar type.
- EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
- EVT ScaleSVT = ScaleVT.getScalarType();
-
- if (TLI.isTypeLegal(ScaleVT) &&
- 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
- 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
- int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
- int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
-
- // Scale the shuffle masks to the smaller scalar type.
- ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
- SmallVector<int, 8> InnerMask =
- ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
- SmallVector<int, 8> OuterMask =
- ScaleShuffleMask(SVN->getMask(), OuterScale);
-
- // Merge the shuffle masks.
- SmallVector<int, 8> NewMask;
- for (int M : OuterMask)
- NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
-
- // Test for shuffle mask legality over both commutations.
- SDValue SV0 = BC0->getOperand(0);
- SDValue SV1 = BC0->getOperand(1);
- bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
- if (!LegalMask) {
- std::swap(SV0, SV1);
- ShuffleVectorSDNode::commuteMask(NewMask);
- LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
- }
-
- if (LegalMask) {
- SV0 = DAG.getBitcast(ScaleVT, SV0);
- SV1 = DAG.getBitcast(ScaleVT, SV1);
- return DAG.getBitcast(
- VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
- }
- }
- }
- }
-
- // Canonicalize shuffles according to rules:
- // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
- // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
- // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
- if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
- N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
- TLI.isTypeLegal(VT)) {
- // The incoming shuffle must be of the same type as the result of the
- // current shuffle.
- assert(N1->getOperand(0).getValueType() == VT &&
- "Shuffle types don't match");
-
- SDValue SV0 = N1->getOperand(0);
- SDValue SV1 = N1->getOperand(1);
- bool HasSameOp0 = N0 == SV0;
- bool IsSV1Undef = SV1.isUndef();
- if (HasSameOp0 || IsSV1Undef || N0 == SV1)
- // Commute the operands of this shuffle so that next rule
- // will trigger.
- return DAG.getCommutedVectorShuffle(*SVN);
- }
-
- // Try to fold according to rules:
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
- // Don't try to fold shuffles with illegal type.
- // Only fold if this shuffle is the only user of the other shuffle.
- if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
- Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
- ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
-
- // Don't try to fold splats; they're likely to simplify somehow, or they
- // might be free.
- if (OtherSV->isSplat())
- return SDValue();
-
- // The incoming shuffle must be of the same type as the result of the
- // current shuffle.
- assert(OtherSV->getOperand(0).getValueType() == VT &&
- "Shuffle types don't match");
-
- SDValue SV0, SV1;
- SmallVector<int, 4> Mask;
- // Compute the combined shuffle mask for a shuffle with SV0 as the first
- // operand, and SV1 as the second operand.
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (Idx < 0) {
- // Propagate Undef.
- Mask.push_back(Idx);
- continue;
- }
-
- SDValue CurrentVec;
- if (Idx < (int)NumElts) {
- // This shuffle index refers to the inner shuffle N0. Lookup the inner
- // shuffle mask to identify which vector is actually referenced.
- Idx = OtherSV->getMaskElt(Idx);
- if (Idx < 0) {
- // Propagate Undef.
- Mask.push_back(Idx);
- continue;
- }
-
- CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
- : OtherSV->getOperand(1);
- } else {
- // This shuffle index references an element within N1.
- CurrentVec = N1;
- }
-
- // Simple case where 'CurrentVec' is UNDEF.
- if (CurrentVec.isUndef()) {
- Mask.push_back(-1);
- continue;
- }
-
- // Canonicalize the shuffle index. We don't know yet if CurrentVec
- // will be the first or second operand of the combined shuffle.
- Idx = Idx % NumElts;
- if (!SV0.getNode() || SV0 == CurrentVec) {
- // Ok. CurrentVec is the left hand side.
- // Update the mask accordingly.
- SV0 = CurrentVec;
- Mask.push_back(Idx);
- continue;
- }
-
- // Bail out if we cannot convert the shuffle pair into a single shuffle.
- if (SV1.getNode() && SV1 != CurrentVec)
- return SDValue();
-
- // Ok. CurrentVec is the right hand side.
- // Update the mask accordingly.
- SV1 = CurrentVec;
- Mask.push_back(Idx + NumElts);
- }
-
- // Check if all indices in Mask are Undef. In case, propagate Undef.
- bool isUndefMask = true;
- for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
- isUndefMask &= Mask[i] < 0;
-
- if (isUndefMask)
- return DAG.getUNDEF(VT);
-
- if (!SV0.getNode())
- SV0 = DAG.getUNDEF(VT);
- if (!SV1.getNode())
- SV1 = DAG.getUNDEF(VT);
-
- // Avoid introducing shuffles with illegal mask.
- if (!TLI.isShuffleMaskLegal(Mask, VT)) {
- ShuffleVectorSDNode::commuteMask(Mask);
-
- if (!TLI.isShuffleMaskLegal(Mask, VT))
- return SDValue();
-
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
- std::swap(SV0, SV1);
- }
-
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
- return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask);
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
- SDValue InVal = N->getOperand(0);
- EVT VT = N->getValueType(0);
-
- // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
- // with a VECTOR_SHUFFLE and possible truncate.
- if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
- SDValue InVec = InVal->getOperand(0);
- SDValue EltNo = InVal->getOperand(1);
- auto InVecT = InVec.getValueType();
- if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
- SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
- int Elt = C0->getZExtValue();
- NewMask[0] = Elt;
- SDValue Val;
- // If we have an implict truncate do truncate here as long as it's legal.
- // if it's not legal, this should
- if (VT.getScalarType() != InVal.getValueType() &&
- InVal.getValueType().isScalarInteger() &&
- isTypeLegal(VT.getScalarType())) {
- Val =
- DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
- return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
- }
- if (VT.getScalarType() == InVecT.getScalarType() &&
- VT.getVectorNumElements() <= InVecT.getVectorNumElements() &&
- TLI.isShuffleMaskLegal(NewMask, VT)) {
- Val = DAG.getVectorShuffle(InVecT, SDLoc(N), InVec,
- DAG.getUNDEF(InVecT), NewMask);
- // If the initial vector is the correct size this shuffle is a
- // valid result.
- if (VT == InVecT)
- return Val;
- // If not we must truncate the vector.
- if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
- MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- SDValue ZeroIdx = DAG.getConstant(0, SDLoc(N), IdxTy);
- EVT SubVT =
- EVT::getVectorVT(*DAG.getContext(), InVecT.getVectorElementType(),
- VT.getVectorNumElements());
- Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, Val,
- ZeroIdx);
- return Val;
- }
- }
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
- EVT VT = N->getValueType(0);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
-
- // If inserting an UNDEF, just return the original vector.
- if (N1.isUndef())
- return N0;
-
- // If this is an insert of an extracted vector into an undef vector, we can
- // just use the input to the extract.
- if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
- return N1.getOperand(0);
-
- // If we are inserting a bitcast value into an undef, with the same
- // number of elements, just use the bitcast input of the extract.
- // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
- // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
- if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
- N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N1.getOperand(0).getOperand(1) == N2 &&
- N1.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
- VT.getVectorNumElements() &&
- N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
- VT.getSizeInBits()) {
- return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
- }
-
- // If both N1 and N2 are bitcast values on which insert_subvector
- // would makes sense, pull the bitcast through.
- // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
- // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
- if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
- SDValue CN0 = N0.getOperand(0);
- SDValue CN1 = N1.getOperand(0);
- EVT CN0VT = CN0.getValueType();
- EVT CN1VT = CN1.getValueType();
- if (CN0VT.isVector() && CN1VT.isVector() &&
- CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
- CN0VT.getVectorNumElements() == VT.getVectorNumElements()) {
- SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
- CN0.getValueType(), CN0, CN1, N2);
- return DAG.getBitcast(VT, NewINSERT);
- }
- }
-
- // Combine INSERT_SUBVECTORs where we are inserting to the same index.
- // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
- // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
- if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
- N0.getOperand(1).getValueType() == N1.getValueType() &&
- N0.getOperand(2) == N2)
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
- N1, N2);
-
- // Eliminate an intermediate insert into an undef vector:
- // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
- // insert_subvector undef, X, N2
- if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
- N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
- N1.getOperand(1), N2);
-
- if (!isa<ConstantSDNode>(N2))
- return SDValue();
-
- unsigned InsIdx = cast<ConstantSDNode>(N2)->getZExtValue();
-
- // Canonicalize insert_subvector dag nodes.
- // Example:
- // (insert_subvector (insert_subvector A, Idx0), Idx1)
- // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
- if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
- N1.getValueType() == N0.getOperand(1).getValueType() &&
- isa<ConstantSDNode>(N0.getOperand(2))) {
- unsigned OtherIdx = N0.getConstantOperandVal(2);
- if (InsIdx < OtherIdx) {
- // Swap nodes.
- SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
- N0.getOperand(0), N1, N2);
- AddToWorklist(NewOp.getNode());
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
- VT, NewOp, N0.getOperand(1), N0.getOperand(2));
- }
- }
-
- // If the input vector is a concatenation, and the insert replaces
- // one of the pieces, we can optimize into a single concat_vectors.
- if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
- N0.getOperand(0).getValueType() == N1.getValueType()) {
- unsigned Factor = N1.getValueType().getVectorNumElements();
-
- SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
- Ops[cast<ConstantSDNode>(N2)->getZExtValue() / Factor] = N1;
-
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
- }
-
- // Simplify source operands based on insertion.
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
- SDValue N0 = N->getOperand(0);
-
- // fold (fp_to_fp16 (fp16_to_fp op)) -> op
- if (N0->getOpcode() == ISD::FP16_TO_FP)
- return N0->getOperand(0);
-
- return SDValue();
-}
-
-SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
-
- // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
- if (N0->getOpcode() == ISD::AND) {
- ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
- if (AndConst && AndConst->getAPIntValue() == 0xffff) {
- return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
- N0.getOperand(0));
- }
- }
-
- return SDValue();
-}
-
-/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
-/// with the destination vector and a zero vector.
-/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
-/// vector_shuffle V, Zero, <0, 4, 2, 4>
-SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
-
- EVT VT = N->getValueType(0);
- SDValue LHS = N->getOperand(0);
- SDValue RHS = peekThroughBitcasts(N->getOperand(1));
- SDLoc DL(N);
-
- // Make sure we're not running after operation legalization where it
- // may have custom lowered the vector shuffles.
- if (LegalOperations)
- return SDValue();
-
- if (RHS.getOpcode() != ISD::BUILD_VECTOR)
- return SDValue();
-
- EVT RVT = RHS.getValueType();
- unsigned NumElts = RHS.getNumOperands();
-
- // Attempt to create a valid clear mask, splitting the mask into
- // sub elements and checking to see if each is
- // all zeros or all ones - suitable for shuffle masking.
- auto BuildClearMask = [&](int Split) {
- int NumSubElts = NumElts * Split;
- int NumSubBits = RVT.getScalarSizeInBits() / Split;
-
- SmallVector<int, 8> Indices;
- for (int i = 0; i != NumSubElts; ++i) {
- int EltIdx = i / Split;
- int SubIdx = i % Split;
- SDValue Elt = RHS.getOperand(EltIdx);
- if (Elt.isUndef()) {
- Indices.push_back(-1);
- continue;
- }
-
- APInt Bits;
- if (isa<ConstantSDNode>(Elt))
- Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
- else if (isa<ConstantFPSDNode>(Elt))
- Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
- else
- return SDValue();
-
- // Extract the sub element from the constant bit mask.
- if (DAG.getDataLayout().isBigEndian()) {
- Bits.lshrInPlace((Split - SubIdx - 1) * NumSubBits);
- } else {
- Bits.lshrInPlace(SubIdx * NumSubBits);
- }
-
- if (Split > 1)
- Bits = Bits.trunc(NumSubBits);
-
- if (Bits.isAllOnesValue())
- Indices.push_back(i);
- else if (Bits == 0)
- Indices.push_back(i + NumSubElts);
- else
- return SDValue();
- }
-
- // Let's see if the target supports this vector_shuffle.
- EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
- EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
- if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
- return SDValue();
-
- SDValue Zero = DAG.getConstant(0, DL, ClearVT);
- return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
- DAG.getBitcast(ClearVT, LHS),
- Zero, Indices));
- };
-
- // Determine maximum split level (byte level masking).
- int MaxSplit = 1;
- if (RVT.getScalarSizeInBits() % 8 == 0)
- MaxSplit = RVT.getScalarSizeInBits() / 8;
-
- for (int Split = 1; Split <= MaxSplit; ++Split)
- if (RVT.getScalarSizeInBits() % Split == 0)
- if (SDValue S = BuildClearMask(Split))
- return S;
-
- return SDValue();
-}
-
-/// Visit a binary vector operation, like ADD.
-SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
- assert(N->getValueType(0).isVector() &&
- "SimplifyVBinOp only works on vectors!");
-
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- SDValue Ops[] = {LHS, RHS};
-
- // See if we can constant fold the vector operation.
- if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
- N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
- return Fold;
-
- // Type legalization might introduce new shuffles in the DAG.
- // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
- // -> (shuffle (VBinOp (A, B)), Undef, Mask).
- if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
- isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
- LHS.getOperand(1).isUndef() &&
- RHS.getOperand(1).isUndef()) {
- ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
- ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
-
- if (SVN0->getMask().equals(SVN1->getMask())) {
- EVT VT = N->getValueType(0);
- SDValue UndefVector = LHS.getOperand(1);
- SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
- LHS.getOperand(0), RHS.getOperand(0),
- N->getFlags());
- AddUsersToWorklist(N);
- return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
- SVN0->getMask());
- }
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2) {
- assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
-
- SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
-
- // If we got a simplified select_cc node back from SimplifySelectCC, then
- // break it down into a new SETCC node, and a new SELECT node, and then return
- // the SELECT node, since we were called with a SELECT node.
- if (SCC.getNode()) {
- // Check to see if we got a select_cc back (to turn into setcc/select).
- // Otherwise, just return whatever node we got back, like fabs.
- if (SCC.getOpcode() == ISD::SELECT_CC) {
- SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
- N0.getValueType(),
- SCC.getOperand(0), SCC.getOperand(1),
- SCC.getOperand(4));
- AddToWorklist(SETCC.getNode());
- return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
- SCC.getOperand(2), SCC.getOperand(3));
- }
-
- return SCC;
- }
- return SDValue();
-}
-
-/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
-/// being selected between, see if we can simplify the select. Callers of this
-/// should assume that TheSelect is deleted if this returns true. As such, they
-/// should return the appropriate thing (e.g. the node) back to the top-level of
-/// the DAG combiner loop to avoid it being looked at.
-bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
- SDValue RHS) {
- // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
- // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
- if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
- if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
- // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
- SDValue Sqrt = RHS;
- ISD::CondCode CC;
- SDValue CmpLHS;
- const ConstantFPSDNode *Zero = nullptr;
-
- if (TheSelect->getOpcode() == ISD::SELECT_CC) {
- CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
- CmpLHS = TheSelect->getOperand(0);
- Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
- } else {
- // SELECT or VSELECT
- SDValue Cmp = TheSelect->getOperand(0);
- if (Cmp.getOpcode() == ISD::SETCC) {
- CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
- CmpLHS = Cmp.getOperand(0);
- Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
- }
- }
- if (Zero && Zero->isZero() &&
- Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
- CC == ISD::SETULT || CC == ISD::SETLT)) {
- // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
- CombineTo(TheSelect, Sqrt);
- return true;
- }
- }
- }
- // Cannot simplify select with vector condition
- if (TheSelect->getOperand(0).getValueType().isVector()) return false;
-
- // If this is a select from two identical things, try to pull the operation
- // through the select.
- if (LHS.getOpcode() != RHS.getOpcode() ||
- !LHS.hasOneUse() || !RHS.hasOneUse())
- return false;
-
- // If this is a load and the token chain is identical, replace the select
- // of two loads with a load through a select of the address to load from.
- // This triggers in things like "select bool X, 10.0, 123.0" after the FP
- // constants have been dropped into the constant pool.
- if (LHS.getOpcode() == ISD::LOAD) {
- LoadSDNode *LLD = cast<LoadSDNode>(LHS);
- LoadSDNode *RLD = cast<LoadSDNode>(RHS);
-
- // Token chains must be identical.
- if (LHS.getOperand(0) != RHS.getOperand(0) ||
- // Do not let this transformation reduce the number of volatile loads.
- LLD->isVolatile() || RLD->isVolatile() ||
- // FIXME: If either is a pre/post inc/dec load,
- // we'd need to split out the address adjustment.
- LLD->isIndexed() || RLD->isIndexed() ||
- // If this is an EXTLOAD, the VT's must match.
- LLD->getMemoryVT() != RLD->getMemoryVT() ||
- // If this is an EXTLOAD, the kind of extension must match.
- (LLD->getExtensionType() != RLD->getExtensionType() &&
- // The only exception is if one of the extensions is anyext.
- LLD->getExtensionType() != ISD::EXTLOAD &&
- RLD->getExtensionType() != ISD::EXTLOAD) ||
- // FIXME: this discards src value information. This is
- // over-conservative. It would be beneficial to be able to remember
- // both potential memory locations. Since we are discarding
- // src value info, don't do the transformation if the memory
- // locations are not in the default address space.
- LLD->getPointerInfo().getAddrSpace() != 0 ||
- RLD->getPointerInfo().getAddrSpace() != 0 ||
- !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
- LLD->getBasePtr().getValueType()))
- return false;
-
- // The loads must not depend on one another.
- if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
- return false;
-
- // Check that the select condition doesn't reach either load. If so,
- // folding this will induce a cycle into the DAG. If not, this is safe to
- // xform, so create a select of the addresses.
-
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
-
- // Always fail if LLD and RLD are not independent. TheSelect is a
- // predecessor to all Nodes in question so we need not search past it.
-
- Visited.insert(TheSelect);
- Worklist.push_back(LLD);
- Worklist.push_back(RLD);
-
- if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
- SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
- return false;
-
- SDValue Addr;
- if (TheSelect->getOpcode() == ISD::SELECT) {
- // We cannot do this optimization if any pair of {RLD, LLD} is a
- // predecessor to {RLD, LLD, CondNode}. As we've already compared the
- // Loads, we only need to check if CondNode is a successor to one of the
- // loads. We can further avoid this if there's no use of their chain
- // value.
- SDNode *CondNode = TheSelect->getOperand(0).getNode();
- Worklist.push_back(CondNode);
-
- if ((LLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
- (RLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
- return false;
-
- Addr = DAG.getSelect(SDLoc(TheSelect),
- LLD->getBasePtr().getValueType(),
- TheSelect->getOperand(0), LLD->getBasePtr(),
- RLD->getBasePtr());
- } else { // Otherwise SELECT_CC
- // We cannot do this optimization if any pair of {RLD, LLD} is a
- // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
- // the Loads, we only need to check if CondLHS/CondRHS is a successor to
- // one of the loads. We can further avoid this if there's no use of their
- // chain value.
-
- SDNode *CondLHS = TheSelect->getOperand(0).getNode();
- SDNode *CondRHS = TheSelect->getOperand(1).getNode();
- Worklist.push_back(CondLHS);
- Worklist.push_back(CondRHS);
-
- if ((LLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
- (RLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
- return false;
-
- Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
- LLD->getBasePtr().getValueType(),
- TheSelect->getOperand(0),
- TheSelect->getOperand(1),
- LLD->getBasePtr(), RLD->getBasePtr(),
- TheSelect->getOperand(4));
- }
-
- SDValue Load;
- // It is safe to replace the two loads if they have different alignments,
- // but the new load must be the minimum (most restrictive) alignment of the
- // inputs.
- unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
- MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
- if (!RLD->isInvariant())
- MMOFlags &= ~MachineMemOperand::MOInvariant;
- if (!RLD->isDereferenceable())
- MMOFlags &= ~MachineMemOperand::MODereferenceable;
- if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
- // FIXME: Discards pointer and AA info.
- Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
- LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
- MMOFlags);
- } else {
- // FIXME: Discards pointer and AA info.
- Load = DAG.getExtLoad(
- LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
- : LLD->getExtensionType(),
- SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
- MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
- }
-
- // Users of the select now use the result of the load.
- CombineTo(TheSelect, Load);
-
- // Users of the old loads now use the new load's chain. We know the
- // old-load value is dead now.
- CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
- CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
- return true;
- }
-
- return false;
-}
-
-/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
-/// bitwise 'and'.
-SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
- SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC) {
- // If this is a select where the false operand is zero and the compare is a
- // check of the sign bit, see if we can perform the "gzip trick":
- // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
- // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
- EVT XType = N0.getValueType();
- EVT AType = N2.getValueType();
- if (!isNullConstant(N3) || !XType.bitsGE(AType))
- return SDValue();
-
- // If the comparison is testing for a positive value, we have to invert
- // the sign bit mask, so only do that transform if the target has a bitwise
- // 'and not' instruction (the invert is free).
- if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
- // (X > -1) ? A : 0
- // (X > 0) ? X : 0 <-- This is canonical signed max.
- if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
- return SDValue();
- } else if (CC == ISD::SETLT) {
- // (X < 0) ? A : 0
- // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
- if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
- return SDValue();
- } else {
- return SDValue();
- }
-
- // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
- // constant.
- EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
- auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
- unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
- SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
- SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
- AddToWorklist(Shift.getNode());
-
- if (XType.bitsGT(AType)) {
- Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
- AddToWorklist(Shift.getNode());
- }
-
- if (CC == ISD::SETGT)
- Shift = DAG.getNOT(DL, Shift, AType);
-
- return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
- }
-
- SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
- SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
- AddToWorklist(Shift.getNode());
-
- if (XType.bitsGT(AType)) {
- Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
- AddToWorklist(Shift.getNode());
- }
-
- if (CC == ISD::SETGT)
- Shift = DAG.getNOT(DL, Shift, AType);
-
- return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
-}
-
-/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
-/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
-/// in it. This may be a win when the constant is not otherwise available
-/// because it replaces two constant pool loads with one.
-SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
- const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC) {
- if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType().isFloatingPoint()))
- return SDValue();
-
- // If we are before legalize types, we want the other legalization to happen
- // first (for example, to avoid messing with soft float).
- auto *TV = dyn_cast<ConstantFPSDNode>(N2);
- auto *FV = dyn_cast<ConstantFPSDNode>(N3);
- EVT VT = N2.getValueType();
- if (!TV || !FV || !TLI.isTypeLegal(VT))
- return SDValue();
-
- // If a constant can be materialized without loads, this does not make sense.
- if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
- TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) ||
- TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0)))
- return SDValue();
-
- // If both constants have multiple uses, then we won't need to do an extra
- // load. The values are likely around in registers for other users.
- if (!TV->hasOneUse() && !FV->hasOneUse())
- return SDValue();
-
- Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
- const_cast<ConstantFP*>(TV->getConstantFPValue()) };
- Type *FPTy = Elts[0]->getType();
- const DataLayout &TD = DAG.getDataLayout();
-
- // Create a ConstantArray of the two constants.
- Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
- SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
- TD.getPrefTypeAlignment(FPTy));
- unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
-
- // Get offsets to the 0 and 1 elements of the array, so we can select between
- // them.
- SDValue Zero = DAG.getIntPtrConstant(0, DL);
- unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
- SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
- SDValue Cond =
- DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
- AddToWorklist(Cond.getNode());
- SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
- AddToWorklist(CstOffset.getNode());
- CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
- AddToWorklist(CPIdx.getNode());
- return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
- MachinePointerInfo::getConstantPool(
- DAG.getMachineFunction()), Alignment);
-}
-
-/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
-/// where 'cond' is the comparison specified by CC.
-SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2, SDValue N3, ISD::CondCode CC,
- bool NotExtCompare) {
- // (x ? y : y) -> y.
- if (N2 == N3) return N2;
-
- EVT CmpOpVT = N0.getValueType();
- EVT VT = N2.getValueType();
- auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
-
- // Determine if the condition we're dealing with is constant.
- SDValue SCC = SimplifySetCC(getSetCCResultType(CmpOpVT), N0, N1, CC, DL,
- false);
- if (SCC.getNode()) AddToWorklist(SCC.getNode());
-
- if (auto *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
- // fold select_cc true, x, y -> x
- // fold select_cc false, x, y -> y
- return !SCCC->isNullValue() ? N2 : N3;
- }
-
- if (SDValue V =
- convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
- return V;
-
- if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
- return V;
-
- // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
- // where y is has a single bit set.
- // A plaintext description would be, we can turn the SELECT_CC into an AND
- // when the condition can be materialized as an all-ones register. Any
- // single bit-test can be materialized as an all-ones register with
- // shift-left and shift-right-arith.
- if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
- N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
- SDValue AndLHS = N0->getOperand(0);
- auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
- if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
- // Shift the tested bit over the sign bit.
- const APInt &AndMask = ConstAndRHS->getAPIntValue();
- SDValue ShlAmt =
- DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
- getShiftAmountTy(AndLHS.getValueType()));
- SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
-
- // Now arithmetic right shift it all the way over, so the result is either
- // all-ones, or zero.
- SDValue ShrAmt =
- DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
- getShiftAmountTy(Shl.getValueType()));
- SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
-
- return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
- }
- }
-
- // fold select C, 16, 0 -> shl C, 4
- bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
- bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
-
- if ((Fold || Swap) &&
- TLI.getBooleanContents(CmpOpVT) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
-
- if (Swap) {
- CC = ISD::getSetCCInverse(CC, CmpOpVT.isInteger());
- std::swap(N2C, N3C);
- }
-
- // If the caller doesn't want us to simplify this into a zext of a compare,
- // don't do it.
- if (NotExtCompare && N2C->isOne())
- return SDValue();
-
- SDValue Temp, SCC;
- // zext (setcc n0, n1)
- if (LegalTypes) {
- SCC = DAG.getSetCC(DL, getSetCCResultType(CmpOpVT), N0, N1, CC);
- if (VT.bitsLT(SCC.getValueType()))
- Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
- else
- Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
- } else {
- SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
- Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
- }
-
- AddToWorklist(SCC.getNode());
- AddToWorklist(Temp.getNode());
-
- if (N2C->isOne())
- return Temp;
-
- // shl setcc result by log2 n2c
- return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
- DAG.getConstant(N2C->getAPIntValue().logBase2(),
- SDLoc(Temp),
- getShiftAmountTy(Temp.getValueType())));
- }
-
- // Check to see if this is an integer abs.
- // select_cc setg[te] X, 0, X, -X ->
- // select_cc setgt X, -1, X, -X ->
- // select_cc setl[te] X, 0, -X, X ->
- // select_cc setlt X, 1, -X, X ->
- // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
- if (N1C) {
- ConstantSDNode *SubC = nullptr;
- if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
- (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
- N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
- SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
- else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
- (N1C->isOne() && CC == ISD::SETLT)) &&
- N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
- SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
-
- if (SubC && SubC->isNullValue() && CmpOpVT.isInteger()) {
- SDLoc DL(N0);
- SDValue Shift = DAG.getNode(ISD::SRA, DL, CmpOpVT, N0,
- DAG.getConstant(CmpOpVT.getSizeInBits() - 1,
- DL,
- getShiftAmountTy(CmpOpVT)));
- SDValue Add = DAG.getNode(ISD::ADD, DL, CmpOpVT, N0, Shift);
- AddToWorklist(Shift.getNode());
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::XOR, DL, CmpOpVT, Add, Shift);
- }
- }
-
- // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
- // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
- // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
- // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
- // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
- // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
- // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
- // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
- if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
- SDValue ValueOnZero = N2;
- SDValue Count = N3;
- // If the condition is NE instead of E, swap the operands.
- if (CC == ISD::SETNE)
- std::swap(ValueOnZero, Count);
- // Check if the value on zero is a constant equal to the bits in the type.
- if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
- if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
- // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
- // legal, combine to just cttz.
- if ((Count.getOpcode() == ISD::CTTZ ||
- Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
- N0 == Count.getOperand(0) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
- return DAG.getNode(ISD::CTTZ, DL, VT, N0);
- // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
- // legal, combine to just ctlz.
- if ((Count.getOpcode() == ISD::CTLZ ||
- Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
- N0 == Count.getOperand(0) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
- return DAG.getNode(ISD::CTLZ, DL, VT, N0);
- }
- }
- }
-
- return SDValue();
-}
-
-/// This is a stub for TargetLowering::SimplifySetCC.
-SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &DL,
- bool foldBooleans) {
- TargetLowering::DAGCombinerInfo
- DagCombineInfo(DAG, Level, false, this);
- return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
-}
-
-/// Given an ISD::SDIV node expressing a divide by constant, return
-/// a DAG expression to select that will generate the same value by multiplying
-/// by a magic number.
-/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
-SDValue DAGCombiner::BuildSDIV(SDNode *N) {
- // when optimising for minimum size, we don't want to expand a div to a mul
- // and a shift.
- if (DAG.getMachineFunction().getFunction().optForMinSize())
- return SDValue();
-
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
-
- return SDValue();
-}
-
-/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
-/// DAG expression that will generate the same value by right shifting.
-SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
- ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
- if (!C)
- return SDValue();
-
- // Avoid division by zero.
- if (C->isNullValue())
- return SDValue();
-
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
-
- return SDValue();
-}
-
-/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
-/// expression that will generate the same value by multiplying by a magic
-/// number.
-/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
-SDValue DAGCombiner::BuildUDIV(SDNode *N) {
- // when optimising for minimum size, we don't want to expand a div to a mul
- // and a shift.
- if (DAG.getMachineFunction().getFunction().optForMinSize())
- return SDValue();
-
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
-
- return SDValue();
-}
-
-/// Determines the LogBase2 value for a non-null input value using the
-/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
-SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
- EVT VT = V.getValueType();
- unsigned EltBits = VT.getScalarSizeInBits();
- SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
- SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
- SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
- return LogBase2;
-}
-
-/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
-/// For the reciprocal, we need to find the zero of the function:
-/// F(X) = A X - 1 [which has a zero at X = 1/A]
-/// =>
-/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
-/// does not require additional intermediate precision]
-SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags Flags) {
- if (Level >= AfterLegalizeDAG)
- return SDValue();
-
- // TODO: Handle half and/or extended types?
- EVT VT = Op.getValueType();
- if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
- return SDValue();
-
- // If estimates are explicitly disabled for this function, we're done.
- MachineFunction &MF = DAG.getMachineFunction();
- int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
- if (Enabled == TLI.ReciprocalEstimate::Disabled)
- return SDValue();
-
- // Estimates may be explicitly enabled for this type with a custom number of
- // refinement steps.
- int Iterations = TLI.getDivRefinementSteps(VT, MF);
- if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
- AddToWorklist(Est.getNode());
-
- if (Iterations) {
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
-
- // Newton iterations: Est = Est + Est (1 - Arg * Est)
- for (int i = 0; i < Iterations; ++i) {
- SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
- AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
- AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
- AddToWorklist(NewEst.getNode());
-
- Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
- AddToWorklist(Est.getNode());
- }
- }
- return Est;
- }
-
- return SDValue();
-}
-
-/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
-/// For the reciprocal sqrt, we need to find the zero of the function:
-/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
-/// =>
-/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
-/// As a result, we precompute A/2 prior to the iteration loop.
-SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
- unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal) {
- EVT VT = Arg.getValueType();
- SDLoc DL(Arg);
- SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
-
- // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
- // this entire sequence requires only one FP constant.
- SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
- AddToWorklist(HalfArg.getNode());
-
- HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
- AddToWorklist(HalfArg.getNode());
-
- // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
- for (unsigned i = 0; i < Iterations; ++i) {
- SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
- AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
- AddToWorklist(NewEst.getNode());
-
- NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
- AddToWorklist(NewEst.getNode());
-
- Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
- AddToWorklist(Est.getNode());
- }
-
- // If non-reciprocal square root is requested, multiply the result by Arg.
- if (!Reciprocal) {
- Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
- AddToWorklist(Est.getNode());
- }
-
- return Est;
-}
-
-/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
-/// For the reciprocal sqrt, we need to find the zero of the function:
-/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
-/// =>
-/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
-SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
- unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal) {
- EVT VT = Arg.getValueType();
- SDLoc DL(Arg);
- SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
- SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
-
- // This routine must enter the loop below to work correctly
- // when (Reciprocal == false).
- assert(Iterations > 0);
-
- // Newton iterations for reciprocal square root:
- // E = (E * -0.5) * ((A * E) * E + -3.0)
- for (unsigned i = 0; i < Iterations; ++i) {
- SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
- AddToWorklist(AE.getNode());
-
- SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
- AddToWorklist(AEE.getNode());
-
- SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
- AddToWorklist(RHS.getNode());
-
- // When calculating a square root at the last iteration build:
- // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
- // (notice a common subexpression)
- SDValue LHS;
- if (Reciprocal || (i + 1) < Iterations) {
- // RSQRT: LHS = (E * -0.5)
- LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
- } else {
- // SQRT: LHS = (A * E) * -0.5
- LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
- }
- AddToWorklist(LHS.getNode());
-
- Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
- AddToWorklist(Est.getNode());
- }
-
- return Est;
-}
-
-/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
-/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
-/// Op can be zero.
-SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
- bool Reciprocal) {
- if (Level >= AfterLegalizeDAG)
- return SDValue();
-
- // TODO: Handle half and/or extended types?
- EVT VT = Op.getValueType();
- if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
- return SDValue();
-
- // If estimates are explicitly disabled for this function, we're done.
- MachineFunction &MF = DAG.getMachineFunction();
- int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
- if (Enabled == TLI.ReciprocalEstimate::Disabled)
- return SDValue();
-
- // Estimates may be explicitly enabled for this type with a custom number of
- // refinement steps.
- int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
-
- bool UseOneConstNR = false;
- if (SDValue Est =
- TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
- Reciprocal)) {
- AddToWorklist(Est.getNode());
-
- if (Iterations) {
- Est = UseOneConstNR
- ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
- : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
-
- if (!Reciprocal) {
- // The estimate is now completely wrong if the input was exactly 0.0 or
- // possibly a denormal. Force the answer to 0.0 for those cases.
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- EVT CCVT = getSetCCResultType(VT);
- ISD::NodeType SelOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
- const Function &F = DAG.getMachineFunction().getFunction();
- Attribute Denorms = F.getFnAttribute("denormal-fp-math");
- if (Denorms.getValueAsString().equals("ieee")) {
- // fabs(X) < SmallestNormal ? 0.0 : Est
- const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
- APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
- SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
- SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
- SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
- SDValue IsDenorm = DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
- Est = DAG.getNode(SelOpcode, DL, VT, IsDenorm, FPZero, Est);
- AddToWorklist(Fabs.getNode());
- AddToWorklist(IsDenorm.getNode());
- AddToWorklist(Est.getNode());
- } else {
- // X == 0.0 ? 0.0 : Est
- SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
- SDValue IsZero = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
- Est = DAG.getNode(SelOpcode, DL, VT, IsZero, FPZero, Est);
- AddToWorklist(IsZero.getNode());
- AddToWorklist(Est.getNode());
- }
- }
- }
- return Est;
- }
-
- return SDValue();
-}
-
-SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
- return buildSqrtEstimateImpl(Op, Flags, true);
-}
-
-SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
- return buildSqrtEstimateImpl(Op, Flags, false);
-}
-
-/// Return true if there is any possibility that the two addresses overlap.
-bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
- // If they are the same then they must be aliases.
- if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
-
- // If they are both volatile then they cannot be reordered.
- if (Op0->isVolatile() && Op1->isVolatile()) return true;
-
- // If one operation reads from invariant memory, and the other may store, they
- // cannot alias. These should really be checking the equivalent of mayWrite,
- // but it only matters for memory nodes other than load /store.
- if (Op0->isInvariant() && Op1->writeMem())
- return false;
-
- if (Op1->isInvariant() && Op0->writeMem())
- return false;
-
- unsigned NumBytes0 = Op0->getMemoryVT().getStoreSize();
- unsigned NumBytes1 = Op1->getMemoryVT().getStoreSize();
-
- // Check for BaseIndexOffset matching.
- BaseIndexOffset BasePtr0 = BaseIndexOffset::match(Op0, DAG);
- BaseIndexOffset BasePtr1 = BaseIndexOffset::match(Op1, DAG);
- int64_t PtrDiff;
- if (BasePtr0.getBase().getNode() && BasePtr1.getBase().getNode()) {
- if (BasePtr0.equalBaseIndex(BasePtr1, DAG, PtrDiff))
- return !((NumBytes0 <= PtrDiff) || (PtrDiff + NumBytes1 <= 0));
-
- // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
- // able to calculate their relative offset if at least one arises
- // from an alloca. However, these allocas cannot overlap and we
- // can infer there is no alias.
- if (auto *A = dyn_cast<FrameIndexSDNode>(BasePtr0.getBase()))
- if (auto *B = dyn_cast<FrameIndexSDNode>(BasePtr1.getBase())) {
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- // If the base are the same frame index but the we couldn't find a
- // constant offset, (indices are different) be conservative.
- if (A != B && (!MFI.isFixedObjectIndex(A->getIndex()) ||
- !MFI.isFixedObjectIndex(B->getIndex())))
- return false;
- }
-
- bool IsFI0 = isa<FrameIndexSDNode>(BasePtr0.getBase());
- bool IsFI1 = isa<FrameIndexSDNode>(BasePtr1.getBase());
- bool IsGV0 = isa<GlobalAddressSDNode>(BasePtr0.getBase());
- bool IsGV1 = isa<GlobalAddressSDNode>(BasePtr1.getBase());
- bool IsCV0 = isa<ConstantPoolSDNode>(BasePtr0.getBase());
- bool IsCV1 = isa<ConstantPoolSDNode>(BasePtr1.getBase());
-
- // If of mismatched base types or checkable indices we can check
- // they do not alias.
- if ((BasePtr0.getIndex() == BasePtr1.getIndex() || (IsFI0 != IsFI1) ||
- (IsGV0 != IsGV1) || (IsCV0 != IsCV1)) &&
- (IsFI0 || IsGV0 || IsCV0) && (IsFI1 || IsGV1 || IsCV1))
- return false;
- }
-
- // If we know required SrcValue1 and SrcValue2 have relatively large
- // alignment compared to the size and offset of the access, we may be able
- // to prove they do not alias. This check is conservative for now to catch
- // cases created by splitting vector types.
- int64_t SrcValOffset0 = Op0->getSrcValueOffset();
- int64_t SrcValOffset1 = Op1->getSrcValueOffset();
- unsigned OrigAlignment0 = Op0->getOriginalAlignment();
- unsigned OrigAlignment1 = Op1->getOriginalAlignment();
- if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
- NumBytes0 == NumBytes1 && OrigAlignment0 > NumBytes0) {
- int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0;
- int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1;
-
- // There is no overlap between these relatively aligned accesses of
- // similar size. Return no alias.
- if ((OffAlign0 + NumBytes0) <= OffAlign1 ||
- (OffAlign1 + NumBytes1) <= OffAlign0)
- return false;
- }
-
- bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
- ? CombinerGlobalAA
- : DAG.getSubtarget().useAA();
-#ifndef NDEBUG
- if (CombinerAAOnlyFunc.getNumOccurrences() &&
- CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
- UseAA = false;
-#endif
-
- if (UseAA && AA &&
- Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
- // Use alias analysis information.
- int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
- int64_t Overlap0 = NumBytes0 + SrcValOffset0 - MinOffset;
- int64_t Overlap1 = NumBytes1 + SrcValOffset1 - MinOffset;
- AliasResult AAResult =
- AA->alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap0,
- UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
- MemoryLocation(Op1->getMemOperand()->getValue(), Overlap1,
- UseTBAA ? Op1->getAAInfo() : AAMDNodes()) );
- if (AAResult == NoAlias)
- return false;
- }
-
- // Otherwise we have to assume they alias.
- return true;
-}
-
-/// Walk up chain skipping non-aliasing memory nodes,
-/// looking for aliasing nodes and adding them to the Aliases vector.
-void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
- SmallVectorImpl<SDValue> &Aliases) {
- SmallVector<SDValue, 8> Chains; // List of chains to visit.
- SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
-
- // Get alias information for node.
- bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
-
- // Starting off.
- Chains.push_back(OriginalChain);
- unsigned Depth = 0;
-
- // Look at each chain and determine if it is an alias. If so, add it to the
- // aliases list. If not, then continue up the chain looking for the next
- // candidate.
- while (!Chains.empty()) {
- SDValue Chain = Chains.pop_back_val();
-
- // For TokenFactor nodes, look at each operand and only continue up the
- // chain until we reach the depth limit.
- //
- // FIXME: The depth check could be made to return the last non-aliasing
- // chain we found before we hit a tokenfactor rather than the original
- // chain.
- if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
- Aliases.clear();
- Aliases.push_back(OriginalChain);
- return;
- }
-
- // Don't bother if we've been before.
- if (!Visited.insert(Chain.getNode()).second)
- continue;
-
- switch (Chain.getOpcode()) {
- case ISD::EntryToken:
- // Entry token is ideal chain operand, but handled in FindBetterChain.
- break;
-
- case ISD::LOAD:
- case ISD::STORE: {
- // Get alias information for Chain.
- bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
- !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
-
- // If chain is alias then stop here.
- if (!(IsLoad && IsOpLoad) &&
- isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
- Aliases.push_back(Chain);
- } else {
- // Look further up the chain.
- Chains.push_back(Chain.getOperand(0));
- ++Depth;
- }
- break;
- }
-
- case ISD::TokenFactor:
- // We have to check each of the operands of the token factor for "small"
- // token factors, so we queue them up. Adding the operands to the queue
- // (stack) in reverse order maintains the original order and increases the
- // likelihood that getNode will find a matching token factor (CSE.)
- if (Chain.getNumOperands() > 16) {
- Aliases.push_back(Chain);
- break;
- }
- for (unsigned n = Chain.getNumOperands(); n;)
- Chains.push_back(Chain.getOperand(--n));
- ++Depth;
- break;
-
- case ISD::CopyFromReg:
- // Forward past CopyFromReg.
- Chains.push_back(Chain.getOperand(0));
- ++Depth;
- break;
-
- default:
- // For all other instructions we will just have to take what we can get.
- Aliases.push_back(Chain);
- break;
- }
- }
-}
-
-/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
-/// (aliasing node.)
-SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
- if (OptLevel == CodeGenOpt::None)
- return OldChain;
-
- // Ops for replacing token factor.
- SmallVector<SDValue, 8> Aliases;
-
- // Accumulate all the aliases to this node.
- GatherAllAliases(N, OldChain, Aliases);
-
- // If no operands then chain to entry token.
- if (Aliases.size() == 0)
- return DAG.getEntryNode();
-
- // If a single operand then chain to it. We don't need to revisit it.
- if (Aliases.size() == 1)
- return Aliases[0];
-
- // Construct a custom tailored token factor.
- return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
-}
-
-// TODO: Replace with with std::monostate when we move to C++17.
-struct UnitT { } Unit;
-bool operator==(const UnitT &, const UnitT &) { return true; }
-bool operator!=(const UnitT &, const UnitT &) { return false; }
-
-// This function tries to collect a bunch of potentially interesting
-// nodes to improve the chains of, all at once. This might seem
-// redundant, as this function gets called when visiting every store
-// node, so why not let the work be done on each store as it's visited?
-//
-// I believe this is mainly important because MergeConsecutiveStores
-// is unable to deal with merging stores of different sizes, so unless
-// we improve the chains of all the potential candidates up-front
-// before running MergeConsecutiveStores, it might only see some of
-// the nodes that will eventually be candidates, and then not be able
-// to go from a partially-merged state to the desired final
-// fully-merged state.
-
-bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
- SmallVector<StoreSDNode *, 8> ChainedStores;
- StoreSDNode *STChain = St;
- // Intervals records which offsets from BaseIndex have been covered. In
- // the common case, every store writes to the immediately previous address
- // space and thus merged with the previous interval at insertion time.
-
- using IMap =
- llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
- IMap::Allocator A;
- IMap Intervals(A);
-
- // This holds the base pointer, index, and the offset in bytes from the base
- // pointer.
- const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
-
- // We must have a base and an offset.
- if (!BasePtr.getBase().getNode())
- return false;
-
- // Do not handle stores to undef base pointers.
- if (BasePtr.getBase().isUndef())
- return false;
-
- // Add ST's interval.
- Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
-
- while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
- // If the chain has more than one use, then we can't reorder the mem ops.
- if (!SDValue(Chain, 0)->hasOneUse())
- break;
- if (Chain->isVolatile() || Chain->isIndexed())
- break;
-
- // Find the base pointer and offset for this memory node.
- const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
- // Check that the base pointer is the same as the original one.
- int64_t Offset;
- if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
- break;
- int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
- // Make sure we don't overlap with other intervals by checking the ones to
- // the left or right before inserting.
- auto I = Intervals.find(Offset);
- // If there's a next interval, we should end before it.
- if (I != Intervals.end() && I.start() < (Offset + Length))
- break;
- // If there's a previous interval, we should start after it.
- if (I != Intervals.begin() && (--I).stop() <= Offset)
- break;
- Intervals.insert(Offset, Offset + Length, Unit);
-
- ChainedStores.push_back(Chain);
- STChain = Chain;
- }
-
- // If we didn't find a chained store, exit.
- if (ChainedStores.size() == 0)
- return false;
-
- // Improve all chained stores (St and ChainedStores members) starting from
- // where the store chain ended and return single TokenFactor.
- SDValue NewChain = STChain->getChain();
- SmallVector<SDValue, 8> TFOps;
- for (unsigned I = ChainedStores.size(); I;) {
- StoreSDNode *S = ChainedStores[--I];
- SDValue BetterChain = FindBetterChain(S, NewChain);
- S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
- S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
- TFOps.push_back(SDValue(S, 0));
- ChainedStores[I] = S;
- }
-
- // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
- SDValue BetterChain = FindBetterChain(St, NewChain);
- SDValue NewST;
- if (St->isTruncatingStore())
- NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
- St->getBasePtr(), St->getMemoryVT(),
- St->getMemOperand());
- else
- NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
- St->getBasePtr(), St->getMemOperand());
-
- TFOps.push_back(NewST);
-
- // If we improved every element of TFOps, then we've lost the dependence on
- // NewChain to successors of St and we need to add it back to TFOps. Do so at
- // the beginning to keep relative order consistent with FindBetterChains.
- auto hasImprovedChain = [&](SDValue ST) -> bool {
- return ST->getOperand(0) != NewChain;
- };
- bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
- if (AddNewChain)
- TFOps.insert(TFOps.begin(), NewChain);
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, SDLoc(STChain), MVT::Other, TFOps);
- CombineTo(St, TF);
-
- AddToWorklist(STChain);
- // Add TF operands worklist in reverse order.
- for (auto I = TF->getNumOperands(); I;)
- AddToWorklist(TF->getOperand(--I).getNode());
- AddToWorklist(TF.getNode());
- return true;
-}
-
-bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
- if (OptLevel == CodeGenOpt::None)
- return false;
-
- const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
-
- // We must have a base and an offset.
- if (!BasePtr.getBase().getNode())
- return false;
-
- // Do not handle stores to undef base pointers.
- if (BasePtr.getBase().isUndef())
- return false;
-
- // Directly improve a chain of disjoint stores starting at St.
- if (parallelizeChainedStores(St))
- return true;
-
- // Improve St's Chain..
- SDValue BetterChain = FindBetterChain(St, St->getChain());
- if (St->getChain() != BetterChain) {
- replaceStoreChain(St, BetterChain);
- return true;
- }
- return false;
-}
-
-/// This is the entry point for the file.
-void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
- CodeGenOpt::Level OptLevel) {
- /// This is the main entry point to this class.
- DAGCombiner(*this, AA, OptLevel).Run(Level);
-}