summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/StackColoring.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/CodeGen/StackColoring.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/StackColoring.cpp793
1 files changed, 793 insertions, 0 deletions
diff --git a/gnu/llvm/lib/CodeGen/StackColoring.cpp b/gnu/llvm/lib/CodeGen/StackColoring.cpp
new file mode 100644
index 00000000000..7b520381517
--- /dev/null
+++ b/gnu/llvm/lib/CodeGen/StackColoring.cpp
@@ -0,0 +1,793 @@
+//===-- StackColoring.cpp -------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements the stack-coloring optimization that looks for
+// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
+// which represent the possible lifetime of stack slots. It attempts to
+// merge disjoint stack slots and reduce the used stack space.
+// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
+//
+// TODO: In the future we plan to improve stack coloring in the following ways:
+// 1. Allow merging multiple small slots into a single larger slot at different
+// offsets.
+// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
+// spill slots.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SparseSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "stackcoloring"
+
+static cl::opt<bool>
+DisableColoring("no-stack-coloring",
+ cl::init(false), cl::Hidden,
+ cl::desc("Disable stack coloring"));
+
+/// The user may write code that uses allocas outside of the declared lifetime
+/// zone. This can happen when the user returns a reference to a local
+/// data-structure. We can detect these cases and decide not to optimize the
+/// code. If this flag is enabled, we try to save the user.
+static cl::opt<bool>
+ProtectFromEscapedAllocas("protect-from-escaped-allocas",
+ cl::init(false), cl::Hidden,
+ cl::desc("Do not optimize lifetime zones that "
+ "are broken"));
+
+STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
+STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
+STATISTIC(StackSlotMerged, "Number of stack slot merged.");
+STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
+
+//===----------------------------------------------------------------------===//
+// StackColoring Pass
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// StackColoring - A machine pass for merging disjoint stack allocations,
+/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
+class StackColoring : public MachineFunctionPass {
+ MachineFrameInfo *MFI;
+ MachineFunction *MF;
+
+ /// A class representing liveness information for a single basic block.
+ /// Each bit in the BitVector represents the liveness property
+ /// for a different stack slot.
+ struct BlockLifetimeInfo {
+ /// Which slots BEGINs in each basic block.
+ BitVector Begin;
+ /// Which slots ENDs in each basic block.
+ BitVector End;
+ /// Which slots are marked as LIVE_IN, coming into each basic block.
+ BitVector LiveIn;
+ /// Which slots are marked as LIVE_OUT, coming out of each basic block.
+ BitVector LiveOut;
+ };
+
+ /// Maps active slots (per bit) for each basic block.
+ typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
+ LivenessMap BlockLiveness;
+
+ /// Maps serial numbers to basic blocks.
+ DenseMap<const MachineBasicBlock*, int> BasicBlocks;
+ /// Maps basic blocks to a serial number.
+ SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
+
+ /// Maps liveness intervals for each slot.
+ SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
+ /// VNInfo is used for the construction of LiveIntervals.
+ VNInfo::Allocator VNInfoAllocator;
+ /// SlotIndex analysis object.
+ SlotIndexes *Indexes;
+ /// The stack protector object.
+ StackProtector *SP;
+
+ /// The list of lifetime markers found. These markers are to be removed
+ /// once the coloring is done.
+ SmallVector<MachineInstr*, 8> Markers;
+
+public:
+ static char ID;
+ StackColoring() : MachineFunctionPass(ID) {
+ initializeStackColoringPass(*PassRegistry::getPassRegistry());
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+ /// Debug.
+ void dump() const;
+
+ /// Removes all of the lifetime marker instructions from the function.
+ /// \returns true if any markers were removed.
+ bool removeAllMarkers();
+
+ /// Scan the machine function and find all of the lifetime markers.
+ /// Record the findings in the BEGIN and END vectors.
+ /// \returns the number of markers found.
+ unsigned collectMarkers(unsigned NumSlot);
+
+ /// Perform the dataflow calculation and calculate the lifetime for each of
+ /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
+ /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
+ /// in and out blocks.
+ void calculateLocalLiveness();
+
+ /// Construct the LiveIntervals for the slots.
+ void calculateLiveIntervals(unsigned NumSlots);
+
+ /// Go over the machine function and change instructions which use stack
+ /// slots to use the joint slots.
+ void remapInstructions(DenseMap<int, int> &SlotRemap);
+
+ /// The input program may contain instructions which are not inside lifetime
+ /// markers. This can happen due to a bug in the compiler or due to a bug in
+ /// user code (for example, returning a reference to a local variable).
+ /// This procedure checks all of the instructions in the function and
+ /// invalidates lifetime ranges which do not contain all of the instructions
+ /// which access that frame slot.
+ void removeInvalidSlotRanges();
+
+ /// Map entries which point to other entries to their destination.
+ /// A->B->C becomes A->C.
+ void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
+};
+} // end anonymous namespace
+
+char StackColoring::ID = 0;
+char &llvm::StackColoringID = StackColoring::ID;
+
+INITIALIZE_PASS_BEGIN(StackColoring,
+ "stack-coloring", "Merge disjoint stack slots", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(StackProtector)
+INITIALIZE_PASS_END(StackColoring,
+ "stack-coloring", "Merge disjoint stack slots", false, false)
+
+void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<SlotIndexes>();
+ AU.addRequired<StackProtector>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void StackColoring::dump() const {
+ for (MachineBasicBlock *MBB : depth_first(MF)) {
+ DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " ["
+ << MBB->getName() << "]\n");
+
+ LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
+ assert(BI != BlockLiveness.end() && "Block not found");
+ const BlockLifetimeInfo &BlockInfo = BI->second;
+
+ DEBUG(dbgs()<<"BEGIN : {");
+ for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
+ DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
+ DEBUG(dbgs()<<"}\n");
+
+ DEBUG(dbgs()<<"END : {");
+ for (unsigned i=0; i < BlockInfo.End.size(); ++i)
+ DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
+
+ DEBUG(dbgs()<<"}\n");
+
+ DEBUG(dbgs()<<"LIVE_IN: {");
+ for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
+ DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
+
+ DEBUG(dbgs()<<"}\n");
+ DEBUG(dbgs()<<"LIVEOUT: {");
+ for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
+ DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
+ DEBUG(dbgs()<<"}\n");
+ }
+}
+
+unsigned StackColoring::collectMarkers(unsigned NumSlot) {
+ unsigned MarkersFound = 0;
+ // Scan the function to find all lifetime markers.
+ // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
+ // deterministic numbering, and because we'll need a post-order iteration
+ // later for solving the liveness dataflow problem.
+ for (MachineBasicBlock *MBB : depth_first(MF)) {
+
+ // Assign a serial number to this basic block.
+ BasicBlocks[MBB] = BasicBlockNumbering.size();
+ BasicBlockNumbering.push_back(MBB);
+
+ // Keep a reference to avoid repeated lookups.
+ BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
+
+ BlockInfo.Begin.resize(NumSlot);
+ BlockInfo.End.resize(NumSlot);
+
+ for (MachineInstr &MI : *MBB) {
+ if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
+ MI.getOpcode() != TargetOpcode::LIFETIME_END)
+ continue;
+
+ Markers.push_back(&MI);
+
+ bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
+ const MachineOperand &MO = MI.getOperand(0);
+ unsigned Slot = MO.getIndex();
+
+ MarkersFound++;
+
+ const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
+ if (Allocation) {
+ DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
+ " with allocation: "<< Allocation->getName()<<"\n");
+ }
+
+ if (IsStart) {
+ BlockInfo.Begin.set(Slot);
+ } else {
+ if (BlockInfo.Begin.test(Slot)) {
+ // Allocas that start and end within a single block are handled
+ // specially when computing the LiveIntervals to avoid pessimizing
+ // the liveness propagation.
+ BlockInfo.Begin.reset(Slot);
+ } else {
+ BlockInfo.End.set(Slot);
+ }
+ }
+ }
+ }
+
+ // Update statistics.
+ NumMarkerSeen += MarkersFound;
+ return MarkersFound;
+}
+
+void StackColoring::calculateLocalLiveness() {
+ // Perform a standard reverse dataflow computation to solve for
+ // global liveness. The BEGIN set here is equivalent to KILL in the standard
+ // formulation, and END is equivalent to GEN. The result of this computation
+ // is a map from blocks to bitvectors where the bitvectors represent which
+ // allocas are live in/out of that block.
+ SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
+ BasicBlockNumbering.end());
+ unsigned NumSSMIters = 0;
+ bool changed = true;
+ while (changed) {
+ changed = false;
+ ++NumSSMIters;
+
+ SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
+
+ for (const MachineBasicBlock *BB : BasicBlockNumbering) {
+ if (!BBSet.count(BB)) continue;
+
+ // Use an iterator to avoid repeated lookups.
+ LivenessMap::iterator BI = BlockLiveness.find(BB);
+ assert(BI != BlockLiveness.end() && "Block not found");
+ BlockLifetimeInfo &BlockInfo = BI->second;
+
+ BitVector LocalLiveIn;
+ BitVector LocalLiveOut;
+
+ // Forward propagation from begins to ends.
+ for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
+ PE = BB->pred_end(); PI != PE; ++PI) {
+ LivenessMap::const_iterator I = BlockLiveness.find(*PI);
+ assert(I != BlockLiveness.end() && "Predecessor not found");
+ LocalLiveIn |= I->second.LiveOut;
+ }
+ LocalLiveIn |= BlockInfo.End;
+ LocalLiveIn.reset(BlockInfo.Begin);
+
+ // Reverse propagation from ends to begins.
+ for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI) {
+ LivenessMap::const_iterator I = BlockLiveness.find(*SI);
+ assert(I != BlockLiveness.end() && "Successor not found");
+ LocalLiveOut |= I->second.LiveIn;
+ }
+ LocalLiveOut |= BlockInfo.Begin;
+ LocalLiveOut.reset(BlockInfo.End);
+
+ LocalLiveIn |= LocalLiveOut;
+ LocalLiveOut |= LocalLiveIn;
+
+ // After adopting the live bits, we need to turn-off the bits which
+ // are de-activated in this block.
+ LocalLiveOut.reset(BlockInfo.End);
+ LocalLiveIn.reset(BlockInfo.Begin);
+
+ // If we have both BEGIN and END markers in the same basic block then
+ // we know that the BEGIN marker comes after the END, because we already
+ // handle the case where the BEGIN comes before the END when collecting
+ // the markers (and building the BEGIN/END vectore).
+ // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
+ // BEGIN and END because it means that the value lives before and after
+ // this basic block.
+ BitVector LocalEndBegin = BlockInfo.End;
+ LocalEndBegin &= BlockInfo.Begin;
+ LocalLiveIn |= LocalEndBegin;
+ LocalLiveOut |= LocalEndBegin;
+
+ if (LocalLiveIn.test(BlockInfo.LiveIn)) {
+ changed = true;
+ BlockInfo.LiveIn |= LocalLiveIn;
+
+ NextBBSet.insert(BB->pred_begin(), BB->pred_end());
+ }
+
+ if (LocalLiveOut.test(BlockInfo.LiveOut)) {
+ changed = true;
+ BlockInfo.LiveOut |= LocalLiveOut;
+
+ NextBBSet.insert(BB->succ_begin(), BB->succ_end());
+ }
+ }
+
+ BBSet = std::move(NextBBSet);
+ }// while changed.
+}
+
+void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
+ SmallVector<SlotIndex, 16> Starts;
+ SmallVector<SlotIndex, 16> Finishes;
+
+ // For each block, find which slots are active within this block
+ // and update the live intervals.
+ for (const MachineBasicBlock &MBB : *MF) {
+ Starts.clear();
+ Starts.resize(NumSlots);
+ Finishes.clear();
+ Finishes.resize(NumSlots);
+
+ // Create the interval for the basic blocks with lifetime markers in them.
+ for (const MachineInstr *MI : Markers) {
+ if (MI->getParent() != &MBB)
+ continue;
+
+ assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
+ MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
+ "Invalid Lifetime marker");
+
+ bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
+ const MachineOperand &Mo = MI->getOperand(0);
+ int Slot = Mo.getIndex();
+ assert(Slot >= 0 && "Invalid slot");
+
+ SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
+
+ if (IsStart) {
+ if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
+ Starts[Slot] = ThisIndex;
+ } else {
+ if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
+ Finishes[Slot] = ThisIndex;
+ }
+ }
+
+ // Create the interval of the blocks that we previously found to be 'alive'.
+ BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
+ for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
+ pos = MBBLiveness.LiveIn.find_next(pos)) {
+ Starts[pos] = Indexes->getMBBStartIdx(&MBB);
+ }
+ for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
+ pos = MBBLiveness.LiveOut.find_next(pos)) {
+ Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
+ }
+
+ for (unsigned i = 0; i < NumSlots; ++i) {
+ assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
+ if (!Starts[i].isValid())
+ continue;
+
+ assert(Starts[i] && Finishes[i] && "Invalid interval");
+ VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
+ SlotIndex S = Starts[i];
+ SlotIndex F = Finishes[i];
+ if (S < F) {
+ // We have a single consecutive region.
+ Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
+ } else {
+ // We have two non-consecutive regions. This happens when
+ // LIFETIME_START appears after the LIFETIME_END marker.
+ SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
+ SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
+ Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
+ Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
+ }
+ }
+ }
+}
+
+bool StackColoring::removeAllMarkers() {
+ unsigned Count = 0;
+ for (MachineInstr *MI : Markers) {
+ MI->eraseFromParent();
+ Count++;
+ }
+ Markers.clear();
+
+ DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
+ return Count;
+}
+
+void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
+ unsigned FixedInstr = 0;
+ unsigned FixedMemOp = 0;
+ unsigned FixedDbg = 0;
+ MachineModuleInfo *MMI = &MF->getMMI();
+
+ // Remap debug information that refers to stack slots.
+ for (auto &VI : MMI->getVariableDbgInfo()) {
+ if (!VI.Var)
+ continue;
+ if (SlotRemap.count(VI.Slot)) {
+ DEBUG(dbgs() << "Remapping debug info for ["
+ << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
+ VI.Slot = SlotRemap[VI.Slot];
+ FixedDbg++;
+ }
+ }
+
+ // Keep a list of *allocas* which need to be remapped.
+ DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
+ for (const std::pair<int, int> &SI : SlotRemap) {
+ const AllocaInst *From = MFI->getObjectAllocation(SI.first);
+ const AllocaInst *To = MFI->getObjectAllocation(SI.second);
+ assert(To && From && "Invalid allocation object");
+ Allocas[From] = To;
+
+ // AA might be used later for instruction scheduling, and we need it to be
+ // able to deduce the correct aliasing releationships between pointers
+ // derived from the alloca being remapped and the target of that remapping.
+ // The only safe way, without directly informing AA about the remapping
+ // somehow, is to directly update the IR to reflect the change being made
+ // here.
+ Instruction *Inst = const_cast<AllocaInst *>(To);
+ if (From->getType() != To->getType()) {
+ BitCastInst *Cast = new BitCastInst(Inst, From->getType());
+ Cast->insertAfter(Inst);
+ Inst = Cast;
+ }
+
+ // Allow the stack protector to adjust its value map to account for the
+ // upcoming replacement.
+ SP->adjustForColoring(From, To);
+
+ // Note that this will not replace uses in MMOs (which we'll update below),
+ // or anywhere else (which is why we won't delete the original
+ // instruction).
+ const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst);
+ }
+
+ // Remap all instructions to the new stack slots.
+ for (MachineBasicBlock &BB : *MF)
+ for (MachineInstr &I : BB) {
+ // Skip lifetime markers. We'll remove them soon.
+ if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
+ I.getOpcode() == TargetOpcode::LIFETIME_END)
+ continue;
+
+ // Update the MachineMemOperand to use the new alloca.
+ for (MachineMemOperand *MMO : I.memoperands()) {
+ // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
+ // we'll also need to update the TBAA nodes in MMOs with values
+ // derived from the merged allocas. When doing this, we'll need to use
+ // the same variant of GetUnderlyingObjects that is used by the
+ // instruction scheduler (that can look through ptrtoint/inttoptr
+ // pairs).
+
+ // We've replaced IR-level uses of the remapped allocas, so we only
+ // need to replace direct uses here.
+ const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
+ if (!AI)
+ continue;
+
+ if (!Allocas.count(AI))
+ continue;
+
+ MMO->setValue(Allocas[AI]);
+ FixedMemOp++;
+ }
+
+ // Update all of the machine instruction operands.
+ for (MachineOperand &MO : I.operands()) {
+ if (!MO.isFI())
+ continue;
+ int FromSlot = MO.getIndex();
+
+ // Don't touch arguments.
+ if (FromSlot<0)
+ continue;
+
+ // Only look at mapped slots.
+ if (!SlotRemap.count(FromSlot))
+ continue;
+
+ // In a debug build, check that the instruction that we are modifying is
+ // inside the expected live range. If the instruction is not inside
+ // the calculated range then it means that the alloca usage moved
+ // outside of the lifetime markers, or that the user has a bug.
+ // NOTE: Alloca address calculations which happen outside the lifetime
+ // zone are are okay, despite the fact that we don't have a good way
+ // for validating all of the usages of the calculation.
+#ifndef NDEBUG
+ bool TouchesMemory = I.mayLoad() || I.mayStore();
+ // If we *don't* protect the user from escaped allocas, don't bother
+ // validating the instructions.
+ if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
+ SlotIndex Index = Indexes->getInstructionIndex(&I);
+ const LiveInterval *Interval = &*Intervals[FromSlot];
+ assert(Interval->find(Index) != Interval->end() &&
+ "Found instruction usage outside of live range.");
+ }
+#endif
+
+ // Fix the machine instructions.
+ int ToSlot = SlotRemap[FromSlot];
+ MO.setIndex(ToSlot);
+ FixedInstr++;
+ }
+ }
+
+ // Update the location of C++ catch objects for the MSVC personality routine.
+ if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
+ for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
+ for (WinEHHandlerType &H : TBME.HandlerArray)
+ if (H.CatchObj.FrameIndex != INT_MAX &&
+ SlotRemap.count(H.CatchObj.FrameIndex))
+ H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
+
+ DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
+ DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
+ DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
+}
+
+void StackColoring::removeInvalidSlotRanges() {
+ for (MachineBasicBlock &BB : *MF)
+ for (MachineInstr &I : BB) {
+ if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
+ I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
+ continue;
+
+ // Some intervals are suspicious! In some cases we find address
+ // calculations outside of the lifetime zone, but not actual memory
+ // read or write. Memory accesses outside of the lifetime zone are a clear
+ // violation, but address calculations are okay. This can happen when
+ // GEPs are hoisted outside of the lifetime zone.
+ // So, in here we only check instructions which can read or write memory.
+ if (!I.mayLoad() && !I.mayStore())
+ continue;
+
+ // Check all of the machine operands.
+ for (const MachineOperand &MO : I.operands()) {
+ if (!MO.isFI())
+ continue;
+
+ int Slot = MO.getIndex();
+
+ if (Slot<0)
+ continue;
+
+ if (Intervals[Slot]->empty())
+ continue;
+
+ // Check that the used slot is inside the calculated lifetime range.
+ // If it is not, warn about it and invalidate the range.
+ LiveInterval *Interval = &*Intervals[Slot];
+ SlotIndex Index = Indexes->getInstructionIndex(&I);
+ if (Interval->find(Index) == Interval->end()) {
+ Interval->clear();
+ DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
+ EscapedAllocas++;
+ }
+ }
+ }
+}
+
+void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
+ unsigned NumSlots) {
+ // Expunge slot remap map.
+ for (unsigned i=0; i < NumSlots; ++i) {
+ // If we are remapping i
+ if (SlotRemap.count(i)) {
+ int Target = SlotRemap[i];
+ // As long as our target is mapped to something else, follow it.
+ while (SlotRemap.count(Target)) {
+ Target = SlotRemap[Target];
+ SlotRemap[i] = Target;
+ }
+ }
+ }
+}
+
+bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
+ if (skipOptnoneFunction(*Func.getFunction()))
+ return false;
+
+ DEBUG(dbgs() << "********** Stack Coloring **********\n"
+ << "********** Function: "
+ << ((const Value*)Func.getFunction())->getName() << '\n');
+ MF = &Func;
+ MFI = MF->getFrameInfo();
+ Indexes = &getAnalysis<SlotIndexes>();
+ SP = &getAnalysis<StackProtector>();
+ BlockLiveness.clear();
+ BasicBlocks.clear();
+ BasicBlockNumbering.clear();
+ Markers.clear();
+ Intervals.clear();
+ VNInfoAllocator.Reset();
+
+ unsigned NumSlots = MFI->getObjectIndexEnd();
+
+ // If there are no stack slots then there are no markers to remove.
+ if (!NumSlots)
+ return false;
+
+ SmallVector<int, 8> SortedSlots;
+
+ SortedSlots.reserve(NumSlots);
+ Intervals.reserve(NumSlots);
+
+ unsigned NumMarkers = collectMarkers(NumSlots);
+
+ unsigned TotalSize = 0;
+ DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
+ DEBUG(dbgs()<<"Slot structure:\n");
+
+ for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
+ DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
+ TotalSize += MFI->getObjectSize(i);
+ }
+
+ DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
+
+ // Don't continue because there are not enough lifetime markers, or the
+ // stack is too small, or we are told not to optimize the slots.
+ if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
+ DEBUG(dbgs()<<"Will not try to merge slots.\n");
+ return removeAllMarkers();
+ }
+
+ for (unsigned i=0; i < NumSlots; ++i) {
+ std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
+ LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
+ Intervals.push_back(std::move(LI));
+ SortedSlots.push_back(i);
+ }
+
+ // Calculate the liveness of each block.
+ calculateLocalLiveness();
+
+ // Propagate the liveness information.
+ calculateLiveIntervals(NumSlots);
+
+ // Search for allocas which are used outside of the declared lifetime
+ // markers.
+ if (ProtectFromEscapedAllocas)
+ removeInvalidSlotRanges();
+
+ // Maps old slots to new slots.
+ DenseMap<int, int> SlotRemap;
+ unsigned RemovedSlots = 0;
+ unsigned ReducedSize = 0;
+
+ // Do not bother looking at empty intervals.
+ for (unsigned I = 0; I < NumSlots; ++I) {
+ if (Intervals[SortedSlots[I]]->empty())
+ SortedSlots[I] = -1;
+ }
+
+ // This is a simple greedy algorithm for merging allocas. First, sort the
+ // slots, placing the largest slots first. Next, perform an n^2 scan and look
+ // for disjoint slots. When you find disjoint slots, merge the samller one
+ // into the bigger one and update the live interval. Remove the small alloca
+ // and continue.
+
+ // Sort the slots according to their size. Place unused slots at the end.
+ // Use stable sort to guarantee deterministic code generation.
+ std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
+ [this](int LHS, int RHS) {
+ // We use -1 to denote a uninteresting slot. Place these slots at the end.
+ if (LHS == -1) return false;
+ if (RHS == -1) return true;
+ // Sort according to size.
+ return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
+ });
+
+ bool Changed = true;
+ while (Changed) {
+ Changed = false;
+ for (unsigned I = 0; I < NumSlots; ++I) {
+ if (SortedSlots[I] == -1)
+ continue;
+
+ for (unsigned J=I+1; J < NumSlots; ++J) {
+ if (SortedSlots[J] == -1)
+ continue;
+
+ int FirstSlot = SortedSlots[I];
+ int SecondSlot = SortedSlots[J];
+ LiveInterval *First = &*Intervals[FirstSlot];
+ LiveInterval *Second = &*Intervals[SecondSlot];
+ assert (!First->empty() && !Second->empty() && "Found an empty range");
+
+ // Merge disjoint slots.
+ if (!First->overlaps(*Second)) {
+ Changed = true;
+ First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
+ SlotRemap[SecondSlot] = FirstSlot;
+ SortedSlots[J] = -1;
+ DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
+ SecondSlot<<" together.\n");
+ unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
+ MFI->getObjectAlignment(SecondSlot));
+
+ assert(MFI->getObjectSize(FirstSlot) >=
+ MFI->getObjectSize(SecondSlot) &&
+ "Merging a small object into a larger one");
+
+ RemovedSlots+=1;
+ ReducedSize += MFI->getObjectSize(SecondSlot);
+ MFI->setObjectAlignment(FirstSlot, MaxAlignment);
+ MFI->RemoveStackObject(SecondSlot);
+ }
+ }
+ }
+ }// While changed.
+
+ // Record statistics.
+ StackSpaceSaved += ReducedSize;
+ StackSlotMerged += RemovedSlots;
+ DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
+ ReducedSize<<" bytes\n");
+
+ // Scan the entire function and update all machine operands that use frame
+ // indices to use the remapped frame index.
+ expungeSlotMap(SlotRemap, NumSlots);
+ remapInstructions(SlotRemap);
+
+ return removeAllMarkers();
+}