summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/StackColoring.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/CodeGen/StackColoring.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/StackColoring.cpp1299
1 files changed, 0 insertions, 1299 deletions
diff --git a/gnu/llvm/lib/CodeGen/StackColoring.cpp b/gnu/llvm/lib/CodeGen/StackColoring.cpp
deleted file mode 100644
index eb8552915e2..00000000000
--- a/gnu/llvm/lib/CodeGen/StackColoring.cpp
+++ /dev/null
@@ -1,1299 +0,0 @@
-//===- StackColoring.cpp --------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass implements the stack-coloring optimization that looks for
-// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
-// which represent the possible lifetime of stack slots. It attempts to
-// merge disjoint stack slots and reduce the used stack space.
-// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
-//
-// TODO: In the future we plan to improve stack coloring in the following ways:
-// 1. Allow merging multiple small slots into a single larger slot at different
-// offsets.
-// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
-// spill slots.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/LiveInterval.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/SelectionDAGNodes.h"
-#include "llvm/CodeGen/SlotIndexes.h"
-#include "llvm/CodeGen/TargetOpcodes.h"
-#include "llvm/CodeGen/WinEHFuncInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <limits>
-#include <memory>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "stack-coloring"
-
-static cl::opt<bool>
-DisableColoring("no-stack-coloring",
- cl::init(false), cl::Hidden,
- cl::desc("Disable stack coloring"));
-
-/// The user may write code that uses allocas outside of the declared lifetime
-/// zone. This can happen when the user returns a reference to a local
-/// data-structure. We can detect these cases and decide not to optimize the
-/// code. If this flag is enabled, we try to save the user. This option
-/// is treated as overriding LifetimeStartOnFirstUse below.
-static cl::opt<bool>
-ProtectFromEscapedAllocas("protect-from-escaped-allocas",
- cl::init(false), cl::Hidden,
- cl::desc("Do not optimize lifetime zones that "
- "are broken"));
-
-/// Enable enhanced dataflow scheme for lifetime analysis (treat first
-/// use of stack slot as start of slot lifetime, as opposed to looking
-/// for LIFETIME_START marker). See "Implementation notes" below for
-/// more info.
-static cl::opt<bool>
-LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
- cl::init(true), cl::Hidden,
- cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
-
-
-STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
-STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
-STATISTIC(StackSlotMerged, "Number of stack slot merged.");
-STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
-
-//===----------------------------------------------------------------------===//
-// StackColoring Pass
-//===----------------------------------------------------------------------===//
-//
-// Stack Coloring reduces stack usage by merging stack slots when they
-// can't be used together. For example, consider the following C program:
-//
-// void bar(char *, int);
-// void foo(bool var) {
-// A: {
-// char z[4096];
-// bar(z, 0);
-// }
-//
-// char *p;
-// char x[4096];
-// char y[4096];
-// if (var) {
-// p = x;
-// } else {
-// bar(y, 1);
-// p = y + 1024;
-// }
-// B:
-// bar(p, 2);
-// }
-//
-// Naively-compiled, this program would use 12k of stack space. However, the
-// stack slot corresponding to `z` is always destroyed before either of the
-// stack slots for `x` or `y` are used, and then `x` is only used if `var`
-// is true, while `y` is only used if `var` is false. So in no time are 2
-// of the stack slots used together, and therefore we can merge them,
-// compiling the function using only a single 4k alloca:
-//
-// void foo(bool var) { // equivalent
-// char x[4096];
-// char *p;
-// bar(x, 0);
-// if (var) {
-// p = x;
-// } else {
-// bar(x, 1);
-// p = x + 1024;
-// }
-// bar(p, 2);
-// }
-//
-// This is an important optimization if we want stack space to be under
-// control in large functions, both open-coded ones and ones created by
-// inlining.
-//
-// Implementation Notes:
-// ---------------------
-//
-// An important part of the above reasoning is that `z` can't be accessed
-// while the latter 2 calls to `bar` are running. This is justified because
-// `z`'s lifetime is over after we exit from block `A:`, so any further
-// accesses to it would be UB. The way we represent this information
-// in LLVM is by having frontends delimit blocks with `lifetime.start`
-// and `lifetime.end` intrinsics.
-//
-// The effect of these intrinsics seems to be as follows (maybe I should
-// specify this in the reference?):
-//
-// L1) at start, each stack-slot is marked as *out-of-scope*, unless no
-// lifetime intrinsic refers to that stack slot, in which case
-// it is marked as *in-scope*.
-// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
-// the stack slot is overwritten with `undef`.
-// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
-// L4) on function exit, all stack slots are marked as *out-of-scope*.
-// L5) `lifetime.end` is a no-op when called on a slot that is already
-// *out-of-scope*.
-// L6) memory accesses to *out-of-scope* stack slots are UB.
-// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
-// are invalidated, unless the slot is "degenerate". This is used to
-// justify not marking slots as in-use until the pointer to them is
-// used, but feels a bit hacky in the presence of things like LICM. See
-// the "Degenerate Slots" section for more details.
-//
-// Now, let's ground stack coloring on these rules. We'll define a slot
-// as *in-use* at a (dynamic) point in execution if it either can be
-// written to at that point, or if it has a live and non-undef content
-// at that point.
-//
-// Obviously, slots that are never *in-use* together can be merged, and
-// in our example `foo`, the slots for `x`, `y` and `z` are never
-// in-use together (of course, sometimes slots that *are* in-use together
-// might still be mergable, but we don't care about that here).
-//
-// In this implementation, we successively merge pairs of slots that are
-// not *in-use* together. We could be smarter - for example, we could merge
-// a single large slot with 2 small slots, or we could construct the
-// interference graph and run a "smart" graph coloring algorithm, but with
-// that aside, how do we find out whether a pair of slots might be *in-use*
-// together?
-//
-// From our rules, we see that *out-of-scope* slots are never *in-use*,
-// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
-// until their address is taken. Therefore, we can approximate slot activity
-// using dataflow.
-//
-// A subtle point: naively, we might try to figure out which pairs of
-// stack-slots interfere by propagating `S in-use` through the CFG for every
-// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
-// which they are both *in-use*.
-//
-// That is sound, but overly conservative in some cases: in our (artificial)
-// example `foo`, either `x` or `y` might be in use at the label `B:`, but
-// as `x` is only in use if we came in from the `var` edge and `y` only
-// if we came from the `!var` edge, they still can't be in use together.
-// See PR32488 for an important real-life case.
-//
-// If we wanted to find all points of interference precisely, we could
-// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
-// would be precise, but requires propagating `O(n^2)` dataflow facts.
-//
-// However, we aren't interested in the *set* of points of interference
-// between 2 stack slots, only *whether* there *is* such a point. So we
-// can rely on a little trick: for `S` and `T` to be in-use together,
-// one of them needs to become in-use while the other is in-use (or
-// they might both become in use simultaneously). We can check this
-// by also keeping track of the points at which a stack slot might *start*
-// being in-use.
-//
-// Exact first use:
-// ----------------
-//
-// Consider the following motivating example:
-//
-// int foo() {
-// char b1[1024], b2[1024];
-// if (...) {
-// char b3[1024];
-// <uses of b1, b3>;
-// return x;
-// } else {
-// char b4[1024], b5[1024];
-// <uses of b2, b4, b5>;
-// return y;
-// }
-// }
-//
-// In the code above, "b3" and "b4" are declared in distinct lexical
-// scopes, meaning that it is easy to prove that they can share the
-// same stack slot. Variables "b1" and "b2" are declared in the same
-// scope, meaning that from a lexical point of view, their lifetimes
-// overlap. From a control flow pointer of view, however, the two
-// variables are accessed in disjoint regions of the CFG, thus it
-// should be possible for them to share the same stack slot. An ideal
-// stack allocation for the function above would look like:
-//
-// slot 0: b1, b2
-// slot 1: b3, b4
-// slot 2: b5
-//
-// Achieving this allocation is tricky, however, due to the way
-// lifetime markers are inserted. Here is a simplified view of the
-// control flow graph for the code above:
-//
-// +------ block 0 -------+
-// 0| LIFETIME_START b1, b2 |
-// 1| <test 'if' condition> |
-// +-----------------------+
-// ./ \.
-// +------ block 1 -------+ +------ block 2 -------+
-// 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
-// 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
-// 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
-// +-----------------------+ +-----------------------+
-// \. /.
-// +------ block 3 -------+
-// 8| <cleanupcode> |
-// 9| LIFETIME_END b1, b2 |
-// 10| return |
-// +-----------------------+
-//
-// If we create live intervals for the variables above strictly based
-// on the lifetime markers, we'll get the set of intervals on the
-// left. If we ignore the lifetime start markers and instead treat a
-// variable's lifetime as beginning with the first reference to the
-// var, then we get the intervals on the right.
-//
-// LIFETIME_START First Use
-// b1: [0,9] [3,4] [8,9]
-// b2: [0,9] [6,9]
-// b3: [2,4] [3,4]
-// b4: [5,7] [6,7]
-// b5: [5,7] [6,7]
-//
-// For the intervals on the left, the best we can do is overlap two
-// variables (b3 and b4, for example); this gives us a stack size of
-// 4*1024 bytes, not ideal. When treating first-use as the start of a
-// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
-// byte stack (better).
-//
-// Degenerate Slots:
-// -----------------
-//
-// Relying entirely on first-use of stack slots is problematic,
-// however, due to the fact that optimizations can sometimes migrate
-// uses of a variable outside of its lifetime start/end region. Here
-// is an example:
-//
-// int bar() {
-// char b1[1024], b2[1024];
-// if (...) {
-// <uses of b2>
-// return y;
-// } else {
-// <uses of b1>
-// while (...) {
-// char b3[1024];
-// <uses of b3>
-// }
-// }
-// }
-//
-// Before optimization, the control flow graph for the code above
-// might look like the following:
-//
-// +------ block 0 -------+
-// 0| LIFETIME_START b1, b2 |
-// 1| <test 'if' condition> |
-// +-----------------------+
-// ./ \.
-// +------ block 1 -------+ +------- block 2 -------+
-// 2| <uses of b2> | 3| <uses of b1> |
-// +-----------------------+ +-----------------------+
-// | |
-// | +------- block 3 -------+ <-\.
-// | 4| <while condition> | |
-// | +-----------------------+ |
-// | / | |
-// | / +------- block 4 -------+
-// \ / 5| LIFETIME_START b3 | |
-// \ / 6| <uses of b3> | |
-// \ / 7| LIFETIME_END b3 | |
-// \ | +------------------------+ |
-// \ | \ /
-// +------ block 5 -----+ \---------------
-// 8| <cleanupcode> |
-// 9| LIFETIME_END b1, b2 |
-// 10| return |
-// +---------------------+
-//
-// During optimization, however, it can happen that an instruction
-// computing an address in "b3" (for example, a loop-invariant GEP) is
-// hoisted up out of the loop from block 4 to block 2. [Note that
-// this is not an actual load from the stack, only an instruction that
-// computes the address to be loaded]. If this happens, there is now a
-// path leading from the first use of b3 to the return instruction
-// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
-// now larger than if we were computing live intervals strictly based
-// on lifetime markers. In the example above, this lengthened lifetime
-// would mean that it would appear illegal to overlap b3 with b2.
-//
-// To deal with this such cases, the code in ::collectMarkers() below
-// tries to identify "degenerate" slots -- those slots where on a single
-// forward pass through the CFG we encounter a first reference to slot
-// K before we hit the slot K lifetime start marker. For such slots,
-// we fall back on using the lifetime start marker as the beginning of
-// the variable's lifetime. NB: with this implementation, slots can
-// appear degenerate in cases where there is unstructured control flow:
-//
-// if (q) goto mid;
-// if (x > 9) {
-// int b[100];
-// memcpy(&b[0], ...);
-// mid: b[k] = ...;
-// abc(&b);
-// }
-//
-// If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
-// before visiting the memcpy block (which will contain the lifetime start
-// for "b" then it will appear that 'b' has a degenerate lifetime.
-//
-
-namespace {
-
-/// StackColoring - A machine pass for merging disjoint stack allocations,
-/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
-class StackColoring : public MachineFunctionPass {
- MachineFrameInfo *MFI;
- MachineFunction *MF;
-
- /// A class representing liveness information for a single basic block.
- /// Each bit in the BitVector represents the liveness property
- /// for a different stack slot.
- struct BlockLifetimeInfo {
- /// Which slots BEGINs in each basic block.
- BitVector Begin;
-
- /// Which slots ENDs in each basic block.
- BitVector End;
-
- /// Which slots are marked as LIVE_IN, coming into each basic block.
- BitVector LiveIn;
-
- /// Which slots are marked as LIVE_OUT, coming out of each basic block.
- BitVector LiveOut;
- };
-
- /// Maps active slots (per bit) for each basic block.
- using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
- LivenessMap BlockLiveness;
-
- /// Maps serial numbers to basic blocks.
- DenseMap<const MachineBasicBlock *, int> BasicBlocks;
-
- /// Maps basic blocks to a serial number.
- SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
-
- /// Maps slots to their use interval. Outside of this interval, slots
- /// values are either dead or `undef` and they will not be written to.
- SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
-
- /// Maps slots to the points where they can become in-use.
- SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
-
- /// VNInfo is used for the construction of LiveIntervals.
- VNInfo::Allocator VNInfoAllocator;
-
- /// SlotIndex analysis object.
- SlotIndexes *Indexes;
-
- /// The list of lifetime markers found. These markers are to be removed
- /// once the coloring is done.
- SmallVector<MachineInstr*, 8> Markers;
-
- /// Record the FI slots for which we have seen some sort of
- /// lifetime marker (either start or end).
- BitVector InterestingSlots;
-
- /// FI slots that need to be handled conservatively (for these
- /// slots lifetime-start-on-first-use is disabled).
- BitVector ConservativeSlots;
-
- /// Number of iterations taken during data flow analysis.
- unsigned NumIterations;
-
-public:
- static char ID;
-
- StackColoring() : MachineFunctionPass(ID) {
- initializeStackColoringPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnMachineFunction(MachineFunction &Func) override;
-
-private:
- /// Used in collectMarkers
- using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
-
- /// Debug.
- void dump() const;
- void dumpIntervals() const;
- void dumpBB(MachineBasicBlock *MBB) const;
- void dumpBV(const char *tag, const BitVector &BV) const;
-
- /// Removes all of the lifetime marker instructions from the function.
- /// \returns true if any markers were removed.
- bool removeAllMarkers();
-
- /// Scan the machine function and find all of the lifetime markers.
- /// Record the findings in the BEGIN and END vectors.
- /// \returns the number of markers found.
- unsigned collectMarkers(unsigned NumSlot);
-
- /// Perform the dataflow calculation and calculate the lifetime for each of
- /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
- /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
- /// in and out blocks.
- void calculateLocalLiveness();
-
- /// Returns TRUE if we're using the first-use-begins-lifetime method for
- /// this slot (if FALSE, then the start marker is treated as start of lifetime).
- bool applyFirstUse(int Slot) {
- if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
- return false;
- if (ConservativeSlots.test(Slot))
- return false;
- return true;
- }
-
- /// Examines the specified instruction and returns TRUE if the instruction
- /// represents the start or end of an interesting lifetime. The slot or slots
- /// starting or ending are added to the vector "slots" and "isStart" is set
- /// accordingly.
- /// \returns True if inst contains a lifetime start or end
- bool isLifetimeStartOrEnd(const MachineInstr &MI,
- SmallVector<int, 4> &slots,
- bool &isStart);
-
- /// Construct the LiveIntervals for the slots.
- void calculateLiveIntervals(unsigned NumSlots);
-
- /// Go over the machine function and change instructions which use stack
- /// slots to use the joint slots.
- void remapInstructions(DenseMap<int, int> &SlotRemap);
-
- /// The input program may contain instructions which are not inside lifetime
- /// markers. This can happen due to a bug in the compiler or due to a bug in
- /// user code (for example, returning a reference to a local variable).
- /// This procedure checks all of the instructions in the function and
- /// invalidates lifetime ranges which do not contain all of the instructions
- /// which access that frame slot.
- void removeInvalidSlotRanges();
-
- /// Map entries which point to other entries to their destination.
- /// A->B->C becomes A->C.
- void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
-};
-
-} // end anonymous namespace
-
-char StackColoring::ID = 0;
-
-char &llvm::StackColoringID = StackColoring::ID;
-
-INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
- "Merge disjoint stack slots", false, false)
-INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
-INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
- "Merge disjoint stack slots", false, false)
-
-void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<SlotIndexes>();
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
- const BitVector &BV) const {
- dbgs() << tag << " : { ";
- for (unsigned I = 0, E = BV.size(); I != E; ++I)
- dbgs() << BV.test(I) << " ";
- dbgs() << "}\n";
-}
-
-LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
- LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
- assert(BI != BlockLiveness.end() && "Block not found");
- const BlockLifetimeInfo &BlockInfo = BI->second;
-
- dumpBV("BEGIN", BlockInfo.Begin);
- dumpBV("END", BlockInfo.End);
- dumpBV("LIVE_IN", BlockInfo.LiveIn);
- dumpBV("LIVE_OUT", BlockInfo.LiveOut);
-}
-
-LLVM_DUMP_METHOD void StackColoring::dump() const {
- for (MachineBasicBlock *MBB : depth_first(MF)) {
- dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
- << MBB->getName() << "]\n";
- dumpBB(MBB);
- }
-}
-
-LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
- for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
- dbgs() << "Interval[" << I << "]:\n";
- Intervals[I]->dump();
- }
-}
-#endif
-
-static inline int getStartOrEndSlot(const MachineInstr &MI)
-{
- assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
- MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
- "Expected LIFETIME_START or LIFETIME_END op");
- const MachineOperand &MO = MI.getOperand(0);
- int Slot = MO.getIndex();
- if (Slot >= 0)
- return Slot;
- return -1;
-}
-
-// At the moment the only way to end a variable lifetime is with
-// a VARIABLE_LIFETIME op (which can't contain a start). If things
-// change and the IR allows for a single inst that both begins
-// and ends lifetime(s), this interface will need to be reworked.
-bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
- SmallVector<int, 4> &slots,
- bool &isStart) {
- if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
- MI.getOpcode() == TargetOpcode::LIFETIME_END) {
- int Slot = getStartOrEndSlot(MI);
- if (Slot < 0)
- return false;
- if (!InterestingSlots.test(Slot))
- return false;
- slots.push_back(Slot);
- if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
- isStart = false;
- return true;
- }
- if (!applyFirstUse(Slot)) {
- isStart = true;
- return true;
- }
- } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
- if (!MI.isDebugInstr()) {
- bool found = false;
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isFI())
- continue;
- int Slot = MO.getIndex();
- if (Slot<0)
- continue;
- if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
- slots.push_back(Slot);
- found = true;
- }
- }
- if (found) {
- isStart = true;
- return true;
- }
- }
- }
- return false;
-}
-
-unsigned StackColoring::collectMarkers(unsigned NumSlot) {
- unsigned MarkersFound = 0;
- BlockBitVecMap SeenStartMap;
- InterestingSlots.clear();
- InterestingSlots.resize(NumSlot);
- ConservativeSlots.clear();
- ConservativeSlots.resize(NumSlot);
-
- // number of start and end lifetime ops for each slot
- SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
- SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
-
- // Step 1: collect markers and populate the "InterestingSlots"
- // and "ConservativeSlots" sets.
- for (MachineBasicBlock *MBB : depth_first(MF)) {
- // Compute the set of slots for which we've seen a START marker but have
- // not yet seen an END marker at this point in the walk (e.g. on entry
- // to this bb).
- BitVector BetweenStartEnd;
- BetweenStartEnd.resize(NumSlot);
- for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
- if (I != SeenStartMap.end()) {
- BetweenStartEnd |= I->second;
- }
- }
-
- // Walk the instructions in the block to look for start/end ops.
- for (MachineInstr &MI : *MBB) {
- if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
- MI.getOpcode() == TargetOpcode::LIFETIME_END) {
- int Slot = getStartOrEndSlot(MI);
- if (Slot < 0)
- continue;
- InterestingSlots.set(Slot);
- if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
- BetweenStartEnd.set(Slot);
- NumStartLifetimes[Slot] += 1;
- } else {
- BetweenStartEnd.reset(Slot);
- NumEndLifetimes[Slot] += 1;
- }
- const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
- if (Allocation) {
- LLVM_DEBUG(dbgs() << "Found a lifetime ");
- LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
- ? "start"
- : "end"));
- LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
- LLVM_DEBUG(dbgs()
- << " with allocation: " << Allocation->getName() << "\n");
- }
- Markers.push_back(&MI);
- MarkersFound += 1;
- } else {
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isFI())
- continue;
- int Slot = MO.getIndex();
- if (Slot < 0)
- continue;
- if (! BetweenStartEnd.test(Slot)) {
- ConservativeSlots.set(Slot);
- }
- }
- }
- }
- BitVector &SeenStart = SeenStartMap[MBB];
- SeenStart |= BetweenStartEnd;
- }
- if (!MarkersFound) {
- return 0;
- }
-
- // PR27903: slots with multiple start or end lifetime ops are not
- // safe to enable for "lifetime-start-on-first-use".
- for (unsigned slot = 0; slot < NumSlot; ++slot)
- if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
- ConservativeSlots.set(slot);
- LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
-
- // Step 2: compute begin/end sets for each block
-
- // NOTE: We use a depth-first iteration to ensure that we obtain a
- // deterministic numbering.
- for (MachineBasicBlock *MBB : depth_first(MF)) {
- // Assign a serial number to this basic block.
- BasicBlocks[MBB] = BasicBlockNumbering.size();
- BasicBlockNumbering.push_back(MBB);
-
- // Keep a reference to avoid repeated lookups.
- BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
-
- BlockInfo.Begin.resize(NumSlot);
- BlockInfo.End.resize(NumSlot);
-
- SmallVector<int, 4> slots;
- for (MachineInstr &MI : *MBB) {
- bool isStart = false;
- slots.clear();
- if (isLifetimeStartOrEnd(MI, slots, isStart)) {
- if (!isStart) {
- assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
- int Slot = slots[0];
- if (BlockInfo.Begin.test(Slot)) {
- BlockInfo.Begin.reset(Slot);
- }
- BlockInfo.End.set(Slot);
- } else {
- for (auto Slot : slots) {
- LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
- LLVM_DEBUG(dbgs()
- << " at " << printMBBReference(*MBB) << " index ");
- LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
- const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
- if (Allocation) {
- LLVM_DEBUG(dbgs()
- << " with allocation: " << Allocation->getName());
- }
- LLVM_DEBUG(dbgs() << "\n");
- if (BlockInfo.End.test(Slot)) {
- BlockInfo.End.reset(Slot);
- }
- BlockInfo.Begin.set(Slot);
- }
- }
- }
- }
- }
-
- // Update statistics.
- NumMarkerSeen += MarkersFound;
- return MarkersFound;
-}
-
-void StackColoring::calculateLocalLiveness() {
- unsigned NumIters = 0;
- bool changed = true;
- while (changed) {
- changed = false;
- ++NumIters;
-
- for (const MachineBasicBlock *BB : BasicBlockNumbering) {
- // Use an iterator to avoid repeated lookups.
- LivenessMap::iterator BI = BlockLiveness.find(BB);
- assert(BI != BlockLiveness.end() && "Block not found");
- BlockLifetimeInfo &BlockInfo = BI->second;
-
- // Compute LiveIn by unioning together the LiveOut sets of all preds.
- BitVector LocalLiveIn;
- for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
- PE = BB->pred_end(); PI != PE; ++PI) {
- LivenessMap::const_iterator I = BlockLiveness.find(*PI);
- // PR37130: transformations prior to stack coloring can
- // sometimes leave behind statically unreachable blocks; these
- // can be safely skipped here.
- if (I != BlockLiveness.end())
- LocalLiveIn |= I->second.LiveOut;
- }
-
- // Compute LiveOut by subtracting out lifetimes that end in this
- // block, then adding in lifetimes that begin in this block. If
- // we have both BEGIN and END markers in the same basic block
- // then we know that the BEGIN marker comes after the END,
- // because we already handle the case where the BEGIN comes
- // before the END when collecting the markers (and building the
- // BEGIN/END vectors).
- BitVector LocalLiveOut = LocalLiveIn;
- LocalLiveOut.reset(BlockInfo.End);
- LocalLiveOut |= BlockInfo.Begin;
-
- // Update block LiveIn set, noting whether it has changed.
- if (LocalLiveIn.test(BlockInfo.LiveIn)) {
- changed = true;
- BlockInfo.LiveIn |= LocalLiveIn;
- }
-
- // Update block LiveOut set, noting whether it has changed.
- if (LocalLiveOut.test(BlockInfo.LiveOut)) {
- changed = true;
- BlockInfo.LiveOut |= LocalLiveOut;
- }
- }
- } // while changed.
-
- NumIterations = NumIters;
-}
-
-void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
- SmallVector<SlotIndex, 16> Starts;
- SmallVector<bool, 16> DefinitelyInUse;
-
- // For each block, find which slots are active within this block
- // and update the live intervals.
- for (const MachineBasicBlock &MBB : *MF) {
- Starts.clear();
- Starts.resize(NumSlots);
- DefinitelyInUse.clear();
- DefinitelyInUse.resize(NumSlots);
-
- // Start the interval of the slots that we previously found to be 'in-use'.
- BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
- for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
- pos = MBBLiveness.LiveIn.find_next(pos)) {
- Starts[pos] = Indexes->getMBBStartIdx(&MBB);
- }
-
- // Create the interval for the basic blocks containing lifetime begin/end.
- for (const MachineInstr &MI : MBB) {
- SmallVector<int, 4> slots;
- bool IsStart = false;
- if (!isLifetimeStartOrEnd(MI, slots, IsStart))
- continue;
- SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
- for (auto Slot : slots) {
- if (IsStart) {
- // If a slot is already definitely in use, we don't have to emit
- // a new start marker because there is already a pre-existing
- // one.
- if (!DefinitelyInUse[Slot]) {
- LiveStarts[Slot].push_back(ThisIndex);
- DefinitelyInUse[Slot] = true;
- }
- if (!Starts[Slot].isValid())
- Starts[Slot] = ThisIndex;
- } else {
- if (Starts[Slot].isValid()) {
- VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
- Intervals[Slot]->addSegment(
- LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
- Starts[Slot] = SlotIndex(); // Invalidate the start index
- DefinitelyInUse[Slot] = false;
- }
- }
- }
- }
-
- // Finish up started segments
- for (unsigned i = 0; i < NumSlots; ++i) {
- if (!Starts[i].isValid())
- continue;
-
- SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
- VNInfo *VNI = Intervals[i]->getValNumInfo(0);
- Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
- }
- }
-}
-
-bool StackColoring::removeAllMarkers() {
- unsigned Count = 0;
- for (MachineInstr *MI : Markers) {
- MI->eraseFromParent();
- Count++;
- }
- Markers.clear();
-
- LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
- return Count;
-}
-
-void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
- unsigned FixedInstr = 0;
- unsigned FixedMemOp = 0;
- unsigned FixedDbg = 0;
-
- // Remap debug information that refers to stack slots.
- for (auto &VI : MF->getVariableDbgInfo()) {
- if (!VI.Var)
- continue;
- if (SlotRemap.count(VI.Slot)) {
- LLVM_DEBUG(dbgs() << "Remapping debug info for ["
- << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
- VI.Slot = SlotRemap[VI.Slot];
- FixedDbg++;
- }
- }
-
- // Keep a list of *allocas* which need to be remapped.
- DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
-
- // Keep a list of allocas which has been affected by the remap.
- SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
-
- for (const std::pair<int, int> &SI : SlotRemap) {
- const AllocaInst *From = MFI->getObjectAllocation(SI.first);
- const AllocaInst *To = MFI->getObjectAllocation(SI.second);
- assert(To && From && "Invalid allocation object");
- Allocas[From] = To;
-
- // AA might be used later for instruction scheduling, and we need it to be
- // able to deduce the correct aliasing releationships between pointers
- // derived from the alloca being remapped and the target of that remapping.
- // The only safe way, without directly informing AA about the remapping
- // somehow, is to directly update the IR to reflect the change being made
- // here.
- Instruction *Inst = const_cast<AllocaInst *>(To);
- if (From->getType() != To->getType()) {
- BitCastInst *Cast = new BitCastInst(Inst, From->getType());
- Cast->insertAfter(Inst);
- Inst = Cast;
- }
-
- // We keep both slots to maintain AliasAnalysis metadata later.
- MergedAllocas.insert(From);
- MergedAllocas.insert(To);
-
- // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
- // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
- // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
- MachineFrameInfo::SSPLayoutKind FromKind
- = MFI->getObjectSSPLayout(SI.first);
- MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
- if (FromKind != MachineFrameInfo::SSPLK_None &&
- (ToKind == MachineFrameInfo::SSPLK_None ||
- (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
- FromKind != MachineFrameInfo::SSPLK_AddrOf)))
- MFI->setObjectSSPLayout(SI.second, FromKind);
-
- // The new alloca might not be valid in a llvm.dbg.declare for this
- // variable, so undef out the use to make the verifier happy.
- AllocaInst *FromAI = const_cast<AllocaInst *>(From);
- if (FromAI->isUsedByMetadata())
- ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
- for (auto &Use : FromAI->uses()) {
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
- if (BCI->isUsedByMetadata())
- ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
- }
-
- // Note that this will not replace uses in MMOs (which we'll update below),
- // or anywhere else (which is why we won't delete the original
- // instruction).
- FromAI->replaceAllUsesWith(Inst);
- }
-
- // Remap all instructions to the new stack slots.
- for (MachineBasicBlock &BB : *MF)
- for (MachineInstr &I : BB) {
- // Skip lifetime markers. We'll remove them soon.
- if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
- I.getOpcode() == TargetOpcode::LIFETIME_END)
- continue;
-
- // Update the MachineMemOperand to use the new alloca.
- for (MachineMemOperand *MMO : I.memoperands()) {
- // We've replaced IR-level uses of the remapped allocas, so we only
- // need to replace direct uses here.
- const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
- if (!AI)
- continue;
-
- if (!Allocas.count(AI))
- continue;
-
- MMO->setValue(Allocas[AI]);
- FixedMemOp++;
- }
-
- // Update all of the machine instruction operands.
- for (MachineOperand &MO : I.operands()) {
- if (!MO.isFI())
- continue;
- int FromSlot = MO.getIndex();
-
- // Don't touch arguments.
- if (FromSlot<0)
- continue;
-
- // Only look at mapped slots.
- if (!SlotRemap.count(FromSlot))
- continue;
-
- // In a debug build, check that the instruction that we are modifying is
- // inside the expected live range. If the instruction is not inside
- // the calculated range then it means that the alloca usage moved
- // outside of the lifetime markers, or that the user has a bug.
- // NOTE: Alloca address calculations which happen outside the lifetime
- // zone are okay, despite the fact that we don't have a good way
- // for validating all of the usages of the calculation.
-#ifndef NDEBUG
- bool TouchesMemory = I.mayLoad() || I.mayStore();
- // If we *don't* protect the user from escaped allocas, don't bother
- // validating the instructions.
- if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
- SlotIndex Index = Indexes->getInstructionIndex(I);
- const LiveInterval *Interval = &*Intervals[FromSlot];
- assert(Interval->find(Index) != Interval->end() &&
- "Found instruction usage outside of live range.");
- }
-#endif
-
- // Fix the machine instructions.
- int ToSlot = SlotRemap[FromSlot];
- MO.setIndex(ToSlot);
- FixedInstr++;
- }
-
- // We adjust AliasAnalysis information for merged stack slots.
- SmallVector<MachineMemOperand *, 2> NewMMOs;
- bool ReplaceMemOps = false;
- for (MachineMemOperand *MMO : I.memoperands()) {
- // If this memory location can be a slot remapped here,
- // we remove AA information.
- bool MayHaveConflictingAAMD = false;
- if (MMO->getAAInfo()) {
- if (const Value *MMOV = MMO->getValue()) {
- SmallVector<Value *, 4> Objs;
- getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
-
- if (Objs.empty())
- MayHaveConflictingAAMD = true;
- else
- for (Value *V : Objs) {
- // If this memory location comes from a known stack slot
- // that is not remapped, we continue checking.
- // Otherwise, we need to invalidate AA infomation.
- const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
- if (AI && MergedAllocas.count(AI)) {
- MayHaveConflictingAAMD = true;
- break;
- }
- }
- }
- }
- if (MayHaveConflictingAAMD) {
- NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
- ReplaceMemOps = true;
- } else {
- NewMMOs.push_back(MMO);
- }
- }
-
- // If any memory operand is updated, set memory references of
- // this instruction.
- if (ReplaceMemOps)
- I.setMemRefs(*MF, NewMMOs);
- }
-
- // Update the location of C++ catch objects for the MSVC personality routine.
- if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
- for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
- for (WinEHHandlerType &H : TBME.HandlerArray)
- if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
- SlotRemap.count(H.CatchObj.FrameIndex))
- H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
-
- LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
- LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
- LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
-}
-
-void StackColoring::removeInvalidSlotRanges() {
- for (MachineBasicBlock &BB : *MF)
- for (MachineInstr &I : BB) {
- if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
- I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
- continue;
-
- // Some intervals are suspicious! In some cases we find address
- // calculations outside of the lifetime zone, but not actual memory
- // read or write. Memory accesses outside of the lifetime zone are a clear
- // violation, but address calculations are okay. This can happen when
- // GEPs are hoisted outside of the lifetime zone.
- // So, in here we only check instructions which can read or write memory.
- if (!I.mayLoad() && !I.mayStore())
- continue;
-
- // Check all of the machine operands.
- for (const MachineOperand &MO : I.operands()) {
- if (!MO.isFI())
- continue;
-
- int Slot = MO.getIndex();
-
- if (Slot<0)
- continue;
-
- if (Intervals[Slot]->empty())
- continue;
-
- // Check that the used slot is inside the calculated lifetime range.
- // If it is not, warn about it and invalidate the range.
- LiveInterval *Interval = &*Intervals[Slot];
- SlotIndex Index = Indexes->getInstructionIndex(I);
- if (Interval->find(Index) == Interval->end()) {
- Interval->clear();
- LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
- EscapedAllocas++;
- }
- }
- }
-}
-
-void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
- unsigned NumSlots) {
- // Expunge slot remap map.
- for (unsigned i=0; i < NumSlots; ++i) {
- // If we are remapping i
- if (SlotRemap.count(i)) {
- int Target = SlotRemap[i];
- // As long as our target is mapped to something else, follow it.
- while (SlotRemap.count(Target)) {
- Target = SlotRemap[Target];
- SlotRemap[i] = Target;
- }
- }
- }
-}
-
-bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
- LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
- << "********** Function: " << Func.getName() << '\n');
- MF = &Func;
- MFI = &MF->getFrameInfo();
- Indexes = &getAnalysis<SlotIndexes>();
- BlockLiveness.clear();
- BasicBlocks.clear();
- BasicBlockNumbering.clear();
- Markers.clear();
- Intervals.clear();
- LiveStarts.clear();
- VNInfoAllocator.Reset();
-
- unsigned NumSlots = MFI->getObjectIndexEnd();
-
- // If there are no stack slots then there are no markers to remove.
- if (!NumSlots)
- return false;
-
- SmallVector<int, 8> SortedSlots;
- SortedSlots.reserve(NumSlots);
- Intervals.reserve(NumSlots);
- LiveStarts.resize(NumSlots);
-
- unsigned NumMarkers = collectMarkers(NumSlots);
-
- unsigned TotalSize = 0;
- LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
- << " slots\n");
- LLVM_DEBUG(dbgs() << "Slot structure:\n");
-
- for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
- LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
- << " bytes.\n");
- TotalSize += MFI->getObjectSize(i);
- }
-
- LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
-
- // Don't continue because there are not enough lifetime markers, or the
- // stack is too small, or we are told not to optimize the slots.
- if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
- skipFunction(Func.getFunction())) {
- LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
- return removeAllMarkers();
- }
-
- for (unsigned i=0; i < NumSlots; ++i) {
- std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
- LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
- Intervals.push_back(std::move(LI));
- SortedSlots.push_back(i);
- }
-
- // Calculate the liveness of each block.
- calculateLocalLiveness();
- LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
- LLVM_DEBUG(dump());
-
- // Propagate the liveness information.
- calculateLiveIntervals(NumSlots);
- LLVM_DEBUG(dumpIntervals());
-
- // Search for allocas which are used outside of the declared lifetime
- // markers.
- if (ProtectFromEscapedAllocas)
- removeInvalidSlotRanges();
-
- // Maps old slots to new slots.
- DenseMap<int, int> SlotRemap;
- unsigned RemovedSlots = 0;
- unsigned ReducedSize = 0;
-
- // Do not bother looking at empty intervals.
- for (unsigned I = 0; I < NumSlots; ++I) {
- if (Intervals[SortedSlots[I]]->empty())
- SortedSlots[I] = -1;
- }
-
- // This is a simple greedy algorithm for merging allocas. First, sort the
- // slots, placing the largest slots first. Next, perform an n^2 scan and look
- // for disjoint slots. When you find disjoint slots, merge the samller one
- // into the bigger one and update the live interval. Remove the small alloca
- // and continue.
-
- // Sort the slots according to their size. Place unused slots at the end.
- // Use stable sort to guarantee deterministic code generation.
- std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
- [this](int LHS, int RHS) {
- // We use -1 to denote a uninteresting slot. Place these slots at the end.
- if (LHS == -1) return false;
- if (RHS == -1) return true;
- // Sort according to size.
- return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
- });
-
- for (auto &s : LiveStarts)
- llvm::sort(s);
-
- bool Changed = true;
- while (Changed) {
- Changed = false;
- for (unsigned I = 0; I < NumSlots; ++I) {
- if (SortedSlots[I] == -1)
- continue;
-
- for (unsigned J=I+1; J < NumSlots; ++J) {
- if (SortedSlots[J] == -1)
- continue;
-
- int FirstSlot = SortedSlots[I];
- int SecondSlot = SortedSlots[J];
- LiveInterval *First = &*Intervals[FirstSlot];
- LiveInterval *Second = &*Intervals[SecondSlot];
- auto &FirstS = LiveStarts[FirstSlot];
- auto &SecondS = LiveStarts[SecondSlot];
- assert(!First->empty() && !Second->empty() && "Found an empty range");
-
- // Merge disjoint slots. This is a little bit tricky - see the
- // Implementation Notes section for an explanation.
- if (!First->isLiveAtIndexes(SecondS) &&
- !Second->isLiveAtIndexes(FirstS)) {
- Changed = true;
- First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
-
- int OldSize = FirstS.size();
- FirstS.append(SecondS.begin(), SecondS.end());
- auto Mid = FirstS.begin() + OldSize;
- std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
-
- SlotRemap[SecondSlot] = FirstSlot;
- SortedSlots[J] = -1;
- LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
- << SecondSlot << " together.\n");
- unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
- MFI->getObjectAlignment(SecondSlot));
-
- assert(MFI->getObjectSize(FirstSlot) >=
- MFI->getObjectSize(SecondSlot) &&
- "Merging a small object into a larger one");
-
- RemovedSlots+=1;
- ReducedSize += MFI->getObjectSize(SecondSlot);
- MFI->setObjectAlignment(FirstSlot, MaxAlignment);
- MFI->RemoveStackObject(SecondSlot);
- }
- }
- }
- }// While changed.
-
- // Record statistics.
- StackSpaceSaved += ReducedSize;
- StackSlotMerged += RemovedSlots;
- LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
- << ReducedSize << " bytes\n");
-
- // Scan the entire function and update all machine operands that use frame
- // indices to use the remapped frame index.
- expungeSlotMap(SlotRemap, NumSlots);
- remapInstructions(SlotRemap);
-
- return removeAllMarkers();
-}