summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/ExecutionEngine/Interpreter
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/ExecutionEngine/Interpreter')
-rw-r--r--gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt20
-rw-r--r--gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp2119
-rw-r--r--gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp510
-rw-r--r--gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp103
-rw-r--r--gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h235
-rw-r--r--gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt22
6 files changed, 0 insertions, 3009 deletions
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt b/gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt
deleted file mode 100644
index 7456b3dbe90..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-# Make sure that the path to libffi headers is on the command
-# line. That path can be a compiler's non-default path even when
-# FFI_INCLUDE_DIR was not used, because cmake has its own paths for
-# searching for headers (CMAKE_SYSTEM_INCLUDE_PATH, for instance):
-if( FFI_INCLUDE_PATH )
- include_directories( ${FFI_INCLUDE_PATH} )
-endif()
-
-add_llvm_library(LLVMInterpreter
- Execution.cpp
- ExternalFunctions.cpp
- Interpreter.cpp
-
- DEPENDS
- intrinsics_gen
- )
-
-if( LLVM_ENABLE_FFI )
- target_link_libraries( LLVMInterpreter PRIVATE ${FFI_LIBRARY_PATH} )
-endif()
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
deleted file mode 100644
index 98dca110275..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
+++ /dev/null
@@ -1,2119 +0,0 @@
-//===-- Execution.cpp - Implement code to simulate the program ------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the actual instruction interpreter.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Interpreter.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cmath>
-using namespace llvm;
-
-#define DEBUG_TYPE "interpreter"
-
-STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
-
-static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
- cl::desc("make the interpreter print every volatile load and store"));
-
-//===----------------------------------------------------------------------===//
-// Various Helper Functions
-//===----------------------------------------------------------------------===//
-
-static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
- SF.Values[V] = Val;
-}
-
-//===----------------------------------------------------------------------===//
-// Binary Instruction Implementations
-//===----------------------------------------------------------------------===//
-
-#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
- case Type::TY##TyID: \
- Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
- break
-
-static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(+, Float);
- IMPLEMENT_BINARY_OPERATOR(+, Double);
- default:
- dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
-}
-
-static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(-, Float);
- IMPLEMENT_BINARY_OPERATOR(-, Double);
- default:
- dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
-}
-
-static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(*, Float);
- IMPLEMENT_BINARY_OPERATOR(*, Double);
- default:
- dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
-}
-
-static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(/, Float);
- IMPLEMENT_BINARY_OPERATOR(/, Double);
- default:
- dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
-}
-
-static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
- break;
- default:
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
-}
-
-#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
- case Type::IntegerTyID: \
- Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
- break;
-
-#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
- case Type::VectorTyID: { \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
- } break;
-
-// Handle pointers specially because they must be compared with only as much
-// width as the host has. We _do not_ want to be comparing 64 bit values when
-// running on a 32-bit target, otherwise the upper 32 bits might mess up
-// comparisons if they contain garbage.
-#define IMPLEMENT_POINTER_ICMP(OP) \
- case Type::PointerTyID: \
- Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
- (void*)(intptr_t)Src2.PointerVal); \
- break;
-
-static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_POINTER_ICMP(==);
- default:
- dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_POINTER_ICMP(!=);
- default:
- dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-void Interpreter::visitICmpInst(ICmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
- default:
- dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
- llvm_unreachable(nullptr);
- }
-
- SetValue(&I, R, SF);
-}
-
-#define IMPLEMENT_FCMP(OP, TY) \
- case Type::TY##TyID: \
- Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
- break
-
-#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
- break;
-
-#define IMPLEMENT_VECTOR_FCMP(OP) \
- case Type::VectorTyID: \
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
- } else { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
- }
-
-static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(==, Float);
- IMPLEMENT_FCMP(==, Double);
- IMPLEMENT_VECTOR_FCMP(==);
- default:
- dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- } else { \
- if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- }
-
-#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
- assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
- Dest.AggregateVal.resize( X.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
- if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
- Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
- Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
- else { \
- Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
- } \
- }
-
-#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
- if (TY->isVectorTy()) { \
- if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
- MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
- } else { \
- MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
- } \
- } \
-
-
-
-static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- Type *Ty)
-{
- GenericValue Dest;
- // if input is scalar value and Src1 or Src2 is NaN return false
- IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
- // if vector input detect NaNs and fill mask
- MASK_VECTOR_NANS(Ty, Src1, Src2, false)
- GenericValue DestMask = Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(!=, Float);
- IMPLEMENT_FCMP(!=, Double);
- IMPLEMENT_VECTOR_FCMP(!=);
- default:
- dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- // in vector case mask out NaN elements
- if (Ty->isVectorTy())
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- if (DestMask.AggregateVal[_i].IntVal == false)
- Dest.AggregateVal[_i].IntVal = APInt(1,false);
-
- return Dest;
-}
-
-static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<=, Float);
- IMPLEMENT_FCMP(<=, Double);
- IMPLEMENT_VECTOR_FCMP(<=);
- default:
- dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>=, Float);
- IMPLEMENT_FCMP(>=, Double);
- IMPLEMENT_VECTOR_FCMP(>=);
- default:
- dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<, Float);
- IMPLEMENT_FCMP(<, Double);
- IMPLEMENT_VECTOR_FCMP(<);
- default:
- dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>, Float);
- IMPLEMENT_FCMP(>, Double);
- IMPLEMENT_VECTOR_FCMP(>);
- default:
- dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- return Dest;
-}
-
-#define IMPLEMENT_UNORDERED(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- } \
- } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- }
-
-#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
- if (TY->isVectorTy()) { \
- GenericValue DestMask = Dest; \
- Dest = FUNC(Src1, Src2, Ty); \
- for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
- if (DestMask.AggregateVal[_i].IntVal == true) \
- Dest.AggregateVal[_i].IntVal = APInt(1, true); \
- return Dest; \
- }
-
-static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
- return executeFCMP_OEQ(Src1, Src2, Ty);
-
-}
-
-static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
- return executeFCMP_ONE(Src1, Src2, Ty);
-}
-
-static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
- return executeFCMP_OLE(Src1, Src2, Ty);
-}
-
-static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
- return executeFCMP_OGE(Src1, Src2, Ty);
-}
-
-static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
- return executeFCMP_OLT(Src1, Src2, Ty);
-}
-
-static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
- return executeFCMP_OGT(Src1, Src2, Ty);
-}
-
-static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal ==
- Src1.AggregateVal[_i].FloatVal) &&
- (Src2.AggregateVal[_i].FloatVal ==
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal ==
- Src1.AggregateVal[_i].DoubleVal) &&
- (Src2.AggregateVal[_i].DoubleVal ==
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
- Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
- Src2.FloatVal == Src2.FloatVal));
- else {
- Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
- Src2.DoubleVal == Src2.DoubleVal));
- }
- return Dest;
-}
-
-static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
- Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal !=
- Src1.AggregateVal[_i].FloatVal) ||
- (Src2.AggregateVal[_i].FloatVal !=
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal !=
- Src1.AggregateVal[_i].DoubleVal) ||
- (Src2.AggregateVal[_i].DoubleVal !=
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
- Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
- Src2.FloatVal != Src2.FloatVal));
- else {
- Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
- Src2.DoubleVal != Src2.DoubleVal));
- }
- return Dest;
-}
-
-static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
- Type *Ty, const bool val) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,val);
- } else {
- Dest.IntVal = APInt(1, val);
- }
-
- return Dest;
-}
-
-void Interpreter::visitFCmpInst(FCmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- default:
- dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
- break;
- case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
- break;
- case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
- }
-
- SetValue(&I, R, SF);
-}
-
-static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
- GenericValue Src2, Type *Ty) {
- GenericValue Result;
- switch (predicate) {
- case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
- case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
- case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
- case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
- default:
- dbgs() << "Unhandled Cmp predicate\n";
- llvm_unreachable(nullptr);
- }
-}
-
-void Interpreter::visitBinaryOperator(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- // First process vector operation
- if (Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- R.AggregateVal.resize(Src1.AggregateVal.size());
-
- // Macros to execute binary operation 'OP' over integer vectors
-#define INTEGER_VECTOR_OPERATION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
-
- // Additional macros to execute binary operations udiv/sdiv/urem/srem since
- // they have different notation.
-#define INTEGER_VECTOR_FUNCTION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
-
- // Macros to execute binary operation 'OP' over floating point type TY
- // (float or double) vectors
-#define FLOAT_VECTOR_FUNCTION(OP, TY) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].TY = \
- Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
-
- // Macros to choose appropriate TY: float or double and run operation
- // execution
-#define FLOAT_VECTOR_OP(OP) { \
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
- FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
- else { \
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
- FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
- else { \
- dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
- llvm_unreachable(0); \
- } \
- } \
-}
-
- switch(I.getOpcode()){
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
- case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
- case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
- case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
- case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
- case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
- case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
- case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
- case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
- case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
- case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
- case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
- case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
- case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
- case Instruction::FRem:
- if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].FloatVal =
- fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
- else {
- if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].DoubleVal =
- fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
- else {
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
- }
- break;
- }
- } else {
- switch (I.getOpcode()) {
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(nullptr);
- break;
- case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
- case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
- case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
- case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
- case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
- case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- }
- }
- SetValue(&I, R, SF);
-}
-
-static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
- GenericValue Src3, Type *Ty) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
- Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
- Src3.AggregateVal[i] : Src2.AggregateVal[i];
- } else {
- Dest = (Src1.IntVal == 0) ? Src3 : Src2;
- }
- return Dest;
-}
-
-void Interpreter::visitSelectInst(SelectInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type * Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
- SetValue(&I, R, SF);
-}
-
-//===----------------------------------------------------------------------===//
-// Terminator Instruction Implementations
-//===----------------------------------------------------------------------===//
-
-void Interpreter::exitCalled(GenericValue GV) {
- // runAtExitHandlers() assumes there are no stack frames, but
- // if exit() was called, then it had a stack frame. Blow away
- // the stack before interpreting atexit handlers.
- ECStack.clear();
- runAtExitHandlers();
- exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
-}
-
-/// Pop the last stack frame off of ECStack and then copy the result
-/// back into the result variable if we are not returning void. The
-/// result variable may be the ExitValue, or the Value of the calling
-/// CallInst if there was a previous stack frame. This method may
-/// invalidate any ECStack iterators you have. This method also takes
-/// care of switching to the normal destination BB, if we are returning
-/// from an invoke.
-///
-void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
- GenericValue Result) {
- // Pop the current stack frame.
- ECStack.pop_back();
-
- if (ECStack.empty()) { // Finished main. Put result into exit code...
- if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
- ExitValue = Result; // Capture the exit value of the program
- } else {
- memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- }
- } else {
- // If we have a previous stack frame, and we have a previous call,
- // fill in the return value...
- ExecutionContext &CallingSF = ECStack.back();
- if (Instruction *I = CallingSF.Caller.getInstruction()) {
- // Save result...
- if (!CallingSF.Caller.getType()->isVoidTy())
- SetValue(I, Result, CallingSF);
- if (InvokeInst *II = dyn_cast<InvokeInst> (I))
- SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
- CallingSF.Caller = CallSite(); // We returned from the call...
- }
- }
-}
-
-void Interpreter::visitReturnInst(ReturnInst &I) {
- ExecutionContext &SF = ECStack.back();
- Type *RetTy = Type::getVoidTy(I.getContext());
- GenericValue Result;
-
- // Save away the return value... (if we are not 'ret void')
- if (I.getNumOperands()) {
- RetTy = I.getReturnValue()->getType();
- Result = getOperandValue(I.getReturnValue(), SF);
- }
-
- popStackAndReturnValueToCaller(RetTy, Result);
-}
-
-void Interpreter::visitUnreachableInst(UnreachableInst &I) {
- report_fatal_error("Program executed an 'unreachable' instruction!");
-}
-
-void Interpreter::visitBranchInst(BranchInst &I) {
- ExecutionContext &SF = ECStack.back();
- BasicBlock *Dest;
-
- Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
- if (!I.isUnconditional()) {
- Value *Cond = I.getCondition();
- if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
- Dest = I.getSuccessor(1);
- }
- SwitchToNewBasicBlock(Dest, SF);
-}
-
-void Interpreter::visitSwitchInst(SwitchInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value* Cond = I.getCondition();
- Type *ElTy = Cond->getType();
- GenericValue CondVal = getOperandValue(Cond, SF);
-
- // Check to see if any of the cases match...
- BasicBlock *Dest = nullptr;
- for (auto Case : I.cases()) {
- GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
- if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
- Dest = cast<BasicBlock>(Case.getCaseSuccessor());
- break;
- }
- }
- if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
- SwitchToNewBasicBlock(Dest, SF);
-}
-
-void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
- ExecutionContext &SF = ECStack.back();
- void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
- SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
-}
-
-
-// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
-// This function handles the actual updating of block and instruction iterators
-// as well as execution of all of the PHI nodes in the destination block.
-//
-// This method does this because all of the PHI nodes must be executed
-// atomically, reading their inputs before any of the results are updated. Not
-// doing this can cause problems if the PHI nodes depend on other PHI nodes for
-// their inputs. If the input PHI node is updated before it is read, incorrect
-// results can happen. Thus we use a two phase approach.
-//
-void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
- BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
- SF.CurBB = Dest; // Update CurBB to branch destination
- SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
-
- if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
-
- // Loop over all of the PHI nodes in the current block, reading their inputs.
- std::vector<GenericValue> ResultValues;
-
- for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
- // Search for the value corresponding to this previous bb...
- int i = PN->getBasicBlockIndex(PrevBB);
- assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
- Value *IncomingValue = PN->getIncomingValue(i);
-
- // Save the incoming value for this PHI node...
- ResultValues.push_back(getOperandValue(IncomingValue, SF));
- }
-
- // Now loop over all of the PHI nodes setting their values...
- SF.CurInst = SF.CurBB->begin();
- for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
- PHINode *PN = cast<PHINode>(SF.CurInst);
- SetValue(PN, ResultValues[i], SF);
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Memory Instruction Implementations
-//===----------------------------------------------------------------------===//
-
-void Interpreter::visitAllocaInst(AllocaInst &I) {
- ExecutionContext &SF = ECStack.back();
-
- Type *Ty = I.getType()->getElementType(); // Type to be allocated
-
- // Get the number of elements being allocated by the array...
- unsigned NumElements =
- getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
-
- unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
-
- // Avoid malloc-ing zero bytes, use max()...
- unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
-
- // Allocate enough memory to hold the type...
- void *Memory = safe_malloc(MemToAlloc);
-
- LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
- << " bytes) x " << NumElements << " (Total: " << MemToAlloc
- << ") at " << uintptr_t(Memory) << '\n');
-
- GenericValue Result = PTOGV(Memory);
- assert(Result.PointerVal && "Null pointer returned by malloc!");
- SetValue(&I, Result, SF);
-
- if (I.getOpcode() == Instruction::Alloca)
- ECStack.back().Allocas.add(Memory);
-}
-
-// getElementOffset - The workhorse for getelementptr.
-//
-GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E,
- ExecutionContext &SF) {
- assert(Ptr->getType()->isPointerTy() &&
- "Cannot getElementOffset of a nonpointer type!");
-
- uint64_t Total = 0;
-
- for (; I != E; ++I) {
- if (StructType *STy = I.getStructTypeOrNull()) {
- const StructLayout *SLO = getDataLayout().getStructLayout(STy);
-
- const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
- unsigned Index = unsigned(CPU->getZExtValue());
-
- Total += SLO->getElementOffset(Index);
- } else {
- // Get the index number for the array... which must be long type...
- GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
-
- int64_t Idx;
- unsigned BitWidth =
- cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
- if (BitWidth == 32)
- Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
- else {
- assert(BitWidth == 64 && "Invalid index type for getelementptr");
- Idx = (int64_t)IdxGV.IntVal.getZExtValue();
- }
- Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
- }
- }
-
- GenericValue Result;
- Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
- return Result;
-}
-
-void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeGEPOperation(I.getPointerOperand(),
- gep_type_begin(I), gep_type_end(I), SF), SF);
-}
-
-void Interpreter::visitLoadInst(LoadInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
- GenericValue Result;
- LoadValueFromMemory(Result, Ptr, I.getType());
- SetValue(&I, Result, SF);
- if (I.isVolatile() && PrintVolatile)
- dbgs() << "Volatile load " << I;
-}
-
-void Interpreter::visitStoreInst(StoreInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Val = getOperandValue(I.getOperand(0), SF);
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
- I.getOperand(0)->getType());
- if (I.isVolatile() && PrintVolatile)
- dbgs() << "Volatile store: " << I;
-}
-
-//===----------------------------------------------------------------------===//
-// Miscellaneous Instruction Implementations
-//===----------------------------------------------------------------------===//
-
-void Interpreter::visitCallSite(CallSite CS) {
- ExecutionContext &SF = ECStack.back();
-
- // Check to see if this is an intrinsic function call...
- Function *F = CS.getCalledFunction();
- if (F && F->isDeclaration())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- break;
- case Intrinsic::vastart: { // va_start
- GenericValue ArgIndex;
- ArgIndex.UIntPairVal.first = ECStack.size() - 1;
- ArgIndex.UIntPairVal.second = 0;
- SetValue(CS.getInstruction(), ArgIndex, SF);
- return;
- }
- case Intrinsic::vaend: // va_end is a noop for the interpreter
- return;
- case Intrinsic::vacopy: // va_copy: dest = src
- SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
- return;
- default:
- // If it is an unknown intrinsic function, use the intrinsic lowering
- // class to transform it into hopefully tasty LLVM code.
- //
- BasicBlock::iterator me(CS.getInstruction());
- BasicBlock *Parent = CS.getInstruction()->getParent();
- bool atBegin(Parent->begin() == me);
- if (!atBegin)
- --me;
- IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
-
- // Restore the CurInst pointer to the first instruction newly inserted, if
- // any.
- if (atBegin) {
- SF.CurInst = Parent->begin();
- } else {
- SF.CurInst = me;
- ++SF.CurInst;
- }
- return;
- }
-
-
- SF.Caller = CS;
- std::vector<GenericValue> ArgVals;
- const unsigned NumArgs = SF.Caller.arg_size();
- ArgVals.reserve(NumArgs);
- uint16_t pNum = 1;
- for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
- e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
- Value *V = *i;
- ArgVals.push_back(getOperandValue(V, SF));
- }
-
- // To handle indirect calls, we must get the pointer value from the argument
- // and treat it as a function pointer.
- GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
- callFunction((Function*)GVTOP(SRC), ArgVals);
-}
-
-// auxiliary function for shift operations
-static unsigned getShiftAmount(uint64_t orgShiftAmount,
- llvm::APInt valueToShift) {
- unsigned valueWidth = valueToShift.getBitWidth();
- if (orgShiftAmount < (uint64_t)valueWidth)
- return orgShiftAmount;
- // according to the llvm documentation, if orgShiftAmount > valueWidth,
- // the result is undfeined. but we do shift by this rule:
- return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
-}
-
-
-void Interpreter::visitShl(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
-
- if (Ty->isVectorTy()) {
- uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
- }
-
- SetValue(&I, Dest, SF);
-}
-
-void Interpreter::visitLShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
-
- if (Ty->isVectorTy()) {
- uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
- }
-
- SetValue(&I, Dest, SF);
-}
-
-void Interpreter::visitAShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Type *Ty = I.getType();
-
- if (Ty->isVectorTy()) {
- size_t src1Size = Src1.AggregateVal.size();
- assert(src1Size == Src2.AggregateVal.size());
- for (unsigned i = 0; i < src1Size; i++) {
- GenericValue Result;
- uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
- Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
- Dest.AggregateVal.push_back(Result);
- }
- } else {
- // scalar
- uint64_t shiftAmount = Src2.IntVal.getZExtValue();
- llvm::APInt valueToShift = Src1.IntVal;
- Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
- }
-
- SetValue(&I, Dest, SF);
-}
-
-GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- Type *SrcTy = SrcVal->getType();
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned NumElts = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(NumElts);
- for (unsigned i = 0; i < NumElts; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
- } else {
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
- }
- return Dest;
-}
-
-GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
- } else {
- auto *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
- }
- return Dest;
-}
-
-GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (SrcTy->isVectorTy()) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
-
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
- } else {
- auto *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
- }
- return Dest;
-}
-
-GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
- DstTy->getScalarType()->isFloatTy() &&
- "Invalid FPTrunc instruction");
-
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
- } else {
- assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float)Src.DoubleVal;
- }
-
- return Dest;
-}
-
-GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
- DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
-
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
- } else {
- assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
- "Invalid FPExt instruction");
- Dest.DoubleVal = (double)Src.FloatVal;
- }
-
- return Dest;
-}
-
-GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if (SrcTy->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- Type *SrcVecTy = SrcTy->getScalarType();
- uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal.
- Dest.AggregateVal.resize(size);
-
- if (SrcVecTy->getTypeID() == Type::FloatTyID) {
- assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
- Src.AggregateVal[i].FloatVal, DBitWidth);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
- Src.AggregateVal[i].DoubleVal, DBitWidth);
- }
- } else {
- // scalar
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
-
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else {
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- }
- }
-
- return Dest;
-}
-
-GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if (SrcTy->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- Type *SrcVecTy = SrcTy->getScalarType();
- uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
-
- if (SrcVecTy->getTypeID() == Type::FloatTyID) {
- assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
- Src.AggregateVal[i].FloatVal, DBitWidth);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
- Src.AggregateVal[i].DoubleVal, DBitWidth);
- }
- } else {
- // scalar
- unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
-
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else {
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- }
- }
- return Dest;
-}
-
-GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
-
- if (DstVecTy->getTypeID() == Type::FloatTyID) {
- assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal =
- APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal =
- APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
- }
- } else {
- // scalar
- assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else {
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
- }
- }
- return Dest;
-}
-
-GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
- Type *DstVecTy = DstTy->getScalarType();
- unsigned size = Src.AggregateVal.size();
- // the sizes of src and dst vectors must be equal
- Dest.AggregateVal.resize(size);
-
- if (DstVecTy->getTypeID() == Type::FloatTyID) {
- assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].FloatVal =
- APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
- } else {
- for (unsigned i = 0; i < size; i++)
- Dest.AggregateVal[i].DoubleVal =
- APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
- }
- } else {
- // scalar
- assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
-
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else {
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- }
- }
-
- return Dest;
-}
-
-GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
-
- Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
- return Dest;
-}
-
-GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
-
- uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
- if (PtrSize != Src.IntVal.getBitWidth())
- Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
-
- Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
- return Dest;
-}
-
-GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF) {
-
- // This instruction supports bitwise conversion of vectors to integers and
- // to vectors of other types (as long as they have the same size)
- Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
-
- if ((SrcTy->getTypeID() == Type::VectorTyID) ||
- (DstTy->getTypeID() == Type::VectorTyID)) {
- // vector src bitcast to vector dst or vector src bitcast to scalar dst or
- // scalar src bitcast to vector dst
- bool isLittleEndian = getDataLayout().isLittleEndian();
- GenericValue TempDst, TempSrc, SrcVec;
- Type *SrcElemTy;
- Type *DstElemTy;
- unsigned SrcBitSize;
- unsigned DstBitSize;
- unsigned SrcNum;
- unsigned DstNum;
-
- if (SrcTy->getTypeID() == Type::VectorTyID) {
- SrcElemTy = SrcTy->getScalarType();
- SrcBitSize = SrcTy->getScalarSizeInBits();
- SrcNum = Src.AggregateVal.size();
- SrcVec = Src;
- } else {
- // if src is scalar value, make it vector <1 x type>
- SrcElemTy = SrcTy;
- SrcBitSize = SrcTy->getPrimitiveSizeInBits();
- SrcNum = 1;
- SrcVec.AggregateVal.push_back(Src);
- }
-
- if (DstTy->getTypeID() == Type::VectorTyID) {
- DstElemTy = DstTy->getScalarType();
- DstBitSize = DstTy->getScalarSizeInBits();
- DstNum = (SrcNum * SrcBitSize) / DstBitSize;
- } else {
- DstElemTy = DstTy;
- DstBitSize = DstTy->getPrimitiveSizeInBits();
- DstNum = 1;
- }
-
- if (SrcNum * SrcBitSize != DstNum * DstBitSize)
- llvm_unreachable("Invalid BitCast");
-
- // If src is floating point, cast to integer first.
- TempSrc.AggregateVal.resize(SrcNum);
- if (SrcElemTy->isFloatTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal =
- APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
-
- } else if (SrcElemTy->isDoubleTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal =
- APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
- } else if (SrcElemTy->isIntegerTy()) {
- for (unsigned i = 0; i < SrcNum; i++)
- TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
- } else {
- // Pointers are not allowed as the element type of vector.
- llvm_unreachable("Invalid Bitcast");
- }
-
- // now TempSrc is integer type vector
- if (DstNum < SrcNum) {
- // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
- unsigned Ratio = SrcNum / DstNum;
- unsigned SrcElt = 0;
- for (unsigned i = 0; i < DstNum; i++) {
- GenericValue Elt;
- Elt.IntVal = 0;
- Elt.IntVal = Elt.IntVal.zext(DstBitSize);
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
- for (unsigned j = 0; j < Ratio; j++) {
- APInt Tmp;
- Tmp = Tmp.zext(SrcBitSize);
- Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
- Tmp = Tmp.zext(DstBitSize);
- Tmp <<= ShiftAmt;
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
- Elt.IntVal |= Tmp;
- }
- TempDst.AggregateVal.push_back(Elt);
- }
- } else {
- // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
- unsigned Ratio = DstNum / SrcNum;
- for (unsigned i = 0; i < SrcNum; i++) {
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
- for (unsigned j = 0; j < Ratio; j++) {
- GenericValue Elt;
- Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
- Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
- Elt.IntVal.lshrInPlace(ShiftAmt);
- // it could be DstBitSize == SrcBitSize, so check it
- if (DstBitSize < SrcBitSize)
- Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- TempDst.AggregateVal.push_back(Elt);
- }
- }
- }
-
- // convert result from integer to specified type
- if (DstTy->getTypeID() == Type::VectorTyID) {
- if (DstElemTy->isDoubleTy()) {
- Dest.AggregateVal.resize(DstNum);
- for (unsigned i = 0; i < DstNum; i++)
- Dest.AggregateVal[i].DoubleVal =
- TempDst.AggregateVal[i].IntVal.bitsToDouble();
- } else if (DstElemTy->isFloatTy()) {
- Dest.AggregateVal.resize(DstNum);
- for (unsigned i = 0; i < DstNum; i++)
- Dest.AggregateVal[i].FloatVal =
- TempDst.AggregateVal[i].IntVal.bitsToFloat();
- } else {
- Dest = TempDst;
- }
- } else {
- if (DstElemTy->isDoubleTy())
- Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
- else if (DstElemTy->isFloatTy()) {
- Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
- } else {
- Dest.IntVal = TempDst.AggregateVal[0].IntVal;
- }
- }
- } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
- // (DstTy->getTypeID() == Type::VectorTyID))
-
- // scalar src bitcast to scalar dst
- if (DstTy->isPointerTy()) {
- assert(SrcTy->isPointerTy() && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isIntegerTy()) {
- if (SrcTy->isFloatTy())
- Dest.IntVal = APInt::floatToBits(Src.FloatVal);
- else if (SrcTy->isDoubleTy()) {
- Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isIntegerTy()) {
- Dest.IntVal = Src.IntVal;
- } else {
- llvm_unreachable("Invalid BitCast");
- }
- } else if (DstTy->isFloatTy()) {
- if (SrcTy->isIntegerTy())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else {
- Dest.FloatVal = Src.FloatVal;
- }
- } else if (DstTy->isDoubleTy()) {
- if (SrcTy->isIntegerTy())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else {
- Dest.DoubleVal = Src.DoubleVal;
- }
- } else {
- llvm_unreachable("Invalid Bitcast");
- }
- }
-
- return Dest;
-}
-
-void Interpreter::visitTruncInst(TruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitSExtInst(SExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitZExtInst(ZExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitFPTruncInst(FPTruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitFPExtInst(FPExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitUIToFPInst(UIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitSIToFPInst(SIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitFPToUIInst(FPToUIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitFPToSIInst(FPToSIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-void Interpreter::visitBitCastInst(BitCastInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
-}
-
-#define IMPLEMENT_VAARG(TY) \
- case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
-
-void Interpreter::visitVAArgInst(VAArgInst &I) {
- ExecutionContext &SF = ECStack.back();
-
- // Get the incoming valist parameter. LLI treats the valist as a
- // (ec-stack-depth var-arg-index) pair.
- GenericValue VAList = getOperandValue(I.getOperand(0), SF);
- GenericValue Dest;
- GenericValue Src = ECStack[VAList.UIntPairVal.first]
- .VarArgs[VAList.UIntPairVal.second];
- Type *Ty = I.getType();
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- Dest.IntVal = Src.IntVal;
- break;
- IMPLEMENT_VAARG(Pointer);
- IMPLEMENT_VAARG(Float);
- IMPLEMENT_VAARG(Double);
- default:
- dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
- llvm_unreachable(nullptr);
- }
-
- // Set the Value of this Instruction.
- SetValue(&I, Dest, SF);
-
- // Move the pointer to the next vararg.
- ++VAList.UIntPairVal.second;
-}
-
-void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
-
- Type *Ty = I.getType();
- const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
-
- if(Src1.AggregateVal.size() > indx) {
- switch (Ty->getTypeID()) {
- default:
- dbgs() << "Unhandled destination type for extractelement instruction: "
- << *Ty << "\n";
- llvm_unreachable(nullptr);
- break;
- case Type::IntegerTyID:
- Dest.IntVal = Src1.AggregateVal[indx].IntVal;
- break;
- case Type::FloatTyID:
- Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
- break;
- }
- } else {
- dbgs() << "Invalid index in extractelement instruction\n";
- }
-
- SetValue(&I, Dest, SF);
-}
-
-void Interpreter::visitInsertElementInst(InsertElementInst &I) {
- ExecutionContext &SF = ECStack.back();
- VectorType *Ty = cast<VectorType>(I.getType());
-
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue Dest;
-
- Type *TyContained = Ty->getElementType();
-
- const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
- Dest.AggregateVal = Src1.AggregateVal;
-
- if(Src1.AggregateVal.size() <= indx)
- llvm_unreachable("Invalid index in insertelement instruction");
- switch (TyContained->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- case Type::IntegerTyID:
- Dest.AggregateVal[indx].IntVal = Src2.IntVal;
- break;
- case Type::FloatTyID:
- Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
- break;
- }
- SetValue(&I, Dest, SF);
-}
-
-void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
- ExecutionContext &SF = ECStack.back();
-
- VectorType *Ty = cast<VectorType>(I.getType());
-
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue Dest;
-
- // There is no need to check types of src1 and src2, because the compiled
- // bytecode can't contain different types for src1 and src2 for a
- // shufflevector instruction.
-
- Type *TyContained = Ty->getElementType();
- unsigned src1Size = (unsigned)Src1.AggregateVal.size();
- unsigned src2Size = (unsigned)Src2.AggregateVal.size();
- unsigned src3Size = (unsigned)Src3.AggregateVal.size();
-
- Dest.AggregateVal.resize(src3Size);
-
- switch (TyContained->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- break;
- case Type::IntegerTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
- if(j < src1Size)
- Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
- else
- // The selector may not be greater than sum of lengths of first and
- // second operands and llasm should not allow situation like
- // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
- // <2 x i32> < i32 0, i32 5 >,
- // where i32 5 is invalid, but let it be additional check here:
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- case Type::FloatTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
- if(j < src1Size)
- Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
- else
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- case Type::DoubleTyID:
- for( unsigned i=0; i<src3Size; i++) {
- unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
- if(j < src1Size)
- Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
- else if(j < src1Size + src2Size)
- Dest.AggregateVal[i].DoubleVal =
- Src2.AggregateVal[j-src1Size].DoubleVal;
- else
- llvm_unreachable("Invalid mask in shufflevector instruction");
- }
- break;
- }
- SetValue(&I, Dest, SF);
-}
-
-void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
- ExecutionContext &SF = ECStack.back();
- Value *Agg = I.getAggregateOperand();
- GenericValue Dest;
- GenericValue Src = getOperandValue(Agg, SF);
-
- ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
- unsigned Num = I.getNumIndices();
- GenericValue *pSrc = &Src;
-
- for (unsigned i = 0 ; i < Num; ++i) {
- pSrc = &pSrc->AggregateVal[*IdxBegin];
- ++IdxBegin;
- }
-
- Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
- switch (IndexedType->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for extractelement instruction");
- break;
- case Type::IntegerTyID:
- Dest.IntVal = pSrc->IntVal;
- break;
- case Type::FloatTyID:
- Dest.FloatVal = pSrc->FloatVal;
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = pSrc->DoubleVal;
- break;
- case Type::ArrayTyID:
- case Type::StructTyID:
- case Type::VectorTyID:
- Dest.AggregateVal = pSrc->AggregateVal;
- break;
- case Type::PointerTyID:
- Dest.PointerVal = pSrc->PointerVal;
- break;
- }
-
- SetValue(&I, Dest, SF);
-}
-
-void Interpreter::visitInsertValueInst(InsertValueInst &I) {
-
- ExecutionContext &SF = ECStack.back();
- Value *Agg = I.getAggregateOperand();
-
- GenericValue Src1 = getOperandValue(Agg, SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest = Src1; // Dest is a slightly changed Src1
-
- ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
- unsigned Num = I.getNumIndices();
-
- GenericValue *pDest = &Dest;
- for (unsigned i = 0 ; i < Num; ++i) {
- pDest = &pDest->AggregateVal[*IdxBegin];
- ++IdxBegin;
- }
- // pDest points to the target value in the Dest now
-
- Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
-
- switch (IndexedType->getTypeID()) {
- default:
- llvm_unreachable("Unhandled dest type for insertelement instruction");
- break;
- case Type::IntegerTyID:
- pDest->IntVal = Src2.IntVal;
- break;
- case Type::FloatTyID:
- pDest->FloatVal = Src2.FloatVal;
- break;
- case Type::DoubleTyID:
- pDest->DoubleVal = Src2.DoubleVal;
- break;
- case Type::ArrayTyID:
- case Type::StructTyID:
- case Type::VectorTyID:
- pDest->AggregateVal = Src2.AggregateVal;
- break;
- case Type::PointerTyID:
- pDest->PointerVal = Src2.PointerVal;
- break;
- }
-
- SetValue(&I, Dest, SF);
-}
-
-GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
- ExecutionContext &SF) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::ZExt:
- return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SExt:
- return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPTrunc:
- return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPExt:
- return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::UIToFP:
- return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SIToFP:
- return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToUI:
- return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToSI:
- return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::PtrToInt:
- return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::IntToPtr:
- return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::BitCast:
- return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::GetElementPtr:
- return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
- gep_type_end(CE), SF);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return executeCmpInst(CE->getPredicate(),
- getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- CE->getOperand(0)->getType());
- case Instruction::Select:
- return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- getOperandValue(CE->getOperand(2), SF),
- CE->getOperand(0)->getType());
- default :
- break;
- }
-
- // The cases below here require a GenericValue parameter for the result
- // so we initialize one, compute it and then return it.
- GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
- GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
- GenericValue Dest;
- Type * Ty = CE->getOperand(0)->getType();
- switch (CE->getOpcode()) {
- case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
- case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
- case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
- case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
- case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
- case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
- case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
- case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
- case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
- case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
- case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
- case Instruction::Shl:
- Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
- break;
- case Instruction::LShr:
- Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
- break;
- case Instruction::AShr:
- Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
- break;
- default:
- dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
- llvm_unreachable("Unhandled ConstantExpr");
- }
- return Dest;
-}
-
-GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- return getConstantExprValue(CE, SF);
- } else if (Constant *CPV = dyn_cast<Constant>(V)) {
- return getConstantValue(CPV);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- return PTOGV(getPointerToGlobal(GV));
- } else {
- return SF.Values[V];
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Dispatch and Execution Code
-//===----------------------------------------------------------------------===//
-
-//===----------------------------------------------------------------------===//
-// callFunction - Execute the specified function...
-//
-void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
- assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
- ECStack.back().Caller.arg_size() == ArgVals.size()) &&
- "Incorrect number of arguments passed into function call!");
- // Make a new stack frame... and fill it in.
- ECStack.emplace_back();
- ExecutionContext &StackFrame = ECStack.back();
- StackFrame.CurFunction = F;
-
- // Special handling for external functions.
- if (F->isDeclaration()) {
- GenericValue Result = callExternalFunction (F, ArgVals);
- // Simulate a 'ret' instruction of the appropriate type.
- popStackAndReturnValueToCaller (F->getReturnType (), Result);
- return;
- }
-
- // Get pointers to first LLVM BB & Instruction in function.
- StackFrame.CurBB = &F->front();
- StackFrame.CurInst = StackFrame.CurBB->begin();
-
- // Run through the function arguments and initialize their values...
- assert((ArgVals.size() == F->arg_size() ||
- (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
- "Invalid number of values passed to function invocation!");
-
- // Handle non-varargs arguments...
- unsigned i = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++i)
- SetValue(&*AI, ArgVals[i], StackFrame);
-
- // Handle varargs arguments...
- StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
-}
-
-
-void Interpreter::run() {
- while (!ECStack.empty()) {
- // Interpret a single instruction & increment the "PC".
- ExecutionContext &SF = ECStack.back(); // Current stack frame
- Instruction &I = *SF.CurInst++; // Increment before execute
-
- // Track the number of dynamic instructions executed.
- ++NumDynamicInsts;
-
- LLVM_DEBUG(dbgs() << "About to interpret: " << I);
- visit(I); // Dispatch to one of the visit* methods...
- }
-}
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
deleted file mode 100644
index 334fcacf807..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
+++ /dev/null
@@ -1,510 +0,0 @@
-//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains both code to deal with invoking "external" functions, but
-// also contains code that implements "exported" external functions.
-//
-// There are currently two mechanisms for handling external functions in the
-// Interpreter. The first is to implement lle_* wrapper functions that are
-// specific to well-known library functions which manually translate the
-// arguments from GenericValues and make the call. If such a wrapper does
-// not exist, and libffi is available, then the Interpreter will attempt to
-// invoke the function using libffi, after finding its address.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Interpreter.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/Config/config.h" // Detect libffi
-#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/DynamicLibrary.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Mutex.h"
-#include "llvm/Support/UniqueLock.h"
-#include "llvm/Support/raw_ostream.h"
-#include <cassert>
-#include <cmath>
-#include <csignal>
-#include <cstdint>
-#include <cstdio>
-#include <cstring>
-#include <map>
-#include <string>
-#include <utility>
-#include <vector>
-
-#ifdef HAVE_FFI_CALL
-#ifdef HAVE_FFI_H
-#include <ffi.h>
-#define USE_LIBFFI
-#elif HAVE_FFI_FFI_H
-#include <ffi/ffi.h>
-#define USE_LIBFFI
-#endif
-#endif
-
-using namespace llvm;
-
-static ManagedStatic<sys::Mutex> FunctionsLock;
-
-typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
-static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
-static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
-
-#ifdef USE_LIBFFI
-typedef void (*RawFunc)();
-static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
-#endif
-
-static Interpreter *TheInterpreter;
-
-static char getTypeID(Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return 'V';
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 1: return 'o';
- case 8: return 'B';
- case 16: return 'S';
- case 32: return 'I';
- case 64: return 'L';
- default: return 'N';
- }
- case Type::FloatTyID: return 'F';
- case Type::DoubleTyID: return 'D';
- case Type::PointerTyID: return 'P';
- case Type::FunctionTyID:return 'M';
- case Type::StructTyID: return 'T';
- case Type::ArrayTyID: return 'A';
- default: return 'U';
- }
-}
-
-// Try to find address of external function given a Function object.
-// Please note, that interpreter doesn't know how to assemble a
-// real call in general case (this is JIT job), that's why it assumes,
-// that all external functions has the same (and pretty "general") signature.
-// The typical example of such functions are "lle_X_" ones.
-static ExFunc lookupFunction(const Function *F) {
- // Function not found, look it up... start by figuring out what the
- // composite function name should be.
- std::string ExtName = "lle_";
- FunctionType *FT = F->getFunctionType();
- ExtName += getTypeID(FT->getReturnType());
- for (Type *T : FT->params())
- ExtName += getTypeID(T);
- ExtName += ("_" + F->getName()).str();
-
- sys::ScopedLock Writer(*FunctionsLock);
- ExFunc FnPtr = (*FuncNames)[ExtName];
- if (!FnPtr)
- FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
- if (!FnPtr) // Try calling a generic function... if it exists...
- FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
- ("lle_X_" + F->getName()).str());
- if (FnPtr)
- ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
- return FnPtr;
-}
-
-#ifdef USE_LIBFFI
-static ffi_type *ffiTypeFor(Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return &ffi_type_void;
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 8: return &ffi_type_sint8;
- case 16: return &ffi_type_sint16;
- case 32: return &ffi_type_sint32;
- case 64: return &ffi_type_sint64;
- }
- case Type::FloatTyID: return &ffi_type_float;
- case Type::DoubleTyID: return &ffi_type_double;
- case Type::PointerTyID: return &ffi_type_pointer;
- default: break;
- }
- // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- report_fatal_error("Type could not be mapped for use with libffi.");
- return NULL;
-}
-
-static void *ffiValueFor(Type *Ty, const GenericValue &AV,
- void *ArgDataPtr) {
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 8: {
- int8_t *I8Ptr = (int8_t *) ArgDataPtr;
- *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 16: {
- int16_t *I16Ptr = (int16_t *) ArgDataPtr;
- *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 32: {
- int32_t *I32Ptr = (int32_t *) ArgDataPtr;
- *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 64: {
- int64_t *I64Ptr = (int64_t *) ArgDataPtr;
- *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- }
- case Type::FloatTyID: {
- float *FloatPtr = (float *) ArgDataPtr;
- *FloatPtr = AV.FloatVal;
- return ArgDataPtr;
- }
- case Type::DoubleTyID: {
- double *DoublePtr = (double *) ArgDataPtr;
- *DoublePtr = AV.DoubleVal;
- return ArgDataPtr;
- }
- case Type::PointerTyID: {
- void **PtrPtr = (void **) ArgDataPtr;
- *PtrPtr = GVTOP(AV);
- return ArgDataPtr;
- }
- default: break;
- }
- // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- report_fatal_error("Type value could not be mapped for use with libffi.");
- return NULL;
-}
-
-static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
- const DataLayout &TD, GenericValue &Result) {
- ffi_cif cif;
- FunctionType *FTy = F->getFunctionType();
- const unsigned NumArgs = F->arg_size();
-
- // TODO: We don't have type information about the remaining arguments, because
- // this information is never passed into ExecutionEngine::runFunction().
- if (ArgVals.size() > NumArgs && F->isVarArg()) {
- report_fatal_error("Calling external var arg function '" + F->getName()
- + "' is not supported by the Interpreter.");
- }
-
- unsigned ArgBytes = 0;
-
- std::vector<ffi_type*> args(NumArgs);
- for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- const unsigned ArgNo = A->getArgNo();
- Type *ArgTy = FTy->getParamType(ArgNo);
- args[ArgNo] = ffiTypeFor(ArgTy);
- ArgBytes += TD.getTypeStoreSize(ArgTy);
- }
-
- SmallVector<uint8_t, 128> ArgData;
- ArgData.resize(ArgBytes);
- uint8_t *ArgDataPtr = ArgData.data();
- SmallVector<void*, 16> values(NumArgs);
- for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- const unsigned ArgNo = A->getArgNo();
- Type *ArgTy = FTy->getParamType(ArgNo);
- values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
- ArgDataPtr += TD.getTypeStoreSize(ArgTy);
- }
-
- Type *RetTy = FTy->getReturnType();
- ffi_type *rtype = ffiTypeFor(RetTy);
-
- if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
- FFI_OK) {
- SmallVector<uint8_t, 128> ret;
- if (RetTy->getTypeID() != Type::VoidTyID)
- ret.resize(TD.getTypeStoreSize(RetTy));
- ffi_call(&cif, Fn, ret.data(), values.data());
- switch (RetTy->getTypeID()) {
- case Type::IntegerTyID:
- switch (cast<IntegerType>(RetTy)->getBitWidth()) {
- case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
- case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
- case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
- case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
- }
- break;
- case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
- case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
- case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
- default: break;
- }
- return true;
- }
-
- return false;
-}
-#endif // USE_LIBFFI
-
-GenericValue Interpreter::callExternalFunction(Function *F,
- ArrayRef<GenericValue> ArgVals) {
- TheInterpreter = this;
-
- unique_lock<sys::Mutex> Guard(*FunctionsLock);
-
- // Do a lookup to see if the function is in our cache... this should just be a
- // deferred annotation!
- std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
- if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
- : FI->second) {
- Guard.unlock();
- return Fn(F->getFunctionType(), ArgVals);
- }
-
-#ifdef USE_LIBFFI
- std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
- RawFunc RawFn;
- if (RF == RawFunctions->end()) {
- RawFn = (RawFunc)(intptr_t)
- sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
- if (!RawFn)
- RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
- if (RawFn != 0)
- RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
- } else {
- RawFn = RF->second;
- }
-
- Guard.unlock();
-
- GenericValue Result;
- if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
- return Result;
-#endif // USE_LIBFFI
-
- if (F->getName() == "__main")
- errs() << "Tried to execute an unknown external function: "
- << *F->getType() << " __main\n";
- else
- report_fatal_error("Tried to execute an unknown external function: " +
- F->getName());
-#ifndef USE_LIBFFI
- errs() << "Recompiling LLVM with --enable-libffi might help.\n";
-#endif
- return GenericValue();
-}
-
-//===----------------------------------------------------------------------===//
-// Functions "exported" to the running application...
-//
-
-// void atexit(Function*)
-static GenericValue lle_X_atexit(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- assert(Args.size() == 1);
- TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
- GenericValue GV;
- GV.IntVal = 0;
- return GV;
-}
-
-// void exit(int)
-static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
- TheInterpreter->exitCalled(Args[0]);
- return GenericValue();
-}
-
-// void abort(void)
-static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
- //FIXME: should we report or raise here?
- //report_fatal_error("Interpreted program raised SIGABRT");
- raise (SIGABRT);
- return GenericValue();
-}
-
-// int sprintf(char *, const char *, ...) - a very rough implementation to make
-// output useful.
-static GenericValue lle_X_sprintf(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- char *OutputBuffer = (char *)GVTOP(Args[0]);
- const char *FmtStr = (const char *)GVTOP(Args[1]);
- unsigned ArgNo = 2;
-
- // printf should return # chars printed. This is completely incorrect, but
- // close enough for now.
- GenericValue GV;
- GV.IntVal = APInt(32, strlen(FmtStr));
- while (true) {
- switch (*FmtStr) {
- case 0: return GV; // Null terminator...
- default: // Normal nonspecial character
- sprintf(OutputBuffer++, "%c", *FmtStr++);
- break;
- case '\\': { // Handle escape codes
- sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
- FmtStr += 2; OutputBuffer += 2;
- break;
- }
- case '%': { // Handle format specifiers
- char FmtBuf[100] = "", Buffer[1000] = "";
- char *FB = FmtBuf;
- *FB++ = *FmtStr++;
- char Last = *FB++ = *FmtStr++;
- unsigned HowLong = 0;
- while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
- Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
- Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
- Last != 'p' && Last != 's' && Last != '%') {
- if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
- Last = *FB++ = *FmtStr++;
- }
- *FB = 0;
-
- switch (Last) {
- case '%':
- memcpy(Buffer, "%", 2); break;
- case 'c':
- sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
- break;
- case 'd': case 'i':
- case 'u': case 'o':
- case 'x': case 'X':
- if (HowLong >= 1) {
- if (HowLong == 1 &&
- TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
- sizeof(long) < sizeof(int64_t)) {
- // Make sure we use %lld with a 64 bit argument because we might be
- // compiling LLI on a 32 bit compiler.
- unsigned Size = strlen(FmtBuf);
- FmtBuf[Size] = FmtBuf[Size-1];
- FmtBuf[Size+1] = 0;
- FmtBuf[Size-1] = 'l';
- }
- sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
- } else
- sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
- break;
- case 'e': case 'E': case 'g': case 'G': case 'f':
- sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
- case 'p':
- sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
- case 's':
- sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
- default:
- errs() << "<unknown printf code '" << *FmtStr << "'!>";
- ArgNo++; break;
- }
- size_t Len = strlen(Buffer);
- memcpy(OutputBuffer, Buffer, Len + 1);
- OutputBuffer += Len;
- }
- break;
- }
- }
- return GV;
-}
-
-// int printf(const char *, ...) - a very rough implementation to make output
-// useful.
-static GenericValue lle_X_printf(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- char Buffer[10000];
- std::vector<GenericValue> NewArgs;
- NewArgs.push_back(PTOGV((void*)&Buffer[0]));
- NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
- GenericValue GV = lle_X_sprintf(FT, NewArgs);
- outs() << Buffer;
- return GV;
-}
-
-// int sscanf(const char *format, ...);
-static GenericValue lle_X_sscanf(FunctionType *FT,
- ArrayRef<GenericValue> args) {
- assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
-
- char *Args[10];
- for (unsigned i = 0; i < args.size(); ++i)
- Args[i] = (char*)GVTOP(args[i]);
-
- GenericValue GV;
- GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
- Args[5], Args[6], Args[7], Args[8], Args[9]));
- return GV;
-}
-
-// int scanf(const char *format, ...);
-static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
- assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
-
- char *Args[10];
- for (unsigned i = 0; i < args.size(); ++i)
- Args[i] = (char*)GVTOP(args[i]);
-
- GenericValue GV;
- GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
- Args[5], Args[6], Args[7], Args[8], Args[9]));
- return GV;
-}
-
-// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
-// output useful.
-static GenericValue lle_X_fprintf(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- assert(Args.size() >= 2);
- char Buffer[10000];
- std::vector<GenericValue> NewArgs;
- NewArgs.push_back(PTOGV(Buffer));
- NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
- GenericValue GV = lle_X_sprintf(FT, NewArgs);
-
- fputs(Buffer, (FILE *) GVTOP(Args[0]));
- return GV;
-}
-
-static GenericValue lle_X_memset(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- int val = (int)Args[1].IntVal.getSExtValue();
- size_t len = (size_t)Args[2].IntVal.getZExtValue();
- memset((void *)GVTOP(Args[0]), val, len);
- // llvm.memset.* returns void, lle_X_* returns GenericValue,
- // so here we return GenericValue with IntVal set to zero
- GenericValue GV;
- GV.IntVal = 0;
- return GV;
-}
-
-static GenericValue lle_X_memcpy(FunctionType *FT,
- ArrayRef<GenericValue> Args) {
- memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
- (size_t)(Args[2].IntVal.getLimitedValue()));
-
- // llvm.memcpy* returns void, lle_X_* returns GenericValue,
- // so here we return GenericValue with IntVal set to zero
- GenericValue GV;
- GV.IntVal = 0;
- return GV;
-}
-
-void Interpreter::initializeExternalFunctions() {
- sys::ScopedLock Writer(*FunctionsLock);
- (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
- (*FuncNames)["lle_X_exit"] = lle_X_exit;
- (*FuncNames)["lle_X_abort"] = lle_X_abort;
-
- (*FuncNames)["lle_X_printf"] = lle_X_printf;
- (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
- (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
- (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
- (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
- (*FuncNames)["lle_X_memset"] = lle_X_memset;
- (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
-}
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
deleted file mode 100644
index 9818adfff82..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
+++ /dev/null
@@ -1,103 +0,0 @@
-//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the top-level functionality for the LLVM interpreter.
-// This interpreter is designed to be a very simple, portable, inefficient
-// interpreter.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Interpreter.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Module.h"
-#include <cstring>
-using namespace llvm;
-
-namespace {
-
-static struct RegisterInterp {
- RegisterInterp() { Interpreter::Register(); }
-} InterpRegistrator;
-
-}
-
-extern "C" void LLVMLinkInInterpreter() { }
-
-/// Create a new interpreter object.
-///
-ExecutionEngine *Interpreter::create(std::unique_ptr<Module> M,
- std::string *ErrStr) {
- // Tell this Module to materialize everything and release the GVMaterializer.
- if (Error Err = M->materializeAll()) {
- std::string Msg;
- handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
- Msg = EIB.message();
- });
- if (ErrStr)
- *ErrStr = Msg;
- // We got an error, just return 0
- return nullptr;
- }
-
- return new Interpreter(std::move(M));
-}
-
-//===----------------------------------------------------------------------===//
-// Interpreter ctor - Initialize stuff
-//
-Interpreter::Interpreter(std::unique_ptr<Module> M)
- : ExecutionEngine(std::move(M)) {
-
- memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- // Initialize the "backend"
- initializeExecutionEngine();
- initializeExternalFunctions();
- emitGlobals();
-
- IL = new IntrinsicLowering(getDataLayout());
-}
-
-Interpreter::~Interpreter() {
- delete IL;
-}
-
-void Interpreter::runAtExitHandlers () {
- while (!AtExitHandlers.empty()) {
- callFunction(AtExitHandlers.back(), None);
- AtExitHandlers.pop_back();
- run();
- }
-}
-
-/// run - Start execution with the specified function and arguments.
-///
-GenericValue Interpreter::runFunction(Function *F,
- ArrayRef<GenericValue> ArgValues) {
- assert (F && "Function *F was null at entry to run()");
-
- // Try extra hard not to pass extra args to a function that isn't
- // expecting them. C programmers frequently bend the rules and
- // declare main() with fewer parameters than it actually gets
- // passed, and the interpreter barfs if you pass a function more
- // parameters than it is declared to take. This does not attempt to
- // take into account gratuitous differences in declared types,
- // though.
- const size_t ArgCount = F->getFunctionType()->getNumParams();
- ArrayRef<GenericValue> ActualArgs =
- ArgValues.slice(0, std::min(ArgValues.size(), ArgCount));
-
- // Set up the function call.
- callFunction(F, ActualArgs);
-
- // Start executing the function.
- run();
-
- return ExitValue;
-}
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
deleted file mode 100644
index 33542e7e43a..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
+++ /dev/null
@@ -1,235 +0,0 @@
-//===-- Interpreter.h ------------------------------------------*- C++ -*--===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This header file defines the interpreter structure
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H
-#define LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H
-
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/Support/DataTypes.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-namespace llvm {
-
-class IntrinsicLowering;
-template<typename T> class generic_gep_type_iterator;
-class ConstantExpr;
-typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator;
-
-
-// AllocaHolder - Object to track all of the blocks of memory allocated by
-// alloca. When the function returns, this object is popped off the execution
-// stack, which causes the dtor to be run, which frees all the alloca'd memory.
-//
-class AllocaHolder {
- std::vector<void *> Allocations;
-
-public:
- AllocaHolder() {}
-
- // Make this type move-only.
- AllocaHolder(AllocaHolder &&) = default;
- AllocaHolder &operator=(AllocaHolder &&RHS) = default;
-
- ~AllocaHolder() {
- for (void *Allocation : Allocations)
- free(Allocation);
- }
-
- void add(void *Mem) { Allocations.push_back(Mem); }
-};
-
-typedef std::vector<GenericValue> ValuePlaneTy;
-
-// ExecutionContext struct - This struct represents one stack frame currently
-// executing.
-//
-struct ExecutionContext {
- Function *CurFunction;// The currently executing function
- BasicBlock *CurBB; // The currently executing BB
- BasicBlock::iterator CurInst; // The next instruction to execute
- CallSite Caller; // Holds the call that called subframes.
- // NULL if main func or debugger invoked fn
- std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
- std::vector<GenericValue> VarArgs; // Values passed through an ellipsis
- AllocaHolder Allocas; // Track memory allocated by alloca
-
- ExecutionContext() : CurFunction(nullptr), CurBB(nullptr), CurInst(nullptr) {}
-};
-
-// Interpreter - This class represents the entirety of the interpreter.
-//
-class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
- GenericValue ExitValue; // The return value of the called function
- IntrinsicLowering *IL;
-
- // The runtime stack of executing code. The top of the stack is the current
- // function record.
- std::vector<ExecutionContext> ECStack;
-
- // AtExitHandlers - List of functions to call when the program exits,
- // registered with the atexit() library function.
- std::vector<Function*> AtExitHandlers;
-
-public:
- explicit Interpreter(std::unique_ptr<Module> M);
- ~Interpreter() override;
-
- /// runAtExitHandlers - Run any functions registered by the program's calls to
- /// atexit(3), which we intercept and store in AtExitHandlers.
- ///
- void runAtExitHandlers();
-
- static void Register() {
- InterpCtor = create;
- }
-
- /// Create an interpreter ExecutionEngine.
- ///
- static ExecutionEngine *create(std::unique_ptr<Module> M,
- std::string *ErrorStr = nullptr);
-
- /// run - Start execution with the specified function and arguments.
- ///
- GenericValue runFunction(Function *F,
- ArrayRef<GenericValue> ArgValues) override;
-
- void *getPointerToNamedFunction(StringRef Name,
- bool AbortOnFailure = true) override {
- // FIXME: not implemented.
- return nullptr;
- }
-
- // Methods used to execute code:
- // Place a call on the stack
- void callFunction(Function *F, ArrayRef<GenericValue> ArgVals);
- void run(); // Execute instructions until nothing left to do
-
- // Opcode Implementations
- void visitReturnInst(ReturnInst &I);
- void visitBranchInst(BranchInst &I);
- void visitSwitchInst(SwitchInst &I);
- void visitIndirectBrInst(IndirectBrInst &I);
-
- void visitBinaryOperator(BinaryOperator &I);
- void visitICmpInst(ICmpInst &I);
- void visitFCmpInst(FCmpInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitPHINode(PHINode &PN) {
- llvm_unreachable("PHI nodes already handled!");
- }
- void visitTruncInst(TruncInst &I);
- void visitZExtInst(ZExtInst &I);
- void visitSExtInst(SExtInst &I);
- void visitFPTruncInst(FPTruncInst &I);
- void visitFPExtInst(FPExtInst &I);
- void visitUIToFPInst(UIToFPInst &I);
- void visitSIToFPInst(SIToFPInst &I);
- void visitFPToUIInst(FPToUIInst &I);
- void visitFPToSIInst(FPToSIInst &I);
- void visitPtrToIntInst(PtrToIntInst &I);
- void visitIntToPtrInst(IntToPtrInst &I);
- void visitBitCastInst(BitCastInst &I);
- void visitSelectInst(SelectInst &I);
-
-
- void visitCallSite(CallSite CS);
- void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); }
- void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); }
- void visitUnreachableInst(UnreachableInst &I);
-
- void visitShl(BinaryOperator &I);
- void visitLShr(BinaryOperator &I);
- void visitAShr(BinaryOperator &I);
-
- void visitVAArgInst(VAArgInst &I);
- void visitExtractElementInst(ExtractElementInst &I);
- void visitInsertElementInst(InsertElementInst &I);
- void visitShuffleVectorInst(ShuffleVectorInst &I);
-
- void visitExtractValueInst(ExtractValueInst &I);
- void visitInsertValueInst(InsertValueInst &I);
-
- void visitInstruction(Instruction &I) {
- errs() << I << "\n";
- llvm_unreachable("Instruction not interpretable yet!");
- }
-
- GenericValue callExternalFunction(Function *F,
- ArrayRef<GenericValue> ArgVals);
- void exitCalled(GenericValue GV);
-
- void addAtExitHandler(Function *F) {
- AtExitHandlers.push_back(F);
- }
-
- GenericValue *getFirstVarArg () {
- return &(ECStack.back ().VarArgs[0]);
- }
-
-private: // Helper functions
- GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E, ExecutionContext &SF);
-
- // SwitchToNewBasicBlock - Start execution in a new basic block and run any
- // PHI nodes in the top of the block. This is used for intraprocedural
- // control flow.
- //
- void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
-
- void *getPointerToFunction(Function *F) override { return (void*)F; }
-
- void initializeExecutionEngine() { }
- void initializeExternalFunctions();
- GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF);
- GenericValue getOperandValue(Value *V, ExecutionContext &SF);
- GenericValue executeTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeSExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeZExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeFPTruncInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeFPExtInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeFPToUIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeFPToSIInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeUIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeSIToFPInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executePtrToIntInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeIntToPtrInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeBitCastInst(Value *SrcVal, Type *DstTy,
- ExecutionContext &SF);
- GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal,
- Type *Ty, ExecutionContext &SF);
- void popStackAndReturnValueToCaller(Type *RetTy, GenericValue Result);
-
-};
-
-} // End llvm namespace
-
-#endif
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt b/gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt
deleted file mode 100644
index 5af77e54725..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt
+++ /dev/null
@@ -1,22 +0,0 @@
-;===- ./lib/ExecutionEngine/Interpreter/LLVMBuild.txt ----------*- Conf -*--===;
-;
-; The LLVM Compiler Infrastructure
-;
-; This file is distributed under the University of Illinois Open Source
-; License. See LICENSE.TXT for details.
-;
-;===------------------------------------------------------------------------===;
-;
-; This is an LLVMBuild description file for the components in this subdirectory.
-;
-; For more information on the LLVMBuild system, please see:
-;
-; http://llvm.org/docs/LLVMBuild.html
-;
-;===------------------------------------------------------------------------===;
-
-[component_0]
-type = Library
-name = Interpreter
-parent = ExecutionEngine
-required_libraries = CodeGen Core ExecutionEngine Support