diff options
Diffstat (limited to 'gnu/llvm/lib/ExecutionEngine/Interpreter')
6 files changed, 0 insertions, 3009 deletions
diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt b/gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt deleted file mode 100644 index 7456b3dbe90..00000000000 --- a/gnu/llvm/lib/ExecutionEngine/Interpreter/CMakeLists.txt +++ /dev/null @@ -1,20 +0,0 @@ -# Make sure that the path to libffi headers is on the command -# line. That path can be a compiler's non-default path even when -# FFI_INCLUDE_DIR was not used, because cmake has its own paths for -# searching for headers (CMAKE_SYSTEM_INCLUDE_PATH, for instance): -if( FFI_INCLUDE_PATH ) - include_directories( ${FFI_INCLUDE_PATH} ) -endif() - -add_llvm_library(LLVMInterpreter - Execution.cpp - ExternalFunctions.cpp - Interpreter.cpp - - DEPENDS - intrinsics_gen - ) - -if( LLVM_ENABLE_FFI ) - target_link_libraries( LLVMInterpreter PRIVATE ${FFI_LIBRARY_PATH} ) -endif() diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp deleted file mode 100644 index 98dca110275..00000000000 --- a/gnu/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp +++ /dev/null @@ -1,2119 +0,0 @@ -//===-- Execution.cpp - Implement code to simulate the program ------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains the actual instruction interpreter. -// -//===----------------------------------------------------------------------===// - -#include "Interpreter.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/Instructions.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cmath> -using namespace llvm; - -#define DEBUG_TYPE "interpreter" - -STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); - -static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, - cl::desc("make the interpreter print every volatile load and store")); - -//===----------------------------------------------------------------------===// -// Various Helper Functions -//===----------------------------------------------------------------------===// - -static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { - SF.Values[V] = Val; -} - -//===----------------------------------------------------------------------===// -// Binary Instruction Implementations -//===----------------------------------------------------------------------===// - -#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ - case Type::TY##TyID: \ - Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ - break - -static void executeFAddInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, Type *Ty) { - switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(+, Float); - IMPLEMENT_BINARY_OPERATOR(+, Double); - default: - dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } -} - -static void executeFSubInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, Type *Ty) { - switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(-, Float); - IMPLEMENT_BINARY_OPERATOR(-, Double); - default: - dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } -} - -static void executeFMulInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, Type *Ty) { - switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(*, Float); - IMPLEMENT_BINARY_OPERATOR(*, Double); - default: - dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } -} - -static void executeFDivInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, Type *Ty) { - switch (Ty->getTypeID()) { - IMPLEMENT_BINARY_OPERATOR(/, Float); - IMPLEMENT_BINARY_OPERATOR(/, Double); - default: - dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } -} - -static void executeFRemInst(GenericValue &Dest, GenericValue Src1, - GenericValue Src2, Type *Ty) { - switch (Ty->getTypeID()) { - case Type::FloatTyID: - Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); - break; - case Type::DoubleTyID: - Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); - break; - default: - dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } -} - -#define IMPLEMENT_INTEGER_ICMP(OP, TY) \ - case Type::IntegerTyID: \ - Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ - break; - -#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ - case Type::VectorTyID: { \ - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ - Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ - for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ - Dest.AggregateVal[_i].IntVal = APInt(1, \ - Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\ - } break; - -// Handle pointers specially because they must be compared with only as much -// width as the host has. We _do not_ want to be comparing 64 bit values when -// running on a 32-bit target, otherwise the upper 32 bits might mess up -// comparisons if they contain garbage. -#define IMPLEMENT_POINTER_ICMP(OP) \ - case Type::PointerTyID: \ - Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ - (void*)(intptr_t)Src2.PointerVal); \ - break; - -static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(eq,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); - IMPLEMENT_POINTER_ICMP(==); - default: - dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(ne,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); - IMPLEMENT_POINTER_ICMP(!=); - default: - dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(ult,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); - IMPLEMENT_POINTER_ICMP(<); - default: - dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(slt,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); - IMPLEMENT_POINTER_ICMP(<); - default: - dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(ugt,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); - IMPLEMENT_POINTER_ICMP(>); - default: - dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(sgt,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); - IMPLEMENT_POINTER_ICMP(>); - default: - dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(ule,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); - IMPLEMENT_POINTER_ICMP(<=); - default: - dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(sle,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); - IMPLEMENT_POINTER_ICMP(<=); - default: - dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(uge,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); - IMPLEMENT_POINTER_ICMP(>=); - default: - dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_INTEGER_ICMP(sge,Ty); - IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); - IMPLEMENT_POINTER_ICMP(>=); - default: - dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -void Interpreter::visitICmpInst(ICmpInst &I) { - ExecutionContext &SF = ECStack.back(); - Type *Ty = I.getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue R; // Result - - switch (I.getPredicate()) { - case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; - case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; - case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; - case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; - case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; - case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; - case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; - case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; - case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; - case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; - default: - dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; - llvm_unreachable(nullptr); - } - - SetValue(&I, R, SF); -} - -#define IMPLEMENT_FCMP(OP, TY) \ - case Type::TY##TyID: \ - Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ - break - -#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ - Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ - for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ - Dest.AggregateVal[_i].IntVal = APInt(1, \ - Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ - break; - -#define IMPLEMENT_VECTOR_FCMP(OP) \ - case Type::VectorTyID: \ - if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \ - IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ - } else { \ - IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ - } - -static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_FCMP(==, Float); - IMPLEMENT_FCMP(==, Double); - IMPLEMENT_VECTOR_FCMP(==); - default: - dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ - if (TY->isFloatTy()) { \ - if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ - Dest.IntVal = APInt(1,false); \ - return Dest; \ - } \ - } else { \ - if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ - Dest.IntVal = APInt(1,false); \ - return Dest; \ - } \ - } - -#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ - assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ - Dest.AggregateVal.resize( X.AggregateVal.size() ); \ - for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \ - if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \ - Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \ - Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \ - else { \ - Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \ - } \ - } - -#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \ - if (TY->isVectorTy()) { \ - if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \ - MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ - } else { \ - MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ - } \ - } \ - - - -static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, - Type *Ty) -{ - GenericValue Dest; - // if input is scalar value and Src1 or Src2 is NaN return false - IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) - // if vector input detect NaNs and fill mask - MASK_VECTOR_NANS(Ty, Src1, Src2, false) - GenericValue DestMask = Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_FCMP(!=, Float); - IMPLEMENT_FCMP(!=, Double); - IMPLEMENT_VECTOR_FCMP(!=); - default: - dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - // in vector case mask out NaN elements - if (Ty->isVectorTy()) - for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) - if (DestMask.AggregateVal[_i].IntVal == false) - Dest.AggregateVal[_i].IntVal = APInt(1,false); - - return Dest; -} - -static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_FCMP(<=, Float); - IMPLEMENT_FCMP(<=, Double); - IMPLEMENT_VECTOR_FCMP(<=); - default: - dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_FCMP(>=, Float); - IMPLEMENT_FCMP(>=, Double); - IMPLEMENT_VECTOR_FCMP(>=); - default: - dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_FCMP(<, Float); - IMPLEMENT_FCMP(<, Double); - IMPLEMENT_VECTOR_FCMP(<); - default: - dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - switch (Ty->getTypeID()) { - IMPLEMENT_FCMP(>, Float); - IMPLEMENT_FCMP(>, Double); - IMPLEMENT_VECTOR_FCMP(>); - default: - dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - return Dest; -} - -#define IMPLEMENT_UNORDERED(TY, X,Y) \ - if (TY->isFloatTy()) { \ - if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ - Dest.IntVal = APInt(1,true); \ - return Dest; \ - } \ - } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ - Dest.IntVal = APInt(1,true); \ - return Dest; \ - } - -#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \ - if (TY->isVectorTy()) { \ - GenericValue DestMask = Dest; \ - Dest = FUNC(Src1, Src2, Ty); \ - for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ - if (DestMask.AggregateVal[_i].IntVal == true) \ - Dest.AggregateVal[_i].IntVal = APInt(1, true); \ - return Dest; \ - } - -static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - IMPLEMENT_UNORDERED(Ty, Src1, Src2) - MASK_VECTOR_NANS(Ty, Src1, Src2, true) - IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) - return executeFCMP_OEQ(Src1, Src2, Ty); - -} - -static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - IMPLEMENT_UNORDERED(Ty, Src1, Src2) - MASK_VECTOR_NANS(Ty, Src1, Src2, true) - IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) - return executeFCMP_ONE(Src1, Src2, Ty); -} - -static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - IMPLEMENT_UNORDERED(Ty, Src1, Src2) - MASK_VECTOR_NANS(Ty, Src1, Src2, true) - IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) - return executeFCMP_OLE(Src1, Src2, Ty); -} - -static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - IMPLEMENT_UNORDERED(Ty, Src1, Src2) - MASK_VECTOR_NANS(Ty, Src1, Src2, true) - IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) - return executeFCMP_OGE(Src1, Src2, Ty); -} - -static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - IMPLEMENT_UNORDERED(Ty, Src1, Src2) - MASK_VECTOR_NANS(Ty, Src1, Src2, true) - IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) - return executeFCMP_OLT(Src1, Src2, Ty); -} - -static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - IMPLEMENT_UNORDERED(Ty, Src1, Src2) - MASK_VECTOR_NANS(Ty, Src1, Src2, true) - IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) - return executeFCMP_OGT(Src1, Src2, Ty); -} - -static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - if(Ty->isVectorTy()) { - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); - Dest.AggregateVal.resize( Src1.AggregateVal.size() ); - if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { - for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) - Dest.AggregateVal[_i].IntVal = APInt(1, - ( (Src1.AggregateVal[_i].FloatVal == - Src1.AggregateVal[_i].FloatVal) && - (Src2.AggregateVal[_i].FloatVal == - Src2.AggregateVal[_i].FloatVal))); - } else { - for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) - Dest.AggregateVal[_i].IntVal = APInt(1, - ( (Src1.AggregateVal[_i].DoubleVal == - Src1.AggregateVal[_i].DoubleVal) && - (Src2.AggregateVal[_i].DoubleVal == - Src2.AggregateVal[_i].DoubleVal))); - } - } else if (Ty->isFloatTy()) - Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && - Src2.FloatVal == Src2.FloatVal)); - else { - Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && - Src2.DoubleVal == Src2.DoubleVal)); - } - return Dest; -} - -static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, - Type *Ty) { - GenericValue Dest; - if(Ty->isVectorTy()) { - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); - Dest.AggregateVal.resize( Src1.AggregateVal.size() ); - if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { - for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) - Dest.AggregateVal[_i].IntVal = APInt(1, - ( (Src1.AggregateVal[_i].FloatVal != - Src1.AggregateVal[_i].FloatVal) || - (Src2.AggregateVal[_i].FloatVal != - Src2.AggregateVal[_i].FloatVal))); - } else { - for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) - Dest.AggregateVal[_i].IntVal = APInt(1, - ( (Src1.AggregateVal[_i].DoubleVal != - Src1.AggregateVal[_i].DoubleVal) || - (Src2.AggregateVal[_i].DoubleVal != - Src2.AggregateVal[_i].DoubleVal))); - } - } else if (Ty->isFloatTy()) - Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || - Src2.FloatVal != Src2.FloatVal)); - else { - Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || - Src2.DoubleVal != Src2.DoubleVal)); - } - return Dest; -} - -static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, - Type *Ty, const bool val) { - GenericValue Dest; - if(Ty->isVectorTy()) { - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); - Dest.AggregateVal.resize( Src1.AggregateVal.size() ); - for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) - Dest.AggregateVal[_i].IntVal = APInt(1,val); - } else { - Dest.IntVal = APInt(1, val); - } - - return Dest; -} - -void Interpreter::visitFCmpInst(FCmpInst &I) { - ExecutionContext &SF = ECStack.back(); - Type *Ty = I.getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue R; // Result - - switch (I.getPredicate()) { - default: - dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; - llvm_unreachable(nullptr); - break; - case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); - break; - case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true); - break; - case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; - case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; - case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; - case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; - case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; - case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; - case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; - case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; - case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; - case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; - case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; - case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; - case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; - case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; - } - - SetValue(&I, R, SF); -} - -static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, - GenericValue Src2, Type *Ty) { - GenericValue Result; - switch (predicate) { - case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); - case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); - case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); - case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); - case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); - case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); - case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); - case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); - case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); - case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); - case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); - case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); - case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); - case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); - case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); - case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); - case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); - case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); - case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); - case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); - case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); - case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); - case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); - case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); - case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false); - case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true); - default: - dbgs() << "Unhandled Cmp predicate\n"; - llvm_unreachable(nullptr); - } -} - -void Interpreter::visitBinaryOperator(BinaryOperator &I) { - ExecutionContext &SF = ECStack.back(); - Type *Ty = I.getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue R; // Result - - // First process vector operation - if (Ty->isVectorTy()) { - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); - R.AggregateVal.resize(Src1.AggregateVal.size()); - - // Macros to execute binary operation 'OP' over integer vectors -#define INTEGER_VECTOR_OPERATION(OP) \ - for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ - R.AggregateVal[i].IntVal = \ - Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; - - // Additional macros to execute binary operations udiv/sdiv/urem/srem since - // they have different notation. -#define INTEGER_VECTOR_FUNCTION(OP) \ - for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ - R.AggregateVal[i].IntVal = \ - Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); - - // Macros to execute binary operation 'OP' over floating point type TY - // (float or double) vectors -#define FLOAT_VECTOR_FUNCTION(OP, TY) \ - for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ - R.AggregateVal[i].TY = \ - Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; - - // Macros to choose appropriate TY: float or double and run operation - // execution -#define FLOAT_VECTOR_OP(OP) { \ - if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \ - FLOAT_VECTOR_FUNCTION(OP, FloatVal) \ - else { \ - if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \ - FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \ - else { \ - dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ - llvm_unreachable(0); \ - } \ - } \ -} - - switch(I.getOpcode()){ - default: - dbgs() << "Don't know how to handle this binary operator!\n-->" << I; - llvm_unreachable(nullptr); - break; - case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; - case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; - case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break; - case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break; - case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break; - case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break; - case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break; - case Instruction::And: INTEGER_VECTOR_OPERATION(&) break; - case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break; - case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break; - case Instruction::FAdd: FLOAT_VECTOR_OP(+) break; - case Instruction::FSub: FLOAT_VECTOR_OP(-) break; - case Instruction::FMul: FLOAT_VECTOR_OP(*) break; - case Instruction::FDiv: FLOAT_VECTOR_OP(/) break; - case Instruction::FRem: - if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) - for (unsigned i = 0; i < R.AggregateVal.size(); ++i) - R.AggregateVal[i].FloatVal = - fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); - else { - if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) - for (unsigned i = 0; i < R.AggregateVal.size(); ++i) - R.AggregateVal[i].DoubleVal = - fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); - else { - dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - } - break; - } - } else { - switch (I.getOpcode()) { - default: - dbgs() << "Don't know how to handle this binary operator!\n-->" << I; - llvm_unreachable(nullptr); - break; - case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; - case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; - case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; - case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; - case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; - case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; - case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; - case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; - case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; - case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; - case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; - case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; - case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; - case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; - case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; - } - } - SetValue(&I, R, SF); -} - -static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, - GenericValue Src3, Type *Ty) { - GenericValue Dest; - if(Ty->isVectorTy()) { - assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); - assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); - Dest.AggregateVal.resize( Src1.AggregateVal.size() ); - for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) - Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? - Src3.AggregateVal[i] : Src2.AggregateVal[i]; - } else { - Dest = (Src1.IntVal == 0) ? Src3 : Src2; - } - return Dest; -} - -void Interpreter::visitSelectInst(SelectInst &I) { - ExecutionContext &SF = ECStack.back(); - Type * Ty = I.getOperand(0)->getType(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Src3 = getOperandValue(I.getOperand(2), SF); - GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); - SetValue(&I, R, SF); -} - -//===----------------------------------------------------------------------===// -// Terminator Instruction Implementations -//===----------------------------------------------------------------------===// - -void Interpreter::exitCalled(GenericValue GV) { - // runAtExitHandlers() assumes there are no stack frames, but - // if exit() was called, then it had a stack frame. Blow away - // the stack before interpreting atexit handlers. - ECStack.clear(); - runAtExitHandlers(); - exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); -} - -/// Pop the last stack frame off of ECStack and then copy the result -/// back into the result variable if we are not returning void. The -/// result variable may be the ExitValue, or the Value of the calling -/// CallInst if there was a previous stack frame. This method may -/// invalidate any ECStack iterators you have. This method also takes -/// care of switching to the normal destination BB, if we are returning -/// from an invoke. -/// -void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, - GenericValue Result) { - // Pop the current stack frame. - ECStack.pop_back(); - - if (ECStack.empty()) { // Finished main. Put result into exit code... - if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? - ExitValue = Result; // Capture the exit value of the program - } else { - memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); - } - } else { - // If we have a previous stack frame, and we have a previous call, - // fill in the return value... - ExecutionContext &CallingSF = ECStack.back(); - if (Instruction *I = CallingSF.Caller.getInstruction()) { - // Save result... - if (!CallingSF.Caller.getType()->isVoidTy()) - SetValue(I, Result, CallingSF); - if (InvokeInst *II = dyn_cast<InvokeInst> (I)) - SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); - CallingSF.Caller = CallSite(); // We returned from the call... - } - } -} - -void Interpreter::visitReturnInst(ReturnInst &I) { - ExecutionContext &SF = ECStack.back(); - Type *RetTy = Type::getVoidTy(I.getContext()); - GenericValue Result; - - // Save away the return value... (if we are not 'ret void') - if (I.getNumOperands()) { - RetTy = I.getReturnValue()->getType(); - Result = getOperandValue(I.getReturnValue(), SF); - } - - popStackAndReturnValueToCaller(RetTy, Result); -} - -void Interpreter::visitUnreachableInst(UnreachableInst &I) { - report_fatal_error("Program executed an 'unreachable' instruction!"); -} - -void Interpreter::visitBranchInst(BranchInst &I) { - ExecutionContext &SF = ECStack.back(); - BasicBlock *Dest; - - Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... - if (!I.isUnconditional()) { - Value *Cond = I.getCondition(); - if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... - Dest = I.getSuccessor(1); - } - SwitchToNewBasicBlock(Dest, SF); -} - -void Interpreter::visitSwitchInst(SwitchInst &I) { - ExecutionContext &SF = ECStack.back(); - Value* Cond = I.getCondition(); - Type *ElTy = Cond->getType(); - GenericValue CondVal = getOperandValue(Cond, SF); - - // Check to see if any of the cases match... - BasicBlock *Dest = nullptr; - for (auto Case : I.cases()) { - GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF); - if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { - Dest = cast<BasicBlock>(Case.getCaseSuccessor()); - break; - } - } - if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default - SwitchToNewBasicBlock(Dest, SF); -} - -void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { - ExecutionContext &SF = ECStack.back(); - void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); - SwitchToNewBasicBlock((BasicBlock*)Dest, SF); -} - - -// SwitchToNewBasicBlock - This method is used to jump to a new basic block. -// This function handles the actual updating of block and instruction iterators -// as well as execution of all of the PHI nodes in the destination block. -// -// This method does this because all of the PHI nodes must be executed -// atomically, reading their inputs before any of the results are updated. Not -// doing this can cause problems if the PHI nodes depend on other PHI nodes for -// their inputs. If the input PHI node is updated before it is read, incorrect -// results can happen. Thus we use a two phase approach. -// -void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ - BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... - SF.CurBB = Dest; // Update CurBB to branch destination - SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... - - if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do - - // Loop over all of the PHI nodes in the current block, reading their inputs. - std::vector<GenericValue> ResultValues; - - for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { - // Search for the value corresponding to this previous bb... - int i = PN->getBasicBlockIndex(PrevBB); - assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); - Value *IncomingValue = PN->getIncomingValue(i); - - // Save the incoming value for this PHI node... - ResultValues.push_back(getOperandValue(IncomingValue, SF)); - } - - // Now loop over all of the PHI nodes setting their values... - SF.CurInst = SF.CurBB->begin(); - for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { - PHINode *PN = cast<PHINode>(SF.CurInst); - SetValue(PN, ResultValues[i], SF); - } -} - -//===----------------------------------------------------------------------===// -// Memory Instruction Implementations -//===----------------------------------------------------------------------===// - -void Interpreter::visitAllocaInst(AllocaInst &I) { - ExecutionContext &SF = ECStack.back(); - - Type *Ty = I.getType()->getElementType(); // Type to be allocated - - // Get the number of elements being allocated by the array... - unsigned NumElements = - getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); - - unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); - - // Avoid malloc-ing zero bytes, use max()... - unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); - - // Allocate enough memory to hold the type... - void *Memory = safe_malloc(MemToAlloc); - - LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize - << " bytes) x " << NumElements << " (Total: " << MemToAlloc - << ") at " << uintptr_t(Memory) << '\n'); - - GenericValue Result = PTOGV(Memory); - assert(Result.PointerVal && "Null pointer returned by malloc!"); - SetValue(&I, Result, SF); - - if (I.getOpcode() == Instruction::Alloca) - ECStack.back().Allocas.add(Memory); -} - -// getElementOffset - The workhorse for getelementptr. -// -GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, - gep_type_iterator E, - ExecutionContext &SF) { - assert(Ptr->getType()->isPointerTy() && - "Cannot getElementOffset of a nonpointer type!"); - - uint64_t Total = 0; - - for (; I != E; ++I) { - if (StructType *STy = I.getStructTypeOrNull()) { - const StructLayout *SLO = getDataLayout().getStructLayout(STy); - - const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); - unsigned Index = unsigned(CPU->getZExtValue()); - - Total += SLO->getElementOffset(Index); - } else { - // Get the index number for the array... which must be long type... - GenericValue IdxGV = getOperandValue(I.getOperand(), SF); - - int64_t Idx; - unsigned BitWidth = - cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); - if (BitWidth == 32) - Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); - else { - assert(BitWidth == 64 && "Invalid index type for getelementptr"); - Idx = (int64_t)IdxGV.IntVal.getZExtValue(); - } - Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx; - } - } - - GenericValue Result; - Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; - LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); - return Result; -} - -void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeGEPOperation(I.getPointerOperand(), - gep_type_begin(I), gep_type_end(I), SF), SF); -} - -void Interpreter::visitLoadInst(LoadInst &I) { - ExecutionContext &SF = ECStack.back(); - GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); - GenericValue *Ptr = (GenericValue*)GVTOP(SRC); - GenericValue Result; - LoadValueFromMemory(Result, Ptr, I.getType()); - SetValue(&I, Result, SF); - if (I.isVolatile() && PrintVolatile) - dbgs() << "Volatile load " << I; -} - -void Interpreter::visitStoreInst(StoreInst &I) { - ExecutionContext &SF = ECStack.back(); - GenericValue Val = getOperandValue(I.getOperand(0), SF); - GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); - StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), - I.getOperand(0)->getType()); - if (I.isVolatile() && PrintVolatile) - dbgs() << "Volatile store: " << I; -} - -//===----------------------------------------------------------------------===// -// Miscellaneous Instruction Implementations -//===----------------------------------------------------------------------===// - -void Interpreter::visitCallSite(CallSite CS) { - ExecutionContext &SF = ECStack.back(); - - // Check to see if this is an intrinsic function call... - Function *F = CS.getCalledFunction(); - if (F && F->isDeclaration()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - break; - case Intrinsic::vastart: { // va_start - GenericValue ArgIndex; - ArgIndex.UIntPairVal.first = ECStack.size() - 1; - ArgIndex.UIntPairVal.second = 0; - SetValue(CS.getInstruction(), ArgIndex, SF); - return; - } - case Intrinsic::vaend: // va_end is a noop for the interpreter - return; - case Intrinsic::vacopy: // va_copy: dest = src - SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); - return; - default: - // If it is an unknown intrinsic function, use the intrinsic lowering - // class to transform it into hopefully tasty LLVM code. - // - BasicBlock::iterator me(CS.getInstruction()); - BasicBlock *Parent = CS.getInstruction()->getParent(); - bool atBegin(Parent->begin() == me); - if (!atBegin) - --me; - IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); - - // Restore the CurInst pointer to the first instruction newly inserted, if - // any. - if (atBegin) { - SF.CurInst = Parent->begin(); - } else { - SF.CurInst = me; - ++SF.CurInst; - } - return; - } - - - SF.Caller = CS; - std::vector<GenericValue> ArgVals; - const unsigned NumArgs = SF.Caller.arg_size(); - ArgVals.reserve(NumArgs); - uint16_t pNum = 1; - for (CallSite::arg_iterator i = SF.Caller.arg_begin(), - e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { - Value *V = *i; - ArgVals.push_back(getOperandValue(V, SF)); - } - - // To handle indirect calls, we must get the pointer value from the argument - // and treat it as a function pointer. - GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); - callFunction((Function*)GVTOP(SRC), ArgVals); -} - -// auxiliary function for shift operations -static unsigned getShiftAmount(uint64_t orgShiftAmount, - llvm::APInt valueToShift) { - unsigned valueWidth = valueToShift.getBitWidth(); - if (orgShiftAmount < (uint64_t)valueWidth) - return orgShiftAmount; - // according to the llvm documentation, if orgShiftAmount > valueWidth, - // the result is undfeined. but we do shift by this rule: - return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; -} - - -void Interpreter::visitShl(BinaryOperator &I) { - ExecutionContext &SF = ECStack.back(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Dest; - Type *Ty = I.getType(); - - if (Ty->isVectorTy()) { - uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); - assert(src1Size == Src2.AggregateVal.size()); - for (unsigned i = 0; i < src1Size; i++) { - GenericValue Result; - uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); - llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; - Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); - Dest.AggregateVal.push_back(Result); - } - } else { - // scalar - uint64_t shiftAmount = Src2.IntVal.getZExtValue(); - llvm::APInt valueToShift = Src1.IntVal; - Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); - } - - SetValue(&I, Dest, SF); -} - -void Interpreter::visitLShr(BinaryOperator &I) { - ExecutionContext &SF = ECStack.back(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Dest; - Type *Ty = I.getType(); - - if (Ty->isVectorTy()) { - uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); - assert(src1Size == Src2.AggregateVal.size()); - for (unsigned i = 0; i < src1Size; i++) { - GenericValue Result; - uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); - llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; - Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); - Dest.AggregateVal.push_back(Result); - } - } else { - // scalar - uint64_t shiftAmount = Src2.IntVal.getZExtValue(); - llvm::APInt valueToShift = Src1.IntVal; - Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); - } - - SetValue(&I, Dest, SF); -} - -void Interpreter::visitAShr(BinaryOperator &I) { - ExecutionContext &SF = ECStack.back(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Dest; - Type *Ty = I.getType(); - - if (Ty->isVectorTy()) { - size_t src1Size = Src1.AggregateVal.size(); - assert(src1Size == Src2.AggregateVal.size()); - for (unsigned i = 0; i < src1Size; i++) { - GenericValue Result; - uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); - llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; - Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); - Dest.AggregateVal.push_back(Result); - } - } else { - // scalar - uint64_t shiftAmount = Src2.IntVal.getZExtValue(); - llvm::APInt valueToShift = Src1.IntVal; - Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); - } - - SetValue(&I, Dest, SF); -} - -GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - Type *SrcTy = SrcVal->getType(); - if (SrcTy->isVectorTy()) { - Type *DstVecTy = DstTy->getScalarType(); - unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); - unsigned NumElts = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal - Dest.AggregateVal.resize(NumElts); - for (unsigned i = 0; i < NumElts; i++) - Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); - } else { - IntegerType *DITy = cast<IntegerType>(DstTy); - unsigned DBitWidth = DITy->getBitWidth(); - Dest.IntVal = Src.IntVal.trunc(DBitWidth); - } - return Dest; -} - -GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - Type *SrcTy = SrcVal->getType(); - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - if (SrcTy->isVectorTy()) { - Type *DstVecTy = DstTy->getScalarType(); - unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal. - Dest.AggregateVal.resize(size); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); - } else { - auto *DITy = cast<IntegerType>(DstTy); - unsigned DBitWidth = DITy->getBitWidth(); - Dest.IntVal = Src.IntVal.sext(DBitWidth); - } - return Dest; -} - -GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - Type *SrcTy = SrcVal->getType(); - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - if (SrcTy->isVectorTy()) { - Type *DstVecTy = DstTy->getScalarType(); - unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); - - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal. - Dest.AggregateVal.resize(size); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); - } else { - auto *DITy = cast<IntegerType>(DstTy); - unsigned DBitWidth = DITy->getBitWidth(); - Dest.IntVal = Src.IntVal.zext(DBitWidth); - } - return Dest; -} - -GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { - assert(SrcVal->getType()->getScalarType()->isDoubleTy() && - DstTy->getScalarType()->isFloatTy() && - "Invalid FPTrunc instruction"); - - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal. - Dest.AggregateVal.resize(size); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; - } else { - assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && - "Invalid FPTrunc instruction"); - Dest.FloatVal = (float)Src.DoubleVal; - } - - return Dest; -} - -GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { - assert(SrcVal->getType()->getScalarType()->isFloatTy() && - DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); - - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal. - Dest.AggregateVal.resize(size); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; - } else { - assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && - "Invalid FPExt instruction"); - Dest.DoubleVal = (double)Src.FloatVal; - } - - return Dest; -} - -GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - Type *SrcTy = SrcVal->getType(); - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if (SrcTy->getTypeID() == Type::VectorTyID) { - Type *DstVecTy = DstTy->getScalarType(); - Type *SrcVecTy = SrcTy->getScalarType(); - uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal. - Dest.AggregateVal.resize(size); - - if (SrcVecTy->getTypeID() == Type::FloatTyID) { - assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( - Src.AggregateVal[i].FloatVal, DBitWidth); - } else { - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( - Src.AggregateVal[i].DoubleVal, DBitWidth); - } - } else { - // scalar - uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); - assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); - - if (SrcTy->getTypeID() == Type::FloatTyID) - Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); - else { - Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); - } - } - - return Dest; -} - -GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - Type *SrcTy = SrcVal->getType(); - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if (SrcTy->getTypeID() == Type::VectorTyID) { - Type *DstVecTy = DstTy->getScalarType(); - Type *SrcVecTy = SrcTy->getScalarType(); - uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal - Dest.AggregateVal.resize(size); - - if (SrcVecTy->getTypeID() == Type::FloatTyID) { - assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( - Src.AggregateVal[i].FloatVal, DBitWidth); - } else { - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( - Src.AggregateVal[i].DoubleVal, DBitWidth); - } - } else { - // scalar - unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); - assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); - - if (SrcTy->getTypeID() == Type::FloatTyID) - Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); - else { - Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); - } - } - return Dest; -} - -GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { - Type *DstVecTy = DstTy->getScalarType(); - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal - Dest.AggregateVal.resize(size); - - if (DstVecTy->getTypeID() == Type::FloatTyID) { - assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].FloatVal = - APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); - } else { - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].DoubleVal = - APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); - } - } else { - // scalar - assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); - if (DstTy->getTypeID() == Type::FloatTyID) - Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); - else { - Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); - } - } - return Dest; -} - -GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { - Type *DstVecTy = DstTy->getScalarType(); - unsigned size = Src.AggregateVal.size(); - // the sizes of src and dst vectors must be equal - Dest.AggregateVal.resize(size); - - if (DstVecTy->getTypeID() == Type::FloatTyID) { - assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].FloatVal = - APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); - } else { - for (unsigned i = 0; i < size; i++) - Dest.AggregateVal[i].DoubleVal = - APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); - } - } else { - // scalar - assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); - - if (DstTy->getTypeID() == Type::FloatTyID) - Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); - else { - Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); - } - } - - return Dest; -} - -GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); - - Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); - return Dest; -} - -GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); - - uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); - if (PtrSize != Src.IntVal.getBitWidth()) - Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); - - Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); - return Dest; -} - -GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF) { - - // This instruction supports bitwise conversion of vectors to integers and - // to vectors of other types (as long as they have the same size) - Type *SrcTy = SrcVal->getType(); - GenericValue Dest, Src = getOperandValue(SrcVal, SF); - - if ((SrcTy->getTypeID() == Type::VectorTyID) || - (DstTy->getTypeID() == Type::VectorTyID)) { - // vector src bitcast to vector dst or vector src bitcast to scalar dst or - // scalar src bitcast to vector dst - bool isLittleEndian = getDataLayout().isLittleEndian(); - GenericValue TempDst, TempSrc, SrcVec; - Type *SrcElemTy; - Type *DstElemTy; - unsigned SrcBitSize; - unsigned DstBitSize; - unsigned SrcNum; - unsigned DstNum; - - if (SrcTy->getTypeID() == Type::VectorTyID) { - SrcElemTy = SrcTy->getScalarType(); - SrcBitSize = SrcTy->getScalarSizeInBits(); - SrcNum = Src.AggregateVal.size(); - SrcVec = Src; - } else { - // if src is scalar value, make it vector <1 x type> - SrcElemTy = SrcTy; - SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - SrcNum = 1; - SrcVec.AggregateVal.push_back(Src); - } - - if (DstTy->getTypeID() == Type::VectorTyID) { - DstElemTy = DstTy->getScalarType(); - DstBitSize = DstTy->getScalarSizeInBits(); - DstNum = (SrcNum * SrcBitSize) / DstBitSize; - } else { - DstElemTy = DstTy; - DstBitSize = DstTy->getPrimitiveSizeInBits(); - DstNum = 1; - } - - if (SrcNum * SrcBitSize != DstNum * DstBitSize) - llvm_unreachable("Invalid BitCast"); - - // If src is floating point, cast to integer first. - TempSrc.AggregateVal.resize(SrcNum); - if (SrcElemTy->isFloatTy()) { - for (unsigned i = 0; i < SrcNum; i++) - TempSrc.AggregateVal[i].IntVal = - APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); - - } else if (SrcElemTy->isDoubleTy()) { - for (unsigned i = 0; i < SrcNum; i++) - TempSrc.AggregateVal[i].IntVal = - APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); - } else if (SrcElemTy->isIntegerTy()) { - for (unsigned i = 0; i < SrcNum; i++) - TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; - } else { - // Pointers are not allowed as the element type of vector. - llvm_unreachable("Invalid Bitcast"); - } - - // now TempSrc is integer type vector - if (DstNum < SrcNum) { - // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> - unsigned Ratio = SrcNum / DstNum; - unsigned SrcElt = 0; - for (unsigned i = 0; i < DstNum; i++) { - GenericValue Elt; - Elt.IntVal = 0; - Elt.IntVal = Elt.IntVal.zext(DstBitSize); - unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); - for (unsigned j = 0; j < Ratio; j++) { - APInt Tmp; - Tmp = Tmp.zext(SrcBitSize); - Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; - Tmp = Tmp.zext(DstBitSize); - Tmp <<= ShiftAmt; - ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; - Elt.IntVal |= Tmp; - } - TempDst.AggregateVal.push_back(Elt); - } - } else { - // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> - unsigned Ratio = DstNum / SrcNum; - for (unsigned i = 0; i < SrcNum; i++) { - unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); - for (unsigned j = 0; j < Ratio; j++) { - GenericValue Elt; - Elt.IntVal = Elt.IntVal.zext(SrcBitSize); - Elt.IntVal = TempSrc.AggregateVal[i].IntVal; - Elt.IntVal.lshrInPlace(ShiftAmt); - // it could be DstBitSize == SrcBitSize, so check it - if (DstBitSize < SrcBitSize) - Elt.IntVal = Elt.IntVal.trunc(DstBitSize); - ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; - TempDst.AggregateVal.push_back(Elt); - } - } - } - - // convert result from integer to specified type - if (DstTy->getTypeID() == Type::VectorTyID) { - if (DstElemTy->isDoubleTy()) { - Dest.AggregateVal.resize(DstNum); - for (unsigned i = 0; i < DstNum; i++) - Dest.AggregateVal[i].DoubleVal = - TempDst.AggregateVal[i].IntVal.bitsToDouble(); - } else if (DstElemTy->isFloatTy()) { - Dest.AggregateVal.resize(DstNum); - for (unsigned i = 0; i < DstNum; i++) - Dest.AggregateVal[i].FloatVal = - TempDst.AggregateVal[i].IntVal.bitsToFloat(); - } else { - Dest = TempDst; - } - } else { - if (DstElemTy->isDoubleTy()) - Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); - else if (DstElemTy->isFloatTy()) { - Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); - } else { - Dest.IntVal = TempDst.AggregateVal[0].IntVal; - } - } - } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) || - // (DstTy->getTypeID() == Type::VectorTyID)) - - // scalar src bitcast to scalar dst - if (DstTy->isPointerTy()) { - assert(SrcTy->isPointerTy() && "Invalid BitCast"); - Dest.PointerVal = Src.PointerVal; - } else if (DstTy->isIntegerTy()) { - if (SrcTy->isFloatTy()) - Dest.IntVal = APInt::floatToBits(Src.FloatVal); - else if (SrcTy->isDoubleTy()) { - Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); - } else if (SrcTy->isIntegerTy()) { - Dest.IntVal = Src.IntVal; - } else { - llvm_unreachable("Invalid BitCast"); - } - } else if (DstTy->isFloatTy()) { - if (SrcTy->isIntegerTy()) - Dest.FloatVal = Src.IntVal.bitsToFloat(); - else { - Dest.FloatVal = Src.FloatVal; - } - } else if (DstTy->isDoubleTy()) { - if (SrcTy->isIntegerTy()) - Dest.DoubleVal = Src.IntVal.bitsToDouble(); - else { - Dest.DoubleVal = Src.DoubleVal; - } - } else { - llvm_unreachable("Invalid Bitcast"); - } - } - - return Dest; -} - -void Interpreter::visitTruncInst(TruncInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitSExtInst(SExtInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitZExtInst(ZExtInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitFPTruncInst(FPTruncInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitFPExtInst(FPExtInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitUIToFPInst(UIToFPInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitSIToFPInst(SIToFPInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitFPToUIInst(FPToUIInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitFPToSIInst(FPToSIInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); -} - -void Interpreter::visitBitCastInst(BitCastInst &I) { - ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); -} - -#define IMPLEMENT_VAARG(TY) \ - case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break - -void Interpreter::visitVAArgInst(VAArgInst &I) { - ExecutionContext &SF = ECStack.back(); - - // Get the incoming valist parameter. LLI treats the valist as a - // (ec-stack-depth var-arg-index) pair. - GenericValue VAList = getOperandValue(I.getOperand(0), SF); - GenericValue Dest; - GenericValue Src = ECStack[VAList.UIntPairVal.first] - .VarArgs[VAList.UIntPairVal.second]; - Type *Ty = I.getType(); - switch (Ty->getTypeID()) { - case Type::IntegerTyID: - Dest.IntVal = Src.IntVal; - break; - IMPLEMENT_VAARG(Pointer); - IMPLEMENT_VAARG(Float); - IMPLEMENT_VAARG(Double); - default: - dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; - llvm_unreachable(nullptr); - } - - // Set the Value of this Instruction. - SetValue(&I, Dest, SF); - - // Move the pointer to the next vararg. - ++VAList.UIntPairVal.second; -} - -void Interpreter::visitExtractElementInst(ExtractElementInst &I) { - ExecutionContext &SF = ECStack.back(); - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Dest; - - Type *Ty = I.getType(); - const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); - - if(Src1.AggregateVal.size() > indx) { - switch (Ty->getTypeID()) { - default: - dbgs() << "Unhandled destination type for extractelement instruction: " - << *Ty << "\n"; - llvm_unreachable(nullptr); - break; - case Type::IntegerTyID: - Dest.IntVal = Src1.AggregateVal[indx].IntVal; - break; - case Type::FloatTyID: - Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; - break; - case Type::DoubleTyID: - Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; - break; - } - } else { - dbgs() << "Invalid index in extractelement instruction\n"; - } - - SetValue(&I, Dest, SF); -} - -void Interpreter::visitInsertElementInst(InsertElementInst &I) { - ExecutionContext &SF = ECStack.back(); - VectorType *Ty = cast<VectorType>(I.getType()); - - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Src3 = getOperandValue(I.getOperand(2), SF); - GenericValue Dest; - - Type *TyContained = Ty->getElementType(); - - const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); - Dest.AggregateVal = Src1.AggregateVal; - - if(Src1.AggregateVal.size() <= indx) - llvm_unreachable("Invalid index in insertelement instruction"); - switch (TyContained->getTypeID()) { - default: - llvm_unreachable("Unhandled dest type for insertelement instruction"); - case Type::IntegerTyID: - Dest.AggregateVal[indx].IntVal = Src2.IntVal; - break; - case Type::FloatTyID: - Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; - break; - case Type::DoubleTyID: - Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; - break; - } - SetValue(&I, Dest, SF); -} - -void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ - ExecutionContext &SF = ECStack.back(); - - VectorType *Ty = cast<VectorType>(I.getType()); - - GenericValue Src1 = getOperandValue(I.getOperand(0), SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Src3 = getOperandValue(I.getOperand(2), SF); - GenericValue Dest; - - // There is no need to check types of src1 and src2, because the compiled - // bytecode can't contain different types for src1 and src2 for a - // shufflevector instruction. - - Type *TyContained = Ty->getElementType(); - unsigned src1Size = (unsigned)Src1.AggregateVal.size(); - unsigned src2Size = (unsigned)Src2.AggregateVal.size(); - unsigned src3Size = (unsigned)Src3.AggregateVal.size(); - - Dest.AggregateVal.resize(src3Size); - - switch (TyContained->getTypeID()) { - default: - llvm_unreachable("Unhandled dest type for insertelement instruction"); - break; - case Type::IntegerTyID: - for( unsigned i=0; i<src3Size; i++) { - unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); - if(j < src1Size) - Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; - else if(j < src1Size + src2Size) - Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; - else - // The selector may not be greater than sum of lengths of first and - // second operands and llasm should not allow situation like - // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, - // <2 x i32> < i32 0, i32 5 >, - // where i32 5 is invalid, but let it be additional check here: - llvm_unreachable("Invalid mask in shufflevector instruction"); - } - break; - case Type::FloatTyID: - for( unsigned i=0; i<src3Size; i++) { - unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); - if(j < src1Size) - Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; - else if(j < src1Size + src2Size) - Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; - else - llvm_unreachable("Invalid mask in shufflevector instruction"); - } - break; - case Type::DoubleTyID: - for( unsigned i=0; i<src3Size; i++) { - unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); - if(j < src1Size) - Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; - else if(j < src1Size + src2Size) - Dest.AggregateVal[i].DoubleVal = - Src2.AggregateVal[j-src1Size].DoubleVal; - else - llvm_unreachable("Invalid mask in shufflevector instruction"); - } - break; - } - SetValue(&I, Dest, SF); -} - -void Interpreter::visitExtractValueInst(ExtractValueInst &I) { - ExecutionContext &SF = ECStack.back(); - Value *Agg = I.getAggregateOperand(); - GenericValue Dest; - GenericValue Src = getOperandValue(Agg, SF); - - ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); - unsigned Num = I.getNumIndices(); - GenericValue *pSrc = &Src; - - for (unsigned i = 0 ; i < Num; ++i) { - pSrc = &pSrc->AggregateVal[*IdxBegin]; - ++IdxBegin; - } - - Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); - switch (IndexedType->getTypeID()) { - default: - llvm_unreachable("Unhandled dest type for extractelement instruction"); - break; - case Type::IntegerTyID: - Dest.IntVal = pSrc->IntVal; - break; - case Type::FloatTyID: - Dest.FloatVal = pSrc->FloatVal; - break; - case Type::DoubleTyID: - Dest.DoubleVal = pSrc->DoubleVal; - break; - case Type::ArrayTyID: - case Type::StructTyID: - case Type::VectorTyID: - Dest.AggregateVal = pSrc->AggregateVal; - break; - case Type::PointerTyID: - Dest.PointerVal = pSrc->PointerVal; - break; - } - - SetValue(&I, Dest, SF); -} - -void Interpreter::visitInsertValueInst(InsertValueInst &I) { - - ExecutionContext &SF = ECStack.back(); - Value *Agg = I.getAggregateOperand(); - - GenericValue Src1 = getOperandValue(Agg, SF); - GenericValue Src2 = getOperandValue(I.getOperand(1), SF); - GenericValue Dest = Src1; // Dest is a slightly changed Src1 - - ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); - unsigned Num = I.getNumIndices(); - - GenericValue *pDest = &Dest; - for (unsigned i = 0 ; i < Num; ++i) { - pDest = &pDest->AggregateVal[*IdxBegin]; - ++IdxBegin; - } - // pDest points to the target value in the Dest now - - Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); - - switch (IndexedType->getTypeID()) { - default: - llvm_unreachable("Unhandled dest type for insertelement instruction"); - break; - case Type::IntegerTyID: - pDest->IntVal = Src2.IntVal; - break; - case Type::FloatTyID: - pDest->FloatVal = Src2.FloatVal; - break; - case Type::DoubleTyID: - pDest->DoubleVal = Src2.DoubleVal; - break; - case Type::ArrayTyID: - case Type::StructTyID: - case Type::VectorTyID: - pDest->AggregateVal = Src2.AggregateVal; - break; - case Type::PointerTyID: - pDest->PointerVal = Src2.PointerVal; - break; - } - - SetValue(&I, Dest, SF); -} - -GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, - ExecutionContext &SF) { - switch (CE->getOpcode()) { - case Instruction::Trunc: - return executeTruncInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::ZExt: - return executeZExtInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::SExt: - return executeSExtInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::FPTrunc: - return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::FPExt: - return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::UIToFP: - return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::SIToFP: - return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::FPToUI: - return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::FPToSI: - return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::PtrToInt: - return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::IntToPtr: - return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::BitCast: - return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); - case Instruction::GetElementPtr: - return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), - gep_type_end(CE), SF); - case Instruction::FCmp: - case Instruction::ICmp: - return executeCmpInst(CE->getPredicate(), - getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getOperand(0)->getType()); - case Instruction::Select: - return executeSelectInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - getOperandValue(CE->getOperand(2), SF), - CE->getOperand(0)->getType()); - default : - break; - } - - // The cases below here require a GenericValue parameter for the result - // so we initialize one, compute it and then return it. - GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); - GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); - GenericValue Dest; - Type * Ty = CE->getOperand(0)->getType(); - switch (CE->getOpcode()) { - case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; - case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; - case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; - case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; - case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; - case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; - case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; - case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; - case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; - case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; - case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; - case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; - case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; - case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; - case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; - case Instruction::Shl: - Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); - break; - case Instruction::LShr: - Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); - break; - case Instruction::AShr: - Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); - break; - default: - dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; - llvm_unreachable("Unhandled ConstantExpr"); - } - return Dest; -} - -GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { - return getConstantExprValue(CE, SF); - } else if (Constant *CPV = dyn_cast<Constant>(V)) { - return getConstantValue(CPV); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - return PTOGV(getPointerToGlobal(GV)); - } else { - return SF.Values[V]; - } -} - -//===----------------------------------------------------------------------===// -// Dispatch and Execution Code -//===----------------------------------------------------------------------===// - -//===----------------------------------------------------------------------===// -// callFunction - Execute the specified function... -// -void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) { - assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() || - ECStack.back().Caller.arg_size() == ArgVals.size()) && - "Incorrect number of arguments passed into function call!"); - // Make a new stack frame... and fill it in. - ECStack.emplace_back(); - ExecutionContext &StackFrame = ECStack.back(); - StackFrame.CurFunction = F; - - // Special handling for external functions. - if (F->isDeclaration()) { - GenericValue Result = callExternalFunction (F, ArgVals); - // Simulate a 'ret' instruction of the appropriate type. - popStackAndReturnValueToCaller (F->getReturnType (), Result); - return; - } - - // Get pointers to first LLVM BB & Instruction in function. - StackFrame.CurBB = &F->front(); - StackFrame.CurInst = StackFrame.CurBB->begin(); - - // Run through the function arguments and initialize their values... - assert((ArgVals.size() == F->arg_size() || - (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& - "Invalid number of values passed to function invocation!"); - - // Handle non-varargs arguments... - unsigned i = 0; - for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); - AI != E; ++AI, ++i) - SetValue(&*AI, ArgVals[i], StackFrame); - - // Handle varargs arguments... - StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); -} - - -void Interpreter::run() { - while (!ECStack.empty()) { - // Interpret a single instruction & increment the "PC". - ExecutionContext &SF = ECStack.back(); // Current stack frame - Instruction &I = *SF.CurInst++; // Increment before execute - - // Track the number of dynamic instructions executed. - ++NumDynamicInsts; - - LLVM_DEBUG(dbgs() << "About to interpret: " << I); - visit(I); // Dispatch to one of the visit* methods... - } -} diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp deleted file mode 100644 index 334fcacf807..00000000000 --- a/gnu/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp +++ /dev/null @@ -1,510 +0,0 @@ -//===-- ExternalFunctions.cpp - Implement External Functions --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains both code to deal with invoking "external" functions, but -// also contains code that implements "exported" external functions. -// -// There are currently two mechanisms for handling external functions in the -// Interpreter. The first is to implement lle_* wrapper functions that are -// specific to well-known library functions which manually translate the -// arguments from GenericValues and make the call. If such a wrapper does -// not exist, and libffi is available, then the Interpreter will attempt to -// invoke the function using libffi, after finding its address. -// -//===----------------------------------------------------------------------===// - -#include "Interpreter.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/Config/config.h" // Detect libffi -#include "llvm/ExecutionEngine/GenericValue.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Type.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/DynamicLibrary.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/ManagedStatic.h" -#include "llvm/Support/Mutex.h" -#include "llvm/Support/UniqueLock.h" -#include "llvm/Support/raw_ostream.h" -#include <cassert> -#include <cmath> -#include <csignal> -#include <cstdint> -#include <cstdio> -#include <cstring> -#include <map> -#include <string> -#include <utility> -#include <vector> - -#ifdef HAVE_FFI_CALL -#ifdef HAVE_FFI_H -#include <ffi.h> -#define USE_LIBFFI -#elif HAVE_FFI_FFI_H -#include <ffi/ffi.h> -#define USE_LIBFFI -#endif -#endif - -using namespace llvm; - -static ManagedStatic<sys::Mutex> FunctionsLock; - -typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>); -static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; -static ManagedStatic<std::map<std::string, ExFunc> > FuncNames; - -#ifdef USE_LIBFFI -typedef void (*RawFunc)(); -static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; -#endif - -static Interpreter *TheInterpreter; - -static char getTypeID(Type *Ty) { - switch (Ty->getTypeID()) { - case Type::VoidTyID: return 'V'; - case Type::IntegerTyID: - switch (cast<IntegerType>(Ty)->getBitWidth()) { - case 1: return 'o'; - case 8: return 'B'; - case 16: return 'S'; - case 32: return 'I'; - case 64: return 'L'; - default: return 'N'; - } - case Type::FloatTyID: return 'F'; - case Type::DoubleTyID: return 'D'; - case Type::PointerTyID: return 'P'; - case Type::FunctionTyID:return 'M'; - case Type::StructTyID: return 'T'; - case Type::ArrayTyID: return 'A'; - default: return 'U'; - } -} - -// Try to find address of external function given a Function object. -// Please note, that interpreter doesn't know how to assemble a -// real call in general case (this is JIT job), that's why it assumes, -// that all external functions has the same (and pretty "general") signature. -// The typical example of such functions are "lle_X_" ones. -static ExFunc lookupFunction(const Function *F) { - // Function not found, look it up... start by figuring out what the - // composite function name should be. - std::string ExtName = "lle_"; - FunctionType *FT = F->getFunctionType(); - ExtName += getTypeID(FT->getReturnType()); - for (Type *T : FT->params()) - ExtName += getTypeID(T); - ExtName += ("_" + F->getName()).str(); - - sys::ScopedLock Writer(*FunctionsLock); - ExFunc FnPtr = (*FuncNames)[ExtName]; - if (!FnPtr) - FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()]; - if (!FnPtr) // Try calling a generic function... if it exists... - FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( - ("lle_X_" + F->getName()).str()); - if (FnPtr) - ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later - return FnPtr; -} - -#ifdef USE_LIBFFI -static ffi_type *ffiTypeFor(Type *Ty) { - switch (Ty->getTypeID()) { - case Type::VoidTyID: return &ffi_type_void; - case Type::IntegerTyID: - switch (cast<IntegerType>(Ty)->getBitWidth()) { - case 8: return &ffi_type_sint8; - case 16: return &ffi_type_sint16; - case 32: return &ffi_type_sint32; - case 64: return &ffi_type_sint64; - } - case Type::FloatTyID: return &ffi_type_float; - case Type::DoubleTyID: return &ffi_type_double; - case Type::PointerTyID: return &ffi_type_pointer; - default: break; - } - // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. - report_fatal_error("Type could not be mapped for use with libffi."); - return NULL; -} - -static void *ffiValueFor(Type *Ty, const GenericValue &AV, - void *ArgDataPtr) { - switch (Ty->getTypeID()) { - case Type::IntegerTyID: - switch (cast<IntegerType>(Ty)->getBitWidth()) { - case 8: { - int8_t *I8Ptr = (int8_t *) ArgDataPtr; - *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - case 16: { - int16_t *I16Ptr = (int16_t *) ArgDataPtr; - *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - case 32: { - int32_t *I32Ptr = (int32_t *) ArgDataPtr; - *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - case 64: { - int64_t *I64Ptr = (int64_t *) ArgDataPtr; - *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - } - case Type::FloatTyID: { - float *FloatPtr = (float *) ArgDataPtr; - *FloatPtr = AV.FloatVal; - return ArgDataPtr; - } - case Type::DoubleTyID: { - double *DoublePtr = (double *) ArgDataPtr; - *DoublePtr = AV.DoubleVal; - return ArgDataPtr; - } - case Type::PointerTyID: { - void **PtrPtr = (void **) ArgDataPtr; - *PtrPtr = GVTOP(AV); - return ArgDataPtr; - } - default: break; - } - // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. - report_fatal_error("Type value could not be mapped for use with libffi."); - return NULL; -} - -static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals, - const DataLayout &TD, GenericValue &Result) { - ffi_cif cif; - FunctionType *FTy = F->getFunctionType(); - const unsigned NumArgs = F->arg_size(); - - // TODO: We don't have type information about the remaining arguments, because - // this information is never passed into ExecutionEngine::runFunction(). - if (ArgVals.size() > NumArgs && F->isVarArg()) { - report_fatal_error("Calling external var arg function '" + F->getName() - + "' is not supported by the Interpreter."); - } - - unsigned ArgBytes = 0; - - std::vector<ffi_type*> args(NumArgs); - for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); - A != E; ++A) { - const unsigned ArgNo = A->getArgNo(); - Type *ArgTy = FTy->getParamType(ArgNo); - args[ArgNo] = ffiTypeFor(ArgTy); - ArgBytes += TD.getTypeStoreSize(ArgTy); - } - - SmallVector<uint8_t, 128> ArgData; - ArgData.resize(ArgBytes); - uint8_t *ArgDataPtr = ArgData.data(); - SmallVector<void*, 16> values(NumArgs); - for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); - A != E; ++A) { - const unsigned ArgNo = A->getArgNo(); - Type *ArgTy = FTy->getParamType(ArgNo); - values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); - ArgDataPtr += TD.getTypeStoreSize(ArgTy); - } - - Type *RetTy = FTy->getReturnType(); - ffi_type *rtype = ffiTypeFor(RetTy); - - if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) == - FFI_OK) { - SmallVector<uint8_t, 128> ret; - if (RetTy->getTypeID() != Type::VoidTyID) - ret.resize(TD.getTypeStoreSize(RetTy)); - ffi_call(&cif, Fn, ret.data(), values.data()); - switch (RetTy->getTypeID()) { - case Type::IntegerTyID: - switch (cast<IntegerType>(RetTy)->getBitWidth()) { - case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; - case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; - case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; - case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; - } - break; - case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; - case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; - case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; - default: break; - } - return true; - } - - return false; -} -#endif // USE_LIBFFI - -GenericValue Interpreter::callExternalFunction(Function *F, - ArrayRef<GenericValue> ArgVals) { - TheInterpreter = this; - - unique_lock<sys::Mutex> Guard(*FunctionsLock); - - // Do a lookup to see if the function is in our cache... this should just be a - // deferred annotation! - std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); - if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) - : FI->second) { - Guard.unlock(); - return Fn(F->getFunctionType(), ArgVals); - } - -#ifdef USE_LIBFFI - std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); - RawFunc RawFn; - if (RF == RawFunctions->end()) { - RawFn = (RawFunc)(intptr_t) - sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); - if (!RawFn) - RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); - if (RawFn != 0) - RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later - } else { - RawFn = RF->second; - } - - Guard.unlock(); - - GenericValue Result; - if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) - return Result; -#endif // USE_LIBFFI - - if (F->getName() == "__main") - errs() << "Tried to execute an unknown external function: " - << *F->getType() << " __main\n"; - else - report_fatal_error("Tried to execute an unknown external function: " + - F->getName()); -#ifndef USE_LIBFFI - errs() << "Recompiling LLVM with --enable-libffi might help.\n"; -#endif - return GenericValue(); -} - -//===----------------------------------------------------------------------===// -// Functions "exported" to the running application... -// - -// void atexit(Function*) -static GenericValue lle_X_atexit(FunctionType *FT, - ArrayRef<GenericValue> Args) { - assert(Args.size() == 1); - TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); - GenericValue GV; - GV.IntVal = 0; - return GV; -} - -// void exit(int) -static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) { - TheInterpreter->exitCalled(Args[0]); - return GenericValue(); -} - -// void abort(void) -static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) { - //FIXME: should we report or raise here? - //report_fatal_error("Interpreted program raised SIGABRT"); - raise (SIGABRT); - return GenericValue(); -} - -// int sprintf(char *, const char *, ...) - a very rough implementation to make -// output useful. -static GenericValue lle_X_sprintf(FunctionType *FT, - ArrayRef<GenericValue> Args) { - char *OutputBuffer = (char *)GVTOP(Args[0]); - const char *FmtStr = (const char *)GVTOP(Args[1]); - unsigned ArgNo = 2; - - // printf should return # chars printed. This is completely incorrect, but - // close enough for now. - GenericValue GV; - GV.IntVal = APInt(32, strlen(FmtStr)); - while (true) { - switch (*FmtStr) { - case 0: return GV; // Null terminator... - default: // Normal nonspecial character - sprintf(OutputBuffer++, "%c", *FmtStr++); - break; - case '\\': { // Handle escape codes - sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); - FmtStr += 2; OutputBuffer += 2; - break; - } - case '%': { // Handle format specifiers - char FmtBuf[100] = "", Buffer[1000] = ""; - char *FB = FmtBuf; - *FB++ = *FmtStr++; - char Last = *FB++ = *FmtStr++; - unsigned HowLong = 0; - while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && - Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && - Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && - Last != 'p' && Last != 's' && Last != '%') { - if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's - Last = *FB++ = *FmtStr++; - } - *FB = 0; - - switch (Last) { - case '%': - memcpy(Buffer, "%", 2); break; - case 'c': - sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); - break; - case 'd': case 'i': - case 'u': case 'o': - case 'x': case 'X': - if (HowLong >= 1) { - if (HowLong == 1 && - TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 && - sizeof(long) < sizeof(int64_t)) { - // Make sure we use %lld with a 64 bit argument because we might be - // compiling LLI on a 32 bit compiler. - unsigned Size = strlen(FmtBuf); - FmtBuf[Size] = FmtBuf[Size-1]; - FmtBuf[Size+1] = 0; - FmtBuf[Size-1] = 'l'; - } - sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); - } else - sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); - break; - case 'e': case 'E': case 'g': case 'G': case 'f': - sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; - case 'p': - sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; - case 's': - sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; - default: - errs() << "<unknown printf code '" << *FmtStr << "'!>"; - ArgNo++; break; - } - size_t Len = strlen(Buffer); - memcpy(OutputBuffer, Buffer, Len + 1); - OutputBuffer += Len; - } - break; - } - } - return GV; -} - -// int printf(const char *, ...) - a very rough implementation to make output -// useful. -static GenericValue lle_X_printf(FunctionType *FT, - ArrayRef<GenericValue> Args) { - char Buffer[10000]; - std::vector<GenericValue> NewArgs; - NewArgs.push_back(PTOGV((void*)&Buffer[0])); - NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); - GenericValue GV = lle_X_sprintf(FT, NewArgs); - outs() << Buffer; - return GV; -} - -// int sscanf(const char *format, ...); -static GenericValue lle_X_sscanf(FunctionType *FT, - ArrayRef<GenericValue> args) { - assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); - - char *Args[10]; - for (unsigned i = 0; i < args.size(); ++i) - Args[i] = (char*)GVTOP(args[i]); - - GenericValue GV; - GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], - Args[5], Args[6], Args[7], Args[8], Args[9])); - return GV; -} - -// int scanf(const char *format, ...); -static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) { - assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); - - char *Args[10]; - for (unsigned i = 0; i < args.size(); ++i) - Args[i] = (char*)GVTOP(args[i]); - - GenericValue GV; - GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], - Args[5], Args[6], Args[7], Args[8], Args[9])); - return GV; -} - -// int fprintf(FILE *, const char *, ...) - a very rough implementation to make -// output useful. -static GenericValue lle_X_fprintf(FunctionType *FT, - ArrayRef<GenericValue> Args) { - assert(Args.size() >= 2); - char Buffer[10000]; - std::vector<GenericValue> NewArgs; - NewArgs.push_back(PTOGV(Buffer)); - NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); - GenericValue GV = lle_X_sprintf(FT, NewArgs); - - fputs(Buffer, (FILE *) GVTOP(Args[0])); - return GV; -} - -static GenericValue lle_X_memset(FunctionType *FT, - ArrayRef<GenericValue> Args) { - int val = (int)Args[1].IntVal.getSExtValue(); - size_t len = (size_t)Args[2].IntVal.getZExtValue(); - memset((void *)GVTOP(Args[0]), val, len); - // llvm.memset.* returns void, lle_X_* returns GenericValue, - // so here we return GenericValue with IntVal set to zero - GenericValue GV; - GV.IntVal = 0; - return GV; -} - -static GenericValue lle_X_memcpy(FunctionType *FT, - ArrayRef<GenericValue> Args) { - memcpy(GVTOP(Args[0]), GVTOP(Args[1]), - (size_t)(Args[2].IntVal.getLimitedValue())); - - // llvm.memcpy* returns void, lle_X_* returns GenericValue, - // so here we return GenericValue with IntVal set to zero - GenericValue GV; - GV.IntVal = 0; - return GV; -} - -void Interpreter::initializeExternalFunctions() { - sys::ScopedLock Writer(*FunctionsLock); - (*FuncNames)["lle_X_atexit"] = lle_X_atexit; - (*FuncNames)["lle_X_exit"] = lle_X_exit; - (*FuncNames)["lle_X_abort"] = lle_X_abort; - - (*FuncNames)["lle_X_printf"] = lle_X_printf; - (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf; - (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf; - (*FuncNames)["lle_X_scanf"] = lle_X_scanf; - (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf; - (*FuncNames)["lle_X_memset"] = lle_X_memset; - (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy; -} diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp deleted file mode 100644 index 9818adfff82..00000000000 --- a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp +++ /dev/null @@ -1,103 +0,0 @@ -//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the top-level functionality for the LLVM interpreter. -// This interpreter is designed to be a very simple, portable, inefficient -// interpreter. -// -//===----------------------------------------------------------------------===// - -#include "Interpreter.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Module.h" -#include <cstring> -using namespace llvm; - -namespace { - -static struct RegisterInterp { - RegisterInterp() { Interpreter::Register(); } -} InterpRegistrator; - -} - -extern "C" void LLVMLinkInInterpreter() { } - -/// Create a new interpreter object. -/// -ExecutionEngine *Interpreter::create(std::unique_ptr<Module> M, - std::string *ErrStr) { - // Tell this Module to materialize everything and release the GVMaterializer. - if (Error Err = M->materializeAll()) { - std::string Msg; - handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { - Msg = EIB.message(); - }); - if (ErrStr) - *ErrStr = Msg; - // We got an error, just return 0 - return nullptr; - } - - return new Interpreter(std::move(M)); -} - -//===----------------------------------------------------------------------===// -// Interpreter ctor - Initialize stuff -// -Interpreter::Interpreter(std::unique_ptr<Module> M) - : ExecutionEngine(std::move(M)) { - - memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); - // Initialize the "backend" - initializeExecutionEngine(); - initializeExternalFunctions(); - emitGlobals(); - - IL = new IntrinsicLowering(getDataLayout()); -} - -Interpreter::~Interpreter() { - delete IL; -} - -void Interpreter::runAtExitHandlers () { - while (!AtExitHandlers.empty()) { - callFunction(AtExitHandlers.back(), None); - AtExitHandlers.pop_back(); - run(); - } -} - -/// run - Start execution with the specified function and arguments. -/// -GenericValue Interpreter::runFunction(Function *F, - ArrayRef<GenericValue> ArgValues) { - assert (F && "Function *F was null at entry to run()"); - - // Try extra hard not to pass extra args to a function that isn't - // expecting them. C programmers frequently bend the rules and - // declare main() with fewer parameters than it actually gets - // passed, and the interpreter barfs if you pass a function more - // parameters than it is declared to take. This does not attempt to - // take into account gratuitous differences in declared types, - // though. - const size_t ArgCount = F->getFunctionType()->getNumParams(); - ArrayRef<GenericValue> ActualArgs = - ArgValues.slice(0, std::min(ArgValues.size(), ArgCount)); - - // Set up the function call. - callFunction(F, ActualArgs); - - // Start executing the function. - run(); - - return ExitValue; -} diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h deleted file mode 100644 index 33542e7e43a..00000000000 --- a/gnu/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h +++ /dev/null @@ -1,235 +0,0 @@ -//===-- Interpreter.h ------------------------------------------*- C++ -*--===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This header file defines the interpreter structure -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H -#define LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H - -#include "llvm/ExecutionEngine/ExecutionEngine.h" -#include "llvm/ExecutionEngine/GenericValue.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/Support/DataTypes.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -namespace llvm { - -class IntrinsicLowering; -template<typename T> class generic_gep_type_iterator; -class ConstantExpr; -typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator; - - -// AllocaHolder - Object to track all of the blocks of memory allocated by -// alloca. When the function returns, this object is popped off the execution -// stack, which causes the dtor to be run, which frees all the alloca'd memory. -// -class AllocaHolder { - std::vector<void *> Allocations; - -public: - AllocaHolder() {} - - // Make this type move-only. - AllocaHolder(AllocaHolder &&) = default; - AllocaHolder &operator=(AllocaHolder &&RHS) = default; - - ~AllocaHolder() { - for (void *Allocation : Allocations) - free(Allocation); - } - - void add(void *Mem) { Allocations.push_back(Mem); } -}; - -typedef std::vector<GenericValue> ValuePlaneTy; - -// ExecutionContext struct - This struct represents one stack frame currently -// executing. -// -struct ExecutionContext { - Function *CurFunction;// The currently executing function - BasicBlock *CurBB; // The currently executing BB - BasicBlock::iterator CurInst; // The next instruction to execute - CallSite Caller; // Holds the call that called subframes. - // NULL if main func or debugger invoked fn - std::map<Value *, GenericValue> Values; // LLVM values used in this invocation - std::vector<GenericValue> VarArgs; // Values passed through an ellipsis - AllocaHolder Allocas; // Track memory allocated by alloca - - ExecutionContext() : CurFunction(nullptr), CurBB(nullptr), CurInst(nullptr) {} -}; - -// Interpreter - This class represents the entirety of the interpreter. -// -class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> { - GenericValue ExitValue; // The return value of the called function - IntrinsicLowering *IL; - - // The runtime stack of executing code. The top of the stack is the current - // function record. - std::vector<ExecutionContext> ECStack; - - // AtExitHandlers - List of functions to call when the program exits, - // registered with the atexit() library function. - std::vector<Function*> AtExitHandlers; - -public: - explicit Interpreter(std::unique_ptr<Module> M); - ~Interpreter() override; - - /// runAtExitHandlers - Run any functions registered by the program's calls to - /// atexit(3), which we intercept and store in AtExitHandlers. - /// - void runAtExitHandlers(); - - static void Register() { - InterpCtor = create; - } - - /// Create an interpreter ExecutionEngine. - /// - static ExecutionEngine *create(std::unique_ptr<Module> M, - std::string *ErrorStr = nullptr); - - /// run - Start execution with the specified function and arguments. - /// - GenericValue runFunction(Function *F, - ArrayRef<GenericValue> ArgValues) override; - - void *getPointerToNamedFunction(StringRef Name, - bool AbortOnFailure = true) override { - // FIXME: not implemented. - return nullptr; - } - - // Methods used to execute code: - // Place a call on the stack - void callFunction(Function *F, ArrayRef<GenericValue> ArgVals); - void run(); // Execute instructions until nothing left to do - - // Opcode Implementations - void visitReturnInst(ReturnInst &I); - void visitBranchInst(BranchInst &I); - void visitSwitchInst(SwitchInst &I); - void visitIndirectBrInst(IndirectBrInst &I); - - void visitBinaryOperator(BinaryOperator &I); - void visitICmpInst(ICmpInst &I); - void visitFCmpInst(FCmpInst &I); - void visitAllocaInst(AllocaInst &I); - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitPHINode(PHINode &PN) { - llvm_unreachable("PHI nodes already handled!"); - } - void visitTruncInst(TruncInst &I); - void visitZExtInst(ZExtInst &I); - void visitSExtInst(SExtInst &I); - void visitFPTruncInst(FPTruncInst &I); - void visitFPExtInst(FPExtInst &I); - void visitUIToFPInst(UIToFPInst &I); - void visitSIToFPInst(SIToFPInst &I); - void visitFPToUIInst(FPToUIInst &I); - void visitFPToSIInst(FPToSIInst &I); - void visitPtrToIntInst(PtrToIntInst &I); - void visitIntToPtrInst(IntToPtrInst &I); - void visitBitCastInst(BitCastInst &I); - void visitSelectInst(SelectInst &I); - - - void visitCallSite(CallSite CS); - void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); } - void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); } - void visitUnreachableInst(UnreachableInst &I); - - void visitShl(BinaryOperator &I); - void visitLShr(BinaryOperator &I); - void visitAShr(BinaryOperator &I); - - void visitVAArgInst(VAArgInst &I); - void visitExtractElementInst(ExtractElementInst &I); - void visitInsertElementInst(InsertElementInst &I); - void visitShuffleVectorInst(ShuffleVectorInst &I); - - void visitExtractValueInst(ExtractValueInst &I); - void visitInsertValueInst(InsertValueInst &I); - - void visitInstruction(Instruction &I) { - errs() << I << "\n"; - llvm_unreachable("Instruction not interpretable yet!"); - } - - GenericValue callExternalFunction(Function *F, - ArrayRef<GenericValue> ArgVals); - void exitCalled(GenericValue GV); - - void addAtExitHandler(Function *F) { - AtExitHandlers.push_back(F); - } - - GenericValue *getFirstVarArg () { - return &(ECStack.back ().VarArgs[0]); - } - -private: // Helper functions - GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I, - gep_type_iterator E, ExecutionContext &SF); - - // SwitchToNewBasicBlock - Start execution in a new basic block and run any - // PHI nodes in the top of the block. This is used for intraprocedural - // control flow. - // - void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF); - - void *getPointerToFunction(Function *F) override { return (void*)F; } - - void initializeExecutionEngine() { } - void initializeExternalFunctions(); - GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF); - GenericValue getOperandValue(Value *V, ExecutionContext &SF); - GenericValue executeTruncInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeSExtInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeZExtInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeFPTruncInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeFPExtInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeFPToUIInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeFPToSIInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeUIToFPInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeSIToFPInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executePtrToIntInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeIntToPtrInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeBitCastInst(Value *SrcVal, Type *DstTy, - ExecutionContext &SF); - GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal, - Type *Ty, ExecutionContext &SF); - void popStackAndReturnValueToCaller(Type *RetTy, GenericValue Result); - -}; - -} // End llvm namespace - -#endif diff --git a/gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt b/gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt deleted file mode 100644 index 5af77e54725..00000000000 --- a/gnu/llvm/lib/ExecutionEngine/Interpreter/LLVMBuild.txt +++ /dev/null @@ -1,22 +0,0 @@ -;===- ./lib/ExecutionEngine/Interpreter/LLVMBuild.txt ----------*- Conf -*--===; -; -; The LLVM Compiler Infrastructure -; -; This file is distributed under the University of Illinois Open Source -; License. See LICENSE.TXT for details. -; -;===------------------------------------------------------------------------===; -; -; This is an LLVMBuild description file for the components in this subdirectory. -; -; For more information on the LLVMBuild system, please see: -; -; http://llvm.org/docs/LLVMBuild.html -; -;===------------------------------------------------------------------------===; - -[component_0] -type = Library -name = Interpreter -parent = ExecutionEngine -required_libraries = CodeGen Core ExecutionEngine Support |
