summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp')
-rw-r--r--gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp1355
1 files changed, 0 insertions, 1355 deletions
diff --git a/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
deleted file mode 100644
index 53cb782c55c..00000000000
--- a/gnu/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
+++ /dev/null
@@ -1,1355 +0,0 @@
-//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Implementation of the MC-JIT runtime dynamic linker.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "RuntimeDyldCOFF.h"
-#include "RuntimeDyldCheckerImpl.h"
-#include "RuntimeDyldELF.h"
-#include "RuntimeDyldImpl.h"
-#include "RuntimeDyldMachO.h"
-#include "llvm/Object/COFF.h"
-#include "llvm/Object/ELFObjectFile.h"
-#include "llvm/Support/MSVCErrorWorkarounds.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/MutexGuard.h"
-
-#include <future>
-
-using namespace llvm;
-using namespace llvm::object;
-
-#define DEBUG_TYPE "dyld"
-
-namespace {
-
-enum RuntimeDyldErrorCode {
- GenericRTDyldError = 1
-};
-
-// FIXME: This class is only here to support the transition to llvm::Error. It
-// will be removed once this transition is complete. Clients should prefer to
-// deal with the Error value directly, rather than converting to error_code.
-class RuntimeDyldErrorCategory : public std::error_category {
-public:
- const char *name() const noexcept override { return "runtimedyld"; }
-
- std::string message(int Condition) const override {
- switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
- case GenericRTDyldError: return "Generic RuntimeDyld error";
- }
- llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
- }
-};
-
-static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
-
-}
-
-char RuntimeDyldError::ID = 0;
-
-void RuntimeDyldError::log(raw_ostream &OS) const {
- OS << ErrMsg << "\n";
-}
-
-std::error_code RuntimeDyldError::convertToErrorCode() const {
- return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
-}
-
-// Empty out-of-line virtual destructor as the key function.
-RuntimeDyldImpl::~RuntimeDyldImpl() {}
-
-// Pin LoadedObjectInfo's vtables to this file.
-void RuntimeDyld::LoadedObjectInfo::anchor() {}
-
-namespace llvm {
-
-void RuntimeDyldImpl::registerEHFrames() {}
-
-void RuntimeDyldImpl::deregisterEHFrames() {
- MemMgr.deregisterEHFrames();
-}
-
-#ifndef NDEBUG
-static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
- dbgs() << "----- Contents of section " << S.getName() << " " << State
- << " -----";
-
- if (S.getAddress() == nullptr) {
- dbgs() << "\n <section not emitted>\n";
- return;
- }
-
- const unsigned ColsPerRow = 16;
-
- uint8_t *DataAddr = S.getAddress();
- uint64_t LoadAddr = S.getLoadAddress();
-
- unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
- unsigned BytesRemaining = S.getSize();
-
- if (StartPadding) {
- dbgs() << "\n" << format("0x%016" PRIx64,
- LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
- while (StartPadding--)
- dbgs() << " ";
- }
-
- while (BytesRemaining > 0) {
- if ((LoadAddr & (ColsPerRow - 1)) == 0)
- dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
-
- dbgs() << " " << format("%02x", *DataAddr);
-
- ++DataAddr;
- ++LoadAddr;
- --BytesRemaining;
- }
-
- dbgs() << "\n";
-}
-#endif
-
-// Resolve the relocations for all symbols we currently know about.
-void RuntimeDyldImpl::resolveRelocations() {
- MutexGuard locked(lock);
-
- // Print out the sections prior to relocation.
- LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
- dumpSectionMemory(Sections[i], "before relocations"););
-
- // First, resolve relocations associated with external symbols.
- if (auto Err = resolveExternalSymbols()) {
- HasError = true;
- ErrorStr = toString(std::move(Err));
- }
-
- resolveLocalRelocations();
-
- // Print out sections after relocation.
- LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
- dumpSectionMemory(Sections[i], "after relocations"););
-}
-
-void RuntimeDyldImpl::resolveLocalRelocations() {
- // Iterate over all outstanding relocations
- for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
- // The Section here (Sections[i]) refers to the section in which the
- // symbol for the relocation is located. The SectionID in the relocation
- // entry provides the section to which the relocation will be applied.
- int Idx = it->first;
- uint64_t Addr = Sections[Idx].getLoadAddress();
- LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
- << format("%p", (uintptr_t)Addr) << "\n");
- resolveRelocationList(it->second, Addr);
- }
- Relocations.clear();
-}
-
-void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
- uint64_t TargetAddress) {
- MutexGuard locked(lock);
- for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
- if (Sections[i].getAddress() == LocalAddress) {
- reassignSectionAddress(i, TargetAddress);
- return;
- }
- }
- llvm_unreachable("Attempting to remap address of unknown section!");
-}
-
-static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
- uint64_t &Result) {
- Expected<uint64_t> AddressOrErr = Sym.getAddress();
- if (!AddressOrErr)
- return AddressOrErr.takeError();
- Result = *AddressOrErr - Sec.getAddress();
- return Error::success();
-}
-
-Expected<RuntimeDyldImpl::ObjSectionToIDMap>
-RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
- MutexGuard locked(lock);
-
- // Save information about our target
- Arch = (Triple::ArchType)Obj.getArch();
- IsTargetLittleEndian = Obj.isLittleEndian();
- setMipsABI(Obj);
-
- // Compute the memory size required to load all sections to be loaded
- // and pass this information to the memory manager
- if (MemMgr.needsToReserveAllocationSpace()) {
- uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
- uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
- if (auto Err = computeTotalAllocSize(Obj,
- CodeSize, CodeAlign,
- RODataSize, RODataAlign,
- RWDataSize, RWDataAlign))
- return std::move(Err);
- MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
- RWDataSize, RWDataAlign);
- }
-
- // Used sections from the object file
- ObjSectionToIDMap LocalSections;
-
- // Common symbols requiring allocation, with their sizes and alignments
- CommonSymbolList CommonSymbolsToAllocate;
-
- uint64_t CommonSize = 0;
- uint32_t CommonAlign = 0;
-
- // First, collect all weak and common symbols. We need to know if stronger
- // definitions occur elsewhere.
- JITSymbolResolver::LookupSet ResponsibilitySet;
- {
- JITSymbolResolver::LookupSet Symbols;
- for (auto &Sym : Obj.symbols()) {
- uint32_t Flags = Sym.getFlags();
- if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
- // Get symbol name.
- if (auto NameOrErr = Sym.getName())
- Symbols.insert(*NameOrErr);
- else
- return NameOrErr.takeError();
- }
- }
-
- if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
- ResponsibilitySet = std::move(*ResultOrErr);
- else
- return ResultOrErr.takeError();
- }
-
- // Parse symbols
- LLVM_DEBUG(dbgs() << "Parse symbols:\n");
- for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
- ++I) {
- uint32_t Flags = I->getFlags();
-
- // Skip undefined symbols.
- if (Flags & SymbolRef::SF_Undefined)
- continue;
-
- // Get the symbol type.
- object::SymbolRef::Type SymType;
- if (auto SymTypeOrErr = I->getType())
- SymType = *SymTypeOrErr;
- else
- return SymTypeOrErr.takeError();
-
- // Get symbol name.
- StringRef Name;
- if (auto NameOrErr = I->getName())
- Name = *NameOrErr;
- else
- return NameOrErr.takeError();
-
- // Compute JIT symbol flags.
- auto JITSymFlags = getJITSymbolFlags(*I);
- if (!JITSymFlags)
- return JITSymFlags.takeError();
-
- // If this is a weak definition, check to see if there's a strong one.
- // If there is, skip this symbol (we won't be providing it: the strong
- // definition will). If there's no strong definition, make this definition
- // strong.
- if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
- // First check whether there's already a definition in this instance.
- if (GlobalSymbolTable.count(Name))
- continue;
-
- // If we're not responsible for this symbol, skip it.
- if (!ResponsibilitySet.count(Name))
- continue;
-
- // Otherwise update the flags on the symbol to make this definition
- // strong.
- if (JITSymFlags->isWeak())
- *JITSymFlags &= ~JITSymbolFlags::Weak;
- if (JITSymFlags->isCommon()) {
- *JITSymFlags &= ~JITSymbolFlags::Common;
- uint32_t Align = I->getAlignment();
- uint64_t Size = I->getCommonSize();
- if (!CommonAlign)
- CommonAlign = Align;
- CommonSize = alignTo(CommonSize, Align) + Size;
- CommonSymbolsToAllocate.push_back(*I);
- }
- }
-
- if (Flags & SymbolRef::SF_Absolute &&
- SymType != object::SymbolRef::ST_File) {
- uint64_t Addr = 0;
- if (auto AddrOrErr = I->getAddress())
- Addr = *AddrOrErr;
- else
- return AddrOrErr.takeError();
-
- unsigned SectionID = AbsoluteSymbolSection;
-
- LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
- << " SID: " << SectionID
- << " Offset: " << format("%p", (uintptr_t)Addr)
- << " flags: " << Flags << "\n");
- GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
- } else if (SymType == object::SymbolRef::ST_Function ||
- SymType == object::SymbolRef::ST_Data ||
- SymType == object::SymbolRef::ST_Unknown ||
- SymType == object::SymbolRef::ST_Other) {
-
- section_iterator SI = Obj.section_end();
- if (auto SIOrErr = I->getSection())
- SI = *SIOrErr;
- else
- return SIOrErr.takeError();
-
- if (SI == Obj.section_end())
- continue;
-
- // Get symbol offset.
- uint64_t SectOffset;
- if (auto Err = getOffset(*I, *SI, SectOffset))
- return std::move(Err);
-
- bool IsCode = SI->isText();
- unsigned SectionID;
- if (auto SectionIDOrErr =
- findOrEmitSection(Obj, *SI, IsCode, LocalSections))
- SectionID = *SectionIDOrErr;
- else
- return SectionIDOrErr.takeError();
-
- LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
- << " SID: " << SectionID
- << " Offset: " << format("%p", (uintptr_t)SectOffset)
- << " flags: " << Flags << "\n");
- GlobalSymbolTable[Name] =
- SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
- }
- }
-
- // Allocate common symbols
- if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
- CommonAlign))
- return std::move(Err);
-
- // Parse and process relocations
- LLVM_DEBUG(dbgs() << "Parse relocations:\n");
- for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
- SI != SE; ++SI) {
- StubMap Stubs;
- section_iterator RelocatedSection = SI->getRelocatedSection();
-
- if (RelocatedSection == SE)
- continue;
-
- relocation_iterator I = SI->relocation_begin();
- relocation_iterator E = SI->relocation_end();
-
- if (I == E && !ProcessAllSections)
- continue;
-
- bool IsCode = RelocatedSection->isText();
- unsigned SectionID = 0;
- if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
- LocalSections))
- SectionID = *SectionIDOrErr;
- else
- return SectionIDOrErr.takeError();
-
- LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
-
- for (; I != E;)
- if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
- I = *IOrErr;
- else
- return IOrErr.takeError();
-
- // If there is an attached checker, notify it about the stubs for this
- // section so that they can be verified.
- if (Checker)
- Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
- }
-
- // Give the subclasses a chance to tie-up any loose ends.
- if (auto Err = finalizeLoad(Obj, LocalSections))
- return std::move(Err);
-
-// for (auto E : LocalSections)
-// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
-
- return LocalSections;
-}
-
-// A helper method for computeTotalAllocSize.
-// Computes the memory size required to allocate sections with the given sizes,
-// assuming that all sections are allocated with the given alignment
-static uint64_t
-computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
- uint64_t Alignment) {
- uint64_t TotalSize = 0;
- for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
- uint64_t AlignedSize =
- (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
- TotalSize += AlignedSize;
- }
- return TotalSize;
-}
-
-static bool isRequiredForExecution(const SectionRef Section) {
- const ObjectFile *Obj = Section.getObject();
- if (isa<object::ELFObjectFileBase>(Obj))
- return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
- if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
- const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
- // Avoid loading zero-sized COFF sections.
- // In PE files, VirtualSize gives the section size, and SizeOfRawData
- // may be zero for sections with content. In Obj files, SizeOfRawData
- // gives the section size, and VirtualSize is always zero. Hence
- // the need to check for both cases below.
- bool HasContent =
- (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
- bool IsDiscardable =
- CoffSection->Characteristics &
- (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
- return HasContent && !IsDiscardable;
- }
-
- assert(isa<MachOObjectFile>(Obj));
- return true;
-}
-
-static bool isReadOnlyData(const SectionRef Section) {
- const ObjectFile *Obj = Section.getObject();
- if (isa<object::ELFObjectFileBase>(Obj))
- return !(ELFSectionRef(Section).getFlags() &
- (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
- if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
- return ((COFFObj->getCOFFSection(Section)->Characteristics &
- (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
- | COFF::IMAGE_SCN_MEM_READ
- | COFF::IMAGE_SCN_MEM_WRITE))
- ==
- (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
- | COFF::IMAGE_SCN_MEM_READ));
-
- assert(isa<MachOObjectFile>(Obj));
- return false;
-}
-
-static bool isZeroInit(const SectionRef Section) {
- const ObjectFile *Obj = Section.getObject();
- if (isa<object::ELFObjectFileBase>(Obj))
- return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
- if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
- return COFFObj->getCOFFSection(Section)->Characteristics &
- COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
-
- auto *MachO = cast<MachOObjectFile>(Obj);
- unsigned SectionType = MachO->getSectionType(Section);
- return SectionType == MachO::S_ZEROFILL ||
- SectionType == MachO::S_GB_ZEROFILL;
-}
-
-// Compute an upper bound of the memory size that is required to load all
-// sections
-Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
- uint64_t &CodeSize,
- uint32_t &CodeAlign,
- uint64_t &RODataSize,
- uint32_t &RODataAlign,
- uint64_t &RWDataSize,
- uint32_t &RWDataAlign) {
- // Compute the size of all sections required for execution
- std::vector<uint64_t> CodeSectionSizes;
- std::vector<uint64_t> ROSectionSizes;
- std::vector<uint64_t> RWSectionSizes;
-
- // Collect sizes of all sections to be loaded;
- // also determine the max alignment of all sections
- for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
- SI != SE; ++SI) {
- const SectionRef &Section = *SI;
-
- bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
-
- // Consider only the sections that are required to be loaded for execution
- if (IsRequired) {
- uint64_t DataSize = Section.getSize();
- uint64_t Alignment64 = Section.getAlignment();
- unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
- bool IsCode = Section.isText();
- bool IsReadOnly = isReadOnlyData(Section);
-
- StringRef Name;
- if (auto EC = Section.getName(Name))
- return errorCodeToError(EC);
-
- uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
- uint64_t SectionSize = DataSize + StubBufSize;
-
- // The .eh_frame section (at least on Linux) needs an extra four bytes
- // padded
- // with zeroes added at the end. For MachO objects, this section has a
- // slightly different name, so this won't have any effect for MachO
- // objects.
- if (Name == ".eh_frame")
- SectionSize += 4;
-
- if (!SectionSize)
- SectionSize = 1;
-
- if (IsCode) {
- CodeAlign = std::max(CodeAlign, Alignment);
- CodeSectionSizes.push_back(SectionSize);
- } else if (IsReadOnly) {
- RODataAlign = std::max(RODataAlign, Alignment);
- ROSectionSizes.push_back(SectionSize);
- } else {
- RWDataAlign = std::max(RWDataAlign, Alignment);
- RWSectionSizes.push_back(SectionSize);
- }
- }
- }
-
- // Compute Global Offset Table size. If it is not zero we
- // also update alignment, which is equal to a size of a
- // single GOT entry.
- if (unsigned GotSize = computeGOTSize(Obj)) {
- RWSectionSizes.push_back(GotSize);
- RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
- }
-
- // Compute the size of all common symbols
- uint64_t CommonSize = 0;
- uint32_t CommonAlign = 1;
- for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
- ++I) {
- uint32_t Flags = I->getFlags();
- if (Flags & SymbolRef::SF_Common) {
- // Add the common symbols to a list. We'll allocate them all below.
- uint64_t Size = I->getCommonSize();
- uint32_t Align = I->getAlignment();
- // If this is the first common symbol, use its alignment as the alignment
- // for the common symbols section.
- if (CommonSize == 0)
- CommonAlign = Align;
- CommonSize = alignTo(CommonSize, Align) + Size;
- }
- }
- if (CommonSize != 0) {
- RWSectionSizes.push_back(CommonSize);
- RWDataAlign = std::max(RWDataAlign, CommonAlign);
- }
-
- // Compute the required allocation space for each different type of sections
- // (code, read-only data, read-write data) assuming that all sections are
- // allocated with the max alignment. Note that we cannot compute with the
- // individual alignments of the sections, because then the required size
- // depends on the order, in which the sections are allocated.
- CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
- RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
- RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
-
- return Error::success();
-}
-
-// compute GOT size
-unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
- size_t GotEntrySize = getGOTEntrySize();
- if (!GotEntrySize)
- return 0;
-
- size_t GotSize = 0;
- for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
- SI != SE; ++SI) {
-
- for (const RelocationRef &Reloc : SI->relocations())
- if (relocationNeedsGot(Reloc))
- GotSize += GotEntrySize;
- }
-
- return GotSize;
-}
-
-// compute stub buffer size for the given section
-unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
- const SectionRef &Section) {
- unsigned StubSize = getMaxStubSize();
- if (StubSize == 0) {
- return 0;
- }
- // FIXME: this is an inefficient way to handle this. We should computed the
- // necessary section allocation size in loadObject by walking all the sections
- // once.
- unsigned StubBufSize = 0;
- for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
- SI != SE; ++SI) {
- section_iterator RelSecI = SI->getRelocatedSection();
- if (!(RelSecI == Section))
- continue;
-
- for (const RelocationRef &Reloc : SI->relocations())
- if (relocationNeedsStub(Reloc))
- StubBufSize += StubSize;
- }
-
- // Get section data size and alignment
- uint64_t DataSize = Section.getSize();
- uint64_t Alignment64 = Section.getAlignment();
-
- // Add stubbuf size alignment
- unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
- unsigned StubAlignment = getStubAlignment();
- unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
- if (StubAlignment > EndAlignment)
- StubBufSize += StubAlignment - EndAlignment;
- return StubBufSize;
-}
-
-uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
- unsigned Size) const {
- uint64_t Result = 0;
- if (IsTargetLittleEndian) {
- Src += Size - 1;
- while (Size--)
- Result = (Result << 8) | *Src--;
- } else
- while (Size--)
- Result = (Result << 8) | *Src++;
-
- return Result;
-}
-
-void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
- unsigned Size) const {
- if (IsTargetLittleEndian) {
- while (Size--) {
- *Dst++ = Value & 0xFF;
- Value >>= 8;
- }
- } else {
- Dst += Size - 1;
- while (Size--) {
- *Dst-- = Value & 0xFF;
- Value >>= 8;
- }
- }
-}
-
-Expected<JITSymbolFlags>
-RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
- return JITSymbolFlags::fromObjectSymbol(SR);
-}
-
-Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
- CommonSymbolList &SymbolsToAllocate,
- uint64_t CommonSize,
- uint32_t CommonAlign) {
- if (SymbolsToAllocate.empty())
- return Error::success();
-
- // Allocate memory for the section
- unsigned SectionID = Sections.size();
- uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
- "<common symbols>", false);
- if (!Addr)
- report_fatal_error("Unable to allocate memory for common symbols!");
- uint64_t Offset = 0;
- Sections.push_back(
- SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
- memset(Addr, 0, CommonSize);
-
- LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
- << " new addr: " << format("%p", Addr)
- << " DataSize: " << CommonSize << "\n");
-
- // Assign the address of each symbol
- for (auto &Sym : SymbolsToAllocate) {
- uint32_t Align = Sym.getAlignment();
- uint64_t Size = Sym.getCommonSize();
- StringRef Name;
- if (auto NameOrErr = Sym.getName())
- Name = *NameOrErr;
- else
- return NameOrErr.takeError();
- if (Align) {
- // This symbol has an alignment requirement.
- uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
- Addr += AlignOffset;
- Offset += AlignOffset;
- }
- auto JITSymFlags = getJITSymbolFlags(Sym);
-
- if (!JITSymFlags)
- return JITSymFlags.takeError();
-
- LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
- << format("%p", Addr) << "\n");
- GlobalSymbolTable[Name] =
- SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
- Offset += Size;
- Addr += Size;
- }
-
- if (Checker)
- Checker->registerSection(Obj.getFileName(), SectionID);
-
- return Error::success();
-}
-
-Expected<unsigned>
-RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
- const SectionRef &Section,
- bool IsCode) {
- StringRef data;
- uint64_t Alignment64 = Section.getAlignment();
-
- unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
- unsigned PaddingSize = 0;
- unsigned StubBufSize = 0;
- bool IsRequired = isRequiredForExecution(Section);
- bool IsVirtual = Section.isVirtual();
- bool IsZeroInit = isZeroInit(Section);
- bool IsReadOnly = isReadOnlyData(Section);
- uint64_t DataSize = Section.getSize();
-
- StringRef Name;
- if (auto EC = Section.getName(Name))
- return errorCodeToError(EC);
-
- StubBufSize = computeSectionStubBufSize(Obj, Section);
-
- // The .eh_frame section (at least on Linux) needs an extra four bytes padded
- // with zeroes added at the end. For MachO objects, this section has a
- // slightly different name, so this won't have any effect for MachO objects.
- if (Name == ".eh_frame")
- PaddingSize = 4;
-
- uintptr_t Allocate;
- unsigned SectionID = Sections.size();
- uint8_t *Addr;
- const char *pData = nullptr;
-
- // If this section contains any bits (i.e. isn't a virtual or bss section),
- // grab a reference to them.
- if (!IsVirtual && !IsZeroInit) {
- // In either case, set the location of the unrelocated section in memory,
- // since we still process relocations for it even if we're not applying them.
- if (auto EC = Section.getContents(data))
- return errorCodeToError(EC);
- pData = data.data();
- }
-
- // Code section alignment needs to be at least as high as stub alignment or
- // padding calculations may by incorrect when the section is remapped to a
- // higher alignment.
- if (IsCode) {
- Alignment = std::max(Alignment, getStubAlignment());
- if (StubBufSize > 0)
- PaddingSize += getStubAlignment() - 1;
- }
-
- // Some sections, such as debug info, don't need to be loaded for execution.
- // Process those only if explicitly requested.
- if (IsRequired || ProcessAllSections) {
- Allocate = DataSize + PaddingSize + StubBufSize;
- if (!Allocate)
- Allocate = 1;
- Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
- Name)
- : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
- Name, IsReadOnly);
- if (!Addr)
- report_fatal_error("Unable to allocate section memory!");
-
- // Zero-initialize or copy the data from the image
- if (IsZeroInit || IsVirtual)
- memset(Addr, 0, DataSize);
- else
- memcpy(Addr, pData, DataSize);
-
- // Fill in any extra bytes we allocated for padding
- if (PaddingSize != 0) {
- memset(Addr + DataSize, 0, PaddingSize);
- // Update the DataSize variable to include padding.
- DataSize += PaddingSize;
-
- // Align DataSize to stub alignment if we have any stubs (PaddingSize will
- // have been increased above to account for this).
- if (StubBufSize > 0)
- DataSize &= ~(getStubAlignment() - 1);
- }
-
- LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
- << Name << " obj addr: " << format("%p", pData)
- << " new addr: " << format("%p", Addr) << " DataSize: "
- << DataSize << " StubBufSize: " << StubBufSize
- << " Allocate: " << Allocate << "\n");
- } else {
- // Even if we didn't load the section, we need to record an entry for it
- // to handle later processing (and by 'handle' I mean don't do anything
- // with these sections).
- Allocate = 0;
- Addr = nullptr;
- LLVM_DEBUG(
- dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
- << " obj addr: " << format("%p", data.data()) << " new addr: 0"
- << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
- << " Allocate: " << Allocate << "\n");
- }
-
- Sections.push_back(
- SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
-
- // Debug info sections are linked as if their load address was zero
- if (!IsRequired)
- Sections.back().setLoadAddress(0);
-
- if (Checker)
- Checker->registerSection(Obj.getFileName(), SectionID);
-
- return SectionID;
-}
-
-Expected<unsigned>
-RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
- const SectionRef &Section,
- bool IsCode,
- ObjSectionToIDMap &LocalSections) {
-
- unsigned SectionID = 0;
- ObjSectionToIDMap::iterator i = LocalSections.find(Section);
- if (i != LocalSections.end())
- SectionID = i->second;
- else {
- if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
- SectionID = *SectionIDOrErr;
- else
- return SectionIDOrErr.takeError();
- LocalSections[Section] = SectionID;
- }
- return SectionID;
-}
-
-void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
- unsigned SectionID) {
- Relocations[SectionID].push_back(RE);
-}
-
-void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
- StringRef SymbolName) {
- // Relocation by symbol. If the symbol is found in the global symbol table,
- // create an appropriate section relocation. Otherwise, add it to
- // ExternalSymbolRelocations.
- RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
- if (Loc == GlobalSymbolTable.end()) {
- ExternalSymbolRelocations[SymbolName].push_back(RE);
- } else {
- // Copy the RE since we want to modify its addend.
- RelocationEntry RECopy = RE;
- const auto &SymInfo = Loc->second;
- RECopy.Addend += SymInfo.getOffset();
- Relocations[SymInfo.getSectionID()].push_back(RECopy);
- }
-}
-
-uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
- unsigned AbiVariant) {
- if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
- // This stub has to be able to access the full address space,
- // since symbol lookup won't necessarily find a handy, in-range,
- // PLT stub for functions which could be anywhere.
- // Stub can use ip0 (== x16) to calculate address
- writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
- writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
- writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
- writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
- writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
-
- return Addr;
- } else if (Arch == Triple::arm || Arch == Triple::armeb) {
- // TODO: There is only ARM far stub now. We should add the Thumb stub,
- // and stubs for branches Thumb - ARM and ARM - Thumb.
- writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
- return Addr + 4;
- } else if (IsMipsO32ABI || IsMipsN32ABI) {
- // 0: 3c190000 lui t9,%hi(addr).
- // 4: 27390000 addiu t9,t9,%lo(addr).
- // 8: 03200008 jr t9.
- // c: 00000000 nop.
- const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
- const unsigned NopInstr = 0x0;
- unsigned JrT9Instr = 0x03200008;
- if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
- (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
- JrT9Instr = 0x03200009;
-
- writeBytesUnaligned(LuiT9Instr, Addr, 4);
- writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
- writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
- writeBytesUnaligned(NopInstr, Addr + 12, 4);
- return Addr;
- } else if (IsMipsN64ABI) {
- // 0: 3c190000 lui t9,%highest(addr).
- // 4: 67390000 daddiu t9,t9,%higher(addr).
- // 8: 0019CC38 dsll t9,t9,16.
- // c: 67390000 daddiu t9,t9,%hi(addr).
- // 10: 0019CC38 dsll t9,t9,16.
- // 14: 67390000 daddiu t9,t9,%lo(addr).
- // 18: 03200008 jr t9.
- // 1c: 00000000 nop.
- const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
- DsllT9Instr = 0x19CC38;
- const unsigned NopInstr = 0x0;
- unsigned JrT9Instr = 0x03200008;
- if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
- JrT9Instr = 0x03200009;
-
- writeBytesUnaligned(LuiT9Instr, Addr, 4);
- writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
- writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
- writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
- writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
- writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
- writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
- writeBytesUnaligned(NopInstr, Addr + 28, 4);
- return Addr;
- } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
- // Depending on which version of the ELF ABI is in use, we need to
- // generate one of two variants of the stub. They both start with
- // the same sequence to load the target address into r12.
- writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
- writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
- writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
- writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
- writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
- if (AbiVariant == 2) {
- // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
- // The address is already in r12 as required by the ABI. Branch to it.
- writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
- writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
- writeInt32BE(Addr+28, 0x4E800420); // bctr
- } else {
- // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
- // Load the function address on r11 and sets it to control register. Also
- // loads the function TOC in r2 and environment pointer to r11.
- writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
- writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
- writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
- writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
- writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
- writeInt32BE(Addr+40, 0x4E800420); // bctr
- }
- return Addr;
- } else if (Arch == Triple::systemz) {
- writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
- writeInt16BE(Addr+2, 0x0000);
- writeInt16BE(Addr+4, 0x0004);
- writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
- // 8-byte address stored at Addr + 8
- return Addr;
- } else if (Arch == Triple::x86_64) {
- *Addr = 0xFF; // jmp
- *(Addr+1) = 0x25; // rip
- // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
- } else if (Arch == Triple::x86) {
- *Addr = 0xE9; // 32-bit pc-relative jump.
- }
- return Addr;
-}
-
-// Assign an address to a symbol name and resolve all the relocations
-// associated with it.
-void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
- uint64_t Addr) {
- // The address to use for relocation resolution is not
- // the address of the local section buffer. We must be doing
- // a remote execution environment of some sort. Relocations can't
- // be applied until all the sections have been moved. The client must
- // trigger this with a call to MCJIT::finalize() or
- // RuntimeDyld::resolveRelocations().
- //
- // Addr is a uint64_t because we can't assume the pointer width
- // of the target is the same as that of the host. Just use a generic
- // "big enough" type.
- LLVM_DEBUG(
- dbgs() << "Reassigning address for section " << SectionID << " ("
- << Sections[SectionID].getName() << "): "
- << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
- << " -> " << format("0x%016" PRIx64, Addr) << "\n");
- Sections[SectionID].setLoadAddress(Addr);
-}
-
-void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
- uint64_t Value) {
- for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
- const RelocationEntry &RE = Relocs[i];
- // Ignore relocations for sections that were not loaded
- if (Sections[RE.SectionID].getAddress() == nullptr)
- continue;
- resolveRelocation(RE, Value);
- }
-}
-
-void RuntimeDyldImpl::applyExternalSymbolRelocations(
- const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
- while (!ExternalSymbolRelocations.empty()) {
-
- StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
-
- StringRef Name = i->first();
- if (Name.size() == 0) {
- // This is an absolute symbol, use an address of zero.
- LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
- << "\n");
- RelocationList &Relocs = i->second;
- resolveRelocationList(Relocs, 0);
- } else {
- uint64_t Addr = 0;
- JITSymbolFlags Flags;
- RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
- if (Loc == GlobalSymbolTable.end()) {
- auto RRI = ExternalSymbolMap.find(Name);
- assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
- Addr = RRI->second.getAddress();
- Flags = RRI->second.getFlags();
- // The call to getSymbolAddress may have caused additional modules to
- // be loaded, which may have added new entries to the
- // ExternalSymbolRelocations map. Consquently, we need to update our
- // iterator. This is also why retrieval of the relocation list
- // associated with this symbol is deferred until below this point.
- // New entries may have been added to the relocation list.
- i = ExternalSymbolRelocations.find(Name);
- } else {
- // We found the symbol in our global table. It was probably in a
- // Module that we loaded previously.
- const auto &SymInfo = Loc->second;
- Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
- SymInfo.getOffset();
- Flags = SymInfo.getFlags();
- }
-
- // FIXME: Implement error handling that doesn't kill the host program!
- if (!Addr)
- report_fatal_error("Program used external function '" + Name +
- "' which could not be resolved!");
-
- // If Resolver returned UINT64_MAX, the client wants to handle this symbol
- // manually and we shouldn't resolve its relocations.
- if (Addr != UINT64_MAX) {
-
- // Tweak the address based on the symbol flags if necessary.
- // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
- // if the target symbol is Thumb.
- Addr = modifyAddressBasedOnFlags(Addr, Flags);
-
- LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
- << format("0x%lx", Addr) << "\n");
- // This list may have been updated when we called getSymbolAddress, so
- // don't change this code to get the list earlier.
- RelocationList &Relocs = i->second;
- resolveRelocationList(Relocs, Addr);
- }
- }
-
- ExternalSymbolRelocations.erase(i);
- }
-}
-
-Error RuntimeDyldImpl::resolveExternalSymbols() {
- StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
-
- // Resolution can trigger emission of more symbols, so iterate until
- // we've resolved *everything*.
- {
- JITSymbolResolver::LookupSet ResolvedSymbols;
-
- while (true) {
- JITSymbolResolver::LookupSet NewSymbols;
-
- for (auto &RelocKV : ExternalSymbolRelocations) {
- StringRef Name = RelocKV.first();
- if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
- !ResolvedSymbols.count(Name))
- NewSymbols.insert(Name);
- }
-
- if (NewSymbols.empty())
- break;
-
-#ifdef _MSC_VER
- using ExpectedLookupResult =
- MSVCPExpected<JITSymbolResolver::LookupResult>;
-#else
- using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
-#endif
-
- auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
- auto NewSymbolsF = NewSymbolsP->get_future();
- Resolver.lookup(NewSymbols,
- [=](Expected<JITSymbolResolver::LookupResult> Result) {
- NewSymbolsP->set_value(std::move(Result));
- });
-
- auto NewResolverResults = NewSymbolsF.get();
-
- if (!NewResolverResults)
- return NewResolverResults.takeError();
-
- assert(NewResolverResults->size() == NewSymbols.size() &&
- "Should have errored on unresolved symbols");
-
- for (auto &RRKV : *NewResolverResults) {
- assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
- ExternalSymbolMap.insert(RRKV);
- ResolvedSymbols.insert(RRKV.first);
- }
- }
- }
-
- applyExternalSymbolRelocations(ExternalSymbolMap);
-
- return Error::success();
-}
-
-void RuntimeDyldImpl::finalizeAsync(
- std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
- std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
-
- // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
- // c++14.
- auto SharedUnderlyingBuffer =
- std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
- auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
- auto PostResolveContinuation =
- [SharedThis, OnEmitted, SharedUnderlyingBuffer](
- Expected<JITSymbolResolver::LookupResult> Result) {
- if (!Result) {
- OnEmitted(Result.takeError());
- return;
- }
-
- /// Copy the result into a StringMap, where the keys are held by value.
- StringMap<JITEvaluatedSymbol> Resolved;
- for (auto &KV : *Result)
- Resolved[KV.first] = KV.second;
-
- SharedThis->applyExternalSymbolRelocations(Resolved);
- SharedThis->resolveLocalRelocations();
- SharedThis->registerEHFrames();
- std::string ErrMsg;
- if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
- OnEmitted(make_error<StringError>(std::move(ErrMsg),
- inconvertibleErrorCode()));
- else
- OnEmitted(Error::success());
- };
-
- JITSymbolResolver::LookupSet Symbols;
-
- for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
- StringRef Name = RelocKV.first();
- assert(!Name.empty() && "Symbol has no name?");
- assert(!SharedThis->GlobalSymbolTable.count(Name) &&
- "Name already processed. RuntimeDyld instances can not be re-used "
- "when finalizing with finalizeAsync.");
- Symbols.insert(Name);
- }
-
- if (!Symbols.empty()) {
- SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
- } else
- PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
-}
-
-//===----------------------------------------------------------------------===//
-// RuntimeDyld class implementation
-
-uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
- const object::SectionRef &Sec) const {
-
- auto I = ObjSecToIDMap.find(Sec);
- if (I != ObjSecToIDMap.end())
- return RTDyld.Sections[I->second].getLoadAddress();
-
- return 0;
-}
-
-void RuntimeDyld::MemoryManager::anchor() {}
-void JITSymbolResolver::anchor() {}
-void LegacyJITSymbolResolver::anchor() {}
-
-RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
- JITSymbolResolver &Resolver)
- : MemMgr(MemMgr), Resolver(Resolver) {
- // FIXME: There's a potential issue lurking here if a single instance of
- // RuntimeDyld is used to load multiple objects. The current implementation
- // associates a single memory manager with a RuntimeDyld instance. Even
- // though the public class spawns a new 'impl' instance for each load,
- // they share a single memory manager. This can become a problem when page
- // permissions are applied.
- Dyld = nullptr;
- ProcessAllSections = false;
- Checker = nullptr;
-}
-
-RuntimeDyld::~RuntimeDyld() {}
-
-static std::unique_ptr<RuntimeDyldCOFF>
-createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
- JITSymbolResolver &Resolver, bool ProcessAllSections,
- RuntimeDyldCheckerImpl *Checker) {
- std::unique_ptr<RuntimeDyldCOFF> Dyld =
- RuntimeDyldCOFF::create(Arch, MM, Resolver);
- Dyld->setProcessAllSections(ProcessAllSections);
- Dyld->setRuntimeDyldChecker(Checker);
- return Dyld;
-}
-
-static std::unique_ptr<RuntimeDyldELF>
-createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
- JITSymbolResolver &Resolver, bool ProcessAllSections,
- RuntimeDyldCheckerImpl *Checker) {
- std::unique_ptr<RuntimeDyldELF> Dyld =
- RuntimeDyldELF::create(Arch, MM, Resolver);
- Dyld->setProcessAllSections(ProcessAllSections);
- Dyld->setRuntimeDyldChecker(Checker);
- return Dyld;
-}
-
-static std::unique_ptr<RuntimeDyldMachO>
-createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
- JITSymbolResolver &Resolver,
- bool ProcessAllSections,
- RuntimeDyldCheckerImpl *Checker) {
- std::unique_ptr<RuntimeDyldMachO> Dyld =
- RuntimeDyldMachO::create(Arch, MM, Resolver);
- Dyld->setProcessAllSections(ProcessAllSections);
- Dyld->setRuntimeDyldChecker(Checker);
- return Dyld;
-}
-
-std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
-RuntimeDyld::loadObject(const ObjectFile &Obj) {
- if (!Dyld) {
- if (Obj.isELF())
- Dyld =
- createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
- MemMgr, Resolver, ProcessAllSections, Checker);
- else if (Obj.isMachO())
- Dyld = createRuntimeDyldMachO(
- static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
- ProcessAllSections, Checker);
- else if (Obj.isCOFF())
- Dyld = createRuntimeDyldCOFF(
- static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
- ProcessAllSections, Checker);
- else
- report_fatal_error("Incompatible object format!");
- }
-
- if (!Dyld->isCompatibleFile(Obj))
- report_fatal_error("Incompatible object format!");
-
- auto LoadedObjInfo = Dyld->loadObject(Obj);
- MemMgr.notifyObjectLoaded(*this, Obj);
- return LoadedObjInfo;
-}
-
-void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
- if (!Dyld)
- return nullptr;
- return Dyld->getSymbolLocalAddress(Name);
-}
-
-JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
- if (!Dyld)
- return nullptr;
- return Dyld->getSymbol(Name);
-}
-
-std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
- if (!Dyld)
- return std::map<StringRef, JITEvaluatedSymbol>();
- return Dyld->getSymbolTable();
-}
-
-void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
-
-void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
- Dyld->reassignSectionAddress(SectionID, Addr);
-}
-
-void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
- uint64_t TargetAddress) {
- Dyld->mapSectionAddress(LocalAddress, TargetAddress);
-}
-
-bool RuntimeDyld::hasError() { return Dyld->hasError(); }
-
-StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
-
-void RuntimeDyld::finalizeWithMemoryManagerLocking() {
- bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
- MemMgr.FinalizationLocked = true;
- resolveRelocations();
- registerEHFrames();
- if (!MemoryFinalizationLocked) {
- MemMgr.finalizeMemory();
- MemMgr.FinalizationLocked = false;
- }
-}
-
-void RuntimeDyld::registerEHFrames() {
- if (Dyld)
- Dyld->registerEHFrames();
-}
-
-void RuntimeDyld::deregisterEHFrames() {
- if (Dyld)
- Dyld->deregisterEHFrames();
-}
-// FIXME: Kill this with fire once we have a new JIT linker: this is only here
-// so that we can re-use RuntimeDyld's implementation without twisting the
-// interface any further for ORC's purposes.
-void jitLinkForORC(object::ObjectFile &Obj,
- std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
- RuntimeDyld::MemoryManager &MemMgr,
- JITSymbolResolver &Resolver, bool ProcessAllSections,
- std::function<Error(
- std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
- std::map<StringRef, JITEvaluatedSymbol>)>
- OnLoaded,
- std::function<void(Error)> OnEmitted) {
-
- RuntimeDyld RTDyld(MemMgr, Resolver);
- RTDyld.setProcessAllSections(ProcessAllSections);
-
- auto Info = RTDyld.loadObject(Obj);
-
- if (RTDyld.hasError()) {
- OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
- inconvertibleErrorCode()));
- return;
- }
-
- if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
- OnEmitted(std::move(Err));
-
- RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
- std::move(UnderlyingBuffer));
-}
-
-} // end namespace llvm