diff options
Diffstat (limited to 'gnu/llvm/lib/Fuzzer/FuzzerTraceState.cpp')
| -rw-r--r-- | gnu/llvm/lib/Fuzzer/FuzzerTraceState.cpp | 604 |
1 files changed, 604 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Fuzzer/FuzzerTraceState.cpp b/gnu/llvm/lib/Fuzzer/FuzzerTraceState.cpp new file mode 100644 index 00000000000..b2006fa3aa4 --- /dev/null +++ b/gnu/llvm/lib/Fuzzer/FuzzerTraceState.cpp @@ -0,0 +1,604 @@ +//===- FuzzerTraceState.cpp - Trace-based fuzzer mutator ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// This file implements a mutation algorithm based on instruction traces and +// on taint analysis feedback from DFSan. +// +// Instruction traces are special hooks inserted by the compiler around +// interesting instructions. Currently supported traces: +// * __sanitizer_cov_trace_cmp -- inserted before every ICMP instruction, +// receives the type, size and arguments of ICMP. +// +// Every time a traced event is intercepted we analyse the data involved +// in the event and suggest a mutation for future executions. +// For example if 4 bytes of data that derive from input bytes {4,5,6,7} +// are compared with a constant 12345, +// we try to insert 12345, 12344, 12346 into bytes +// {4,5,6,7} of the next fuzzed inputs. +// +// The fuzzer can work only with the traces, or with both traces and DFSan. +// +// DataFlowSanitizer (DFSan) is a tool for +// generalised dynamic data flow (taint) analysis: +// http://clang.llvm.org/docs/DataFlowSanitizer.html . +// +// The approach with DFSan-based fuzzing has some similarity to +// "Taint-based Directed Whitebox Fuzzing" +// by Vijay Ganesh & Tim Leek & Martin Rinard: +// http://dspace.mit.edu/openaccess-disseminate/1721.1/59320, +// but it uses a full blown LLVM IR taint analysis and separate instrumentation +// to analyze all of the "attack points" at once. +// +// Workflow with DFSan: +// * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation. +// * The code under test is compiled with DFSan *and* with instruction traces. +// * Every call to HOOK(a,b) is replaced by DFSan with +// __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK +// gets all the taint labels for the arguments. +// * At the Fuzzer startup we assign a unique DFSan label +// to every byte of the input string (Fuzzer::CurrentUnit) so that for any +// chunk of data we know which input bytes it has derived from. +// * The __dfsw_* functions (implemented in this file) record the +// parameters (i.e. the application data and the corresponding taint labels) +// in a global state. +// +// Parts of this code will not function when DFSan is not linked in. +// Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer +// we redeclare the dfsan_* interface functions as weak and check if they +// are nullptr before calling. +// If this approach proves to be useful we may add attribute(weak) to the +// dfsan declarations in dfsan_interface.h +// +// This module is in the "proof of concept" stage. +// It is capable of solving only the simplest puzzles +// like test/dfsan/DFSanSimpleCmpTest.cpp. +//===----------------------------------------------------------------------===// + +/* Example of manual usage (-fsanitize=dataflow is optional): +( + cd $LLVM/lib/Fuzzer/ + clang -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp + clang++ -O0 -std=c++11 -fsanitize-coverage=edge,trace-cmp \ + -fsanitize=dataflow \ + test/SimpleCmpTest.cpp Fuzzer*.o + ./a.out -use_traces=1 +) +*/ + +#include "FuzzerDFSan.h" +#include "FuzzerInternal.h" + +#include <algorithm> +#include <cstring> +#include <thread> +#include <map> + +#if !LLVM_FUZZER_SUPPORTS_DFSAN +// Stubs for dfsan for platforms where dfsan does not exist and weak +// functions don't work. +extern "C" { +dfsan_label dfsan_create_label(const char *desc, void *userdata) { return 0; } +void dfsan_set_label(dfsan_label label, void *addr, size_t size) {} +void dfsan_add_label(dfsan_label label, void *addr, size_t size) {} +const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) { + return nullptr; +} +dfsan_label dfsan_read_label(const void *addr, size_t size) { return 0; } +} // extern "C" +#endif // !LLVM_FUZZER_SUPPORTS_DFSAN + +namespace fuzzer { + +// These values are copied from include/llvm/IR/InstrTypes.h. +// We do not include the LLVM headers here to remain independent. +// If these values ever change, an assertion in ComputeCmp will fail. +enum Predicate { + ICMP_EQ = 32, ///< equal + ICMP_NE = 33, ///< not equal + ICMP_UGT = 34, ///< unsigned greater than + ICMP_UGE = 35, ///< unsigned greater or equal + ICMP_ULT = 36, ///< unsigned less than + ICMP_ULE = 37, ///< unsigned less or equal + ICMP_SGT = 38, ///< signed greater than + ICMP_SGE = 39, ///< signed greater or equal + ICMP_SLT = 40, ///< signed less than + ICMP_SLE = 41, ///< signed less or equal +}; + +template <class U, class S> +bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) { + switch(CmpType) { + case ICMP_EQ : return Arg1 == Arg2; + case ICMP_NE : return Arg1 != Arg2; + case ICMP_UGT: return Arg1 > Arg2; + case ICMP_UGE: return Arg1 >= Arg2; + case ICMP_ULT: return Arg1 < Arg2; + case ICMP_ULE: return Arg1 <= Arg2; + case ICMP_SGT: return (S)Arg1 > (S)Arg2; + case ICMP_SGE: return (S)Arg1 >= (S)Arg2; + case ICMP_SLT: return (S)Arg1 < (S)Arg2; + case ICMP_SLE: return (S)Arg1 <= (S)Arg2; + default: assert(0 && "unsupported CmpType"); + } + return false; +} + +static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1, + uint64_t Arg2) { + if (CmpSize == 8) return ComputeCmp<uint64_t, int64_t>(CmpType, Arg1, Arg2); + if (CmpSize == 4) return ComputeCmp<uint32_t, int32_t>(CmpType, Arg1, Arg2); + if (CmpSize == 2) return ComputeCmp<uint16_t, int16_t>(CmpType, Arg1, Arg2); + if (CmpSize == 1) return ComputeCmp<uint8_t, int8_t>(CmpType, Arg1, Arg2); + // Other size, == + if (CmpType == ICMP_EQ) return Arg1 == Arg2; + // assert(0 && "unsupported cmp and type size combination"); + return true; +} + +// As a simplification we use the range of input bytes instead of a set of input +// bytes. +struct LabelRange { + uint16_t Beg, End; // Range is [Beg, End), thus Beg==End is an empty range. + + LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {} + + static LabelRange Join(LabelRange LR1, LabelRange LR2) { + if (LR1.Beg == LR1.End) return LR2; + if (LR2.Beg == LR2.End) return LR1; + return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)}; + } + LabelRange &Join(LabelRange LR) { + return *this = Join(*this, LR); + } + static LabelRange Singleton(const dfsan_label_info *LI) { + uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata; + assert(Idx > 0); + return {(uint16_t)(Idx - 1), Idx}; + } +}; + +// For now, very simple: put Size bytes of Data at position Pos. +struct TraceBasedMutation { + static const size_t kMaxSize = 28; + uint32_t Pos : 24; + uint32_t Size : 8; + uint8_t Data[kMaxSize]; +}; + +const size_t TraceBasedMutation::kMaxSize; + +class TraceState { + public: + TraceState(UserSuppliedFuzzer &USF, + const Fuzzer::FuzzingOptions &Options, const Unit &CurrentUnit) + : USF(USF), Options(Options), CurrentUnit(CurrentUnit) { + // Current trace collection is not thread-friendly and it probably + // does not have to be such, but at least we should not crash in presence + // of threads. So, just ignore all traces coming from all threads but one. + IsMyThread = true; + } + + LabelRange GetLabelRange(dfsan_label L); + void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, + uint64_t Arg1, uint64_t Arg2, dfsan_label L1, + dfsan_label L2); + void DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1, + const uint8_t *Data2, dfsan_label L1, + dfsan_label L2); + void DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, uint64_t Val, + size_t NumCases, uint64_t *Cases, dfsan_label L); + void TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, + uint64_t Arg1, uint64_t Arg2); + void TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1, + const uint8_t *Data2); + + void TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, uint64_t Val, + size_t NumCases, uint64_t *Cases); + int TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData, + size_t DataSize); + int TryToAddDesiredData(const uint8_t *PresentData, + const uint8_t *DesiredData, size_t DataSize); + + void StartTraceRecording() { + if (!Options.UseTraces) return; + RecordingTraces = true; + NumMutations = 0; + USF.GetMD().ClearAutoDictionary(); + } + + void StopTraceRecording() { + if (!RecordingTraces) return; + RecordingTraces = false; + for (size_t i = 0; i < NumMutations; i++) { + auto &M = Mutations[i]; + Unit U(M.Data, M.Data + M.Size); + if (Options.Verbosity >= 2) { + AutoDictUnitCounts[U]++; + AutoDictAdds++; + if ((AutoDictAdds & (AutoDictAdds - 1)) == 0) { + typedef std::pair<size_t, Unit> CU; + std::vector<CU> CountedUnits; + for (auto &I : AutoDictUnitCounts) + CountedUnits.push_back(std::make_pair(I.second, I.first)); + std::sort(CountedUnits.begin(), CountedUnits.end(), + [](const CU &a, const CU &b) { return a.first > b.first; }); + Printf("AutoDict:\n"); + for (auto &I : CountedUnits) { + Printf(" %zd ", I.first); + PrintASCII(I.second); + Printf("\n"); + } + } + } + USF.GetMD().AddWordToAutoDictionary(U, M.Pos); + } + } + + void AddMutation(uint32_t Pos, uint32_t Size, const uint8_t *Data) { + if (NumMutations >= kMaxMutations) return; + assert(Size <= TraceBasedMutation::kMaxSize); + auto &M = Mutations[NumMutations++]; + M.Pos = Pos; + M.Size = Size; + memcpy(M.Data, Data, Size); + } + + void AddMutation(uint32_t Pos, uint32_t Size, uint64_t Data) { + assert(Size <= sizeof(Data)); + AddMutation(Pos, Size, reinterpret_cast<uint8_t*>(&Data)); + } + + private: + bool IsTwoByteData(uint64_t Data) { + int64_t Signed = static_cast<int64_t>(Data); + Signed >>= 16; + return Signed == 0 || Signed == -1L; + } + bool RecordingTraces = false; + static const size_t kMaxMutations = 1 << 16; + size_t NumMutations; + TraceBasedMutation Mutations[kMaxMutations]; + LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)]; + UserSuppliedFuzzer &USF; + const Fuzzer::FuzzingOptions &Options; + const Unit &CurrentUnit; + std::map<Unit, size_t> AutoDictUnitCounts; + size_t AutoDictAdds = 0; + static thread_local bool IsMyThread; +}; + +thread_local bool TraceState::IsMyThread; + +LabelRange TraceState::GetLabelRange(dfsan_label L) { + LabelRange &LR = LabelRanges[L]; + if (LR.Beg < LR.End || L == 0) + return LR; + const dfsan_label_info *LI = dfsan_get_label_info(L); + if (LI->l1 || LI->l2) + return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2)); + return LR = LabelRange::Singleton(LI); +} + +void TraceState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, + uint64_t Arg1, uint64_t Arg2, dfsan_label L1, + dfsan_label L2) { + assert(ReallyHaveDFSan()); + if (!RecordingTraces || !IsMyThread) return; + if (L1 == 0 && L2 == 0) + return; // Not actionable. + if (L1 != 0 && L2 != 0) + return; // Probably still actionable. + bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2); + uint64_t Data = L1 ? Arg2 : Arg1; + LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2); + + for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) { + AddMutation(Pos, CmpSize, Data); + AddMutation(Pos, CmpSize, Data + 1); + AddMutation(Pos, CmpSize, Data - 1); + } + + if (CmpSize > LR.End - LR.Beg) + AddMutation(LR.Beg, (unsigned)(LR.End - LR.Beg), Data); + + + if (Options.Verbosity >= 3) + Printf("DFSanCmpCallback: PC %lx S %zd T %zd A1 %llx A2 %llx R %d L1 %d L2 " + "%d MU %zd\n", + PC, CmpSize, CmpType, Arg1, Arg2, Res, L1, L2, NumMutations); +} + +void TraceState::DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1, + const uint8_t *Data2, dfsan_label L1, + dfsan_label L2) { + + assert(ReallyHaveDFSan()); + if (!RecordingTraces || !IsMyThread) return; + if (L1 == 0 && L2 == 0) + return; // Not actionable. + if (L1 != 0 && L2 != 0) + return; // Probably still actionable. + + const uint8_t *Data = L1 ? Data2 : Data1; + LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2); + for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) { + AddMutation(Pos, CmpSize, Data); + if (Options.Verbosity >= 3) + Printf("DFSanMemcmpCallback: Pos %d Size %d\n", Pos, CmpSize); + } +} + +void TraceState::DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, + uint64_t Val, size_t NumCases, + uint64_t *Cases, dfsan_label L) { + assert(ReallyHaveDFSan()); + if (!RecordingTraces || !IsMyThread) return; + if (!L) return; // Not actionable. + LabelRange LR = GetLabelRange(L); + size_t ValSize = ValSizeInBits / 8; + bool TryShort = IsTwoByteData(Val); + for (size_t i = 0; i < NumCases; i++) + TryShort &= IsTwoByteData(Cases[i]); + + for (size_t Pos = LR.Beg; Pos + ValSize <= LR.End; Pos++) + for (size_t i = 0; i < NumCases; i++) + AddMutation(Pos, ValSize, Cases[i]); + + if (TryShort) + for (size_t Pos = LR.Beg; Pos + 2 <= LR.End; Pos++) + for (size_t i = 0; i < NumCases; i++) + AddMutation(Pos, 2, Cases[i]); + + if (Options.Verbosity >= 3) + Printf("DFSanSwitchCallback: PC %lx Val %zd SZ %zd # %zd L %d: {%d, %d} " + "TryShort %d\n", + PC, Val, ValSize, NumCases, L, LR.Beg, LR.End, TryShort); +} + +int TraceState::TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData, + size_t DataSize) { + int Res = 0; + const uint8_t *Beg = CurrentUnit.data(); + const uint8_t *End = Beg + CurrentUnit.size(); + for (const uint8_t *Cur = Beg; Cur < End; Cur++) { + Cur = (uint8_t *)memmem(Cur, End - Cur, &PresentData, DataSize); + if (!Cur) + break; + size_t Pos = Cur - Beg; + assert(Pos < CurrentUnit.size()); + AddMutation(Pos, DataSize, DesiredData); + AddMutation(Pos, DataSize, DesiredData + 1); + AddMutation(Pos, DataSize, DesiredData - 1); + Res++; + } + return Res; +} + +int TraceState::TryToAddDesiredData(const uint8_t *PresentData, + const uint8_t *DesiredData, + size_t DataSize) { + int Res = 0; + const uint8_t *Beg = CurrentUnit.data(); + const uint8_t *End = Beg + CurrentUnit.size(); + for (const uint8_t *Cur = Beg; Cur < End; Cur++) { + Cur = (uint8_t *)memmem(Cur, End - Cur, PresentData, DataSize); + if (!Cur) + break; + size_t Pos = Cur - Beg; + assert(Pos < CurrentUnit.size()); + AddMutation(Pos, DataSize, DesiredData); + Res++; + } + return Res; +} + +void TraceState::TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, + uint64_t Arg1, uint64_t Arg2) { + if (!RecordingTraces || !IsMyThread) return; + if ((CmpType == ICMP_EQ || CmpType == ICMP_NE) && Arg1 == Arg2) + return; // No reason to mutate. + int Added = 0; + Added += TryToAddDesiredData(Arg1, Arg2, CmpSize); + Added += TryToAddDesiredData(Arg2, Arg1, CmpSize); + if (!Added && CmpSize == 4 && IsTwoByteData(Arg1) && IsTwoByteData(Arg2)) { + Added += TryToAddDesiredData(Arg1, Arg2, 2); + Added += TryToAddDesiredData(Arg2, Arg1, 2); + } + if (Options.Verbosity >= 3 && Added) + Printf("TraceCmp %zd/%zd: %p %zd %zd\n", CmpSize, CmpType, PC, Arg1, Arg2); +} + +void TraceState::TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1, + const uint8_t *Data2) { + if (!RecordingTraces || !IsMyThread) return; + CmpSize = std::min(CmpSize, TraceBasedMutation::kMaxSize); + int Added2 = TryToAddDesiredData(Data1, Data2, CmpSize); + int Added1 = TryToAddDesiredData(Data2, Data1, CmpSize); + if ((Added1 || Added2) && Options.Verbosity >= 3) { + Printf("MemCmp Added %d%d: ", Added1, Added2); + if (Added1) PrintASCII(Data1, CmpSize); + if (Added2) PrintASCII(Data2, CmpSize); + Printf("\n"); + } +} + +void TraceState::TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, + uint64_t Val, size_t NumCases, + uint64_t *Cases) { + if (!RecordingTraces || !IsMyThread) return; + size_t ValSize = ValSizeInBits / 8; + bool TryShort = IsTwoByteData(Val); + for (size_t i = 0; i < NumCases; i++) + TryShort &= IsTwoByteData(Cases[i]); + + if (Options.Verbosity >= 3) + Printf("TraceSwitch: %p %zd # %zd; TryShort %d\n", PC, Val, NumCases, + TryShort); + + for (size_t i = 0; i < NumCases; i++) { + TryToAddDesiredData(Val, Cases[i], ValSize); + if (TryShort) + TryToAddDesiredData(Val, Cases[i], 2); + } +} + +static TraceState *TS; + +void Fuzzer::StartTraceRecording() { + if (!TS) return; + if (ReallyHaveDFSan()) + for (size_t i = 0; i < static_cast<size_t>(Options.MaxLen); i++) + dfsan_set_label(i + 1, &CurrentUnit[i], 1); + TS->StartTraceRecording(); +} + +void Fuzzer::StopTraceRecording() { + if (!TS) return; + TS->StopTraceRecording(); +} + +void Fuzzer::InitializeTraceState() { + if (!Options.UseTraces) return; + TS = new TraceState(USF, Options, CurrentUnit); + CurrentUnit.resize(Options.MaxLen); + // The rest really requires DFSan. + if (!ReallyHaveDFSan()) return; + for (size_t i = 0; i < static_cast<size_t>(Options.MaxLen); i++) { + dfsan_label L = dfsan_create_label("input", (void*)(i + 1)); + // We assume that no one else has called dfsan_create_label before. + if (L != i + 1) { + Printf("DFSan labels are not starting from 1, exiting\n"); + exit(1); + } + } +} + +static size_t InternalStrnlen(const char *S, size_t MaxLen) { + size_t Len = 0; + for (; Len < MaxLen && S[Len]; Len++) {} + return Len; +} + +} // namespace fuzzer + +using fuzzer::TS; + +extern "C" { +void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, + uint64_t Arg2, dfsan_label L0, + dfsan_label L1, dfsan_label L2) { + if (!TS) return; + assert(L0 == 0); + uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); + uint64_t CmpSize = (SizeAndType >> 32) / 8; + uint64_t Type = (SizeAndType << 32) >> 32; + TS->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2); +} + +void __dfsw___sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases, + dfsan_label L1, dfsan_label L2) { + if (!TS) return; + uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); + TS->DFSanSwitchCallback(PC, Cases[1], Val, Cases[0], Cases+2, L1); +} + +void dfsan_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2, + size_t n, dfsan_label s1_label, + dfsan_label s2_label, dfsan_label n_label) { + if (!TS) return; + dfsan_label L1 = dfsan_read_label(s1, n); + dfsan_label L2 = dfsan_read_label(s2, n); + TS->DFSanMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1), + reinterpret_cast<const uint8_t *>(s2), L1, L2); +} + +void dfsan_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2, + size_t n, dfsan_label s1_label, + dfsan_label s2_label, dfsan_label n_label) { + if (!TS) return; + n = std::min(n, fuzzer::InternalStrnlen(s1, n)); + n = std::min(n, fuzzer::InternalStrnlen(s2, n)); + dfsan_label L1 = dfsan_read_label(s1, n); + dfsan_label L2 = dfsan_read_label(s2, n); + TS->DFSanMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1), + reinterpret_cast<const uint8_t *>(s2), L1, L2); +} + +void dfsan_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2, + dfsan_label s1_label, dfsan_label s2_label) { + if (!TS) return; + size_t Len1 = strlen(s1); + size_t Len2 = strlen(s2); + size_t N = std::min(Len1, Len2); + if (N <= 1) return; // Not interesting. + dfsan_label L1 = dfsan_read_label(s1, Len1); + dfsan_label L2 = dfsan_read_label(s2, Len2); + TS->DFSanMemcmpCallback(N, reinterpret_cast<const uint8_t *>(s1), + reinterpret_cast<const uint8_t *>(s2), L1, L2); +} + +// We may need to avoid defining weak hooks to stay compatible with older clang. +#ifndef LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS +# define LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS 1 +#endif + +#if LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS +void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, + const void *s2, size_t n, int result) { + if (!TS) return; + if (result == 0) return; // No reason to mutate. + if (n <= 1) return; // Not interesting. + TS->TraceMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1), + reinterpret_cast<const uint8_t *>(s2)); +} + +void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, + const char *s2, size_t n, int result) { + if (!TS) return; + if (result == 0) return; // No reason to mutate. + size_t Len1 = fuzzer::InternalStrnlen(s1, n); + size_t Len2 = fuzzer::InternalStrnlen(s2, n); + n = std::min(n, Len1); + n = std::min(n, Len2); + if (n <= 1) return; // Not interesting. + TS->TraceMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1), + reinterpret_cast<const uint8_t *>(s2)); +} + +void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, + const char *s2, int result) { + if (!TS) return; + if (result == 0) return; // No reason to mutate. + size_t Len1 = strlen(s1); + size_t Len2 = strlen(s2); + size_t N = std::min(Len1, Len2); + if (N <= 1) return; // Not interesting. + TS->TraceMemcmpCallback(N, reinterpret_cast<const uint8_t *>(s1), + reinterpret_cast<const uint8_t *>(s2)); +} + +#endif // LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS + +__attribute__((visibility("default"))) +void __sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, + uint64_t Arg2) { + if (!TS) return; + uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); + uint64_t CmpSize = (SizeAndType >> 32) / 8; + uint64_t Type = (SizeAndType << 32) >> 32; + TS->TraceCmpCallback(PC, CmpSize, Type, Arg1, Arg2); +} + +__attribute__((visibility("default"))) +void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { + if (!TS) return; + uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); + TS->TraceSwitchCallback(PC, Cases[1], Val, Cases[0], Cases + 2); +} + +} // extern "C" |
