diff options
Diffstat (limited to 'gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp | 1770 |
1 files changed, 1770 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp b/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp new file mode 100644 index 00000000000..f594767c8ed --- /dev/null +++ b/gnu/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp @@ -0,0 +1,1770 @@ +//===- AMDGPULibCalls.cpp -------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// \brief This file does AMD library function optimizations. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "amdgpu-simplifylib" + +#include "AMDGPU.h" +#include "AMDGPULibFunc.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +#include <vector> +#include <cmath> + +using namespace llvm; + +static cl::opt<bool> EnablePreLink("amdgpu-prelink", + cl::desc("Enable pre-link mode optimizations"), + cl::init(false), + cl::Hidden); + +static cl::list<std::string> UseNative("amdgpu-use-native", + cl::desc("Comma separated list of functions to replace with native, or all"), + cl::CommaSeparated, cl::ValueOptional, + cl::Hidden); + +#define MATH_PI 3.14159265358979323846264338327950288419716939937511 +#define MATH_E 2.71828182845904523536028747135266249775724709369996 +#define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695 + +#define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859 +#define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665 +// Value of log2(10) +#define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806 +// Value of 1 / log2(10) +#define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085 +// Value of 1 / M_LOG2E_F = 1 / log2(e) +#define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552 + +namespace llvm { + +class AMDGPULibCalls { +private: + + typedef llvm::AMDGPULibFunc FuncInfo; + + // -fuse-native. + bool AllNative = false; + + bool useNativeFunc(const StringRef F) const; + + // Return a pointer (pointer expr) to the function if function defintion with + // "FuncName" exists. It may create a new function prototype in pre-link mode. + Constant *getFunction(Module *M, const FuncInfo& fInfo); + + // Replace a normal function with its native version. + bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); + + bool parseFunctionName(const StringRef& FMangledName, + FuncInfo *FInfo=nullptr /*out*/); + + bool TDOFold(CallInst *CI, const FuncInfo &FInfo); + + /* Specialized optimizations */ + + // recip (half or native) + bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // divide (half or native) + bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // pow/powr/pown + bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // rootn + bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // fma/mad + bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // -fuse-native for sincos + bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); + + // evaluate calls if calls' arguments are constants. + bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, + double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); + bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); + + // exp + bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // exp2 + bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // exp10 + bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // log + bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // log2 + bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // log10 + bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // sqrt + bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + + // sin/cos + bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); + + // __read_pipe/__write_pipe + bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); + + // Get insertion point at entry. + BasicBlock::iterator getEntryIns(CallInst * UI); + // Insert an Alloc instruction. + AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); + // Get a scalar native builtin signle argument FP function + Constant* getNativeFunction(Module* M, const FuncInfo &FInfo); + +protected: + CallInst *CI; + + bool isUnsafeMath(const CallInst *CI) const; + + void replaceCall(Value *With) { + CI->replaceAllUsesWith(With); + CI->eraseFromParent(); + } + +public: + bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); + + void initNativeFuncs(); + + // Replace a normal math function call with that native version + bool useNative(CallInst *CI); +}; + +} // end llvm namespace + +namespace { + + class AMDGPUSimplifyLibCalls : public FunctionPass { + + AMDGPULibCalls Simplifier; + + const TargetOptions Options; + + public: + static char ID; // Pass identification + + AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions()) + : FunctionPass(ID), Options(Opt) { + initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AAResultsWrapperPass>(); + } + + bool runOnFunction(Function &M) override; + }; + + class AMDGPUUseNativeCalls : public FunctionPass { + + AMDGPULibCalls Simplifier; + + public: + static char ID; // Pass identification + + AMDGPUUseNativeCalls() : FunctionPass(ID) { + initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); + Simplifier.initNativeFuncs(); + } + + bool runOnFunction(Function &F) override; + }; + +} // end anonymous namespace. + +char AMDGPUSimplifyLibCalls::ID = 0; +char AMDGPUUseNativeCalls::ID = 0; + +INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", + "Simplify well-known AMD library calls", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", + "Simplify well-known AMD library calls", false, false) + +INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", + "Replace builtin math calls with that native versions.", + false, false) + +template <typename IRB> +static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg, + const Twine &Name = "") { + CallInst *R = B.CreateCall(Callee, Arg, Name); + if (Function* F = dyn_cast<Function>(Callee)) + R->setCallingConv(F->getCallingConv()); + return R; +} + +template <typename IRB> +static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2, + const Twine &Name = "") { + CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); + if (Function* F = dyn_cast<Function>(Callee)) + R->setCallingConv(F->getCallingConv()); + return R; +} + +// Data structures for table-driven optimizations. +// FuncTbl works for both f32 and f64 functions with 1 input argument + +struct TableEntry { + double result; + double input; +}; + +/* a list of {result, input} */ +static const TableEntry tbl_acos[] = { + {MATH_PI/2.0, 0.0}, + {MATH_PI/2.0, -0.0}, + {0.0, 1.0}, + {MATH_PI, -1.0} +}; +static const TableEntry tbl_acosh[] = { + {0.0, 1.0} +}; +static const TableEntry tbl_acospi[] = { + {0.5, 0.0}, + {0.5, -0.0}, + {0.0, 1.0}, + {1.0, -1.0} +}; +static const TableEntry tbl_asin[] = { + {0.0, 0.0}, + {-0.0, -0.0}, + {MATH_PI/2.0, 1.0}, + {-MATH_PI/2.0, -1.0} +}; +static const TableEntry tbl_asinh[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_asinpi[] = { + {0.0, 0.0}, + {-0.0, -0.0}, + {0.5, 1.0}, + {-0.5, -1.0} +}; +static const TableEntry tbl_atan[] = { + {0.0, 0.0}, + {-0.0, -0.0}, + {MATH_PI/4.0, 1.0}, + {-MATH_PI/4.0, -1.0} +}; +static const TableEntry tbl_atanh[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_atanpi[] = { + {0.0, 0.0}, + {-0.0, -0.0}, + {0.25, 1.0}, + {-0.25, -1.0} +}; +static const TableEntry tbl_cbrt[] = { + {0.0, 0.0}, + {-0.0, -0.0}, + {1.0, 1.0}, + {-1.0, -1.0}, +}; +static const TableEntry tbl_cos[] = { + {1.0, 0.0}, + {1.0, -0.0} +}; +static const TableEntry tbl_cosh[] = { + {1.0, 0.0}, + {1.0, -0.0} +}; +static const TableEntry tbl_cospi[] = { + {1.0, 0.0}, + {1.0, -0.0} +}; +static const TableEntry tbl_erfc[] = { + {1.0, 0.0}, + {1.0, -0.0} +}; +static const TableEntry tbl_erf[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_exp[] = { + {1.0, 0.0}, + {1.0, -0.0}, + {MATH_E, 1.0} +}; +static const TableEntry tbl_exp2[] = { + {1.0, 0.0}, + {1.0, -0.0}, + {2.0, 1.0} +}; +static const TableEntry tbl_exp10[] = { + {1.0, 0.0}, + {1.0, -0.0}, + {10.0, 1.0} +}; +static const TableEntry tbl_expm1[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_log[] = { + {0.0, 1.0}, + {1.0, MATH_E} +}; +static const TableEntry tbl_log2[] = { + {0.0, 1.0}, + {1.0, 2.0} +}; +static const TableEntry tbl_log10[] = { + {0.0, 1.0}, + {1.0, 10.0} +}; +static const TableEntry tbl_rsqrt[] = { + {1.0, 1.0}, + {1.0/MATH_SQRT2, 2.0} +}; +static const TableEntry tbl_sin[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_sinh[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_sinpi[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_sqrt[] = { + {0.0, 0.0}, + {1.0, 1.0}, + {MATH_SQRT2, 2.0} +}; +static const TableEntry tbl_tan[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_tanh[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_tanpi[] = { + {0.0, 0.0}, + {-0.0, -0.0} +}; +static const TableEntry tbl_tgamma[] = { + {1.0, 1.0}, + {1.0, 2.0}, + {2.0, 3.0}, + {6.0, 4.0} +}; + +static bool HasNative(AMDGPULibFunc::EFuncId id) { + switch(id) { + case AMDGPULibFunc::EI_DIVIDE: + case AMDGPULibFunc::EI_COS: + case AMDGPULibFunc::EI_EXP: + case AMDGPULibFunc::EI_EXP2: + case AMDGPULibFunc::EI_EXP10: + case AMDGPULibFunc::EI_LOG: + case AMDGPULibFunc::EI_LOG2: + case AMDGPULibFunc::EI_LOG10: + case AMDGPULibFunc::EI_POWR: + case AMDGPULibFunc::EI_RECIP: + case AMDGPULibFunc::EI_RSQRT: + case AMDGPULibFunc::EI_SIN: + case AMDGPULibFunc::EI_SINCOS: + case AMDGPULibFunc::EI_SQRT: + case AMDGPULibFunc::EI_TAN: + return true; + default:; + } + return false; +} + +struct TableRef { + size_t size; + const TableEntry *table; // variable size: from 0 to (size - 1) + + TableRef() : size(0), table(nullptr) {} + + template <size_t N> + TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} +}; + +static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { + switch(id) { + case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); + case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); + case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); + case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); + case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); + case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); + case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); + case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); + case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); + case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); + case AMDGPULibFunc::EI_NCOS: + case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); + case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); + case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); + case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); + case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); + case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); + case AMDGPULibFunc::EI_NEXP2: + case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); + case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); + case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); + case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); + case AMDGPULibFunc::EI_NLOG2: + case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); + case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); + case AMDGPULibFunc::EI_NRSQRT: + case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); + case AMDGPULibFunc::EI_NSIN: + case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); + case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); + case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); + case AMDGPULibFunc::EI_NSQRT: + case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); + case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); + case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); + case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); + case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); + default:; + } + return TableRef(); +} + +static inline int getVecSize(const AMDGPULibFunc& FInfo) { + return FInfo.getLeads()[0].VectorSize; +} + +static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { + return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; +} + +Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) { + // If we are doing PreLinkOpt, the function is external. So it is safe to + // use getOrInsertFunction() at this stage. + + return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) + : AMDGPULibFunc::getFunction(M, fInfo); +} + +bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, + FuncInfo *FInfo) { + return AMDGPULibFunc::parse(FMangledName, *FInfo); +} + +bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { + if (auto Op = dyn_cast<FPMathOperator>(CI)) + if (Op->isFast()) + return true; + const Function *F = CI->getParent()->getParent(); + Attribute Attr = F->getFnAttribute("unsafe-fp-math"); + return Attr.getValueAsString() == "true"; +} + +bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { + return AllNative || + std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); +} + +void AMDGPULibCalls::initNativeFuncs() { + AllNative = useNativeFunc("all") || + (UseNative.getNumOccurrences() && UseNative.size() == 1 && + UseNative.begin()->empty()); +} + +bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { + bool native_sin = useNativeFunc("sin"); + bool native_cos = useNativeFunc("cos"); + + if (native_sin && native_cos) { + Module *M = aCI->getModule(); + Value *opr0 = aCI->getArgOperand(0); + + AMDGPULibFunc nf; + nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; + nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; + + nf.setPrefix(AMDGPULibFunc::NATIVE); + nf.setId(AMDGPULibFunc::EI_SIN); + Constant *sinExpr = getFunction(M, nf); + + nf.setPrefix(AMDGPULibFunc::NATIVE); + nf.setId(AMDGPULibFunc::EI_COS); + Constant *cosExpr = getFunction(M, nf); + if (sinExpr && cosExpr) { + Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); + Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); + new StoreInst(cosval, aCI->getArgOperand(1), aCI); + + DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI + << " with native version of sin/cos"); + + replaceCall(sinval); + return true; + } + } + return false; +} + +bool AMDGPULibCalls::useNative(CallInst *aCI) { + CI = aCI; + Function *Callee = aCI->getCalledFunction(); + + FuncInfo FInfo; + if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || + FInfo.getPrefix() != AMDGPULibFunc::NOPFX || + getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || + !(AllNative || useNativeFunc(FInfo.getName()))) { + return false; + } + + if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) + return sincosUseNative(aCI, FInfo); + + FInfo.setPrefix(AMDGPULibFunc::NATIVE); + Constant *F = getFunction(aCI->getModule(), FInfo); + if (!F) + return false; + + aCI->setCalledFunction(F); + DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI + << " with native version"); + return true; +} + +// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe +// builtin, with appended type size and alignment arguments, where 2 or 4 +// indicates the original number of arguments. The library has optimized version +// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same +// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N +// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., +// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. +bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, + FuncInfo &FInfo) { + auto *Callee = CI->getCalledFunction(); + if (!Callee->isDeclaration()) + return false; + + assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); + auto *M = Callee->getParent(); + auto &Ctx = M->getContext(); + std::string Name = Callee->getName(); + auto NumArg = CI->getNumArgOperands(); + if (NumArg != 4 && NumArg != 6) + return false; + auto *PacketSize = CI->getArgOperand(NumArg - 2); + auto *PacketAlign = CI->getArgOperand(NumArg - 1); + if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) + return false; + unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); + unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); + if (Size != Align || !isPowerOf2_32(Size)) + return false; + + Type *PtrElemTy; + if (Size <= 8) + PtrElemTy = Type::getIntNTy(Ctx, Size * 8); + else + PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); + unsigned PtrArgLoc = CI->getNumArgOperands() - 3; + auto PtrArg = CI->getArgOperand(PtrArgLoc); + unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); + auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); + + SmallVector<llvm::Type *, 6> ArgTys; + for (unsigned I = 0; I != PtrArgLoc; ++I) + ArgTys.push_back(CI->getArgOperand(I)->getType()); + ArgTys.push_back(PtrTy); + + Name = Name + "_" + std::to_string(Size); + auto *FTy = FunctionType::get(Callee->getReturnType(), + ArrayRef<Type *>(ArgTys), false); + AMDGPULibFunc NewLibFunc(Name, FTy); + auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); + if (!F) + return false; + + auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); + SmallVector<Value *, 6> Args; + for (unsigned I = 0; I != PtrArgLoc; ++I) + Args.push_back(CI->getArgOperand(I)); + Args.push_back(BCast); + + auto *NCI = B.CreateCall(F, Args); + NCI->setAttributes(CI->getAttributes()); + CI->replaceAllUsesWith(NCI); + CI->dropAllReferences(); + CI->eraseFromParent(); + + return true; +} + +// This function returns false if no change; return true otherwise. +bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { + this->CI = CI; + Function *Callee = CI->getCalledFunction(); + + // Ignore indirect calls. + if (Callee == 0) return false; + + FuncInfo FInfo; + if (!parseFunctionName(Callee->getName(), &FInfo)) + return false; + + // Further check the number of arguments to see if they match. + if (CI->getNumArgOperands() != FInfo.getNumArgs()) + return false; + + BasicBlock *BB = CI->getParent(); + LLVMContext &Context = CI->getParent()->getContext(); + IRBuilder<> B(Context); + + // Set the builder to the instruction after the call. + B.SetInsertPoint(BB, CI->getIterator()); + + // Copy fast flags from the original call. + if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) + B.setFastMathFlags(FPOp->getFastMathFlags()); + + if (TDOFold(CI, FInfo)) + return true; + + // Under unsafe-math, evaluate calls if possible. + // According to Brian Sumner, we can do this for all f32 function calls + // using host's double function calls. + if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) + return true; + + // Specilized optimizations for each function call + switch (FInfo.getId()) { + case AMDGPULibFunc::EI_RECIP: + // skip vector function + assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || + FInfo.getPrefix() == AMDGPULibFunc::HALF) && + "recip must be an either native or half function"); + return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); + + case AMDGPULibFunc::EI_DIVIDE: + // skip vector function + assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || + FInfo.getPrefix() == AMDGPULibFunc::HALF) && + "divide must be an either native or half function"); + return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); + + case AMDGPULibFunc::EI_POW: + case AMDGPULibFunc::EI_POWR: + case AMDGPULibFunc::EI_POWN: + return fold_pow(CI, B, FInfo); + + case AMDGPULibFunc::EI_ROOTN: + // skip vector function + return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); + + case AMDGPULibFunc::EI_FMA: + case AMDGPULibFunc::EI_MAD: + case AMDGPULibFunc::EI_NFMA: + // skip vector function + return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); + + case AMDGPULibFunc::EI_SQRT: + return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); + case AMDGPULibFunc::EI_COS: + case AMDGPULibFunc::EI_SIN: + if ((getArgType(FInfo) == AMDGPULibFunc::F32 || + getArgType(FInfo) == AMDGPULibFunc::F64) + && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) + return fold_sincos(CI, B, AA); + + break; + case AMDGPULibFunc::EI_READ_PIPE_2: + case AMDGPULibFunc::EI_READ_PIPE_4: + case AMDGPULibFunc::EI_WRITE_PIPE_2: + case AMDGPULibFunc::EI_WRITE_PIPE_4: + return fold_read_write_pipe(CI, B, FInfo); + + default: + break; + } + + return false; +} + +bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { + // Table-Driven optimization + const TableRef tr = getOptTable(FInfo.getId()); + if (tr.size==0) + return false; + + int const sz = (int)tr.size; + const TableEntry * const ftbl = tr.table; + Value *opr0 = CI->getArgOperand(0); + + if (getVecSize(FInfo) > 1) { + if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { + SmallVector<double, 0> DVal; + for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { + ConstantFP *eltval = dyn_cast<ConstantFP>( + CV->getElementAsConstant((unsigned)eltNo)); + assert(eltval && "Non-FP arguments in math function!"); + bool found = false; + for (int i=0; i < sz; ++i) { + if (eltval->isExactlyValue(ftbl[i].input)) { + DVal.push_back(ftbl[i].result); + found = true; + break; + } + } + if (!found) { + // This vector constants not handled yet. + return false; + } + } + LLVMContext &context = CI->getParent()->getParent()->getContext(); + Constant *nval; + if (getArgType(FInfo) == AMDGPULibFunc::F32) { + SmallVector<float, 0> FVal; + for (unsigned i = 0; i < DVal.size(); ++i) { + FVal.push_back((float)DVal[i]); + } + ArrayRef<float> tmp(FVal); + nval = ConstantDataVector::get(context, tmp); + } else { // F64 + ArrayRef<double> tmp(DVal); + nval = ConstantDataVector::get(context, tmp); + } + DEBUG(errs() << "AMDIC: " << *CI + << " ---> " << *nval << "\n"); + replaceCall(nval); + return true; + } + } else { + // Scalar version + if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { + for (int i = 0; i < sz; ++i) { + if (CF->isExactlyValue(ftbl[i].input)) { + Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); + DEBUG(errs() << "AMDIC: " << *CI + << " ---> " << *nval << "\n"); + replaceCall(nval); + return true; + } + } + } + } + + return false; +} + +bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { + Module *M = CI->getModule(); + if (getArgType(FInfo) != AMDGPULibFunc::F32 || + FInfo.getPrefix() != AMDGPULibFunc::NOPFX || + !HasNative(FInfo.getId())) + return false; + + AMDGPULibFunc nf = FInfo; + nf.setPrefix(AMDGPULibFunc::NATIVE); + if (Constant *FPExpr = getFunction(M, nf)) { + DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); + + CI->setCalledFunction(FPExpr); + + DEBUG(dbgs() << *CI << '\n'); + + return true; + } + return false; +} + +// [native_]half_recip(c) ==> 1.0/c +bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, + const FuncInfo &FInfo) { + Value *opr0 = CI->getArgOperand(0); + if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { + // Just create a normal div. Later, InstCombine will be able + // to compute the divide into a constant (avoid check float infinity + // or subnormal at this point). + Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), + opr0, + "recip2div"); + DEBUG(errs() << "AMDIC: " << *CI + << " ---> " << *nval << "\n"); + replaceCall(nval); + return true; + } + return false; +} + +// [native_]half_divide(x, c) ==> x/c +bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, + const FuncInfo &FInfo) { + Value *opr0 = CI->getArgOperand(0); + Value *opr1 = CI->getArgOperand(1); + ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); + ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); + + if ((CF0 && CF1) || // both are constants + (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) + // CF1 is constant && f32 divide + { + Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), + opr1, "__div2recip"); + Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); + replaceCall(nval); + return true; + } + return false; +} + +namespace llvm { +static double log2(double V) { +#if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L + return ::log2(V); +#else + return log(V) / 0.693147180559945309417; +#endif +} +} + +bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, + const FuncInfo &FInfo) { + assert((FInfo.getId() == AMDGPULibFunc::EI_POW || + FInfo.getId() == AMDGPULibFunc::EI_POWR || + FInfo.getId() == AMDGPULibFunc::EI_POWN) && + "fold_pow: encounter a wrong function call"); + + Value *opr0, *opr1; + ConstantFP *CF; + ConstantInt *CINT; + ConstantAggregateZero *CZero; + Type *eltType; + + opr0 = CI->getArgOperand(0); + opr1 = CI->getArgOperand(1); + CZero = dyn_cast<ConstantAggregateZero>(opr1); + if (getVecSize(FInfo) == 1) { + eltType = opr0->getType(); + CF = dyn_cast<ConstantFP>(opr1); + CINT = dyn_cast<ConstantInt>(opr1); + } else { + VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); + assert(VTy && "Oprand of vector function should be of vectortype"); + eltType = VTy->getElementType(); + ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); + + // Now, only Handle vector const whose elements have the same value. + CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; + CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; + } + + // No unsafe math , no constant argument, do nothing + if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) + return false; + + // 0x1111111 means that we don't do anything for this call. + int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); + + if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { + // pow/powr/pown(x, 0) == 1 + DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); + Constant *cnval = ConstantFP::get(eltType, 1.0); + if (getVecSize(FInfo) > 1) { + cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); + } + replaceCall(cnval); + return true; + } + if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { + // pow/powr/pown(x, 1.0) = x + DEBUG(errs() << "AMDIC: " << *CI + << " ---> " << *opr0 << "\n"); + replaceCall(opr0); + return true; + } + if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { + // pow/powr/pown(x, 2.0) = x*x + DEBUG(errs() << "AMDIC: " << *CI + << " ---> " << *opr0 << " * " << *opr0 << "\n"); + Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); + replaceCall(nval); + return true; + } + if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { + // pow/powr/pown(x, -1.0) = 1.0/x + DEBUG(errs() << "AMDIC: " << *CI + << " ---> 1 / " << *opr0 << "\n"); + Constant *cnval = ConstantFP::get(eltType, 1.0); + if (getVecSize(FInfo) > 1) { + cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); + } + Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); + replaceCall(nval); + return true; + } + + Module *M = CI->getModule(); + if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { + // pow[r](x, [-]0.5) = sqrt(x) + bool issqrt = CF->isExactlyValue(0.5); + if (Constant *FPExpr = getFunction(M, + AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT + : AMDGPULibFunc::EI_RSQRT, FInfo))) { + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); + Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" + : "__pow2rsqrt"); + replaceCall(nval); + return true; + } + } + + if (!isUnsafeMath(CI)) + return false; + + // Unsafe Math optimization + + // Remember that ci_opr1 is set if opr1 is integral + if (CF) { + double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) + ? (double)CF->getValueAPF().convertToFloat() + : CF->getValueAPF().convertToDouble(); + int ival = (int)dval; + if ((double)ival == dval) { + ci_opr1 = ival; + } else + ci_opr1 = 0x11111111; + } + + // pow/powr/pown(x, c) = [1/](x*x*..x); where + // trunc(c) == c && the number of x == c && |c| <= 12 + unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; + if (abs_opr1 <= 12) { + Constant *cnval; + Value *nval; + if (abs_opr1 == 0) { + cnval = ConstantFP::get(eltType, 1.0); + if (getVecSize(FInfo) > 1) { + cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); + } + nval = cnval; + } else { + Value *valx2 = nullptr; + nval = nullptr; + while (abs_opr1 > 0) { + valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; + if (abs_opr1 & 1) { + nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; + } + abs_opr1 >>= 1; + } + } + + if (ci_opr1 < 0) { + cnval = ConstantFP::get(eltType, 1.0); + if (getVecSize(FInfo) > 1) { + cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); + } + nval = B.CreateFDiv(cnval, nval, "__1powprod"); + } + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 << ")\n"); + replaceCall(nval); + return true; + } + + // powr ---> exp2(y * log2(x)) + // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) + Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, + FInfo)); + if (!ExpExpr) + return false; + + bool needlog = false; + bool needabs = false; + bool needcopysign = false; + Constant *cnval = nullptr; + if (getVecSize(FInfo) == 1) { + CF = dyn_cast<ConstantFP>(opr0); + + if (CF) { + double V = (getArgType(FInfo) == AMDGPULibFunc::F32) + ? (double)CF->getValueAPF().convertToFloat() + : CF->getValueAPF().convertToDouble(); + + V = log2(std::abs(V)); + cnval = ConstantFP::get(eltType, V); + needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && + CF->isNegative(); + } else { + needlog = true; + needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && + (!CF || CF->isNegative()); + } + } else { + ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); + + if (!CDV) { + needlog = true; + needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; + } else { + assert ((int)CDV->getNumElements() == getVecSize(FInfo) && + "Wrong vector size detected"); + + SmallVector<double, 0> DVal; + for (int i=0; i < getVecSize(FInfo); ++i) { + double V = (getArgType(FInfo) == AMDGPULibFunc::F32) + ? (double)CDV->getElementAsFloat(i) + : CDV->getElementAsDouble(i); + if (V < 0.0) needcopysign = true; + V = log2(std::abs(V)); + DVal.push_back(V); + } + if (getArgType(FInfo) == AMDGPULibFunc::F32) { + SmallVector<float, 0> FVal; + for (unsigned i=0; i < DVal.size(); ++i) { + FVal.push_back((float)DVal[i]); + } + ArrayRef<float> tmp(FVal); + cnval = ConstantDataVector::get(M->getContext(), tmp); + } else { + ArrayRef<double> tmp(DVal); + cnval = ConstantDataVector::get(M->getContext(), tmp); + } + } + } + + if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { + // We cannot handle corner cases for a general pow() function, give up + // unless y is a constant integral value. Then proceed as if it were pown. + if (getVecSize(FInfo) == 1) { + if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { + double y = (getArgType(FInfo) == AMDGPULibFunc::F32) + ? (double)CF->getValueAPF().convertToFloat() + : CF->getValueAPF().convertToDouble(); + if (y != (double)(int64_t)y) + return false; + } else + return false; + } else { + if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { + for (int i=0; i < getVecSize(FInfo); ++i) { + double y = (getArgType(FInfo) == AMDGPULibFunc::F32) + ? (double)CDV->getElementAsFloat(i) + : CDV->getElementAsDouble(i); + if (y != (double)(int64_t)y) + return false; + } + } else + return false; + } + } + + Value *nval; + if (needabs) { + Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, + FInfo)); + if (!AbsExpr) + return false; + nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); + } else { + nval = cnval ? cnval : opr0; + } + if (needlog) { + Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, + FInfo)); + if (!LogExpr) + return false; + nval = CreateCallEx(B,LogExpr, nval, "__log2"); + } + + if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { + // convert int(32) to fp(f32 or f64) + opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); + } + nval = B.CreateFMul(opr1, nval, "__ylogx"); + nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); + + if (needcopysign) { + Value *opr_n; + Type* rTy = opr0->getType(); + Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); + Type *nTy = nTyS; + if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) + nTy = VectorType::get(nTyS, vTy->getNumElements()); + unsigned size = nTy->getScalarSizeInBits(); + opr_n = CI->getArgOperand(1); + if (opr_n->getType()->isIntegerTy()) + opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); + else + opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); + + Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); + sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); + nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); + nval = B.CreateBitCast(nval, opr0->getType()); + } + + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); + replaceCall(nval); + + return true; +} + +bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, + const FuncInfo &FInfo) { + Value *opr0 = CI->getArgOperand(0); + Value *opr1 = CI->getArgOperand(1); + + ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); + if (!CINT) { + return false; + } + int ci_opr1 = (int)CINT->getSExtValue(); + if (ci_opr1 == 1) { // rootn(x, 1) = x + DEBUG(errs() << "AMDIC: " << *CI + << " ---> " << *opr0 << "\n"); + replaceCall(opr0); + return true; + } + if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) + std::vector<const Type*> ParamsTys; + ParamsTys.push_back(opr0->getType()); + Module *M = CI->getModule(); + if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, + FInfo))) { + DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); + Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); + replaceCall(nval); + return true; + } + } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) + Module *M = CI->getModule(); + if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, + FInfo))) { + DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); + Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); + replaceCall(nval); + return true; + } + } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x + DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); + Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), + opr0, + "__rootn2div"); + replaceCall(nval); + return true; + } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) + std::vector<const Type*> ParamsTys; + ParamsTys.push_back(opr0->getType()); + Module *M = CI->getModule(); + if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, + FInfo))) { + DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 << ")\n"); + Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); + replaceCall(nval); + return true; + } + } + return false; +} + +bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, + const FuncInfo &FInfo) { + Value *opr0 = CI->getArgOperand(0); + Value *opr1 = CI->getArgOperand(1); + Value *opr2 = CI->getArgOperand(2); + + ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); + ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); + if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { + // fma/mad(a, b, c) = c if a=0 || b=0 + DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); + replaceCall(opr2); + return true; + } + if (CF0 && CF0->isExactlyValue(1.0f)) { + // fma/mad(a, b, c) = b+c if a=1 + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << *opr1 << " + " << *opr2 << "\n"); + Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); + replaceCall(nval); + return true; + } + if (CF1 && CF1->isExactlyValue(1.0f)) { + // fma/mad(a, b, c) = a+c if b=1 + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << *opr0 << " + " << *opr2 << "\n"); + Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); + replaceCall(nval); + return true; + } + if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { + if (CF->isZero()) { + // fma/mad(a, b, c) = a*b if c=0 + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << *opr0 << " * " << *opr1 << "\n"); + Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); + replaceCall(nval); + return true; + } + } + + return false; +} + +// Get a scalar native builtin signle argument FP function +Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) { + if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) + return nullptr; + FuncInfo nf = FInfo; + nf.setPrefix(AMDGPULibFunc::NATIVE); + return getFunction(M, nf); +} + +// fold sqrt -> native_sqrt (x) +bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, + const FuncInfo &FInfo) { + if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && + (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { + if (Constant *FPExpr = getNativeFunction( + CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { + Value *opr0 = CI->getArgOperand(0); + DEBUG(errs() << "AMDIC: " << *CI << " ---> " + << "sqrt(" << *opr0 << ")\n"); + Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); + replaceCall(nval); + return true; + } + } + return false; +} + +// fold sin, cos -> sincos. +bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, + AliasAnalysis *AA) { + AMDGPULibFunc fInfo; + if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) + return false; + + assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || + fInfo.getId() == AMDGPULibFunc::EI_COS); + bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; + + Value *CArgVal = CI->getArgOperand(0); + BasicBlock * const CBB = CI->getParent(); + + int const MaxScan = 30; + + { // fold in load value. + LoadInst *LI = dyn_cast<LoadInst>(CArgVal); + if (LI && LI->getParent() == CBB) { + BasicBlock::iterator BBI = LI->getIterator(); + Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); + if (AvailableVal) { + CArgVal->replaceAllUsesWith(AvailableVal); + if (CArgVal->getNumUses() == 0) + LI->eraseFromParent(); + CArgVal = CI->getArgOperand(0); + } + } + } + + Module *M = CI->getModule(); + fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); + std::string const PairName = fInfo.mangle(); + + CallInst *UI = nullptr; + for (User* U : CArgVal->users()) { + CallInst *XI = dyn_cast_or_null<CallInst>(U); + if (!XI || XI == CI || XI->getParent() != CBB) + continue; + + Function *UCallee = XI->getCalledFunction(); + if (!UCallee || !UCallee->getName().equals(PairName)) + continue; + + BasicBlock::iterator BBI = CI->getIterator(); + if (BBI == CI->getParent()->begin()) + break; + --BBI; + for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { + if (cast<Instruction>(BBI) == XI) { + UI = XI; + break; + } + } + if (UI) break; + } + + if (!UI) return false; + + // Merge the sin and cos. + + // for OpenCL 2.0 we have only generic implementation of sincos + // function. + AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); + const AMDGPUAS AS = AMDGPU::getAMDGPUAS(*M); + nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AS.FLAT_ADDRESS); + Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf)); + if (!Fsincos) return false; + + BasicBlock::iterator ItOld = B.GetInsertPoint(); + AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); + B.SetInsertPoint(UI); + + Value *P = Alloc; + Type *PTy = Fsincos->getFunctionType()->getParamType(1); + // The allocaInst allocates the memory in private address space. This need + // to be bitcasted to point to the address space of cos pointer type. + // In OpenCL 2.0 this is generic, while in 1.2 that is private. + if (PTy->getPointerAddressSpace() != AS.PRIVATE_ADDRESS) + P = B.CreateAddrSpaceCast(Alloc, PTy); + CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); + + DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI + << ") with " << *Call << "\n"); + + if (!isSin) { // CI->cos, UI->sin + B.SetInsertPoint(&*ItOld); + UI->replaceAllUsesWith(&*Call); + Instruction *Reload = B.CreateLoad(Alloc); + CI->replaceAllUsesWith(Reload); + UI->eraseFromParent(); + CI->eraseFromParent(); + } else { // CI->sin, UI->cos + Instruction *Reload = B.CreateLoad(Alloc); + UI->replaceAllUsesWith(Reload); + CI->replaceAllUsesWith(Call); + UI->eraseFromParent(); + CI->eraseFromParent(); + } + return true; +} + +// Get insertion point at entry. +BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { + Function * Func = UI->getParent()->getParent(); + BasicBlock * BB = &Func->getEntryBlock(); + assert(BB && "Entry block not found!"); + BasicBlock::iterator ItNew = BB->begin(); + return ItNew; +} + +// Insert a AllocsInst at the beginning of function entry block. +AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, + const char *prefix) { + BasicBlock::iterator ItNew = getEntryIns(UI); + Function *UCallee = UI->getCalledFunction(); + Type *RetType = UCallee->getReturnType(); + B.SetInsertPoint(&*ItNew); + AllocaInst *Alloc = B.CreateAlloca(RetType, 0, + std::string(prefix) + UI->getName()); + Alloc->setAlignment(UCallee->getParent()->getDataLayout() + .getTypeAllocSize(RetType)); + return Alloc; +} + +bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, + double& Res0, double& Res1, + Constant *copr0, Constant *copr1, + Constant *copr2) { + // By default, opr0/opr1/opr3 holds values of float/double type. + // If they are not float/double, each function has to its + // operand separately. + double opr0=0.0, opr1=0.0, opr2=0.0; + ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); + ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); + ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); + if (fpopr0) { + opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) + ? fpopr0->getValueAPF().convertToDouble() + : (double)fpopr0->getValueAPF().convertToFloat(); + } + + if (fpopr1) { + opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) + ? fpopr1->getValueAPF().convertToDouble() + : (double)fpopr1->getValueAPF().convertToFloat(); + } + + if (fpopr2) { + opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) + ? fpopr2->getValueAPF().convertToDouble() + : (double)fpopr2->getValueAPF().convertToFloat(); + } + + switch (FInfo.getId()) { + default : return false; + + case AMDGPULibFunc::EI_ACOS: + Res0 = acos(opr0); + return true; + + case AMDGPULibFunc::EI_ACOSH: + // acosh(x) == log(x + sqrt(x*x - 1)) + Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); + return true; + + case AMDGPULibFunc::EI_ACOSPI: + Res0 = acos(opr0) / MATH_PI; + return true; + + case AMDGPULibFunc::EI_ASIN: + Res0 = asin(opr0); + return true; + + case AMDGPULibFunc::EI_ASINH: + // asinh(x) == log(x + sqrt(x*x + 1)) + Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); + return true; + + case AMDGPULibFunc::EI_ASINPI: + Res0 = asin(opr0) / MATH_PI; + return true; + + case AMDGPULibFunc::EI_ATAN: + Res0 = atan(opr0); + return true; + + case AMDGPULibFunc::EI_ATANH: + // atanh(x) == (log(x+1) - log(x-1))/2; + Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; + return true; + + case AMDGPULibFunc::EI_ATANPI: + Res0 = atan(opr0) / MATH_PI; + return true; + + case AMDGPULibFunc::EI_CBRT: + Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); + return true; + + case AMDGPULibFunc::EI_COS: + Res0 = cos(opr0); + return true; + + case AMDGPULibFunc::EI_COSH: + Res0 = cosh(opr0); + return true; + + case AMDGPULibFunc::EI_COSPI: + Res0 = cos(MATH_PI * opr0); + return true; + + case AMDGPULibFunc::EI_EXP: + Res0 = exp(opr0); + return true; + + case AMDGPULibFunc::EI_EXP2: + Res0 = pow(2.0, opr0); + return true; + + case AMDGPULibFunc::EI_EXP10: + Res0 = pow(10.0, opr0); + return true; + + case AMDGPULibFunc::EI_EXPM1: + Res0 = exp(opr0) - 1.0; + return true; + + case AMDGPULibFunc::EI_LOG: + Res0 = log(opr0); + return true; + + case AMDGPULibFunc::EI_LOG2: + Res0 = log(opr0) / log(2.0); + return true; + + case AMDGPULibFunc::EI_LOG10: + Res0 = log(opr0) / log(10.0); + return true; + + case AMDGPULibFunc::EI_RSQRT: + Res0 = 1.0 / sqrt(opr0); + return true; + + case AMDGPULibFunc::EI_SIN: + Res0 = sin(opr0); + return true; + + case AMDGPULibFunc::EI_SINH: + Res0 = sinh(opr0); + return true; + + case AMDGPULibFunc::EI_SINPI: + Res0 = sin(MATH_PI * opr0); + return true; + + case AMDGPULibFunc::EI_SQRT: + Res0 = sqrt(opr0); + return true; + + case AMDGPULibFunc::EI_TAN: + Res0 = tan(opr0); + return true; + + case AMDGPULibFunc::EI_TANH: + Res0 = tanh(opr0); + return true; + + case AMDGPULibFunc::EI_TANPI: + Res0 = tan(MATH_PI * opr0); + return true; + + case AMDGPULibFunc::EI_RECIP: + Res0 = 1.0 / opr0; + return true; + + // two-arg functions + case AMDGPULibFunc::EI_DIVIDE: + Res0 = opr0 / opr1; + return true; + + case AMDGPULibFunc::EI_POW: + case AMDGPULibFunc::EI_POWR: + Res0 = pow(opr0, opr1); + return true; + + case AMDGPULibFunc::EI_POWN: { + if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { + double val = (double)iopr1->getSExtValue(); + Res0 = pow(opr0, val); + return true; + } + return false; + } + + case AMDGPULibFunc::EI_ROOTN: { + if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { + double val = (double)iopr1->getSExtValue(); + Res0 = pow(opr0, 1.0 / val); + return true; + } + return false; + } + + // with ptr arg + case AMDGPULibFunc::EI_SINCOS: + Res0 = sin(opr0); + Res1 = cos(opr0); + return true; + + // three-arg functions + case AMDGPULibFunc::EI_FMA: + case AMDGPULibFunc::EI_MAD: + Res0 = opr0 * opr1 + opr2; + return true; + } + + return false; +} + +bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { + int numArgs = (int)aCI->getNumArgOperands(); + if (numArgs > 3) + return false; + + Constant *copr0 = nullptr; + Constant *copr1 = nullptr; + Constant *copr2 = nullptr; + if (numArgs > 0) { + if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) + return false; + } + + if (numArgs > 1) { + if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { + if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) + return false; + } + } + + if (numArgs > 2) { + if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) + return false; + } + + // At this point, all arguments to aCI are constants. + + // max vector size is 16, and sincos will generate two results. + double DVal0[16], DVal1[16]; + bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); + if (getVecSize(FInfo) == 1) { + if (!evaluateScalarMathFunc(FInfo, DVal0[0], + DVal1[0], copr0, copr1, copr2)) { + return false; + } + } else { + ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); + ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); + ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); + for (int i=0; i < getVecSize(FInfo); ++i) { + Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; + Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; + Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; + if (!evaluateScalarMathFunc(FInfo, DVal0[i], + DVal1[i], celt0, celt1, celt2)) { + return false; + } + } + } + + LLVMContext &context = CI->getParent()->getParent()->getContext(); + Constant *nval0, *nval1; + if (getVecSize(FInfo) == 1) { + nval0 = ConstantFP::get(CI->getType(), DVal0[0]); + if (hasTwoResults) + nval1 = ConstantFP::get(CI->getType(), DVal1[0]); + } else { + if (getArgType(FInfo) == AMDGPULibFunc::F32) { + SmallVector <float, 0> FVal0, FVal1; + for (int i=0; i < getVecSize(FInfo); ++i) + FVal0.push_back((float)DVal0[i]); + ArrayRef<float> tmp0(FVal0); + nval0 = ConstantDataVector::get(context, tmp0); + if (hasTwoResults) { + for (int i=0; i < getVecSize(FInfo); ++i) + FVal1.push_back((float)DVal1[i]); + ArrayRef<float> tmp1(FVal1); + nval1 = ConstantDataVector::get(context, tmp1); + } + } else { + ArrayRef<double> tmp0(DVal0); + nval0 = ConstantDataVector::get(context, tmp0); + if (hasTwoResults) { + ArrayRef<double> tmp1(DVal1); + nval1 = ConstantDataVector::get(context, tmp1); + } + } + } + + if (hasTwoResults) { + // sincos + assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && + "math function with ptr arg not supported yet"); + new StoreInst(nval1, aCI->getArgOperand(1), aCI); + } + + replaceCall(nval0); + return true; +} + +// Public interface to the Simplify LibCalls pass. +FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) { + return new AMDGPUSimplifyLibCalls(Opt); +} + +FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { + return new AMDGPUUseNativeCalls(); +} + +static bool setFastFlags(Function &F, const TargetOptions &Options) { + AttrBuilder B; + + if (Options.UnsafeFPMath || Options.NoInfsFPMath) + B.addAttribute("no-infs-fp-math", "true"); + if (Options.UnsafeFPMath || Options.NoNaNsFPMath) + B.addAttribute("no-nans-fp-math", "true"); + if (Options.UnsafeFPMath) { + B.addAttribute("less-precise-fpmad", "true"); + B.addAttribute("unsafe-fp-math", "true"); + } + + if (!B.hasAttributes()) + return false; + + F.addAttributes(AttributeList::FunctionIndex, B); + + return true; +} + +bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + bool Changed = false; + auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + + DEBUG(dbgs() << "AMDIC: process function "; + F.printAsOperand(dbgs(), false, F.getParent()); + dbgs() << '\n';); + + if (!EnablePreLink) + Changed |= setFastFlags(F, Options); + + for (auto &BB : F) { + for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { + // Ignore non-calls. + CallInst *CI = dyn_cast<CallInst>(I); + ++I; + if (!CI) continue; + + // Ignore indirect calls. + Function *Callee = CI->getCalledFunction(); + if (Callee == 0) continue; + + DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; + dbgs().flush()); + if(Simplifier.fold(CI, AA)) + Changed = true; + } + } + return Changed; +} + +bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { + if (skipFunction(F) || UseNative.empty()) + return false; + + bool Changed = false; + for (auto &BB : F) { + for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { + // Ignore non-calls. + CallInst *CI = dyn_cast<CallInst>(I); + ++I; + if (!CI) continue; + + // Ignore indirect calls. + Function *Callee = CI->getCalledFunction(); + if (Callee == 0) continue; + + if(Simplifier.useNative(CI)) + Changed = true; + } + } + return Changed; +} |
